creative
comimons

C O M O N S
& X EAlI-HI el Xl 2.0 Gigel=
Ol OtcHe =2 E 2= FR0l 86t AFSA
o Ol MHE=E= SN, HE, 8E, A, SH & &5 = AsLIC

XS Metok ELIChH

MNETEAl Fots BHEHNE HEAIGHHOF SLICH

Higel. M5t= 0 &

o Fot=, 0l MEZ2 THOIZE0ILE B2 H, 0l HAS0 B2 0|8
£ 2ok LIEFLH O OF 8 LICEH
o HEZXNZREH EX2 oItE O 0lelet xAdE=2 HEX EsLIT

AEAH OHE oISt Aeles 212 LWS0ll 26t g&
71 2f(Legal Code)E OloiotI| &H

olx2 0 Ed=t

Disclaimer =1

ction

Colle

http://creativecommons.org/licenses/by-nc-nd/2.0/kr/legalcode
http://creativecommons.org/licenses/by-nc-nd/2.0/kr/

Software Optimization Techniques for Deep Learning
Applications on AI Hardware Platforms

2023 8¢

1345 St= o] ERFNA |
oA o) 42 SI% AXEY o] 25}
714

Software Optimization Techniques for Deep Learning
Applications on AI Hardware Platforms

o 9 = e T)
B ojol 7} 5} &= 9] &)
9] ¢ Bernhard Egger (90
o] 9 o] & 7] ()
94 4 T (2D

Abstract

Software Optimization Techniques for
Deep Learning Applications on Al
Hardware Platforms

Jangryul Kim

Department of Computer Science and Engineering
College of Engineering

The Graduate School

Seoul National University

To meet the growing demand for deep learning applications in embedded systems, new
embedded devices tend to include multiple heterogeneous processors, including a GPU
and a deep learning hardware accelerator called a neural processing unit (NPU). In addi-
tion, a software development kit (SDK) is provided for fast and efficient development of
deep learning applications. The deep learning SDK includes optimizer that delivers low
latency and high throughput for deep learning inference applications.

Even the deep learning SDK optimize the inference internally, the SDK assumes
that inference is performed on a single processing element, either the GPU or the NPU,
but not both. However, running inference on a single processing element does not fully
utilize the system. Since the system consists of heterogeneous processors, it is necessary
to use these processors simultaneously to run efficiently.

In other words, it is necessary to optimize deep learning applications at the system-
level. In this context, we approach the problem from three main topics: optimization of
a single deep learning application, optimization of multiple deep learning applications

under real-time constraints, and support for deep learning applicatiogls-, in model-based
1. O Fil &

i

embedded software design methodology. In this work, we target the NVIDIA Jetson em-
bedded platform with heterogeneous processors, including NPUs, and TensorRT which
is a leading deep learning SDK for fast inference.

First, we devise systematic optimization techniques and methodology to increase
the throughput of a single deep learning application. We present parallelization tech-
niques for a deep learning application: multi-threading, pipelining, buffer allocation, and
network duplication. We also present a framework that supports various optimization
parameters to accelerate a deep learning application. The optimization techniques are pa-
rameterized and can be applied to a deep learning application by merely adjusting param-
eters in a configuration file, which is an input to the framework. Since the design space of
optimizing parameters is huge, we develop a parameter optimization methodology con-
sisting of a heuristic for balancing pipeline stages among heterogeneous processors and
a fine-tuning process for optimizing parameters. This is the first work to partition a deep
learning inference which is developed with the TensorRT and improve throughput on
the heterogeneous processor system including NPUs. With nine real-life benchmarks, we
could achieve 101% ~ 680% performance improvement and up to 55% energy reduction
over the baseline inference using GPU only.

Second, it is becoming popular to run multiple deep learning applications simul-
taneously to provide various functionalities. In addition, deep learning applications can
have real-time constraints that vary at runtime. While extensive studies have been con-
ducted recently to find an efficient mapping of multiple deep learning applications on
different hardware platforms, they do not consider the constraints imposed by the NPU
and its SDK in a real embedded platform. In this work, we propose a novel energy-aware
mapping methodology of multiple deep learning applications on a real embedded system
with multiple heterogeneous processors. The objective is to minimize energy consump-
tion while satisfying the real-time constraints of all applications. In the proposed scheme,
we first select Pareto-optimal mapping solutions for each application. Then, the mapping

ey

' ! | g
:l__i -';"-1 !. ..-'.:i

il

combination is explored considering the scenario that shows the dynamics of the appli-
cations while satisfying the constraints. We also reduce energy consumption by tuning
the frequency of the processors. This is the first work to consider the concurrent execu-
tion of multiple deep learning applications which are developed with the TensorRT on a
real hardware platform. We could satisfy up to 40% higher deadline constraints and re-
duce energy consumption by 22% ~ 31% compared to the static mapping methods with
real-life applications and different scenarios on a real platform.

Finally, as deep learning applications become more prevalent in embedded sys-
tems, how to support deep learning applications in model-based embedded software de-
sign methodologies becomes a challenging problem. One solution so far is to represent
each deep learning application with a model. However, it requires considerable effort
to translate the specifications and achieve good performance by applying optimization
techniques to deep learning applications. In this work, we propose a novel methodol-
ogy that takes advantage of using a deep learning SDK for performance optimization.
In the proposed method, we first obtain the Pareto-optimal mapping solutions of deep
learning applications using the SDK associated with the hardware platform. Then, we
jointly perform the mapping of dataflow tasks and the selection of mapping solutions for
deep learning applications using a genetic algorithm and a heuristic. Experiments with
a real-life example and randomly generated graphs show that we could reduce at least
5% of the maximum utilization compared to our previous work that maps deep learning

applications and dataflow applications sequentially.

