

저 시-비 리- 경 지 2.0 한민

는 아래 조건 르는 경 에 한하여 게

l 저 물 복제, 포, 전송, 전시, 공연 송할 수 습니다.

다 과 같 조건 라야 합니다:

l 하는, 저 물 나 포 경 , 저 물에 적 된 허락조건
 명확하게 나타내어야 합니다.

l 저 터 허가를 면 러한 조건들 적 되지 않습니다.

저 에 른 리는 내 에 하여 향 지 않습니다.

것 허락규약(Legal Code) 해하 쉽게 약한 것 니다.

Disclaimer

저 시. 하는 원저 를 시하여야 합니다.

비 리. 하는 저 물 리 목적 할 수 없습니다.

경 지. 하는 저 물 개 , 형 또는 가공할 수 없습니다.

http://creativecommons.org/licenses/by-nc-nd/2.0/kr/legalcode
http://creativecommons.org/licenses/by-nc-nd/2.0/kr/

공학박사학위논문

인공지능하드웨어플랫폼에서의딥러닝
어플리케이션을위한소프트웨어최적화

기법

Software Optimization Techniques for Deep Learning
Applications on AI Hardware Platforms

2023년 8월

서울대학교대학원

컴퓨터공학부

김 장 률

인공지능하드웨어플랫폼에서의딥러닝

어플리케이션을위한소프트웨어최적화

기법

Software Optimization Techniques for Deep Learning
Applications on AI Hardware Platforms

지도교수하순회

이논문을공학박사학위논문으로제출함

2023년 5월

서울대학교대학원

컴퓨터공학부

김 장 률

김장률의공학박사학위논문을인준함

2023년 6월

위 원 장 유승주 (인)

부위원장 하순회 (인)

위 원 Bernhard Egger (인)

위 원 이영기 (인)

위 원 양회석 (인)

Abstract

Software Optimization Techniques for
Deep Learning Applications on AI

Hardware Platforms

Jangryul Kim

Department of Computer Science and Engineering

College of Engineering

The Graduate School

Seoul National University

To meet the growing demand for deep learning applications in embedded systems, new

embedded devices tend to include multiple heterogeneous processors, including a GPU

and a deep learning hardware accelerator called a neural processing unit (NPU). In addi-

tion, a software development kit (SDK) is provided for fast and efficient development of

deep learning applications. The deep learning SDK includes optimizer that delivers low

latency and high throughput for deep learning inference applications.

Even the deep learning SDK optimize the inference internally, the SDK assumes

that inference is performed on a single processing element, either the GPU or the NPU,

but not both. However, running inference on a single processing element does not fully

utilize the system. Since the system consists of heterogeneous processors, it is necessary

to use these processors simultaneously to run efficiently.

In other words, it is necessary to optimize deep learning applications at the system-

level. In this context, we approach the problem from three main topics: optimization of

a single deep learning application, optimization of multiple deep learning applications

under real-time constraints, and support for deep learning applications in model-based

i

embedded software design methodology. In this work, we target the NVIDIA Jetson em-

bedded platform with heterogeneous processors, including NPUs, and TensorRT which

is a leading deep learning SDK for fast inference.

First, we devise systematic optimization techniques and methodology to increase

the throughput of a single deep learning application. We present parallelization tech-

niques for a deep learning application: multi-threading, pipelining, buffer allocation, and

network duplication. We also present a framework that supports various optimization

parameters to accelerate a deep learning application. The optimization techniques are pa-

rameterized and can be applied to a deep learning application by merely adjusting param-

eters in a configuration file, which is an input to the framework. Since the design space of

optimizing parameters is huge, we develop a parameter optimization methodology con-

sisting of a heuristic for balancing pipeline stages among heterogeneous processors and

a fine-tuning process for optimizing parameters. This is the first work to partition a deep

learning inference which is developed with the TensorRT and improve throughput on

the heterogeneous processor system including NPUs. With nine real-life benchmarks, we

could achieve 101% ∼ 680% performance improvement and up to 55% energy reduction

over the baseline inference using GPU only.

Second, it is becoming popular to run multiple deep learning applications simul-

taneously to provide various functionalities. In addition, deep learning applications can

have real-time constraints that vary at runtime. While extensive studies have been con-

ducted recently to find an efficient mapping of multiple deep learning applications on

different hardware platforms, they do not consider the constraints imposed by the NPU

and its SDK in a real embedded platform. In this work, we propose a novel energy-aware

mapping methodology of multiple deep learning applications on a real embedded system

with multiple heterogeneous processors. The objective is to minimize energy consump-

tion while satisfying the real-time constraints of all applications. In the proposed scheme,

we first select Pareto-optimal mapping solutions for each application. Then, the mapping

ii

combination is explored considering the scenario that shows the dynamics of the appli-

cations while satisfying the constraints. We also reduce energy consumption by tuning

the frequency of the processors. This is the first work to consider the concurrent execu-

tion of multiple deep learning applications which are developed with the TensorRT on a

real hardware platform. We could satisfy up to 40% higher deadline constraints and re-

duce energy consumption by 22% ∼ 31% compared to the static mapping methods with

real-life applications and different scenarios on a real platform.

Finally, as deep learning applications become more prevalent in embedded sys-

tems, how to support deep learning applications in model-based embedded software de-

sign methodologies becomes a challenging problem. One solution so far is to represent

each deep learning application with a model. However, it requires considerable effort

to translate the specifications and achieve good performance by applying optimization

techniques to deep learning applications. In this work, we propose a novel methodol-

ogy that takes advantage of using a deep learning SDK for performance optimization.

In the proposed method, we first obtain the Pareto-optimal mapping solutions of deep

learning applications using the SDK associated with the hardware platform. Then, we

jointly perform the mapping of dataflow tasks and the selection of mapping solutions for

deep learning applications using a genetic algorithm and a heuristic. Experiments with

a real-life example and randomly generated graphs show that we could reduce at least

5% of the maximum utilization compared to our previous work that maps deep learning

applications and dataflow applications sequentially.

Keywords : Mapping and Scheduling, Design Space Exploration, Deep Learning Ap-

plications, Software Optimization, Heterogeneous Processor Systems

Student Number : 2017-22440

iii

Contents

Abstract . i

Contents . iv

List of Figures . viii

List of Tables . xi

List of Algorithms . xiii

Chapter 1 Introduction . 1

1.1 Motivation . 1

1.2 Contribution . 7

1.3 Dissertation Organization . 9

Chapter 2 Background . 10

2.1 NVIDIA Jetson AGX Xavier . 10

2.2 NVIDIA TensorRT . 11

2.3 Genetic Algorithm . 12

2.4 Compositional Performance Analysis 13

2.5 Model-based Design Methodology . 14

Chapter 3 Optimization of a Single Deep Learning Application 16

3.1 Overview . 16

3.2 Related Work . 16

iv

3.2.1 Deep learning Frameworks . 17

3.2.2 Optimization For a Single Deep Learning Application 17

3.3 Parallelization Techniques . 19

3.3.1 Pre/Post-Processing Pipelining and Parallelization 19

3.3.2 Intra-PE Parallelization . 20

3.3.3 Intra-network Pipelining . 21

3.3.4 Partial Network Duplication . 22

3.3.5 Other Optimization Methods . 22

3.4 JEDI Framework . 23

3.4.1 Configuration Parameters . 25

3.4.2 Application Development . 27

3.5 Design Space Exploration . 29

3.5.1 Pipeline Cut-point Explorer . 31

3.5.2 Parameter Fine-tuner . 37

3.6 Experiments . 38

3.6.1 Set-Up . 38

3.6.2 Design Space Exploration Results 40

3.6.3 Parameter Fine-tuning Results 42

3.6.4 Comparison with Other Methods 43

3.6.5 Experiments with Varying Configurations 48

3.6.6 Analysis and Discussion . 51

Chapter 4 Optimization of Multiple Deep Learning Applications under

Real-time Constraints . 55

4.1 Overview . 55

4.2 Related Work . 55

4.2.1 Mapping and Scheduling Multiple Applications 56

4.2.2 Running Multiple Deep Learning Applications 58

v

4.3 System Model . 60

4.3.1 Motivational Example . 60

4.3.2 Notation . 61

4.3.3 Problem Formulation . 64

4.4 Proposed Optimization Methodology . 65

4.4.1 Step 1: Finding Pareto-optimal Mapping Solutions for Each Ap-

plication . 65

4.4.2 Step 2: Exploring the Mapping Combination 68

4.4.3 Step 3: Tuning Frequencies for Varying Deadline Constraints . . . 76

4.5 Experiments . 76

4.5.1 Set-Up . 76

4.5.2 Finding Pareto-optimal Mappings of Each Application 77

4.5.3 Exploring Mapping Combination and Tuning Frequencies 78

4.5.4 Real Deployment . 86

Chapter 5 Supporting Deep Learning Applications in a Model-based Design

Methodology . 88

5.1 Overview . 88

5.2 Related work . 88

5.2.1 Mapping of Multiple Dataflow Applications 89

5.2.2 Mapping of Multiple Deep Learning Applications 90

5.2.3 Integrating Deep Learning Applications into the Model-based

Design . 90

5.3 System Model . 91

5.3.1 Motivational Example . 91

5.3.2 Notation and Problem Definition 92

5.4 Proposed Methodology . 94

vi

5.4.1 Step 1: Finding the Pareto-optimal Mapping Solutions of Each

Deep Learning Application . 95

5.4.2 Step 2: Mapping Exploration . 98

5.5 Experiments . 105

5.5.1 Comparison with a Previous Work 105

5.5.2 Set-up . 106

5.5.3 Experimental Results: Motivational Example 106

5.5.4 Experimental Results: Randomly Generated Dataflow Graphs . . 108

Chapter 6 Conclusion and Future work . 111

Bibliography . 114

요약 . 123

vii

List of Figures

Figure 1.1 Three topics for system-level optimization on AI hardware platforms 2

Figure 2.1 The example composition of kernels 11

Figure 2.2 The workflow of generating execution context in TensorRT 11

Figure 2.3 An example schedule of deep learning inference 12

Figure 2.4 Schematic diagram of compositional performance analysis 13

Figure 2.5 Overall flow of the model-based embedded software design 15

Figure 3.1 Four parallelization techniques 19

Figure 3.2 Schedule diagrams of inference steps with pre/post-processing

pipelining . 19

Figure 3.3 Schedule diagrams of inference body parallelization 21

Figure 3.4 Workflow of the proposed inference framework 24

Figure 3.5 An example segment of JEDI configuration file 25

Figure 3.6 The proposed optimization process with three design space explo-

ration modules . 29

Figure 3.7 Illustration of the proposed heuristic with an example 33

Figure 3.8 FPS comparison among options on FP16 and INT8 precision . . . 40

Figure 3.9 FPS, energy comparison, and CPU/GPU utilization among four

methods with FP16 precision . 44

Figure 3.10 FPS, energy comparison, and CPU/GPU utilization among four

methods with INT8 precision . 45

Figure 3.11 Comparison with interleaved execution on different processors . . 46

Figure 3.12 Gantt charts for different mappings of the Yolov4 network 52

viii

Figure 3.13 Gantt chart based on estimated layer-wise execution time for a

found mapping by the proposed method 53

Figure 4.1 Motivational example: patrol robot 60

Figure 4.2 Pipelining of the DL application 62

Figure 4.3 Overall flow of the proposed mapping methodology 65

Figure 4.4 The overview of step 1 . 66

Figure 4.5 The overview of step 2 . 68

Figure 4.6 Fitness ratio as the FPS constraint varies for FSM-A 84

Figure 4.7 Average fitness ratio over the FPS constraint variation for all

benchmarks . 84

Figure 4.8 The run time management following scenarios 85

Figure 4.9 Average energy ratio over the FPS constraint variation, measured

after real deployment . 86

Figure 5.1 A motivational example . 92

Figure 5.2 Task/Sub-task definition on the deep learning application specified

by SDK . 93

Figure 5.3 Overall flow of the model-based embedded software design and

the proposed extension . 96

Figure 5.4 Chromosome structures: (a) for step1, (b) for Heuristic+GA

method in step2, and (c) for Entire-GA method in step2. 98

Figure 5.5 Procedure of the proposed mapping exploration technique 99

Figure 5.6 Comparison of three methods for the motivational example:

Heuristic+GA, Entire-GA, and Baseline 106

Figure 5.7 Comparison of three methods with four randomly generated

dataflow applications. 108

Figure 5.8 Comparison of three methods with eight randomly generated

dataflow applications. 108

ix

Figure 5.9 Comparison of three methods with sixteen randomly generated

dataflow applications. 109

x

List of Tables

Table 3.1 Main virtual methods for user-implemented deep learning appli-

cations in JEDI . 28

Table 3.2 Options for mapping on the target platform 29

Table 3.3 The labels and the number of layers of benchmark applications. . . 39

Table 3.4 The search time and range of the network pipelining heuristic . . . 41

Table 3.5 Fine-tuned configurations of the selected cut-points from our

methodology . 42

Table 3.6 FPS comparison of using the solution obtained by the profile-

based method as the initial solution 47

Table 3.7 Comparison of exploration methods 48

Table 3.8 Comparison of the best result of reused cut-points from 416x416

and the re-explored cut-points with our fast heuristic search 49

Table 3.9 Comparison of the best result of reused cut-points from batch 1

and the re-explored cut-points with our fast heuristic search 50

Table 3.10 Inference time comparison between baseline method and the

found mapping by the proposed method 51

Table 3.11 Inference time comparison between baseline and the found map-

ping by the proposed method . 52

Table 4.1 Comparison with the related works of running multiple deep learn-

ing applications . 58

Table 4.2 Notations for system model and problem definition 62

Table 4.3 Options for intra-network pipelining 66

xi

Table 4.4 The benchmark networks and the volume of design space for step

1 to find the Pareto-optimal mappings. 78

Table 4.5 Information on three different system behaviors: which applica-

tions are performed in each state 78

Table 4.6 Cases for a combination of applications in FSMs 80

Table 4.7 The frequency range used in the exploration 80

Table 4.8 Comparison of the maximum achievable FPS among methods . . . 81

Table 4.9 Mapping and frequency tuning result for FSM-A from the pro-

posed method . 81

Table 4.10 Throughput constraint (FPS) variation 83

Table 4.11 Average fitness evaluation time and end-to-end execution time

during 50 generations in GA . 85

Table 5.1 Notations used in a system model 95

Table 5.2 Mapping options for pipelining of a DL application 96

Table 5.3 Benchmark networks and the number of mapping candidates ob-

tained by step 1 . 105

Table 5.4 Mappable processors of tasks in dataflow applications 105

xii

List of Algorithms

Algorithm 1 Pseudo code for genetic algorithm 12

Algorithm 2 Pseudo code for global search heuristic 32

Algorithm 3 Pseudo for local search heuristic 35

Algorithm 4 Pseudo code for chromosome evaluation 69

Algorithm 5 Pseudo code for mapping stages to PE 70

Algorithm 6 Pseudo code for frequencies decision 71

Algorithm 7 Pseudo code of mapping heuristic for dataflow tasks 102

xiii

Chapter 1

Introduction

1.1 Motivation

As deep learning inference applications are increasing in embedded devices, an em-

bedded device tends to equip hardware accelerators in addition to a multi-core CPU and

a GPU. To run a trained network on an embedded device, we usually use the software

development kit (SDK) provided with the device. The deep learning SDK includes opti-

mizer that delivers low latency and high throughput for deep learning inference applica-

tions. Even the deep learning SDK optimize the inference internally, the SDK assumes

that inference is performed on a single processing element, either the GPU or the NPU,

but not both.

Extensive research have been conducted to accelerate deep learning applications via

software optimization on a given hardware platform [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11,

12, 13]. Some research have focused on approximate computing such as low precision

computation, low-rank approximation, and filter pruning [1, 2], and some others have

focused on the exploitation of various levels of parallelism that a deep learning inference

network has: data-level parallelism of a convolution layer, task-level parallelism, and

pipelining [3, 4, 5, 6, 7, 11]. Also, some studies have extended the problem to multiple

networks from a single network while taking real-time constraints into account [8, 9, 10,

12, 13]. We call the last two approaches system-level optimization in this paper.

1

DL App

Figure 1.1: Three topics for system-level optimization on AI hardware platforms

In this dissertation, we introduce the system-level optimization methodology on AI

hardware platforms that include heterogeneous processors with neural processing units

(NPUs) as described in Fig. 1.1. We present the optimization methodology for not only

(1) a single deep learning inference but also (2) multiple deep learning applications. Fur-

thermore, we also consider the case where (3) the formal model-based applications and

deep learning applications are performed on the AI hardware platform. In this work, we

target the NVIDIA Jetson embedded platform, including not only CPU and GPU but also

NPUs, and TensorRT which is a leading deep learning SDK for fast inference.

For a single deep learning inference, we present a parallelization techniques that use

both GPU and NPUs to maximize the throughput. Multiple threads are used to parallelize

pre-/post-processing steps of inference, which is denoted as Pre. and Post. in Fig. 1.1.

Also, accelerators are fully exploited by using multiple streams and pipeline fashion. In

addition, we duplicate a part of the network and maps them onto different NPUs while

sharing the GPU for the remaining part.

Since applying the techniques manually is a non-trivial job, we present a TensorRT-

based framework, called Jetson-aware Embedded Deep learning Inference acceleration

(JEDI) framework that enables a user to apply various acceleration techniques easily to

run a deep learning application by setting a configuration file. We represent techniques as

parameters to accelerate a deep learning inference including multi-threading, pipelining,

2

and network duplication.

Since the design space of allocating layers to diverse processing elements and opti-

mizing other parameters is huge, we devise a parameter optimization methodology that

consists of a heuristic for balancing pipeline stages among heterogeneous processors and

fine-tuning process for optimizing parameters. With nine real-life benchmarks, we could

confirm the throughput improvement and energy reduction over the baseline inference

using GPU only.

As for multiple deep learning applications, extensive studies have been conducted

recently to find an efficient mapping of applications on various hardware platforms [8,

10, 12, 13]. However, they do not consider the constraints imposed by the NPU and the

associated software development kit in a real embedded platform. Therefore, we reveal

the challenges when considering the NPU and its SDK, and propose a novel energy-aware

mapping methodology of multiple deep learning applications.

There are four major challenges. First, deep learning applications usually have real-

time constraints in terms of latency, and the real-time constraints may vary at run time.

For instance, as the self-driving car speed increases, the latency constraint for the object

detection will be tightened. Second, the set of concurrently running applications may

vary. If the car is moving forward, we may want to suspend the object detection from the

backside.

The third challenge is to estimate the performance of each mapping candidate. In

most previous works, it is assumed that the worst-case execution time (WCET) of each

layer in a deep learning application is known, and the performance of mapping can be

estimated analytically. But layer-wise profiling is often not appropriate in real systems.

For example, a deep learning accelerator (DLA), which is an NPU, in the NVIDIA Jetson

platform does not support the layer-wise profiling. Also, TensorRT internally optimizes

the inference by applying the techniques and changes structure of kernels depending on

the mapping. This makes the problem difficult because the profiled per-layer execution

3

time may not be available in the analysis and mapping exploration.

The fourth challenge comes from the restrictions imposed by the device and its

SDK. TensorRT optimizes the network, saves it as an engine, and loads the engine to the

assigned processor. Since the loading takes a long, a few seconds, it may not be done at

run time without deadline violation. It means that dynamic task migration is not allowed.

And the maximum number of DLA-mapped parts is limited. In addition, since there are

only two levels of priority in GPU and no priority level in DLA, the priority assignment is

usually not used for GPU and DLAs. Note that the traditional fixed priority-based worst-

case response time (WCRT) analysis may incur over-estimated results in case many tasks

have the same priority. Hence the mapping techniques based on the assumption that tasks

are assigned different priorities are not suitable to our problem.

To tackle these challenges, we propose a novel scenario-based mapping methodol-

ogy to map multiple deep learning applications onto heterogeneous processors. As de-

scribed in Fig. 1.1, we find mapping and frequency for multiple deep learning applica-

tions. The objective is to minimize energy consumption while satisfying the real-time

constraints of all applications. In the proposed scheme, we first select Pareto-optimal

mapping solutions for each application. Then mapping combination is explored, con-

sidering the scenario that indicates the dynamism of applications while satisfying the

constraints. Also, we reduce energy consumption by tuning the frequency of processors.

Experimental results confirm the goodness of the proposed methodology for various real-

life applications and scenarios on a real platform.

Finally, we also extend the model-based design methodology to support deep learn-

ing applications and applications, which are specified by a decidable dataflow model [14],

together. For a decidable dataflow, we can determine the mapping and scheduling of tasks

at compile time and detect some critical errors in the specification, such as buffer overflow

and deadlock [15, 16]. A decidable dataflow model is widely used for the model-based

design (MBD) of embedded software on a hardware platform that consists of multiple

4

processing elements thanks to its properties.

In this regard, how to support deep learning applications in the model-based design

methodology has emerged as a challenging problem since the deep learning applica-

tions are getting popular in embedded systems. Even though the layer structure of a deep

learning application looks similar to a dataflow graph, it is challenging to specify it with

a dataflow model. To tackle this problem, previous studies [17, 11] have proposed to

specify deep learning networks with a specific dataflow model in order to treat them with

other applications in the model-based design framework. The former work [17] extends

a dataflow model to specify loop structures explicitly, while the latter [11] transforms

a deep learning network into a cyclo-static dataflow (CSDF) graph [16]. However, this

approach has the following drawbacks. First, it requires a lot of effort to specify a deep

learning application with a dataflow model. The number of data samples produced or

consumed per task execution needs to be explicitly specified, and the internal behavior

of tasks may need to be redefined. Second, the number of tasks grows significantly to

make the design space exploration (DSE) step more difficult as a deep learning network

usually consists of numerous layers. Third, the previous studies usually target CPU-GPU

heterogeneous processor systems without including a neural processing unit. Since recent

hardware platforms tend to include an NPU for accelerating deep learning applications, it

is necessary to consider NPUs in the design methodology. Last but not least, it is not pos-

sible to apply the optimization techniques that are provided by the deep learning SDK.

As a result, the synthesized deep learning application from the MBD framework is likely

to perform poorly compared with the conventional deep learning application that runs

with the deep learning SDK.

Therefore, we propose a novel methodology that leverages the benefits of using deep

learning SDK for performance optimization. Through the proposed methodology, we ex-

plore mapping of both dataflow applications and deep learning applications as shown in

Fig. 1.1. First, we find the Pareto-optimal mapping candidates for each deep learning

5

application onto available processing elements with multiple objectives, such as latency,

utilization of each processing element, and so on. We explore the design space of par-

titioning and mapping of a deep learning application for pipelined execution, similar to

the first phase of our work for multiple deep learning applications. Next, we explore the

mapping candidates of deep learning networks and the mappings of model-based tasks

simultaneously. Lastly, we synthesis the interface code between dataflow applications

and deep learning applications automatically by the use of well-established model-based

design framework, HOPES+ [18]. The viability and efficiency of the proposed scheme

are verified with a real-life example and randomly generated graphs.

6

1.2 Contribution

The contributions of this dissertation can be summarized as follows:

• We introduce the techniques to increase the throughput of a single deep learning

application, a framework that supports techniques, and the optimization methodol-

ogy.

– We present a parallelization methods that use both GPU and NPUs to max-

imize the throughput of a single deep learning application: multi-threading,

pipelining, and network duplication.

– To easily accelerate a deep learning application, we develop a JEDI frame-

work. The JEDI framework gets the various optimization parameters as a

input, and it accelerates the deep learning application on top of a deep learn-

ing SDK. Thus a user can optimize a deep learning application easily without

the burden of implementing various acceleration techniques manually. JEDI

is publicly released to demonstrate our contributions.

– The parameter optimization methodology is devised to effectively explore a

huge design of space defined by various optimization parameters.

– The viability of the proposed design environment is evaluated with nine real-

life benchmark applications on a real platform.

• We present the problems posed by NPU and its SDK for the mapping exploration

of multiple deep learning applications and propose a methodology to address them.

– We reveal the technical challenges involved in multiple deep learning appli-

cations on a real embedded device that consists of heterogeneous processors,

including NPU.

– We propose a novel methodology for mapping multiple deep learning ap-

plications onto heterogeneous processors, tackling the technical challenges.

7

While previous studies assume that the execution time of a layer on each

PE is known before a mapping decision is made, such per-layer profiling is

not possible for NPUs. And there are several implications imposed by the

SDK that need to be considered in making a mapping decision. The proposed

methodology considers such limitations imposed by NPU and its SDK.

– While the mapping decision is made statically, we adjust the frequency of

processors dynamically to minimize energy consumption while satisfying the

real-time constraints of all deep learning applications.

– The experiments are carried out on the real platform to show the efficacy of

the proposed approach.

• We extend the model-based design methodology to support deep learning applica-

tions.

– We propose a novel technique to support deep learning applications in a

model-based design methodology without translating deep learning applica-

tions to dataflow models, leveraging the optimization capability of a deep

learning SDK.

– Differently from our previous work that maps the deep learning applications

and dataflow applications sequentially, we propose a mapping technique to

consider them together, using an evolutionary algorithm.

– The proposed methodology supports heterogeneous processor systems that

include an NPU, considering the characteristics and limitations of the hard-

ware platform and the associated SDK.

– Experiments with a real-life example and randomly generated graphs show

that we could reduce at least 5% of the maximum utilization compared to our

previous work that maps deep learning applications and dataflow applications

sequentially.

8

1.3 Dissertation Organization

The rest of the dissertation is organized as follows: Chapter 2 explains the back-

ground for main topics. Then, in Chapter 3, the techniques, framework, and optimization

method for a single deep learning application is introduced. The methodology for multi-

ple deep learning applications is presented in Chapter 4. Chapter 5 contains our extension

to support deep learning applications in a model-based design methodology. Lastly, we

summarize the proposed methodologies and discuss future works in Chapter 6.

9

Chapter 2

Background

In this chapter we explain the background of the studies described in the following

chapters. First, we explain the NVIDIA Jetson platform used in this thesis and TensorRT

running on it. Next, we briefly describe genetic algorithms, the design space exploration

method used in this research. Next, we introduce compositional performance analysis

(CPA), one of the worst-case response time analysis methods used in this study. Finally,

we explain the formal model-based embedded software design methodology.

2.1 NVIDIA Jetson AGX Xavier

The NVIDIA Jetson AGX Xavier (Xavier) equips three types of processors: an octa-

core ARMv8 CPU, a single Volta GPU, and two NVIDIA DLAs. The DLA shows a

power efficiency, but it is slower than GPU, and it does not support all types of layers. For

example, some layers, such as Yolo layer, cannot be executed on DLA. Also, per-kernel

profiling is not supported for DLA. The unit of profiling for DLA is a pipeline stage,

which will be explained in the following section. The board has a unified and shared

DRAM for CPU and GPU. It means that on-chip communication between CPU and GPU

is carried out by DRAM memory access. However, there is an overhead in a DLA to

load the data from DRAM to internal memory for the inference. It requires adding extra

kernels to be executed for communication. For example, Fig. 2.1 (a) indicates the kernel

10

(a) When all layers are mapped to the GPU

(b) When layers #13-#18 are mapped to a DLA, and others are mapped to the
GPU

Figure 2.1: The example composition of kernels

Figure 2.2: The workflow of generating execution context in TensorRT

composition when running Yolov2 network on the GPU. Fig. 2.1 (b) shows the kernel

composition when layers #13 to #18 are mapped to a DLA, and the rest are mapped

to GPU. The colored reformatter kernel (input/output reform.) is added at the interface

between the GPU and the DLA, as displayed in Fig. 2.1 (b). Since the overhead of the

added kernel depends on the mapping, it needs to be considered in the mapping step.

