

저작자표시-동일조건변경허락 2.0 대한민국

이용자는 아래의 조건을 따르는 경우에 한하여 자유롭게

l 이 저작물을 복제, 배포, 전송, 전시, 공연 및 방송할 수 있습니다.

l 이차적 저작물을 작성할 수 있습니다.

l 이 저작물을 영리 목적으로 이용할 수 있습니다.

다음과 같은 조건을 따라야 합니다:

l 귀하는, 이 저작물의 재이용이나 배포의 경우, 이 저작물에 적용된 이용허락조건
을 명확하게 나타내어야 합니다.

l 저작권자로부터 별도의 허가를 받으면 이러한 조건들은 적용되지 않습니다.

저작권법에 따른 이용자의 권리는 위의 내용에 의하여 영향을 받지 않습니다.

이것은 이용허락규약(Legal Code)을 이해하기 쉽게 요약한 것입니다.

Disclaimer

저작자표시. 귀하는 원저작자를 표시하여야 합니다.

동일조건변경허락. 귀하가 이 저작물을 개작, 변형 또는 가공했을 경우
에는, 이 저작물과 동일한 이용허락조건하에서만 배포할 수 있습니다.

http://creativecommons.org/licenses/by-sa/2.0/kr/legalcode
http://creativecommons.org/licenses/by-sa/2.0/kr/

Ph.D. DISSERTATION

Simplifying Reasoning under

Weak Memory Concurrency

느슨한 메모리 프로그램을 쉽게 이해하기

August 2023

DEPARTMENT OF COMPUTER SCIENCE & ENGINEERING

COLLEGE OF ENGINEERING

SEOUL NATIONAL UNIVERSITY

Minki Cho

Simplifying Reasoning under

Weak Memory Concurrency

느슨한 메모리 프로그램을 쉽게 이해하기

지도교수 허충길

이 논문을 공학박사 학위논문으로 제출함

2023년 7월

서울대학교 대학원

컴퓨터공학부

조 민 기

조민기의 공학박사 학위논문을 인준함

2023년 7월

위 원 장 이 광 근 (인)

부위원장 허 충 길 (인)

위 원 Ori Lahav (인)

위 원 강 지 훈 (인)

위 원 김 지 응 (인)

Abstract

This thesis presents ways to easily implement concurrent programs in weak

memory. In shared memory concurrency, programs have counterintuitive (or

weak) behavior due to hardware and compiler optimizations. It is difficult to

implement a correct program with a full understanding of weak behavior. I

develop two theories that simplify reasoning under weak memory concurrency.

First, I formalize and prove local data-race-freedom guarantees that ensure

strong semantics for locations accessed by non-racy instructions. These allow

programmers who avoid data races to understand and write concurrent programs

without understanding of weak behavior. Next, I show that sequential reasoning

is adequate and sufficient for establishing soundness of compiler optimizations

under weak memory. I introduce a sequential model SEQ which has no weak

behavior and no concurrency, and show that correct optimizations under SEQ

executions are also correct under weak memory. Our results are fully verified

against a weak memory model, the promising semantics.

Keywords: Relaxed Memory Concurrency, Operational Semantics, Data Race

Freedom, Compiler Optimization, Verified Compilation

Student Number: 2017-29003

i

Contents

Abstract i

Chapter 1 Prologue 1

1.1 Introduction . 1

1.2 Background: The Promising Semantics 2

1.2.1 The Promising Semantics 2

1.2.2 Additional Examples of the Promising Semantics 9

Chapter 2 Local Data-Race-Freedom Guarantees for Program

Writers 11

2.1 Introduction: The Need for Local DRF 11

2.2 Local DRF in Weak Memory Models 16

2.2.1 Local DRF w.r.t. an “In-Order” Semantics 16

2.2.2 Local DRF w.r.t. RA and SC 22

2.3 Local DRF Guarantees . 26

2.3.1 Local DRF-PF . 26

2.3.2 Local DRF-RA . 29

2.3.3 Local DRF-SC . 32

2.3.4 Time-wise Local DRF Guarantees 33

ii

2.4 Applying LDRF for Modular Reasoning 36

2.4.1 Reasoning About Client Code 37

2.4.2 Reasoning About Library Code 40

2.5 Mapping PS2.1 to Hardware . 41

2.6 A Counterexample to Local DRF in PS 46

2.7 Conclusion and Related Work . 47

Chapter 3 Sequential Reasoning for Compiler Writers 51

3.1 Introduction: Optimizations under Weak Memory 51

3.2 The Sequential Permission Machine 56

3.3 Advanced Behavior Refinement 68

3.4 An Overview of a Certified Optimizer 74

3.5 A Certified Optimizer in Detail 78

3.5.1 Optimizations in Detail 78

3.5.2 Simulation Relation in SEQ 81

3.6 Non-atomics in the Promising Semantics 82

3.7 Adequacy of Sequential Reasoning 87

3.8 Conclusion and Related Work . 90

Bibliography 95

초록 105

감사의 글 106

iii

Chapter 1

Prologue

1.1 Introduction

Writing and compiling programs correctly under shared memory concurrency

is difficult. In shared memory concurrency, programs have counterintuitive (or

“weak”) behavior due to hardware and compiler optimizations. Weak mem-

ory models are introduced to abstract complicated weak behavior and allow

programmers to write correct programs without sacrificing optimizations.

However, despite recent advances, weak memory models are too complex.

Weak memory models introduce complicated states and out-of-order execution

to properly model weak behavior. These complexities dramatically increase the

number of cases to consider when reasoning about program execution.

In this thesis, I propose methods to simplify reasoning under weak memory

concurrency. The main idea is to provide a simple and understandable model

for programmers instead of the full weak memory model. Importantly, reasoning

from the simple model can be lifted to the full weak memory model. Thanks to

1

this property, programmers can reason correctly about weak memory programs

without understanding weak memory models.

I give two main results. The first result, presented in Chapter 2, is the local

data-race-free guarantee for programmers writing programs that run under weak

memory concurrency. It guarantees that reasoning under the simple memory

models is still sound in the fully weak memory model under certain conditions.

This result was published in PLDI’2021 under the title “Modular Data-Race-

Freedom Guarantees in the Promising Semantics” [1].

The other result presented in Chapter 3 is for compiler writers. Surprisingly,

we show that reasoning under the sequential memory model is sound even under

weak memory concurrency. This result was published in PLDI’2022 under the

title “Sequential Reasoning for Optimizing Compilers under Weak Memory

Concurrency” [2].

The results are formalized and verified against the state-of-the-art weak

memory model, the promising semantics [3, 4]. The formal explanation and

examples of the promising semantics are given in Section 1.2.

1.2 Background: The Promising Semantics

1.2.1 The Promising Semantics

In this section we provide an introduction to the promising semantics. We

include only the necessary parts for keeping our presentation self-contained, and

refer the reader to [3, 4] for detailed explanations. Our focus is on the version

described in [4, §4.4], which we refer to as PS2.1.1

We present the fragment of the model containing: relaxed reads and writes

(rlx), strong relaxed writes (srlx), release writes (rel), and acquire reads (acq).

1Most of the details, however, are identical for the original PS model and for the PS2 model
(the only difference has to do with the notion of “capped memory” and reservations).

2

v ∈ Val value
X,Y, Z, L ∈ Loc location
oR ∈ {rlx, acq} read access mode
oW ∈ {rlx, srlx, rel} write access mode

π ∈ Tid ≜ {π1, π2, ...} thread identifier

f, t ∈ Time ≜ Q+ timestamp
(f, t] ∈ Time× Time timestamp interval

V ∈ View ≜ Loc → Time view
m = ⟨X@f, v, t⟩V ∈ Msg message
r = X@(f, t] ∈ Rsv reservation

M,P ⊆ Msg ∪ Rsv memory/promise set
σ thread-local program state
T = ⟨σ, V, P ⟩ ∈ Lts thread state
⟨T ,M⟩ thread configuration
T : Tid → Lts thread state mapping
⟨T ,M⟩ machine state

Figure 1.1: Domains and metavariables in PS2.1
(read-helper)

m = ⟨X@ , , t⟩Vm ∈ M V (X) ≤ t
oR = rlx ⇒ V ′ = V ⊔ [X 7→ t]
oR = acq ⇒ V ′ = V ⊔ [X 7→ t] ⊔ Vm

⟨V,M⟩ oR,m−−−→R V
′

(write-helper)

m = ⟨X@ , , t⟩Vm V (X) < t
oW ̸= rel ⇒ Vm = ⊥
oW = rel ⇒ (Vm = V ⊔ [X 7→ t]) ∧ (P |Msg

X = ∅)
⟨V, P,M⟩ oW,m−−−→W ⟨V ⊔ [X 7→ t], P,M ⊎ {m}⟩

(fulfill-helper)

m = ⟨X@ , , t⟩⊥ ∈ P V (X) < t
oW = rlx

⟨V, P,M⟩ oW,m−−−→W ⟨V ⊔ [X 7→ t], P \ {m},M⟩
(read)

σ
R(oR,X,v)−−−−−−→ σ′

m = ⟨X@ , v, ⟩
⟨V,M⟩ oR,m−−−→R V

′

⟨⟨σ, V, P ⟩,M⟩ R(oR,m)−−−−→ ⟨⟨σ′, V ′, P ⟩,M⟩

(write)

σ
W(oW,X,v)−−−−−−→ σ′

m = ⟨X@ , v, ⟩
⟨V, P,M⟩ oW,m−−−→W ⟨V ′, P ′,M ′⟩

⟨⟨σ, V, P ⟩,M⟩ W(oW,m)−−−−→ ⟨⟨σ′, V ′, P ′⟩,M ′⟩

(rmw)

σ
RMW(oR,oW,X,vR,vW)−−−−−−−−−−−→ σ′

mR = ⟨X@ , vR, t⟩ mW = ⟨X@t, vW, ⟩
⟨V,M⟩ oR,mR−−−→R VR ⟨VR, P,M⟩ oW,mW−−−→W ⟨V ′, P ′,M ′⟩

⟨⟨σ, V, P ⟩,M⟩ RMW(oR,oW,mR,mW)−−−−−−−−−−→ ⟨⟨σ′, V ′, P ′⟩,M ′⟩

(promise) / (reserve)

x ∈ Msg / x ∈ Rsv

⟨⟨σ, V, P ⟩,M⟩ prm / rsv−−−−−→ ⟨⟨σ, V, P ⊎ {x}⟩,M ⊎ {x}⟩

(cancel)

r ∈ P ∩ Rsv

⟨⟨σ, V, P ⟩,M⟩ cncl−−−→ ⟨⟨σ, V, P \ {r}⟩,M \ {r}⟩

(fail)

σ
fail−−−→ ⊥

⟨⟨σ, V, P ⟩,M⟩ fail−−−→ ⟨⟨⊥, V, ∅⟩,M⟩

Figure 1.2: Thread configuration steps in PS2.1

Read-modify-writes (RMWs) carry two access modes—one for the read part and

one for the write part. To simplify the presentation, we omit fences and release

sequences. We also elide “system calls”, used in [3, 4] to specify the observations

of a given program. Instead, as we did when analyzing the examples above,

we identify behaviors with final outcomes assigning values to certain registers.

Nevertheless, our formal development [5] handles all features previously included

in [3, 4] and uses system calls to define observable behaviors.

Figure 1.1 summarizes the different domains and (implicitly typed) metavari-

ables. To define the machine states, besides a set Loc of locations and a set

Val of values, we assume a set Time of timestamps which are rational numbers

(totally and densely) ordered by < with 0 being the minimum value. A view,

V ∈ Loc → Time, records a timestamp for each location. We represent half-open

ranges of timestamps using timestamp intervals denoted by (f, t] with f < t or

f = t = 0. A machine state is a pair ⟨T ,M⟩, where:

• M , called memory, is a finite set of messages and reservations. A message

3

m takes the form ⟨X@f, v, t⟩V where: X ∈ Loc, (f, t] is a timestamp interval (t

is called the timestamp of m), v ∈ Val, and V ∈ View (called message view).

In turn, a reservation r = X@(f, t] is defined like a message but without a

value and a view. For a memory to be well-formed (as we implicitly assume

henceforth), we require that messages/reservations with the same location have

disjoint timestamp intervals; and that the view of each message is pointing to a

timestamp of an existing message for every location. The initial memory consists

of an initialization message ⟨X@0, 0, 0⟩⊥ for every location X, where ⊥ ≜ λX. 0

denotes the bottom view.

• T is a mapping assigning a thread state T = ⟨σ, V, P ⟩ to every thread π ∈ Tid,

where:

– σ records the (thread-local) program state. To keep the presentation abstract,

rather than introducing a concrete syntax, we assume that the programming

language is represented as a transition system, with local transitions labeled

with the action that is performed. Each program state σ consists of the program

code, the current program counter and local register file. To run PS2.1 on a

program prog , we initialize the program state of each thread to include its part

of prog and the initial program counter and register file.

– V , called the thread view, records the highest timestamp that the thread has

observed for each location.

– P , called the thread promise set, is a set of messages and reservations recording

the thread’s outstanding promised and reserved writes. Since every promise and

reservation is also added to the memory, we will always have P ⊆ M .

Importantly, we require thread states to be well-formed, where for every

location X, the current view of π for X is lower than the timestamp of all

4

of π’s outstanding promised writes for X (i.e., ⟨X@ , , t⟩ ∈ P ⇒ V (X) < t).

This condition, called promise-consistency in [4], is equivalent to saying that a

thread should always be able to fulfill its promises by executing some sequence

of operations (but not necessarily the sequence dictated by the program).

Figure 1.2 provides the thread configuration steps:

read. A thread with view V reads by picking a message ⟨X@f, v, t⟩Vm ∈ M

provided that V (X) ≤ t, and updating its view for X to t. An acquire read

operation incorporates the message view Vm in the thread view (the operator ⊔

“joins” views by taking the pointwise maximum).

write. A thread with view V writes by adding a message m to the memory

whose timestamp is greater than the thread’s view of X (V (X) < t). Non-release

writes set the message view to the bottom view, whereas release writes record

the thread view in the message view. Instead of adding a message, relaxed writes

may fulfill outstanding promises by removing messages from the thread’s set of

promises. In addition, a release write to a location X forbids the existence of

outstanding promises for X (denoted as P |Msg
X = ∅).

rmw. A thread performs an RMW by first reading a messagemR = ⟨X@f, vR, t⟩VR,

and then attaching a new message to the read message, i.e., adding a message of

the form mW = ⟨X@t, vW, t
′⟩VW. This results in consecutive messages (f, t], (t, t′],

forbidding later writes from being placed between the two messages, which

guarantees RMW atomicity.

promise. The main novelty of the promising model lies in its way to enable

the reordering of a relaxed read followed by a relaxed write (to a different

location). It does so by allowing threads to non-deterministically promise future

(relaxed) writes, by simply adding messages to memory. Outstanding promises

are recorded in the thread state, and removed when promises are fulfilled. As

described below, to prevent “out-of-thin-air” behaviors (and validate DRF) the

5

outstanding promises at every step are confined by the machine that requires

certification—a thread that takes a step should always be able to fulfill all its

promises when executed in isolation.

reserve. To support register promotion and a more efficient mapping of RMWs

to Arm (see Example 2 below), PS2.1 (as well as PS2, but unlike PS) allows

threads to reserve timestamp intervals for their own future writes. Unlike

promises, reservations do not commit on the value that will be used to fill the

reserved interval, and thus cannot be read by other threads. They are only used

to “block” timestamp intervals in the memory. As in the promise step, a thread

adds the reservation to both the memory and its promise set.

cancel. A thread may cancel any of its reservations by simply removing it from

the memory and its promise set.

fail. A thread can fail (modeling, e.g., division by 0 or an assertion failure) and

invoke UB. Since UB can be replaced by any sequence of actions, this step is

considered as fulfilling all of the thread’s outstanding promises (here we need

the well-formedness assumption on thread states).

The machine steps interleave thread configuration transitions as follows:

⟨T (π),M⟩ cncl−−−→
∗ l−→ rsv−−→

∗
⟨T ′,M ′⟩

⟨T ′,M ′⟩ is consistent

⟨T ,M⟩ π,l
==⇒ ⟨T [π 7→ T ′],M ′⟩

At each machine step, one thread is performing one thread step, possibly

preceded by a sequence of reservation cancellations and followed by a sequence of

reservations. Crucially, to ensure that promises do not make the semantics overly

weak, a thread cannot take a step unless it reaches a consistent configuration,

which is defined by:

Definition 1 (Consistency). A thread configuration ⟨T ,M⟩ is consistent if

6

⟨T , M̂⟩ −→∗ ⟨⟨ , , ∅⟩, ⟩ where M̂ , called capped memory, is the memory obtained
from M as follows:

(i) For every message/reservation on X@(, t1] and message/ reservation on
X@(f2,] with t1 < f2, if there is no message/reservation in M with location
X and timestamp t1 < t < f2, add a reservation X@(t1, f2]; and

(ii) For every message/reservation on X@(, tmax] such that there is no mes-
sage/reservation onX@(, t] with t > tmax, add a reservationX@(tmax, tmax + 1].

Roughly speaking, consistency requires certification: the thread that took

the step should be able to fulfill all its promises when executed in isolation. The

certification starts from a capped version M̂ of the current memory M , where

all timestamp intervals between existing messages and reservations are blocked

by reservations and a “cap reservation” is attached to the message with the

highest timestamp for each location. As demonstrated in Example 3 below, a

consequence of this is that promises cannot be made across RMW operations.

(This is where the PS2.1 and PS2 differ; see [4].)

Behavior A behavior in PS2.1 are defined as follows.2

Definition 2. A behavior (in PS2.1) is a mapping r : Tid → Val assigning a
return value to each thread or r = ⊥ for erroneous termination. We inductively
define when a state ⟨T ,M⟩ generates a behavior r, denoted by ⟨T ,M⟩ ⇓ r:

∀π ∈ Tid.
T (π) = ⟨return(vπ), , ⟩

⟨T ,M⟩ ⇓ (λπ.vπ)

⟨T (π),M⟩ −→∗ ⟨⟨⊥, V, ∅⟩,M ′⟩
⟨T ,M⟩ ⇓ r

⟨T ,M⟩ −→ ⟨T ′,M ′⟩
⟨T ′,M ′⟩ ⇓ r

⟨T ,M⟩ ⇓ r

Below, we denote by JprogKPS2.1 the set of all behaviors of a program prog

that are allowed in the PS2.1 semantics.

Remark 1. In [4] the machine step consists of any sequence of thread steps.
We observe (and proved in Coq) that by using reservations and cancellations,

2In Coq, a behavior is a sequence of system calls invoked during the program execution.
The version in the chapter can be seen as the simplified case where the code of each thread
ends with a return(e) system call.

7

it is possible to obtain a “normal form” for machine steps: a (possibly empty)
sequence of cancellations, followed by a single thread step, followed by a (possibly
empty) sequence of reservations. This normal form simplifies modular reasoning,
as we can assume a consistent state when control is passed between the library
code and the client code.

Next, we present several instructive examples involving RMWs. We refer

the reader to [3, 4] for more examples related to the basic views and promises

mechanisms.

Example 1. Two competing RMWs can never read from the same message in
memory, as the following annotated program demonstrates:

a := FADD(X, 1) //0 b := FADD(X, 1) //0 (Upd)

Like CAS, we assume that FADD returns the value read before the update.
Without loss of generality, suppose that π1 executes first. As it performs an
RMW operation, it must “attach” the message it adds to an existing message.
Since the only existing message in this stage is the initial one ⟨X@0, 0, 0⟩⊥, π1
will add m = ⟨X@0, 1, t⟩⊥ with some t > 0 to the memory. Then, the RMW of
π2 cannot also read from the initial message because this would require π2’s
message to be attached to the initial message, which would overlap with the
(0, t] interval of m.

Example 2. The following annotated program illustrates a drawback of the
original PS that prevents register promotion and the intended mapping to
Armv8 [6]:

a := Xrlx //1
b := FADDacqrel(Z, 1) //0
Y rlx := 1

c := Y rlx //1
Xrlx := c

(Arm-weak)

The annotated behavior is allowed by Armv8 (for the compiled program), and
can be also obtained if the thread-local location Z is made a register. It is,
however, disallowed by PS. PS2 and PS2.1 solve this problem using reservations.
To observe a = 1, π1 should be able to promise the write of 1 to Y at the
beginning of the execution. This is not possible without reservations because π1
cannot update Z during the certification against the capped memory. However,
π1 can reserve the interval (0, 1] for the FADD before making the promise Y = 1.
Then, it can certify the promise Y = 1 by using the reserved interval to perform
the FADD. Intuitively speaking, while PS2.1 forbids the reordering of an RMW

8

followed by a store, using reservations, it enables the reordering of the read part
of the RMW before the read of X and the write part of the RMW after the
write of Y , which more faithfully captures Arm’s load-linked/store-conditional
implementation.

Example 3. The following annotated program shows a behavior forbidden by
PS2.1 because of its stronger certification requirement w.r.t. PS and PS2.

a := FADD(X, 1) //1
Y rlx := 1

b := Y rlx

c := FADD(X, b)
(RMW-W)

For π1 to read 1 via its FADD, it has to promise Y = 1. Unlike PS and PS2,
this is not allowed in PS2.1 because π1 cannot perform FADD to X during the
certification against the capped memory. Promising the FADD or reserving
a space for it by π1 is impossible as well. Once π1 promises its FADD, it is
committed to update X from 0 to 1. If π1 reserves a timestamp interval (0, t]
for its FADD, π2 cannot update X from 0 to 1 since the X = 0 message is
blocked by π1’s reservation, again forcing π1 to update X from 0 to 1.

1.2.2 Additional Examples of the Promising Semantics

We present several instructive examples to assist the reader in understanding

the promising model.

Example 4. Consider the simple store-buffering litmus test:

Xrlx := 42
a := Y rlx //0

Y rlx := 37
b := Xrlx //0

(SB)

In this example, both threads are allowed to read 0 from the initialization
messages. When π1 performs the write to X, it will add a message ⟨X@f, 42, t⟩⊥
by choosing some t > f ≥ 0. During this write, π1 should increase its view of X
to t, while maintaining V (Y) to be 0 as it was. Hence, π1 is still allowed to read
0 from Y in the subsequent execution. As π2 can be executed in the same way,
both threads are allowed to read 0.

Example 5. To see how release/acquire synchronization works consider the
simple message passing litmus test:

Xrlx := 1
Y rel := 1

a := Y acq //1
if a = 1 then

b := Xrlx //̸= 0
(MP)

9

Here, if π2 reads 1 from Y , which is written by π1, both threads are synchronized
through release and acquire. Thus, π2 obtains the knowledge of π1, namely its
view for X is increased to include the timestamp of Xrlx := 1 of π1. Therefore,
after reading 1 from Y , π2 is not allowed to read the initial value from X.

Example 6. To see how promises work consider the simple load buffering litmus
test:

a := Xrlx //1
Y rlx := 1

b := Y rlx //1
Xrlx := b

(LB)

To obtain the annotated behavior (which has to be allowed in a model supporting
load-store reordering of relaxed accesses), π1 may promise Y rlx := 1 at first.
This allows π2 to read 1 from Y and write it back to X. Then, π1 can read
1 from X, which was written by π2, and fulfill its promise. Note that at the
point of promising Y rlx := 1 (in the very beginning of the run), π1 can run and
perform Y rlx := 1 without any “help” of other threads, so it reaches a consistent
thread state after making the promise.

Example 7. Certification, the thread-local run fulfilling all outstanding promises
of the thread, is necessary to avoid “thin-air reads” as demonstrated by the
following variant of LB:

a := Xrlx //̸= 1
Y rlx := a

b := Y rlx //̸= 1
Xrlx := b

(OOTA)

As every thread simply copies the value it reads, both threads are not supposed
to read any non-0 value. In the promising semantics, if a thread could promise
without certification, this behavior would be allowed by the same execution as
the one for LB above. However, with the certification requirement, π1 cannot
promise Y rlx := 1, as, when running in isolation, π1 only writes Y rlx := 0.

10

Chapter 2

Local Data-Race-Freedom
Guarantees for Program Writers

2.1 Introduction: The Need for Local DRF

Designing a programming language shared-memory concurrency semantics, a.k.a.

a weak memory model, is a complex task. On the one hand, one aims to allow

mappings to commodity modern architectures (such as x86, Power, Arm, and

RISC-V) that will not subvert the hardware’s extensive optimization efforts,

as well as to validate certain compiler optimizations that are unsound under

a strong semantics such as sequential consistency (SC). On the other hand,

since the introduction of weak memory semantics in programming languages, it

was clear that the majority of programmers will need to program and reason

about their code without understanding the full complexities of the underlying

semantics. Hence, to be useful and amenable to reasoning, a memory model has

to (i) ensure strong and intuitive semantics for programs that follow certain

programming disciplines; and (ii) allow programmers to adhere to such disciplines

11

even without knowing the actual underlying weak semantics.

A fundamental programmability guarantee of this kind is DRF-SC [7]. It

ensures that data-race free programs (avoiding races using locks or designated

synchronization accesses) only exhibit SC behaviors. Crucially, data-race freedom

(DRF), the premise of DRF-SC, is only required to hold under SC, allowing

programmers to use this guarantee knowing nothing about the underlying

complex model, but rather naively imagining standard interleaving semantics

that follows the program order and employs a conventional memory.