Keywords : Mapping and Scheduling, Design Space Exploration, Deep Learning Ap-
plications, Software Optimization, Heterogeneous Processor Systems

Student Number : 2017-22440

iii

Contents

Abstract L i
Contents e iv
Listof Figures viii
Listof Tables xi
List of Algorithms xiii
Chapter 1 Introduction 1
1.1 Motivation e e e e e e 1
1.2 Contribution 7
1.3 Dissertation Organization, 9
Chapter 2 Background 10
2.1 NVIDIA Jetson AGX Xavier v i i ... 10
2.2 NVIDIA TensorRT, 11
2.3 Genetic Algorithm 12
2.4 Compositional Performance Analysis 13
2.5 Model-based Design Methodology 14
Chapter 3 Optimization of a Single Deep Learning Application 16
301 OVeIVIBW . . . o ot t e 16
32 RelatedWork 16
]

v

33

34

3.5

3.6

3.2.1 Deep learning Frameworks 17

3.2.2 Optimization For a Single Deep Learning Application 17
Parallelization Techniques 19
3.3.1 Pre/Post-Processing Pipelining and Parallelization 19
3.3.2 Intra-PE Parallelization 20
3.3.3 Intra-network Pipelining 21
3.3.4 Partial Network Duplication 22
3.3.5 Other Optimization Methods 22
JEDI Framework 23
3.4.1 Configuration Parameters 25
3.4.2 Application Development 27
Design Space Exploration., 29
3.5.1 Pipeline Cut-point Explorer 31
3.5.2 Parameter Fine-tuner 37
Experiments 38
3.6.1 Set-Up e 38
3.6.2 Design Space Exploration Results 40
3.6.3 Parameter Fine-tuning Results 42
3.6.4 Comparison with Other Methods 43
3.6.5 Experiments with Varying Configurations 48
3.6.6 Analysisand Discussion L. 51

Chapter 4 Optimization of Multiple Deep Learning Applications under

Real-time Constraints 55
4.1 OVerVIEW o i e e e 55
42 RelatedWork 55

4.2.1 Mapping and Scheduling Multiple Applications 56
4.2.2 Running Multiple Deep Learning Applications . . v 1 o5 ?8
- 5 1

4.3

4.4

4.5

SystemModel 60
4.3.1 Motivational Example 60
432 Notation oL e e e 61
4.3.3 Problem Formulation 64
Proposed Optimization Methodology 65

4.4.1 Step 1: Finding Pareto-optimal Mapping Solutions for Each Ap-

plication 65
442 Step 2: Exploring the Mapping Combination 68
4.4.3 Step 3: Tuning Frequencies for Varying Deadline Constraints . . . 76
Experiments e 76
451 Set-Up e 76
4.5.2 Finding Pareto-optimal Mappings of Each Application 77
4.5.3 Exploring Mapping Combination and Tuning Frequencies 78
454 RealDeployment 86

Chapter 5 Supporting Deep Learning Applications in a Model-based Design

Methodology 88
5.1 OVerview e e 88
52 Relatedwork 88

5.2.1 Mapping of Multiple Dataflow Applications 89
5.2.2 Mapping of Multiple Deep Learning Applications 90

53

54

5.2.3 Integrating Deep Learning Applications into the Model-based

Design 90
SystemModel 91
5.3.1 Motivational Example 91
5.3.2 Notation and Problem Definition 92
Proposed Methodology L. 94

.-3;: 1 &

vi

5.4.1 Step 1: Finding the Pareto-optimal Mapping Solutions of Each

Deep Learning Application 95

5.4.2 Step 2: Mapping Exploration 98

5.5 Experiments e 105
5.5.1 Comparison with a Previous Work 105

552 Set-up 106

5.5.3 Experimental Results: Motivational Example 106

5.5.4 Experimental Results: Randomly Generated Dataflow Graphs . . 108
Chapter 6 Conclusion and Futurework 111
Bibliography 114
QO e 123
3 L 5 11 -'_:}

vii

List of Figures

Figure 1.1
Figure 2.1
Figure 2.2
Figure 2.3
Figure 2.4
Figure 2.5
Figure 3.1
Figure 3.2

Figure 3.3
Figure 3.4
Figure 3.5
Figure 3.6

Figure 3.7

Figure 3.8

Figure 3.9

Figure 3.10

Figure 3.11
Figure 3.12

Three topics for system-level optimization on Al hardware platforms 2

The example composition of kernels 11
The workflow of generating execution context in TensorRT 11
An example schedule of deep learning inference 12
Schematic diagram of compositional performance analysis. 13
Overall flow of the model-based embedded software design 15
Four parallelization techniques 19

Schedule diagrams of inference steps with pre/post-processing

pipelining 19
Schedule diagrams of inference body parallelization 21
Workflow of the proposed inference framework 24
An example segment of JEDI configurationfile 25

The proposed optimization process with three design space explo-

rationmoduleso oL 29
Ilustration of the proposed heuristic with an example 33
FPS comparison among options on FP16 and INTS8 precision . . . 40

FPS, energy comparison, and CPU/GPU utilization among four
methods with FP16 precision 44
FPS, energy comparison, and CPU/GPU utilization among four
methods with INT8 precision 45

Comparison with interleaved execution on different processors . . 46

i "'_-II = |

A =

Gantt charts for different mappings of the Yolov4 netwark 52

viil

Figure 3.13

Figure 4.1
Figure 4.2
Figure 4.3
Figure 4.4
Figure 4.5
Figure 4.6
Figure 4.7

Figure 4.8
Figure 4.9

Figure 5.1

Figure 5.2

Figure 5.3

Figure 5.4

Figure 5.5
Figure 5.6

Figure 5.7

Figure 5.8

Gantt chart based on estimated layer-wise execution time for a

found mapping by the proposed method 53
Motivational example: patrolrobot 60
Pipelining of the DL application 62
Overall flow of the proposed mapping methodology 65
The overviewofstepl 66
The overviewof step2 68
Fitness ratio as the FPS constraint varies for FSM-A 84

Average fitness ratio over the FPS constraint variation for all
benchmarks L oL 84
The run time management following scenarios 85
Average energy ratio over the FPS constraint variation, measured
after real deployment oL 86
A motivational example, 92

Task/Sub-task definition on the deep learning application specified

Overall flow of the model-based embedded software design and
the proposed extension L. 96
Chromosome structures: (a) for stepl, (b) for Heuristic+GA
method in step2, and (c) for Entire-GA method in step2. 98
Procedure of the proposed mapping exploration technique 99
Comparison of three methods for the motivational example:
Heuristic+GA, Entire-GA, and Baseline 106
Comparison of three methods with four randomly generated
dataflow applications., 108
Comparison of three methods with eight randomly generated

dataflow applications. 108

X

Figure 5.9 Comparison of three methods with sixteen randomly generated

dataflow applications., 109

A-=djshw

List of Tables

Table 3.1

Table 3.2

Table 3.3

Table 3.4

Table 3.5

Table 3.6

Table 3.7
Table 3.8

Table 3.9

Table 3.10

Table 3.11

Table 4.1

Table 4.2
Table 4.3

Main virtual methods for user-implemented deep learning appli-
cationsinJEDI L oo
Options for mapping on the target platform
The labels and the number of layers of benchmark applications. . .
The search time and range of the network pipelining heuristic . . .
Fine-tuned configurations of the selected cut-points from our
methodology
FPS comparison of using the solution obtained by the profile-
based method as the initial solution
Comparison of exploration methods
Comparison of the best result of reused cut-points from 416x416
and the re-explored cut-points with our fast heuristic search
Comparison of the best result of reused cut-points from batch 1
and the re-explored cut-points with our fast heuristic search
Inference time comparison between baseline method and the
found mapping by the proposed method
Inference time comparison between baseline and the found map-
ping by the proposed method
Comparison with the related works of running multiple deep learn-
ing applications
Notations for system model and problem definition.