Also, as shown in the figure, the part mapped to DLA is not profiled layer by layer.

2.2 NVIDIA TensorRT

TensorRT [19] is an SDK for high-performance inference targeted on NVIDIA prod-

ucts. Figure 2.2 displays the workflow of TensorRT. The optimized inference engine is

generated by the Builder module from a given network definition. In the building pro-

cess, some optimization techniques such as layer fusion are applied. Then the Runtime

module loads and deserializes the engine to create an execution context. The Runtime

module also maps a PE to the deserialized engine. The execution context is assigned to

a stream in a GPU or a DLA. It is possible to run the network across multiple PEs in

11

Figure 2.3: An example schedule of deep learning inference

a pipelined manner by dividing a network into multiple pipeline stages. Each pipeline

stage needs to be defined by a separate network with which a separate engine and the

associated execution context are generated.

Figure 2.3 illustrates an example schedule corresponding to the TensorRT imple-

mentation, where a single execution context is mapped to a DLA stream or a GPU stream.

TensorRT does not support a CPU to execute the inference. The CPU performs pre/post-

processing, marked as Pre. and Post. in Fig. 2.3. The pre-processing step loads the input

data and adjusts the data layout for inference, while the post-processing step performs

other processing after inference is done. Due to the execution environment of the Xavier

board, the number of deserialized engines mapped to DLAs is limited to four at most at

the time of writing this paper. It means that the total number of pipeline stages mapped

to two DLAs may not be greater than four. Those properties and restrictions are needed

to be considered when using TensorRT on the Xavier board.

2.3 Genetic Algorithm

Algorithm 1 Pseudo code for genetic algorithm
1: Generation of the initial population
2: Fitness calculation
3: repeat
4: Selecting chromosomes
5: Applying crossover
6: Applying mutation
7: Fitness calculation
8: Replacing chromosomes
9: until Solutions have been converged

A genetic algorithm is a type of optimization algorithm inspired by the process of

natural selection [20]. The pseudo code of the genetic algorithm is described in Algo-

12

rithm 1. It works by creating a population of candidate solutions, each called a chromo-

some. The chromosome indicates the design space to be explored. Then genetic opera-

tors such as mutation and crossover are used to evolve the selected chromosomes in the

population over time. The algorithm is based on the idea that the fittest individuals in a

population are more likely to survive, reproduce and pass on their traits to future gen-

erations. This approach is widely used for combination optimization problems such as

mapping exploration.

2.4 Compositional Performance Analysis

Figure 2.4: Schematic diagram of compositional performance analysis

Compositional Performance Analysis (CPA) [21, 22] is one of the well-established

worst-case response time (WCRT) analysis methods used in real-time systems. The CPA

method computes the worst-case response time by decomposing the system into smaller

components, as shown in Fig. 2.4. This method allows different scheduling policies to be

applied to distinct processors and enables the worst-case response time to be computed

scalably by propagating event streams between processors. For example, in Fig. 2.4, the

CPU determines the output stream considering a fixed priority preemptive (FPP) schedul-

ing policy and passes it to the next component, the NPU (neural processing unit). Simi-

larly, the analysis is applied to the NPU based on first-in first-out (FIFO) scheduling. By

propagate the event stream, the worst response time is calculated for each application.

To consider the deadline constraint for different processors, the CPA approach would be

helpful.

13

2.5 Model-based Design Methodology

Model-based design (MBD) methodology is widely adopted for embedded software

development since it enables us to specify an application behavior independently of the

hardware platform that is continually evolving over time. Since appropriate models vary

depending on the application domain, various models and methodologies have been pro-

posed. For example, the statechart model is widely used for control-oriented applications

[23], and a timed discrete event model is used for power-aware real time scheduling [24].

The works of [25] and [26] adopt the dataflow model for the specification of multime-

dia or streaming applications. In addition, there exist some works that use more than

one model: a combination of the dataflow model and the finite state machine is used in

[27, 28, 18], and the work of [29] deploys both the discrete event model and the dataflow

model. While appropriate models vary depending on the application domain, a dataflow

model of computation is adequate to represent multimedia or streaming applications that

are computation intensive. In a dataflow graph, a node represents a computation task,

and an arc indicates a data dependency between adjacent tasks. A key benefit of dataflow

models is that it is easy to exploit the task-level parallelism of an application by simply

mapping nodes to processing elements in a given hardware platform. If the number of

data samples that are transferred on each arc is known at compile time, a dataflow model

is said to be decidable [14]. For a decidable dataflow, we can determine the mapping and

scheduling of tasks at compile time and detect some critical errors in the specification,

such as buffer overflow and deadlock [15, 16]. In this dissertation, we assume that a de-

cidable dataflow model is used in the model-based design methodology for embedded

software development.

Figure 2.5 shows the traditional embedded software design flow based on the

dataflow model. Each application is represented by a dataflow graph in which the inter-

nal behavior of a task is defined by the task code written in a conventional programming

language such as C or C++. The hardware platform information on the available process-

14

Figure 2.5: Overall flow of the model-based embedded software design

ing elements and communication architecture is given separately from the application

specification. For a given hardware platform, we find an optimal mapping of tasks onto

processing elements by comparing the estimated performance among various mappings,

which is referred to as the design space exploration (DSE) step. Lastly, the application

code on each processing element is generated based on the mapping decision made in the

DSE step.

In spite of the advantages of the model-based design, it does not support deep learn-

ing applications. Therefore, a new methodology to support deep learning application is

needed.

15

Chapter 3

Optimization of a Single Deep Learning
Application

3.1 Overview

In this chapter, we aim to improve the throughput performance of a single convolu-

tional neural network (CNN) inference application by utilizing all available processing

elements. To accelerate the throughput of an deep learning application, we first introduce

parallelization techniques on heterogeneous processor systems including NPUs. Next,

We present the JEDI framework to facilitate using the techniques. Based on the frame-

work, we decide how to apply the techniques through the proposed methodology.

The rest of this chapter is organized as follows. We first review the related work to

our work in Section 3.2. After the optimization techniques are introduced in Section 3.3,

the framework is presented in Section 3.4. Afterward, we explain the proposed method-

ology in Section 3.5. Lastly, the experiment results are presented in Section 3.6.

3.2 Related Work

This section reviews the related work in the following two subsections involved

in the proposed method: deep learning frameworks and optimization for a single deep

learning application.

16

3.2.1 Deep learning Frameworks

The widely used deep learning frameworks TensorFlow [30], Caffe [31], Pytorch

[32], Darknet [33], as well as several lite frameworks for embedded systems like Ten-

sorRT [19] and TensorFlow Lite [34], provide an environment in which deep learning

programs can be run on a single accelerator, GPU or an NPU, but not on multiple ac-

celerators. Although they offer some software optimization features like layer fusion and

low precision calculation, they do not consider system-level optimizations.

For allowing hardware-specific optimizations for various embedded systems, some

frameworks have been put forth. A Caffe-compatible framework called Caffepresso [35]

offers automatic code generation and auto-tuning by specifying setup settings. It is com-

patible with a range of hardware platforms, including FPGA, DSP, and GPU. A ma-

chine learning compiler framework called TVM [36] is designed to address the variety

of hardware properties on different devices. It generates hardware-aware optimization

code, schedules code segments, and optimizes a computation graph. A C-code generating

framework based on Darknet is called C-GOOD [5]. Although it supports approximation-

based optimization techniques like tucker decomposition and quantization as well as

system-level optimization techniques like multi-threading and pipelining, optimization

should be done manually by adjusting the parameters. For system-level optimization,

these frameworks do not take heterogeneous accelerators into account.

3.2.2 Optimization For a Single Deep Learning Application

A single deep learning application’s optimization methods rely on the hardware plat-

form and the objective. For a multi-core CPU, several techniques have been put forth. In

order to maximize resource usage, Tang et al. [7] developed an execution model for deep

learning applications on manycore CPUs and suggested a scheduler that allocates the

operations to executors at run-time. By pipelining on different CPU cores, a method de-

scribed in [6] attempts to increase the throughput of convolutional neural network (CNN)

17

inference. They presented a heuristic based on the profiled execution time of layers be-

cause the design space for pipelining is rather large.

For mobile devices, accelerating CNN inferences using GPU has drawn a lot of

research interest. In [37], a library for Android is proposed to offload the computationally

heacy layers to the GPU. The work of [38] introduced a software accelerator for mobile

devices that divides a network into unit blocks that are scheduled to CPU or GPU. In [39],

a reinforcement learning-based method is presented that trains policy networks to allocate

graph operations into groups and assign the groups to available devices for Tensorflow

graphs. Although this method takes into account both CPU and GPU, its primary goal is

to decrease latency so that pipelining is not taken into account.

A simple way to boost throughput performance is by using simple pipelining be-

tween a multi-core CPU and a GPU. For instance, a 2017 LPIRC (Low Power Image

Recognition Challenge) winner used pre/post-processing pipelining; pre/post-processing

is carried out on a CPU while the network is run on a GPU in a pipelined manner [40].

However, pipelining a network onto heterogeneous processor systems, including accel-

erators, is not taken into account. In [11], general system-level optimization on a het-

erogeneous system is taken into consideration. They could apply any parallel scheduling

method that has been presented for a CSDF graph by transforming a CNN model to a

CSDF graph. To map the nodes to a CPU/GPU heterogeneous system for experiments,

they used a genetic algorithm. The overhead associated with model translation and the

challenges of mapping and code generation are this approach’s key drawbacks.

A few recent research have studied at heterogeneous processor systems with not

only GPU but also NPU for accelerating deep learning applications. Using task-level

parallelism of each network, the work of [12] also takes into account multiple DNN in-

stances on a heterogeneous system that comprises both GPU and NPU. However, NPUs

are not included in the experimental results, even though throughput optimization is in-

cluded as an objective function. There is no work using the NPU and its SDK on a real

18

…

… …

…

…

…

… …

Figure 3.1: Four parallelization techniques

Pre-processing
Inference

CPU:: Thread
GPU:: Stream

Pre-processing
Inference

Post-processingCPU:: Thread Post-processing
Pre-processing

Inference

Post-processing

(a) Pre/post-processing pipelining with two buffers

Pre-processing
Inference

CPU:: Thread
GPU:: Stream

Pre-processing

Inference

CPU:: Thread
Pre-processing

Inference

Post-processingCPU:: Thread Post-processing
CPU:: Thread Post-processing Post-processing

Pre-processing

Inference

(b) Pre/post-processing parallelization with two threads

Figure 3.2: Schedule diagrams of inference steps with pre/post-processing pipelining

platform, despite the fact that numerous research offer the optimization approach for a

single deep learning application.

3.3 Parallelization Techniques

The proposed methodology consists of four main techniques, as outlined in Fig. 3.1.

3.3.1 Pre/Post-Processing Pipelining and Parallelization

Pre- and post-processing are essential parts to run deep learning (DL) applications.

In the pre-processing step, we load an input image and re-size the image. After the

completion of inference, we perform post-processing for localizing detected objects and

storing results. Pipelining the pre-/post-processing part with the main inference body is

popularly used to improve the performance [40]. Figure 3.2 (a) is an example diagram

of the pre- and post-processing pipelining. Colors express dependency among pipeline

19

stages. To overlap the execution of adjacent pipeline stages, multiple buffers are needed.

In Fig. 3.2 (a), the pre-processing, post-processing, and inference steps can be overlapped

together since two buffers are used between pipeline stages.

The number of buffers between pipeline stages affects the throughput performance.

A processing element may become idle if there is no free space in the output buffer to

store the output data or input data is not available in the input buffer. Thus we need to

increase the buffer size until the throughput performance is saturated. If the same memory

is shared among different processing elements, a processing element can read input data

without copying overhead or write output data directly to the buffer. Since our example

embedded device, the Xavier board, provides an API to share pinned CUDA memory

among different processing elements, there is no data copy overhead between pipeline

stages. This feature is known as Zero-copy.

Although the pipelining those parts makes the execution overlap, it is not enough

in some cases. Yolov4-tiny network, as an example, it is necessary to utilize more than

two pre-processing threads concurrently since it may take longer to pre-processing than

the time for inference body. Thus, we parallelize the pre- and post-processing parts with

multiple threads in case the part becomes the performance bottleneck. Figure 3.2 (b)

shows an example schedule where two threads are used in the pre-processing and post-

processing step. It is assumed that the number of intermediate buffers is large enough to

run the third and fourth pre-processing steps consecutively.

3.3.2 Intra-PE Parallelization

A data-parallel accelerator such as GPU can parallelize multiple instances of the

assigned kernel using multiple streams, which increases the utilization further. Indepen-

dently of the number of threads in the pre-/post-processing steps, we can create more

than one stream in GPU and DLA by creating as many buffers as the number of streams

at the pipeline-interface. It is observed that if the number of streams exceeds a certain

20

GPU:: Stream
GPU:: Stream Inference

Pre-processingCPU:: Thread
Pre-processingCPU:: Thread

Pre-processing

Post-processingCPU:: Thread Post-processing
CPU:: Thread

Inference

Post-processing Post-processing

Inference
Inference

Pre-processing

(a) Multiple streams with a sufficient number of buffers

GPU:: Stream
GPU:: Stream Inference 2

Pre-processingCPU:: Thread
Pre-processingCPU:: Thread

Pre-processing

Post-processingCPU:: Thread Post-processing
CPU:: Thread

Pre-processing

Inference 2

Post-processing Post-processing

Inference 2Inference 2

DLA:: Stream
DLA:: Stream Inference 1

Inference 1Inference 1
Inference 1

(b) Network pipelining on heterogeneous processors

Figure 3.3: Schedule diagrams of inference body parallelization

level, the performance is saturated. Thus we set the number of streams as an optimization

parameter. In Fig. 3.3 (a), it is assumed that the number of streams in GPU is two, the

same as the number of threads in the pre-processing step.

3.3.3 Intra-network Pipelining

To use all available accelerators, we pipeline the inference body. Figure 3.3 (b)

shows a simple schedule after applying the intra-network pipelining where the inference

network is split into two stages and assign the first stage, Inference 1, to a DLA and the

second stage, Inference 2, to the GPU. Note that we may assign more than one stage to a

PE. Therefore, it is necessary to determine how to split the network into stages and how

to assign the stages to the PEs. Since the design space of pipelining is huge, how to ex-

plore the space is a challenging problem. To tackle this challenge, we devise a heuristic to

decide the cut-points for network splitting for a given mapping option which is explained

in Section 3.5.

21

3.3.4 Partial Network Duplication

Lastly, we may duplicate the part of the network, which is called partial network du-

plication (PND). It is important to balance the execution time among the pipeline stages.

Since it is easier to balance one GPU and one DLA than one GPU and two DLAs, we

pipeline the network onto one GPU and one DLA in this technique. Then we run two

iterations of the network concurrently, mapping the duplicated part of the network to dif-

ferent DLAs and sharing the GPU for the remaining part. In Fig. 3.1, the striped boxes

are mapped onto different DLA with the separate inference engine, and each engine is

responsible for half of the streams in the stage.

3.3.5 Other Optimization Methods

Besides system-level optimization, the proposed framework supports two popular

methods to improve throughput performance. The first is to use low-precision computa-

tion that reduces the computation workload as well as memory requirement. Instead of

using 32-bit floating-point operations, we may use 16-bit floating-point or 8-bit integer

operations. Since the Xavier board supports 8-bit inference, we provide an option to use

8-bit inference. TensorRT supports post training quantization (PTQ) method based on a

calibration table. However, this feature is not directly applicable to the pipelined network

since TensorRT considers a single network only.

The second is to use batch processing. There are two scenarios we can use batching

processing for a single DL application. One is to run it with multiple inputs; An ex-

ample is an object detection network that receives input images from multiple cameras.

The other scenario is to queue incoming input images to given batch size and process

them concurrently. Even though queuing may increase the latency, the throughput gain

by batching may give a higher benefit than the latency loss.

22

3.4 JEDI Framework

As was stated in the section above, the throughput of network can be increased by

using a number of system-level optimization strategies. A TensorRT-based framework is

created to support those techniques due to the lack of public framework that makes it

simple for us to use them. The suggested framework’s general organization and process

are shown in Figure 3.4. The framework requires a configuration file as input that contains

the pipelining/mapping information in addition to the following parameters which are

related to design space exploration: the number of buffers, the number of threads for

pre/post processing, the number of streams per pipeline stage, and mapping to processing

elements. Besides, the configuration file allows for the setting of batch size and data

precision. Information about the application and test, such as the network settings or

image file path, is also included in the configuration file.

A deep neural network is defined by a darknet-based configuration which is adopted

in tkDNN. It is necessary to alter tkDNN library [41] so that it generates an engine for

each sub-network after pipelining the network, as the original tkDNN library provides a

way to build an engine for the entire network using TensorRT only. In addition, we also

support an ONNX file format [42] which is widely used to represent deep learning ap-

plications. To partition a network presented by ONNX, we use the Polygraphy tool [43].

When using the ONNX file format, it is only supported in Jetpack 5.1 with TensorRT

8.5.2 and later versions. Meanwhile, the darknet-based configuration can be used in Jet-

pack 4.3 with TensorRT 6 and higher version. As seen in the Build section of Fig. 3.4, a

distinct engine is produced for each accelerator. Additionally, the modified tkDNN rear-

ranges the engine’s outputs and inputs to correspond with those of neighboring pipeline

stages in the case of using the darknet-based configuration.

The Inference section of Fig. 3.4 illustrates how to run a deep learning application

in JEDI. JEDI generates threads based on parameter, including subnetwork threads and

pre-/post-processing threads that will perform on a CPU. Each subnetwork thread repre-

23

Figure 3.4: Workflow of the proposed inference framework

sents a pipeline stage mapped onto GPU or DLA and handles multiple execution contexts

mapped to streams in the designated accelerator. A subnetwork thread synchronizes with

the adjacent pipeline stages; inference on a stream is postponed until all input and out-

put buffers are ready. If multiple execution contexts are used, synchronization delay can

be disguised by interleaving the execution of streams. If a partial network duplication

technique is adopted, each of two different inference engines, corresponding to the iden-

tical portion of the network, are mapped to a different processor. Otherwise, only one

inference engine is used at each pipeline stage.

In Fig. 3.4, the green boxes represent the user-customizable JEDI modules. A user

can add any application-specific parameters like an application configuration, new data

sets, and a deep learning application. Log files and output results are produced after JEDI

runs the program on the Xavier board. These files are used to record resource utilization

24

1 configs = {
2 instance_num = "1";
3 instances = ({
4 ...
5 # Common/test configurations
6 app_type = "YoloApplication";
7 model_type = "tkDNNApplication";
8 sample_size = "4952";
9 ...

10 # Application-specific configurations
11 ## Darknet-based configuration
12 cfg_path = "yolo4.cfg";
13 image_path = "all_images.txt";
14 name_path = "coco.names";
15 ## ONNX configuration
16 onnx_file_path = "yolo4.onnx"
17 ...
18 # Optimization parameters
19 batch = "1";
20 device_num = "3";
21 pre_thread_num = "1";
22 post_thread_num = "1";
23 buffer_num = "8";
24 cut_points = "52,134,268";
25 streams = "1,4,3";
26 devices = "GPU,DLA,GPU";
27 dla_cores = "0,2,0";
28 data_type = "INT8";
29 }) }

Figure 3.5: An example segment of JEDI configuration file

and evaluate the accuracy and performance of a deep learning application.

3.4.1 Configuration Parameters

An example segment of the configuration file is shown in Fig. 3.5. The configuration

file format is adopted from the libconfig library, C/C++ configuration library. First of

all, instances and instance num (line 2-3) are used for specifying one or multiple deep

learning applications. If instance num is one, only a single deep learning application is

executed in JEDI. Each element of instances shows the independent settings of each

deep learning application. The options in each instance can be classified into three types:

common/test configuration (line 6-8), application-specific configuration (line 10-13), and

25

optimization parameters (line 15-24).

Common/test configurations are used for all types of deep learning applications.

app type is used to specify the application type that is given by the user, which will be

explained in the next subsection. model type is used to indicate the input format of the

application. In the example, the darknet-based configuration, tkDNNApplication, is used.

Another option is the ONNXApplication which represents that the ONNX file is adopted.

The number of inputs to test inference is set by sample size. There are other common

configuration options such as weight file directory path, engine building directory path,

and calibration table path.

Application-specific configurations depend on the application type (app type); A

user can define new options which are needed for creating a network or loading a data

set. Since the application type is given as YoloApplication, related options are listed as

application-specific options in Fig. 3.5. If the model type is tkDNNApplication, then net-

work information is read from Darknet-based configuration file [33], so c f g path is used

for getting the path of the network configuration file. While the model type is ONNXAp-

plication, then onnx path is used to read the onnx file. The input image path and the path

to the labeled data set are also specified as application-specific configurations.

Figure 3.5 displays the optimization parameters in the last segment. Note that

these optimization parameters are independent of deep learning applications. The num-

bers of pre-/post-processing threads are decided by the parameters pre thread num and

post thread num, respectively. The number of buffers between pipeline stages is repre-

sented by the bu f f er num.

For intra-network pipelining, four parameters are defined: device num, devices,

dla cores, and cut points. The number of pipeline stages is denoted by the device num,

and devices indicates the assigned processor to each pipeline stage. For instance, the first

and the last stage are mapped to GPU while the second stage is mapped to a DLA. The

third parameter, dla cores, indicates the mapped core ID in case the assigned processor

26

is DLA. So the second element, which is 2, has a meaning while the first and the third

elements can be ignored. If the value is 0 or 1, it indicates the core ID of two DLAs. If the

value is greater than or equal to the number of cores, then the PND technique is applied.

In the example of Fig. 3.5, we duplicate the second stage and map two copies onto two

DLAs to run concurrently.

The number of layers allocated to each pipeline stage is specified by the cut points

option which indicates the last layer of each pipeline stage. For instance, in line 20 of

Fig. 3.5, the first stage consists of layers #0 to #52, the next stage includes layers #53 to

#134, and the rest are allocated to the last stage. The number of streams for each pipeline

stage is denoted by the streams. In line 21, the first and last stages take one and three

GPU streams, respectively. The second stage uses four streams, two streams on each

DLA, since the PND technique is adopted.

Other parameters discussed in Section 3.3.5 are also included in the JEDI configu-

ration file: batch is the batch size that is used to run an inference with multiple inputs,

and data type indicates the precision of the inference. JEDI supports 32-bit (FP32), 16-

bit (FP16) floating-point, and 8-bit integer (INT8) inference. Since TensorRT generates

a calibration table from a single inference engine for INT8 inference, JEDI uses the cali-

bration table generated from the whole neural network. Based on cut-points information,

JEDI automatically divides the calibration table to generate a separate calibration table

for each pipeline stage and uses the divided table for generating the associated INT8

inference engine.

3.4.2 Application Development

As a general deep learning framework, JEDI provides a generic interface to

support various deep learning applications. JEDI defines a virtual class named

IIn f erenceApplication which includes virtual methods to implement a deep learn-

ing application as listed in Table 3.1. The readCustomOptions method is used to

27

Table 3.1: Main virtual methods for user-implemented deep learning applications in JEDI

Method Name Description

readCustomOptions
Read custom options which is going to be used for the application.
(e.g. Network file path, data set path, etc.)

createNetwork Create a network.

initializePreprocessing
Initialize data which are used during pre-processing.
(e.g. Data set initialization)

initializePostprocessing Initialize data which are used during post-processing.
preprocessing Run pre-processing (e.g. image loading, image resizing)
postprocessing Run post-processing.

read application-specific options from the JEDI configuration file. The createNetwork

method creates a network and retrieves a TensorRT-specified network object: A User

may specify the network with a C++ code or add a conversion code from other for-

mats to TensorRT-based network object. Two methods, initializePreprocessing and

initializePost processing, are used for initializing data or allocating buffers that are go-

ing to be used during pre-processing or post-processing, respectively. Actual processing

codes are implemented in preprocessing and post processing methods, respectively. Reg-

istering an application is made by the registry pattern [44], and the registered application

name is used as the app type option in the JEDI configuration file.

YoloApplication shown in Fig. 3.5 is an example of a deep learning application

development. YoloApplication is an inherited class from IIn f erenceApplication that

we implemented virtual methods listed in Table 3.1. The readCustomOptions method

is implemented to read c f g path, image path, and name path. In the createNetwork

method, we call a conversion function from a Darknet configuration file or ONNX file

to TensorRT specification. The darknet configuration file is translated by the tkDNN li-

brary. And the onnx file is read by the parseFromFile method provided by TensorRT. In

the initializePreprocessing method, a data set is initialized to read the image path from

image path, and initializePost processing allocates buffers for storing detection results.

Finally, the preprocesssing method is implemented to load and resize input images, and

post processsing calls functions related to localizing objects. With our proposed frame-

28

Single PE
mapping
option?

Yes

No

Pre-. threads
Post-. threads

Buffers
Streams

Network Info.
Input size
Batch size
Data type

Fixed
input parameters

Parameter
maximizer

Pre-. threads
Post-. threads

Buffers
Streams

Parameter
fine-tuner

Optimized cut-point tuple

Pipeline cut-point
explorer

(Global-only)

Decided parameters
Module

Traverse
all mapping
options?

Select
best mapping

option

Yes No

Optimized cut-point tuple
Pipeline cut-point

explorer
(Full search)

Best
mapping
option is
single
PE?

Yes

No

Figure 3.6: The proposed optimization process with three design space exploration mod-
ules

Table 3.2: Options for mapping on the target platform

Option # of pipeline stages Composition of PEs

A 2 DLA - GPU
B 3 GPU - DLA - GPU
C 3 DLA - DLA - GPU
D 4 GPU - DLA - DLA - GPU
E 1 GPU

PND-A 2 DLA (two DLAs) - GPU
PND-B 3 GPU - DLA (two DLAs) - GPU

work, a user may focus only on the implementation of an application itself, without con-

cern about acceleration techniques.

3.5 Design Space Exploration

Since JEDI supports many optimization parameters, exploring the design space to

find optimal parameter values is challenging. Rather than searching the entire design

space at once, we use a divide-and-conquer approach to reduce the search complexity.

Figure 3.6 depicts the proposed optimization process that consists of three key modules,

each of which uses JEDI to explore a subset of parameters. First of all, a group of pa-

rameters is explored manually by setting some fixed values. The group includes network

information, input data size, batch size, data type, and a mapping option. Since the Xavier

board has one GPU and two DLAs, the number of possible mapping options is limited

29

and finite. Table 3.2 shows the explored mapping options in the proposed methodology.

The second column indicates the number of pipeline stages, and the last column shows

to which accelerators the pipeline stages are mapped. Unlike the GPU, a DLA cannot

execute some layer types. If a layer that cannot be run is mapped to a DLA, the layer is

remapped to the GPU automatically by TensorRT, which is called GPU fallback. Since

such layers exist at the bottom part of all benchmark networks used in the experiments,

we map the last pipeline stage to GPU in all options. Except for options A, B, and E,

all options use two DLAs. For options PND-A and PND-B, the pipeline stage assigned

to DLA is duplicated and mapped to two DLAs by the PND technique. In options B,

D, and PND-B, GPU is assigned to two pipeline stages, the first and the last, since the

GPU has better computation power than DLA. If our methodology is applied to a differ-

ent hardware platform, we will define a different set of mapping options, considering the

characteristics of the processing elements in the hardware platform.