Since SC is sometimes considered overly expensive to ensure efficient im-

plementations (and as building blocks for establishing DRF-SC), more refined

DRF guarantees have been studied in the last few years [3, 8]. Each of these

guarantees is applicable on a different level of accesses—requiring more restric-

tive race-freedom conditions and resulting in stronger semantics guarantees. In

particular, in models with release/acquire (RA) accesses, one aims to ensure

RA semantics for programs that exhibit no races on accesses weaker than RA

accesses. This guarantee, called DRF-RA [3], allows programmers to use (non-

racy) weaker (and more efficient) accesses than RA accesses while knowing only

the RA semantics. The latter, although weaker than SC, is much simpler than

the full underlying model, and it admits several verification methods and tools,

including model checkers and program logics [9, 10, 11, 12]. Similarly, on the

level of “relaxed” accesses, which are weaker than RA ones and intended to be

compiled to plain machine loads and stores, a DRF guarantee with respect to an

“in-order” RC11-like [13] semantics (with no load buffering behaviors) ensures

in-order semantics when, under the in-order semantics, races on relaxed accesses

are properly confined (see DRF-PF in [3] and DRF-RLX in [8]). Again, the

benefit is significant: an in-order semantics like RC11 is significantly simpler than

an “out-of-order” model in which reads can read from later writes, and like SC

12

and RA, “in-order” models admit several verification methods [14, 15, 16, 17].

Nevertheless, the global nature of all DRF guarantees mentioned above

makes them only applicable when the whole program admits the required race

freedom premise. Software, however, is modularly developed, often without

access to the full code. Moreover, benign races in carefully crafted concurrency

libraries make the DRF guarantees futile for reasoning by clients that use these

libraries, leaving them with no formal assurances applicable without a complete

understanding of the underlying model (see Fig. 2.1 for an illustrative example).

This drawback of the DRF guarantees is addressed by more refined “local”

guarantees that can be applied also on parts of a given program [18, 19]. In

particular, a local DRF (LDRF, for short) guarantee allows one to conclude

that accesses to certain shared locations have stronger semantics provided that

when assuming stronger semantics to these locations, the program exhibits no

races on them. The important practical consequence is that it is safe to assume

that the client portion of the code is running under the stronger semantics when

races are completely confined in the library code. Moreover, clients may rely on

the synchronization guarantees provided by libraries to establish race freedom

of their code while still understanding only the stronger semantics.

Unfortunately, the negative observation of this chapter is that LDRF guaran-

tees of this kind are inconsistent with compiler optimizations that are normally

expected to be sound in weak memory models. To demonstrate this, we present

examples that, under very minimal assumptions on the underlying model, are

locally race free, but a sequence of program transformations that are intended

to be sound entails that they must have a behavior that violates LDRF. Viewing

these guarantees as essential for modular software development, we believe that

this reveals a severe limitation on the usefulness of models that support the full

range of optimizations.

13

On the positive side, we observe that by disabling a certain problematic com-

piler optimization, an LDRF guarantee w.r.t. an “in-order” RC11-like semantics

becomes achievable. Concretely, we identify that RMW-store reordering1 is the

source of the problem and show that by disabling only these reorderings one is

able to validate a critical LDRF guarantee. In turn, for (naive formulations of)

LDRF-RA/SC, disabling RMW-store reordering does not suffice, and we address

the problem by slightly strengthening the (naive) race-freedom premise. The

resulting guarantees are useful for modular reasoning (as demonstrated in §2.4),

and we are not aware of any non-contrived example where this strengthened

race-freedom condition makes a difference.

To establish that forbidding RMW-store reordering and slightly strengthening

the race-freedom premise suffice for establishing the LDRF guarantees, we

demonstrate a particular model that satisfies the desiderata. Concretely, we

prove that three LDRF guarantees are validated by PS2.1, a variant of the

promising semantics, mentioned as a possible simplification of PS2 in [4, §4.4],

that supports all standard (local and global) optimizations excluding RMW-store

reordering.

In addition to the theoretical results, we empirically investigate the cost of

forbidding RMW-store reorderings, and observe that it is negligible in practice.

Current standard compilers are very conservative with reorderings of atomic

accesses [21], and mainstream architectures, except Armv8, do not allow RMW-

store reordering. Even in Armv8, it is relevant only for non-acquire unconditional

RMWs (i.e., FADD or XCHG, but not CAS), for which a “fake” branch

instruction is needed to prevent the reordering. Since FADDs and XCHGs are

1RMW (read-modify-write) operations, such as compare-and-swap (CAS), fetch-and-add
(FADD) and atomic exchange (XCHG), atomically perform a read followed by a write to the
same location. Certain models—e.g., C11 [20], the promising semantics [3], and Weakestmo [8]—
allow the reordering of non-acquire RMWs with subsequent relaxed writes to a different
location.

14

r0 := pop wait(S)
lock()
process r0 accessing X, Y

unlock()

r1 := pop wait(S)
lock()
process r1 accessing X, Y

unlock()

Two threads are popping “work items” from a wait-free (possibly, relaxed)
stack S, and use a lock to perform the work for avoiding races on shared
locations X and Y . The DRF-SC guarantee does not allow the client to
show that the accesses to X and Y inside the locked regions do not have
weak behaviors. Indeed, the program is not race free due to benign races
in the implementation of the pop operation (in fact, if lock/unlock are not
primitives, then the implementation of the lock itself is racy as well). In
contrast, a local DRF-SC guarantee allows clients to use the specification
of the lock to conclude that the accesses to X and Y are not racy, and
therefore, they can safely assume SC semantics for X and Y .

Figure 2.1: A simple example demonstrating the weakness of the global DRF-SC
guarantee

not executed frequently and fake branching is relatively cheap [21], we expect the

implementation cost to be negligible in practice. We have performed a sequence

of experiments that validate this hypothesis (§2.5).

As for the LDRF guarantees, we formulate three guarantees, and prove them

for PS2.1, where each of which provides the key lemma for establishing the next

one: (1) LDRF-PF w.r.t. the promise-free (RC11-like) semantics allowing one to

restrict “promises”—a special mechanism that accounts for load-store reorderings

in the promising semantics, which is undoubtedly the most complicated and hard

to reason about component of the model; (2) LDRF-RA w.r.t. release/acquire

semantics; and (3) LDRF-SC w.r.t. SC semantics.2

2Although allowing races on SC accesses is essentially needed for global DRF-SC (otherwise
there are no means of synchronization), it is unnecessary for local DRF-SC because synchro-
nization is typically provided by library methods. Thus, LDRF-SC is still applicable for the
promising semantics, which currently lacks specialized SC accesses.

15

To conclude, our contributions are summarized as follows:

1. We show that the full set of compiler optimizations is inconsistent with local

DRF guarantees (§2.2).

2. We establish the consistency of three local DRF guarantees (LDRF-PF,

LDRF-RA, and LDRF-SC) and all standard optimizations excluding RMW-

store reordering by proving that PS2.1 validates them all (§2.3).

3. We outline the applicability of local DRF for reasoning about client code, as

well as library code (§2.4).

4. We empirically observe that the performance impact of disabling RMW-store

reorderings is negligible (§2.5).

Our LDRF proofs in §2.3 are fully mechanized in Coq. The formalization is

available at [5].

2.2 Local DRF in Weak Memory Models

In this section we demonstrate the inherent tension between local DRF guaran-

tees and standard compiler optimizations. While our results in the next sections

are specific to the promising semantics, the discussion in this section is general,

making its implications applicable in other models as well.

2.2.1 Local DRF w.r.t. an “In-Order” Semantics

By far, the most complicated aspect of a weak memory semantics is related

to allowing load-store reordering of possibly racy independent relaxed accesses

(a.k.a. load buffering behaviors). This is the source of the infamous “out-of-

thin-air” problem [22], the reason why per-execution declarative models cannot

work and more complicated event-structure-based models are needed instead [23,

8], and the only rationale behind “promises” in the promising semantics. To

16

The compiler may optimize Thread 1 as shown below:

(0) (1) (2) (3) (4) (5)
Y := 0

a := Y rlx

if a ̸= 0 then
b := CAS(X, 0, 42)
if b = 0 then
c := Lrlx

if c = 1 then
Xsrlx := 37

Y := 0
c := Lrlx

a := Y rlx

if a ̸= 0 then
b := CAS(X, 0, 42)
if b = 0 then

if c = 1 then
Xsrlx := 37

Y := 0
c := Lrlx

if c = 1 then
a := Y rlx else a := Y rlx

if a ̸= 0 then
b := CAS(X, 0, 42)
if b = 0 then

if c = 1 then
Xsrlx := 37

Y := 0
c := Lrlx

if c = 1 then
a := Y rlx else a := 0

if a ̸= 0 then
b := CAS(X, 0, 42)
if b = 0 then

if c = 1 then
Xsrlx := 37

Y := 0
c := Lrlx

if c = 1 then
a := Y rlx

if a ̸= 0 then
b := CAS(X, 0, 42)
if b = 0 then

(eliminated)
Xsrlx := 37

else a := 0
(eliminated)

Y := 0
c := Lrlx

if c = 1 then
a := Y rlx

if a ̸= 0 then
b := CASsrlx(X, 0, 37)

else a := 0

(1) reorder the read c := L to be second, after introducing the same read
c := L in the else-branches (when b ̸= 0 or a = 0);

(2) insert a dummy if-then-else on c = 1 and distribute the rest of the code
to both branches (“trace-preserving” transformation);

(3) forward the write Y := 0 to the read a := Y rlx in the else-branch,
turning it into a := 0;

(4) distribute the branch on a ≠ 0 to both prior branches on c = 1 and
optimize them: eliminate repeated redundant testing of c = 1 in the
then-branch, and remove dead code in the else-branch (“trace-preserving”
transformation);

(5) merge b := CAS(X, 0, 42) and if b = 0 then Xsrlx := 37 into
b := CASsrlx(X, 0, 37).

Now, the compiler may optimize Thread 2 as shown below:

(0) (1) (2)
Y := 1
d := CAS(X, 0, 1)
if d ̸= 42 then
Lrlx := 1

Y := 1
d := CAS(X, 0, 1)
(eliminated)
Lrlx := 1

Y := 1
Lrlx := 1

d := CAS(X, 0, 1)

(1) noticing that X ̸= 42 is a global invariant (42 is never written to X),
optimize away the redundant test “if (d ̸= 42) then”;

(2) reorder the independent CAS on X and write to L.

Figure 2.2: Program transformations on LDRF-PF-Fail (in the final transformed
program, we may get d = 37 even under SC!)

17

circumvent this complexity, one can use less efficient stronger models, such

as RC11 [13], that conservatively forbid load-store reorderings altogether (by

disallowing cycles in the union of the program order and the reads-from relation),

and thus cannot map relaxed accesses to plain machine loads and stores in

architectures like Arm.

We generally refer to RC11-like models as “in-order” models, as they are

captured by transition systems that execute memory accesses according to their

program order while ensuring that every read reads from a previously executed

write. More formally, this property is defined as follows:

Definition 3. A memory model M is in-order if every behavior allowed by M
corresponds to a trace of memory accesses that respects the program order such
that every read r of value v from location X is justified by some write w that
writes v to X and appears in the trace before r.

This definition covers a wide variety of (not so weak) memory models

including RC11, TSO [24], causal consistency [25, 26], the OCaml model in [18],

and (of course) SC. It ensures a conceptually simple semantics and enables

several verification approaches [14, 15, 16, 17].

A natural approach to allow “in-order” reasoning for a given program in

a model with (fully) relaxed accesses is to use a DRF guarantee. When such

guarantee is provided, one is able to assume in-order semantics for programs

that under in-order semantics exhibit no races on accesses annotated as relaxed

(so that the guarantee can be applied knowing nothing about the out-of-order

part of the semantics). Moreover, as demonstrated in §2.1, for being applicable

in a modular fashion (e.g., in the presence of unrelated races induced by some

library methods over which the client has no control), this guarantee has to be

local.

To give a more precise statement of such a local DRF guarantee (but still keep

the discussion general), consider an arbitrary model M with relaxed reads/writes,

18

intended to be compiled to plain machine accesses, and “strong relaxed” writes,

intended to be compiled with barriers to forbid the hardware from reordering a

load followed by a strong relaxed write.3 Strong relaxed writes provide “in-order”

semantics in the following sense: Every behavior allowed by M corresponds

to some trace of memory accesses that respects the program order such that:

(i) every read r of value v from location X is justified by some write w that

writes v to X and appears in the trace; and (ii) if r is justified by w that is

strong relaxed, then w should appear before r in the trace. (Note that M allows

a read r to be justified by a relaxed write that is executed after r.)

Then, a local DRF guarantee w.r.t. an in-order semantics for M is stated as

follows: For every set L of locations, every behavior of a given program prog

allowed by M is allowed by M for prog when all writes to locations in L are

considered strong relaxed, provided that under this assumption prog exhibits

no races involving writes to locations in L that are annotated as relaxed.

For example, this guarantee (for L = {L}) allows one to show that the

annotated behavior in the following program is disallowed in the model M

without knowing anything besides an in-order semantics:4

a := Lrlx

libfun1()
Xsrlx := a

b := Xrlx //1 ?
libfun2()
if b = 1 then Lrlx := 1 else Lsrlx := 1

(LDRF-LB)

where libfun1() and libfun2() are calls to some library methods that execute

racy relaxed code accessing a set of locations disjoint from X and L. Indeed,

assuming that Lrlx := 1 has strong relaxed semantics, all writes to X and

3Strong relaxed accesses were introduced in [3] as a technical tool for establishing the
correctness of mapping to hardware. They are also useful in the current discussion. Like release
writes, they forbid reordering with preceding reads; but unlike release writes, they are not
intended to synchronize with reads by other threads.

4We assume that all locations are initially 0, and that the “default” access mode is relaxed
(so we omit rlx annotations).

19

L are strong relaxed, and the in-order property easily entails that Lrlx := 1

(in the then-branch) is never executed and thus not involved in a race. Then,

the premise of the LDRF guarantee above holds, and one concludes, again

based on the in-order property, that b = 1 is disallowed by M . Crucially, this

reasoning does not require any knowledge of how exactly M behaves for (fully)

relaxed writes (which, in fact, we have not specified). We also note that a global

DRF guarantee cannot be used due to the presence of racy code in the library

methods.

Unfortunately, we observe that this LDRF guarantee is actually inconsistent

with program optimizations that are standardly intended to be sound in weak

memory models. Indeed, the following example shows that any such model M

cannot validate both the LDRF guarantee and all standard optimizations:5

Y := 0
a := Y rlx

if a ̸= 0 then
b := CAS(X, 0, 42)
if b = 0 then

c := Lrlx

if c = 1 then
Xsrlx := 37

Y := 1
d := CAS(X, 0, 1) //37 ?
if d ̸= 42 then
Lrlx := 1

(LDRF-PF-Fail)

where CAS(X, v1, v2) reads a value from X; if it is equal to v1 (i.e., successful),

writes v2 to X ensuring atomicity between the read and write, and otherwise

(i.e., unsuccessful) does nothing; and finally returns the read value.

Indeed, assuming that the write to L has strong relaxed semantics, it is easy

to see that no execution of the program executes both c := Lrlx and Lrlx := 1,

and hence there is no race on L. Specifically, if such execution is allowed by the

model M , then the CAS of the second thread must read 37 due to the standard

RMW atomicity (which implies that two successful CAS instructions cannot

5We are not aware of a smaller example that can be used for this purpose.

20

read from the same write), and so c := Lrlx must read 1. However, since 37 is

written by a strong relaxed write, it follows that Xsrlx := 37 appears in the

trace before d := CAS(X, 0, 1). This implies that c := Lrlx appears in the trace

before Lrlx := 1, which contradicts the assumption that Lrlx := 1 has strong

relaxed semantics.

Now we can demonstrate the inconsistency between the local DRF guarantee

above and program optimizations. Since the premise of the guarantee is satisfied

(for L = {L}), if the guarantee holds, we may assume that Lrlx := 1 has strong

relaxed semantics, and conclude, by the exact same reasoning, that the d = 37

outcome is disallowed (no execution executes both c := Lrlx and Lrlx := 1).

Nevertheless, Fig. 2.2 shows that starting from this program, a sequence of

transformations, each of which is intended to be sound in standard weak memory

models, may actually lead to the d = 37 outcome!

As a concrete example for a model M , consider the PS2 model [4], which

satisfies the above assumptions and validates all transformations used in Fig. 2.2.

(In PS2, strong relaxed writes correspond to relaxed writes that cannot be

promised ahead of their execution.) It follows that PS2 fails to admit the above

guarantee w.r.t. an in-order semantics.6

To locate the source of the problem, we observe that RMW-store reordering

(applied in the second thread’s code in Fig. 2.2) is the transformation that

breaks a key property, which we call promise monotonicity (formally stated in

§2.3.1), needed for our proof. Indeed, one of the main ideas in proving local DRF

is to show that relaxed store hoisting (moving a relaxed write to be before other

instructions) does not allow more behaviors unless the store was racy before

the code motion. However, this property fails if reordering of a relaxed RMW

6The original promising model PS [3] does not admit global value-range analysis, which
is needed in the sequence of transformations in Fig. 2.2. Nevertheless, in §2.6, we present a
similar (yet more intricate) counterexample for PS.

21

followed by a relaxed write to a different location is allowed. For instance, in

the program above, executing d := CAS(X, 0, 1) before Lrlx := 1 prevents the

behavior executing both Lrlx := 1 and c := Lrlx, but executing them in the

opposite order allows that behavior.

Accordingly, to accomplish our proof, we switched to PS2.1, a variant of

the PS2 model outlined in [4, §4.4], which gives up RMW-store reordering for

simplicity and better meta-theoretic properties such as the absence of deadlocking

executions.7 For PS2.1 we are able to prove LDRF-PF—a local DRF guarantee

with respect to the promise-free fragment of the promising semantics (an in-order

model), thus establishing the consistency of such a local DRF guarantee with

all optimizations except for RMW-store reordering.

2.2.2 Local DRF w.r.t. RA and SC

For less advanced users, an in-order RC11-like semantics may still be hard to

reason with. Then, one needs local DRF properties w.r.t. stronger fragments like

release/acquire semantics (LDRF-RA) or even sequential consistency (LDRF-

SC). Next, we discuss the subtlety in stating and achieving these local guarantees

in a general model that supports load-store reordering of relaxed accesses. We

focus on LDRF-RA, but the discussion is the same for LDRF-SC.

A naive notion of LDRF-RA can be naturally derived from the global DRF-

RA guarantee. The latter ensures that a program has only RA behaviors provided

that under RA semantics it exhibits no races involving accesses annotated as

(strong) relaxed [3]. To “localize” this guarantee with respect to a given set L of

locations, we need to consider “L-RA behaviors”—behaviors in which accesses

to locations in L are treated as RA accesses (even when annotated with weaker

modes), but other accesses are interpreted as annotated in the program. Then, a

7We have formally established the absence of deadlocks in Coq [5].

22

naive LDRF-RA guarantee would say that a program has only L-RA behaviors

provided that its L-RA behaviors exhibit no races involving accesses to locations

in L annotated with access modes weaker than release and acquire.

We show that in any sensible weak memory model this guarantee is actually

inconsistent with standard program optimizations (here, RMWs are not involved

at all).

Specifically, the {L}-RA behaviors of the program on the right exhibits no

races on the location L, but a sequence of standard optimizations may lead to a

non {L}-RA behavior, which invalidates the naive LDRF-RA guarantee.

a := Y rlx //1 ?
if a = 1 then
b := Lrlx

Xrlx := b
else
Xrlx := 1

c := Xrlx

Lrlx := 1
Y rlx := c

(Naive-LDRF-RA-Fail)

To see this, we first claim that in any sensible model, assuming that the

accesses to L are RA, the first thread cannot read 1 from Y . Indeed, if a := Y rlx

reads 1, it easily follows that b := Lrlx reads from Lrlx := 1. However, with the

assumption that the accesses to L are interpreted as RA accesses, the latter

implies a “happens-before” path from c := Xrlx to Xrlx := b, which implies

that c := Xrlx cannot read from Xrlx := b. In turn, the value 1 is never written

to Y .

Second, with the same assumption (that the accesses to L are RA), the

above reasoning also shows that there are no races on L. In fact, the exact

definition of a race does not matter here: we actually know that the first thread

will not access L at all. Then, the naive LDRF-RA for L = {L} implies that the

program has only {L}-RA behaviors, which, as argued above, entails that the

a = 1 outcome is disallowed. Nevertheless, in Fig. 2.3, we show that starting

23

from the above program, a sequence of program transformations, each of which

is intended to be sound in standard weak memory models, may actually lead to

this outcome!

What went wrong? In the analysis above, we used a racy access (to L) to

establish synchronization, and then used this synchronization to invalidate the

racy execution itself. However, when the racy read is performed as a relaxed read

it does not induce synchronization, and nothing actually forbids the candidate

racy execution. To solve this problem, we have to strengthen the premise of

LDRF-RA, so that synchronization induced by racy reads (from locations in L)

cannot be used to eliminate races.

A possible way to do so is to weaken the semantics of “racy reads” from

locations in L in the L-RA semantics, and say that unlike standard acquire

reads, these reads do not induce synchronization. However, this solution would

require a precise definition of the semantics of racy reads, which goes beyond

standard RA semantics.

In this paper, we follow an alternative approach that involves a certain over-

approximation—we will say that a racy read simply invokes undefined behavior

(UB). Since UB includes any possible behavior, the race-freedom condition based

on racy reads invoking UB implies the one where racy reads do not induce

synchronization. In other words, we will say that a race occurs if some racy read

is reachable ignoring what happens after the racy read is executed. With this

definition, relying on the previously mentioned LDRF-PF as a key lemma, we

proved LDRF-RA (and LDRF-SC) for PS2.1.8 Importantly, unlike C11’s “catch-

fire” semantics, UB for races is not a part of the concurrency semantics (indeed,

the promising semantics provides means to avoid “catch-fire”), but is only used

8PS2 does not satisfy our LDRF-RA/SC theorems (LDRF-PF-Fail is a counterexample for
them as well).

24

The compiler may optimize Thread 1 as shown below:

(0) (1) (2) (3) (4)

a := Y rlx

if a = 1 then
b := Lrlx

Xrlx := b
else
Xrlx := 1

b := Lrlx

a := Y rlx

if a = 1 then

Xrlx := b
else
Xrlx := 1

b := Lrlx

if b = 1 then
a := Y rlx

if a = 1 then

Xrlx := b
else

Xrlx := 1
else ...

b := Lrlx

if b = 1 then
a := Y rlx

Xrlx := 1

else ...

b := Lrlx

if b = 1 then
Xrlx := 1
a := Y rlx

else ...

(1) reorder the read b := L to be first, after introducing the same read
b := L in the else-branch (when a ̸= 1);

(2) insert a dummy if-then-else on b = 1 and distribute the rest of the code
to both branches (“trace-preserving” transformation);

(3) in the then-branch on b = 1, substitute b with 1 and merge both branches
on a = 1 (“trace-preserving” transformation);

(4) reorder the independent read from Y and write to X.

In addition, the compiler may optimize Thread 2 as shown below:

(0) (1)
c := Xrlx

Lrlx := 1
Y rlx := c

Lrlx := 1
c := Xrlx

Y rlx := c

(1) reorder c := Xrlx and Lrlx := 1.

Figure 2.3: Program transformations on Naive-LDRF-RA-Fail (after the trans-
formations, we may get a = 1 even under SC!)

25

for defining races when establishing the premise of LDRF-RA/SC. We note that

a similar strengthening of the race-freedom premise in LDRF-PF does not solve

the problem outlined in §2.2.1 (LDRF-PF-Fail is still a counterexample).

2.3 Local DRF Guarantees

In this section we present our local DRF results for PS2.1.

We note that, unlike the conventional DRF theorems, write-write races

are only considered as races for LDRF-SC. The other results, LDRF-PF and

LDRF-RA only require the absence of certain read-write races.

We present the statements of “time-wise” local DRF guarantees in §2.3.4.

Roughly speaking, these time-wise guarantees apply when no race occurs between

two states in the machine trace and they ensure the stronger semantics between

these two states.

All results of this section (including time-wise LDRF) are fully mechanized

in Coq (∼35K LoC altogether) [5].

2.3.1 Local DRF-PF

The first step for formulating LDRF-PF is to formally define an “in-order”

restriction of PS2.1 w.r.t. a given set L of locations. This can be simply defined

by forbidding promises to the locations in L.

Definition 4. Given a set L ⊆ Loc, the L-PF-machine is the strengthening of
PS2.1 obtained by forbidding the application of the (promise) rule for locations
in L. We denote by JprogKLPF the set of all behaviors of a program prog allowed
by the L-PF-machine.

Next, we define what a racy execution in the L-PF-machine is. Roughly, an

execution is L-racy if it includes some thread π1 taking a machine step writing

a message m to a location in L by a relaxed write, immediately followed by

26

another thread π2 taking a sequence of machine steps that ends with reading

the message m.

Definition 5. An execution in the L-PF-machine is L-racy if it includes a
sequence of machine steps of the form:

π1,l1
===⇒ π2,

==⇒
∗ π2,l2
===⇒

with π1 ̸= π2, l1 ∈ {W(rlx,m), RMW(, rlx, ,m)} and l2 ∈ {R(,m), RMW(, ,m,)}
for m ∈ Msg with location L ∈ L.

Then, LDRF-PF is formulated as follows.

Theorem 1 (LDRF-PF). If there is no L-racy execution of prog in the L-PF-
machine, then JprogKPS2.1 = JprogKLPF.

Remark 2. While the L-PF-machine forbids promises to locations in L, it still
allows making reservations to these locations. Nevertheless, the L-PF-machine
is an in-order semantics w.r.t. L since threads cannot read from reservations.
Moreover, the only purpose of making reservations to L is to allow certain
promises to locations not in L. Hence, reservations to L can be ignored in the
typical use of LDRF that over-approximates the behaviors of locations not in L
to be completely unconstrained.

Revisiting LDRF-PF-Fail, the argument outlined in §2.2 shows that no

execution of LDRF-PF-Fail in the {L}-PF-machine is L-racy. Then, from Thm. 1,

it follows that the d = 37 outcome is disallowed for that program under PS2.1.