Options for intra-network pipelining T

X1

49

50

Table 4.4

Table 4.5

Table 4.6
Table 4.7
Table 4.8
Table 4.9

Table 4.10
Table 4.11

Table 5.1

Table 5.2

Table 5.3

Table 5.4

The benchmark networks and the volume of design space for step
1 to find the Pareto-optimal mappings.
Information on three different system behaviors: which applica-
tions are performed ineach state
Cases for a combination of applicationsin FSMs
The frequency range used in the exploration
Comparison of the maximum achievable FPS among methods . . .
Mapping and frequency tuning result for FSM-A from the pro-
posedmethod L.
Throughput constraint (FPS) variation
Average fitness evaluation time and end-to-end execution time
during 50 generationsin GA,
Notations used ina systemmodel
Mapping options for pipelining of a DL application
Benchmark networks and the number of mapping candidates ob-
tainedbystepl

Mappable processors of tasks in dataflow applications

xii

List of Algorithms

Algorithm 1 Pseudo code for genetic algorithm 12
Algorithm 2 Pseudo code for global search heuristic. 32
Algorithm 3 Pseudo for local search heuristic 35
Algorithm 4 Pseudo code for chromosome evaluation 69
Algorithm 5 Pseudo code for mapping stagestoPE 70
Algorithm 6 Pseudo code for frequencies decision 71
Algorithm 7 Pseudo code of mapping heuristic for dataflow tasks 102

X1il

Chapter 1

Introduction

1.1 Motivation

As deep learning inference applications are increasing in embedded devices, an em-
bedded device tends to equip hardware accelerators in addition to a multi-core CPU and
a GPU. To run a trained network on an embedded device, we usually use the software
development kit (SDK) provided with the device. The deep learning SDK includes opti-
mizer that delivers low latency and high throughput for deep learning inference applica-
tions. Even the deep learning SDK optimize the inference internally, the SDK assumes
that inference is performed on a single processing element, either the GPU or the NPU,
but not both.

Extensive research have been conducted to accelerate deep learning applications via
software optimization on a given hardware platform [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11,
12, 13]. Some research have focused on approximate computing such as low precision
computation, low-rank approximation, and filter pruning [1, 2], and some others have
focused on the exploitation of various levels of parallelism that a deep learning inference
network has: data-level parallelism of a convolution layer, task-level parallelism, and
pipelining [3, 4, 5, 6, 7, 11]. Also, some studies have extended the problem to multiple
networks from a single network while taking real-time constraints into account [8, 9, 10,

12, 13]. We call the last two approaches system-level optimization in thi§,I paper. :
2l ©

1

(1) For a single deep learning application

DL App
Network Various
Pre *O—’O—*O—’CM)— » parallelization
Running on DLA Running on GPU techniques

(2) For multiple deep learning applications

_I Mapping and | € N | Performance
DL App I » Frequency U estimation On Al hardware

platforms
(3) For multiple dataflow applications and deep learning applications (w/ CPU, GPU,

- d NPU
L + l] » Mappine € \ | Performance an)
DF App DL App apping _/ | estimation

Figure 1.1: Three topics for system-level optimization on Al hardware platforms

In this dissertation, we introduce the system-level optimization methodology on Al
hardware platforms that include heterogeneous processors with neural processing units
(NPUs) as described in Fig. 1.1. We present the optimization methodology for not only
(1) a single deep learning inference but also (2) multiple deep learning applications. Fur-
thermore, we also consider the case where (3) the formal model-based applications and
deep learning applications are performed on the Al hardware platform. In this work, we
target the NVIDIA Jetson embedded platform, including not only CPU and GPU but also
NPUs, and TensorRT which is a leading deep learning SDK for fast inference.

For a single deep learning inference, we present a parallelization techniques that use
both GPU and NPUs to maximize the throughput. Multiple threads are used to parallelize
pre-/post-processing steps of inference, which is denoted as Pre. and Post. in Fig. 1.1.
Also, accelerators are fully exploited by using multiple streams and pipeline fashion. In
addition, we duplicate a part of the network and maps them onto different NPUs while
sharing the GPU for the remaining part.

Since applying the techniques manually is a non-trivial job, we present a TensorRT-
based framework, called Jetson-aware Embedded Deep learning Inference acceleration
(JEDI) framework that enables a user to apply various acceleration techniques easily to
run a deep learning application by setting a configuration file. We represent techniques as
parameters to accelerate a deep learning inference including multi-threading, pipelining,
] _©_ 1 &

and network duplication.

Since the design space of allocating layers to diverse processing elements and opti-
mizing other parameters is huge, we devise a parameter optimization methodology that
consists of a heuristic for balancing pipeline stages among heterogeneous processors and
fine-tuning process for optimizing parameters. With nine real-life benchmarks, we could
confirm the throughput improvement and energy reduction over the baseline inference
using GPU only.

As for multiple deep learning applications, extensive studies have been conducted
recently to find an efficient mapping of applications on various hardware platforms [8,
10, 12, 13]. However, they do not consider the constraints imposed by the NPU and the
associated software development kit in a real embedded platform. Therefore, we reveal
the challenges when considering the NPU and its SDK, and propose a novel energy-aware
mapping methodology of multiple deep learning applications.

There are four major challenges. First, deep learning applications usually have real-
time constraints in terms of latency, and the real-time constraints may vary at run time.
For instance, as the self-driving car speed increases, the latency constraint for the object
detection will be tightened. Second, the set of concurrently running applications may
vary. If the car is moving forward, we may want to suspend the object detection from the
backside.