After fixed input parameters are set manually, the parameter maximizer module de-

termines the upper bounds of the following parameters to explore: the number of pre-

/post-processing threads, the number of buffers, and the number of streams. In this mod-

ule, we use mapping option E and increase the parameter values incrementally until the

performance is not improved anymore: we change the configuration file of JEDI and run

JEDI to obtain the performance and repeat this process automatically.

After the upper bound values of those parameters are determined, the next step is to

determine the pipeline cut-points by the pipeline cut-point explorer module for a given

mapping option unless the mapping option E is taken. Two versions of pipeline cut-point

explorer are used with a different purpose. First, the pipeline cut-point explorer (global-

only) is used to find the best mapping option among seven given options. In this case, only

the sampled cut-points are explored to find the mapping option with the best performance.

Then, the pipeline cut-point explorer (full search) considers all feasible cut-points. The

pipeline cut-point explorer module will be explained in the next subsection in detail.

30

If the mapping option E is selected, the pipeline cut-point explorer is skipped since no

network pipelining is made in this option. After pipeline cut-points are determined, the

parameter fine-tuner module performs parameter fine-tuning that is going to be explained

in Section 3.5.2.

Note that all three modules in Fig. 3.6 measure the performance by actually running

JEDI on the target Xavier board. While it incurs the significant overhead of repeated ex-

ecution of JEDI on the Xavier board, the measured performance is an ideal performance

metric that is necessary for design space exploration (DSE): communication time be-

tween pipeline stages and other unknown overheads are all considered in the measured

performance.

3.5.1 Pipeline Cut-point Explorer

Layer allocation to each pipeline stage can be represented by a cut-point tuple which

indicates the last layers mapped to each pipeline stage. All options which use more than

one accelerator require running the pipeline cut-point explorer module that searches a set

of sub-optimal cut-point tuples. The size of possible combinations of cut-points is N−1Cc

to select c cut-points from N layers. To avoid the exponential complexity of exhaustive

search, a 2-phase heuristic is devised to find a sub-optimal tuple of cut-points. The first

phase is a global search over a sampled set of cut-points: we prune the search space by

sampling the cut-points regularly. The other cut-points are explored in the second phase,

local search. Algorithms 2 and 3 show the pseudo-code of the global search heuristic and

local search heuristic, respectively. If the pipeline cut-point explorer is used for searching

the best mapping option, the local search heuristic is skipped to reduce the search time

as shown in lines 10-13 of Algorithm 2. At the beginning of the global search phase, we

set the following three: an initial cut-point tuple, a candidate cut-point set, and a stream

number tuple. An initial cut-point tuple can be set as a sequence of ordered random

numbers. Suppose the profiling information of layer execution times on GPU or NPU is

31

Algorithm 2 Pseudo code for global search heuristic
Input : T : Threshold value of GPU utilization
Input : K: The number of cut-point tuples with top K FPS
▷ For fast search, K = 1. Otherwise, K = 10

Input : cutinit/cur/prev : an initial/current/previous cut-point tuple
Input : strcur : a stream number tuple of cutcur
Input : con fbest : (cut-points tuple, streams tuple) with the best FPS
Input : f pscur/prev: FPS of the run with cutcur/prev
Input : gpuUtilcur: GPU utilization with current tuple of cut-points
Input : TopK : the list of top K cut-point tuples in FPS
Input : P: The set of move policies to explore the cut-point tuples

1: cutcur = cutinit , cutprev =None, f psprev = MAX
2: f pscur, gpuUtilcur = Run JEDI with (cutcur, strcur)
3: while New cut-point tuple is selected do
4: Select P with gpuUtilcur
5: for each Pi in P do
6: cutprev = cutcur, f psprev = f pscur
7: cutcur = Select a new cut-point tuple with (cutcur, Pi)
8: f pscur, gpuUtilcur = Run JEDI with (cutcur, strcur)
9: Update TopK and con fbest with (cutcur, f pscur, strcur)

10: if NOT Global-only and
11: gpuUtilcur ≥ T and cutcur ∈ TopK then
12: Perform local search with (cutcur, strcur, f pscur)
13: end if
14: if f psprev < f pscur then
15: continue with Pi again
16: end if
17: end for
18: end while

available. In that case, an initial cut-point can be decided based on the profiling execution

time, aiming to balance the pipeline stage length. Since layer-wise profiling for DLA

is not available on the Xavier board, we used a random initial cut-point tuple in the

experiments. If a cut-point tuple is already searched with different fixed input parameters,

that cut-point tuple could be reused as the initial cut-point tuple.

A candidate cut-point set is a sampled set of cut-points to prune the search space

for global search. A candidate cut-point set is basically determined by sampling the cut-

points regularly, but additional cut-points can be inserted to include the cut-points of the

initial cut-point tuple. Figure 3.7 (a) shows an example of the sampled cut-point set. The

sampled cut-point set, which is shown as the solid green lines, is created by sampling

after every three layers, so 5 out of 15 cut-points are used during the global search.

32

2 3 4 5 6 7 8 9 10 111 12 13 14 15 16
Sampled cut-point set = {3, 6, 9, 12, 15}

(a) Sampled cut-point set for search space reduction

2 3 4 5 6 7 8 9 10 111 12 13 14 15 16

cut-point tuple (6, 12)
cut-point tuple (3, 9) - shift all points to the left
cut-point tuple (6, 15) - move the second point to the right-1

-2

(b) Global search example

2 3 4 5 6 7 8 9 10 111 12 13 14 15 16

cut-point tuple (3, 9) cut-point tuple (2, 9) - move the first point to the left

(c) Local search example

2 3 4 5 6 7 8 9 10 111 12 13 14 15 16
cut-point tuple (6, 9) - infeasible

cut-point tuple (3, 8) - feasible

(d) Example of feasible and infeasible cut-point tuples

Figure 3.7: Illustration of the proposed heuristic with an example

The last is a stream number tuple which contains the number of streams for each

pipeline stage. We simply set the number of streams to two for the pipeline stage mapped

to a single DLA. For options PND-A and PND-B, we set the number of streams to four to

assign two streams to each DLA. The number of streams for GPU is set to the maximum

number of streams that is decided by the parameter maximizer module. If two pipeline

stages are mapped to a single GPU, such as options B, D, and PND-B, each GPU pipeline

stage uses half of the maximum number of streams.

The proposed global search heuristic requires two internal variables, T and K: T is a

certain threshold of GPU utilization and K is the number of tuples to maintain during the

iterative process of global search. As shown in Algorithm 2, the global search starts with

the initial cut-point tuple, cutinit (line 1). We obtain the FPS, f pscur, and GPU utilization,

gpuUtilcur by running JEDI with the initial cut-point tuple and the number of streams

33

tuple (line 2). Then, the searching area of cut-points is expanded by defining several

cut-moving policies from the current tuple of cut-points. If gpuUtilcur is greater than T ,

the cut-points around the current cut-point tuple are moved by the following policies:

One is to move a single cut-point by one, and the other is to shift all cut-points in the

left or right direction. Otherwise, the cut-points are moved in the direction of increasing

the GPU utilization, assigning more layers to GPU. After the policy set P is selected

based on gpuUtilcur (line 4), we obtain a new candidate tuple of cut-points according to

each moving policy Pi ∈ P (line 7). Two new cut-point tuples created this way are shown

in Fig. 3.7 (b). From the original cut-point tuple depicted with sky-blue lines (1⃝), the

double-dashed brown lines (2⃝-1) indicate a new candidate cut-point tuple by moving

the second cut-point to the right direction, while the single-dashed violet lines (2⃝-2)

represent another candidate tuple by shifting all cut-points to the left direction. As shown

in the figure, moving is performed with the sampled cut-point set.

After we measure the FPS and GPU utilization by running JEDI (line 8), we up-

date the list of cut-point tuples with top K FPS performance, TopK . And, we update the

con fbest which contains the cut-point tuple and the stream number tuple with the best FPS

result (line 9). The local search heuristic is executed when the gpuUtilcur is not smaller

than T and cutcur is newly added to TopK (lines 10-13 in Algorithm 2) in the full search

version.

Note that variable T affects the search area of the design space and the speed of

the global search heuristic. If T is too large, the explorer is terminated fast after explor-

ing a small volume of candidate cut-points, and the local search heuristic may never be

executed. To determine a proper T value, we run the pipelining cut-point explorer sev-

eral times by reducing the T value in a greedy fashion until the local search heuristic

is executed for a certain number of cut-point tuples explored during the global search

phase. The number is determined empirically, for instance 10. Depending on K value, the

searching area can be extended or shrunken. If the initial cut-point tuple is a sub-optimal

34

Algorithm 3 Pseudo for local search heuristic
Input : cutglobal : a cut-point tuple passed from the global search
Input : cutbest : a cut-point tuple with the best FPS
Input : strcur/global : a stream number tuple of cutcur/global
Input : cutcur/prev: an current/previous cut-point tuple
Input : f pscur/prev/global : FPS of the run with cutcur/prev/global
Input : Plocal : The local search move policies to move a cut-point

1: cutcur = cutglobal , strcur = strglobal , f psprev = MAX
2: if The first pipeline stage is mapped to GPU then
3: Update the first pipeline stage of strcur to 1
4: f pscur = Run JEDI with (cutcur, strcur)
5: Update con fbest with (cutcur, f pscur, strcur)
6: if f pscur ¿ f psglobal then
7: Rollback strcur and f pscur
8: end if
9: end if

10: while f pscur is improved do
11: for each cut-point of cutcur do
12: for Pi in Plocal do
13: cutprev = cutcur, f psprev = f pscur
14: cutcur = Move a cut-point of cutcur with Pi
15: f pscur = Run JEDI with (cutcur, strcur)
16: Update con fbest with (cutcur, f pscur, strcur)
17: if f pscur > f psprev then
18: continue with Pi again
19: else
20: cutcur = cutprev, f pscur = f psprev
21: end if
22: end for
23: end for
24: end while

tuple found from different fixed parameters (e.g., different image size or batch size), the

fast search can be performed by setting K value to 1. Otherwise, K was set to 10 in the

experiments.

The local search heuristic is shown in Algorithm 3. The local search heuristic is

called by the global search for the current cut-point tuple, cutcur, which becomes cutglobal

and is regarded as the initial cut-point tuple in the local search heuristic. The f psglobal is

initialized with the FPS performance of cutglobal . If the local search heuristic is run with

the mapping options which map two pipeline stages to GPU such as B, D, and PND-B,

we examine if it is beneficial to change strcur by allocating one stream to the first pipeline

stage and the other streams to the last pipeline stage (lines 2-7). If the FPS result is better

35

than f psglobal , the number of streams is changed to the newer one. Otherwise, strcur is

restored to strglobal . This step is added after we observe that assigning more streams to

the last stage often produces better performance in our experiments.

While the overall process of the local search heuristic is similar to the global search

heuristic, the cut-point selection policy and the cut-point selection range are different

from the global search heuristic. The local search heuristic always uses Plocal as a moving

policy that only moves a single cut-point one by one to the left or right direction. While

the global search heuristic only chooses the cut-points from the sampled candidate cut-

point set, the local search selects the cut-points from all cut-points. Figure 3.7 (c) shows

an example of moving a cut-point by the local search heuristic. The cut-point tuple with

the dashed gray line (2⃝) is generated from the tuple with the solid violet line (1⃝) by

moving the first cut-point from 3 to 2. Note that the local search only updates the con fbest

to store the best solution (line 16). TopK is not affected by the local search. If the FPS

performance is improved, the same policy is tried again (lines 17-18). Otherwise, the

cut-point tuple is restored (lines 19-20), and the next policy is applied until there is no

performance improvement.

When selecting a new cut-point tuple in both the global and local search heuris-

tic, the pipeline cut-point explorer checks the feasibility of the selected cut-point tuple.

If more than one cut-point cuts an arc between two layers, it is considered infeasible.

We perform synchronization between two adjacent pipeline stages only for simple im-

plementation. If we allow more than one cut-point to cut the same arc, it is needed to

synchronize two non-adjacent pipeline stages. Since it incurs the extra overhead of syn-

chronization and buffer management, we decided to disallow it. Figure 3.7 (d) shows an

example of a feasible and infeasible cut-point tuple. The cut-point tuple with the solid

red line is infeasible since the output of the first pipeline stage is directly passed to the

last pipeline stage, not the second. On the other hand, the cut-point tuple with the dashed

violet lines is feasible.

36

Note that the pipeline cut-point explorer actually builds the TensorRT engines for

each pipeline stage and runs the application multiple times, so the run-time of the pipelin-

ing cut-point explorer depends on the number of cut-point tuples searched during execu-

tion. Suppose pipelining cut-points are the same, but the other parameters are different.

In that case, the engines are reused when performing different mapping options in the

experiments to avoid the redundant overhead of building engines.

Note that the pipeline cut-point explorer uses the utilization value of GPU as a metric

to narrow down the search space. If a hardware platform provides a way to monitor the

processor utilization, the proposed heuristic can be adapted to the hardware platform

accordingly. Since we measure the performance by running the network on the hardware

platform directly, the same method can be applied.

3.5.2 Parameter Fine-tuner

The final step of parameter optimization is running the parameter fine-tuner module.

It finds the minimum number of pre-/post-processing threads, streams for each pipeline

stage, and buffers to reduce the hardware overhead while not hurting the performance.

Since the number of possible combinations of those parameters is huge, a greedy heuristic

is devised to explore the parameters effectively. We use a constraint that the number of

buffers must be greater than or equal to other optimization parameters.

The greedy heuristic consists of three steps. First, it increases the parameters one

by one to check whether the performance is improved or not by running JEDI with the

changed configurations. Even though we use the maximum parameter values obtained

in the parameter maximizer module that assumes mapping option E, we may improve

the performance by using larger values if a different mapping option is selected. If the

performance is improved, the fine-tuner sets the performance value as the best value. In

the second step, the fine-tuner reduces the values of all parameters one by one to get

the minimum parameter values while maintaining the performance as much as possible.

37

The percentage of allowable performance degradation is given as an input. Finally, the

number of streams assigned to GPU is adjusted while maintaining the total number of

streams in case two pipeline stages are mapped to GPU.

3.6 Experiments

3.6.1 Set-Up

All experiments were conducted on a Jetson AGX Xavier board with Jetpack 4.3 and

TensorRT 6. We used the tkDNN [41] library that makes TensorRT easy to use. Since it

does not support pipelining, however, we modified the library to create a separate infer-

ence engine for each pipeline stage. In addition, the experiments are conducted by using

a darknet-based network format except for the Section 3.6.6.3 which uses the ONNX

file format. Table 3.3 lists the benchmark networks supported by tkDNN; They are all

object detection networks. Since the DLA does not support leaky relu or mish activation

currently, we replaced those with relu activation and retrained the networks. If there is

any layer that the DLA does not support among the layers mapped to the DLA, the layer

is actually executed on the GPU, which is called GPU fallback. We set the maximum

frequency on the MAXN power mode, which does not limit the power budget. In the

pipelining heuristic, we use 5,000 test images to estimate the FPS of each candidate set

of cut-points. After the final configuration is determined, we perform each experiment

five times and get the average value.

Table 3.3 lists the object detection benchmark applications. Although most of the

networks are based on Yolo, the networks vary in accuracy and the number of layers.

Since the DLA does not support leaky relu or mish activation, we replace those with

relu activation and retrain the networks. All networks except Yolov4csp read and resize

images to 416x416 during pre-processing. For Yolov4csp, input images are converted to

letter box images rather than resizing that may distort the image.

38

Table 3.3: The labels and the number of layers of benchmark applications.

Network Label
of

layers

mAP (AP) mAP (AP50)
GPU DLA GPU DLA

FP16 INT8 FP16 INT8 FP16 INT8 FP16 INT8

Yolov2 [45] Y2 54 0.224 0.222 0.224 0.216 0.436 0.435 0.437 0.432
Yolov2tiny [45] Y2t 24 0.096 0.096 0.096 0.093 0.246 0.245 0.246 0.244

Yolov3 [46] Y3 179 0.286 0.289 0.286 0.270 0.506 0.515 0.506 0.511
Yolov3tiny [46] Y3t 35 0.133 0.133 0.133 0.127 0.312 0.310 0.312 0.308

Yolov4 [47] Y4 269 0.399 0.395 0.399 0.342 0.612 0.611 0.612 0.597
Yolov4tiny [47] Y4t 57 0.203 0.200 0.203 0.183 0.392 0.389 0.392 0.380
Yolvo4csp [48] Y4c 290 0.427 0.421 0.427 0.401 0.608 0.604 0.608 0.598
CSPNet [49] CN 228 0.359 0.359 0.359 0.332 0.586 0.588 0.586 0.585

Densenet+Yolo [50] DY 508 0.190 0.205 0.190 0.137 0.380 0.412 0.380 0.318

We used COCO2014 trainval data set and 416x416-size images for training all the

networks except Yolov4csp. Yolov4csp is trained with COCO2017 train data set and

512x512-size letter box images. The input image size for inference is 416x416, and

COCO2017 val is used for measuring the FPS performance and energy consumption.

We use CodaLab [51] to obtain the mean average precision (mAP) of networks with

COCO2017 test data set and check the accuracy of the networks which are converted

from their original activation to relu activation.

In Table 3.3, the AP50 is the mean average precision when the intersection over

union (IoU) threshold is 0.5, and the AP is the mean from AP50 to AP95. Even though

the mAP values are measured without pipelining on each processor, they are not affected

after pipelining is applied. As shown in Table 3.3, there is no significant mAP difference

between 16-bit floating-point (FP16) and 8-bit integer (INT8) precision except for one

case; In the case of Densenet+Yolo with INT8 precision on DLA, we could achieve no-

ticeably lower accuracy with INT8 precision. Nonetheless, we include this benchmark

to evaluate the complexity of the proposed technique since it is the largest benchmark

available.

39

0.90
1.10
1.30
1.50
1.70

Y2 Y2t Y3 Y3t Y4 Y4t Y4c CN DY

FP
S
R
A
T
IO

Option A Option B Option C Option D Option E Option PND-A Option PND-B

(a) FP16

0.90
1.10
1.30
1.50
1.70

Y2 Y2t Y3 Y3t Y4 Y4t Y4c CN DY

FP
S
R
A
T
IO

Option A Option B Option C Option D Option E Option PND-A Option PND-B

(b) INT8

Figure 3.8: FPS comparison among options on FP16 and INT8 precision

3.6.2 Design Space Exploration Results

The proposed optimization methodology is applied to each benchmark network.

First, we run the pipeline cut-point explorer with the global search for all mapping options

to find the best mapping option. Figure 3.8 displays the throughput ratio obtained by the

global search among difference mapping options for FP16 precision (Figure 3.8 (a)) and

INT8 precision (Figure 3.8 (b)). We compute the relative FPS ratio over the lowest FPS

for each network. Option E shows the least performance in large networks. However, for

light-weight networks which have a small number of layers with a short inference time,

option E outcomes the decent result or the best result even when using INT8 precision.

This is because the overhead caused by pipelining overshadows the benefits in such net-

works. The result of using INT8 precision shows this tendency more clearly since using

GPU only gives the best performance in light-weight networks.

It is observed that PND-A outperforms the other options for large networks except

for CSPNet. For CSPNet that uses grouped convolution in early layers, it is difficult to

balance the pipeline stages mapped to GPU and DLA because the execution time of a

grouped convolution layer is moved from the GPU to a DLA. To make matters worse,

40

Table 3.4: The search time and range of the network pipelining heuristic

Network
FP16 INT8

Search Time
(Hours)

Searched
tuples

Searched
design space (%)

Search Time
(Hours)

Searched
tuples

Searched
design space (%)

Y2 4.3 249 0.900 4.3 243 0.878
Y2t 2.1 178 6.910 1.8 172 6.677
Y3 8.2 223 0.023 7.0 260 0.027
Y3t 2.1 183 2.366 1.8 174 2.250
Y4 9.9 283 0.009 10.1 344 0.010
Y4t 4.0 294 0.906 2.6 214 0.659
Y4c 11.0 319 0.008 12.2 320 0.008
CN 12.1 308 0.015 16.0 424 0.021
DY 38.1 386 0.002 29.0 325 0.001

CSPNet has a very long residual path from one-third point to the end of the network,

which incurs a severe limitation to acquire feasible cut-point tuples. As a result, the per-

formance gain of CSPNet is relatively small compared with other large networks, and

the obtained throughput is not dependent on the number of DLAs used. Since option D

has four pipeline stages and selecting a competitive and feasible cut-point tuple is very

difficult, it gives a poor performance, unlike other large networks.

We examine the exploration complexity of the proposed methodology counting the

total number of explored tuples in the pipeline cut-point explorer module. Table 3.4 shows

the results with FP16 and INT8 precision, summing up the tuples explored during the

global search step and the tuples explored in the full search step for the best mapping

option. Note that each tuple is unique since we reuse the results when the same cut-

point tuple is explored in the search process. The table also shows the percentage of the

searched design space by the proposed heuristic. Since the design space of possible cut-

point tuples is huge, the proposed heuristic prunes the design space drastically so that the

searched design space takes a very small portion. For example, for Densenet+Yolo that

has 508 layers, we explore only 0.001% ∼ 0.002% of the total search space. Note that

the number of searched tuples is not exploding as the network size increases.

Note that there is no single best option for all networks and precision, and the FPS

performance varies up to 53% on FP16 precision and 60% on INT8 precision, depending

41

Table 3.5: Fine-tuned configurations of the selected cut-points from our methodology

Label
FP16 INT8

Option Cuts. Pre. Post. Buf. Streams Option Cuts. Pre. Post. Buf. Streams

Y2 PND-A 23 2 1 5 4,2 PND-A 16 4 1 7 4,2
Y2t PND-A 11 5 2 10 4,2 E - 6 3 18 2
Y3 PND-A 57 1 1 4 4,2 PND-A 59 2 1 8 4,2
Y3t PND-A 5 5 1 11 4,4 E - 6 2 20 5
Y4 PND-A 82 1 1 5 4,2 PND-A 87 2 1 8 4,2
Y4t PND-B 30,45 4 1 7 2,4,1 E - 6 1 12 4
Y4c PND-A 80 1 1 16 4,3 PND-A 88 2 2 18 4,4
CN C 30,35 1 1 5 2,2,3 PND-B 34,106 1 1 4 1,4,2
DY PND-A 95 1 1 4 4,2 PND-A 98 2 1 4 4,2

on which mapping option is used.

3.6.3 Parameter Fine-tuning Results

In this experiment, we fine-tuned the system-level optimization parameters after we

selected the best mapping option of each network. The best configuration of each network

for FP16 and INT8 precision is shown in Table 3.5. Option represents the mapping option

in Table 3.2. Cuts., Pre., Post., Buf. and Streams indicate the cut-point tuple, the number

of pre/post processing threads, and the number of buffer and streams, respectively. For

example, the best option for Yolov2 with FP16 precision is using the PND-A mapping

option that consists of two stages. The first stage is mapped to a DLA from layers #0

to #19, and the second stage is mapped to the GPU from layers #20 to the last layer. It

is noteworthy that the number of pre-processing threads and the number of buffers are

larger for INT8 precision than for FP16 precision. It is because that the inference time

becomes smaller if INT8 quantization is used. Also, light-weight networks use many pre-

processing threads in both precision types since the inference time is much shorter than

the pre-processing time.

42

3.6.4 Comparison with Other Methods

3.6.4.1 Comparison of Performance Results

We compared the performance results of the proposed methodology with the other

three methods. Two schemes, denoted as Base(D) and Base(G), are the default TensorRT

implementation where a single execution context is mapped to a DLA or GPU stream

without the CPU-GPU pipelining (pre-/post-processing pipelining), respectively. In the

case of Base(D), the layers that cannot be executed on the DLA are mapped to GPU auto-

matically by the GPU fallback. The profile-based method, denoted as Profiled, is a similar

method to the state-of-the-art approach of [12], which uses a genetic algorithm (GA) to

make the pipelining decision based on the per-layer profiled information. The execution

time of each layer on GPU could be profiled by using the TensorRT IProfiler. In the work

of [12], they estimated the layer-by-layer basis execution time on an NPU by multiply-

ing some multiple to the per-layer execution time on a GPU. Similarly, we estimated the

execution time on a DLA by weighting the GPU execution by the average performance

ratio between DLA and GPU based on the total inference time since layer-wise profiling

is not available on a DLA. We implemented the GA in which a chromosome consists of

genes that represent the mapping of layers to the processing elements. While the original

GA method of [12] does not limit the number of pipeline stages, we limit the number of

pipeline stages to 4. The profile-based method determines the pipeline cut-points only.

Hence we fine-tuned the optimization parameters similar to the proposed method.

Figures 3.9 and 3.10 show the performance comparison among four methods for

FP16 and INT8 precision, respectively. As shown in Fig. 3.9 (a) and Fig. 3.10 (a), the

profile-based method and the proposed method achieve significantly higher performance

than the baseline method since the pipelining and parallelization techniques are effective

for throughput improvement. The proposed method achieves the FPS performance im-

provement by 101% ∼ 680% over the baseline GPU. The proposed method gives higher

43

45 76 20 82 19 71 21 15 2274 91 50 10
2

45 10
3

41 40 44

24
5

61
4

11
9

56
8

10
0

51
6

12
0

67 94

29
5

70
1

12
8

72
9

12
4

59
8

14
1

80 11
8

0
200
400
600
800

Y2 Y2t Y3 Y3t Y4 Y4t Y4c CN DY

FP
S

Base(D) Base(G) Profiled Proposed

E
N
E
R
G
Y
 (
kJ

)

(a) FPS

0
1
2
3
4
5

Y2 Y2t Y3 Y3t Y4 Y4t Y4c CN DYE
N
E
R
G
Y
 (
kJ

)

Base(D) Base(G) Profiled Proposed

(b) Energy

0
200
400
600
800

Y2 Y2t Y3 Y3t Y4 Y4t Y4c CN DY

UT
ILI
ZA
TI
ON

 (%
)

Base(D) Base(G) Profiled Proposed

(c) CPU utilization

0
25
50
75
100

Y2 Y2t Y3 Y3t Y4 Y4t Y4c CN DYUT
ILI
ZA
TI
ON

 (%
)

Base(D) Base(G) Profiled Proposed

(d) GPU utilization

Figure 3.9: FPS, energy comparison, and CPU/GPU utilization among four methods
with FP16 precision

FPS performance than the profile-based method by up to 32%. It confirms the superiority

of the proposed technique over the profiling-based method that is popularly taken in the

previous work. The profile-based method and the proposed method give the same result

for Yolov2tiny and Yolov3tiny networks with INT8 precision since both methods select

the same mapping option E which uses the GPU only.

Figure 3.9 (b) and Fig. 3.10 (b) show the comparison results among the methods

in terms of energy consumption. Because the throughput obtained from the proposed

method is higher than the baseline, the energy consumption is reduced noticeably, up

to 55%, even though it consumes more power by using all processing elements. The

proposed method is also better than the profile-based method by up to 18%.

The CPU and GPU utilization results among four methods are shown in (c) and (d)

of Fig. 3.9 and Fig. 3.10. The profiled-based and proposed methods exploit both proces-

sors more effectively thanks to pipelining and parallelization than the baseline methods.