Example 8. As an instructive example of an application of LDRF-PF, we
show that no execution of the following program in the {X,Y }-PF-machine is

{X,Y }-racy, and so JprogKPS2.1 = JprogK{X,Y }
PF .

Xrlx := 1
Y rel := 1

a := Y rlx

if a = 1 then
Zrlx := 1

b := Zrlx

if b = 1 then
c := Xrlx

(MP2)

Clearly, there is no race on Y since the program has no relaxed writes to Y
(syntactically). Now, assuming no promises on X and Y , the write to Z in π2 can
neither be promised nor executed before π1 executes the write to Y . Similarly,
the read from X in π3 cannot be executed before π2 promises or executes the

27

write to Z. Therefore, the write to Y in π1 should be first executed in order for
π3 to execute the read from X, and thus there is no X-racy execution in the
{X,Y }-PF-machine.

Proof sketch of LDRF-PF We highlight the main ideas in the proof of

Thm. 1, which is the most challenging among our results. For its proof, we

introduce an intermediate semantics, called L-PRF-machine, and define the

notion of race in this machine (PRF stands for promise-read-free).

Definition 6. Given a set L ⊆ Loc, the L-PRF-machine is the strengthening of
PS2.1 obtained by forbidding steps reading from promises to locations in L. We
denote by JprogKLPRF the set of all behaviors of a program prog allowed by the
L-PRF-machine. L-racy executions in the L-PRF-machine are defined exactly
as in Def. 5.

Then, we prove the following three lemmas for every program prog , from

which Thm. 1 directly follows:

(i) JprogKLPRF ⊆ JprogKLPF.

(ii) If there is no L-racy execution of prog in the L-PRF-machine, then JprogKPS2.1 ⊆

JprogKLPRF.

(iii) If there is an L-racy execution of prog in the L-PRF-machine, then there is

one in the L-PF-machine.

Next, we only discuss (ii), and identify an essential property of PS2.1, which

we call promise monotonicity, that is needed in our proof.

To prove (ii), we use the following “reshuffling” mechanism: when thread π1

can take a sequence seq of thread steps reading a promise m of another thread

π2 to a location L ∈ L, we first execute π2 following its certification until it

fulfills the promise m and then execute π1 following seq until it reads m. What

makes this possible is Lemma 2 below. Using “reshuffling”, (ii) is established as

follows. Roughly speaking, ignoring the consistency requirement, for the first

28

time a thread can read from a promise on a location in L, we apply the above

construction to get an L-racy execution without reading any promise on L (i.e.,

a L-racy execution in the L-PRF-machine), which contradicts the premise of (ii).

(To meet the consistency requirement, the proof requires repeated applications

of the reshuffling.)

Lemma 2 (Promise Monotonicity). Let ⟨T ,M⟩ be a (consistent) machine state

with a promise m written by thread π1. Suppose that ⟨T (π2),M⟩ −→∗ l−→ ⟨T2, ⟩
for some thread π2 ̸= π1, label l, and thread state T2. Then, there exist
lm ∈ {W(rlx,m), RMW(, rlx, ,m)} and memory M1 such that:

• ⟨T ,M⟩ π1,
==⇒

∗ π1,lm
====⇒ ⟨T [π1 7→],M1⟩; and

• ⟨T (π2),M1⟩ −→∗ l−→ ⟨T2, ⟩.

Remark 3. Promise consistency does not hold for PS and PS2 since RMW-store
reordering breaks it. For global DRF-PF, a weaker property, which does hold
for PS and PS2, suffices. Specifically, the above reshuffling may break during
the execution of π1 following the sequence seq (before it reads m) only if π1
performs a racy RMW. Global DRF-PF follows from the race on the RMW, but
not LDRF-PF since the location of the RMW may not be in L.

2.3.2 Local DRF-RA

To formulate LDRF-RA, we again start by defining a strengthening of PS2.1

w.r.t. a given set of locations.

Definition 7. Given a set L ⊆ Loc, the L-RA-machine is the strengthening
of the L-PF-machine obtained by interpreting all accesses to L as if they have
release/acquire access modes (in (read-helper) and (write-helper)). We
denote by JprogKLRA the set of all behaviors of a program prog that are allowed
by the L-RA-machine.

Next, for stating the premise of LDRF-RA, we introduce the “RA-race-

detecting-machine”. For that we adopt a “happens-before-based” notion of race,

where a necessary condition on the happens-before relation is expressed using

29

the views of the promising semantics. Roughly speaking, the RA-race-detecting-

machine invokes UB whenever the machine reaches a state where (i) some

thread π is about to read from a location L ∈ L; (ii) there exists a message m

in memory written by some write to L that does not “happen-before” the read

(which corresponds to the fact that the view of π for L is strictly lower than the

timestamp of m); and (iii) at least one of the write or the read is not annotated

as a release/acquire access in the program. This is formalized as follows.

Definition 8. The L-RA-race-detecting-machine is the machine obtained from
the L-RA-machine by adding following thread configuration step:

L ∈ L λ ∈ {R(oR, L,), RMW(oR, , L, ,)} σ
λ−→

V (L) < t m = ⟨L@ , , t⟩ ∈ M

oR = rlx ∨m was written by a non-release write9

⟨⟨σ, V, ⟩,M⟩ race−−−→ ⟨⟨⊥, V, ∅⟩,M⟩

Remark 4. A similar view-based definition of a race can be also used in LDRF-
PF. However, such definition would unnecessarily deem too many programs as
racy, resulting in a weaker guarantee. For example, with a view-based definition
of a race in LDRF-PF, we would not be able to show the absence of {X,Y }-PF-
racy executions for the program in Example 8 (since there is no synchronization
from the write to X in π1 to the read from X in π3).

LDRF-RA is formulated as follows.

Theorem 3 (LDRF-RA). If the race transition is never enabled in runs of the
L-RA-race-detecting-machine on prog , then JprogKPS2.1 = JprogKLRA.

Remark 5. When L = Loc, since the L-RA-machine cannot make any promise,
the race detecting step can be revised as follows (where −→ is the thread step of
the L-RA-machine):

⟨⟨σ, V, P ⟩,M⟩ l−→ ⟨⟨σ′, V ′, P ′⟩,M ′⟩
l ∈ {R(oR, ⟨L@ , , ⟩), RMW(oR, , ⟨L@ , , ⟩ ,)}

V (L) < t m = ⟨L@ , , t⟩ ∈ M
oR = rlx ∨m was written by a non-release write

⟨⟨σ, V, P ⟩,M⟩ race−−−→ ⟨⟨σ′, V ′, P ′⟩,M ′⟩
9Formally, this requires to record the writing access mode in messages.

30

Then, the global DRF-RA guarantee follows from the local one. The “naive”
LDRF-RA discussed in §2.2.2 (which cannot not hold together with all optimiza-
tions allowed in PS2.1) formally means to use the above step for race detection
in the L-RA-race-detecting-machine.

Example 9. The following example is a variant of the common “load-buffering”
test. We show that, using LDRF-RA, this program never exhibits the a = 1
outcome.

a := Xrlx //̸= 1
Y rel := 1

b := Y rlx

if b = 1 then
Xrlx := 1

(LB-COND)

Assuming RA semantics forX, both the writes toX and to Y cannot be promised,
and clearly a = 1 is not allowed. Now, we show that the race transition is never
enabled in executions of this program in the {X}-RA-race-detecting-machine.
Indeed, since the write to X in π2 can only be executed after the write to Y in
π1 is executed (which cannot be promised because it is a release write), there
cannot be any message to X except for the initial message before the read from
X in π1 is executed.

We note that our race condition is strictly stronger (identifying fewer pro-
grams as racy) than the standard “happens-before”-based race notion. The
latter would deem this program as {X}-racy. as there is no “happens-before”
relation between the accesses to X (since the read of Y is relaxed).

Example 10. We apply LDRF-RA on a location with a write-write race. In
the following program, the first two threads access X and Y and raise flags Z
and W . The third thread waits on both flags and then accesses X and Y .

a := Xrlx

Y rlx := a+ 2
Zrel := 1

b := Xrlx

Y rlx := b+ 4
W rel := 1

while(Zacq +W acq < 2) do
skip

Xrlx := 1
c := Y rlx //2 or 4

While there is a write-write race on Y , there is no write-read race on X and Y ,
and so the race transition is never enabled in executions of this program in the
{X,Y }-RA-race-detecting-machine. LDRF-RA ensures that it is safe to assume
RA semantics for X and Y . Then, knowing only RA semantics, it follows that
c ∈ {2, 4} holds when this program terminates.

Remark 6. To simplify the presentation, we did not discuss release/acquire
fences. These allow fine-grained control on the required synchronization, which
can improve performance, but results in more races involving relaxed accesses.
For the purpose of reasoning about fences using LDRF, we observe that the

31

following transformations do not affect the possible behaviors in the promising
semantics:

r1 := Xrlx

...
rn := Xrlx

fenceacq

↭

r1 := Xacq

...
rn := Xacq

fenceacq

fencerel

Xrlx
0 := r0

Xrlx
1 := r1...

Xrlx
n := rn

↭

fencerel

Xrel
0 := r0

Xsrlx
1 := r1...

Xsrlx
n := rn

Programmers may safely use the (better performant) left-hand sides in programs,
while assuming the (stronger) semantics provided by the right-hand sides (also
for establishing the premise of the LDRF theorem).

2.3.3 Local DRF-SC

The final LDRF guarantee, LDRF-SC, provides the strongest semantics for

non-racy accesses, but also requires much more for accesses to be considered

non-racy. We note that, unlike C/C++11 [27, 28, 13], the promising semantics

does not provide sequentially consistent accesses (it only has SC fences). Thus, a

global DRF-SC can only pointlessly ensure SC semantics for programs that have

no races whatsoever (with no mechanism to actually avoid races). Nevertheless,

local DRF-SC is still meaningful as it only requires to avoid races on certain

locations.

As before, we first define the stronger semantics and the notion of a race.

Definition 9. In the context of a machine state, we call a message maximal if
there does not exist a message with the same location and higher timestamp. For
L ⊆ Loc, the L-SC-machine is the strengthening of the L-RA-machine obtained
by requiring that for every L ∈ L:

• reads from L read from maximal messages; and

• writes to L write maximal messages.

We denote by JprogKLSC the set of all behaviors of a program prog that are
allowed by the L-SC-machine.

32

To state the premise of LDRF-SC, we introduce the “SC-race-detecting-

machine”. It is defined as the RA-race-detecting-machine, except that races may

also occur (i) between two RA accesses, and (ii) between two writes.

Definition 10. The L-SC-race-detecting-machine is the machine obtained from
the L-SC-machine by adding following thread step:

L ∈ L λ ∈ {R(, L,), W(, L,), RMW(, , L, ,)} σ
λ−→

V (L) < t m = ⟨L@ , , t⟩ ∈ M

⟨⟨σ, V, ⟩,M⟩ race−−−→ ⟨⟨⊥, V, ∅⟩,M⟩

Then, LDRF-SC is formulated as follows.

Theorem 4 (LDRF-SC). If the race transition is never enabled in runs of the
L-SC-race-detecting-machine on prog , then JprogKPS2.1 = JprogKLSC.

Example 11. Consider the message passing program:

Drlx := 42
F rel := 1

a := F acq

if a = 1 then
a := Drlx //42

(MP)

In all its executions in the {D}-SC-race-detecting-machine, the view of π2
for D after reading 1 from F points to the message D = 42 written by π1.
Therefore, the race transition is never enabled for this program in the {D}-SC-
race-detecting-machine. Then, LDRF-SC with L = {D} ensures SC semantics
on the location D.

2.3.4 Time-wise Local DRF Guarantees

In this subsection, we demonstrate generalized LDRF guarantees, namely “time-

wise LDRF guarantees.” Specifically, we provide two theorems, time-wise LDRF-

PF (LDRF-PF-Time) and time-wise LDRF-SC (LDRF-SC-Time). Roughly

speaking, time-wise LDRF guarantees say that, given a machine state Σ, the

next possible machine steps in PS are equivalent to those in certain stronger

semantics provided that Σ is not a racy state in the stronger semantics. Since

these guarantees are applied to a machine state instead of the full execution of

33

a program, they do not require race-freedom of the machine steps taken before

reaching the given machine state. Moreover, starting from a given machine state,

one can assume a stronger semantics until it reaches a racy machine state.

It is important to note that unlike Thm. 4 where the SC semantics denotes a

strengthening of RA accessing only the latest messages to each location, the SC

semantics of LDRF-SC-Time is not RA-synchronizing, i.e., it is a strengthening

of PF accessing only the latest messages to each location. Indeed, this is very

similar to the local SC semantics of LDRF of [18]. Though we have another

formulation of time-wise LDRF-SC with the SC semantics accompanying RA

synchronization, which we believe is provable, we do not present it as the theorem

is too complicated due to the presence of RA synchronizations. For the same

reason, we do not present the “time-wise LDRF-RA” theorem as well.

To formulate LDRF-PF-Time, we first define an L-racy machine state.

Roughly, a machine state Σ is L-racy if (i) starting from Σ, a thread can take

multiple steps and write a message m to a location in L by a relaxed write; and

(ii) immediately after m is written, another thread can take multiple steps and

read the message m.

Definition 11. Given a set L ⊆ Loc, a machine state Σ = ⟨T ,M⟩ is L-racy
if there exist a location X ∈ L, two different threads π1 ̸= π2, a memory M ′,
labels l1, l2, and a message m such that:

• ⟨T ,M⟩ π1,
==⇒

∗ π1,l1
===⇒ ⟨ ,M1⟩

• ⟨T (π2),M1⟩ −→∗ l2−→ ⟨ , ⟩

• l1 ∈ {W(rlx,m), RMW(, rlx, ,m)} ∧ l2 ∈ {R(,m), RMW(, ,m,)}

Using the above definition, LDRF-PF-Time is formulated as follows. The

main difference of LDRF-PF-Time from LDRF-PF is that it does not consider

racy steps taken before reaching Σ, to which LDRF-PF-Time applies. Moreover,

34

one can stop applying LDRF-PF-Time whenever the machine reaches a racy

state.

Theorem 5 (LDRF-PF-Time). Given a set L ⊆ Loc and a machine state
⟨T ,M⟩ which has no promise to locations in L, if ⟨T ,M⟩ has some execution in
the PS2.1 with a final outcome R, then one of the following holds.

• ⟨T ,M⟩ has some execution in the L-PF-machine with the outcome R.

• ⟨T ,M⟩ can reach a L-racy state ⟨T ′,M ′⟩ in the L-PF-machine, and
⟨T ′,M ′⟩ has some execution in the PS2.1 with the outcome R.

As we previously described, the SC semantics of LDRF-SC-Time varies from

that of Thm. 4. Therefore, we first define the SC machine and the SC-race-

detecting-machine of LDRF-SC-Time.

Definition 12. Given a set L ⊆ Loc, the L-SC-machine is the strengthening of
the L-PF-machine obtained by requiring that for every L ∈ L:

• reads from L read from maximal messages; and

• writes to L write maximal messages.

Definition 13. Given a set L ⊆ Loc, the L-SC-race-detecting-machine is the
machine obtained from the L-SC-machine by adding following thread step
invoking UB:

L ∈ L l ∈ {R(, L,), W(, L,), RMW(, , L, ,)}
σ

l−→ m = ⟨L@ , , t⟩ ∈ M V (L) < t

⟨⟨σ, V, ⟩,M⟩ race(m)−−−−−→ ⟨⟨⊥, V, ∅⟩,M⟩

Then, we define a racy machine state. Note that our definition of a racy

machine state is weaker than that of [18] (i.e., our definition identifies more

machine state to be racy than that of [18]) due to the presence of promises.

Definition 14. Given a set L ⊆ Loc, a machine state Σ = ⟨T ,M⟩ is L-racy if
one of the following holds.

(i) There exist a location X ∈ L and two different threads π1 ̸= π2, thread
state T ′, memory M ′ and a label l, and message m such that:

35

• ⟨T ,M⟩ π1,
==⇒

∗ π1,l
==⇒ ⟨T ′,M1⟩

• l ∈ {W(rlx,m), RMW(, rlx, ,m)}

• ⟨T ′,M1⟩ can take machine steps ⟨T ′,M1⟩
π2,
==⇒

∗ π2,race(m)
=======⇒ in the L-SC-

race-detecting-machine.

(ii) There exist a thread π and message m such that:

• ⟨T ,M⟩ can take machine steps ⟨T ,M⟩ π,
==⇒

∗ π,race(m)
======⇒ in the L-SC-race-

detecting-machine.

Finally, LDRF-SC-Time is formulated as follows.

Theorem 6 (LDRF-SC-Time). Given a set L ⊆ Loc and a machine state
⟨T ,M⟩ which has no promise on locations in L, if ⟨T ,M⟩ has some execution
in the PS2.1 with a final outcome R, then one of the following holds.

• ⟨T ,M⟩ has some execution in the L-SC-machine with the outcome R.

• ⟨T ,M⟩ can reach a L-racy state ⟨T ′,M ′⟩ in the L-SC-machine, and
⟨T ′,M ′⟩ has some execution in the PS2.1 with the outcome R.

2.4 Applying LDRF for Modular Reasoning

In this section, we outline several applications of the local DRF guarantees

(focusing on LDRF-RA) for client and library developer reasoning. Roughly

speaking, local DRF is essential for modular reasoning because it ensures the

absence of certain behaviors in which unrelated pieces of code affect one another.

Without a local DRF guarantee, it might be that some completely orthogonal

calls to library code (such as the call to a logging function in the second example

below) allow additional behaviors of the client’s code! We believe that ignoring

unrelated races in library calls (e.g., in the implementations of synchronization

mechanisms or in debugging code) is widely informally done in practice, and

view the local DRF guarantees as providing formal justifications for this kind of

intuitive reasoning.

36

We start by observing that the L-PF-machine and the L-X-race-detecting-

machines for X ∈ {RA,SC} all enjoy a useful locality property making it safe

to completely ignore code not accessing locations in L when reasoning about

code only accessing locations in L. Indeed, since promises to L are banned in

those machines, a step that executes code not accessing locations in L can only

increase the thread view on locations in L, or add reservations for locations in

L. These two effects only decrease the possible behaviors (including the ability

to detect a race), so it is safe to ignore them when reasoning about code only

accessing L. (For this reason, clients using the LDRF results do not need to

understand the notion of reservation.)

2.4.1 Reasoning About Client Code

We show typical cases of client RA-centric reasoning using LDRF-RA.

Synchronization with Lock Consider the following program that uses a

lock and a collection libraries.

push(5)
push(7)

r0 := pop wait()
lock()
s0 := Srlx

Srlx := s0 + r0
unlock()

r1 := pop wait()
lock()
s1 := Srlx

Srlx := s1 + r1
unlock()

Suppose that lock() and unlock() are specified by the following RA specification

(the implementation may be more efficient, but the library guarantees that it

behaves the same as the following specification in PS2.1):

lock() ≜
do a := CASacqrel(L, 0, 1)
while (a ̸= 0)

unlock() ≜
Lrel := 0

Further, suppose that the collection library guarantees that push and pop wait

(syntactically) never access S and L, and that when the same number of push

37

and pop are invoked, the values returned by pop wait are in some one-to-one

correspondence with the values pushed by push.10

To use LDRF-RA the client has to show that this program has no racy execu-

tion in the {S,L}-RA-race-detecting-machine. The reasoning is straightforward,

and can be done only knowing the RA semantics:

(i) By the locality property, we can safely ignore the impact on S and L by

push and pop wait;

(ii) Since L is only accessed by RA accesses, we know that there are not any

races on L;

(iii) The lock specification (specifically the RA synchronization from unlock()

to lock()) ensures that a thread accessing S always has the maximal view

on S, so the accesses to S are not racy as well.

Then, by LDRF-RA, the client may safely assume the {S,L}-RA-machine.

Hence, again by the locality property and using the collection specification, it

easily follows that the final value of S is 12 (= 5 + 7).

We note that the above standard reasoning is only justified by LDRF-RA.

Since the collection library may not have an RA-based specification (unlike the

lock library), global DRF-RA cannot be applied to reach the above conclusion.

Synchronization with Queue Next, we consider an example that uses a

queue and a log libraries. For an array U of size 32× 64, the first thread repeats

the following for 0 ≤ i ≤ 31: write some data to U [i × 64, ... , i × 64 + 63] via

write(U, i), put the index i in the queue via enque(i), and log the result via

log(s). Each other thread takes an index from the queue via try deque(), logs

10The library may assume that the client code does not invoke UB, which is the case in our
example.

38

the result via log(i), and if successful, uses the data in U [i×64, ... , i×64+63] via

use(U, i) that only reads from (and possibly writes to) U [i× 64, ... , i× 64 + 63].

Here log is an unspecified racy library function that accesses a disjoint set of

locations.

for i in (0 to 31)
write(U, i)
s := enque(i)
log(s)

i = try deque()
log(i)
if i ≥ 0 then
use(U, i)

...

i = try deque()
log(i)
if i ≥ 0 then
use(U, i)

Suppose that enque and try deque are specified by the following RA specifi-

cation (ignore the parentheses around some acq and rel for now).

enque(d) ≜
lock()

t := T (acq)

if not t < 32 then
unlock(); return full

D[t](rel) := d
T rel := t+ 1
unlock(); return 0

try deque() ≜
t := T acq

b := Bacq

if not b < t then
return empty

d := D[b]
(acq)

b′ := CASacqrel(B, b, b+ 1)
return (b = b′ ? d : fail)

The queue library uses a static (non-circular) buffer D of size 32 and two

locations T and B (initialized to 0) that point to the top and bottom indices of

the queue, where enque(d) puts the data d to the top and try deque() takes a

data from the bottom. While try deque is non-blocking, enque uses the lock

specified above to avoid race between enque’s.

To use LDRF-RA the client has to show that this program has no racy

execution in the {U,D, T,B, L}-RA-race-detecting-machine. The reasoning is

as follows only knowing the RA semantics:

(i) By the locality property, we can safely ignore the impact on U,D, T,B, L

by log;

(ii) Since D,T,B,L are only accessed by RA accesses, there are not any races

on them;

39

(iii) The queue specification ensures a synchronization from an enque writing

to D[k] to a try deque reading from D[k] for any k via the accesses to T ,

since the enque writes k + 1 to T , the try deque reads some k′ > k from

T , and all the writes to T are synchronized via lock() and unlock();

(iv) It also ensures that each successful try deque returns a unique index due

to the atomicity of CAS in try deque;

(v) From these, it follows that each use(U, i) accesses disjoint locations, and

since the synchronization on T ensures no races on U between write

write(U, i) and use(U, i), we avoid races on U as well.

Then, by LDRF-RA, the client may safely assume the semantics provided

by the {U,D, T,B, L}-RA-machine. We again note that due to the presence of

log, global DRF-RA cannot be applied here.

2.4.2 Reasoning About Library Code

Next, we describe how LDRF-RA can be used to reason about the implementa-

tion of the queue library above. We consider an implementation of the above

specification that simply lowers the accesses in parentheses, (acq) and (rel), to

be rlx accesses. (This optimization may be significant if the size of each cell in

D is large.)

By applying LDRF-RA for {D,T,B,L}, one shows that the implementation

meets the specification under an arbitrary context that does not access D,T,B,L

(again knowing nothing beyond RA):

(i) By the locality property, we can safely ignore the impact on D,T,B,L by

the context;

(ii) Since B,L are only accessed by RA accesses, there are not any races on

them;

40

(iii) For T , the only possible race is between the rlx read and the rel write in

enque, which, however, reside in the same locked region thereby avoiding

race;

(iv) For D, the reasoning in §2.4.1(iii) for the client program applies, thereby

avoiding races on D[k] for any k.

Then, by LDRF-RA, the library developer may safely assume the {D,T,B,L}-

RA-machine, whose behaviors are included in those of the queue specification,

and thus we can complete the verification. Note that since the context can be

racy, global DRF-RA cannot be applied here.

We note that by using LDRF-PF, it is possible to slightly improve the above

implementation, in the price of reasoning in the PF-machine instead of the RA-

machine. Indeed, the read from B in try deque() can be made relaxed, and the

CAS on B can be made rel (or srlx) because LDRF-PF does not require any

condition on reads. Then, for any program prog that uses this implementation,

a similar argument shows that there are no {D,T,B,L}-racy executions in the

{D,T,B,L}-PF-machine, and it follows that JprogKPS2.1 = JprogK{D,T,B,L}
PF .

2.5 Mapping PS2.1 to Hardware

In this section we discuss the mapping from PS2.1 to mainstream architectures,

and evaluate the performance impact of forbidding RMW-store reordering.

PS2.1 supports the intended compilation schemes to mainstream architec-

tures [29], but for Armv8, it requires an additional (fake) control dependency

from the read part (“load-linked”) of each fetch-and-add and exchange instruc-

tion with relaxed read mode.

The compilation schemes for these instructions along with the more optimal

schemes are given in Fig. 2.4. The code in red indicates manually inserted fake

41

RMW operation
Armv8 assembly

Optimal (LLVM 10.0.0) PS2.1 (Scheme 1) PS2.1 (Scheme 2)

c := FADD(X, a)

.L:

ldxr x1, [x2]

add x1, x1, x3

stxr w1, x1, [x2]

cbnz w1, .L

.L:

ldxr x1, [x2]

add x1, x1, x3

stxr w1, x1, [x2]

cbnz w1, .L

cbnz x1, .LFAKE

.LFAKE:

.L:

ldxr x1, [x2]

add x1, x1, x3

stxr w1, x1, [x2]

cbnz w1, .L

cmp x1, x1

beq .LFAKE

.LFAKE:

c := XCHG(X, a)

.L:

ldxr x1, [x2]

stxr w1, x3, [x2]

cbnz w1, .L

.L:

ldxr x1, [x2]

stxr w1, x3, [x2]

cbnz w1, .L

cbnz x1, .LFAKE

.LFAKE:

.L:

ldxr x1, [x2]

stxr w1, x3, [x2]

cbnz w1, .L

cmp x1, x1

beq .LFAKE

.LFAKE:

Figure 2.4: Compilation schemes of RMW opearations to Armv8 architecture

control dependencies. Note that the compiled Armv8 assembly assumes that the

address of the memory location X is stored in a register x2 and the value of a

is stored in a register x3.