The third challenge is to estimate the performance of each mapping candidate. In
most previous works, it is assumed that the worst-case execution time (WCET) of each
layer in a deep learning application is known, and the performance of mapping can be
estimated analytically. But layer-wise profiling is often not appropriate in real systems.
For example, a deep learning accelerator (DLA), which is an NPU, in the NVIDIA Jetson
platform does not support the layer-wise profiling. Also, TensorRT internally optimizes
the inference by applying the techniques and changes structure of kernels depending on
the mapping. This makes the problem difficult because the profiled per-layer execution

ey

' ! | g
:l__i -';"-1 !. ..-'.:i

time may not be available in the analysis and mapping exploration.

The fourth challenge comes from the restrictions imposed by the device and its
SDK. TensorRT optimizes the network, saves it as an engine, and loads the engine to the
assigned processor. Since the loading takes a long, a few seconds, it may not be done at
run time without deadline violation. It means that dynamic task migration is not allowed.
And the maximum number of DLA-mapped parts is limited. In addition, since there are
only two levels of priority in GPU and no priority level in DLA, the priority assignment is
usually not used for GPU and DLAs. Note that the traditional fixed priority-based worst-
case response time (WCRT) analysis may incur over-estimated results in case many tasks
have the same priority. Hence the mapping techniques based on the assumption that tasks
are assigned different priorities are not suitable to our problem.

To tackle these challenges, we propose a novel scenario-based mapping methodol-
ogy to map multiple deep learning applications onto heterogeneous processors. As de-
scribed in Fig. 1.1, we find mapping and frequency for multiple deep learning applica-
tions. The objective is to minimize energy consumption while satisfying the real-time
constraints of all applications. In the proposed scheme, we first select Pareto-optimal
mapping solutions for each application. Then mapping combination is explored, con-
sidering the scenario that indicates the dynamism of applications while satisfying the
constraints. Also, we reduce energy consumption by tuning the frequency of processors.
Experimental results confirm the goodness of the proposed methodology for various real-
life applications and scenarios on a real platform.

Finally, we also extend the model-based design methodology to support deep learn-
ing applications and applications, which are specified by a decidable dataflow model [14],
together. For a decidable dataflow, we can determine the mapping and scheduling of tasks
at compile time and detect some critical errors in the specification, such as buffer overflow
and deadlock [15, 16]. A decidable dataflow model is widely used for the model-based
design (MBD) of embedded software on a hardware platform that consists of multiple

ey

' ! | g
4 2-1H &

processing elements thanks to its properties.

In this regard, how to support deep learning applications in the model-based design
methodology has emerged as a challenging problem since the deep learning applica-
tions are getting popular in embedded systems. Even though the layer structure of a deep
learning application looks similar to a dataflow graph, it is challenging to specify it with
a dataflow model. To tackle this problem, previous studies [17, 11] have proposed to
specify deep learning networks with a specific dataflow model in order to treat them with
other applications in the model-based design framework. The former work [17] extends
a dataflow model to specify loop structures explicitly, while the latter [11] transforms
a deep learning network into a cyclo-static dataflow (CSDF) graph [16]. However, this
approach has the following drawbacks. First, it requires a lot of effort to specify a deep
learning application with a dataflow model. The number of data samples produced or
consumed per task execution needs to be explicitly specified, and the internal behavior
of tasks may need to be redefined. Second, the number of tasks grows significantly to
make the design space exploration (DSE) step more difficult as a deep learning network
usually consists of numerous layers. Third, the previous studies usually target CPU-GPU
heterogeneous processor systems without including a neural processing unit. Since recent
hardware platforms tend to include an NPU for accelerating deep learning applications, it
is necessary to consider NPUs in the design methodology. Last but not least, it is not pos-
sible to apply the optimization techniques that are provided by the deep learning SDK.
As aresult, the synthesized deep learning application from the MBD framework is likely
to perform poorly compared with the conventional deep learning application that runs
with the deep learning SDK.

Therefore, we propose a novel methodology that leverages the benefits of using deep
learning SDK for performance optimization. Through the proposed methodology, we ex-
plore mapping of both dataflow applications and deep learning applications as shown in
Fig. 1.1. First, we find the Pareto-optimal mapping candidates for each deep learning

ey

' ! | g
4 2-1H &

application onto available processing elements with multiple objectives, such as latency,
utilization of each processing element, and so on. We explore the design space of par-
titioning and mapping of a deep learning application for pipelined execution, similar to
the first phase of our work for multiple deep learning applications. Next, we explore the
mapping candidates of deep learning networks and the mappings of model-based tasks
simultaneously. Lastly, we synthesis the interface code between dataflow applications
and deep learning applications automatically by the use of well-established model-based
design framework, HOPES+ [18]. The viability and efficiency of the proposed scheme

are verified with a real-life example and randomly generated graphs.

1.2 Contribution

The contributions of this dissertation can be summarized as follows:

* We introduce the techniques to increase the throughput of a single deep learning

application, a framework that supports techniques, and the optimization methodol-

ogy.

— We present a parallelization methods that use both GPU and NPUs to max-
imize the throughput of a single deep learning application: multi-threading,

pipelining, and network duplication.

— To easily accelerate a deep learning application, we develop a JEDI frame-
work. The JEDI framework gets the various optimization parameters as a
input, and it accelerates the deep learning application on top of a deep learn-
ing SDK. Thus a user can optimize a deep learning application easily without
the burden of implementing various acceleration techniques manually. JEDI

is publicly released to demonstrate our contributions.

— The parameter optimization methodology is devised to effectively explore a

huge design of space defined by various optimization parameters.

— The viability of the proposed design environment is evaluated with nine real-

life benchmark applications on a real platform.

* We present the problems posed by NPU and its SDK for the mapping exploration

of multiple deep learning applications and propose a methodology to address them.

— We reveal the technical challenges involved in multiple deep learning appli-
cations on a real embedded device that consists of heterogeneous processors,

including NPU.

— We propose a novel methodology for mapping multiple deep learning ap-

plications onto heterogeneous processors, tackling the tecjhnice_llxchallfgnges}
i _.;.._ 1,. ..-'.::

Sy |

7

While previous studies assume that the execution time of a layer on each
PE is known before a mapping decision is made, such per-layer profiling is
not possible for NPUs. And there are several implications imposed by the
SDK that need to be considered in making a mapping decision. The proposed

methodology considers such limitations imposed by NPU and its SDK.