Note that the profile-based method of Yolov2 and Yolov3 with FP16 precision, and CSP-

Net with FP16 and INT8 precision show higher GPU utilization compared to the pro-

posed method because more layers are allocated to the GPU. In the case of Yolov2tiny

44

60 79 37 86 34 83 32 28 3290 96 67 11
0

59 10
8

49 63 61

44
0

74
9

19
3

83
3

16
3

68
6

18
5

13
3

18
5

50
2 74

9

22
2

83
3

21
6

81
0

23
3

14
7 23
0

0

300

600

900

Y2 Y2t Y3 Y3t Y4 Y4t Y4c CN DY

FP
S

Base(D) Base(G) Profiled Proposed

(a) FPS

0
1
2
3

Y2 Y2t Y3 Y3t Y4 Y4t Y4c CN DYE
N
E
R
G
Y
 (
kJ

)

Base(D) Base(G) Profiled Proposed

(b) Energy

0
200
400
600
800

Y2 Y2t Y3 Y3t Y4 Y4t Y4c CN DYUT
IL
IZ
AT
IO
N
(%
)

Base(D) Base(G) Profiled Proposed

(c) CPU utilization

0
25
50
75
100

Y2 Y2t Y3 Y3t Y4 Y4t Y4c CN DYUT
ILI
ZA
TI
ON

 (%
)

Base(D) Base(G) Profiled Proposed

(d) GPU utilization

Figure 3.10: FPS, energy comparison, and CPU/GPU utilization among four methods
with INT8 precision

with FP16 precision, the selected mapping option of the profile-based method only uses a

single DLA even though two DLAs are available in the Xavier. So the FPS of the profile-

based method is lower than the FPS of the proposed one even though the GPU utilization

of the profile-based method is much higher than the proposed method. Yolov2tiny with

FP16 precision, Yolov2tiny, Yolov3tiny, and Yolov4tiny with INT8 precision cannot fully

utilize the GPU since the CPU processing parts such as pre-/post-processing threads be-

come the bottleneck among the pipeline stages.

3.6.4.2 Comparison with an interleaved execution on different
processors without the pipelining

To use multiple processors simultaneously without partitioning the inference, it is

possible to run the image on different processors in an interleaved fashion. For each pro-

cessor, once the inference is complete, data is read from the buffer and the next image is

processed, increasing parallelism without pipelining. We compare the interleaved method

and the proposed method with INT8 precision for three networks: Yolov4, Yolov4csp, and

Densenet+Yolo.

45

Figure 3.11: Comparison with interleaved execution on different processors

Figure 3.11 shows the results of the experiment. The second item, Interleaved, is

the result when running the application in the interleaved fashion with three buffers and

three streams. This is because different processors need to have at least one stream. The

third one, Interleaved+Proposed, is the result of applying the pre- and post-processing

pipelining, multi-threading, and multiple execution contexts techniques as the proposed

method. The results are obtained by reducing the parameters from their maximum values

until there is no performance degradation.

The experimental results show that the interleaved method is more effective than

the baseline method. In addition, the experimental results of the Interleaved+Proposed

method are comparable to the proposed method that applies the proposed techniques

including the pipelining. However, the Interleaved+proposed method is not as effective

as the proposed method because not all layers could be executed in DLA due to GPU

fallback.

3.6.4.3 Comparison of using the solution obtained by the profile-
based method as the initial solution

Although the profile-based method does not show the best results, the solution ob-

tained by the profile-based method can be used as an initial solution of the proposed

heuristic. However, the profile-based method does not explore the solution by mapping

options, but rather determines the mapping layer by layer. Therefore, we experiment with

46

Table 3.6: FPS comparison of using the solution obtained by the profile-based method as
the initial solution

Network
Mapping

option
FPS

Using a random
initial solutions

Using the initial
solution by Profiled

Y4 A 101 101
Y4c C 134 134
DY B 103 100

the same mapping options as the mapping found by the profile-based method. We com-

pare the results of using the initial solution and the results of the heuristic starting with

a random solution. In this experiment, we use FP16 precision because the profile-based

method shows various mapping configurations in FP16 precision than in INT8 precision.

Table 3.6 shows the FPS comparison when the solution obtained by the profile-

based method is used as the initial solution. Both methods give similar results. Indeed,

both methods find the same mappings for the Yolov4 and the Yolov4csp. This confirms

that the heuristic is not much influenced by the initial solution.

3.6.4.4 Comparison with Other Exploration Methods

In this section, the proposed parameter optimization method is compared with two

other GA-based meta-heuristic methods among the four latest networks with INT8 preci-

sion. The first method is the comprehensive-GA method which searches all the parameters

proposed in this paper through a genetic algorithm at once. The range of the parameter

values such as pre-/post-processing thread numbers, the number of buffers, and stream

numbers are determined by the parameter maximizer that is shown in Fig. 3.6. The other

method is Fine-tuning-GA which uses a meta-heuristic for fine-tuning. The latter method

uses our heuristic to find the best mapping option and the cut-point tuples. Then, a GA-

based meta-heuristic is performed to find optimal fine-tuning parameters.

Comparison results are shown in Table 3.7. We compare the FPS, the number of

searched points, and the number of built engines. The FPS of all the methods is sim-

47

Table 3.7: Comparison of exploration methods

Label
Comp.-GA FT.-GA Proposed

FPS
Searched
points #

Built engines #
FPS

Searched points #
FPS

Searched points # Built engines #
GPU DLA Mapping Param. Mapping Param. GPU DLA

Y4 212 497 253 329 213 344 162 216 344 19 61 276
Y4t 808 1261 173 495 822 214 559 810 214 35 24 74
Y4c 232 1204 409 779 232 320 143 233 320 14 69 250
CN 148 335 171 220 147 424 161 147 424 15 85 270

ilar, meaning that all methods find near-optimal solutions successfully. The number of

searched points of fine-tuning-GA and the proposed method are divided into two parts:

Mapping, and Param. Mapping indicates the number of explored cut-point tuples during

the execution of the pipeline cut-point explorer, and Param is the number of tested param-

eter combinations to minimize the resource usage in the fine-tuning step. The proposed

method runs 88% ∼ 94% less searched points for parameter fine-tuning compared to the

fine-tuning-GA method. The total number of searched points is 27% ∼ 80% smaller than

that of the comprehensive-GA method except CSPNet network.

Built engines # is the number of built engines during exploration. The engine build-

ing time takes a significant portion of the overall exploration time. Since GPU engine

building time is much longer than DLA engine building time, building a small number

of GPU engines is helpful to reduce the exploration time. As shown in Table 3.7, our

proposed method builds fewer engines than the comprehensive-GA method. Because our

proposed method builds engines on sampled cut-points and limited cut-point locations

based on utilization, built engines are easily reused compared to the comprehensive-GA

method. In summary, the proposed method is efficient in exploring optimization parame-

ters compared to other meta-heuristic techniques.

3.6.5 Experiments with Varying Configurations

In the experiment above, the proposed methodology is applied for a given input

size and the batch size. In this experiment, we vary the input size and batch size. Four

48

Table 3.8: Comparison of the best result of reused cut-points from 416x416 and the re-
explored cut-points with our fast heuristic search

(a) Input size with 512 x 512 (Energy unit: J)

Label
Baseline

(512x512)
Reused cut-points

from 416x416
Re-explored cut-points

with fast heuristic search
Searched

tuples

Built
engines #

FPS Energy FPS Energy Option Cuts. FPS Energy GPU DLA

Y4 49 1897 143 1343 PND-A 72 155 1361 78 45 80
Y4t 91 658 576 346 E - 576 346 54 21 29
Y4c 40 1951 160 1225 PND-A 72 169 1250 54 34 58
CN 54 1806 110 1707 E - 113 1521 79 30 79

(b) Input size with 608 x 608 (Energy unit: J)

Label
Baseline

(608x608)
Reused cut-points

from 416x416
Re-explored cut-points

with fast heuristic search
Searched

tuples

Built
engines #

FPS Energy FPS Energy Option Cuts. FPS Energy GPU DLA

Y4 42 2544 100 1971 PND-A 72 106 1998 65 40 64
Y4t 78 826 415 482 E - 415 482 55 21 29
Y4c 34 2572 111 1794 PND-A 72 121 1795 54 34 58
CN 42 2544 77 2517 E - 78 2254 64 29 65

networks with INT8 precision are used for benchmarks: CSPNet, Yolov4, Yolov4tiny,

and Yolov4csp. We already obtained sub-optimal pipeline cut-point tuples of all mapping

options from Section 3.6.2. Instead of finding a sub-optimal cut-point tuple from scratch,

we reuse the obtained tuples as an initial cut-point tuple as explained in Section 3.5.1 and

set the internal variable K to 1 in Algorithm 2.

3.6.5.1 Scaling up Input Size

Since our proposed method provides a high FPS performance of a deep learning

application, a user may want to increase mAP by scaling up the image size. We conducted

the experiments while scaling up the image size to 512x512 and 608x608, as shown in

Table 3.8. The third main column shows the result when we reuse the best cut-points of

the previous experiment. The fine-tuning of other parameters except for the cut-points is

newly done. The results with reused cut-points still overwhelm the baseline in both FPS

and energy consumption metrics. The fourth main column shows the results with the

newly found cut-points from the proposed method with a fast search heuristic. We obtain

49

Table 3.9: Comparison of the best result of reused cut-points from batch 1 and the re-
explored cut-points with our fast heuristic search

(a) Batch size 4 (Energy unit: J)

Label
Baseline
(batch 4)

Reused cut-points
from batch 1

Re-explored cut-points
with fast heuristic search

Searched
tuples

Built
engines #

FPS Energy FPS Energy Option Cuts. FPS Energy GPU DLA

Y4 95 1196 221 906 PND-A 67 239 922 61 45 61
Y4t 255 341 894 236 E - 894 236 55 21 29
Y4c 85 1160 242 834 PND-A 72 268 827 53 35 57
CN 112 1103 170 1140 E - 175 1017 74 28 76

(b) Batch size 8 (Energy unit: J)

Label
Baseline
(batch 8)

Reused cut-points
from batch 1

Re-explored cut-points
with fast heuristic search

Searched
tuples

Built
engines #

FPS Energy FPS Energy Option Cuts. FPS Energy GPU DLA

Y4 115 1109 221 891 PND-A 65 241 918 85 51 82
Y4t 341 303 908 234 E - 908 234 55 21 29
Y4c 100 1089 245 820 PND-A 72 269 828 58 38 61
CN 127 1052 178 1107 E - 179 996 77 30 78

the higher FPS and similar energy consumption by finding new sub-optimal cut-points. In

addition, the number of searched tuples for finding sub-optimal cut-points is reduced by

74% ∼ 85% compared to the first exploration case, and the number of built engines is also

reduced by 63% ∼ 85%. This experiment proves that the changing image size may affect

the resultant configuration, and it is confirmed that reusing the pre-explored cut-points as

initial cut-points effectively reduces the search time in the proposed methodology.

3.6.5.2 Scaling up Batch Size

When multiple images come from multiple cameras, adjusting the batch size is a

popular way to improve the throughput performance. Table 3.9 shows the results with

increased batch sizes. Similar to the experiment of increasing the input size, we reused

the selected cut-points from batch 1 and conducted a re-exploration of cut-points with a

fast search heuristic. As displayed in the table, we could obtain higher FPS performance

and similar energy consumption by increasing the batch size. In addition, the number of

searched tuples for finding sub-optimal cut-points is reduced by 74% ∼ 83% compared

50

Table 3.10: Inference time comparison between baseline method and the found mapping
by the proposed method

Network
Base(G) Proposed

Inference time
(us)

Inference time
(us)

Communication
overhead (us)

Overhead ratio
(%)

Y4 8055 14570 392 2.69
Y4c 7550 13297 373 2.81
DY 8235 14108 203 1.44

to the first exploration case, and the number of built engines is also reduced by 60% ∼

85%.

3.6.6 Analysis and Discussion

3.6.6.1 Overhead of Partitioning inference

We examine the communication overhead of partitioning deep learning inference.

Table 3.10 shows the inference time comparison between the proposed method and the

baseline method with INT8 precision. The communication overhead is newly added time

due to the partitioning of the network. Since the overhead is relatively small compared to

the inference time, the partitioning inference is a reasonable way to improve the perfor-

mance.

Figure 3.12 shows gantt charts for two cases of the Yolov4 network. The first one

is the case when running on a single GPU without the pipelining, and another one is the

case when running with a found mapping by the proposed method. Since the DLA is

much slow processor than the GPU, the inference part on DLA (Infer1.) in Fig. 3.12 (b)

is longer than the entire inference of the baseline scheme in Fig. 3.12 (a). Nonetheless

the bottleneck is resolved as confirmed in the experimental results by various techniques,

such as PND, multi-threading, multiple execution context, and so on.

51

(a) When running on a single GPU without the pipelining

(b) When running with a found mapping by the proposed method

Figure 3.12: Gantt charts for different mappings of the Yolov4 network

Table 3.11: Inference time comparison between baseline and the found mapping by the
proposed method

Network Multiple Profiled (us) Measured (us) Difference ratio (%)

Y4 2.95 13436 14570 7.79
Y4c 2.76 12216 13297 8.13
DY 2.72 12855 14108 8.88

3.6.6.2 Difference from the Profile-based Method

Since per-layer profiling is not available for DLA, the profile-based method esti-

mates the layer-wise execution time on DLA by multiplying the ratio of GPU time to

DLA time by the per-layer time obtained for GPU. Although the experimental results

show that the profile-based method is worse than the proposed method that evaluates the

mapping by running on a device, it is necessary to check the difference with the profile-

based method.

Table 3.11 shows the comparison of the inference time between baseline and the

mapping found by the proposed method with INT8 precision. The multiple in the table

is the ratio to estimate per-layer execution time on DLA. The difference ratio is a ratio

of difference over measured time. The estimated inference time is shorter than the mea-

sured inference time. This can be a problem in the worst-case response time analysis

since the schedulability can be overestimated. In addition, Figure 3.13 displays the gantt

chart based on the estimated layer-wise execution time for a mapping found by the pro-

52

Figure 3.13: Gantt chart based on estimated layer-wise execution time for a found map-
ping by the proposed method

posed method. Compared to Fig. 3.12 (b), the difference on DLA is not negligible. This

shows the estimated layer-wise execution time is not accurate, and can be misleading for

mapping decision and analysis.

3.6.6.3 Supporting a Transformer Network

Transformer [52] is an emerging network with a complex structure. Transformer

has multiple matrix multiplication layers. Currently, commercially available embedded

boards have NPUs targeting CNNs, and these NPUs cannot perform matrix multiplication

layers. Therefore, the only processor that can run the transformer network is the GPU in

practical. From this point of view, it is difficult to apply the proposed techniques for

transformers in practice.

Since transformers are quite computationally intensive, networks are also being de-

veloped that reduce the computation. EfficientFormer [53] is a vision transformer that

replaces some layers with latency-friendly layers to run faster. This reduces the number

of layersm, such as matrix multiplication, so that parts of the network can be performed

in DLA. We try to check the viability of our proposed method for the transformer using

an EfficientFormer written in ONNX file format.

However, there are also other difficulties in applying proposed techniques to the

transformer. First, there is an internal error in TensorRT when trying to run a partitioned

network at arbitrary points. As TensorRT is a closed code, this error cannot currently be

resolved. The second issue is related to the GeLU activation in the EfficientFormer. The

GeLU operator is currently not a primitive operator on ONNX, the GeLU operator is

53

replaced by a combination of layers in ONNX. Some of these layers fall back to the GPU

when running through TensorRT. Since the number of DLA parts in TensorRT is limited,

this also implies that there are difficulties in applying proposed techniques.

In conclusion, the proposed techniques cannot be applied to transformer networks

due to limitations associated with NPUs. Nevertheless, the proposed techniques will still

be effective when NPUs that support operations of transformer become available, we

believe. We leave it as a future work.

54

Chapter 4

Optimization of Multiple Deep Learning
Applications under Real-time Constraints

4.1 Overview

In this chapter, we find mappings and frequencies of multiple deep learning appli-

cations while keeping deadline constraints and reducing energy consumption. NPUs and

SDKs introduce additional challenges that are not considered in systems consisting of

CPUs and GPUs only. To address these issues, we propose a three-step methodology.

First, we select Pareto-optimal mappings for each deep learning application. Then, we

find mapping combination for multiple applications among the mapping candidates se-

lected in the previous step. Finally, the frequency is tuned to reduce energy consumption.

The rest of this chapter is organized as follows. We review the related work to our

work in the next section. Afterward, we introduce the system model with a motivational

example and notation to clarify the problem in Section 4.3. After the proposed method-

ology is presented in Section 4.4, the experiment results are displayed in Section 4.5.

4.2 Related Work

This section reviews the related work in the following two subsections involved in

the proposed method: mapping/scheduling multiple applications and running multiple

55

DL applications.

4.2.1 Mapping and Scheduling Multiple Applications

Since the mapping and scheduling problem of multiple applications on multiple pro-

cessing elements (PEs) is known to be NP-hard [54], numerous sub-optimal techniques

have been proposed. They are classified into a design-time approach, run-time approach,

and a hybrid approach that combines the design-time analysis and run-time adaption [55].

In the design-time approach, it is assumed that all applications are running concur-

rently. If there is a dynamic variation of workload, the worst-case scenario is considered.

Earlier works used list scheduling heuristics, named BIL [56] and HEFT [57], to schedule

multiple applications onto heterogeneous processors. They assume that each application

is specified by a DAG, and the execution time of a node on each processor is known.

Kang et al. [58] proposed a two-phase optimization scheme for the mappings of mul-

tiple applications represented by SDF (Synchronous Dataflow) graphs [15]. They find a

Pareto-optimal set of static schedules for each graph via a genetic algorithm in the first

step, then explore the combination of per-graph schedules with the schedulability anal-

ysis with another genetic algorithm. Their two-step approach is similar to our proposed

technique, while their assumed hardware platforms are homogeneous processors.

If the workload varies at run time, the run-time approach is usually taken, aiming to

maximize the load balancing if there are no real-time constraints. Niknafs et al. [59] pro-

posed a mapping and scheduling method for incoming tasks. They optimize the energy

consumption with the mixed-integer linear programming formulation and the heuristic

while satisfying the deadline of tasks. Also, they investigated the effect of the work-

load prediction in terms of keeping the deadline and minimizing the energy consumption

while not discussing how workload prediction can be made. Khasanov et al. [60] pre-

sented a run-time management method for multi-threaded applications to reduce energy

consumption without deadline violation on a homogeneous multiprocessor system. They

56

introduced the multidimensional knapsack problem-based heuristic for fast scheduling.

Run-time techniques usually assume that the execution time of each application is known

as a priori. Donyanavard et al. [61] collect data through periodic sensing and predict the

performance and power based on the data. And they introduced a fast heuristic of run

time task allocation to reduce the energy consumption while retaining the throughput.

However, they did not consider real-time constraints.

To utilize the benefits of design-time approaches and run-time approaches, hybrid

methods have been studied extensively. Some researchers assume that the dynamic be-

havior of a system can be modeled as a finite set of scenarios and make a static schedule

for each scenario. Gheorgita et al. [62] introduced the concept of system scenarios and

proposed the methodology to reduce the energy consumption. They identified the sce-

nario and optimized the system per scenario at design time. At the run time, the scenario

is predicted, and the system is arranged with a pre-optimized setting. Schor et al. [63]

proposed a design flow for mapping applications on manycore systems representing the

dynamic scenario variation with an FSM which has a finite number of scenarios. Assum-

ing that the mappings are resident, they found a sub-optimal mapping for each scenario

by an evolutionary algorithm. It aims to minimize the maximum core utilization.

The other researchers find a set of static mappings for each application and find

an appropriate static mapping at run time depending on the scenario. Jung et al. [64]

specified the dynamic behavior of applications by the dataflow model and FSM. They

performed design-time analysis for each application subject to the number of processors.

At run time, the number of used processors is changed according to the state to satisfy

the throughput constraint. Quan et al. [65] proposed a scenario-based run-time mapping

algorithm on an MPSoC-based embedded system. After finding a set of mappings of each

application, they cluster workload scenarios and find the static mapping for each scenario.

Their method finds the critical task that hinders achieving the goal throughput of each

application and re-maps the task to fulfill the objective. Also, they expand their approach

57

Table 4.1: Comparison with the related works of running multiple deep learning applica-
tions

Works
Optimization

approach
Pipeline

Using
NPU

Schedulability
check

Experiment on
a real platform

Energy
awareness

NestDNN [67] Hybrid ✓ ✓
DeepEye [4] Hybrid ✓ ✓ ✓
S3DNN [8] Run △ ✓
DART [10] Design ✓ ✓ ✓

LaLaRAND [13] Run ✓ ✓ ✓
Pujol et al. [9] Design ✓ ✓ ✓

Kang et al. [12] Design ✓ ✓ ✓ ✓
Proposed Hybrid ✓ ✓ ✓ ✓ ✓

by adding a run-time throttling step that estimates the overhead of reconfiguration [66].

However, they evaluated the proposed technique with an in-house system level simulator,

not a real hardware platform.

To the best of our knowledge, there is no previous work that considered all technical

challenges identified in this work. Our proposed technique belongs to the hybrid approach

based on the finite set of scenarios similar to [63].

4.2.2 Running Multiple Deep Learning Applications

Research on the execution of multiple DL applications in embedded systems has

recently become active. Table 4.1 summarizes the comparison of some related works and

positions the proposed method.

NestDNN [67] presented a framework that schedules multiple DL applications con-

sidering run-time resource requirements. At design time, they created a multi-capacity

model consisting of models that provide a resource-accuracy trade-off for each applica-

tion. Then, they monitor the resource and select the proper model for each application at

run time. However, they did not exploit model-parallelism nor pipelining of each appli-

cation. DeepEye [4] proposed a wearable camera that is capable of running multiple DL

applications. They segregated layers into the computation- and memory-heavy layers at

design time. At run time, they interleaved the execution of layers of multiple applications

58

on a CPU-GPU heterogeneous system in a pipeline manner. It aims to reduce the la-

tency of inference while prolonging the battery lifetime. Although both hybrid schemes,

NestDNN [67] and DeepEye [4], considered the trade-off between energy and perfor-

mance, they did not consider the real-time requirements of applications.

S3DNN [8] introduced a run-time methodology that optimizes real-time correctness

while increasing the throughput for multiple deep neural networks (DNNs). Their method

selectively fuses multiple images to use fewer DNN instances and schedule instances to

GPUs with a least-slack-first (LSF) policy. In spite of using the deadline-aware schedul-

ing policy, it does not guarantee to keep the deadline. So, we put a triangle in the table

to mean the partial consideration of the schedulability. They did not exploit the model

parallelism of applications. DART [10] proposed a framework for multiple DNNs on a

CPU-GPU heterogeneous system. They mapped the layers of DNNs onto CPU and GPU

via a heuristic at design time. They ensured the schedulability of real-time applications

and increased the throughput of best-effort applications. Albeit they applied the admis-

sion control for new tasks at run time, it does not change the mappings. LaLaRand [13] is

a framework targeting a CPU-GPU heterogeneous system similar to DART. It allocates

layers to processors at run time, supporting dynamic layer-level quantization. The main

goal is to improve the schedulability of the system while minimizing the accuracy loss by

layer-level mapping and quantization. All these methods [4, 10, 13] exploit the temporal

parallelism of inference by pipelining in a CPU-GPU heterogeneous system. However,

their target platform does not contain an NPU that incurs several limitations in its usage.

Pujol et al. [9] and Kang et al. [12] presented the design-time method on a heteroge-

neous platform including NPU. The former implemented DL applications in Apollo [68]

on the Xavier board. They executed multiple networks while keeping the schedulability.

However, each neural network instance runs on a single type of processor in their method

without exploiting the model parallelism or pipelining. The latter, Kang et al. [12], uses

a GA technique to find per-layer mapping of multiple DL applications, aiming at mini-

59

(a) The patrol robot with
front, rear, and side-view
cameras

𝐴 = {𝑎𝑝𝑝0, 𝑎𝑝𝑝1, 𝑎𝑝𝑝2, 𝑎𝑝𝑝3}

𝐴𝑠𝑐0 = 𝑎𝑝𝑝0
𝐴𝑠𝑐1 = {𝑎𝑝𝑝0, 𝑎𝑝𝑝1, 𝑎𝑝𝑝2},

𝐴𝑠𝑐2 = {𝑎𝑝𝑝1, 𝑎𝑝𝑝2, 𝑎𝑝𝑝3},
𝐴𝑠𝑐3 = 𝑎𝑝𝑝3

𝑠𝑐0

𝑠𝑐1

𝑠𝑐2

𝑠𝑐3

(b) FSM-A: An example finite state machine of the patrol
robot

Figure 4.1: Motivational example: patrol robot

mizing the WCRT for each application and energy consumption. They assume that layer-

wise profiling information is given for all processing elements. Since it is not possible

for NPU, they estimated the execution time of a layer on NPU by multiplying the GPU

execution time and the average performance ratio between GPU and NPU. Unlike the

proposed technique, they do not consider the scenarios, assuming that all DL applications

run concurrently. Moreover, NPU is not used on a real platform in their experiments even

though they considered the NPU in the analysis. With these limitations, they could find

the mapping of all applications together at once. On the contrary, we propose a three-step

approach to consider scenarios and the technical challenges imposed by the NPU and its

SDK.

As displayed in Table 4.1, the mapping problem addressed in this work has not been

tackled by the previous work, to the best of our knowledge.

4.3 System Model

4.3.1 Motivational Example

Let us consider a patrol robot that explores a certain space, as shown in Fig. 4.1 (a).

The robot moves around and searches for objects around it. The robot has cameras on all

four sides: back and forth, left and right. It executes multiple object detection networks

to detect objects while moving. We assume that objects within a certain distance can be

60

detected by other means such as ultrasonic sensors. If an object is detected, we run an ob-

ject detection network to identify the object. It means that the number of object networks

may vary at run time. Such system behavior can be described by an FSM, as illustrated in

Fig. 4.1 (b). Each state has the applications to be executed. In the figure, each application

app0, app1, app2, and app3 denotes the application corresponding to each camera at

the front, left, right, and back, respectively. For instance, state sc1 indicates the state that

consists of applications app0, app1, and app2 running at the same time. In addition, each

inference has a deadline because its result is used as an input to determine the action of

the robot. Furthermore, the deadline constraint can vary depending on the speed of the

robot. If the robot moves faster, then the object detection should be finished earlier. It is

also important to reduce energy consumption since the robot is battery-powered.

In this paper, we propose a design methodology for running multiple deep learning

(DL) applications with real-time constraints on a heterogeneous processor system while

minimizing the energy consumption, to support this motivational example. Even though

we use an FSM to describe the dynamic system behavior, what is needed in the proposed

approach is how long the system stays and which applications are running in each state.

Thus we omit the explanation of how state transition occurs and which state is the initial

state. In this paper, we assume that the residence time of all states is the same for sim-

plicity. If the state transition probability is given, however, we will be able to compute

the relative residence time of all states. Since this computation is out of the scope of this

work, it is left as future work.

4.3.2 Notation

Notations used for system model and the problem definition are summarized in Ta-

ble 4.2.