11 Lee et al. [4, Section 6.5] established (in Coq) the correctness of these

schemes from PS2 to hardware models using the Intermediate Memory Model,

IMM [31]. We observe here that their proof works as is for PS2.1.12 We note

that compared to PS, PS2.1 still supports more efficient mapping of RMW

operations, which for PS require an “ld fence” barrier that is more expensive

than a control dependency (see Example 2).

We believe that forbidding RMW-store reorderings only mildly affects per-

formance since: (i) standard compilers do not aggressively reorder RMWs with

atomic writes [21]; (ii) with the exception of Armv8, mainstream hardware

(x86-TSO, POWER, Armv7, and RISC-V) do not reorder such accesses; and

(iii) the performance overhead in Armv8 for forbidding this optimization is

11Our compilation schemes employ standard LL/SC-style RMW implementations. We leave
to future work the evaluation of an implementation that uses Armv8.1’s LSE (Large System
Extension) for RMWs [30].

12The proof does not handle atomic exchange instructions, which are not supported in IMM.

42

negligible.

We demonstrate (iii) by evaluating 19 highly concurrent data structures

with extensive use of fetch-and-add and exchange operations selected from the

CDS C++ library [32], as well as four artificial “worst case litmus tests” that

repeatedly perform fetch-and-add and exchange operations. Specifically, the

four tests consist of following: FADD/XCHG tests where each thread repeatedly

performs FADD/XCHG to a single location; and FADD-RW/XCHG-RW tests

where each thread repeatedly performs FADD/XCHG to a single location

followed by load/store to another location (n/2 threads load and n/2 threads

store).

The benchmarks are compiled with LLVM 10.0.0 with manual insertion

of fake conditional branches to fetch-and-add and exchange instructions using

two different schemes: (A) direct branch on the loaded value; or (B) compare

the loaded value with itself and branch on the comparison result. The latter

requires an extra cmp instruction, but more likely to be optimized by branch

speculations as it jumps deterministically. For the evaluation, we used 2 socket,

64-core 2.5GHz ThunderX2 64-bit Armv8 server with 128GB memory. We ran

each benchmark 360 times and discarded the 30 fastest and 30 slowest results

among them.

Figure 2.5 summarizes the performance overhead for each benchmark. We

conclude that there is no statistical evidence for a noticeable performance cost

induced by the suboptimal RMW compilation of PS2.1. Detailed results of the

performance evaluation in Fig. 2.5 is given in Fig. 2.6. The error bars in each

figure represent 95% confidence intervals.

Remark 7. During the evaluation, we identified a bug in LLVM’s compilation of
exchange instructions to Armv8. When the value read by the exchange instruction
is never used, LLVM 10.0.0 compiles C++11 relaxed exchange instructions into
Arm’s plain store instructions. However, since an acquire fence may induce

43

Benchmark Scheme Average (%)

libcds, 32 threads
(A) -0.15 (± 5.44)
(B) 0.10 (± 5.53)

libcds, 128 threads
(A) 0.03 (± 4.48)
(B) 0.10 (± 4.51)

FADD litmus test
(A) 0.32 (± 2.81)
(B) 1.05 (± 2.87)

FADD-RW litmus test
(A) -0.09 (± 3.56)
(B) 0.22 (± 3.51)

XCHG litmus test
(A) -0.71 (± 2.73)
(B) -0.00 (± 2.74)

XCHG-RW litmus test
(A) 1.09 (± 3.97)
(B) 0.22 (± 3.79)

Figure 2.5: Performance overhead for each benchmark (The “Average” column
denotes the arithmetic mean and the 95% confidence interval.)

synchronization when it follows an exchange instruction, but not when it follows
a store, this optimization is unsound: it may introduce behaviors in the compiled
Armv8 assembly that are not allowed for the C++ source program.

During the performance evaluation, we identified a bug in LLVM’s compila-
tion of exchange instructions to Armv8.

To see a concrete example of the miscompilation, consider the following
program and its mapping to Armv8 (for simplicity, we only show the mapping
of T2):

Y rlx := 1
a := FADDrel(X, 1) //0?

:= XCHG(X, 42)
fenceacq

b := Y rlx //0?
⇝

str x1, [x2]

dmb.ishld

ldr x0, [x3]

The annotated behavior a = 0 and b = 0 is not allowed in the source program
following the C/C++11 memory model [27]. Once T1 updates X from the initial
value 0 to 1, T2 can only exchange 1 with 42 due to the atomicity of the fetch-
and-add instruction. Then, the acquire fence induces happens-before order from
Y = 1 write by T1 to the read from Y by tid2. Therefore, T2 is only allowed to
read 1 from Y , but not from the initial write 0. However, as the optimization
entirely removed the effect of the read by the exchange instruction, a = 0 and
b = 0 is allowed in the compiled assembly by Armv8 semantics [6].

44

ba
sk
et
_q
u

fc
_d
eq

_r

fc
_q
u

m
oi
r_
qu

m
s_
qu

op
t_
qu

rw
_q
u

vy
uk
ov
_q
u

el
le
n_
pq

fc
_p
q

m
s_
pq

sk
ip
lis
t_
pq

el
im

_s
tc

fc
_d
eq

_l

fc
_s
tc

tre
ib
er
_s
tc

br
on

so
n_
m
ap

cu
ck
oo
_m

ap

el
le
n_
m
ap

−20
−15
−10
−5
0
5

10
15
20

Pe
rfo

rm
an

ce
 O
ve

rh
ea

d
(%

) PS2.1 (Scheme 1)
PS2.1 (Scheme 2)

(a) Performance of 19 data structures from libcds run in 32 threads

ba
sk
et
_q
u

fc
_d
eq

_r

fc
_q
u

m
oi
r_
qu

m
s_
qu

op
t_
qu

rw
_q
u

vy
uk
ov
_q
u

el
le
n_
pq

fc
_p
q

m
s_
pq

sk
ip
lis
t_
pq

el
im

_s
tc

fc
_d
eq

_l

fc
_s
tc

tre
ib
er
_s
tc

br
on

so
n_
m
ap

cu
ck
oo
_m

ap

el
le
n_
m
ap

−20
−15
−10
−5
0
5

10
15
20

Pe
rfo

rm
an

ce
 O

ve
rh

ea
d

(%
)

(b) Performance of 19 data structures from libcds run in 128 threads

1 2 4 8 16 32 64 128 256
Number of threads

−20
−15
−10
−5

0
5

10
15
20

Pe
rfo

rm
an

ce
 O

ve
rh

ea
d

(%
)

(c) Performance of FADD litmus test

1 2 4 8 16 32 64 128 256
Number of threads

−20
−15
−10
−5

0
5

10
15
20

Pe
rfo

rm
an

ce
 O

ve
rh

ea
d

(%
)

(d) Performance of FADD-RW litmus
test

1 2 4 8 16 32 64 128 256
Number of threads

−20
−15
−10
−5

0
5

10
15
20

Pe
rfo

rm
an

ce
 O

ve
rh

ea
d

(%
)

(e) Performance of XCHG litmus test

1 2 4 8 16 32 64 128 256
Number of threads

−20
−15
−10
−5

0
5

10
15
20

Pe
rfo

rm
an

ce
 O

ve
rh

ea
d

(%
)

(f) Performance of XCHG-RW litmus
test

Figure 2.6: Performance of benchmarks on 64-bit Armv8 machine

45

2.6 A Counterexample to Local DRF in PS

In this section, we demonstrate a counterexample to LDRF-PF, LDRF-RA, and

LDRF-SC in PS as well as in PS2. Though we center our discussion around

LDRF-PF, it should be clear that a similar narrative works for LDRF-RA and

LDRF-SC. As in §2.2.1, we first show a program that is L-PF-race-free for a

given set of locations L while a sequence of optimizations entails an outcome

that cannot occur in the L-PF-machine.

a := Xrlx

if a = 1 then
:= FADD(W, 1)

Y rlx := 1
Zrlx := 1

b := Zrlx

if b = 0 then
Xrlx := 1

else
c := FADD(W, 1) //0
if c = 0 then

d := Y rlx

Xrlx := d
else
Xrlx := 1

(LDRF-Fail-PS)

Here, we show that there is no {Y }-PF-racy execution of the LDRF-Fail-PS

program in the {Y }-PF-machine (of PS or PS2.1). Indeed, in any execution

of the LDRF-Fail-PS program in {Y }-PF-machine, c := FADD(W, 1) of π2

cannot read 0 from W . Thus, tid2 never reads from Y , and the program is

{Y }-race-free. Specifically, in order for π2 to enter the else-branch on b = 0, π2

should be able to read a non-zero value from Z. For this, π2 should first promise

X = 1, allowing π1 to either promise or write Z = 1. After promising X = 1, π2

requires Y = 1 message in the memory in order to fulfill its promise X = 1 while

entering the if-branch on c = 0. Since making a promise to Y is not allowed

in the {Y }-PF-machine, π1 should execute the FADD to W , updating it from

0 to 1, before executing the write 1 to Y . Then, c := FADD(W, 1) of π2 can

46

only read 1 from W , meaning that d = Y cannot ever be executed. Therefore,

LDRF-Fail-PS is {Y }-PF-race-free and c := FADD(W, 1) of π2 can only read 1

from W , but not 0.

However, the following sequence of transformations entails an execution

where c := FADD(W, 1) reads 0 from W as shown in Fig. 2.7

Therefore, the LDRF guarantees do not hold for PS and PS2. Note that the

problematic execution takes a different path to the certification when a promise

(X = 1) was made, like the OOTA4 example in [33] and the Coh-CYC example

in [8].

2.7 Conclusion and Related Work

Studying local DRF guarantees in a fully relaxed semantics, we have achieved

a negative and a positive outcomes. The negative one is an unfortunate im-

possibility result: standard compiler optimizations are inconsistent with local

DRF guarantees. On the positive side, local DRF can be achieved by giving

up certain RMW-store reorderings, which carries no meaningful performance

penalty. The positive result is established constructively by showing a variant

of the promising semantics that satisfies the standard optimizations intended

to be sound in weak memory models except for RMW-store reorderings, and

validates several local DRF guarantees.

We believe that it may be useful to study existing and novel models through

the lens of our results also beyond the context of the promising semantics. A “just

right” programming language shared-memory concurrency model that is not too

strong to allow efficient implementation and not too weak to program with has

been the subject of extensive research in recent years (e.g., [34, 35, 27, 20, 36, 37,

8, 38, 39, 13, 40, 22, 41, 18, 42, 23, 33, 43]). While implementability is nowadays

relatively well-defined, the criteria for the programmability aspect are much

47

The compiler may optimize Thread 1 as shown below:
(1) (2) (3) (4) (5)

a := Xrlx

if a = 1 then
Y rlx := 1
Zrlx := 1
:= FADD(W, 1)

e := Zrlx

if e = 0 then

f := Y rlx

if f = 1 then
b := Zrlx

if b = 0 then
Xrlx := 1

else

c := FADD(W, 1)
if c = 0 then

d := Y rlx

Xrlx := d
else

Xrlx := 1
else

b := Zrlx

if b = 0 then
Xrlx := 1

else
...

else
...

e := Zrlx

if e = 0 then

f := Y rlx

if f = 1 then
b := Zrlx

if b = 0 then
Xrlx := 1

else

c := FADD(W, 1)
if c = 0 then

(eliminated)
Xrlx := 1

else
Xrlx := 1

else
(eliminated)
(eliminated)
Xrlx := 1

(eliminated)
else

...

e := Zrlx

if e = 0 then

f := Y rlx

if f = 1 then
b := Zrlx

if b = 0 then
Xrlx := 1

else
Xrlx := 1
c := FADD(W, 1)

else

Xrlx := 1

else
...

e := Zrlx

if e = 0 then
Xrlx := 1
f := Y rlx

if f = 1 then
b := Zrlx

if b ̸= 0 then

c := FADD(W, 1)

else
...

(1) reorder the independent FADD on W and writes to Y and Z.

Now, the compiler may optimize Thread 2 as shown above:

(2) introduce reads e := Z and f := Y and insert dummy if-then-else branches on e = 0
and f = 1;

(3) forward the read f := Y to the read d := Y in the if-branch, turning X := d into
X := 1, and forward the read e := Z to the read b := Z in the else-branch, turning it
into b := 0;

(4) merge the branch on c = 0 and reorder the write X := 1 with c := FADD(W, 1);

(5) hoist the common writes X := 1 in the branch on b = 0 and reorder it above f := Y .

The program after the transformation exhibits such a behavior in {Y }-PF-machine as
follows:

(i) π2 promises X = 1.

(ii) π1 reads 1 from X and writes Y = 1.

(iii) π2 reads Z = 0, enters the if-branch on e = 0, fulfills the promise X = 1, reads Y = 1,
and enters the if-branch on f = 1.

(iv) π1 writes Z = 1.

(v) π2 reads 1 from Z, enters if-branch on b ̸= 0, and updates W from 0 to 1.

(vi) The both threads execute the rest of their instructions.

Figure 2.7: Program transformations and execution of LDRF-Fail-PS

48

less evident. Since, as we argue in this chapter, local DRF guarantees facilitate

modular software development, these guarantees provide better programmability

desideratum than the standard global DRF properties. Our impossibility result

shows an inherent trade-off that has to be considered when designing a memory

model, while the positive result assigns the blame on RMW-store reorderings.

Several papers have previously studied local DRF guarantees. Dolan et

al. [18] introduced local DRF-SC, and established such guarantees for a model

with two types of access. Their guarantees account for two aspects of “locality”:

(i) in terms of “space”, which is similar to our location-wise LDRF above and

(ii) in terms of “time”, which we cover in §2.3.4. However, their memory model

is much stronger than the one studied here. In particular, it is an “in-order”

model (see Def. 3), as even their weak accesses completely forbid load-store

reorderings (including RMW-store reorderings), and cannot be compiled to plain

machine accesses on architectures like Arm. In addition, their strong accesses

are stronger than C11’s SC accesses, so that strong stores have to be mapped

to atomic exchanges even on x86.

Dongol et al. [19] established local DRF-SC guarantees for a model more

general than the one of [18] with multiple access modes. In their model, threads

synchronize via software transactions with RA semantics. While release/acquire

RMWs can be implemented as transactions, the problematic relaxed RMWs are

not expressible in the model of [19], so that our impossibility result does not

apply.

Recently, Jagadeesan et al. [33] presented a denotational concurrency model

and sketched (without full proofs) a time-wise local DRF-SC guarantee for a

fragment of this model that does not include fences and RMWs. (They presented

several variants, and their reported LDRF result is for a version that does not

support irrelevant load introduction.) Their model is multi-copy-atomic, and

49

thus, unlike PS2.1, it cannot be efficiently compiled to POWER or Armv7.

We note that the strengthening of accesses in the “SC machines” (used for

detecting races for the LDRF-SC premise) in prior work [18, 19, 33] does not

make them synchronizing (inducing “happens-before” w.r.t. other locations).

Thus, like ours, previous local DRF-SC theorems are weaker than the naive

formulation discussed in §2.2.2.

Finally, while modular reasoning about libraries in weak memory semantics

has been studied in multiple papers, e.g., [44, 45, 46, 17], to the best of our knowl-

edge, the observation that location-wise local DRF guarantees are essential for

such reasoning is lacking in prior work. We leave to future work the development

of LDRF-based formal tools, which will allow one to formalize (and possibly

mechanize) reasoning as we did in §2.4. In particular, our LDRF-PF paves the

way for the application of program logics for an ”in-order” semantics (e.g., the

logic in [15] that essentially targets the PF model), which is significantly simpler

than any semantics allowing load-buffering behaviors. We also note that while

the applications in §2.4 are for RA-centric specifications, our local DRF results

are generally applicable for weaker library specifications as well. Nevertheless,

it is currently unclear how to formally specify and verify libraries in memory

models that allow load buffering behaviors (as was studied in [17] for ‘in-order’

models). We leave this question as well for future work.

50

Chapter 3

Sequential Reasoning for Compiler
Writers

3.1 Introduction: Optimizations under Weak Memory

Weak memory models aim to support a wide range of source-to-source compiler

optimizations. These optimizations provide indispensable means for improving

performance, especially the optimizations involving memory accesses intended to

be non-racy (“non-atomics” in C/C++), which are more frequent and allow more

optimizations compared to synchronization accesses (“atomics” in C/C++).

The soundness of compiler optimizations is a contextual refinement property—

the transformed piece of code should behave as prescribed by the semantics of its

source under any context. For certain optimizations, mostly access reorderings

and redundant access eliminations, soundness was established under multiple

concrete weak memory models of different kinds [47, 20, 35, 48, 4, 8, 49, 3,

23, 33, 37, 50]. These results, however, require delicate and fragile arguments

that depend on the full underlying complex memory model, which is often

51

very different than standard operational semantics.1 This poses a significant

challenge for compiler optimization developers, especially in the context of

certified optimizing compilers, notably CompCert [53, 54], whose simulation-

based approach for the soundness of each optimization pass cannot accommodate

complex concurrency semantics.

In this chapter, we study an alternative approach to establishing soundness

of compiler optimizations under a weak memory model that is easier to use by

compiler developers and is well-suited for integration within a certified compiler.

The idea is to rely solely on sequential reasoning, and our main contribution is

a novel sequential (i.e., single-threaded) semantics that can be safely used for

analyzing thread-local optimizations under a full-fledged weak memory model.

The proposed approach goes hand in hand with the fact that compiler

writers’ intuition for thread-local optimizations stems from inspecting sequential

code, since, intuitively speaking, non-racy code behaves just like sequential

code. In fact, validating optimizations that are correct in sequential programs

has been one of the main goals in weak memory models design. Our results

provide a formal justification of this intuition, and give grounds for development,

verification, and testing of optimizations based on a sequential model.

Example 12. As a concrete simple example, consider an optimization pass
that avoids unnecessary reads by locally applying a simplified “store-to-load
forwarding” (SLF) as captured by the following pattern:

Xna := v ; b := Xna ⇝ Xna := v ; b := v

where X is a shared variable, the na superscript denotes non-atomic access to
memory, v is an arbitrary value, and b is a thread local register. In sequential
programs this transformation is clearly sound. We aim to rely on sequential
reasoning for justifying this transformation under weak memory. △

1Informal and pen-and-paper arguments often resulted in detecting miscompilation bugs
due to subtle unexpected interaction between language features; see e.g., [1, Remark 7], [49,
§2.2], and [51, 52].

52

While the idea of using sequential semantics to assist reasoning on concurrent

programs is not new, our results provide two important advantages. First, while

previous work [55, 56, 57] studied a simple concurrency model based on locks

or atomic blocks, the current work is the first to realize this idea for a rich

weak memory model with a wide spectrum of concurrency features, including

atomic accesses of several kinds. In particular, we demonstrate that the pro-

posed sequential semantics is sufficiently expressible to validate certain intricate

optimizations of non-atomic accesses across atomics, which are performed by

mainstream compilers (as we observed on armv8-a clang 11.0.1 and x86-64 GCC

11.2).

Example 13. Continuing Example 12, a more interesting SLF pass eliminates
reads also across other instructions:

Xna := v ; α ; b := Xna ⇝ Xna := v ; α ; b := v

What patterns of synchronization accesses (composed of C/C++ atomics) may
be included in α (besides the fact that it should not contain writes to X) has
been a source of confusion before [49, §2.2]. As we show below, the model
proposed in this chapter allows one to analyze the soundness of this pass relying
solely on a sequential model. △

Second, in contrast to prior work [55, 56, 57], we are not targeting a con-

currency model based on the “catch-fire” mechanism, which triggers undefined

behavior (UB) for data races like in C/C++11 [27]. The practical significance of

this choice is that (irrelevant) load introduction is a sound program transforma-

tion in our model. In contrast, this transformation for non-atomics can never be

generally sound in a catch-fire model, since it may introduce data races in the

target program that do not exist in the source. Allowing load introduction is

necessary to support optimizations based on speculation, which are commonly

performed by compilers (clang, in particular), e.g., as a part of loop invariant

code motion, loop unswitching, load-widening or when loading a vector while

53

only a subset of elements is needed.2 (In fact, the “freeze” instruction recently

introduced in LLVM is a tool to support branching on a possibly undefined

value, which is often a result of load introduction [58].)

Example 14. Consider an optimization pass performing loop invariant code
motion (LICM) following the pattern:

while B do {α ; a := Xna ; β } ⇝
c := Xna ; while B do {α ; a := c ; β }

In the case that the loop never executes (when B is false), a possibly racy
(irrelevant) load of X is introduced. Thus, this transformation is unsound in
catch-fire models. In contrast, we aim to validate such transformations, and
again use sequential reasoning for their formal justification (with appropriate
restrictions on α and β ; see §3.4). △

To demonstrate that sequential reasoning is adequate for validating soundness

of optimizations under a weak memory model, we (formally) establish the

adequacy of sequential reasoning for verifying optimizations w.r.t. PS2.1 [1].

The latter is a recent version of the “promising semantics”, a well-studied

model [31, 59, 4, 3] addressing the infamous “out-of-thin-air” problem that

admits efficient mapping schemes to modern architectures, as well as several

critical programming guarantees. Since this model does not include non-atomic

accesses, we extend it with such accesses. In this extension, inspired by LLVM [60],

to allow load introduction, which is notoriously hard to support in a relaxed

memory model [61], racy non-atomic reads retrieve “undefined” values that can

be later “frozen” into any non-deterministic value [58] (rather than invoking UB

as in C/C++11).

All in all, the contributions of this chapter are:

1) We develop a sequential model, called SEQ, instrumenting a standard

sequential memory with additional mechanisms to reason about program trans-

2See https://llvm.org/docs/Passes.html [Accessed Nov-21].

54

https://llvm.org/docs/Passes.html

formations under a weak memory model (§3.2). The sequential model abstracts

away complicated interference of other threads, by, in particular, tracking

permissions to perform non-atomic accesses on certain locations which are

non-deterministically gained and dropped with acquire/release atomic accesses.

We present two notions of behavioral refinement in SEQ that ensure refinement

under weak memory with arbitrary concurrent context: a simple one (§3.2) that

suffices for the vast majority of optimizations (including all those involving solely

non-atomics), and a more refined one (§3.3) needed for certain transformations

involving a non-atomic write and a release/relaxed atomic access. We note that

typical programmers need not know about the the sequential model SEQ, which

is only needed for compiler developers.

2) We develop a certified optimizer for a small C-like concurrent language

(§3.4). The optimizer performs four passes of thread-local optimizations: store-to-

load forwarding, load-to-load forwarding, dead (overwritten) store elimination,

and loop invariant code motion, based on a standard fixpoint analysis in an

abstract semantics representing properties of the program executions in SEQ.

The optimizer is implemented and certified in Coq. Importantly, its correctness

is proved relying solely on simulation in SEQ, without any reference to the

underlying (much more complex) promising model. Thus, we view this optimizer

as a proof of concept demonstrating the applicability of our approach to verify

optimization passes, possibly as an extension of CompCert.

3) We extend PS2.1 with non-atomics, with UB for write-write races and

undefined value for write-read races (§3.6). All results for PS2.1 in [1] are ported

to PSna, the extended model. We believe that PSna can be useful as a model for

an intermediate representation (IR) language, such as LLVM. In turn, defensive

programmers may rely on one of the data-race freedom (DRF) guarantees of the

55

model (see [1]), each of which ensures certain stronger and simpler semantics

provided that certain races are avoided.

4) We prove an adequacy theorem allowing one to derive the correctness of

optimizations in PSna from (simple or refined) behavioral refinement in SEQ

(§3.7).

Our results are fully mechanized in Coq, building on top of the existing

formalization of PS2.1. Our development is available at [62].

3.2 The Sequential Permission Machine

We introduce a sequential model, which we denote by SEQ, and present a notion

of behavioral refinement between sequential programs that we will show to be

adequate for reasoning about optimizations of concurrent programs under weak

memory consistency: if a target program behaviorally refines a source program,

then the source program can be replaced by the target program under any

concurrent context assuming weak memory semantics (specifically, PSna).

To understand the intuitions behind SEQ it is important to keep in mind

the optimizations we aim to validate. First, since non-atomics are not meant

for synchronization, all optimizations allowed in sequential code, including

load introduction, should be validated on code involving solely non-atomics.

The important exception here is unused store introduction, which is sound in

sequential code (although existing compilers avoid this transformation, possibly

due to security reasons—we would not want to expose secrets in memory), but

trivially unsound in concurrent code, as an unused store of one thread may be

read by others.

In contrast, we do not aim to allow optimizations on atomic accesses and

fences. Understanding optimizations on synchronization code (via atomics)

56

(silent)
σ −→ σ′

⟨σ, P, F,M⟩ −→ ⟨σ′, P, F,M⟩

(choice/relaxed)
σ

e−→ σ′

e ∈ {choose(v), Rrlx(X, v), Wrlx(X, v)}
⟨σ, P, F,M⟩ e−→ ⟨σ′, P, F,M⟩

(na-read)

σ
Rna(X,v)−−−−−−→ σ′

X ∈ P
v = M(X)

⟨σ, P, F,M⟩ −→ ⟨σ′, P, F,M⟩

(racy-na-read)

σ
Rna(X,undef)−−−−−−−−→ σ′

X /∈ P

⟨σ, P, F,M⟩ −→ ⟨σ′, P, F,M⟩

(na-write)

σ
Wna(X,v)−−−−−−→ σ′

X ∈ P
F ′ = F ∪ {X}

M ′ = M [X 7→ v]

⟨σ, P, F,M⟩ −→ ⟨σ′, P, F ′,M ′⟩

(racy-na-write)

σ
Wna(X,)−−−−−→ X /∈ P

⟨σ, P, F,M⟩ −→ ⟨⊥, P, F,M⟩
(acq-read)

σ
Racq(X,v)−−−−−−→ σ′

P ⊆ P ′ dom(V) = P ′ \ P

M ′ = λX.