— While the mapping decision is made statically, we adjust the frequency of
processors dynamically to minimize energy consumption while satisfying the

real-time constraints of all deep learning applications.

— The experiments are carried out on the real platform to show the efficacy of

the proposed approach.

* We extend the model-based design methodology to support deep learning applica-

tions.

— We propose a novel technique to support deep learning applications in a
model-based design methodology without translating deep learning applica-
tions to dataflow models, leveraging the optimization capability of a deep

learning SDK.

— Differently from our previous work that maps the deep learning applications
and dataflow applications sequentially, we propose a mapping technique to

consider them together, using an evolutionary algorithm.

— The proposed methodology supports heterogeneous processor systems that
include an NPU, considering the characteristics and limitations of the hard-

ware platform and the associated SDK.

— Experiments with a real-life example and randomly generated graphs show
that we could reduce at least 5% of the maximum utilization compared to our
previous work that maps deep learning applications and dataflow applications

sequentially.

ey

' ! | g
4 2-1H &

1.3 Dissertation Organization

The rest of the dissertation is organized as follows: Chapter 2 explains the back-
ground for main topics. Then, in Chapter 3, the techniques, framework, and optimization
method for a single deep learning application is introduced. The methodology for multi-
ple deep learning applications is presented in Chapter 4. Chapter 5 contains our extension
to support deep learning applications in a model-based design methodology. Lastly, we

summarize the proposed methodologies and discuss future works in Chapter 6.

Chapter 2

Background

In this chapter we explain the background of the studies described in the following
chapters. First, we explain the NVIDIA Jetson platform used in this thesis and TensorRT
running on it. Next, we briefly describe genetic algorithms, the design space exploration
method used in this research. Next, we introduce compositional performance analysis
(CPA), one of the worst-case response time analysis methods used in this study. Finally,

we explain the formal model-based embedded software design methodology.

2.1 NVIDIA Jetson AGX Xavier

The NVIDIA Jetson AGX Xavier (Xavier) equips three types of processors: an octa-
core ARMv8 CPU, a single Volta GPU, and two NVIDIA DLAs. The DLA shows a
power efficiency, but it is slower than GPU, and it does not support all types of layers. For
example, some layers, such as Yolo layer, cannot be executed on DLA. Also, per-kernel
profiling is not supported for DLA. The unit of profiling for DLA is a pipeline stage,
which will be explained in the following section. The board has a unified and shared
DRAM for CPU and GPU. It means that on-chip communication between CPU and GPU
is carried out by DRAM memory access. However, there is an overhead in a DLA to
load the data from DRAM to internal memory for the inference. It requires adding extra
kernels to be executed for communication. For example, Fig. 2.1 (a) indicates the kernel

T ™ Ny =)
':l-"i .I_!'

10

Conv+ Conv+ Conv+
> > > —> 9
Pooll2 Actl4 Act16 -ee Pooll9 Act21
(a) When all layers are mapped to the GPU
Pooll2 DLA Conv+Act21 Conv+
> > > 9
Pooll2 output reform. part Pooll9 input reform. Act21

(b) When layers #13-#18 are mapped to a DLA, and others are mapped to the

GPU
Figure 2.1: The example composition of kernels
Load Create __ Load
Network ’ TensorRT ' ?Eft;ilff:l » TensorRT Runfime Execution
Definition)” | Builder Eoaine) | |Reserialized Ellgine}m

Figure 2.2: The workflow of generating execution context in TensorRT

composition when running Yolov2 network on the GPU. Fig. 2.1 (b) shows the kernel
composition when layers #13 to #18 are mapped to a DLA, and the rest are mapped
to GPU. The colored reformatter kernel (input/output reform.) is added at the interface
between the GPU and the DLA, as displayed in Fig. 2.1 (b). Since the overhead of the
added kernel depends on the mapping, it needs to be considered in the mapping step.

Also, as shown in the figure, the part mapped to DLA is not profiled layer by layer.

2.2 NVIDIA TensorRT

TensorRT [19] is an SDK for high-performance inference targeted on NVIDIA prod-
ucts. Figure 2.2 displays the workflow of TensorRT. The optimized inference engine is
generated by the Builder module from a given network definition. In the building pro-
cess, some optimization techniques such as layer fusion are applied. Then the Runtime
module loads and deserializes the engine to create an execution context. The Runtime
module also maps a PE to the deserialized engine. The execution context is assigned to

a stream in a GPU or a DLA. It is possible to run the network across multiple PEs in

11

GPU::Stream Infer. Infer.

DLA::Stream Infer. Infer.
CPU::Thread | Pre. Post.] Pre.

Figure 2.3: An example schedule of deep learning inference

a pipelined manner by dividing a network into multiple pipeline stages. Each pipeline
stage needs to be defined by a separate network with which a separate engine and the
associated execution context are generated.

Figure 2.3 illustrates an example schedule corresponding to the TensorRT imple-
mentation, where a single execution context is mapped to a DLA stream or a GPU stream.
TensorRT does not support a CPU to execute the inference. The CPU performs pre/post-
processing, marked as Pre. and Post. in Fig. 2.3. The pre-processing step loads the input
data and adjusts the data layout for inference, while the post-processing step performs
other processing after inference is done. Due to the execution environment of the Xavier
board, the number of deserialized engines mapped to DLAs is limited to four at most at
the time of writing this paper. It means that the total number of pipeline stages mapped
to two DLAs may not be greater than four. Those properties and restrictions are needed

to be considered when using TensorRT on the Xavier board.

2.3 Genetic Algorithm

Algorithm 1 Pseudo code for genetic algorithm

1: Generation of the initial population
2: Fitness calculation

3: repeat
4: Selecting chromosomes

5: Applying crossover

6: Applying mutation

7: Fitness calculation

8: Replacing chromosomes

9: until Solutions have been converged

A genetic algorithm is a type of optimization algorithm inspired by the process of

natural selection [20]. The pseudo code of the genetic algorithm is c}escri_bed inIAlg_o?

12

rithm 1. It works by creating a population of candidate solutions, each called a chromo-
some. The chromosome indicates the design space to be explored. Then genetic opera-
tors such as mutation and crossover are used to evolve the selected chromosomes in the
population over time. The algorithm is based on the idea that the fittest individuals in a
population are more likely to survive, reproduce and pass on their traits to future gen-
erations. This approach is widely used for combination optimization problems such as

mapping exploration.