Architecture Specification: The target platform has a set of heterogeneous PEs,

P E , and processor type proc can be one of CPU, GPU, and DLA. Each processor has a

61

Figure 4.2: Pipelining of the DL application

Table 4.2: Notations for system model and problem definition

Sign Description

P E A set of heterogeneous PEs
f reqproc A set of frequencies for processor type proc
| f req| The sum of all | f reqproc|
A A set of multiple DL applications
appi An application in A
Si A set of stages of appi
pi A period and relative deadline of appi
si

j A jth stage of appi

τ
i, j
k A kth task of si

j
|si

j| The number of tasks in si
j

P(si
j) and P(τi, j

k) A period of si
j and τ

i, j
k , respectively

Csi
j

and C
τ

i, j
k

The WCET of si
j and τ

i, j
k , respectively

SC A set of scenarios
sci A scenario in SC
Asci A set of applications to be run on sci

set of discrete frequencies: f reqCPU , f reqGPU , f reqDLA. We denote | f req| as the sum of

| f reqCPU |, | f reqGPU |, and | f reqDLA|.

Application Specification: We denote a given set of multiple DL applications as

A , and each application appi consists of layers. After pipelining decision is made, an

application appi can be represented by a tuple ⟨Si, pi⟩, where Si and pi are the set of

stages and the invocation period of appi, respectively. Stage si
j ∈ Si is a pipelining stage

of appi corresponding to the pre- or post-processing step or an inference part partitioned

to GPU or a DLA. The blue and green box in Fig. 4.2 illustrates two stages mapped to

a DLA and the GPU, respectively. The applications run periodically with the implicit

deadline assumption under which the period becomes the relative deadline.

Mapping and Scheduling Specification: A task is a unit used in the analysis. Since

62

the profiling granularity and the scheduling policy are different among processors, tasks

are defined differently depending on the mapped processor. For GPU, a task corresponds

to a kernel that may include one or more layers since TensorRT fuses layers to a single

kernel via layer fusion, as displayed with a purple box in Fig. 4.2. While per-kernel

profiling on the GPU is viable and each kernel runs in a non-preemptive way [69, 70],

per-kernel profiling is not provided for DLA. Hence, the pipeline stage mapped to a DLA

becomes a single task in the DLA (blue box in Fig. 4.2). The pre- or post-processing

of the inference is a preemptable task that is mapped on the CPU. Stage si
j consists of

one or more tasks, each of which is denoted by τ
i, j
k , and the number of tasks in the

stage is denoted by |si
j|. Note that the inference is sequentially executed due to the data

dependency between tasks [10], and the order of task execution in the GPU is set by

TensorRT [19]. Note that a DL application has a chain structure of tasks, which is also

assumed in [10, 13].

The period of a stage si
j or a task τ

i, j
k , denoted by P(si

j) or P(τi, j
k) respectively, is the

same as the period of an application, pi. In addition, Csi
j

and C
τ

i, j
k

represent the WCET

of stage si
j and task τ

i, j
k , respectively. We assume that the execution time of a task is

inversely proportional to the frequency of the mapped processor. The mapping decision

of appi is denoted as a function Map : Si → P E . A stage is a mapping unit, and it

can be mapped to a single PE. The tasks in the same stage are mapped to the same

PE. Data transfer overhead is considered since we measure the latency through direct

measurement, including the extra kernels added by TensorRT as depicted in Fig. 2.1.

Since the migration overhead is huge, the mapping decision is made statically and not

changed at run time.

Scenario Specification: A set of scenarios is specified as an FSM where a state

corresponds to a scenario. The set of states (scenarios) is represented as SC. Each scenario

sc ∈ SC consists of a set of applications to be run, Asc, which is a subset of A . For

example, in Fig. 4.1 (b), Asc1 consists of three applications, app0, app1, and app2. As

63

each scenario has a different behavior, the exploration is needed to be done per scenario.

4.3.3 Problem Formulation

The problem addressed in this paper can be defined as follows.

Input: All applications in A and the scenarios, represented by an FSM, are given as

input. The available frequency range of processors is already known at design time.

Constraints: The range of throughput constraints is given. For instance, it may be

needed to process 15 or 30 image frames per second(FPS), depending on the robot speed.

Since we assume the implicit deadline, the deadline constraint is inverse of the throughput

constraint1. There exist other constraints imposed by the NPU and its SDK, as described

in Chapter 1.

Objective: We aim to reduce the energy consumption of the system. If we do not

know how long it stays in each scenario at runtime, it is not feasible to estimate the actual

energy consumption. Thus, the average energy consumption over scenarios is used as

the objective function in the experiments. Note that the proposed methodology can be

applied with a different formula for expected energy consumption.

Output: The output of the design-time analysis is the mapping of stages in applica-

tions onto processors and the frequency of processors for each scenario and each deadline

constraint. In a real deployment, the output includes the measured energy consumption.

1We use throughput constraint (FPS) and deadline constraint interchangeably to indicate a real-time
constraint in this paper. For example, the throughput constraint of 30 FPS (frame per second) indicates the
deadline constraints of 33,333us.

64

Figure 4.3: Overall flow of the proposed mapping methodology

4.4 Proposed Optimization Methodology

As shown in Fig. 4.3, the proposed methodology consists of three steps explained in

this section.

4.4.1 Step 1: Finding Pareto-optimal Mapping Solutions for
Each Application

Because of the challenges imposed by the NPU and its SDK, we first determine the

Pareto-optimal mappings for each application instead of making the mapping decision

for all applications at once. We aim to simultaneously minimize the average end-to-end

latency and average power consumption of each processor via a genetic algorithm (GA).

Genetic algorithm is a widely used meta-heuristic inspired by evolutionary processes in

nature, where sub-optimal solutions are found iteratively, starting with randomly gener-

ated initial solutions. A solution of the problem is encoded as a chromosome, and the

objective function value, called fitness, of each solution is evaluated and compared in

each generation. Since there exist several GA solvers publicly available, it is used in the

current implementation of the proposed methodology. Other meta-heuristics can be used

as long as multiple objectives are supported.

Figure 4.4 illustrates the overview of this step. The GA gets the network as the

input and initializes multiple chromosomes or generates a given number of initial ran-

65

Figure 4.4: The overview of step 1

Table 4.3: Options for intra-network pipelining

Options # of pipeline stages Composition of PEs

A 2 DLA0 - GPU
B 3 GPU - DLA0 - GPU
C 3 DLA0 - DLA1 - GPU
D 4 GPU - DLA0 - DLA1 - GPU
E 1 GPU

dom solutions. After fitness evaluation, we select a set of chromosomes and create new

chromosomes (offspring) through evolutionary operations such as crossover and muta-

tion. This step is performed on the real board since the fitness evaluation is performed

by direct measurement of latency and average power consumption on the real hardware

platform.

The chromosome structure is shown on the right side of Fig. 4.4. The first three

genes indicate pipeline cut points, and the last gene specifies the mapping option. A cut-

point indicates the index of the last layer partitioned into a stage. For instance, the first

pipeline stage consists of the 0th layer through the 29th layer. We compare five pipelining

options that are listed in Table 4.3. Since the networks we used in this paper have some

layers that cannot be performed on a DLA at the last part of the network, the last stage

is assigned to GPU in all options. In options C and D, we distinguish two DLAs with

DLA0 and DLA1. In options B and D, the GPU is allocated two stages since the GPU has

more computation power than DLA. In the example, option C is chosen in which three

pipeline stages are mapped to DLA0, DLA1, and GPU, respectively, and two cut-points

are specified: the second pipeline stage covers from the 30th layer to 40th layer, and the

66

last pipeline stage starts from the 41st layer to the end of the network. A cut point value of

−1 means that there is no corresponding cut point. The maximum number of cut-points

is three for mapping option D. For mapping option E, no cut-point needs to be explored.

It is noteworthy that DLA0 and DLA1 can be switched in the mapping options depicted

in Table 4.3.

The proposed chromosome structure can be applied to other systems. For a given

hardware platform, it is needed to define the possible mapping options first and increase

the number of genes for pipeline cut-points up to the maximum number of pipeline stages

in the mapping options.

The number of possible cut-point combinations depends on the number of layers and

the number of pipeline stages. Since exhaustive exploration is very time-consuming, we

reduce the number of cut-points to explore by filtering out some cut points. We exclude

the cut points between the convolutional layer and its activation because the convolutional

layer and the next activation layer are fused in the TensorRT. If there are consecutive

layers that cannot be mapped to DLA, cut-points between them are also excluded.

For each Pareto-optimal solution, we estimate the WCET of each task on each pro-

cessing element with a measure-based method. For the CPU task (pre/post-processing

task), we measure the execution time using the POSIX time library. As for DLA, the

assigned stage is regarded as a single task, and its execution time is measured by aug-

menting the code segment at the start and the end of the DLA task. As explained above, a

GPU task corresponds to a kernel in the associated pipeline stage. The execution time of

a task (kernel) on GPU is measured by the TensorRT IProfiler. To estimate the WCET of

a task from measurements, we find the bigger value between the measured biggest value

and the value obtained by adding six times the standard deviation to the mean. The esti-

mated WCET of each task is saved in a database and used for the schedulability check

in the next step. In addition, the average power of processors and average-case execu-

tion time (ACET) for each mapping solution are also measured. This information is used

67

Figure 4.5: The overview of step 2

to calculate the fitness value in the next step. We use the maximum frequencies for all

processors in this step.

4.4.2 Step 2: Exploring the Mapping Combination

After Pareto-optimal mapping solutions for each application are determined, we find

a sub-optimal combination of individual mapping solutions of all applications and clock

frequencies of processors for scenarios. To find a sub-optimal combination, a GA and

two heuristics are devised, aiming to minimize the expected energy consumption.

The workflow of this step is described in Fig. 4.5, and the chromosome structure

of the GA is shown in the center of the figure. Each gene represents a mapping solution

index. In the example of Fig. 4.5, the mapping of the first application is the 36th mapping

among all Pareto-optimal mappings of the corresponding application. Since we cannot

change the mapping of an application dynamically due to the limitation of the SDK, the

selected mapping defined by a gene is fixed in all scenarios.

How to compute the fitness value of a chromosome is depicted in Algorithm 4.

First, it checks whether the number of tasks (stages) assigned to DLAs is more than

four (line 2). If it exceeds four, the maximum fitness value is assigned to indicate that

this chromosome cannot be a feasible solution. For a feasible solution, mapping stages to

PEs is determined by a heuristic (line 5). Note that the mapping solution of an application

does not say which DLA is used between two DLAs. Thus we devise a simple heuristic

to determine which DLA will be used for each application.

68

Algorithm 4 Pseudo code for chromosome evaluation
1: procedure EVALUATECHROMOSOME(chromosome)
2: Check the number of DLA mapped stages
3: if not executable on DLAs then
4: return MaxInt
5: end if
6: mappings = MapStageToPE(chromosome)
7: totalFitness = 0
8: for each scenario do
9: schedulable, fitness = SetFreq(scenario,mappings)

▷ Schedulability check and fitness calculation are done in this function
10: if not schedulable then
11: return MaxInt
12: end if
13: totalFitness += fitness
14: end for
15: return totalFitness / the number of scenarios
16: end procedure

Next, the schedulability test for each scenario is performed on each processor. How

to perform the schedulability test will be explained below in this section. Since the clock

frequency affects the execution time of each task on a mapped processor, we select the

frequencies of processors to minimize the energy consumption for each scenario while

satisfying the schedulability constraint (line 8). Note that this exploration is done per

scenario to cope with the different behavior of the scenarios. If no feasible schedule is

found in any scenario, the maximum fitness value is immediately returned to mark the

solution as infeasible. Otherwise, the average fitness value over all scenarios is returned.

4.4.2.1 Mapping Stages to PEs

The proposed heuristic for mapping stages to PEs is depicted in Algorithm 5. At

first, it parses the mapping option for each selected mapping of application (line 3). Then,

the neighbor application list is made for each application (line 4). The list of neighbor

applications of the target application consists of the applications that will be executed

simultaneously in some scenarios. We sort the applications in the decreasing order of

the maximum length of the DLA stage (task). Mapping is done in a round-robin fashion

using the mapping index on each processor (lines 5-16). If a stage is mapped to the CPU,

69

Algorithm 5 Pseudo code for mapping stages to PE
Input : AppList: the list of applications
▷ In the decreasing order of the max length of DLA stage (task)

Input : mappings: the table to save mapping info
1: procedure MAPSTAGETOPE(chromosome)
2: CPUIdx, DLAIdx = 0, 0
3: Parse mapping option of app ▷ Based on chromosome
4: nearAppList = MakeNeighborAppList()
5: for each app in AppList do
6: if app is already mapped then
7: continue
8: end if
9: for each stage do

10: if stage maps on CPU then
11: mappings[app][stage] = CPUIdx
12: CPUIdx = (CPUIdx + 1) % CPUCoreNum
13: else if stage maps on GPU then
14: mappings[app][stage] = 0 ▷ One GPU on the board
15: else stage maps on DLA
16: mappings[app][stage] = DLAIdx
17: DLAIdx = (DLAIdx + 1) % DLANum
18: end if
19: end for
20: for nearApp in nearAppList[App] do
21: Repeat the line 6 to 16 for nearApp
22: end for
23: end for
24: return mappings
25: end procedure

it is mapped to the indexed core of the CPU, and the index is incremented. In the case of

GPU, the mapping index is always zero since there is only one GPU in the target board. If

a stage is mapped to a DLA, two DLAs are alternatively mapped. Since the applications

are sorted based on the DLA workload, the heuristic aims to balance the workloads of two

DLAs available in the hardware platform. After the mapping for the current application

is complete, we map the neighbor applications in the same fashion (lines 17-18).

4.4.2.2 Frequency Decision

After the mapping of stages is settled, we determine the frequency of each processor.

Since the frequency affects the execution time, we perform the schedulability test for each

frequency combination. Since the number of frequency combinations is too large to be

70

Algorithm 6 Pseudo code for frequencies decision
Input : ProcList: the list of processors ▷ In the order of GPU, CPU, and DLA

1: procedure SETFREQ(scen,maps)
2: set frequencies for all processors (freqs) as maximum
3: i, schedulable, minSchedulable, minFitness = 0, False, False, MaxInt
4: Save curr freqs as the best freqs
5: for two iterations do
6: for each processor in ProcList do
7: set curr processor frequency as maximum
8: while True do
9: schedulable = checkScheduability(scen,maps,freqs)

10: if schedulable then
11: fitness = calculateFitness(scen,maps,freqs)
12: if fitness < minFitness then
13: save curr freqs as the best freqs
14: minFitness, minSchedulable = fitness, True
15: end if
16: else
17: if curr frequency is not the maximum then
18: Revert to the previous frequency
19: end if
20: break
21: end if
22: if curr frequency is the minimum frequency then
23: break
24: else
25: Set curr processor frequency one level down
26: end if
27: end while
28: end for
29: end for
30: return minSchedulable, minFitness
31: end procedure

explored exhaustively inside a GA, a heuristic is devised to explore the frequencies in a

greedy fashion as depicted in Algorithm 6. The initial frequency combination is set by

using the maximum frequency of each processor (line 2). Since the algorithm reduces

frequencies in a greedy way, we examine the reduction amount of power consumption

per each frequency change and determine the order based on the reduction amount. The

order turns out to be GPU, CPU, and DLA in the process of fitness calculation covered

in the next paragraph. We select the processor whose frequency is to be changed (line

6), starting from the maximum frequency (line 7), and check the schedulability with the

current frequency combination (line 9). If it passes the schedulability test, we calculate

71

the fitness value that is the expected energy consumption and save it if it is the minimum

fitness (lines 11-14). And we reduce the current processor’s frequency one level down

(line 22). If the schedulability test fails, we go back to the previous frequency (line 17).

We repeat this process until the frequency becomes the lowest one (lines 19-20). Then,

we select the next processor whose frequency is to be altered (line 6), starting from the

last schedulable frequency combination found so far. In the first iteration, we find the

lowest schedulable frequency in the order of GPU, CPU, and DLA in a greedy fashion.

In the next iteration, it searches the frequency range between the highest frequency and

the found frequency to check if the energy can be lowered with a higher frequency, again

in a greedy fashion.

4.4.2.3 Fitness Calculation

Fitness is defined as the average energy consumption for all scenarios in a given

period. We use the average value for all scenarios since we do not know which scenario

to stay how long. It can be applied differently if we have the probability information.

To estimate energy consumption, we first identify the relationship between the frequency

and power consumption for each processor by the regression analysis based on the mea-

surement. We consider both static and dynamic power consumption.

For the estimation of static power consumption, we change the frequencies over

an available range as displayed in Table 4.7 2. We estimate the static power on a fixed

frequency when no application runs, which is similar to the work of [72]3. So we figure

out the relation between frequency and static power by measuring the power after setting

the minimum and maximum frequencies to be equal.

For dynamic power estimation, we measure the average power consumption of each

application by varying the frequency of each processor. For the CPU and GPU, we use

2While the Xavier board allows a user to change the processor frequencies [71], the voltage is under the
direct control of the board power management firmware. Hence, we tune the processor frequencies only.

3The static power in this paper means the power when no application runs in the P-state. So, the static
power can be affected by the frequency.

72

the mapping option E. On the other hand, option A is used for DLAs with all mappable

layers for DLA. When changing the frequency of one processor, we set the frequencies

of the other processors to be maximum. Then, we obtain the relationship between the

frequency and dynamic power by subtracting the estimated static power from the mea-

sured total power. Such regression analysis is conducted individually for four benchmark

applications that are described in Table 4.4.

With the obtained relationship between the frequency and dynamic power, we esti-

mate the average dynamic power consumption of the given mapping at a given frequency.

The average power consumption of each processor on each mapping solution is measured

in step 1 with the maximum frequencies as explained in Section 4.4.1. We apply the rela-

tionship to estimate the dynamic power consumption of processors at the given frequen-

cies for a given mapping. The dynamic energy consumption is computed by multiplying

the computed dynamic power consumption and the average execution time. The aver-

age execution time is estimated to be inversely proportional to the frequency from the

profiled ACET. For static energy consumption, we multiply the estimated static power

consumption and the period. The estimated energy consumption is the sum of the static

and dynamic energy consumption.

4.4.2.4 Schedulability Analysis

For schedulability analysis, we estimate the worst-case response time (WCRT) for

each chain-structured DL application by tailoring the compositional performance analy-

sis [21]. If the sum of the WCRTs for each part of an application considering the jitter is

no greater than the deadline constraint, the deadline constraint is satisfied. We can assign

the distinct priority levels to the tasks mapped on the CPU, and the tasks are scheduled

by preemptive scheduling with a fixed priority. However, the tasks mapped on GPU or

DLA have the same priority.

The worst-case response time of a CPU task, τ
i, j
k ∈ si

j of appi, is bounded by equa-

73

tion (4.1) which is well-known for fixed-priority preemptive scheduling [73, 21]. The

WCRT of the task is the converged value of rm. The hp(τi, j
k) is a set of higher or equal

priority tasks that are mapped to the same PE with τ
i, j
k and belong to the other applica-

tions. For simple notation, τh indicates a task in hp(τi, j
k). Jτh is the jitter of the τh.

rm+1 =C
τ

i, j
k
+

∑
τh∈hp(τi, j

k)

⌈rm + Jτh

P(τh)
⌉ ·Cτh

where r0 =C
τ

i, j
k

(4.1)

In the case of GPU, the kernels within a stream are executed in a FIFO order, and

kernels are executed in a non-preemptive way [69, 70]. Since the priority of all GPU

tasks is equal, the WCRT may be over-estimated if we consider worst-case interference

from all tasks. Thanks to the chain structure of an deep learning application and the FIFO

scheduling policy of GPU, we can reduce the pessimism of the analysis. The worst-case

response time of stages mapped to the GPU can be calculated by the formula as shown

in equation (4.2).

r =Csi
j
+

∑
se∈ep(si

j)

Bsi
j,se (4.2)

In this formula, ep(si
j) means a set of stages that are mapped to the same PE with si

j

of appi and belong to the other applications. Bsi
j,se

represents the maximum interference

from stage se to si
j where se indicates a stage in ep(si

j). It is the maximum sum of WCETs

of as many successive tasks in se as min(|si
j|,(⌈

P(si
j)

P(se)
⌉+ 1) · |se|), which is likely to be

smaller than the entire WCET of stage se, Cse . Suppose that stage si
j consists of 7 kernels

(tasks), and the interfering stage se consists of 3 kernels. Since kernels in a stage are

queued sequentially, a kernel of an application can be interfered by at most one kernel of

74

the other application, thanks to the FIFO scheduling policy. Thus the maximum number

of interfering kernels cannot be more than the number of kernels in si
j, |si

j|. In case the

number of kernels in the interfering stage is smaller than |si
j|, we compute the maximum

possible number of interfering kernels by multiplying the number of kernels in the stage

and the number of interference, which is bounded by ⌈P(si
j)

P(se)
⌉+1. If stage se that has three

kernels can interrupt twice maximally, the six kernels may interfere the target stage si
j at

most. Then, the minimum value between |si
j| (= 7), and 2 · |se| (= 6) becomes the number

of kernels that may interfere.

Since the stage mapped to a DLA consists of a single task as explained in Sec-

tion 4.3, the schedulability test for a DLA also can be performed with equation (4.2).

The estimated worst-case response time of an application is the sum of the response time

of the stages considering the jitter. Since we assume implicit deadline constraints, the

estimated WCRT should be no greater than the period for each application.

4.4.2.5 Complexity Analysis

Since Algorithm 1 calls Algorithm 2 and Algorithm 3, we first investigate the com-

plexity of Algorithm 2 and Algorithm 3. First of all, we assume that the schedulability

analysis has a given time complexity, T (P E ,Asci), which is a function of processors and

applications. Even though the response time analysis is known as NP-Hard [74], it is

usually computed fast for the problem size assumed in this paper. In Algorithm 5, the

amount of computation is proportional to the number of all stages because the mapping

is determined in a round-robin manner so that its time complexity is O(Σi|Si|). Since it

uses a space for nearAppList, the space complexity is O(|A | · |A |+Σi|Si|).

Algorithm 3 has a nested loop of two levels. Since each loop runs at most the sum-

mation of the number of frequencies for each processor, the time complexity is O(| f reqs| ·

T (P E ,Asci)). The space complexity of Algorithm 3 is O(| f req|+Σi|Si|+ |P E |), includ-

ing the space for frequencies and processors. Since Algorithm 1 calls Algorithms 2 and

75

3 for each scenario, Algorithm 1 has the time complexity of O(|SC| · (Σi|Si|+ | f reqs| ·

T (P E ,Asc))) and the space complexity of O(| f req|+Σi|Si|+ |P E |+ |A | · |A |).

4.4.3 Step 3: Tuning Frequencies for Varying Deadline Con-
straints

While we consider the tightest deadline constraint in the previous step, the deadline

constraint can be loosened at run time if the robot moves slowly. It means that there

is a chance to use lower frequencies while satisfying the deadline constraint when the

deadline constraint is loosened. In the last step of the proposed methodology, we explore

the frequency combinations, varying the deadline constraints. We use the same heuristic

as Algorithm 6 for each deadline constraint. Since running the heuristic at run time incurs

non-negligible overhead, we sample the deadline constraints and construct a table that

contains the frequency combination for the sample deadline constraint. For example, if

the maximum deadline constraint is given as 30 FPS4, we define a set of discrete deadline

constraints and perform the heuristic at design time. At run time, we refer to the table to

get the frequency combination of the closest tighter deadline constraint than the actually

required deadline.

4.5 Experiments

4.5.1 Set-Up

The hardware platform used in the experiments is a Jetson AGX Xavier board with

Jetpack 4.3 and TensorRT 6. We use the tkDNN [41] library and JEDI framework to

deploy DL applications in a pipeline way on TensorRT easily. We use four deep learning

networks described in Table 4.4 as benchmark applications that are specified with tkDNN

and JEDI. Since the leaky relu activation is not supported on the DLA, we used the

4Since we assume the implicit deadline, the deadline constraint is inverse of the throughput constraint.
The higher FPS indicates the tighter deadline constraint.

76

networks, provided in JEDI, that replace leaky relu with relu. The COCO2017 val is used

for inference with an image size of 256x256 with FP16 precision, and the batch size

is set to one. In the target board, the power consumption is measured by the tegrastats

command.

For GA implementation, the DEAP [75] framework is used. In the first step of the

proposed method, the maximum evolution count is set to 20,000 and the population size

to 65. In each generation, two chromosomes are created as offspring of each survivor

through genetic operations such as uniform crossover, one-point mutation, and random

selection. We execute the GA on the target board since it requires running the network

to obtain the performance value by measurement. In the second step, we proceed up to

10,000 generations with 128 chromosomes in the population. The same operations in the

previous step are used except that Lexicase [76] is used for the selection operation. To

check the maximum achievable deadline constraint, we find the mappings from the lower

constraint, then use the found mapping as an initial solution for exploring the higher

constraints. In this step, the GA is run on a host computer that consists of Ubuntu 18.04.6

LTS, AMD Ryzen 9 3950X 16-Core Processor with 64GB RAM.

4.5.2 Finding Pareto-optimal Mappings of Each Application

As mentioned in Section 4.4.1, we filter out the cut points to reduce the design

space. Table 4.4 shows the number of layers and selected cut points for each network.

The number of candidate cut points is reduced to fewer than a half of the total number of

layers. The total number of cut-point combinations is calculated based on the mapping

options of Table 4.3. For example, in the case of Yolov2, it is calculated as follows:
(22

1

)
+(22

2

)
·2+

(22
3

)
+
(22

0

)
= 2025. The last column shows how many Pareto-optimal solutions

could be obtained by the proposed GA. The number of Pareto-optimal solutions is 0.2%

- 8.6% of total candidates.

77

Table 4.4: The benchmark networks and the volume of design space for step 1 to find the
Pareto-optimal mappings.

Network Layer #
Selected

cut-points #
Total

cand. #
Pareto
sol. #

Yolov2 [45] 54 22 2025 112
Yolov3 [46] 179 78 82161 158

Yolov2tiny [45] 24 10 221 19
Yolov3tiny [46] 35 10 221 14

Table 4.5: Information on three different system behaviors: which applications are per-
formed in each state

(a) FSM-B

State Applications (Asc)

sc0 app0
sc1 app3
sc2 app0, app1
sc3 app1, app3
sc4 app0, app2
sc5 app2, app3
sc6 app0, app1, app2
sc7 app1, app2, app3

(b) FSM-C

State Applications (Asc)

sc0 app0, app3
sc1 app0
sc2 app3
sc3 app0, app1
sc4 app1, app3
sc5 app0, app2
sc6 app2, app3
sc7 app1, app2

(c) FSM-D

State Applications (Asc)

sc0 app0
sc1 app0, app1
sc2 app0, app1, app2
sc3 app0, app1, app2, app3

4.5.3 Exploring Mapping Combination and Tuning Frequencies

In this experiment, we evaluate the second step of the proposed scheme with four

different system behaviors that are represented by FSMs. In addition to our motivational

example of Fig. 4.1 (b) denoted by FSM-A, Table 4.5 shows which applications are per-

formed in each state for other three FSMs. Since the transition of states does not affect

the result of the mapping, we omit the transition information between state.

FSM-B is an extended version of FSM-A with twice more scenarios. In FSM-C, the

maximum number of applications running concurrently is limited to two. Meanwhile,

the number of applications is increasing in FSM-D. The most important factor is the

78

maximum number of applications running concurrently since the schedulability test is

conducted in this step. We also conduct the experiments with two different combinations

of applications as denoted by cases α and β shown in Table 4.6. In the case of α, all

applications from app0 to app3 are the same network, Yolov2. We assign the priority of

tasks mapped to CPU in the following order: app0, app3, app1, app2. On the other hand,

the tasks mapped onto GPU or DLA have an equal priority. Although all applications are

assumed to have the same period in all experiments, the proposed method allows them to

have distinct periods.