{
V (X) X ∈ P ′ \ P

M(X) otherwise

⟨σ, P, F,M⟩ Racq(X,v,P,P ′,F,V)−−−−−−−−−−−−−→ ⟨σ′, P ′, F,M ′⟩

(rel-write)

σ
Wrel(X,v)−−−−−−→ σ′

P ′ ⊆ P V = M |P

⟨σ, P, F,M⟩ Wrel(X,v,P,P ′,F,V)−−−−−−−−−−−−−→ ⟨σ′, P ′, ∅,M⟩

Figure 3.1: Transitions of SEQ

via sequential reasoning is unnatural, and, even if possible, it will significantly

complicate our sequential model. Also, since atomic accesses are relatively rare in

concurrent programs and often confined in libraries that are manually optimized

by experts, the possible performance gain is rather limited. Although these

optimizations were extensively studied (especially for C/C++11 [20, 63]), to the

best of our knowledge, existing compilers do not perform such optimizations.

Finally, we also aim to allow optimizations of non-atomics across atomics.

As mentioned in the introduction, these are performed by mainstream compilers

and have been a source of confusion before. We will also validate reorderings of

relaxed accesses and non-atomics, as well as roach-motel reorderings (one-sided

reordering of release/acquire and non-atomics) [64], which are not performed by

current mainstream compilers but are naturally supported in SEQ.

Concurrency constructs We assume that shared memory locations are

divided into atomic locations (Locat) and non-atomic locations (Locna), and

57

there is no mixing of atomic and non-atomic accesses to the same location.3

To simplify the presentation in the paper, we only present a fragment of the

model consisting of non-atomics and release/acquire and relaxed reads and

writes. Our Coq development includes more features: atomic read-modify-writes

(RMWs), release sequences, fences (including sequentially consistent fences),

strong relaxed accesses (which do not allow “load buffering” behaviors), and

system calls. This covers all C/C++11 features as in [13], except for sequentially

consistent accesses which are not supported by the promising semantics.

Program representation in the paper To keep the presentation abstract,

rather than introducing a concrete programming language syntax, we assume

that the programming language is represented as a labeled transition system

(LTS), with transitions labeled with the action that is performed. Below we use

σ to denote the program state, which stores the rest of the program to run and

the current local register file. Transitions take one of the following forms:

• σ −→ σ′: silent transitions that do not communicate with the memory (e.g.,

conditionals and local assignments).

• σ
choose(v)−−−−−−→ σ′: transitions resolving a non-deterministic choice (Remark 10 in

§3.7 explains why we need to expose these transitions).

• σ
RoR (X,v)−−−−−→ σ′ with oR ∈ {na, rlx, acq}: reads value v from location X with

mode oR (non-atomic, relaxed, or acquire).

• σ
WoW (X,v)−−−−−→ σ′ with oW ∈ {na, rlx, rel}: writes value v to location X with mode

oW (non-atomic, relaxed, or release).

We assume that programs terminate in states of the form σ = return(v),

which denote normal termination with v being the final value that is externally

3The problem in supporting such mixing is the lower step of PSna that modifies values of
outstanding promises. We describe the challenge in §3.7.

58

observable, or in an “error state”, σ = ⊥, denoting UB (e.g., when dividing by

0).

In our examples we use standard code snippets in a toy language to denote

programs, and their reading as LTSs should be clear. We also assume a notion

of a (sequential) program context C[·], which is a program with a hole allowing

one to plug in programs, e.g., C[Xna := 1]. This notation, which we do not

formally specify, is meant for intuitive understanding of our examples. In our

Coq formulation, programs are represented using interaction trees [65], which

provide a convenient formalism supporting this operation.

Values We assume a parametric set Val of values. To support racy non-atomic

reads, Val should contain a distinguished element, called “undefined value” and

denoted by undef. In the refinement notions below, we allow the target program

to return any value if the source returns undef. For this matter, a partial order

⊑ on Val is defined by: v ⊑ v′ ⇔ v = v′ ∨ v′ = undef. This order is lifted to

(partial) functions to Val pointwise.

Remark 8. We follow LLVM assuming that branching on undef invokes UB. A
“freeze” instruction can be used to non-deterministically choose a defined value
for undef,4 which is captured by a choose(v) transition in the LTS.

States of SEQ In addition to the current program state σ, each state S =

⟨σ, P, F,M⟩ of SEQ keeps track of:

• Permission set: a set P ⊆ Locna of non-atomic locations that may be safely

accessed. Intuitively, if X ̸∈ P , then the access to X is racy.

• Written (non-atomic) locations set: a set F ⊆ Locna of non-atomic locations

that were written to by the thread. We track this set in the states (and later

4See https://llvm.org/docs/LangRef.html#undefined-values and https://llvm.org/

docs/LangRef.html#freeze-instruction [Accesses Nov-21].

59

https://llvm.org/docs/LangRef.html#undefined-values
https://llvm.org/docs/LangRef.html#freeze-instruction
https://llvm.org/docs/LangRef.html#freeze-instruction

use in the definition of behavior refinement) in order to ensure that non-atomic

write introduction is unsound in SEQ.

• Memory: a function M : Locna → Val assigning a value to every non-atomic

location. Since we are not aiming to support optimizations on atomics, there is no

need to keep the values of the atomic locations in the memory. (In the refinement

notions below, we require that the sequence of atomic accesses generated by the

source and the one generated by the target match.)

Transitions of SEQ The transitions are given in Fig. 3.1. Each transition

S
(e)−−→ S′ dictates its preconditions (which always require a corresponding

program step), the way the different components of the state are updated, and

possibly the label e recorded in the trace when the transition is invoked. The

latter is essential for the definition of refinement, which imposes conditions

relating the traces (i.e., sequences of transition labels) of SEQ generated by the

source program to those generated by the target program.

Concretely, silent and choice/relaxed transitions have no additional

preconditions and, except for the program component, do not modify the state.

The choice/relaxed transitions are recorded in the transition label as they

need to match in traces of the source and of the target.

Non-atomics are handled differently depending on the permission set: when

the program performs a non-atomic read from location X, it loads from the

memory if X is in the permission set (na-read); or loads undef otherwise

(racy-na-read). In turn, when the program performs a non-atomic write to

X, it writes to memory and adds X to the set of written locations if X is in the

permission set (na-write), or invokes UB (by setting the program state to ⊥)

otherwise (racy-na-write). Invoking UB is in accordance with the fact that

we aim to invalidate (unused) store introduction. Note that the steps related

60

to non-atomic accesses have no effect on the generated trace, allowing different

sequences of non-atomic accesses between the source and the target.

Acquire and release accesses are used for synchronization in the underlying

concurrency model. Although they provide more fine grained control than locks,

it is helpful to understand an acquire read as a lock acquisition, and a release

write as a lock release.5 In SEQ, these steps non-deterministically update the

permission set and the memory, which, intuitively speaking, accounts for any

possible interaction with the concurrent environment.

Concretely, acq-read non-deterministically (i) gains permissions for some

set of locations (intuitively, these permissions are acquired from other threads),

and (ii) gets new values (recorded in a partial function V : Locna ⇀ Val) for the

locations in this set. Dually, rel-write non-deterministically loses permissions

for some set of locations (intuitively, they are released to other threads). The

rel-write transition also resets the written locations set F . Thus, F tracks

written non-atomic locations since the last release, which is needed in order to

ensure that (possibly racy) writes cannot be introduced after a release, even if

the location was written to (by the source) before the release (see Example 21).

In addition, acq-read and rel-write record in the trace (i.e., on their

transition labels) the permission set before and after the transition, the written

locations set, and the current memory (its updated part in acq-read and

“(potentially) released” memory in rel-write). All these are needed for having

sufficiently expressive traces that allow us to define an adequate refinement

notion.

Behavioral refinement We first define what constitutes a behavior in SEQ.

5Lock acquisition requires an acquire RMW, which is included in our Coq development but
elided here to simplify the presentation.

61

Definition 15. A behavior (in SEQ) is a pair of the form ⟨tr , r⟩, where tr
is a finite sequence of transition labels, and r is either trm(v, F,M) denoting
normal termination returning v with written flags set F and memory M , prt(F)
denoting a partial (ongoing) execution with current written flags set F , or ⊥
denoting erroneous termination. We write S ⇓ ⟨tr , r⟩ to mean that a state S
generates the behavior ⟨tr , r⟩, which is inductively defined as follows:

r =


trm(v, F,M) σ = return(v)

⊥ σ = ⊥
prt(F) otherwise

⟨σ, P, F,M⟩ ⇓ ⟨ϵ, r⟩

S −→ S′

S′ ⇓ ⟨tr , r⟩
S ⇓ ⟨tr , r⟩

S
e−→ S′

S′ ⇓ ⟨tr , r⟩
S ⇓ ⟨e · tr , r⟩

We use standard notations for traces: ϵ for the empty trace, tr1 ·tr2 for appending
traces, and α ∈ tr for occurrence of a label in a trace. We identify a label e with
a trace of length one when writing expressions like e · tr .

Example 15. For a program state σ that corresponds to Xrlx := 1 ; Y na := 2 ;
return(3), the state S = ⟨σ, P, ∅,M⟩ with Y ∈ P has the following behaviors in
SEQ: ⟨ϵ, prt(∅)⟩, ⟨Wrlx(X, 1), prt(∅)⟩, ⟨Wrlx(X, 1), prt({Y })⟩, and the terminat-
ing behavior ⟨Wrlx(X, 1), trm(3, {Y },M [Y 7→ 2])⟩. If Y ̸∈ P , then ⟨Wrlx(X, 1),⊥⟩
is the only terminating behavior. △

Next, we present the (first) notion of behavioral refinement between programs

in SEQ. As standard, one may start by requiring that every behavior ⟨tr tgt, rtgt⟩

of the target program is also a behavior of the source program. However,

to support various optimizations, naive inclusion does not suffice. Instead,

we allow the source to generate a matching behavior ⟨tr src, rsrc⟩ that is “less

committed” than ⟨tr tgt, rtgt⟩ (denoted ⟨tr tgt, rtgt⟩ ⊑ ⟨tr src, rsrc⟩): the source may

return undef when the target returns a normal value (vtgt ⊑ vsrc), end with

“less defined” memory (Mtgt ⊑ Msrc), and write to more non-atomic locations

(Ftgt ⊆ Fsrc). The same holds along the trace: for values recorded in atomic

writes, for memories recorded in release writes, and for written locations sets

recorded in acquire and release accesses. Finally, UB by the source allows any

continuation by the target. All these are formally captured by the next definition:

62

Definition 16. The relation ⊑ on transition labels, traces, and behaviors is
given by:

1. Transition labels:

e ⊑ e

vtgt ⊑ vsrc

Wrlx(X, vtgt) ⊑
Wrlx(X, vsrc)

Ftgt ⊆ Fsrc

Racq(X, v, P, P ′, Ftgt, V) ⊑
Racq(X, v, P, P ′, Fsrc, V)

vtgt ⊑ vsrc Ftgt ⊆ Fsrc Vtgt ⊑ Vsrc

Wrel(X, vtgt, P, P
′, Ftgt, Vtgt) ⊑ Wrel(X, vsrc, P, P

′, Fsrc, Vsrc)

2. Traces: e1tgt· ... ·entgt ⊑ e1src· ... ·ensrc ⇔ ∀k. ektgt ⊑ eksrc

3. Behaviors:

tr tgt ⊑ tr src vtgt ⊑ vsrc Ftgt ⊆ Fsrc Mtgt ⊑ Msrc

⟨tr tgt, trm(vtgt, Ftgt,Mtgt)⟩ ⊑ ⟨tr src, trm(vsrc, Fsrc,Msrc)⟩

tr tgt ⊑ tr src Ftgt ⊆ Fsrc

⟨tr tgt, prt(Ftgt)⟩ ⊑ ⟨tr src, prt(Fsrc)⟩
tr tgt ⊑ tr src

⟨tr tgt · tr , r⟩ ⊑ ⟨tr src,⊥⟩

Definition 17. We write Stgt ⊑ Ssrc if Stgt ⇓ ⟨tr tgt, rtgt⟩ implies that Ssrc ⇓
⟨tr src, rsrc⟩ for some behavior ⟨tr src, rsrc⟩ such that ⟨tr tgt, rtgt⟩ ⊑ ⟨tr src, rsrc⟩.
A program state σtgt behaviorally refines a program state σsrc, denoted by
σtgt ⊑ σsrc, if ⟨σtgt, P, F,M⟩ ⊑ ⟨σsrc, P, F,M⟩ for every P, F,M .

Next, we present a sequence of examples demonstrating several subtleties in

the above definitions. In these examples, when writing progsrc ⇝ progtgt for two

code snippets progsrc and progtgt, we mean that for any (sequential) context

C, the state σtgt that corresponds to C[progtgt] (with some initial register file)

behaviorally refines the state σsrc that runs C[progsrc] (with the same initial

register file). We write progsrc ⇝̸ progtgt for the negation of progsrc ⇝ progtgt.

Remark 9. Our results that are formalized in Coq also address reasoning
about program transformations in SEQ. In particular, they allow one to lift
local refinement properties (such as the ones listed in the examples below) to
any sequential context C. Concretely, we define a simulation relation between
SEQ states and prove that it admits certain congruence properties. Then, by

63

establishing simulation between progsrc and progtgt, we can derive progsrc ⇝
progtgt as defined above. Since these techniques are fairly standard in compiler
verification, and our main focus is to reduce reasoning about concurrent code
to reasoning about sequential code, we omit these details from the paper. In
the example below, we intend to give the right intuitions, rather than precise
refinement arguments.

Example 16 (Reordering of non-atomics). Non-atomic accesses to differ-
ent locations can be freely reordered in SEQ, e.g., a := Xna ; Y na := v ⇝
Y na := v ; a := Xna where X ̸= Y . Consider a general context C, and let σsrc
and σtgt be the program states that correspond to C[a := Xna ; Y na := v] and
C[Y na := v ; a := Xna], respectively, with the same initial register file. Suppose
that ⟨σtgt, P, F,M⟩ ⇓ ⟨tr tgt, rtgt⟩. Then, by executing two steps in the source
(a read from X followed by a write to Y) at the time the target executes its
write to Y , one can show that ⟨σsrc, P, F,M⟩ ⇓ ⟨tr tgt, rtgt⟩. In particular, after
the target performs the read, the source and the target reach the same program
state.

On the other hand, reordering of non-atomics to the same location is disal-
lowed, e.g., the reordering of a load followed by a store a := Xna ; Xna := 1 ⇝̸
Xna := 1 ; a := Xna. Indeed, for the context C = · ; return(a), we have
⟨σtgt, P, F,M⟩ ⇓ ⟨ϵ, trm(1, F ∪ {X},M [X 7→ 1])⟩ starting from a state with
X ∈ P and M(X) = 2. However, the only terminating behavior that is generated
by the source program from this state is ⟨ϵ, trm(2, F ∪ {X},M [X 7→ 1])⟩. △

Example 17 (Eliminations of non-atomics). Behavioral refinement holds for
the following pairs, in which a non-atomic access is eliminated:

(i) Xna := v ; Xna := v′ ⇝ Xna := v′

(ii) Xna := v ; a := Xna ⇝ Xna := v ; a := v

(iii) a := Xna ; b := Xna ⇝ a := Xna ; b := a

(iv) a := Xna ; Xna := a⇝ a := Xna

Note that for the read-before-write elimination ((iv) above), the written locations
set in the final state of the source may be a strict superset of the one of the
target (Ftgt ⊂ Fsrc), which is allowed in the definition above. Conceptually, the
optimized program may avoid writes to some locations that are performed by
the source.

In contrast, the introduction of a write after a read is unsound due to the
conditions on the written locations set F . For example:

a := Xna ; if a ̸= v then Xna := v ⇝̸ a := Xna ; Xna := v

64

In this example, starting from F = ∅ and permission to access X, the target
ends its execution with Ftgt = {X}, while the source has Fsrc = ∅.

In turn, the other introductions of non-atomics obtained as converses of (i)-
(iii) above provide additional instances of refinements in SEQ. This intuitively
corresponds to the fact that non-atomics are cannot induce synchronization. △

Example 18 (Reordering across loops). Reordering a non-atomic write before
a possibly infinite local computation is unsound, as it introduces a write if the
loop never terminates:

while (...) do {...} ; Xna := v ⇝̸ Xna := v ; while (...) do {...}

In SEQ, when starting without permission on X (X ̸∈ P), the target program
generates the behavior ⟨ϵ,⊥⟩, but the source may not be able to generate a
matching behavior if the loop is not terminating.

A variant of this example demonstrates why we have to match partial traces
with the condition that Ftgt ⊆ Fsrc:

a := Xna ;
if a ̸= 1 then Xna := 1 ;
while (...) do {...} ; Xna := 2

⇝̸
a := Xna ;
if a ̸= 1 then Xna := 1 ;
Xna := 2 ; while (...) do {...}

If the target invokes UB and generates ⟨ϵ,⊥⟩, then it must be the case that we
started without permission on X, and the source may invoke UB and generate
⟨ϵ,⊥⟩ as well. Thus, in order to obtain a behavior of the target that is not
matched by a behavior of the source, in case the loop is non-terminating, we
must consider behaviors before termination ⟨ , prt(F)⟩. Indeed, when starting
with permission on X and M(X) = 1, the target generates ⟨ϵ, prt({X})⟩, but,
if the loop does not terminate, the only behavior of the source is ⟨ϵ, ∅⟩.

In contrast, reads may be reordered with possibly non-terminating local
computation:

while (...) do {...} ; a := Xna ⇝ a := Xna ; while (...) do {...}

Indeed, in partial traces only the written locations set F has to match, and this
set is the same in executions of the two programs. △

Example 19 (Unused load elimination and introduction). The transformations
that eliminate/introduce an unused load a := Xna ⇝ skip and skip⇝ a := Xna

trivially correspond to behavioral refinements in SEQ. For the latter, we need
that a non-atomic read without permission does not invoke UB. We note that
in the paper presentation, we have to assume that a does not occur in the

65

context. Nevertheless, our Coq formalization that uses interaction trees can
easily express a computation that reads a value and does not return the result
to its continuation. This computation is interchangeable with a no-op under any
context. △

Example 20 (Reordering of atomics and non-atomics). Reordering of atomic
and non-atomic accesses follows the “roach-motel” principle. The following are
forbidden:

(i) a := Xacq ; Y na := v ⇝̸ Y na := v ; a := Xacq

(ii) Y na := v′ ; Xrel := v ⇝̸ Xrel := v ; Y na := v′

(iii) a := Xacq ; b := Y na ⇝̸ b := Y na ; a := Xacq

(iv) a := Y na ; Xrel := v ⇝̸ Xrel := v ; a := Y na

In (i), starting without permission on Y (Y ̸∈ P), the target invokes UB, thus
generating the behavior ⟨ϵ,⊥⟩. The source, however, has to perform the acquire
read before invoking UB, thus generating terminating behaviors of the form
⟨Racq(),⊥⟩ only.

In (ii), if the release write to X loses the permission on Y (transitioning
from a state with Y ∈ P to a state with Y ̸∈ P), then the target program
invokes UB, generating a behavior of the form ⟨ ,⊥⟩. However, since we start
with Y ∈ P , the source does not invoke UB, and cannot generate any behavior
of the form ⟨ ,⊥⟩.

In (iii), for the context C = · ; return(b), if a permission on Y is gained by
the acquire read from X, and we start with Y ̸∈ P (and M(Y) ̸= undef), the tar-
get generates a behavior of the form ⟨Racq(X, , P, P ∪ {Y }, ,), trm(undef, ,)⟩,
whereas the source cannot perform racy read on Y .

In (iv), for the context C = · ; return(a), if we start with Y ∈ P , and this
permission is lost by the release write, the target generates a behavior of the
form ⟨ , trm(undef, ,)⟩, whereas the source cannot perform racy read on Y at
all.

Next, the following converses of the above are validated:

(i′) Y na := v ; a := Xacq ⇝ a := Xacq ; Y na := v

(iii′) b := Y na ; a := Xacq ⇝ a := Xacq ; b := Y na

(iv′) Xrel := v ; a := Y na ⇝ a := Y na ; Xrel := v

For (i′) we use the fact that acquire transitions of the target can be matched
by acquire transitions of the source annotated with Ftgt ⊆ Fsrc (since we may
have Y ∈ Fsrc but not Y ∈ Ftgt when performing the acquire), as well as
the fact that the source may invoke UB earlier than the target (in particular,
⟨Racq(),⊥⟩ ⊑ ⟨ϵ,⊥⟩). In turn, (iii′) and (iv′) demonstrate the need in allowing

66

the source to return undef when the target returns a defined value. This is
needed, for instance, if the acquire read in (iii′) gains permission on Y .

Finally, despite being a valid roach-motel reordering, the converse of (ii)
is disallowed by the current behavior refinement. It is supported by the more
refined notion in §3.3. △

Example 21. Stores cannot be introduced even if they already occur before a
release write:

Xna := v ; Y rel := 1 ⇝̸ Xna := v ; Y rel := 1 ; Xna := v

Intuitively, if a write is protected by a lock, another one should not be introduced
after the lock is released. Formally, since release writes reset the written locations
set, the target’s terminating behavior has X ∈ F , while the source ends with
F = ∅. In contrast, the transformation is validated with rlx instead of rel
above. △

Example 22 (Store-to-load forwarding across atomics). Reads can be eliminated
after writes across atomics:

Xna := v ; α ; b := Xna ⇝ Xna := v ; α ; b := v

where α ∈ {a := Y rlx, Y rlx := v′, a := Y acq, Y rel := v′}. If we start with X ̸∈
P , the source raises UB, and generates ⟨ϵ,⊥⟩, which matches any target behavior.
Otherwise, the relevant write step of the source sets M(X) = v, and M(X)
is not altered by α (in particular, it is important here that an acquire read
can only modify values of locations that gained permission). Thus, either v is
read by b := Xna, or, if α corresponds to a release write that transferred the
permission on X, the source will read undef, and we have v ⊑ undef. In any
case, the source matches every behavior of the target. △

Example 23. Reads cannot be eliminated after writes across release-acquire
pairs:

Xna := v ; Y rel := v′ ; a := Zacq ; b := Xna ⇝̸
Xna := v ; Y rel := v′ ; a := Zacq ; b := v

Intuitively, another thread may safely access X between the release and the
acquire and change its value. To see this in SEQ, consider the execution of the
target program when permission to X is lost by the release write, and regained
by the acquire read. The updated portion of the memory V , including a new
(non-deterministic) value for X, is recorded on the acquire transition in the
trace. To match the behavior of the target, the source program has to have the
same updated memory in its acquire transition, and when V (X) ̸= v, the source

67

will not be able to later read v from X. This example demonstrates the need in
updating the values in memory (for locations that gained permission) in acquire
steps. △

3.3 Advanced Behavior Refinement

As we show in §3.7, the above notion of behavioral refinement in SEQ is

adequate for reasoning about optimizations in the promising semantics. As

shown above, it is also precise enough to verify a variety of optimizations.

However, optimizations including both an atomic access and a non-atomic write

are beyond its power: although they are meant to be sound (and they are sound

in the promising semantics), the above notion invalidates them. In this section,

we discuss this issue that stems from two different reasons, and then present a

more refined notion of behavioral refinement (implied by the simple one above)

that addresses this challenge. We note that, since our result in §3.7 provides

contextual refinement, one may mix and match—prove most optimization passes

using the simple notion in §3.2, and use the one of this section for several more

involved program transformations.

Late UB A simple example of a sound optimization that is invalidated by

the above notion is the following:

a := Xrlx ; Y na := v ⇝ Y na := v ; a := Xrlx

Indeed, the reasoning in Example 20 (i) that shows why an acquire read followed

by a non-atomic write cannot be reordered applies as is in this case as well:

starting without permission on Y (Y ̸∈ P), the target program invokes UB, thus

generating the behavior ⟨ϵ,⊥⟩. The source, however, has to perform the relaxed

read before invoking UB, thus generating terminating behaviors ⟨tr src,⊥⟩ with

tr src consisting of a Rrlx label. Intuitively, however, this should not matter since

68

the source program anyway invokes UB, in which case the target’s behavior is

immaterial. Thus, we would like to allow to match any behavior ⟨tr tgt, rtgt⟩ of

the target program by any UB behavior ⟨tr src,⊥⟩ of the source. Nevertheless,

for two reasons, this solution requires extra care.

First, it essentially allows reordering of any access with an operation that

invokes UB, e.g., α ; a := 1/0 ⇝ a := 1/0 ; α. As the next example shows, in

concurrent settings this reordering must be invalidated if α contains an acquire

read.

Example 24. Consider the following optimizations:

a := Xrlx ;
if a = 1 then

a := Xacq ;
b := 1/0

else Y rlx := 1

⇝

a := Xrlx ;
if a = 1 then
b := 1/0 ;
a := Xacq

else Y rlx := 1

⇝ ...⇝

Y rlx := 1 ;
a := Xrlx ;
if a = 1 then
b := 1/0 ;
a := Xacq

First, we perform the (unsound) reordering of an acquire read with UB-invoking
operation. Then, a sequence of standard optimizations (start with b := 1/0⇝
Y rlx := 1 ; b := 1/0, then hoist Y rlx := 1 from both branches of the conditional
and reorder it with a := Xrlx) lead to the program on the right. Now, if the con-
current context consists of another thread with the code: c := Y rlx ; Xrel := c,
then UB is possible for the target, but not for the source. △

Thus, to keep invalidating the reordering of an acquire operation followed by

UB, we require that there are not any acquire accesses in the suffix of the source

trace tr src (in the source’s path towards UB) that does not match the target’s

trace tr tgt. For instance, this invalidates the transformations a := Xacq ; b := 1/0⇝

b := 1/0 ; a := Xacq and a := Xacq ; Y na := v ⇝ Y na := v ; a := Xacq: if we start

without permission on Y , the target’s behavior ⟨ϵ,⊥⟩ does not match any source

behavior.