2.4 Compositional Performance Analysis

CPU NPU GPU
FEvent model
App A _.® _>propa.gati0n
O o
FPP FIFO FIFO

Figure 2.4: Schematic diagram of compositional performance analysis

®

Compositional Performance Analysis (CPA) [21, 22] is one of the well-established
worst-case response time (WCRT) analysis methods used in real-time systems. The CPA
method computes the worst-case response time by decomposing the system into smaller
components, as shown in Fig. 2.4. This method allows different scheduling policies to be
applied to distinct processors and enables the worst-case response time to be computed
scalably by propagating event streams between processors. For example, in Fig. 2.4, the
CPU determines the output stream considering a fixed priority preemptive (FPP) schedul-
ing policy and passes it to the next component, the NPU (neural processing unit). Simi-
larly, the analysis is applied to the NPU based on first-in first-out (FIFO) scheduling. By
propagate the event stream, the worst response time is calculated for each application.
To consider the deadline constraint for different processors, the CPA approach would be

helpful.

13

2.5 Model-based Design Methodology

Model-based design (MBD) methodology is widely adopted for embedded software
development since it enables us to specify an application behavior independently of the
hardware platform that is continually evolving over time. Since appropriate models vary
depending on the application domain, various models and methodologies have been pro-
posed. For example, the statechart model is widely used for control-oriented applications
[23], and a timed discrete event model is used for power-aware real time scheduling [24].
The works of [25] and [26] adopt the dataflow model for the specification of multime-
dia or streaming applications. In addition, there exist some works that use more than
one model: a combination of the dataflow model and the finite state machine is used in
[27, 28, 18], and the work of [29] deploys both the discrete event model and the dataflow
model. While appropriate models vary depending on the application domain, a dataflow
model of computation is adequate to represent multimedia or streaming applications that
are computation intensive. In a dataflow graph, a node represents a computation task,
and an arc indicates a data dependency between adjacent tasks. A key benefit of dataflow
models is that it is easy to exploit the task-level parallelism of an application by simply
mapping nodes to processing elements in a given hardware platform. If the number of
data samples that are transferred on each arc is known at compile time, a dataflow model
is said to be decidable [14]. For a decidable dataflow, we can determine the mapping and
scheduling of tasks at compile time and detect some critical errors in the specification,
such as buffer overflow and deadlock [15, 16]. In this dissertation, we assume that a de-
cidable dataflow model is used in the model-based design methodology for embedded
software development.

Figure 2.5 shows the traditional embedded software design flow based on the
dataflow model. Each application is represented by a dataflow graph in which the inter-
nal behavior of a task is defined by the task code written in a conventional programming

language such as C or C++. The hardware platform information on the available process-
% ', 1 ==
A =—TH

14

Application specification

Task code I Task Graph

Platform
specification

Performance
estimation

Mapping

4-04-

=

Program synthesis

Code generation)

Figure 2.5: Overall flow of the model-based embedded software design

ing elements and communication architecture is given separately from the application

specification. For a given hardware platform, we find an optimal mapping of tasks onto

processing elements by comparing the estimated performance among various mappings,

which is referred to as the design space exploration (DSE) step. Lastly, the application

code on each processing element is generated based on the mapping decision made in the

DSE step.

In spite of the advantages of the model-based design, it does not support deep learn-

ing applications. Therefore, a new methodology to support deep learning application is

needed.

15

Chapter 3

Optimization of a Single Deep Learning

Application

3.1 Overview

In this chapter, we aim to improve the throughput performance of a single convolu-
tional neural network (CNN) inference application by utilizing all available processing
elements. To accelerate the throughput of an deep learning application, we first introduce
parallelization techniques on heterogeneous processor systems including NPUs. Next,
We present the JEDI framework to facilitate using the techniques. Based on the frame-
work, we decide how to apply the techniques through the proposed methodology.

The rest of this chapter is organized as follows. We first review the related work to
our work in Section 3.2. After the optimization techniques are introduced in Section 3.3,
the framework is presented in Section 3.4. Afterward, we explain the proposed method-

ology in Section 3.5. Lastly, the experiment results are presented in Section 3.6.

3.2 Related Work

This section reviews the related work in the following two subsections involved
in the proposed method: deep learning frameworks and optimization for a single deep

learning application.

16

3.2.1 Deep learning Frameworks

The widely used deep learning frameworks TensorFlow [30], Caffe [31], Pytorch
[32], Darknet [33], as well as several lite frameworks for embedded systems like Ten-
sorRT [19] and TensorFlow Lite [34], provide an environment in which deep learning
programs can be run on a single accelerator, GPU or an NPU, but not on multiple ac-
celerators. Although they offer some software optimization features like layer fusion and
low precision calculation, they do not consider system-level optimizations.

For allowing hardware-specific optimizations for various embedded systems, some
frameworks have been put forth. A Caffe-compatible framework called Caffepresso [35]
offers automatic code generation and auto-tuning by specifying setup settings. It is com-
patible with a range of hardware platforms, including FPGA, DSP, and GPU. A ma-
chine learning compiler framework called TVM [36] is designed to address the variety
of hardware properties on different devices. It generates hardware-aware optimization
code, schedules code segments, and optimizes a computation graph. A C-code generating
framework based on Darknet is called C-GOOD [5]. Although it supports approximation-
based optimization techniques like tucker decomposition and quantization as well as
system-level optimization techniques like multi-threading and pipelining, optimization
should be done manually by adjusting the parameters. For system-level optimization,

these frameworks do not take heterogeneous accelerators into account.

3.2.2 Optimization For a Single Deep Learning Application

A single deep learning application’s optimization methods rely on the hardware plat-
form and the objective. For a multi-core CPU, several techniques have been put forth. In
order to maximize resource usage, Tang et al. [7] developed an execution model for deep
learning applications on manycore CPUs and suggested a scheduler that allocates the
operations to executors at run-time. By pipelining on different CPU cores, a method de-

scribed in [6] attempts to increase the throughput of convolutional neural network (CNN)

T M T —
':l-"i . 5 !_ !.

17

inference. They presented a heuristic based on the profiled execution time of layers be-
cause the design space for pipelining is rather large.