We compare the proposed method with the following three methods.

• Local(LC): It allows dynamic task migration across the scenarios. We find the sub-

optimal mapping of applications for each scenario by a GA. However, it is not

feasible in practice since dynamic task migration is too costly in the target platform.

Nonetheless, this method serves as a decent indicator to check how close is the

proposed method to the ideal case.

• Baseline(BS): It is a typical case of running each deep learning application on a

single processing element, GPU. Since all applications have some layers that are

not supported by DLA, it uses only GPU in the inference, which corresponds to

option E in Table 4.3.

• Global(GB): It uses a GA to find a sub-optimal static mapping of all applications,

assuming that all applications are running concurrently, ignoring the scenarios. It

produces the same mapping for all system behaviors from FSM-A to FSM-D. The

frequency for each processor is set to the maximum without applying step 3.

• Work of [12] (SOTA): It also explores static mapping with maximum frequencies

ignoring scenarios similar to GB, but it uses the estimated layer-wise execution

times. After obtaining the mapping result from the SOTA method, we recalculate

the fitness and schedulability analysis with the actual execution times for fair com-

79

Table 4.6: Cases for a combination of applications in FSMs

Case app0 app1 app2 app3

α Yolov2 Yolov2 Yolov2 Yolov2
β Yolov2 Yolov2tiny Yolov3tiny Yolov3

Table 4.7: The frequency range used in the exploration

Processor Frequency range (MHz)

DLA
550.4, 640, 729.6, 806.4, 896,

972.8, 1062.4, 1152, 1228.8, 1395.2

GPU
675.75, 828.75, 905.25, 1032.75,
1198.5, 1236.75, 1338.75, 1377

CPU
1190.4, 1267.2, 1344, 1420.8, 1497.6, 1574.4, 1651.2,

1728, 1804.8, 1881.6, 2035.2, 2112, 2188.8, 2265.6

parison.

• Proposed(PR): It finds a static mapping combination tailored for each system be-

havior. It explores the design space with the objective to reduce the average energy

consumption by considering scenarios and constraints.

In this experiment, we make three comparisons. Firstly, we compare the tightest

deadline constraint that each method can support without schedulability violation. Also,

the comparison is made in terms of the fitness value. Then we evaluate the effect of

frequency tuning in terms of energy reduction. Lastly, we confirm the necessity of the

proposed heuristics compared with the exhaustive search in terms of speed.

4.5.3.1 Comparison of the maximum achievable FPS

Table 4.8 shows the maximum FPS that each method can achieve. In all FSMs ex-

cept for FSM-D, the PR method can satisfy the tighter deadline constraint (higher FPS)

than both BS and GB methods. The PR could satisfy 15% ∼ 86% tighter constraint com-

pared to the BS method, and up to 40% tighter constraint than the GB method. Since the

static mapping is determined by the worst-case scenario in the PR method and FSM-D

runs all applications in state SC4, PR and GB have the same FPS constraint for FSM-D.

80

Table 4.8: Comparison of the maximum achievable FPS among methods

Methods
Case α - FSMs Case β - FSMs

A B C D A B C D

LS 47 47 71 40 32 32 38 28
BS 32 32 44 24 21 21 33 15
GB 40 28

SOTA [12] 39 26
PR 47 47 56 40 32 32 38 28

Table 4.9: Mapping and frequency tuning result for FSM-A from the proposed method

(a) Mapping result for FSM-A when FPS constraints are 47 and 32 for cases α and β, respectively

Case α β

app0 D[0-29],G[30-53] D[0-29],D[30-40],G[41-53]
app1 D[0-29],G[30-53] D[0-16],G[17-23]
app2 D[0-29],G[30-53] D[0-16],G[17-34]
app3 D[0-29],G[30-53] G[0-178]

(b) Frequency (MHz) tuning example on SC3 of FSM-A for varying FPS constraints with the
same static mapping as (a)

Processor
Case α Case β

40 FPS 45 FPS 47 FPS 25 FPS 30 FPS 32 FPS

CPU 1574.4 2112.0 2265.6 1958.4 1651.2 1728.0
GPU 1032.75 1236.75 1338.75 1032.75 1338.75 1377.0

While comparison with BS confirms the advantage of utilizing heterogeneous processors,

comparison with GB confirms the advantage of considering the scenarios in the mapping

decision. The work of [12] shows slightly worse results than the GB method. When using

estimated time, the mappings obtained by [12] could satisfy 50 FPS and 32 FPS for each

case, respectively, but recalculation with the actual execution times shows different re-

sults. This is because the worst-case execution time could be underestimated when using

the estimated time so that an infeasible solution can be falsely classified as feasible.

The proposed method shows a similar result as LC except for FSM-C of case α. In

the LC method, DLA mapping can be changed for each scenario. Hence we can assign

a different DLA to each application when two applications are running in all scenarios

in FSM-C. On the other hand, two applications are mapped to the same DLA in some

81

scenarios in the PR method. In case β, the entire Yolov3 is mapped GPU since its exe-

cution time is much larger than the other networks and GPU is faster than DLAs. Since

GPU becomes the bottleneck in the schedulability check, the PR yields the same result

to the ideal one, LC. Comparison with LC proves the effectiveness of the proposed static

mapping technique.

Table 4.9 (a) shows a mapping decision example that the proposed method produces

for FSM-A. In the table, D[0-40], G[41-53] means that pipelining option A is taken,

layers #0 to #40 are mapped to DLA, and the rest are mapped to GPU. In case α, all

applications use the same mapping result since they are all Yolov2. In case β, however,

the selected options are different for applications: option C is used for app0 and option E

is used for app3 while option A is used for the others. It indicates that we need to explore

different mapping options for applications. Table 4.9 (b) describes how frequencies can

be changed as the deadline constraint varies at run-time after mapping decision is made

to achieve the maximum FPS as shown in Table 4.9 (a). The DLA frequency, which is not

shown in the table, turns out to be maximum at all times. It means that reducing the GPU

or the CPU frequency is better than reducing the DLA frequency in terms of average

energy consumption. Since the GPU consumes more power than the CPU, the proposed

heuristic tries to reduce the GPU frequency as much as possible while satisfying the

schedulability constraint. Since the CPU performs pre-processing and post-processing

tasks that have a linear dependency on the inference part, we may need to reduce the

CPU execution time by increasing the CPU frequency under a lower FPS constraint in

order to satisfy the constraint on the end-to-end worst-case response time. While the

GPU frequency decreases as the FPS constraint is loosened, there is no such tendency in

the CPU frequency. It explains why the CPU frequency increases as the FPS constraint

decreases from 30 FPS to 25 FPS for case β in Table 4.9 (b).

To evaluate the effectiveness of the proposed GA-based heuristic for the second step

of the proposed scheme, we find an optimal mapping of the GB method by exploring

82

Table 4.10: Throughput constraint (FPS) variation

Case FSM-A FSM-B FSM-C FSM-D

α 35, 40, 45 35, 40, 45 40, 45, 50 30, 35, 40
β 20, 25, 30 20, 25, 30 25, 30, 35 15, 20, 25

exhaustively the design space that is vast (1124 mappings for the case α). It is observed

that the resultant mapping is the same as found by the proposed GA heuristic. Since

only a few mappings can satisfy the deadline constraint, the proposed GA-based scheme

could find the optimal solution in our experiments, we believe. The proposed GA-based

heuristic explored much less design space. This experiment confirms the efficacy of the

proposed GA-based exploration method as the second step of the proposed methodology.

4.5.3.2 Frequency tuning effect

In this experiment, we examine the effect of frequency tuning as the deadline con-

straint varies at run time. For a given mapping, we visit each scenario to find the best

frequency combination of processors in terms of estimated energy consumption. Note

that we can obtain a higher FPS performance than that of Table 4.8 for the GB method

in case there is no scenario that runs all applications. With the given mapping obtained

from the GB method, we increase the throughput constraint until there is any scenario

that cannot meet the constraint. The modified maximum achievable FPS from the GB

method for each FSM turns out to be 45, 45, 51, and 40 FPS for case α, while it is the

same as PR in Table 4.8 for case β. It is still lower than the maximum achievable FPS

obtained from the PR method. We vary the deadline constraint as described in Table 4.10,

where the tightest constraint is determined by the GB method.

Figure 4.6 shows how the fitness ratio varies as the deadline constraint varies for

the FSM-A benchmark with cases α and β, respectively. The fitness value represents the

estimated energy consumption during the same time duration. The fitness ratio is the

relative fitness over the lowest value. The figure demonstrates the energy can be reduced

83

(a) case α (b) case β

Figure 4.6: Fitness ratio as the FPS constraint varies for FSM-A

(a) case α (b) case β

Figure 4.7: Average fitness ratio over the FPS constraint variation for all benchmarks

while satisfying the constraint by manipulating the frequencies. In addition, the difference

between the PR and both GB and SOTA methods is large, while the gap between PR and

LC methods is small. In this comparison, the GB method does not tune the frequency as

the constraint varies.

To study the effectiveness of frequency tuning, we propose an alternative method

which is a variant of the PR method. We apply the frequency tuning algorithm to the

resultant mapping obtained by the GB method, calling this method as PR-GB. Figure 4.7

shows the average fitness ratio of methods over the FPS constraint variation. In this figure,

the fitness ratio is the relative fitness over the fitness value of the PR method on each

bundle. While the difference between methods PR and GB is noticeable, PR and PR-GB

show almost no difference. Also, GB and SOTA methods give similar results. It means

84

Table 4.11: Average fitness evaluation time and end-to-end execution time during 50
generations in GA

Case α β

Method heuristic brute-force heuristic brute-force

Average fitness
evaluation time (sec)

FSM-A 1.41 46.13 2.28 61.00
FSM-B 3.44 99.76 5.07 131.78
FSM-C 3.08 87.30 3.98 118.78
FSM-D 1.68 57.08 3.30 87.21

Average
total time (sec)

FSM-A 317.66 13390.05 519.03 17405.57
FSM-B 1119.19 35457.24 1223.27 34586.12
FSM-C 1268.51 36095.17 726.65 23861.59
FSM-D 439.59 17972.25 867.07 27643.66

•

•

Figure 4.8: The run time management following scenarios

that the frequency adjustment is more important than the mapping decision for energy

reduction. In addition, the difference between the two proposed methods (PR and PR-GB

methods) and the ideal case (LC method) is smaller than the gap between the proposed

methods and both GB and SOTA methods.

4.5.3.3 Execution time for fitness evaluation

Since frequency tuning is a key issue for energy reduction, we explore the frequency

combination of processors in the fitness evaluation of each candidate mapping in step 2,

as explained in Section 4.4.2.2. Table 4.11 shows the average execution time for fitness

evaluation and the end-to-end time of the proposed method during 50 generations in

the proposed GA-based heuristic, compared with a brute-force exhaustive method. The

speedup by the heuristic is more than at least 26 times for fitness evaluation and 28 times

for end-to-end execution than the brute-force method. It is confirmed by experiments that

both schemes produce the same fitness value for the resultant mappings. It proves the

effectiveness of the proposed frequency selection heuristic.

85

(a) case α (b) case β

Figure 4.9: Average energy ratio over the FPS constraint variation, measured after real
deployment

4.5.4 Real Deployment

We apply the proposed methodology to run benchmark applications on the target

board. A run-time controller is implemented to control the execution status of applica-

tions according to the scenario, as illustrated in Figure 4.8. It consists of multiple threads

to communicate with the applications. In the experiment, a thread requests execution

of the associated application to process each input periodically and suspends itself until

the completion of the processing is informed. The communication overhead between the

controller and applications is considered in the latency estimation at the design time by

subtracting the overhead from the deadline at the design-time optimization. The commu-

nication overhead is set by the bigger value between the measured value and the value

that the mean plus six times the standard deviation. The frequencies are managed by the

controller for each scenario and each constraint. While we change the processor frequen-

cies, we set the frequency of the other components to the maximum. The controller runs

on a single dedicated core which is not used for DL applications. Note that the run-time

management itself is not a contribution of this paper.

In this experiment, we run applications on the target board during the same duration,

10 seconds, varying the scenarios for each mapping and frequency tuning result for each

deadline constraint. The energy consumption is calculated by multiplying the running

86

time and the average power consumption of the system that includes not only processors

but also the other components. We compare the PR, PR-GB, GB, and SOTA methods, ex-

cluding the LC method that is infeasible on a real platform. We perform each experiment

three times and get the average value. Figure 4.9 shows the measured average energy

consumption over the FPS variation for two cases α and β. The energy ratio indicates the

relative energy consumption over the lowest value on each bundle. In both cases, the gap

between PR and PR-GB is not noticeable, as expected by our estimation result. The pro-

posed methods could save the energy by 22% ∼ 31%, compared with the GB and SOTA

methods. Albeit the estimated energy saving (Fig. 4.7) is slightly higher than the actual

saving shown in Fig. 4.9, the difference is not significant. It confirms that the proposed

method effectively reduces energy consumption in a real hardware platform.

87

Chapter 5

Supporting Deep Learning Applications in a
Model-based Design Methodology

5.1 Overview

In this chapter, we decide mappings for both dataflow applications and deep learn-

ing applications. Since it is difficult to consider deep learning applications in traditional

model-based embedded software design methodology, we extend the model-based design

flow. First, we find Pareto-optimal mappings for each deep learning application, similar to

the previous chapter. Next, we find mappings for dataflow applications and deep learning

applications together by the heuristic and meta-heuristic.

The rest of the chapter is organized as follows. In Section 5.2, we review the related

work. After presenting a system model to clarify the problem in Section 5.3, the pro-

posed methodology is explained in Section 5.4. The experiment results are discussed in

Section 5.5.

5.2 Related work

We review the previous studies in the following three main subjects related to the

proposed methodology: mapping of multiple dataflow applications, mapping of deep

learning applications, and integrating deep learning applications into the model-based

88

design.

5.2.1 Mapping of Multiple Dataflow Applications

Since the mapping and scheduling of a dataflow graph onto a multiprocessor system

is an NP-hard problem [54], many approximate methods for finding the optimal solution

have been proposed such as heuristics based on list scheduling [56, 57, 56] explored map-

pings by heuristics, meta-heuristics using a genetic algorithm (GA) [77]. While most of

works focus on the mapping and scheduling of a single dataflow graph, only a few works

deal with the mapping of multiple dataflow graphs onto multiple processing elements, to

the best of our knowledge. In case there exist real-time constraints on dataflow applica-

tions, we need to check a mapping solution satisfies those constraints by schedulability

analysis for throughput constraint or worst-case response time analysis for latency con-

straint, which is recognized as a very challenging problem in real-time community [78].

A simple solution to avoid this difficulty is to map each dataflow graph onto a disjoint set

of processors, avoiding interference between applications on the same processor. Then,

we can map each dataflow separately onto the assigned processors.

Schor et al. [63] proposed an evolutionary algorithm to find a mapping to minimize

the maximum utilization. Kang et al. [58] proposed a two-step approach. In the first step,

they find a set of Pareto-optimal parallel schedules of each individual dataflow graph

using a multi-objective evolutionary algorithm. In the second step, another evolution-

ary algorithm is to used to find the best combination of Pareto-optimal solutions of all

dataflow graphs, aiming to minimize resource usage. For each mapping candidate, worst-

case response time analysis is performed to check if the deadline constraint is satisfied

for each dataflow graph.

89

5.2.2 Mapping of Multiple Deep Learning Applications

As deep learning applications are getting popular in embedded systems, extensive

studies have been conducted recently to find the optimal mapping of DL applications

specified by the associated SDK on a heterogeneous hardware platform. Xiang et el. [10]

partition deep neural networks (DNNs) into pipeline stages, and map stages to processing

elements by a heuristic. They focus on increasing the schedulability of multiple DNNs

by balancing the utilization among PEs. While early works, including [10], considered

CPU-GPU heterogeneous systems as the target hardware platform, recent works consider

the DL hardware accelerators, also called NPU (neural processing unit) [9, 12]. Pujol et

al. [9] consider an entire network as the mapping unit to a single PE without partitioning

to leverage the associated SDK with each PE, assuming that the number of DL applica-

tions is more than the processing elements. Kang et al. [12] explore the per-layer mapping

of DNNs with a GA, assuming that the layer-wise profiling information is given for each

DL application. Even though they considered NPUs in the mapping step, no experiment

with the NPU on a real hardware platform was made. Note that all works [9, 10, 12]

consider the mapping of multiple DL applications only without considering other tasks

running concurrently.

5.2.3 Integrating Deep Learning Applications into the Model-
based Design

Since supporting DL applications in the model-based design methodology is a re-

cent demand, there exist only a few previous studies that tackle this problem in the model-

based design methodology. The work of [17] introduces an extended SDF model, called

the SDF/L model, that specifies two types of loop structures explicitly and shows how

to specify a DL application with the SDF/L model. They leave it as future work on how

to perform task-mapping of the SDF/L graph, exploiting the data-level parallelism. Mi-

nakova et al. [11] transform a CNN (convolutional neural network) to an SDF graph and

90

find the mapping of SDF by using the genetic algorithm (GA). After the mapping deci-

sion is made, they translate the CNN network to a CSDF graph that is partitioned into

sub-graphs that are run on each processing element. In this work, a CNN network has

to be translated into two different models, the SDF model for mapping, and the CSDF

model for code generation and execution. Such translation requires considerable effort.

Since the translated SDF model has a wide range of sample rates, finding an optimal

mapping onto multiple processors itself is a challenging problem. Both works [17, 11]

do not consider the mapping exploration of multiple applications.

Recently, Jeong et al. [79] proposed a methodology based on the genetic algorithm

to explore the mappings for multiple dataflow graphs on CPU-GPU heterogeneous sys-

tem with a deep learning application. In their work, they assume that the mapping for

the deep learning application is fixed and find the mapping of dataflow graphs, aiming

to reduce the worst-case response time for each dataflow application. To the best of our

knowledge, the proposed method is the first approach that supports multiple deep learn-

ing applications running concurrently with other dataflow applications in a model-based

design methodology on a heterogeneous hardware platform, including NPUs.

5.3 System Model

5.3.1 Motivational Example

Figure 5.1 displays a motivational example where DL applications and dataflow

applications are running together. The Image processing application is represented by a

task graph that consists of eight tasks that process images. After processing the image, the

Det application gets the output data from the Image processing application and performs

object detection. The object detection network consists of many layers for inference in

addition to pre-/post-processing tasks. The example has four sets of such combinations

of a dataflow application and a deep learning (DL) application as shown in Figure 5.1. In

91

Figure 5.1: A motivational example

this research, we target the case where both deep learning applications and the dataflow

applications run simultaneously, like the motivational example.

5.3.2 Notation and Problem Definition

Architecture specification: The target hardware platform consists of heteroge-

neous processing elements (PEs), P E . In this work, three processor types are used in

the Xavier board: CPU, GPU, and DLA. And a set of PEs for each processor type is

represented as PEcpu, PEgpu, and PEdla, respectively.

Application specification: Two types of applications are distinguished. DL appli-

cations are specified by a DL SDK, TensorRT in this work, while other applications are

specified by a dataflow graph. We denote a given set of applications in each type as D and

A , respectively. As shown in Figure 5.1, an edge between two applications denotes the

data dependency between them. The connected applications form an application group,

denoted by Gi. Group Gi is defined by a tuple ⟨Ai,Di,E i, pi, pri⟩. Ai
j ∈ A and Di

k ∈ D are

applications that belong to group Gi. The last three elements indicate edges between ap-

plications, the invocation period, and the priority, respectively. There may exist multiple

groups, and the set of groups is denoted as G . A dataflow application Ai
j is characterized

by a tuple ⟨V i
j ,E

i
j⟩, where V i

j and E i
j represent the set of tasks and the set of edges be-

92

Figure 5.2: Task/Sub-task definition on the deep learning application specified by SDK

tween tasks, respectively. For the dataflow application, Ai
j, task τ

i, j
m is naturally defined

by the model. For instance, in Figure 5.1, the Image processing application consists of

eight tasks inside.

For a DL application Di
k, however, it is characterized by a tuple ⟨V i

k ,E
i
k⟩ only after

pipelining of the application is made, where V i
k is a set of tasks and E i

k is a set of edges

between tasks. How to pipeline a DL application is explained in the next section. After

pipelining decision is made, the DL application consists of multiple pipeline stages, each

of which is mapped to a PE. Figure 5.2 shows an example that has four pipeline stages

colored differently. Each pipeline stage is defined as a task for DL application, τ
i,k
n ∈V i

k .

For the task mapped to the GPU colored yellow, the SDK forms a set of kernels after

optimization. The purple box in the yellow GPU-mapped task represents a kernel that

merges two layers after layer fusion. Since a kernel is a unit of profiling, we define each

kernel as a sub-task in the GPU.

Since per-kernel profiling is not possible on a DLA, however, the entire set of layers

becomes a single task on a DLA. A DL application has a pre-processing task that feeds

input data to the inference body and a post-processing task that processes the output data.

Those tasks should be mapped to the CPU core. Note that a pipelined DL application

has a chain structure of tasks, which is also assumed in [10] since there is a dependency

between pipeline stages and the execution order of kernels is set by the SDK [19]. In

summary, a DL application consists of chain-structured tasks (τi,k
n ∈V i

k).

Scheduling specification: We denote the worst-case execution time (WCET) of

task τ
i,x
y as C(τi,x

y). The invocation period of task τ
i,x
y is denoted as P(τi,x

y), which is the

93

same as pi, the period of graph Gi. We assume that the graphs run periodically with

the implicit deadline assumption that the period becomes the relative deadline. Thus, the

deadline of group Gi is its period, pi. The average latency of a group Gi is represented

as L(Gi), and the execution time on each processing element pe ∈ P E is denoted by

ET (pe,Gi). Similarly, the latency of a DL application Di
k is denoted by L(Di

k). Mean-

while, R(Gi) indicates the worst-case response time (WCRT) of a group Gi, and it is nec-

essary to check whether the WCRT violates the deadline. The calculation of the WCRT

is explained in Section 5.4.2.3.

Even though a group is assigned a priority, pri, it is applicable only for the tasks

mapped on the CPU. Since there is no way to set the priority of a task on a DLA, tasks

mapped on a DLA are executed in the FIFO order. Even though there are two priority

levels in GPU, they are usually not used. Similar to DLAs, the GPU executes the mapped

tasks in the FIFO order.

We denote the set of mapped tasks on processing element pe ∈ P E as Map(pe).

Based on the mapped tasks on pe, we calculate the utilization of pe, U(pe), as∑
τ

i,x
y ∈Map(pe)(C(τi,x

y))/pi. In the proposed methodology, we choose Pareto-optimal map-

ping candidates, explained in the next section. The set of mapping candidates of Di
k is rep-

resented by Cand(Di
k) where Di

k ∈ D , and the x-th candidate is denoted by Cand(Di
k,x).

Table 5.1 summarized the notations in this work.

5.4 Proposed Methodology

Figure 5.3 (a) shows the traditional embedded software design flow based on the

dataflow model, which is explained in Section 2.5. To support a deep learning applica-

tions in the model-based design, we propose the extensions which is described in Fig-

ure 5.3 (b). In step 1, a set of Pareto-optimal mapping candidates for each DL application

is obtained independently and applied to the extended model-based design framework as

additional input information. In step 2, we try to find an optimal mapping of tasks by a

94

Table 5.1: Notations used in a system model

Notation Description

pe and P E A PE and a set of PEs (pe ∈ P E)
PEproc A set of PEs for processor type proc (Gi ∈ G)
Gi and G A group and a set of groups (Gi ∈ G)
Ai

j A dataflow application in Gi

Di
k A DL application in Gi

V i
x and E i

x A set of tasks and a set of edges in Ai
x or Di

x

τ
i,x
y A task in Ai

x or Di
x

C(τ
i,x
y) The WCET of τ

i,x
y

pi and pri A period and priority of Gi
L(Di

k) The average latency of Di
k

ET (pe,Gi) The execution time on pe when running Gi
R(Gi) The WCRT of Gi
Map(pe) A set of mapped tasks on pe
U(pe) The utilization of pe
Cand(Di

k) The mapping candidates of Di
k

meta-heuristic with a given set of objectives. For each DL application, we select a map-

ping candidate while we decide on the mapping of dataflow tasks simultaneously in this

step. The last step is to generate the target code for each processing element, which will

not be discussed in this work.

5.4.1 Step 1: Finding the Pareto-optimal Mapping Solutions of
Each Deep Learning Application

The problem addressed in this step is summarized as follows.

• Input: All deep learning applications in D are provided.

• Objective: We define multiple objectives to minimize the latency of each deep

learning application Di
k ∈ D and the execution time on GPU and DLA, which can

be described in Equation 5.1.

Minimize : (L(Di
k),ET (Di

k, pe))

where Di
k ∈ D, pe ∈ PEgpu and PEdla

(5.1)

95

Figure 5.3: Overall flow of the model-based embedded software design and the
proposed extension

• Problem: For each deep learning application Di
k ∈D , find all Pareto-optimal map-

ping candidates. i.e. mapping of Di
k: Di

k → Cand(Di
k).

• Output: The set of Pareto-optimal mappings of each deep learning application,

Cand(Di
k). A mapping candidate indicates how a DL application is partitioned into

pipeline stages and to which PEs the pipeline stages are mapped.

To solve this problem, the genetic algorithm is used in our implementation of the

proposed methodology, as there are publicly available GA optimizers that are well-

maintained. Other meta-heuristics that support multiple objectives can also be used.

Similar to the work in the previous chapter, we organize the mapping options as

shown in Table 5.2 when partitioning the object detection application, Det, in the moti-

vational example. For example, option C indicates the layers are partitioned into three

stages. The pre-/post-processing tasks are mapped to the CPU while the inference body

Table 5.2: Mapping options for pipelining of a DL application

Options # of stages Composition of PEs

A 2 DLA0 - GPU
B 3 GPU - DLA0 - GPU
C 3 DLA0 - DLA1 - GPU
D 4 GPU - DLA0 - DLA1 - GPU
E 1 GPU

96

is partitioned into three pipeline stages that are mapped to two DLAs and GPU, respec-

tively. Note that DLA0 and DLA1 are interchangeable without difference in terms of

performance. The last pipeline stage is mapped onto the GPU in all mapping options

since the last stage contains some layers that cannot be executed on a DLA. And no stage

is mapped to the CPU. Those restrictions imposed by TensorRT need to be considered in

the organization of the mapping options. It means that a set of mapping options may vary

depending on the DL applications and the hardware platform.

After mapping options are identified, mapping candidates of the DL application are

represented with the chromosome structure described in Figure 5.4 (a). The length of the

chromosome is decided by the maximum number of pipeline stages. Since the maximum

number of stages is four in Table 5.2, we set three genes for pipelining cut-points and one

gene for the mapping option. In the example of Figure 5.4 (a), layers #0 ∼ #23 and layers

#24 ∼ #144 are mapped to the GPU and DLA0, respectively, since the mapping option is

option B. And the rest of the layers are also mapped to GPU. If there is no corresponding

cut-point, the gene has a value of −1.

We define multiple objectives for GA fitness evaluation as described in Equa-

tion (5.1): end-to-end latency, the execution time on GPU, and the execution time on

DLA and find Pareto-optimal solutions as mapping candidates for each deep learning ap-

plication. We use the measured values as fitness values while running the network on a

real board for each mapping candidate. Analytical performance estimation is not feasible

because the layer-wise execution time could not be obtained for DLAs and the effect of

optimization techniques of TensorRT on the performance cannot be estimated.