Second, it is crucial to make sure that for executing this suffix, the source does

not make assumptions on the environment. To see this, consider the following

69

example:

a := Xrlx ; if a = 1 then b := 1/0 ;
while (...) do {...} ⇝̸

b := 1/0 ; a := Xrlx ;
while (...) do {...}

Without additional restrictions, since we allow any behavior of the target to be

matched with ⟨Rrlx(X, 1),⊥⟩ of the source, this transformation, which is clearly

unsound (even in sequential programs), will be validated by SEQ. Intuitively

speaking, what went wrong here is that the source matches the UB of the target

by reading 1 from X, whereas a concurrent environment may not provide this

option.

To address this issue, when we match the UB of the target by a suffix of

source trace that leads to UB we need to make sure that the source avoids

making assumptions on the concurrent environment. Technically, we achieve

this by assuming that read values of atomic reads, permission gains and losses,

and memory updates (V on acquire transitions) are dictated by an oracle,

which intuitively represents a possible concurrent environment. We then require

that behavioral refinement holds for any oracle (which has to satisfy certain

progress and monotonicity conditions that any environment satisfies). In par-

ticular, in the example above, the source has to match the target’s UB also

for an oracle that forces the source to read X ≠ 1, in which case the source

cannot invoke UB. In contrast, in the earlier example for the need in late UB

(a := Xrlx ; Y na := v ⇝ Y na := v ; a := Xrlx), if we start without permission

on Y , the source invokes UB for any oracle as its write is independent of the

read.

70

(beh-terminal)
vtgt ⊑ vsrc Ftgt ∪R ⊆ Fsrc Mtgt ⊑ Msrc

⟨ϵ, trm(vtgt, Ftgt,Mtgt)⟩ ⊑R ⟨ϵ, trm(vsrc, Fsrc,Msrc)⟩

(beh-rlx)
etgt ⊑ esrc ⟨tr tgt, rtgt⟩ ⊑R ⟨tr src, rsrc⟩

etgt = R
rlx(,) ∨ etgt = W

rlx(,)

⟨etgt · tr tgt, rtgt⟩ ⊑R ⟨esrc · tr src, rsrc⟩

(beh-partial)

R
acq() /∈ tr src Ftgt ∪R ⊆ Fsrc ∪

⋃
{F | Wrel(, , , , F,) ∈ tr src}

⟨ϵ, prt(Ftgt)⟩ ⊑R ⟨tr src, prt(Fsrc)⟩

(beh-failure)
R
acq() /∈ tr src

⟨tr tgt, rtgt⟩ ⊑R ⟨tr src,⊥⟩

(beh-acq-read)
⟨tr tgt, rtgt⟩ ⊑∅ ⟨tr src, rsrc⟩

Ftgt ∪R ⊆ Fsrc

⟨Racq(X, v, P, P ′, Ftgt, V) · tr tgt, rtgt⟩ ⊑R

⟨Racq(X, v, P, P ′, Fsrc, V) · tr src, rsrc⟩

(beh-rel-write)
vtgt ⊑ vsrc ⟨tr tgt, rtgt⟩ ⊑R′ ⟨tr src, rsrc⟩

R′ = (R \ Fsrc) ∪ (Ftgt \ Fsrc) ∪ {Y ∈ Locna | Vtgt(Y) ̸⊑ Vsrc(Y)}
⟨Wrel(X, vtgt, P, P

′, Ftgt, Vtgt) · tr tgt, rtgt⟩ ⊑R

⟨Wrel(X, vsrc, P, P
′, Fsrc, Vsrc) · tr src, rsrc⟩

Figure 3.2: Behavioral refinement up to a commitment set R ⊆ Locna

Writes across release Roach motel reordering of a release write followed by

a non-atomic write pose an additional challenge to sequential reasoning:

Xrel := v ; Y na := v′ ⇝ Y na := v′ ; Xrel := v

Even if we modify behavioral refinement as discussed above, some behaviors of

the target are not matched by the source. Concretely, starting with permission

on Y , the target’s label Wrel(X, v, P, P ′, Ftgt, Vtgt) must have Y ∈ Ftgt and

Vtgt(Y) = v′, whereas the source is confined by the initial state (which may have

Y ̸∈ Fsrc or Vsrc(Y) ̸= v′). Intuitively, this should not be a problem: the source is

going to write to Y after the release, and other threads can observe that write.

To solve this, we need to allow the source to generate release labels with

different written locations set and memory compared to the target’s labels,

provided that later on the source will write to the non-atomic locations that were

different. Technically, we achieve this by parameterizing behavioral refinement

with a “commitment set” R, which is a set of non-atomic locations that the

source program must write to before it terminates or executes an acquire read.

(Fulfilling commitments after an acquire read corresponds to the disallowed

71

reordering of writes after an acquire read.) Initially, the commitment set is

empty. Then, we modify (remove fulfilled commitments and add new ones)

this set with every release transition. In the end of the execution and with

every acquire transition, we verify that all commitments were fulfilled. Finally,

the non-terminating behaviors ⟨tr , prt(F)⟩ should allow the source program to

continue its execution and fulfill the outstanding commitments.

Advanced behavior refinement The above solutions are formalized as

follows. First, when checking for refinement between a source program and a

target program in SEQ, we use an oracle to represent the environment of the

thread. To pass only relevant information to the oracle, we use the following

notation for stripping transition labels (extended pointwise to traces):

|e| ≜


Racq(X, v, P, P ′, V) for e = Racq(X, v, P, P ′, F, V)

Wrel(X, v, P, P ′) for e = Wrel(X, v, P, P ′, F, V)

e otherwise

Definition 18. An oracle Ω is an LTS over stripped transition labels such that
the following hold:
• Progress: In every state w of Ω and for every X ∈ Locat, v ∈ Val, and
P ⊆ Locna, transitions choose(), Rrlx(X,), Wrlx(X, v), Racq(X, , P, ,), and
Wrel(X, v, P,) are enabled for some (valid) values of “ ”.

• Monotonicity: If w
e−→Ω w′ and e ⊑ e′, then w

e′−→Ω w′.

The progress condition allows the source to continue its execution and fulfill

its commitments after the target has terminated. Monotonicity is required to

allow the refinement of undef in the source by any defined value. We say that a

trace tr is allowed by an oracle Ω, denoted by tr ∈ Tr(Ω), if |tr | is a trace of Ω

(i.e., a sequence of symbols that Ω can execute, starting from its initial state).

Next, the notion of a behavioral refinement up to a commitment set is

formulated in Fig. 3.2. It modifies the one in Def. 16 by allowing the source to

invoke UB later than the target (in beh-failure), while tracking and checking

72

the commitment set R. Each time a release write Wrel(X, v, P, P ′, Ftgt, Vtgt) is

added to the target’s trace, we compare it to the matching one by the source

Wrel(X, v, P, P ′, Fsrc, Vsrc), and set the new commitment set R′ to consist of

the locations Y that: (i) were written to by the target but not by the source

(Y ∈ Ftgt \ Fsrc); (ii) have a value in the target memory that does not refine

the value of the source (Vtgt(Y) ̸⊑ Vsrc(Y)); or (iii) were included in the

previous commitment set and not written yet by the source (Y ∈ R \ Fsrc).

Upon termination or acquire read, in addition to Ftgt ⊆ Fsrc, we require that

all outstanding commitments were fulfilled by the source (R ⊆ Fsrc). Finally,

refinement of non-terminating behaviors beh-partial allow the source to take

more steps (but not acquire reads) for fulfilling its commitments. Since the

written locations set is reset with every release write, to see what locations the

source has written to, we add all F sets in the release operations in the source’s

trace to those in the final F set.

With the above definition, the more refined behavioral refinement notion is

stated as follows:

Definition 19. A program state σtgt weakly behaviorally refines a program state
σsrc, denoted by σtgt ⊑w σsrc, if for every oracle Ω, if ⟨σtgt, P, F,M⟩ ⇓ ⟨tr tgt, rtgt⟩
and tr tgt ∈ Tr(Ω), then ⟨σsrc, P, F,M⟩ ⇓ ⟨tr src, rsrc⟩ for some ⟨tr src, rsrc⟩ such
that ⟨tr tgt, rtgt⟩ ⊑∅ ⟨tr src, rsrc⟩ and tr src ∈ Tr(Ω).

Proposition 7. σtgt ⊑ σsrc ⇒ σtgt ⊑w σsrc.

Example 25 (Overwritten store elimination across atomics). Consider the
elimination of a write after another write to the same location across an atomic
access:

Xna := v ; α ; Xna := v′ ⇝ α ; Xna := v′

where α ∈ {b := Y rlx, Y rlx := vY , b := Y acq, Y rel := vY }. The three cases ex-
cept for α = Y rel := vY are easily validated by the simple behavioral refinement
in SEQ (here it is needed that the source may have larger F sets).

The case that α is a release write should be also considered sound,6

6Currently, it is not performed by mainstream compilers (checked for armv8-a clang 11.0.1
and x86-64 GCC 11.2).

73

since, roughly speaking, other threads that can observe Xna := v can al-
ways also observe Xna := v′ instead. (In particular, this optimization is sound
in the promising semantics.) Nevertheless, the simple refinement notion in
§3.2 invalidates this optimization (σtgt ̸⊑ σsrc): starting with permission on
X, the memory recorded in release writes in the source is confined to have
M(X) = v, while the target has the value of the initial memory. In turn,
we do have σtgt ⊑w σsrc. In particular, consider the empty context, and let
rel(P, P ′, F, u) ≜ Wrel(Y, vY , P, P

′, F,M [X 7→ u]). If we start with permission
on X and do not release it, then for r = trm(unit, {X},M [X 7→ v′]),

⟨rel({X}, {X}, {X}, v), r⟩ ⊑∅ ⟨rel({X}, {X}, ∅,M(X)), r⟩

follows from ⟨ϵ, r⟩ ⊑{X} ⟨ϵ, r⟩. If we start with permission on X and release it,
then

⟨rel({X}, ∅, {X}, v),⊥⟩ ⊑∅ ⟨rel({X}, ∅, ∅,M(X)),⊥⟩

follows from ⟨ϵ,⊥⟩ ⊑{X} ⟨ϵ,⊥⟩. If we start without permission on X, then, using
beh-failure, we have:

⟨rel(∅, ∅, {X}, v),⊥⟩ ⊑∅ ⟨ϵ,⊥⟩. △

3.4 An Overview of a Certified Optimizer

We implemented in Coq a verified optimizer that optimizes an arbitrary program

written in WHILE, a simple C-like language, that is interpreted as an interaction

trees program, for which our adequacy theorem in §3.7 is stated. The optimizer’s

correctness proof relies solely on SEQ, thus showcasing the applicability of SEQ

for compiler verification.7

The optimizer statically analyzes a given sequential program by performing a

fixpoint computation in an abstract semantics and optimizes the program based

on the static analysis. Generally speaking, the analysis result assigns predicates

on states of SEQ to each program point. Using the analysis result, the optimizer

transforms the program, for instance, a non-atomic read from X into a register

7In fact, it was carried out by a student with minimal understanding of weak memory
consistency!

74

Domain: D ∈ Loc → {◦(v), •(v),⊤}
Ordering: ∀v. ◦(v) ⊑ •(v) ⊑ ⊤
Transitions: T (X)(Xna := v,) = ◦(v)

T (X)(Y rel := , ◦(v)) = •(v)
T (X)(:= Y acq, •(v)) = ⊤
T (X)(, t) = t otherwise

Figure 3.3: Store-to-load forwarding analysis

assignment if the analysis ensures that X has certain value.

The optimization process consists of four optimization passes, store-to-load

forwarding (SLF), load-to-load forwarding (LLF), dead (overwritten) store

elimination (DSE), and loop invariant code motion (LICM), which, on the

memory trace level, are captured as follows:

SLF Xna := v ; α ; b := Xna ⇝ Xna := v ; α ; b := v

LLF a := Xna ; β ; b := Xna ⇝ a := Xna ; β ; b := a

DSE Xna := a ; γ ; Xna := b⇝ skip ; γ ; Xna := b

LICM
while (...) do { β1 ; a := Xna ; β2 }⇝

c := Xna ; while (...) do { β1 ; a := c ; β2 }

where α contains no writes to X or release-acquire pairs, β , β1 , β2 contain no

writes to X or acquire reads, and γ contains no reads from X or release-acquire

pairs.

Next, we focus on the SLF pass and describe the analysis and optimization

in detail. The other passes are described in §3.5.1. Figure 3.3 depicts the analysis

performed in the SLF pass, which forwards values written by stores to later loads,

possibly across atomic operations, but not across a release-acquire pair. At every

program point, the analysis assigns two kinds of information to each shared

variable: a memory value to forward and a flag for detecting a release-acquire

pair after the most recent write. This information is represented by the following

abstract tokens:

• X 7→ ◦(v) indicates that v was written to X by the most recent write to X

75

{X 7→ ⊤}
Xna := 42 ;
{X 7→ ◦(42)}
l := Y acq ;
if l = 0 then
{X 7→ ◦(42)}
a := Xna ; ⇝ a := 42 ;
{X 7→ ◦(42)}
Y rel := 1
{X 7→ •(42)}

{X 7→ •(42)}
b := Xna ⇝ b := 42

Two loads from X are optimized to register assignments. To illustrate
the analysis, the code is annotated with abstract tokens to X. The first
instruction Xna := 42 induces UB if there is no permission on X. Therefore,
the permission on X is guaranteed, with the memory value 42 at X (which
is represented by X 7→ ◦(42)). Since X is already permissioned, its value is
not updated by the l := Y acq, thereby maintaining the abstract state of X.
Upon a conditional, we keep analyzing each branch separately, and then join
the results. On the then branch, a := Xna will load 42 from the memory
as the abstract state indicates. For the next instruction, Y rel := 1, the
abstract state of X transitions to X 7→ •(42) as the permission on X can be
dropped by the release write, while the memory value at X is maintained.
Finally, the branch is merged and the analysis results are joined (following
the partial order on the abstract tokens). The effect of the last instruction,
b := Xna, depends on the permission on X. If there is no permission on
X, undef is read, which can be replaced by 42 by definition. In turn, the
abstract state of X tells us 42 must be loaded if there is a permission on X.
From the above analysis, we conclude that the two loads can be replaced
with register assignments.

Figure 3.4: An example optimization by SLF including the underlying analysis
in SEQ

76

and no release write has been executed after the write;

• X 7→ •(v) indicates that v was written to X by the most recent write to X

and a release operation has been executed while a release-acquire pair has not;

and

• X 7→ ⊤ indicates any other case, in particular, the case when a release-acquire

pair has been executed since the last write to X.

The analysis starts with the initial abstract state assigning ⊤ to every location

in the initial program point. Then, it updates line-by-line the abstract state

following the transition function T , which gets the current instruction and the

token to a location X and returns the next abstract token to X. Roughly speak-

ing, following the transformers in Fig. 3.3, the abstract state of X transitions

to ◦(v) for a non-atomic write Xna := v; ◦(v) transitions to •(v) for a release

write; and •(v) transitions to ⊤ for an acquire read. To show termination, we

have proved that the analysis reaches a fixpoint in at most three iterations when

analyzing a loop.

Given the analysis result at each program point, SLF transforms a read

a := Xna into a register assignment a := v if the token to X is •(v) or ◦(v)

at that program point. Intuitively, having X 7→ •(v) or X 7→ ◦(v) means that

no release-acquire pair has been executed since v was written to X, thus the

memory value of X is still v even if the thread has lost the permission to X. The

transformation is sound since the thread will read v or undef from X depending

on whether the permission to X has been lost or not. Formally, a reachable

SEQ state ⟨σ, P, F,M⟩ is related to the analysis result at the relevant program

point as follows:

∀X.


X ∈ P ∧ v ⊑ M(X) if X 7→ ◦(v)

X ∈ P ⇒ v ⊑ M(X) if X 7→ •(v)

77

Domain: D ∈ Loc → P(Reg)

Ordering: D1 ⊑ D2 ≜ ∀X. D1(X) ⊇ D2(X)
Transitions: T (X)(Xna := v, t) = ∅

T (X)(a := Xna, t) = t ∪ {a}
T (X)(:= Y acq, t) = ∅
T (X)(, t) = t otherwise

(a) Analysis for Load-to-Load Forwarding

Domain: D ∈ Loc → {◦, •,⊤}
Ordering: ◦ ⊑ • ⊑ ⊤
Transitions: TB (X)(Xna := , t) = ◦

TB (X)(:= Xna, t) = ⊤
TB (X)(Y rel := , •) = ⊤
TB (X)(:= Y acq, ◦) = •
TB (X)(, t) = t otherwise

(b) Analysis for Dead Store Elimination

Figure 3.5: Analyses for optimizer passes

Figure 3.4 describes how the analysis and optimization work for a concrete

program example.

The verification of the passes is executed by (i) establish the soundness of

each analysis; and (ii) from the soundness, derive a simulation in SEQ between

the source and target codes. The simulation relation in SEQ (given in §3.5.2)

ensures advanced behavioral refinement as defined in §3.3.8 This verification

strategy follows the standard approach of CompCert, and, importantly, the

optimizer is fully verified in Coq relying solely on sequential reasoning.

3.5 A Certified Optimizer in Detail

3.5.1 Optimizations in Detail

In this subsection, we describe analyses and transformations performed in the

optimization passes, Load-to-Load Forwarding (LLF), Dead Store Elimina-

8In fact, this is the same simulation used in the adequacy proof (see §3.7), so the optimizer
correctness argument is independent of behavioral refinement in SEQ—it goes directly from
simulation in SEQ to simulation in PSna.

78

tion (DSE), and Loop Invariant Code Motion (LICM) in detail. The analyses

for LLF and DSE are given in Fig. 3.5a and Fig. 3.5b respectively.

Load-to-Load Forwarding (LLF) forwards values read by loads to later loads,

possibly across some atomic operations, but not across acquire accesses. The

analysis assigns an abstract state, a location-wise set of registers, at every

program point. Here, X 7→ R for some R ⊆ Reg indicates that the registers in R

contain values loaded from X since the last acquire access. Note that an acuiqre

access may invalidate such information by acquiring new values for the memory

from the context. The analysis starts from the initial abstract state assigning ∅

to every location in the initial program point, and updates the abstract state

following the transition function T . In particular, the analysis adds a register a

to the abstract state of X when it meets a (non-atomic) read a := Xna; and it

empties the abstract state of any location when it meets an acquire access. Given

the analysis result at each program point, LLF transforms a read a := Xna into

a register assignment a := b if there is a register b in the register set of X at

that program point. Formally, any reachable SEQ state ⟨σ, P, F,M⟩ is related

to the analysis result at that program point as follows (where σ.rs indicates a

register file assigning a value to each register):

∀X r. X ∈ P ∧ r ∈ R ⇒ σ.rs(r) ⊑ M(X) for X 7→ R

Dead Store Elimination (DSE) removes dead stores which are overwritten

by other stores, possibly across some atomic operations, but not across release-

acquire pairs. The analysis of DSE is interesting in that unlike SLF or LLF,

it analyzes given code backward because it has to analyze if a location will

be overwritten in the future or not. Specifically, at every program point, the

analysis assigns to each share variable a flag indicating if there is a later store

before facing a release-acquire pair or a read from the corresponding location.

79

This information is represented by the following abstract tokens:

• X 7→ ◦ indicates that there is a overwriting store in the future and no acquire

read or a read from X can be executed in the middle;

• X 7→ • indicates that there is a overwriting store in the future and an acquire

read may be executed in the middle while a release write or a read from X

may not; and

• X 7→ ⊤ indicates any other case, in particular, including the case when there

is a overwriting store in the future, but a release-acquire pair or a read from

X can be executed in the middle.

The backward transition function TB , which gets the current instruction and the

token to a location X and returns the abstract token to X before the instruction,

is given in Fig. 3.5b. Roughly speaking, the abstract state of X transitions to ◦

for a non-atomic write to X; ◦ transitions to • for an acquire read; • transitions

to ⊤ for a release write; and any token transitions to ⊤ for a read from X. Given

the analysis result at each program point, DSE transformas a write Xna :=

into a skip if the token to X is ◦ or • at that program point. Formally, any

reachable SEQ state S = ⟨σ, P, F,M⟩ is related to the analysis result at that

program point as follows: for any X, (i) in any execution of S under SEQ, X is

overwritten before executing a read from X or an acquire read if X 7→ ◦; and

(ii) in any execution of S under SEQ, X is overwritten before executing a read

from X or a release-acquire pair if X 7→ •.

Loop Invariant Code Motion (LICM) is implemented in two stages: (i) intro-

ducing irrelevant loads; and (ii) forwarding the loaded values of the introduced

loads to the loads inside the loop using the LLF pass we discussed above. Since

introducing an irrelevant load is unconditionally sound in SEQ (i.e., no anal-

ysis is required), it is enough for LICM pass to decide which load needs to

be introduced. Indeed, LICM analyzes each loop body and collect the shared

80

⟨σsrc, Fsrc,Msrc⟩ ∼AP,R ⟨σtgt, Ftgt,Mtgt⟩ ≜
((σtgt ̸= ⊥) ∧
(∀ vtgt. (σtgt = return(vtgt)) ⇒

∃ vsrc. (σsrc = return(vsrc)) ∧ ((vsrc, vtgt) ∈ A) ∧ (Ftgt ∪R ⊑ Fsrc) ∧ (Mtgt ⊑ Msrc)) ∧
(∀ σ′

tgt F
′
tgt M

′
tgt. (⟨σtgt, P, Ftgt,Mtgt⟩ −→ ⟨σtgt, P, Ftgt,Mtgt⟩) ⇒

∃ σ′
src F ′

src M ′
src.(⟨σsrc, P, Fsrc,Msrc⟩ −→∗ ⟨σ′

src, P, F
′
src,M

′
src⟩) ∧ (⟨σ′

src, F
′
src,M

′
src⟩ ∼AP,R ⟨σ′

tgt, F
′
tgt,M

′
tgt⟩)) ∧

(∀ v σ′
tgt. (σtgt

choose(v)−−−−−−→ σ′
tgt) ⇒

∃ σ′
src. (σsrc

choose(v)−−−−−−→ σ′
src) ∧ (⟨σ′

src, Fsrc,Msrc⟩ ∼AP,R ⟨σ′
tgt, Ftgt,Mtgt⟩)) ∧

(∀ e P ′ σ′
tgt F

′
tgt M

′
tgt. (∀ X v σ′

tgt. (σtgt
Rrlx(X,v)−−−−−−→ σ′

tgt) ⇒

∃ σ′
src. (σsrc

Rrlx(X,v)−−−−−−→ σ′
src) ∧ (⟨σ′

src, Fsrc,Msrc⟩ ∼AP,R ⟨σ′
tgt, Ftgt,Mtgt⟩)) ∧

(∀ X vtgt σ
′
tgt. (σtgt

Wrlx(X,v)−−−−−−→ σ′
tgt) ⇒

∃ σ′
src vsrc. (σsrc

Wrlx(X,v)−−−−−−→ σ′
src) ∧ (vtgt ⊑ vsrc) ∧ (⟨σ′

src, Fsrc,Msrc⟩ ∼AP,R ⟨σ′
tgt, Ftgt,Mtgt⟩)) ∧

(∀ X v σ′
tgt. (σtgt

Racq(X,v)−−−−−−→ σ′
tgt) ⇒

∃ σ′
src. (σsrc

Racq(X,v)−−−−−−→ σ′
src) ∧ (Ftgt ∪R ⊑ Fsrc) ∧ ∀ P ′ V. ((P ⊆ P ′) ∧ (dom(V) = P ′ \ P)) ⇒

(⟨σ′
src, Fsrc, (λX.(X ∈ dom(V))?V (X) : Msrc(X))⟩ ∼AP ′,∅ ⟨σ

′
tgt, Ftgt, (λX.(X ∈ dom(V))?V (X) : Mtgt(X))⟩)) ∧

(∀ X vtgt σ
′
tgt. (σtgt

Wrel(X,vtgt)−−−−−−−→ σ′
tgt) ⇒

∃ vsrc σ′
src. (σsrc

Wrel(X,vsrc)−−−−−−−→ σ′
src) ∧ (vtgt ⊑ vsrc) ∧ ∀ P ′. (P ⊆ P ′) ⇒

∃R′. (Ftgt ∪R ⊆ Fsrc ∪R′) ∧ (∀X /∈ R′.Mtgt(X) ⊑ Msrc(X)) ∧ (⟨σ′
src, ∅,Msrc⟩ ∼AP ′,R′ ⟨σ′

tgt, ∅,Mtgt⟩)) ∧
(∀ Ω. ∃ P ′ σ′

src F ′
src M ′

src tr .

(⟨σsrc, P, Fsrc,Msrc⟩
tr−→ ⟨σ′

src, P
′, F ′

src,M
′
src⟩) ∧ (tr ∈ Tr(Ω)) ∧ (Racq() /∈ tr) ∧

((σ′
src = ⊥) ∨ (Ftgt ∪R ⊆ Fsrc ∪

⋃
{F | Wrel(, , , , F,) ∈ tr}))) ∨

(∀ Ω. ∃ P ′ F ′
src M ′

src tr .