For mobile devices, accelerating CNN inferences using GPU has drawn a lot of
research interest. In [37], a library for Android is proposed to offload the computationally
heacy layers to the GPU. The work of [38] introduced a software accelerator for mobile
devices that divides a network into unit blocks that are scheduled to CPU or GPU. In [39],
areinforcement learning-based method is presented that trains policy networks to allocate
graph operations into groups and assign the groups to available devices for Tensorflow
graphs. Although this method takes into account both CPU and GPU, its primary goal is
to decrease latency so that pipelining is not taken into account.

A simple way to boost throughput performance is by using simple pipelining be-
tween a multi-core CPU and a GPU. For instance, a 2017 LPIRC (Low Power Image
Recognition Challenge) winner used pre/post-processing pipelining; pre/post-processing
is carried out on a CPU while the network is run on a GPU in a pipelined manner [40].
However, pipelining a network onto heterogeneous processor systems, including accel-
erators, is not taken into account. In [11], general system-level optimization on a het-
erogeneous system is taken into consideration. They could apply any parallel scheduling
method that has been presented for a CSDF graph by transforming a CNN model to a
CSDF graph. To map the nodes to a CPU/GPU heterogeneous system for experiments,
they used a genetic algorithm. The overhead associated with model translation and the
challenges of mapping and code generation are this approach’s key drawbacks.

A few recent research have studied at heterogeneous processor systems with not
only GPU but also NPU for accelerating deep learning applications. Using task-level
parallelism of each network, the work of [12] also takes into account multiple DNN in-
stances on a heterogeneous system that comprises both GPU and NPU. However, NPUs
are not included in the experimental results, even though throughput optimization is in-
cluded as an objective function. There is no work using the NPU and its SDK on a real

.-3';: O | =]

18

% PE mapping Intra-network

S

Partial network ~§w\3‘:\ \\ pipelining on inter-PE
duplication i \\\\\Q\\\\\Q m

Execution
context/
Stream

Execution |!
context/ |
Stream |!

m—ms Mmoo Fe=/ Nemeeeeeaoo Y . R
Pre }’)I‘O(esslno‘ l i L % l Post-processing
; Post-processing

——————————————— L.+ Post-processing
Intra-PE parallelization parallelization

Pre-processm

Pre-processing
parallelization

Figure 3.1: Four parallelization techniques

GPU:: Stream [Inference | [Inference ‘[Inference N

CPU:: Thread \ Pre-processing | Pre-processing | Pre-processing

CPU:: Thread |Post—proccssing| ‘Post—proccssing‘ |Post—proccssing‘

(a) Pre/post-processing pipelining with two buffers

GPU:: Stream Inference | Inference | Inference [Inference l

CPU:: Thread [Pre—processing Pre-processing ‘

CPU:: Thread ‘ Pre-processing | Pre-processing

CPU:: Thread [Post—processing| | Post—processing‘|

CPU:: Thread \ Post-proccssing[]Post—processingl

(b) Pre/post-processing parallelization with two threads

Figure 3.2: Schedule diagrams of inference steps with pre/post-processing pipelining

platform, despite the fact that numerous research offer the optimization approach for a

single deep learning application.

3.3 Parallelization Techniques

The proposed methodology consists of four main techniques, as outlined in Fig. 3.1.

3.3.1 Pre/Post-Processing Pipelining and Parallelization

Pre- and post-processing are essential parts to run deep learning (DL) applications.
In the pre-processing step, we load an input image and re-size the image. After the
completion of inference, we perform post-processing for localizing detected objects and
storing results. Pipelining the pre-/post-processing part with the main inference body is
popularly used to improve the performance [40]. Figure 3.2 (a) is an example diagram

of the pre- and post-processing pipelining. Colors express dependency among pipeline

.-:r\n-! ‘” -T ll -\.__l'l

19

n’

stages. To overlap the execution of adjacent pipeline stages, multiple buffers are needed.
In Fig. 3.2 (a), the pre-processing, post-processing, and inference steps can be overlapped
together since two buffers are used between pipeline stages.

The number of buffers between pipeline stages affects the throughput performance.
A processing element may become idle if there is no free space in the output buffer to
store the output data or input data is not available in the input buffer. Thus we need to
increase the buffer size until the throughput performance is saturated. If the same memory
is shared among different processing elements, a processing element can read input data
without copying overhead or write output data directly to the buffer. Since our example
embedded device, the Xavier board, provides an API to share pinned CUDA memory
among different processing elements, there is no data copy overhead between pipeline
stages. This feature is known as Zero-copy.

Although the pipelining those parts makes the execution overlap, it is not enough
in some cases. Yolov4-tiny network, as an example, it is necessary to utilize more than
two pre-processing threads concurrently since it may take longer to pre-processing than
the time for inference body. Thus, we parallelize the pre- and post-processing parts with
multiple threads in case the part becomes the performance bottleneck. Figure 3.2 (b)
shows an example schedule where two threads are used in the pre-processing and post-
processing step. It is assumed that the number of intermediate buffers is large enough to

run the third and fourth pre-processing steps consecutively.

3.3.2 Intra-PE Parallelization

A data-parallel accelerator such as GPU can parallelize multiple instances of the
assigned kernel using multiple streams, which increases the utilization further. Indepen-
dently of the number of threads in the pre-/post-processing steps, we can create more
than one stream in GPU and DLA by creating as many buffers as the number of streams

at the pipeline-interface. It is observed that if the number of streams exceeds a certain

ey

' ! | g
:l__i -';"-1 !. ..-'.:i

20

GPU:: Stream Inference [Inference]

GPU:: Stream Inference l Inference |

CPU:: Thread | Pre-processing | Pre-processing |

CPU:: Thread | Pre-processing | Pre-processing

CPU:: Thread |Post»processing Post-processing
CPU:: Thread lPost—processing Post-processing

(a) Multiple streams with a sufficient number of buffers

DLA:: Stream ‘Inference il |Inferen(ze 1
DLA:: Stream [Inference 1 [Inference 1
GPU:: Stream Inference 2 Inference 2|
GPU:: Stream Inference 2 Inference 2|

CPU:: Thread ‘ Pre-processing ‘ Pre-processing |
CPU:: Thread | Pre-processing | Pre-processing |
CPU:: Thread |Post—processing| |Post-processing|
CPU:: Thread [Post—processing[[Post—processing\

(b) Network pipelining on heterogeneous processors

Figure 3.3: Schedule diagrams of inference body parallelization

level, the performance is saturated. Thus we set the number of streams as an optimization
parameter. In Fig. 3.3 (a), it is assumed that the number of streams in GPU is two, the

same as the number of threads in the pre-processing step.