Suppose that a mapping is selected for a DL application, Det. Then the DL ap-

plication can be transformed into a chain-structured task graph as shown in Figure 5.2.

The dependency between the Image processing application and Det remains by grafting

task Pre-processing to task cvtBGRtoNV12-1. Such graph transformation is necessary to

determine the mapping dataflow tasks and check the schedulability in the next step.

97

(a) Chromosome structure for step 1
(b) Chromosome structure for Heuristic+GA

method in step 2

(c) Chromosome structure for Entire-GA method in step 2

Figure 5.4: Chromosome structures: (a) for step1, (b) for Heuristic+GA method in
step2, and (c) for Entire-GA method in step2.

5.4.2 Step 2: Mapping Exploration

In this step, we determine the mapping of each DL application among Pareto-

optimal mapping candidates and the mapping of dataflow tasks onto PEs. The problem is

summarized as follows.

• Input: All dataflow applications in A and the set of Pareto-optimal mappings

candidates for each deep learning application, Cand(Di
k) where Di

k ∈ D .

• Constraint: The WCRT of group Gi should be less than or equal to its deadline,

period. i.e. R(Gi)≤ pi where∀Gi ∈ G .

• Objective: We aim to minimize the maximum utilization to balance the utilization

of PEs, Maxpe∈P E (Util(pe)).

Minimize : Maxpe∈P E (U(pe)) (5.2)

• Problem: Find the mapping of tasks τ
i, j
m to PEs, or τ

i, j
m → P E , in each dataflow

application Ai
j and select the mapping candidate of each deep learning applications.

98

Figure 5.5: Procedure of the proposed mapping exploration technique

For the selected mapping candidate, we decide the mapping to PEs of each selected

mapping candidate: Cand(Di
k,x)→ P E .

• Output: The mappings of dataflow applications and deep learning applications.

To solve this problem, we propose to use a GA algorithm. Since the execution time

of GA increases as the problem size grows, two methods are devised. In the first method,

denoted Heuristic+GA, we use a heuristic to determine the mapping of dataflow appli-

cations, while the GA decides the mapping of DL applications. A solution candidate is

represented by a chromosome whose structure is depicted in Figure 5.4 (b). Each gene

indicates the index of mapping candidates for each DL application. For example, 4 in-

dicates the 4-th mapping candidate belonging to the second application. It contains as

many genes as the number of DL applications. In the second method, denoted Entire-GA,

we use the GA to select the mapping of dataflow applications simultaneously with the

selection of the mapping of DL applications. The corresponding chromosome structure

is shown in Figure 5.4 (c). The chromosome is divided into two parts. The left part indi-

99

cates the index of mapping candidates for each DL application, same as the first method.

The right part indicates the mapping of dataflow tasks. For example, in the figure, the

gene of GPU means that the corresponding tasks are mapped to the GPU while others

are mapped to the specific core of the CPU.

Figure 5.5 shows the procedure of the proposed mapping exploration technique that

consists of four main steps in the evolving process. In the initialization phase, we generate

initial chromosomes randomly. Before entering into the evolving process, we first check if

the combination of mapping candidates is executable on the target platform. As explained

in Section 5.3, the number of DLA-mapped tasks is limited by the SDK1. If it violates the

constraint, then the chromosome is discarded by setting the fitness value to the maximum

value.

In the first step of the iteration, we perform mapping of DL applications to PEs. In

this step, we determine which DLA and which CPU core is used for each DL application.

After the mapping of DL application is determined, we use a heuristic to determine the

mapping of dataflow applications in the Heuristic+GA method. This step is skipped in the

Entire-GA method since the chromosome includes the mapping information of dataflow

applications.

After all mappings are decided, we check the schedulability of applications through

the worst-case response time analysis and compute the fitness value to select the dominant

species in the evolutionary process. With the selected dominant solutions, we perform GA

operations such as crossover and mutation, to define the next generation chromosomes.

Such an evolutionary process is repeated until no better solution, or chromosome, is found

during a given number of iterations.

Since the Entire-GA method explores a wider design space than the Heuristic+GA

method, it is likely to find a better solution, taking much longer time. We improve the

convergence speed of the Entire-GA method by using the mapping solutions found by

1In the version we used, the number of DLA-mapped tasks is limited to four.

100

the Heuristic+GA method as initial chromosomes. Using good initial chromosomes is

useful for better exploration [80]. If no mapping is found by the Heuristic+GA method

due to tight real-time constraint, we loosen the constraint to find solutions to obtain initial

chromosomes for the Entire-GA method.

5.4.2.1 Mapping DL Applications to PEs

The mapping option in Table 5.2 indicates the processor type, not a specific pro-

cessing element. For instance, we may use any DLA between two DLAs in the system

when mapping option A or B is taken. Similarly, the pre-/post-processing tasks of a DL

application can be mapped to any core in a multi-core CPU. To evaluate the fitness value

of a chromosome, we need to determine which PE to use for each DL application. Since

our objective is to balance the processor utilization, we use a simple scheme as follows:

First, we sort the mapped tasks on each processor in the decreasing order of profiled exe-

cution time. Next, we perform a greedy mapping of tasks to PEs in a round-robin fashion

starting from the longest task. For example, if there are three tasks mapped onto DLA,

they are mapped to DLA0, DLA1, and DLA0 in the order of the execution length if there

are two DLAs.

5.4.2.2 Mapping Dataflow Tasks by a Simple Heuristic

Algorithm 7 displays the pseudo-code of the proposed mapping heuristic for

dataflow tasks in the Heuristic+GA scheme. This heuristic is called for each chromosome

that indicates a candidate mapping combination of all DL applications. In other words,

we determine the mapping of dataflow tasks after the mapping of pipeline stages of all

DL applications onto processing elements is completed. Since mapping is performed for

each chromosome during the evolution process, we use a simple greedy heuristic, sacri-

ficing performance for faster execution speed. We first compute the PE utilization based

on the mapping result of DL applications (line 2). Next, we sort the dataflow tasks in

101

Algorithm 7 Pseudo code of mapping heuristic for dataflow tasks
1: procedure MAPMODELTASKS(chromosome)
2: utils = calculateCurrentUtil()
3: for each task in ordered task list do
4: minValue = MaxInt
5: for each mappable processor proc do
6: minPEUtil, core = getMinUtil(proc, utils)
7: value = getUtilIfMappedTo(task, proc, core)
8: if value < minValue then
9: minValue, minProc, minCore = value, proc, core

10: end if
11: end for
12: mappingInfo[task] = (minProc, minCore)
13: updateUtil(minValue, minProc, minCore)
14: end for
15: end procedure

the decreasing order of the maximum WCET value among the mappable processors and

determine the mapping in the sorted order (line 3). We find the PE with the minimum

utilization for each mappable processor (lines 5-6). And we compute the maximum uti-

lization among all PEs in the selected processor when the current task is mapped to the

corresponding PE (getUtilIfMappedTo function in line 7). To minimize the maximum

utilization, we select the PE with the minimum value and map the task to the PE (lines

8-10). Afterwards, the PE utilization is updated according to the mapping (line 11).

The time complexity of Algorithm 7 is O(|Vj| · |P E |) where |Vj| indicates the num-

ber of tasks for all dataflow applications and |P E | is the number of PEs. This is because

it checks the utilization of all PEs to find the PE with the lowest utilization for each task

to map. The space complexity is O(|Vj|+ |P E |) since the space to store the mapping

information of tasks and PE utilizations depends on the number of tasks and PEs.

5.4.2.3 Worst-case Response Time Analysis

For each group, the worst-case response time (WCRT) analysis is conducted and the

schedulability is checked by comparing the deadline constraint and the estimated WCRT.

We use a compositional performance analysis (CPA) to estimate the WCRT for each

group [21, 22]. In the CPA, the WCRT analysis is performed for each PE separately and

102

the dependency between tasks mapped to different PEs is modeled as an event stream that

is specified by a tuple (period, jitter, the minimum distance between two events). Starting

from the PE that the source task in a group is mapped to, WCRT analysis is performed

one PE at a time up to the PE where the last task in the group is mapped to, following the

task dependency. In case there exist multiple dependency paths in a group, we choose the

maximum WCRT of all paths as the WCRT of the group.

Since the scheduling policy of processors is not identical, we apply a different

WCRT analysis method for each processor type. For CPU that uses a fixed-priority pre-

emptive scheduling [73] scheme, we use a well-known response time analysis formulated

as follows:

rm+1 =C(τi,x
y)+

∑
τh∈hp(τi,x

y)

⌈rm + Jτh

P(τh)
⌉ ·C(τh)

where r0 =C
τ

i,x
y

(5.3)

Equation (5.3) estimates the WCRT of a task τ
i,x
y which is mapped to the CPU. Task

set hp(τi,x
y) is a set of higher or equal priority tasks that are mapped to the same PE with

task τ
i,x
y . Jτh is the jitter of task τh. The estimated WCRT of CPU task τ

i,x
y becomes the

converged value of rm.

In the GPU, the mapped tasks are executed in a FIFO order without preemption [69].

The WCRT of task τ
i,x
y mapped to the GPU can be computed by the following equation.

r =C(τi,x
y)+

∑
τe∈ep(τi,x

y)

Bτ
i,x
y

τe (5.4)

Task set ep(τi,x
y) indicates a set of tasks that are mapped to the same PE with τ

i,x
y .

Bτ
i,x
y

τe represents the maximum interference from task τe ∈ ep(τi,x
y) to the target task τ

i,x
y .

103

If τe is a dataflow task, the number of interference is bounded by ⌈P(τi,x
y)

P(τe)
⌉+ 1. If it is a

pipeline stage of another DL application, we need to consider the number of sub-tasks

in the task. Suppose task τ
i,x
y and τe are both pipeline stages that have five and two sub-

tasks, respectively. Sub-tasks in τ
i,x
y can be interfered at most five times since sub-tasks

are scheduled in the FIFO order. On the other hand, task τe can interfere with task τ
i,x
y

at most ⌈P(τi,x
y)

P(τe)
⌉+ 1 times. If the task τe can interfere with at most twice, four sub-tasks

(min(5,2 ·2)) in τe may interfere with task τ
i,x
y .

Equation (5.4) is also applied to DLA since the same non-preemptive scheduling

policy is used as the GPU. We check whether the estimated WCRT violates the given

deadline constraint. If the estimated WCRT is bigger than the deadline, the mapping

does not satisfy the schedulability constraint.

5.4.2.4 Fitness Calculation

As the objective function of GA in the second step, we aim to minimize the max-

imum PE utilization in order to balance the utilization of PEs, which is also taken in

the work of [63]. With this objective in mind, we define two types of fitness values as

described in Equation (5.5). One is the maximum utilization of each processing ele-

ment (Maxpe∈P E (U(pe)))) and the other is the maximum WCRT value of each group

(MaxGi∈G (R(Gi)). Since the implicit deadline constraint should be satisfied for each

group, by setting the latter fitness value, dominant solutions at each generation are more

likely to satisfy the deadline constraint. If the estimated WCRT does not satisfy the dead-

line constraint, the solution is not feasible. Based on the fitness values of each candidate

solution, we select the solution with the minimum value of the maximum utilization.

Minimize : (Maxpe∈P E (U(pe)),MaxGi∈G (R(Gi))) (5.5)

104

Table 5.3: Benchmark networks and the number of mapping candidates obtained by step
1

Subgraph Network # of layers # of selected candidates

Det1 Yolov4 [47] 269 51
Det2 Yolov2tiny [45] 24 14
Det3 Yolvo3tiny [46] 35 12
Det4 Yolov4csp [48] 290 65

Table 5.4: Mappable processors of tasks in dataflow applications

Tasks Processor Tasks Processor

ReadImage CPU cvt NV12 BGR-1 CPU,GPU
cvt BGR NV12 CPU,GPU Rescale-2 GPU
Rescale-1 GPU cvt NV12 BGR-2 CPU,GPU
Bilateral CPU,GPU SaveImage CPU

5.5 Experiments

5.5.1 Comparison with a Previous Work

As a preliminary experiment, we evaluate the approach taken by previous works,

which is to translate a DL application to a dataflow model. The work of [18] provides

an example in which a Resnet152 network [81] is specified by an extended SDF model,

called SDF/L. We implement the same network using TensorRT and compare both im-

plementations on the same target board. The pre-/post-processing parts are mapped to

the CPU, and other parts are mapped to GPU in both methods. It is observed that the

previous approach could achieve only 18 FPS (frame per second) performance while the

version of TensorRT achieves 81 FPS performance. It confirms that transforming a DL

application to a dataflow may suffer from significant performance loss if the same degree

of optimizations is not applied as TensorRT. In addition, model conversion takes a huge

amount of effort.

105

(a) Fitness (b) Exploration time

Figure 5.6: Comparison of three methods for the motivational example: Heuristic+GA,
Entire-GA, and Baseline

5.5.2 Set-up

Since there is no previous work that tackles the same mapping problem, we devise

a GA-based scheme by merging two recent previous works, [79] and the work of the

previous chapter, and take it as a baseline technique to compare, denoted by Baseline in

the experimental results. The former work is used to map multiple DL applications on

the target board first, and the latter is used to map dataflow tasks after DL application

mapping is completed. In contrast, two proposed methods, Heuristic+GA and Entire-GA

perform the mapping of DL applications and dataflow applications simultaneously.

We implement the GA meta-heuristic with the DEAP library [75]. The GA runs on

a host computer consisting of AMD Ryzen 9 3950X Processor. Experiments are made

with the aforementioned motivational example in Figure 5.1 and randomly generated

graphs. We conduct each experiment three times and get the average value to measure

the mapping exploration time and the best fitness value. The target system is the Xavier

board with Jetpack 4.6 and TensorRT 8.0.1. We reduce the available number of CPU

cores to four to observe the effect of resource contention between tasks on the CPU.

5.5.3 Experimental Results: Motivational Example

We profile the tasks with TensorRT IProfiler and POSIX time library. We set the

WCET of the task as the value obtained by adding six times the standard deviation to the

106

mean of the profiled execution times. We deploy four different DL networks as described

in Table 5.3, each of which corresponds to a Det in Figure 5.1. For example, Det4, which

is connected to Image processing4, is a Yolov4csp network in Figure 5.1. Also, we set the

priorities of application groups in the following order: G1(Image processing1 + Det1),

G4, G2, G3. The mappable processors of each task are described in Table 5.4.

Finding mapping candidates: The number of Pareto-optimal mappings selected

from step 1 for each DL application is shown in Table 5.3. In this step, we run the GA

with 65 chromosomes for 1000 iterations with uniform crossover, one-point mutation,

and Lexicase selection [76]. Multiplying those numbers for all DL applications defines

the design space size for selecting the mapping candidates in step 2.

Design space exploration: We vary the deadline constraint of all groups from 10

FPS to 25 FPS, assuming implicit deadlines2. In this experiment, we run the GA at most

100 iterations with 2048 chromosomes by making the GA terminate if there is no better

solution found in 10 iterations.

Figure 5.6 shows the relative fitness (maximum utilization) and exploration time

over the minimum value in each bundle. The lower value is better in the figure. For all

deadline constraints, the Entire-GA method shows the best results as shown in Figure 5.6

(a). Up to a deadline constraint of 20 FPS, the Heuristic+GA and Entire-GA methods

give a similar result. But with the deadline constraint of 25 FPS, Entire-GA gives better

results by a large margin. This is because the size of the design space for Heuristic+GA is

too narrow to find good solutions. The Baseline method could not find a feasible solution

at a tight deadline constraint of 25 FPS. Also, at lower deadline constraints, it shows 5%

∼ 7% worse fitness than Entire-GA. As for exploration time, the Heuristic+GA method

took the least amount of time to perform, as depicted in Figure 5.6 (b) since it explores

a smaller design space than the other methods. The Entire-GA method takes the longest

time as expected.

2Implicit deadline means the period is equal to the relative deadline. For example, 10 FPS means a
deadline of 100 milliseconds.

107

(a) Fitness (b) Exploration time

Figure 5.7: Comparison of three methods with four randomly generated dataflow appli-
cations.

(a) Fitness (b) Exploration time

Figure 5.8: Comparison of three methods with eight randomly generated dataflow appli-
cations.

Code generation: To check the viability of the proposed methodology, we syn-

thesize the target codes with a model-based design framework [18] and run them on

the target hardware platform. The sample of the motivational example is available on a

GitHub3.

5.5.4 Experimental Results: Randomly Generated Dataflow
Graphs

In this experiment, we randomly generate dataflow graphs by the SDF3 [82] while

using the same four DL applications as the motivational example. We assume that all

3https://github.com/cap-lab/HOPES/tree/master/HOPES_UI/schematics/
Test_Examples/ExternalTask/ImgProcessing.files

108

https://github.com/cap-lab/HOPES/tree/master/HOPES_UI/schematics/Test_Examples/ExternalTask/ImgProcessing.files
https://github.com/cap-lab/HOPES/tree/master/HOPES_UI/schematics/Test_Examples/ExternalTask/ImgProcessing.files

(a) Fitness (b) Exploration time

Figure 5.9: Comparison of three methods with sixteen randomly generated dataflow ap-
plications.

applications are independent. Each dataflow graph consists of 10 nodes. We vary the

number of dataflow graphs and the average WCET of the dataflow tasks. The average

WCET of dataflow tasks is inversely proportional to the number of graphs to make the

total workload of dataflow applications remain similar. It means that the average WCET

of dataflow tasks is four times larger with 4 dataflow graphs than that with 16 dataflow

graphs. In the case that the number of graphs is 16, the WCET of a dataflow task is

randomly set in the range of 10 ∼ 100us on the GPU, and 100 ∼ 500us on the CPU. And

we set a half of dataflow tasks can be run on GPU only. We make the average WCET of

CPU-mapped tasks be about five times of that of GPU-mapped tasks.

Figures 5.7-5.9 show the results of the experiment when the number of graphs is

4, 8, and 16, respectively. As expected, the Entire-GA method shows the best fitness.

The fitness gap between the Entire-GA method and the Heuristic+GA method tends to

increase as the deadline constraint is tightened. In some cases, the Heuristic+GA method

could not find a solution even when the Baseline method found a solution. But in most

cases when the Heuristic+GA method finds a solution, it finds a better solution than

the Baseline method. Hence these two methods are not dominating each other in terms of

fitness. When no solution could be found by the Heuristic+GA method when the deadline

constraint is 25 FPS, we loosened the constraint to 10 FPS and found the solution that is

used as the initial chromosome in the Entire-GA method.

109

As for the exploration time, the Heuristic+GA method takes the least time by more

than three times than the Entire-GA method. This experiment clearly demonstrates the

trade-off between two methods in terms of fitness and exploration time. And it also shows

that the proposed two methods are significantly better than the previous state-of-the-art

method which is the Baseline method.

110

Chapter 6

Conclusion and Future work

In this dissertation, we propose the system-level optimization methodology for a sin-

gle deep learning application as well as multiple deep learning applications. In addition,

we extend the model-based methodology to support deep learning applications.

For a single deep learning application, we introduce a novel framework, called JEDI,

for deep learning inference acceleration with TensorRT on NVIDIA Jetson embedded

platforms. The proposed framework allows users to exploit various types of parallelism,

including multi-threading, multiple streams, pipelining of the network, and partial net-

work duplication. Also, various optimization parameters can be configured in JEDI to

increase the throughput performance. In addition, we devise a novel method to efficiently

explore the huge design space consisting of optimization parameters. We apply two

heuristics to automatically explore the other optimization parameters. The JEDI frame-

work is used to obtain the performance by running the network on the real hardware

platform during the optimization process. The proposed framework and methodology are

evaluated with real-life object detection networks on a real hardware platform, NVIDIA

Jetson AGX Xavier. The proposed method achieves significant FPS performance im-

provement by 101% ∼ 680% and reduces the energy consumption up to 55% over the

baseline that uses the GPU only.

As for multiple deep learning applications, we propose a scenario-based mapping

111

methodology to run multiple deep learning applications on heterogeneous processors,

aiming to reduce energy consumption while satisfying the real-time constraints. The pro-

posed technique considers several technical challenges imposed by the use of NPU and

its associated SDK. The proposed method consists of three steps. In the first step, we

obtain the Pareto-optimal mappings for each application. In the second step, we seek

a sub-optimal mapping combination of applications, considering the scenarios and real-

time constraints. In the last step, we fine-tune the frequencies of processors if the deadline

constraint is loosened. The proposed method is confirmed by using real-life applications

with different scenarios. We could satisfy up to 40% higher deadline constraints and

reduce the energy consumption by 22% ∼ 31% compared to the state-of-the-art static

mapping methods with real-life applications and different scenarios on a real platform.

Lastly, we propose a novel technique to support deep learning applications in a

model-based embedded software design methodology leveraging the optimization ca-

pability of a deep learning SDK. We first find a set of Pareto-optimal mapping candi-

dates for each deep learning application, independently of the model-based design flow.

Adding the obtained mapping solution to the model-based design framework, we explore

the mapping of dataflow applications and the mapping candidates of deep learning appli-

cations together with the meta-heuristic. The viability and efficacy of the technique are

confirmed by experiments with a non-trivial real-life example and randomly generated

graphs. We could reduce at least 5% of the maximum utilization over the previous state-

of-the-art method that separates the mapping of deep learning applications and dataflow

applications. More importantly, the proposed technique could find a solution when the

previous method fails to find one.

While much of the research has been presented in this thesis, it is left to future work

to apply the proposed framework and methodologies to new hardware platforms, SDKs,

and applications that are continuously being developed. In the case of hardware platforms

and SDKs, Intel’s OpenVINO is one example. However, OpenVINO, which is an SDK

112

provided by Intel, does not support many layers like TensorRT on GPUs and ARM-based

processors, which are widely used in embedded systems. Therefore, we have not been

able to apply our proposed methodology using OpenVINO. In addition, as the trend of

deep neural networks changes from CNNs to transformers, it is necessary to develop a

methodology for transformers. However, commercially available NPUs do not currently

support the operations mainly used by transformers. Therefore, it is difficult to apply the

proposed methodology to transformers current.

However, we believe that the proposed methodology is still effective if platforms

and SDKs are continually developed and new NPUs supporting transformer networks

are released. In this process, the methodologies may need to be enhanced due to the

additional constraints imposed by new processors, associated SDK, and applications.

113

Bibliography

[1] Zirui Xu, Fuxun Yu, Chenchen Liu, and Xiang Chen. Reform: Static and dynamic

resource-aware dnn reconfiguration framework for mobile device. In Proceedings

of the 56th Annual Design Automation Conference 2019, pages 1–6, 2019.

[2] S Rallapalli, H Qiu, A Bency, S Karthikeyan, R Govindan, B Manjunath, and R Ur-

gaonkar. Are very deep neural networks feasible on mobile devices. IEEE Trans.

Circ. Syst. Video Technol, 2016.

[3] Loc N Huynh, Youngki Lee, and Rajesh Krishna Balan. Deepmon: Mobile gpu-

based deep learning framework for continuous vision applications. In Proceedings

of the 15th Annual International Conference on Mobile Systems, Applications, and

Services, pages 82–95, 2017.

[4] Akhil Mathur, Nicholas D Lane, Sourav Bhattacharya, Aidan Boran, Claudio For-

livesi, and Fahim Kawsar. Deepeye: Resource efficient local execution of multiple

deep vision models using wearable commodity hardware. In Proceedings of the

15th Annual International Conference on Mobile Systems, Applications, and Ser-

vices, pages 68–81, 2017.

[5] Duseok Kang, Euiseok Kim, Inpyo Bae, Bernhard Egger, and Soonhoi Ha. C-

good: C-code generation framework for optimized on-device deep learning. In 2018

IEEE/ACM International Conference on Computer-Aided Design (ICCAD), pages

1–8, 2018.

[6] Siqi Wang, Gayathri Ananthanarayanan, Yifan Zeng, Neeraj Goel, Anuj Pathania,

and Tulika Mitra. High-throughput cnn inference on embedded arm big. little mul-

ticore processors. IEEE Transactions on Computer-Aided Design of Integrated Cir-

cuits and Systems, 39(10):2254–2267, 2019.

[7] Linpeng Tang, Yida Wang, Theodore L Willke, and Kai Li. Scheduling com-

putation graphs of deep learning models on manycore cpus. arXiv preprint

arXiv:1807.09667, 2018.

114

[8] Husheng Zhou, Soroush Bateni, and Cong Liu. Sˆ 3dnn: Supervised streaming and

scheduling for gpu-accelerated real-time dnn workloads. In 2018 IEEE Real-Time

and Embedded Technology and Applications Symposium (RTAS), pages 190–201.

IEEE, 2018.

[9] Roger Pujol, Hamid Tabani, Leonidas Kosmidis, Enrico Mezzetti, Jaume

Abella Ferrer, and Francisco J Cazorla. Generating and exploiting deep learning

variants to increase heterogeneous resource utilization in the nvidia xavier. In 31st

Euromicro Conference on Real-Time Systems (ECRTS 2019), volume 23, 2019.

[10] Yecheng Xiang and Hyoseung Kim. Pipelined data-parallel cpu/gpu scheduling

for multi-dnn real-time inference. In 2019 IEEE Real-Time Systems Symposium

(RTSS), pages 392–405. IEEE, 2019.

[11] Svetlana Minakova, Erqian Tang, and Todor Stefanov. Combining task- and data-

level parallelism for high-throughput cnn inference on embedded cpus-gpus mp-

socs. In Alex Orailoglu, Matthias Jung, and Marc Reichenbach, editors, Embedded

Computer Systems: Architectures, Modeling, and Simulation, pages 18–35, Cham,

2020. Springer International Publishing.

[12] Duseok Kang, Jinwoo Oh, Jongwoo Choi, Youngmin Yi, and Soonhoi Ha. Schedul-

ing of deep learning applications onto heterogeneous processors in an embedded

device. IEEE Access, 8:43980–43991, 2020.

[13] Woosung Kang et al. Lalarand: Flexible layer-by-layer cpu/gpu scheduling for real-

time dnn tasks. In Proceedings of the RTSS, 2021.

[14] Soonhoi Ha and Hyunok Oh. Decidable dataflow models for signal processing:

Synchronous dataflow and its extensions. Handbook of Signal Processing Systems,

pages 1083–1109, 2013.

[15] Edward A Lee and David G Messerschmitt. Synchronous data flow. Proceedings

of the IEEE, 75(9), 1987.

[16] Greet Bilsen et al. Cycle-static dataflow. IEEE Transactions on signal processing,

44(2):397–408, 1996.

[17] Hyesun Hong, Hyunok Oh, and Soonhoi Ha. Hierarchical dataflow modeling of

iterative applications. In Proceedings of the 54th Annual Design Automation Con-

ference 2017, pages 1–6, 2017.

115

[18] Eunjin Jeong, Dowhan Jeong, and Soonhoi Ha. Dataflow model–based software

synthesis framework for parallel and distributed embedded systems. ACM Transac-

tions on Design Automation of Electronic Systems (TODAES), 26(5):1–38, 2021.

[19] NVIDIA TensorRT. https://developer.nvidia.com/tensorrt/,

2023. [Online; accessed 02-June-2023].

[20] Sourabh Katoch, Sumit Singh Chauhan, and Vijay Kumar. A review on genetic

algorithm: past, present, and future. Multimedia Tools and Applications, 80:8091–

8126, 2021.