(⟨σsrc, P, Fsrc,Msrc⟩
tr−→ ⟨⊥, P ′, F ′

src,M
′
src⟩) ∧ (tr ∈ Tr(Ω)) ∧ (Racq() /∈ tr))

σsrc ∼A σtgt ≜ ∀ M F P. ⟨σsrc, F,M⟩ ∼AP,∅ ⟨σtgt, F,M⟩

Figure 3.6: A simulation relation for SEQ

variables that can be potentially hoisted. Note that this analysis only affects the

performance of the optimized code, but not the correctness of the optimization

pass itself. Once the loads are introduced before each loop, running LLF pass

transforms the loads inside the loop into register assignments, resulting in the

code where loop invariant loads are hoisted.

3.5.2 Simulation Relation in SEQ

We define a simulation relation to establish the soundness of the optimization

passes following previous work [53, 66]. The simulation relation in SEQ is given

in Fig. 3.6. We also provide the structural rules, given in Fig. 3.7, which allow

reasoning about a part of a program and composing it with larger contexts.

81

(reflexivity)
A is reflexive

σ ∼A σ

(monotonicity)
A ⊆ A′ σsrc ∼A σtgt

σsrc ∼A′ σtgt

(return)
(vsrc, vtgt) ∈ A

return(vsrc) ∼A return(vtgt)
(bind)
σsrc ∼A σtgt ∀(vsrc, vtgt) ∈ A0. ksrc(vsrc) ∼A1 ktgt(vtgt)

(σsrc >>= ksrc) ∼A1 (σtgt >>= ktgt)

(iteration)
∀(vsrc, vtgt) ∈ A0. ksrc(vsrc) ∼A0+A1 ktgt(vtgt)

iter(ksrc)(i) ∼A1 iter(ktgt)(i)

Figure 3.7: Compatibility Lemmas

Note that the bind and iteration operators are of interaction trees, which we

use to define WHILE language. As stated in Thm. 8, the simulation relation in

SEQ implies behavioral refinement in SEQ,

Theorem 8. If σsrc ∼A σtgt for a relation A, then σtgt ⊑w σsrc.

For the optimization passes, we show that the optimized program can be

simulated by the original one (Lemma 9), and conclude the soundness (Thm. 10)

of the optimizations by Thm. 8.

Lemma 9. For f ∈ {SLF,LLF,DSE,LICM}, σ ∼A f(σ).

Theorem 10. For f ∈ {SLF,LLF,DSE,LICM}, f(σ) ⊑w σ.

3.6 Non-atomics in the Promising Semantics

We present the extension of PS2.1 with non-atomic accesses, which we denote

by PSna. At the core of this extension is an operational race detection, so UB

is invoked on write-write races and undef is read on read-write races. Unlike

in SEQ (§3.2), we allow the mixing of atomic and non-atomic accesses to the

same location (so we assume one set Loc of locations), which means that a

race may involve only one non-atomic access. As for SEQ, we only present a

simplified fragment of the full model omitting fences, RMWs, release sequences,

reservations/cancellations and system calls, which are all covered by our Coq

formalization.

82

Figure 3.8 presents the thread configuration steps and the machine steps.

Next, we discuss the new parts, highlighted in the figure. We refer the reader

to §1.2 for explanations of the atomics fragment of PSna, which is identical to

PS2.1. We add steps for normal (successful) non-atomic accesses and for racy

(both atomic and non-atomic) accesses.

Normal non-atomic accesses are handled by read and write transitions. A

non-atomic read (read) from X behaves exactly as a relaxed one: reads from

a message with timestamp t that is greater than or equal to the thread’s view

of X, and updates the view to include t. In turn, non-atomic writes (write)

require a non-trivial extension. When a thread executes a non-atomic write to

a location X, it may add multiple arbitrary messages with the bottom view

(denoted by ⊥, a view smaller than any other view) to X before adding a

message with the appropriate value (memory: na-write). In addition, some of

the messages preceding the final one may be valueless non-atomic messages of

the form u = X@t ∈ NAMsg, which we introduce for detecting races.9 Writing

multiple messages in one non-atomic write allows the splitting of non-atomic

writes which is needed in order to allow certain program transformations (see

Example 26).

Example 26. We present an example that justifies allowing non-atomic writes
to add multiple arbitrary messages to the memory. Consider the following
program where π2 is optimized as shown:

a := Xna ;
Y rlx := a

b := Y rlx ;
c := freeze(b) ;
if c = 1 then

Xna := 1 ;
print(1)

else
Xna := 2

⇝

b := Y rlx ;
c := freeze(b) ;
Xna := 2 ;
if c = 1 then
Xna := 1 ;
print(1) //reachable!

9We assume that u.view = ⊥ for u ∈ NAMsg.

83

Suppose that a non-atomic write is only allowed write a single message as
a relaxed write does. Then, after the optimization, π2 is allowed to print 1 by
entering the if-branch through following execution:

(i) π2 promises X = 2;

(ii) π1 reads undef from X, writes it back to Y ;

(iii) π2 reads undef from Y , freezes10 the read value (i.e., undef) to 1, and
prints 1 by executing the rest of the thread’s code.

However, π2 before the optimization cannot print 1 unless a non-atomic write
is allowed to add multiple messages to the memory. Indeed, once π2 promises
X = 2, it cannot enter the if-branch since the promise X = 2 cannot be fulfilled
through the write Xna := 1. (Note that if a non-atomic write can write multiple
messages, including X = 2 in this example, the promise X = 2 can be fulfilled
through the write Xna := 1.) In addition, π2 cannot promise X = 1 because it
cannot be certified. Therefore, there is no execution where π2 prints 1, which
makes this optimization unsound.

Racy accesses are naturally defined: a non-atomic access to X is racy if the

thread is unaware of some message with location X (V (X) < m.t), and an

atomic access to X is racy if the thread is unaware of some non-atomic message

with location X. Using race-helper, a thread reads undef when performing a

racy read (racy-read), and invokes UB on a racy write (racy-write).

For supporting the compiler transformation that replaces an undef by a

non-undef value, we note that the promise lowering step in PSna (lower),

which allows threads to modify their own promises, also allows to change a

non-undef value of a promise to undef. This lower operation is introduced to

explain a common compiler transformation that replaces an undef in the source

program with a non-undef value (see Example 27).

Example 27. PSna allows a thread to lower its outstanding promises by
changing the message value from v1 with v2 where v1 ⊑ v2. To see why the lower
operation is required, consider the following transformation:

10We place freeze here to prevent π2 from invoking UB due to the branching on undef. Note
that freeze returns the given value when a normal (non-undef) value is passed and returns an
arbitrary normal value when undef is passed.

84

v ∈ Val value
X,Y, Z ∈ Loc location
oR ∈ {na, rlx, acq} read access mode
oW ∈ {na, rlx, rel} write access mode

π ∈ Tid ≜ {π1, π2, ...} thread identifier

t ∈ Time ≜ {0} ∪Q+ timestamp

V ∈ View ≜ (Loc → Time) ∪ {⊥} view
m = ⟨X@t, v, V ⟩ ∈ Msg message
u = X@t ∈ NAMsg non-atomic message
M,P ⊆ Msg ∪ NAMsg memory/promise set

σ thread-local program state
T = ⟨σ, V, P ⟩ ∈ Lts thread state
⟨T ,M⟩ thread configuration
T : Tid → Lts thread state mapping
⟨T ,M⟩ machine state

(memory: new)

⟨P,M⟩ m−→ ⟨P,M ⊎ {m}⟩

(memory: fulfill)

m ∈ P

⟨P,M⟩ m−→ ⟨P \ {m},M⟩

(promise)

m ∈ Msg ∪ NAMsg

⟨⟨σ, V, P ⟩,M⟩ −→ ⟨⟨σ, V, P ⊎ {m}⟩,M ⊎ {m}⟩

(lower)

m = ⟨X@t, v, Vm⟩ ∈ P
m′ = ⟨X@t, v′, V ′

m⟩ v ⊑ v′ V ′
m ⊑ Vm

P ′ = P \ {m } ∪ {m′ } M ′ = M \ {m } ∪ {m′ }
⟨⟨σ, V, P ⟩,M⟩ −→ ⟨⟨σ, V, P ′⟩,M ′⟩

(memory: na-write)

⟨P,M⟩ m1−−→ ...
mn−−→ ⟨Pn,Mn⟩

m−→ ⟨P ′,M ′⟩ n ≥ 0
m1, ... ,mn ∈ Msg ∪ NAMsg

m1.loc = ... = mn.loc = m.loc t < m1.t, ... ,mn.t < m.t
m1.view = ... = mn.view = m.view = ⊥

⟨P,M⟩ t,m−−→na ⟨P ′,M ′⟩

(write)

σ
WoW (X,v)−−−−−→ σ′ m = ⟨X@t, v, Vm⟩ V (X) < t V ′ = V [X 7→ t]

oW = na ⇒ Vm = ⊥ ∧ ⟨P,M⟩ V (X),m−−−−−→na ⟨P ′,M ′⟩
oW = rlx ⇒ Vm = [X 7→ t] ∧ ⟨P,M⟩ m−→ ⟨P ′,M ′⟩
oW = rel ⇒ Vm = V ′ ∧ ⟨P,M⟩ m−→ ⟨P ′,M ′⟩ ∧ ∀m ∈ P |Msg

X . m.view = ⊥
⟨⟨σ, V, P ⟩,M⟩ −→ ⟨⟨σ′, V ′, P ′⟩,M ′⟩

(read)

σ
RoR (X,v)−−−−−→ σ′ m = ⟨X@t, v, Vm⟩ ∈ M V (X) ≤ t

oR ̸= acq ⇒ V ′ = V ⊔ [X 7→ t]
oR = acq ⇒ V ′ = V ⊔ [X 7→ t] ⊔ Vm

⟨⟨σ, V, P ⟩,M⟩ −→ ⟨⟨σ′, V ′, P ⟩,M⟩

(race-helper)

m ∈ M \ P
m.loc = X V (X) < m.t

o ̸= na ⇒ m ∈ NAMsg

⟨V, P,M⟩ is racy on X with o

(racy-read)

σ
RoR (X,undef)−−−−−−−−→ σ′

⟨V, P,M⟩ is racy on X with oR

⟨⟨σ, V, P ⟩,M⟩ −→ ⟨⟨σ′, V, P ⟩,M⟩

(racy-write)

σ
WoW (X,)−−−−−→ σ′

⟨V, P,M⟩ is racy on X with oW
∀m ∈ P. V (m.loc) < m.t

⟨⟨σ, V, P ⟩,M⟩ −→ ⟨⟨⊥, V, ∅⟩,M⟩

(silent)

σ −→ σ′ σ′ ̸= ⊥
⟨⟨σ, V, P ⟩,M⟩ −→
⟨⟨σ′, V, P ⟩,M⟩

(choose)

σ
choose(v)−−−−−−→ σ′

⟨⟨σ, V, P ⟩,M⟩ −→
⟨⟨σ′, V, P ⟩,M⟩

(fail)

σ
fail−−−→ ⊥

∀m ∈ P. V (m.loc) < m.t

⟨⟨σ, V, P ⟩,M⟩ −→ ⟨⟨⊥, V, ∅⟩,M⟩

(machine: normal)

⟨T (π),M⟩ −→+ ⟨T ′,M ′⟩
⟨T ′,M ′⟩ −→∗ ⟨⟨σ′′, V ′′, ∅⟩,M ′′⟩
⟨T ,M⟩ −→ ⟨T [π 7→ T ′],M ′⟩

(machine: failure)

⟨T (π),M⟩ −→+ ⟨⟨⊥, , ⟩,M ′⟩
⟨T ,M⟩ −→ ⟨⊥,M ′⟩

Figure 3.8: Transitions of PSna (differences w.r.t. the corresponding fragment of
PS2.1 are highlighted)

c := Y rlx ;
if c = 1 then
Xrlx := 1

else
Xrlx := undef

⇝

c := Y rlx ;
if c = 1 then
Xrlx := 1

else
Xrlx := undef

⇝

c := Y rlx ;
if c = 1 then
Xrlx := 1

else
Xrlx := 1

⇝
Xrlx := 1 ;
c := Y rlx

After the second transformation, which is marked in red, the thread can
promise X = 1 before executing c := Y rlx and later fulfill the promise by taking
else-branch. In contrast, without the lower operation, the thread before the
optimization cannot fulfill its promise X = 1 by taking else-branch since the
write Xrlx := undef cannot fulfill the promise X = 1. The lower operation
solves this problem by allowing the thread to first lower its promise X = 1 to
X = undef and then fulfill the promise through the write Xrlx := undef.

Machine steps A machine state, which consists of the different thread states

(T) and a main memory (M), can take a step by one of the threads taking

a sequence of steps (machine: normal), possibly invoking UB (machine:

85

failure). Normal steps (machine: normal) require “certification”: the thread

that passes control to the scheduler has to show that by running alone it can

fulfill all its promises.

Example 28. The following demonstrates how promises and the racy read step
work:

a := Xna ; //undef

Y rlx := 1

b := Y rlx ;
if b = 1 then
Xna := 1

Here, the left thread may promise Y = 1, since by running alone, it is able to
execute the read from X and fulfill its promise. Then, the right thread reads 1
from Y and writes 1 to X. (Other messages may be also added to X before the
X = 1 message.) Now, the non-atomic read from X of the left thread is racy
since there is a message of X with timestamp larger than the thread’s view of
X. Thus, the thread reads undef from X and fulfills the promise Y = 1.

Results We ported to PSna the soundness proofs of all thread-local transfor-

mations and data-race-freedom guarantees for PS2.1. In addition, we proved that

strengthening non-atomic accesses to atomic accesses is sound. Since relaxed

accesses and non-atomics are both compiled to plain machine accesses, the

soundness of mapping schemes to hardware follows from the soundness of this

strengthening and of the mapping PS2.1 to hardware as shown in [4, 1].

Behavioral refinement A behavior in PSna is defined as in Def. 2. We write

rtgt ⊑ rsrc if either rsrc = ⊥ or ∀π. rtgt(π) ⊑ rsrc(π). Behavioral refinement in

PSna is defined as follows.

Definition 20. A concurrent program state σ1
tgt∥ ... ∥σn

tgt behaviorally refines a
state σ1

src∥ ... ∥σn
src, denoted by σ1

tgt∥ ... ∥σn
tgt ⊑PSna σ

1
src∥ ... ∥σn

src, if whenever we
have ⟨λπ. ⟨σπ

tgt, Vinit, ∅⟩,Minit⟩ ⇓ rtgt, there exists rsrc such that rtgt ⊑ rsrc and
⟨λπ. ⟨σπ

src, Vinit, ∅⟩,Minit⟩ ⇓ rsrc. (Here, Vinit is the initial thread view assigning
the timestamp 0 to every location; ∅ is the initial empty set of promises; and
Minit is the initial memory consisting of an initialization message ⟨X@0, 0,⊥⟩ for
every X ∈ Loc.)

86

3.7 Adequacy of Sequential Reasoning

In this section, we state the adequacy of reasoning in SEQ w.r.t. PSna, outline

the main challenges in the proof, and discuss our approach to overcome them.

First, we define deterministic programs, which is needed below.

Definition 21. A program state σ is deterministic if for every σ0 reachable
from σ (i.e., σ −→∗ σ0), if both σ0

e1−→ σ1 and σ0
e2−→ σ2, then one of the following

holds: (i) e1 = e2 and σ1 = σ2; (ii) e1 = Ro(X, v1), e2 = Ro(X, v2), and v1 ̸= v2;
or (iii) e1 = choose(v1), e2 = choose(v2), and v1 ̸= v2.

Theorem 11 (Adequacy). If σtgt ⊑w σsrc (Def. 19) and σsrc is deterministic,
then σtgt||σ1∥ ... ∥σn ⊑PSna σsrc||σ1∥ ... ∥σn (Def. 20) for any programs σ1, ... ,σn.

To prove this theorem, we first show that σtgt ⊑w σsrc implies the existence

of a simulation relation between the source and target in SEQ (detailed in

§3.5.2). Then, we show that a simulation in SEQ implies the existence of a

simulation in PSna. For this purpose, we lift steps in SEQ to thread steps in

PSna. This raises three significant challenges. First, there is a large gap between

SEQ’s simple states and the complex states of PSna. Second, in PSna, we should

consider interference by other threads at every point, whereas in SEQ, memory

states are changed only in release/acquire steps. Third, we need to show how

promise steps of the target in PSna are simulated by the source and establish a

PSna certification execution for every step of the source.

The key idea for the first point is that even though PSna has complex states,

not all its complexity affects non-atomic steps. In fact, a memory in SEQ can

be seen as an approximation of a state in PSna capturing only the part related

to non-atomic steps. The value of a location X in SEQ correspond to the value

of the message pointed by the thread view on X in PSna, and a permission

on X in SEQ means that there is no racy message with the thread in PSna.

Since non-atomic and relaxed accesses do not change the thread view on other

87

locations, states in SEQ are not changed after non-atomic and relaxed accesses.

In turn, an acquire read in PSna may increase the thread view, which corresponds

to the modified values and gained permissions in acquire steps of SEQ.

For the second point, we need a novel insight on the promising semantics:

in a machine step, it suffices to have promise steps followed by non-promise

steps ending with a release write (or thread termination). This implies that

racy messages of other threads are added only when a release write is executed,

which corresponds to SEQ losing permissions only on a release write.

For the third point, we construct the certification steps of the source execution

from those of the target. The challenge here is the two cases where the target

thread fulfills its promise while the source cannot: (i) when there is no source

step corresponding to a write step of the target fulfilling a promise; and (ii)

when the written message by the source has a different value than the target’s.

This challenge is addressed by the commitment set of the advanced refinement,

which ensures that, in both cases, the source thread should be able to write to

the problematic locations in the future, thereby allowing the source to establish

its certification.

Mixing of atomics and non-atomics to the same location The above

proof sketch does not work well under the presence of mixing of atomic and

non-atomic accesses to the same location. This is why we assume there is no

mixing of atomics and non-atomics to the same location.

In particular, PSna allows a value of existing message that is pointed by a

thread’s view to be lowered by another thread (see Example 27). However, this

is not the case in SEQ: a memory value in SEQ is only updated by executing

acquire accesses. This gap between SEQ and PSna invalidates the proof sketch

above.

88

A possible solution to bridge this gap would be extending SEQ to allow

memory values to be lowered to undef when release accesses are executed.

Nevertheless, we chose to prohibit mixing of atomic and non-atomic accesses to

the same location for two reasons: (i) to keep SEQ as simple as possible; and (ii)

to make the proof of the adequacy theorem easier. By disallowing the mixing,

one can easily show that a thread’s view to a non-atomic location never points

to an oustainding promise of another thread, thereby lifting the above problem

of the message value being lowered by another thread.

Remark 10. Theorem 11 does not hold without the determinism premise. This
stems from a drawback of the promising semantics (rather than due to SEQ)
that we encountered while developing SEQ. Concretely, the promising semantics
(PS as well as PS2 and PS2.1) disallows the reordering of an internal non-
deterministic choice11 followed by a release write. By exposing non-deterministic
choices (via choose() labels), we invalidate these reorderings in SEQ and
obtain adequacy for deterministic programs. (Nevertheless, the reordering of
non-deterministic choices and non-atomic accesses is fully allowed by SEQ.) We
believe that Thm. 11 holds for a properly fixed version of PS without explicit
choose() events. We leave to future work to improve the promising semantics
to allow this reordering, which will allow one to remove the choose() labels
from SEQ.

The source of the problem is that release writes explicitly block promises
with non-⊥ message view to the same location (i.e., a thread transition for
a release write to a location X requires that the thread has no promise with
non-⊥ message view to X.) Consider the following program:

a := Xrlx ;
Y rlx := a

b := freeze(undef) ;
Xrel := 0 ;
if b = 1 then
c := Y rlx ;
if c = 1 then

Xrlx := 1 ;
print(1) //not reachable!

else
Xrlx := 1

⇝

Xrel := 0 ;
b := freeze(undef) ;
if b = 1 then
c := Y rlx ;
if c = 1 then

Xrlx := 1 ;
print(1) //reachable!

else
Xrlx := 1

11a representative example of such non-determinism is freeze instruction of LLVM IR [58].

89

Here, π2 is optimized by reordering the freeze instruction with the release
write to x. We observe that π2 printing 1 is observable after the optimization
while it is not before. Indeed, we note that π2 can be further optimized so that
printing 1 is observable even under a sequentially consistent execution.

First, π2 can print 1 through following execution:

(i) π2 writes 0 to X;

(ii) π2 promises X = 1 (certifying it by freezing undef to 0);

(iii) π1 reads 1 from X and writes 1 to Y ;

(iv) π2 freezes undef to 1 (unlike it did in the certification), enters the if-branch,
reads 1 from Y , fulfills X = 1, and prints 1.

However, this behavior is not observable by π2 before the optimization because
the thread cannot promise X = 1 before freezing undef due to the release write
to X that blocks the promise. Indeed, if π2 freezes undef to 1, it cannot promise
X = 1 since the promise cannot be certified (i.e., π2 cannot execute to write
X = 1 in isolation.) Otherwise, it will not have any execution printing 1 as b ̸= 1
is already determined to be false.

Therefore, PS (as well as PS2 and PS2.1) does not validate reordering of
a freeze instruction and a release write. We note that PS does not validate
reordering of non-determinism and release fences as well for the same reason.
(An example obtained by replacing the release write with a release fence in the
above example is a counterexample to such reorderings.)

3.8 Conclusion and Related Work

We developed a sequential model, SEQ, for reasoning about compiler optimiza-

tions in a rich weak memory model (concretely, PSna, an extension of PS2.1 with

non-atomic accesses), and demonstrated its applicability for compiler verification.

This provides the first formal result establishing the adequacy of sequential

reasoning for a full-fledged weak memory model without relying on catch-fire

semantics for races, accompanied by the first non-trivial certified optimization

algorithms for weak memory concurrency. While the ideas and intuitions be-

hind the sequential reasoning are general, adequacy is specifically proved for

PSna. Nevertheless, we believe that SEQ can be adapted for reasoning about

optimizations in other weak memory models.

90

Having a sequential model for compiler optimizations paves the way for

future work, which has seemed to be out of reach when dealing with complicated

concurrency models. This includes the extension of CompCert to weak memory

concurrency (in fact, our sequential model is not far from compilers’ model of

C, and the simple refinement in §3.2 may well suffice), as well as of automatic

tools like Alive2 [67] for SMT-based translation validation.

Our results have two main limitations. First, SEQ requires the memory

layouts of the source and target to be identical, which rules out certain compiler

transformations that are performed by CompCert and its extensions mentioned

below (although register promotion is supported by PSna). To the best of our

knowledge, these are the only thread-local optimizations on non-atomics that

compilers actually perform that are unsound under SEQ. Second, our refine-

ment notion is not termination preserving (which requires fairness assumptions,

possibly following [68]). Addressing these issues is left to future work.

Next, we discuss the relation to previous work.

Sequential reasoning The closest to our work is the work by Cuellar et

al. [55] (see also [56, 69]) who develop a concurrency semantics, called “concurrent

permission machine” (CPM), for CompCert that allows sequential reasoning

on program optimizations. Their model has catch-fire semantics, using locks to

avoid races. They also present a version of concurrent separation logic that can

be used to show that a given program is race-free. While our use of permissions

is inspired by these works, our results go beyond lock-based programs, and

demonstrate the applicability of sequential reasoning for a significantly more

involved model: (i) we handle C11-like atomic access and fences of different

modes (from which locks can be implemented); (ii) the model of [55, 56] treats

lock/unlock as unknown functional calls, thus forbids optimizations across locks

91

(since they are not performed by CompCert) in contrast to our model that

allows optimizations across atomics; (iii) we validate load introduction which is

unsound in CPM (in fact, we found out that distinguishing read-only and write

permissions, as done in [55, 56], does not suffice when write-read races are not

UB, and developed the idea of written locations set (F) instead); and (iv) the

target model in [55, 56] is x86-TSO, which is much simpler than the promising

model studied here. All these aspects pose significant challenges in the design of

the sequential model and its adequacy proof.

Certified compilation of concurrent programs Jiang et al. [57] presented

CASCompCert, an extension of CompCert deriving certified compilation of

concurrent programs from the correctness of sequential compilation, which, in

particular, preserves termination. The main difference from our work is that

CASCompCert targets DRF programs under sequential consistency (SC), and

assumes that racy code (e.g., for the implementation of locks) is confined in

manually written assembly assuming x86-TSO and has race-free SC abstractions.

As [55, 56], CASCompCert does not support optimizations across locked regions,

reorderings of non-atomic and atomic events, and load introduction.

Another extension of CompCert, called thread-safe CompCertX, was pre-

sented by Gu et al. [70] in the context of the certified concurrent abstraction

layers framework (CCAL). They assume SC as the underlying model, and do not

support optimizations on shared non-atomics, which are ubiquitous in concurrent

programming.

Earlier work extended CompCert to concurrency [71, 72, 73], for the case

that both the source and the target programs have x86-TSO semantics [24] using

direct TSO reasoning for the relevant optimization passes. In our terms, this

assumes that all accesses are atomic with semantics stronger than release/ac-

92

quire, rendering various optimizations on non-racy code unsound. Indeed, these

optimizations are not performed in the optimization passes of CompCertTSO.

Verification of compiler transformations Many papers study the correct-

ness of compiler optimizations under certain weak memory models. In particular,

Burckhardt et al. [47] develop a denotational approach for compiler optimiza-

tions based on the rewritings performed by the target architecture; Ševč́ık et

al. [48] investigates optimizations under a general catch-fire model using locks

and synchronization (a.k.a. volatile) accesses; and Vafeiadis et al. [20] provide an

extensive study (in Coq) of program transformations in the C/C++11 model [27].

The approach of [20] requires understanding of the C/C++11 model and reason-

ing about all possible contexts. Another important difference is that the claims

in [20] are on the trace-level (represented by execution graphs) leaving implicit

the connection to programs.