[21] JC Palencia Gutiérrez, JJ Gutiérrez Garcı́a, and M González Harbour. On the

schedulability analysis for distributed hard real-time systems. In Proceedings Ninth

Euromicro Workshop on Real Time Systems, pages 136–143. IEEE, 1997.

[22] Marek Jersak. Compositional performance analysis for complex embedded appli-

cations. PhD thesis, Braunschweig, Techn. Univ., 2005.

[23] David Harel and Michal Politi. Modeling reactive systems with statecharts: the

STATEMATE approach. McGraw-Hill, Inc., 1998.

[24] Rajesh Devaraj, Arnab Sarkar, and Santosh Biswas. Supervisory control approach

and its symbolic computation for power-aware rt scheduling. IEEE Transactions on

Industrial Informatics, 15(2):787–799, 2018.

[25] Jeronimo Castrillon et al. Maps: Mapping concurrent dataflow applications to het-

erogeneous mpsocs. IEEE Transactions on Industrial Informatics, 9(1):527–545,

2011.

[26] M. Pelcat et al. Preesm: A dataflow-based rapid prototyping framework for sim-

plifying multicore dsp programming. In Education and Research Conference (ED-

ERC), 2014 6th European Embedded Design in, pages 36–40, Sept 2014.

[27] Joseph Buck et al. Ptolemy: A framework for simulating and prototyping heteroge-

neous systems. In Readings in hardware/software co-design, pages 527–543. 2001.

[28] Claudius Ptolemaeus. System design, modeling, and simulation: using Ptolemy II,

volume 1. Ptolemy. org Berkeley, 2014.

[29] Rajesh Devaraj and Arnab Sarkar. Resource-optimal fault-tolerant scheduler de-

sign for task graphs using supervisory control. IEEE Transactions on Industrial

Informatics, 17(11):7325–7337, 2020.

116

https://developer.nvidia.com/tensorrt/

[30] Martı́n Abadi et al. Tensorflow: A system for large-scale machine learning. In

ODSI, 2016.

[31] Yangqing Jia, Evan Shelhamer, Jeff Donahue, Sergey Karayev, Jonathan Long,

Ross B. Girshick, Sergio Guadarrama, and Trevor Darrell. Caffe: Convolutional

architecture for fast feature embedding. CoRR, abs/1408.5093, 2014.

[32] Adam Paszke et al. Pytorch: An imperative style, high-performance deep learning

library. In NIPS. 2019.

[33] Joseph Redmon. Darknet: Open source neural networks in c. http://

pjreddie.com/darknet/, 2013–2016.

[34] Google TensorFlow Lite. https://www.tensorflow.org/lite/, 2023.

[Online; accessed 02-June-2023].

[35] Gopalakrishna Hegde, Siddhartha, Nachiappan Ramasamy, and Nachiket Kapre.

Caffepresso: An optimized library for deep learning on embedded accelerator-based

platforms. In 2016 International Conference on Compliers, Architectures, and

Sythesis of Embedded Systems (CASES), pages 1–10, 2016.

[36] Tianqi Chen, Thierry Moreau, Ziheng Jiang, Lianmin Zheng, Eddie Yan, Haichen

Shen, Meghan Cowan, Leyuan Wang, Yuwei Hu, Luis Ceze, et al. {TVM}: An

automated end-to-end optimizing compiler for deep learning. In 13th {USENIX}
Symposium on Operating Systems Design and Implementation ({OSDI} 18), pages

578–594, 2018.

[37] Seyyed Salar Latifi Oskouei, Hossein Golestani, Matin Hashemi, and Soheil Ghiasi.

Cnndroid: Gpu-accelerated execution of trained deep convolutional neural networks

on android. In Proceedings of the 24th ACM international conference on Multime-

dia, pages 1201–1205, 2016.

[38] Nicholas D. Lane, Sourav Bhattacharya, Petko Georgiev, Claudio Forlivesi, Lei

Jiao, Lorena Qendro, and Fahim Kawsar. Deepx: A software accelerator for low-

power deep learning inference on mobile devices. In 2016 15th ACM/IEEE Inter-

national Conference on Information Processing in Sensor Networks (IPSN), pages

1–12, 2016.

[39] Azalia Mirhoseini, Anna Goldie, Hieu Pham, Benoit Steiner, Quoc V Le, and Jeff

Dean. A hierarchical model for device placement. In International Conference on

Learning Representations, 2018.

117

http://pjreddie.com/darknet/
http://pjreddie.com/darknet/
https://www.tensorflow.org/lite/

[40] Duseok Kang, DongHyun Kang, Jintaek Kang, Sungjoo Yoo, and Soonhoi Ha. Joint

optimization of speed, accuracy, and energy for embedded image recognition sys-

tems. In 2018 Design, Automation Test in Europe Conference Exhibition (DATE),

pages 715–720, 2018.

[41] Micaela Verucchi, Gianluca Brilli, Davide Sapienza, Mattia Verasani, Marco Arena,

Francesco Gatti, Alessandro Capotondi, Roberto Cavicchioli, Marko Bertogna, and

Marco Solieri. A systematic assessment of embedded neural networks for object

detection. In 2020 25th IEEE International Conference on Emerging Technologies

and Factory Automation (ETFA), volume 1, pages 937–944. IEEE, 2020.

[42] ONNX. https://github.com/onnx/onnx, 2023. [Online; accessed 02-

June-2023].

[43] NVIDIA Ploygraphy. https://docs.nvidia.com/deeplearning/

tensorrt/polygraphy/docs/index.html, 2023. [Online; accessed 02-

June-2023].

[44] Martin Fowler. Patterns of Enterprise Application Architecture: Pattern Enterpr

Applica Arch. Addison-Wesley, 2012.

[45] Joseph Redmon and Ali Farhadi. Yolo9000: better, faster, stronger. In Proceedings

of the IEEE conference on computer vision and pattern recognition, pages 7263–

7271, 2017.

[46] Joseph Redmon and Ali Farhadi. Yolov3: An incremental improvement. arXiv

preprint arXiv:1804.02767, 2018.

[47] Alexey Bochkovskiy, Chien-Yao Wang, and Hong-Yuan Mark Liao. Yolov4: Opti-

mal speed and accuracy of object detection. CoRR, abs/2004.10934, 2020.

[48] Chien-Yao Wang, Alexey Bochkovskiy, and Hong-Yuan Mark Liao. Scaled-yolov4:

Scaling cross stage partial network. In Proceedings of the IEEE/CVF Conference

on Computer Vision and Pattern Recognition, pages 13029–13038, 2021.

[49] Chien-Yao Wang, Hong-Yuan Mark Liao, Yueh-Hua Wu, Ping-Yang Chen, Jun-

Wei Hsieh, and I-Hau Yeh. Cspnet: A new backbone that can enhance learning

capability of cnn. In Proceedings of the IEEE/CVF conference on computer vision

and pattern recognition workshops, pages 390–391, 2020.

[50] Densenet201+Yolo. https://github.com/AlexeyAB/darknet/, 2020.

[Online; accessed 01-July-2021].

118

https://github.com/onnx/onnx
https://docs.nvidia.com/deeplearning/tensorrt/polygraphy/docs/index.html
https://docs.nvidia.com/deeplearning/tensorrt/polygraphy/docs/index.html
https://github.com/AlexeyAB/darknet/

[51] CodaLab. https://competitions.codalab.org/, 2023. [Online; ac-

cessed 02-June-2023].

[52] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones,

Aidan N Gomez, Łukasz Kaiser, and Illia Polosukhin. Attention is all you need.

Advances in neural information processing systems, 30, 2017.

[53] Yanyu Li, Geng Yuan, Yang Wen, Ju Hu, Georgios Evangelidis, Sergey Tulyakov,

Yanzhi Wang, and Jian Ren. Efficientformer: Vision transformers at mobilenet

speed. Advances in Neural Information Processing Systems, 35:12934–12949,

2022.

[54] Michael R. Garey et al. Computers and Intractability; A Guide to the Theory of

NP-Completeness. W. H. Freeman & Co., 1990.

[55] Amit Kumar Singh, Muhammad Shafique, Akash Kumar, and Jörg Henkel. Map-

ping on multi/many-core systems: survey of current and emerging trends. In Pro-

ceedings of the 50th Annual Design Automation Conference, pages 1–10, 2013.

[56] Hyunok Oh and Soonhoi Ha. A static scheduling heuristic for heterogeneous pro-

cessors. In Euro-Par’96 Parallel Processing: Second International Euro-Par Con-

ference Lyon, France, August 26–29, 1996 Proceedings, Volume II 2, pages 573–

577. Springer, 1996.

[57] Haluk Topcuoglu, Salim Hariri, and Min-You Wu. Performance-effective and low-

complexity task scheduling for heterogeneous computing. IEEE transactions on

parallel and distributed systems, 13(3):260–274, 2002.

[58] Shin-haeng Kang, Duseok Kang, Hoeseok Yang, and Soonhoi Ha. Real-time co-

scheduling of multiple dataflow graphs on multi-processor systems. In Proceedings

of the 53rd Annual Design Automation Conference, pages 1–6, 2016.

[59] Mina Niknafs et al. Runtime resource management with workload prediction. In

Proceedings of the DAC, DAC ’19, New York, NY, USA, 2019. Association for

Computing Machinery.

[60] Robert Khasanov and Jeronimo Castrillon. Energy-efficient runtime resource man-

agement for adaptable multi-application mapping. In 2020 Design, Automation &

Test in Europe Conference & Exhibition (DATE), pages 909–914. IEEE, 2020.

119

https://competitions.codalab.org/

[61] Bryan Donyanavard, Tiago Mück, Santanu Sarma, and Nikil Dutt. Sparta: Run-

time task allocation for energy efficient heterogeneous many-cores. In Proceedings

of the Eleventh IEEE/ACM/IFIP International Conference on Hardware/Software

Codesign and System Synthesis, pages 1–10, 2016.

[62] Stefan Valentin Gheorghita, Martin Palkovic, Juan Hamers, Arnout Vandecappelle,

Stelios Mamagkakis, Twan Basten, Lieven Eeckhout, Henk Corporaal, Francky

Catthoor, Frederik Vandeputte, et al. System-scenario-based design of dynamic em-

bedded systems. ACM Transactions on Design Automation of Electronic Systems

(TODAES), 14(1):1–45, 2009.

[63] Lars Schor, Iuliana Bacivarov, Devendra Rai, Hoeseok Yang, Shin-Haeng Kang, and

Lothar Thiele. Scenario-based design flow for mapping streaming applications onto

on-chip many-core systems. In Proceedings of the 2012 international conference on

Compilers, architectures and synthesis for embedded systems, pages 71–80, 2012.

[64] Hanwoong Jung, Chanhee Lee, Shin-Haeng Kang, Sungchan Kim, Hyunok Oh, and

Soonhoi Ha. Dynamic behavior specification and dynamic mapping for real-time

embedded systems: Hopes approach. ACM Transactions on Embedded Computing

Systems (TECS), 13(4s):1–26, 2014.

[65] Wei Quan and Andy D Pimentel. A scenario-based run-time task mapping algo-

rithm for mpsocs. In Proceedings of the 50th Annual Design Automation Confer-

ence, pages 1–6, 2013.

[66] Wei Quan et al. Scenario-based run-time adaptive mpsoc systems. Journal of Sys-

tems Architecture, 2016.

[67] Biyi Fang, Xiao Zeng, and Mi Zhang. Nestdnn: Resource-aware multi-tenant on-

device deep learning for continuous mobile vision. In Proceedings of the 24th An-

nual International Conference on Mobile Computing and Networking, pages 115–

127, 2018.

[68] APOLLO: an open autonomous driving platform. https://apollo.auto/,

2018. [Online; accessed 15-Mar-2022].

[69] Tanya Amert et al. Gpu scheduling on the nvidia tx2: Hidden details revealed. In

Proceedings of the RTSS, 2017.

120

https://apollo.auto/

[70] Ming Yang. Avoiding pitfalls when using nvidia gpus for real-time tasks in au-

tonomous systems. In Proceedings of the 30th Euromicro Conference on Real-Time

Systems, 2018.

[71] NVIDIA Jetson Developer Guide. https://docs.nvidia.com/jetson/

archives/l4t-archived/l4t-3231/, 2023. [Online; accessed 02-June-

2023].

[72] Erqian Tang, Svetlana Minakova, and Todor Stefanov. Energy-efficient and high-

throughput cnn inference on embedded cpus-gpus mpsocs. In Embedded Computer

Systems: Architectures, Modeling, and Simulation: 21st International Conference,

SAMOS 2021, Virtual Event, July 4–8, 2021, Proceedings, pages 127–143. Springer,

2022.

[73] John P Lehoczky. Fixed priority scheduling of periodic task sets with arbitrary

deadlines. In [1990] Proceedings 11th Real-Time Systems Symposium, pages 201–

209. IEEE, 1990.

[74] Friedrich Eisenbrand and Thomas Rothvoß. Static-priority real-time scheduling:

Response time computation is np-hard. In 2008 Real-Time Systems Symposium,

pages 397–406. IEEE, 2008.

[75] Félix-Antoine Fortin, François-Michel De Rainville, Marc-André Gardner, Marc

Parizeau, and Christian Gagné. DEAP: Evolutionary algorithms made easy. Journal

of Machine Learning Research, 13:2171–2175, jul 2012.

[76] Thomas Helmuth, Lee Spector, and James Matheson. Solving uncompromising

problems with lexicase selection. IEEE Transactions on Evolutionary Computation,

19(5):630–643, 2015.

[77] Edwin SH Hou, Nirwan Ansari, and Hong Ren. A genetic algorithm for mul-

tiprocessor scheduling. IEEE Transactions on Parallel and Distributed systems,

5(2):113–120, 1994.

[78] Amit Kumar Singh, Piotr Dziurzanski, Hashan Roshantha Mendis, and Lean-

dro Soares Indrusiak. A survey and comparative study of hard and soft real-time

dynamic resource allocation strategies for multi-/many-core systems. ACM Com-

puting Surveys (CSUR), 50(2):1–40, 2017.

[79] Dowhan Jeong et al. Parallel scheduling of multiple sdf graphs onto heterogeneous

processors. IEEE Access, 2021.

121

https://docs.nvidia.com/jetson/archives/l4t-archived/l4t-3231/
https://docs.nvidia.com/jetson/archives/l4t-archived/l4t-3231/

[80] Borhan Kazimipour, Xiaodong Li, and A Kai Qin. A review of population initializa-

tion techniques for evolutionary algorithms. In 2014 IEEE congress on evolutionary

computation (CEC), pages 2585–2592. IEEE, 2014.

[81] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning

for image recognition. In Proceedings of the IEEE conference on computer vision

and pattern recognition, pages 770–778, 2016.

[82] Sander Stuijk, Marc Geilen, and Twan Basten. Sdfˆ 3: Sdf for free. In Sixth Inter-

national Conference on Application of Concurrency to System Design (ACSD’06),

pages 276–278. IEEE, 2006.

122

요약

임베디드 시스템에서 딥 러닝 애플리케이션에 대한 증가하는 수요를 충족하기

위해새로운임베디드디바이스에는 GPU와뉴럴프로세싱유닛(NPU)이라고하는딥

러닝 하드웨어 가속기를 비롯한 여러 이기종 프로세서가 포함되는 경향이 나타나고

있다. 또한, 딥 러닝 애플리케이션의 빠르고 효율적인 개발을 위해 소프트웨어 개발

키트(SDK)가 제공된다. 딥 러닝 SDK에는 딥 러닝 어플리케이션의 짧은 지연 시간과

높은처리량을위한옵티마이저가포함되어있다.

딥러닝 SDK는내부적으로추론을최적화하지만, SDK는추론이 GPU또는 NPU

중하나의처리요소에서수행하며두프로세서를같이사용하여추론을수행하지않

는다.그러나단일처리요소에서추론을실행하면시스템을완전히활용하지못한다.

시스템이 이기종 프로세서로 구성되어 있기 때문에 효율적으로 실행하려면 이러한

프로세서를동시에사용해야할필요가있다.

다시 말해서 딥 러닝 어플리케이션을 시스템 레벨에서 최적화하는 것이 필요하

다. 이러한 맥락에서 우리는 크게 세가지 주제로 해당 문제를 접근하였다. 이 논문에

서는 하나의 딥 러닝 어플리케이션의 최적화, 실시간 제약 조건 하에서 여러 딥 러닝

어플리케이션의 최적화, 모델 기반 설계 방법론에서 딥 러닝 어플리케이션 지원이라

는 세 가지 주요 주제를 다룬다. 본 논문에서는 NPU를 비롯한 이기종 프로세서가 탑

재된 NVIDIA Jetson 임베디드 플랫폼과 빠른 추론을 위한 대표적인 딥 러닝 SDK인

TensorRT를대상으로한다.

먼저, 딥 러닝 추론의 처리량을 높이기 위한 체계적인 최적화 기법과 방법론을

제안한다.멀티스레딩,파이프라이닝,버퍼할당,네트워크복제등딥러닝애플리케

이션을위한병렬화기법을소개한다.또한딥러닝애플리케이션을가속화하기위한

다양한 최적화 파라미터를 지원하는 프레임워크를 공개한다. 최적화 기법은 파라미

터화되어 있어 프레임워크의 입력 파일에서 파라미터를 조정하는 것만으로 딥 러닝

애플리케이션에적용할수있다.서로다른프로세싱요소에레이어를할당하고다른

파라미터를최적화하는설계공간은방대하기때문에이기종프로세서간의파이프라

인 단계 균형을 맞추기 위한 휴리스틱과 파라미터 탐색 프로세스로 구성된 파라미터

123

최적화 방법론을 제안한다. 이는 TensorRT를 사용하는 딥 러닝 애플리케이션을 파티

셔닝하고 NPU를포함한이기종프로세서시스템에서처리량을개선한최초의작업이

다. 9개의실제벤치마크를통해 GPU만을사용한추론에비해 101% ∼ 680%처리량

향상과최대 55%에너지감소를달성할수있었다.

두 번째로, 여러 기능을 제공하기 위해 여러 딥러닝 애플리케이션을 동시에 실

행하는 것이 대중화되고 있다. 이 연구에서는 애플리케이션에 런타임에 따라 달라질

수있는실시간제약조건이있다고가정한다.최근다양한하드웨어플랫폼에서여러

딥러닝 애플리케이션의 효율적인 매핑을 찾기 위한 광범위한 연구가 수행되었지만,

실제 임베디드 플랫폼에서 NPU와 해당 SDK에 의해 부과되는 제약 조건은 고려하

지 않았다. 이 연구에서는 여러 이기종 프로세서가 있는 실제 임베디드 시스템에서

여러 딥 러닝 애플리케이션의 새로운 에너지 인지형 매핑 방법론을 제안한다. 모든

애플리케이션의 실시간 제약 조건을 만족하면서 에너지 소비를 최소화하는 것이 목

표이다.제안한방식에서는먼저각애플리케이션에대한파레토최적매핑솔루션을

선택한다. 그런 다음 제약 조건을 만족하면서 애플리케이션의 동적 특성을 보여주는

시나리오를 고려하여 매핑 조합을 탐색한다. 또한 프로세서의 주파수를 조정하여 에

너지소비를줄인다.이는 NPU를포함하는실제하드웨어플랫폼에서 TensorRT기반

멀티플애플리케이션의동시실행을한최초의작업이다.실제플랫폼에서실제애플

리케이션과 다양한 시나리오를 사용하여 정적 매핑 방법에 비해 최대 40% 더 높은

마감시간제약을만족하고에너지소비를 22% ∼ 31%까지줄일수있었다.

마지막으로딥러닝애플리케이션이임베디드시스템에널리보급됨에따라모델

기반 임베디드 소프트웨어 설계 방법론에서 딥 러닝 애플리케이션을 지원하는 방법

은어려운문제가되고있다.지금까지의해결책은각딥러닝애플리케이션을모델로

표현하는것이다.그러나딥러닝애플리케이션에최적화기법을적용하여모델로변

환하고좋은성능을얻기위해서는상당한노력이필요하다.본연구에서는성능최적

화를위해딥러닝 SDK를활용하는새로운방법론을제안한다.제안하는방법론에서

는 먼저 하드웨어 플랫폼과 연동된 SDK를 이용하여 딥 러닝 애플리케이션의 파레토

최적매핑솔루션을얻는다.그런다음유전알고리즘을사용하여데이터플로우태스

124

크의매핑과딥러닝애플리케이션의매핑솔루션탐색을동시에수행한다.동기부여

예제와무작위로생성된그래프를사용한실험결과,딥러닝애플리케이션과데이터

플로우기반애플리케이션을순차적으로매핑하는이전작업과비교했을때프로세싱

요소의최대사용률을최소 5%이상줄일수있는것도확인하였다.

주요어 : 매핑및스케줄링,설계공간탐색,딥러닝응용,소프트웨어최적화,이기종

프로세서시스템

학번 : 2017-22440

125

	Chapter 1 Introduction
	1.1 Motivation
	1.2 Contribution
	1.3 Dissertation Organization

	Chapter 2 Background
	2.1 NVIDIA Jetson AGX Xavier
	2.2 NVIDIA TensorRT
	2.3 Genetic Algorithm
	2.4 Compositional Performance Analysis
	2.5 Model-based Design Methodology

	Chapter 3 Optimization of a Single Deep Learning Application
	3.1 Overview
	3.2 Related Work
	3.2.1 Deep learning Frameworks
	3.2.2 Optimization For a Single Deep Learning Application

	3.3 Parallelization Techniques
	3.3.1 Pre/Post-Processing Pipelining and Parallelization
	3.3.2 Intra-PE Parallelization
	3.3.3 Intra-network Pipelining
	3.3.4 Partial Network Duplication
	3.3.5 Other Optimization Methods

	3.4 JEDI Framework
	3.4.1 Configuration Parameters
	3.4.2 Application Development

	3.5 Design Space Exploration
	3.5.1 Pipeline Cut-point Explorer
	3.5.2 Parameter Fine-tuner

	3.6 Experiments
	3.6.1 Set-Up
	3.6.2 Design Space Exploration Results
	3.6.3 Parameter Fine-tuning Results
	3.6.4 Comparison with Other Methods
	3.6.5 Experiments with Varying Configurations
	3.6.6 Analysis and Discussion

	Chapter 4 Optimization of Multiple Deep Learning Applications under Real-time Constraints
	4.1 Overview
	4.2 Related Work
	4.2.1 Mapping and Scheduling Multiple Applications
	4.2.2 Running Multiple Deep Learning Applications

	4.3 System Model
	4.3.1 Motivational Example
	4.3.2 Notation
	4.3.3 Problem Formulation

	4.4 Proposed Optimization Methodology
	4.4.1 Step 1: Finding Pareto-optimal Mapping Solutions for Each Application
	4.4.2 Step 2: Exploring the Mapping Combination
	4.4.3 Step 3: Tuning Frequencies for Varying Deadline Constraints

	4.5 Experiments
	4.5.1 Set-Up
	4.5.2 Finding Pareto-optimal Mappings of Each Application
	4.5.3 Exploring Mapping Combination and Tuning Frequencies
	4.5.4 Real Deployment

	Chapter 5 Supporting Deep Learning Applications in a Model-based Design Methodology
	5.1 Overview
	5.2 Related work
	5.2.1 Mapping of Multiple Dataflow Applications
	5.2.2 Mapping of Multiple Deep Learning Applications
	5.2.3 Integrating Deep Learning Applications into the Model-based Design

	5.3 System Model
	5.3.1 Motivational Example
	5.3.2 Notation and Problem Definition

	5.4 Proposed Methodology
	5.4.1 Step 1: Finding the Pareto-optimal Mapping Solutions of Each Deep Learning Application
	5.4.2 Step 2: Mapping Exploration

	5.5 Experiments
	5.5.1 Comparison with a Previous Work
	5.5.2 Set-up
	5.5.3 Experimental Results: Motivational Example
	5.5.4 Experimental Results: Randomly Generated Dataflow Graphs

	Chapter 6 Conclusion and Future work
	Bibliography
	요 약

<startpage>17
Chapter 1 Introduction 1
 1.1 Motivation 1
 1.2 Contribution 7
 1.3 Dissertation Organization 9
Chapter 2 Background 10
 2.1 NVIDIA Jetson AGX Xavier 10
 2.2 NVIDIA TensorRT 11
 2.3 Genetic Algorithm 12
 2.4 Compositional Performance Analysis 13
 2.5 Model-based Design Methodology 14
Chapter 3 Optimization of a Single Deep Learning Application 16
 3.1 Overview 16
 3.2 Related Work 16
 3.2.1 Deep learning Frameworks 17
 3.2.2 Optimization For a Single Deep Learning Application 17
 3.3 Parallelization Techniques 19
 3.3.1 Pre/Post-Processing Pipelining and Parallelization 19
 3.3.2 Intra-PE Parallelization 20
 3.3.3 Intra-network Pipelining 21
 3.3.4 Partial Network Duplication 22
 3.3.5 Other Optimization Methods 22
 3.4 JEDI Framework 23
 3.4.1 Configuration Parameters 25
 3.4.2 Application Development 27
 3.5 Design Space Exploration 29
 3.5.1 Pipeline Cut-point Explorer 31
 3.5.2 Parameter Fine-tuner 37
 3.6 Experiments 38
 3.6.1 Set-Up 38
 3.6.2 Design Space Exploration Results 40
 3.6.3 Parameter Fine-tuning Results 42
 3.6.4 Comparison with Other Methods 43
 3.6.5 Experiments with Varying Configurations 48
 3.6.6 Analysis and Discussion 51
Chapter 4 Optimization of Multiple Deep Learning Applications under Real-time Constraints 55
 4.1 Overview 55
 4.2 Related Work 55
 4.2.1 Mapping and Scheduling Multiple Applications 56
 4.2.2 Running Multiple Deep Learning Applications 58
 4.3 System Model 60
 4.3.1 Motivational Example 60
 4.3.2 Notation 61
 4.3.3 Problem Formulation 64
 4.4 Proposed Optimization Methodology 65
 4.4.1 Step 1: Finding Pareto-optimal Mapping Solutions for Each Application 65
 4.4.2 Step 2: Exploring the Mapping Combination 68
 4.4.3 Step 3: Tuning Frequencies for Varying Deadline Constraints 76
 4.5 Experiments 76
 4.5.1 Set-Up 76
 4.5.2 Finding Pareto-optimal Mappings of Each Application 77
 4.5.3 Exploring Mapping Combination and Tuning Frequencies 78
 4.5.4 Real Deployment 86
Chapter 5 Supporting Deep Learning Applications in a Model-based Design Methodology 88
 5.1 Overview 88
 5.2 Related work 88
 5.2.1 Mapping of Multiple Dataflow Applications 89
 5.2.2 Mapping of Multiple Deep Learning Applications 90
 5.2.3 Integrating Deep Learning Applications into the Model-based Design 90
 5.3 System Model 91
 5.3.1 Motivational Example 91
 5.3.2 Notation and Problem Definition 92
 5.4 Proposed Methodology 94
 5.4.1 Step 1: Finding the Pareto-optimal Mapping Solutions of Each Deep Learning Application 95
 5.4.2 Step 2: Mapping Exploration 98
 5.5 Experiments 105
 5.5.1 Comparison with a Previous Work 105
 5.5.2 Set-up 106
 5.5.3 Experimental Results: Motivational Example 106
 5.5.4 Experimental Results: Randomly Generated Dataflow Graphs 108
Chapter 6 Conclusion and Future work 111
Bibliography 114
요 약 123
</body>