Based on [20], testing methods and tools for checking the correctness

of compiler optimizations were developed [52, 51] and applied on randomly

generated programs. Roughly speaking, these validators match (full program)

source and target executions and check that the matching adheres to the set of

allowed transformations.

Dodds et al. [63] developed a technique and a tool for verifying transforma-

tions in the fragment of C11 consisting of release/acquire atomics, non-atomics,

and SC-fences. They presented a denotational framework for establishing con-

textual refinement and provided a push-button tool (which does not support

non-atomics) using the Alloy model checker.

Program-logics-based approaches Recently, Gäher et al. [74] developed

a separation logic (based on Iris [75]) for contextual refinement in a catch-fire

93

model with SC atomics, allowing, in particular, optimizations involving both

atomics and non-atomics. Their refinement preserves termination under fairness

assumptions, and allows certain optimizations that modify the memory layout

mappings. Interestingly, they considered sequential reasoning as a limitation of

previous work, but, as we show, such reasoning does not have to identify atomic

accesses with external function calls, and is, thus, capable of reasoning about a

variety of optimizations.

Earlier work developed a rely-guarantee relational framework, which also

provides means for establishing soundness of program transformations in the

presence of assumptions about the environment [76, 77] . It assumes SC as

the underlying model, and requires rely-guarantee reasoning for encoding, e.g.,

data-race-freedom, versus sequential reasoning that ensures refinement under

any context as we present.

Compilation scheme correctness A compilation correctness proof is not

only about optimizations, and should also include the correctness of the “mapping

schemes” to different architectures. In particular, the aforementioned works,

including [55, 56, 57], include the correctness of mappings targeting the x86-TSO

architecture. Additional proofs of the correctness of mapping schemes between

more complex models appear in [38, 78]. For the promising semantics, mapping

correctness was established in Coq [4] for multiple architectures (and the proof

trivially generalizes to the extension with non-atomics) via IMM [31]. The latter

provides an intermediate model between the programming language models

and the various multicore architectures, which can be adapted to accommodate

revised models on both sides.

94

Bibliography

[1] M. Cho, S.-H. Lee, C.-K. Hur, and O. Lahav, “Modular data-race-freedom

guarantees in the promising semantics,” in PLDI, (New York, NY, USA),

pp. 867–882, ACM, 2021.

[2] M. Cho, S.-H. Lee, D. Lee, C.-K. Hur, and O. Lahav, “Sequential reason-

ing for optimizing compilers under weak memory concurrency,” in PLDI,

pp. 213–228, 2022.

[3] J. Kang, C.-K. Hur, O. Lahav, V. Vafeiadis, and D. Dreyer, “A promising

semantics for relaxed-memory concurrency,” in POPL, (New York, NY,

USA), pp. 175–189, ACM, 2017.

[4] S.-H. Lee, M. Cho, A. Podkopaev, S. Chakraborty, C.-K. Hur, O. Lahav,

and V. Vafeiadis, “Promising 2.0: Global optimizations in relaxed memory

concurrency,” in PLDI, (New York, NY, USA), pp. 362–376, ACM, 2020.

[5] “Modular Data-Race-Freedom Guarantees in the Promising Semantics.”

https://github.com/snu-sf/promising-ldrf-coq, 2022.

[6] S. Flur, K. E. Gray, C. Pulte, S. Sarkar, A. Sezgin, L. Maranget, W. Deacon,

and P. Sewell, “Modelling the ARMv8 architecture, operationally: Con-

95

https://github.com/snu-sf/promising-ldrf-coq

currency and ISA,” in POPL, (New York, NY, USA), pp. 608–621, ACM,

2016.

[7] S. V. Adve and M. D. Hill, “Weak ordering–a new definition,” in ISCA,

(New York, NY, USA), pp. 2–14, ACM, 1990.

[8] S. Chakraborty and V. Vafeiadis, “Grounding thin-air reads with event

structures,” Proc. ACM Program. Lang., vol. 3, pp. 70:1–70:28, Jan. 2019.

[9] P. A. Abdulla, M. F. Atig, B. Jonsson, and T. P. Ngo, “Optimal stateless

model checking under the release-acquire semantics,” Proc. ACM Program.

Lang., vol. 2, pp. 135:1–135:29, Oct. 2018.

[10] J.-O. Kaiser, H.-H. Dang, D. Dreyer, O. Lahav, and V. Vafeiadis, “Strong

logic for weak memory: Reasoning about release-acquire consistency in

Iris,” in ECOOP, (Dagstuhl, Germany), pp. 17:1–17:29, Schloss Dagstuhl–

Leibniz-Zentrum fuer Informatik, 2017.

[11] O. Lahav and V. Vafeiadis, “Owicki-Gries reasoning for weak memory

models,” in ICALP, (Berlin, Heidelberg), pp. 311–323, Springer, 2015.

[12] O. Lahav and R. Margalit, “Robustness against release/acquire semantics,”

in PLDI, (New York, NY, USA), pp. 126–141, ACM, 2019.

[13] O. Lahav, V. Vafeiadis, J. Kang, C.-K. Hur, and D. Dreyer, “Repairing

sequential consistency in C/C++11,” in PLDI, (New York, NY, USA),

pp. 618–632, ACM, 2017.

[14] M. Kokologiannakis, O. Lahav, K. Sagonas, and V. Vafeiadis, “Effective

stateless model checking for c/c++ concurrency,” Proc. ACM Program.

Lang., vol. 2, pp. 17:1–17:32, Dec. 2017.

96

[15] H.-H. Dang, J.-H. Jourdan, J.-O. Kaiser, and D. Dreyer, “Rustbelt meets

relaxed memory,” Proc. ACM Program. Lang., vol. 4, Dec. 2020.

[16] S. Doherty, B. Dongol, H. Wehrheim, and J. Derrick, “Verifying c11 pro-

grams operationally,” in PPoPP, (New York), pp. 355–365, ACM, 2019.

[17] A. Raad, M. Doko, L. Rožić, O. Lahav, and V. Vafeiadis, “On library correct-

ness under weak memory consistency: Specifying and verifying concurrent

libraries under declarative consistency models,” Proc. ACM Program. Lang.,

vol. 3, Jan. 2019.

[18] S. Dolan, K. Sivaramakrishnan, and A. Madhavapeddy, “Bounding data

races in space and time,” in PLDI, (New York, NY, USA), pp. 242–255,

ACM, 2018.

[19] B. Dongol, R. Jagadeesan, and J. Riely, “Modular transactions: Bounding

mixed races in space and time,” in PPoPP, (New York, NY, USA), pp. 82–

93, ACM, 2019.

[20] V. Vafeiadis, T. Balabonski, S. Chakraborty, R. Morisset, and

F. Zappa Nardelli, “Common compiler optimisations are invalid in the

C11 memory model and what we can do about it,” in POPL, (New York,

NY, USA), pp. 209–220, ACM, 2015.

[21] P. Ou and B. Demsky, “Towards understanding the costs of avoiding out-

of-thin-air results,” Proc. ACM Program. Lang., vol. 2, Oct. 2018.

[22] M. Batty, K. Memarian, K. Nienhuis, J. Pichon-Pharabod, and P. Sewell,

“The problem of programming language concurrency semantics,” in ESOP,

(Berlin, Heidelberg), pp. 283–307, Springer, 2015.

97

[23] M. Paviotti, S. Cooksey, A. Paradis, D. Wright, S. Owens, and M. Batty,

“Modular relaxed dependencies in weak memory concurrency,” in ESOP,

(Cham), pp. 599–625, Springer, 2020.

[24] S. Owens, S. Sarkar, and P. Sewell, “A better x86 memory model: x86-TSO,”

in TPHOLs, (Berlin, Heidelberg), pp. 391–407, Springer, 2009.

[25] O. Lahav, “Verification under causally consistent shared memory,” ACM

SIGLOG News, vol. 6, pp. 43–56, Apr. 2019.

[26] O. Lahav and U. Boker, “Decidable verification under a causally consistent

shared memory,” in PLDI, (New York, NY, USA), pp. 211–226, ACM,

2020.

[27] M. Batty, S. Owens, S. Sarkar, P. Sewell, and T. Weber, “Mathematizing

C++ concurrency,” in POPL, (New York, NY, USA), pp. 55–66, ACM,

2011.

[28] M. Batty, A. F. Donaldson, and J. Wickerson, “Overhauling sc atomics

in c11 and opencl,” in POPL, (New York, NY, USA), pp. 634–648, ACM,

2016.

[29] “C/C++11 mappings to processors.” http://www.cl.cam.ac.uk/~pes20/

cpp/cpp0xmappings.html, 2021.

[30] Arm, “Arm a64 instruction set architecture armv8 (ddi0596 2020-12).”

https://developer.arm.com/documentation/ddi0596/2020-12, 2020.

[31] A. Podkopaev, O. Lahav, and V. Vafeiadis, “Bridging the gap between

programming languages and hardware weak memory models,” Proc. ACM

Program. Lang., vol. 3, pp. 69:1–69:31, Jan. 2019.

98

http://www.cl.cam.ac.uk/~pes20/cpp/cpp0xmappings.html
http://www.cl.cam.ac.uk/~pes20/cpp/cpp0xmappings.html
https://developer.arm.com/documentation/ddi0596/2020-12

[32] M. Khiszinsky, “Cds c++ library.” https://github.com/khizmax/libcds,

2020.

[33] R. Jagadeesan, A. Jeffrey, and J. Riely, “Pomsets with preconditions: A

simple model of relaxed memory,” Proc. ACM Program. Lang., vol. 4, Nov.

2020.

[34] J. Manson, W. Pugh, and S. V. Adve, “The java memory model,” in POPL,

(New York, NY, USA), pp. 378–391, ACM, 2005.

[35] J. Ševč́ık and D. Aspinall, “On validity of program transformations in

the Java memory model,” in ECOOP, (Berlin, Heidelberg), pp. 27–51,

Springer-Verlag, 2008.

[36] J. Pichon-Pharabod and P. Sewell, “A concurrency semantics for relaxed

atomics that permits optimisation and avoids thin-air executions,” in POPL,

(New York, NY, USA), pp. 622–633, ACM, 2016.

[37] A. Jeffrey and J. Riely, “On thin air reads: Towards an event structures

model of relaxed memory,” Logical Methods in Computer Science, vol. 15,

no. 1, 2019.

[38] E. Moiseenko, A. Podkopaev, O. Lahav, O. Melkonian, and V. Vafeiadis,

“Reconciling Event Structures with Modern Multiprocessors,” in ECOOP,

(Dagstuhl, Germany), pp. 5:1–5:26, Schloss Dagstuhl–Leibniz-Zentrum für

Informatik, 2020.

[39] J. Bender and J. Palsberg, “A formalization of java’s concurrent access

modes,” Proc. ACM Program. Lang., vol. 3, no. OOPSLA, pp. 142:1–142:28,

2019.

99

https://github.com/khizmax/libcds

[40] O. Lahav, N. Giannarakis, and V. Vafeiadis, “Taming release-acquire con-

sistency,” in POPL, (New York, NY, USA), pp. 649–662, ACM, 2016.

[41] Y. Zhang and X. Feng, “An operational happens-before memory model,”

Front. Comput. Sci., vol. 10, pp. 54–81, Feb. 2016.

[42] D. Marino, A. Singh, T. Millstein, M. Musuvathi, and S. Narayanasamy,

“Drfx: An understandable, high performance, and flexible memory model

for concurrent languages,” ACM Trans. Program. Lang. Syst., vol. 38, Sept.

2016.

[43] M. D. Sinclair, J. Alsop, and S. V. Adve, “Chasing away rats: Semantics

and evaluation for relaxed atomics on heterogeneous systems,” in ISCA,

(New York, NY, USA), pp. 161–174, ACM, 2017.

[44] S. Burckhardt, A. Gotsman, M. Musuvathi, and H. Yang, “Concurrent li-

brary correctness on the tso memory model,” in ESOP, (Berlin, Heidelberg),

pp. 87–107, Springer, 2012.

[45] M. Batty, M. Dodds, and A. Gotsman, “Library abstraction for c/c++

concurrency,” in POPL, (New York, NY, USA), pp. 235–248, ACM, 2013.

[46] B. Dongol, R. Jagadeesan, J. Riely, and A. Armstrong, “On abstraction

and compositionality for weak-memory linearisability,” in VMCAI, (Cham),

pp. 183–204, Springer International Publishing, 2018.

[47] S. Burckhardt, M. Musuvathi, and V. Singh, “Verifying local transforma-

tions on relaxed memory models,” in CC, (Berlin, Heidelberg), pp. 104–123,

Springer, 2010.

[48] J. Ševč́ık, “Safe optimisations for shared-memory concurrent programs,” in

PLDI, (New York, NY, USA), pp. 306–316, ACM, 2011.

100

[49] S. Chakraborty and V. Vafeiadis, “Formalizing the concurrency semantics

of an llvm fragment,” in CGO, pp. 100–110, IEEE Press, 2017.

[50] J. Pichon-Pharabod and P. Sewell, “A concurrency semantics for relaxed

atomics that permits optimisation and avoids thin-air executions,” in POPL,

(New York, NY, USA), pp. 622–633, ACM, 2016.

[51] R. Morisset, P. Pawan, and F. Zappa Nardelli, “Compiler testing via a

theory of sound optimisations in the c11/c++11 memory model,” in PLDI,

(New York, NY, USA), pp. 187–196, ACM, 2013.

[52] S. Chakraborty and V. Vafeiadis, “Validating optimizations of concurrent

c/c++ programs,” in CGO, (New York, NY, USA), pp. 216–226, ACM,

2016.

[53] X. Leroy, “Formal verification of a realistic compiler,” Commun. ACM,

vol. 52, pp. 107–115, July 2009.

[54] X. Leroy, “A formally verified compiler back-end,” J. Autom. Reason.,

vol. 43, pp. 363–446, Dec. 2009.

[55] S. Cuellar, N. Giannarakis, J.-M. Madiot, W. Mansky, L. Beringer, Q. Cao,

and A. W. Appel, “Compiler correctness for concurrency: from concurrent

separation logic to shared-memory assembly language,” Tech. Rep. TR-

014-19, Department of Computer Science, Princeton University, March

2020.

[56] S. Cuellar, Concurrent Permission Machine for Modular Proofs of Optimiz-

ing Compilers with Shared Memory Concurrency. PhD thesis, Princeton

University, 2020.

101

[57] H. Jiang, H. Liang, S. Xiao, J. Zha, and X. Feng, “Towards certified separate

compilation for concurrent programs,” in PLDI, (New York, NY, USA),

pp. 111–125, ACM, 2019.

[58] J. Lee, Y. Kim, Y. Song, C.-K. Hur, S. Das, D. Majnemer, J. Regehr, and

N. P. Lopes, “Taming undefined behavior in llvm,” in PLDI, (New York,

NY, USA), pp. 633–647, ACM, 2017.

[59] K. Svendsen, J. Pichon-Pharabod, M. Doko, O. Lahav, and V. Vafeiadis, “A

separation logic for a promising semantics,” in ESOP, (Cham), pp. 357–384,

Springer International Publishing, 2018.

[60] “LLVM documentation: Atomic Instructions and Concurrency Guide.”

https://llvm.org/docs/Atomics.html, 2021.

[61] A. Jeffrey, J. Riely, M. Batty, S. Cooksey, I. Kaysin, and A. Podkopaev, “The

leaky semicolon: Compositional semantic dependencies for relaxed-memory

concurrency,” Proc. ACM Program. Lang., vol. 6, jan 2022.

[62] “Sequential Reasoning for Optimizing Compilers Under Weak Memory

Concurrency.” https://github.com/snu-sf/promising-seq-coq, 2022.

[63] M. Dodds, M. Batty, and A. Gotsman, “Compositional verification of

compiler optimisations on relaxed memory,” in ESOP, (Cham), pp. 1027–

1055, Springer International Publishing, 2018.

[64] G. Petri, J. Vitek, and S. Jagannathan, “Cooking the books: Formalizing

JMM implementation recipes,” in ECOOP, vol. 37, (Dagstuhl, Germany),

pp. 445–469, Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik, 2015.

102

https://llvm.org/docs/Atomics.html
https://github.com/snu-sf/promising-seq-coq

[65] L.-y. Xia, Y. Zakowski, P. He, C.-K. Hur, G. Malecha, B. C. Pierce, and

S. Zdancewic, “Interaction trees: Representing recursive and impure pro-

grams in coq,” Proc. ACM Program. Lang., vol. 4, Dec. 2019.

[66] G. Neis, C.-K. Hur, J.-O. Kaiser, C. McLaughlin, D. Dreyer, and

V. Vafeiadis, “Pilsner: A compositionally verified compiler for a higher-order

imperative language,” in ICFP, ACM, 2015.

[67] N. P. Lopes, J. Lee, C.-K. Hur, Z. Liu, and J. Regehr, “Alive2: Bounded

translation validation for llvm,” in PLDI, (New York, NY, USA), pp. 65–79,

ACM, 2021.

[68] O. Lahav, E. Namakonov, J. Oberhauser, A. Podkopaev, and V. Vafeiadis,

“Making weak memory models fair,” Proc. ACM Program. Lang., vol. 5, oct

2021.

[69] L. Beringer, G. Stewart, R. Dockins, and A. W. Appel, “Verified compilation

for shared-memory c,” in ESOP, (Berlin, Heidelberg), pp. 107–127, Springer,

2014.

[70] R. Gu, Z. Shao, J. Kim, X. N. Wu, J. Koenig, V. Sjöberg, H. Chen,

D. Costanzo, and T. Ramananandro, “Certified concurrent abstraction

layers,” in PLDI, (New York, NY, USA), pp. 646–661, ACM, 2018.

[71] J. Ševč́ık, V. Vafeiadis, F. Zappa Nardelli, S. Jagannathan, and P. Sewell,

“Compcerttso: A verified compiler for relaxed-memory concurrency,” J.

ACM, vol. 60, June 2013.

[72] J. Ševč́ık, V. Vafeiadis, F. Zappa Nardelli, S. Jagannathan, and P. Sewell,

“Relaxed-memory concurrency and verified compilation,” in POPL, (New

York, NY, USA), pp. 43–54, ACM, 2011.

103

[73] V. Vafeiadis and F. Zappa Nardelli, “Verifying fence elimination optimi-

sations,” in SAS, vol. 6887 of LNCS, (Berlin, Heidelberg), pp. 146–162,

Springer, 2011.

[74] L. Gäher, M. Sammler, S. Spies, R. Jung, H.-H. Dang, R. Krebbers, J. Kang,

and D. Dreyer, “Simuliris: A separation logic framework for verifying

concurrent program optimizations,” Proc. ACM Program. Lang., vol. 6, jan

2022.

[75] R. Jung, D. Swasey, F. Sieczkowski, K. Svendsen, A. Turon, L. Birkedal,

and D. Dreyer, “Iris: Monoids and invariants as an orthogonal basis for

concurrent reasoning,” in POPL, (New York, NY, USA), p. 637–650, ACM,

2015.

[76] H. Liang, X. Feng, and M. Fu, “A rely-guarantee-based simulation for

verifying concurrent program transformations,” in POPL, (New York, NY,

USA), pp. 455–468, ACM, 2012.

[77] H. Liang, X. Feng, and M. Fu, “Rely-guarantee-based simulation for compo-

sitional verification of concurrent program transformations,” ACM Trans.

Program. Lang. Syst., vol. 36, Mar. 2014.

[78] A. Podkopaev, O. Lahav, and V. Vafeiadis, “Promising Compilation to

ARMv8 POP,” in ECOOP, vol. 74, (Dagstuhl, Germany), pp. 22:1–22:28,

Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik, 2017.

104

초록

본 논문에서는 느슨한 메모리에서 동시성 프로그램을 구현하는 것을 쉽게 만드

는 방법을 제시한다. 쓰레드들이 같은 메모리에 접근하는 동시성 프로그램에서는

하드웨어와 컴파일러의 최적화 덕분에 굉장히 비직관적인(혹은, 느슨한) 행동이

일어난다. 이러한 느슨한 메모리 행동까지 전부 고려해서 프로그램을 올바르게 구

현하는 것은 굉장히 어렵다. 우리는 느슨한 메모리 행동을 거의 고려하지 않고도

쉽고 프로그램을 구현할 수 있게 만드는 두 이론을 개발했다. 먼저, 데이터 경쟁이

없는 메모리 영역에서는 느슨한 메모리 행동이 일어나지 않는다는 부분적 무경쟁

보장을(Local Data-Race-Freedom Guarantees) 엄밀히 나타내고 증명했다. 이를

통해 데이터 경쟁을 피하는 프로그래머는 느슨한 메모리를 고려하지 않고도 동시

성 프로그램을 올바르게 이해하고 작성할 수 있다. 다음으로, 동시성 프로그램을

최적화할 때 느슨한 메모리 행동과 동시성을 무시할 수 있게 해주는 이론을 개발

했다. 느슨한 메모리의 복잡성을 전혀 가지지 않으며 싱글 쓰레드만 있는 것처럼

동작하는 모델 SEQ를 개발했고, 느슨한 메모리 동시성에서 올바른 최적화를 구현

하기 위해서는 SEQ 위에서의 실행만 고려하면 된다는 것을 보였다. 이 결과들은

느슨한메모리행동을설명하는모델인약속메모리모델을(Promising Semantics)

통해 옳다는 것이 검증되었다.

주요어: 느슨한 메모리, 실행 의미, 데이터 경쟁, 컴파일러 최적화, 컴파일러 검증

학번: 2017-29003

105

감사의 글

가장 먼저 제 지도교수님, 허충길 교수님께 감사드립니다. 연구를 지도해 주실

뿐만 아니라 최고의 연구 동료이셨습니다. 날카롭고 집요하게 뿌리부터 문제를

파고드시는 모습에서 많이 배웠습니다. I would like to thank Prof. Ori Lahav.

Discussions with him have always led to novel and fruitful ideas. 프로그래밍 언

어 분야를 제게 처음 가르쳐주시기도 한 이광근 교수님께서는 제게 필요한 조언과

쓴소리를 아끼지 않으셨습니다.

모든 SF 연구실 동료들에게 감사합니다. 연구를 자유롭고 즐겁게 할 수 있는

환경에있다는것은큰행운이었습니다.함께가장많은연구를한이성환에게특별

히감사합니다.성환이가없었다면분명히본논문에포함된어떤연구도완성되지

못했을 것입니다. 대학원에 입학했을 때부터 쭉 저를 이끌어 준 송용주 형에게는

연구는 물론이고 다른 많은 것들을 배웠습니다.

날응원해준우리가족,엄마와아빠,그리고민호에게감사합니다.마지막으로

힘이 되어주는 친구들, 특히 가장 많은 시간을 함께한 최진우에게 감사합니다.

106

	1 Prologue
	1.1 Introduction
	1.2 Background: The Promising Semantics
	1.2.1 The Promising Semantics
	1.2.2 Additional Examples of the Promising Semantics

	2 Local Data-Race-Freedom Guarantees for Program Writers
	2.1 Introduction: The Need for Local DRF
	2.2 Local DRF in Weak Memory Models
	2.2.1 Local DRF w.r.t. an "In-Order" Semantics
	2.2.2 Local DRF w.r.t. RA and SC

	2.3 Local DRF Guarantees
	2.3.1 Local DRF-PF
	2.3.2 Local DRF-RA
	2.3.3 Local DRF-SC
	2.3.4 Time-wise Local DRF Guarantees

	2.4 Applying LDRF for Modular Reasoning
	2.4.1 Reasoning About Client Code
	2.4.2 Reasoning About Library Code

	2.5 Mapping PS2.1 to Hardware
	2.6 A Counterexample to Local DRF Guarantees in PS
	2.7 Conclusion and Related Work

	3 Sequential Reasoning for Compiler Writers
	3.1 Introduction: Optimizations under Weak Memory
	3.2 The Sequential Permission Machine
	3.3 Advanced Behavior Refinement
	3.4 An Overview of a Certified Optimizer
	3.5 A Certified Optimizer in Detail
	3.5.1 Optimizations in Detail
	3.5.2 Simulation Relation in SEQ

	3.6 Non-atomics in the Promising Semantics
	3.7 Adequacy of Sequential Reasoning
	3.8 Conclusion and Related Work

	Bibliography
	초록

<startpage>7
1 Prologue 1
 1.1 Introduction 1
 1.2 Background: The Promising Semantics 2
 1.2.1 The Promising Semantics 2
 1.2.2 Additional Examples of the Promising Semantics 9
2 Local Data-Race-Freedom Guarantees for Program Writers 3
 2.1 Introduction: The Need for Local DRF 3
 2.2 Local DRF in Weak Memory Models 16
 2.2.1 Local DRF w.r.t. an "In-Order" Semantics 16
 2.2.2 Local DRF w.r.t. RA and SC 22
 2.3 Local DRF Guarantees 26
 2.3.1 Local DRF-PF 26
 2.3.2 Local DRF-RA 29
 2.3.3 Local DRF-SC 32
 2.3.4 Time-wise Local DRF Guarantees 33
 2.4 Applying LDRF for Modular Reasoning 36
 2.4.1 Reasoning About Client Code 37
 2.4.2 Reasoning About Library Code 40
 2.5 Mapping PS2.1 to Hardware 41
 2.6 A Counterexample to Local DRF Guarantees in PS 46
 2.7 Conclusion and Related Work 47
3 Sequential Reasoning for Compiler Writers 51
 3.1 Introduction: Optimizations under Weak Memory 51
 3.2 The Sequential Permission Machine 56
 3.3 Advanced Behavior Refinement 68
 3.4 An Overview of a Certified Optimizer 74
 3.5 A Certified Optimizer in Detail 78
 3.5.1 Optimizations in Detail 78
 3.5.2 Simulation Relation in SEQ 81
 3.6 Non-atomics in the Promising Semantics 82
 3.7 Adequacy of Sequential Reasoning 87
 3.8 Conclusion and Related Work 90
Bibliography 95
초록 105
</body>