3.3.3 Intra-network Pipelining

To use all available accelerators, we pipeline the inference body. Figure 3.3 (b)
shows a simple schedule after applying the intra-network pipelining where the inference
network is split into two stages and assign the first stage, Inference 1, to a DLA and the
second stage, Inference 2, to the GPU. Note that we may assign more than one stage to a
PE. Therefore, it is necessary to determine how to split the network into stages and how
to assign the stages to the PEs. Since the design space of pipelining is huge, how to ex-
plore the space is a challenging problem. To tackle this challenge, we devise a heuristic to
decide the cut-points for network splitting for a given mapping option which is explained

in Section 3.5.

21

3.3.4 Partial Network Duplication

Lastly, we may duplicate the part of the network, which is called partial network du-
plication (PND). It is important to balance the execution time among the pipeline stages.
Since it is easier to balance one GPU and one DLA than one GPU and two DLAs, we
pipeline the network onto one GPU and one DLA in this technique. Then we run two
iterations of the network concurrently, mapping the duplicated part of the network to dif-
ferent DL As and sharing the GPU for the remaining part. In Fig. 3.1, the striped boxes
are mapped onto different DLA with the separate inference engine, and each engine is

responsible for half of the streams in the stage.

3.3.5 Other Optimization Methods

Besides system-level optimization, the proposed framework supports two popular
methods to improve throughput performance. The first is to use low-precision computa-
tion that reduces the computation workload as well as memory requirement. Instead of
using 32-bit floating-point operations, we may use 16-bit floating-point or 8-bit integer
operations. Since the Xavier board supports 8-bit inference, we provide an option to use
8-bit inference. TensorRT supports post training quantization (PTQ) method based on a
calibration table. However, this feature is not directly applicable to the pipelined network
since TensorRT considers a single network only.

The second is to use batch processing. There are two scenarios we can use batching
processing for a single DL application. One is to run it with multiple inputs; An ex-
ample is an object detection network that receives input images from multiple cameras.
The other scenario is to queue incoming input images to given batch size and process
them concurrently. Even though queuing may increase the latency, the throughput gain

by batching may give a higher benefit than the latency loss.

22

3.4 JEDI Framework

As was stated in the section above, the throughput of network can be increased by
using a number of system-level optimization strategies. A TensorRT-based framework is
created to support those techniques due to the lack of public framework that makes it
simple for us to use them. The suggested framework’s general organization and process
are shown in Figure 3.4. The framework requires a configuration file as input that contains
the pipelining/mapping information in addition to the following parameters which are
related to design space exploration: the number of buffers, the number of threads for
pre/post processing, the number of streams per pipeline stage, and mapping to processing
elements. Besides, the configuration file allows for the setting of batch size and data
precision. Information about the application and test, such as the network settings or
image file path, is also included in the configuration file.

A deep neural network is defined by a darknet-based configuration which is adopted
in tkDNN. It is necessary to alter tkDNN library [41] so that it generates an engine for
each sub-network after pipelining the network, as the original tkDNN library provides a
way to build an engine for the entire network using TensorRT only. In addition, we also
support an ONNX file format [42] which is widely used to represent deep learning ap-
plications. To partition a network presented by ONNX, we use the Polygraphy tool [43].
When using the ONNX file format, it is only supported in Jetpack 5.1 with TensorRT
8.5.2 and later versions. Meanwhile, the darknet-based configuration can be used in Jet-
pack 4.3 with TensorRT 6 and higher version. As seen in the Build section of Fig. 3.4, a
distinct engine is produced for each accelerator. Additionally, the modified tk DNN rear-
ranges the engine’s outputs and inputs to correspond with those of neighboring pipeline
stages in the case of using the darknet-based configuration.

The Inference section of Fig. 3.4 illustrates how to run a deep learning application
in JEDI. JEDI generates threads based on parameter, including subnetwork threads and

pre-/post-processing threads that will perform on a CPU. Each subnetwork thread repre-
i L-1ll &1

23

Configuration file |:| User-customizable |:| External modules
Test Application
configuration| | configuration JEDI
Batch Buffer Stream |Datn5&-t| | Application | SUPDI':L‘
size number number tesults
| tkDNN library]
Pre/Post- essi antizati iles
re/Post-processing | |Quantiza 1.011 I Gp——— I Log files
thread number configuration
| ONNX |
Pipelining/mapping
information 7 I Leliemphy |
______________________________ ’ ‘-h""-..___________
— Build
Network specified by tkDNN Inference
00, eongines 0—0—0 =
for each DLA inference engine GPU inference engine

subnetwork

| Pipelining/mapping info. |

~ Inference
Deep learning application
Pre-processing Lhr‘cadrl J Subnetwork Thread I | Subnetwork Thread | |]’05l—proccssim: Lhrca.d”
I N H N H T
Lu Execution Context ELulﬂxecul-i:)n Contex

Figure 3.4: Workflow of the proposed inference framework

sents a pipeline stage mapped onto GPU or DLA and handles multiple execution contexts
mapped to streams in the designated accelerator. A subnetwork thread synchronizes with
the adjacent pipeline stages; inference on a stream is postponed until all input and out-
put buffers are ready. If multiple execution contexts are used, synchronization delay can
be disguised by interleaving the execution of streams. If a partial network duplication
technique is adopted, each of two different inference engines, corresponding to the iden-
tical portion of the network, are mapped to a different processor. Otherwise, only one
inference engine is used at each pipeline stage.

In Fig. 3.4, the green boxes represent the user-customizable JEDI modules. A user
can add any application-specific parameters like an application configuration, new data
sets, and a deep learning application. Log files and output results are produced after JEDI

runs the program on the Xavier board. These files are used to record resource utilization

- =11
i — s

24

configs

}

)

= {

instance_num = "1";
instances = ({

}

Common/test configurations

app_type = "YoloApplication";
model_type = "tkDNNApplication";
sample_size = "4952";

Application-specific configurations
Darknet-based configuration
cfg_path = "yolod.cfg";

image_path = "all_images.txt";
name_path = "coco.names";

ONNX configuration

onnx_file_path = "yolo4.onnx"

Optimization parameters

batch = "1";

device_num = "3";
pre_thread_num = "1";
post_thread_num = "1";
buffer_num = "8";
cut_points = "52,134,268";
streams = "1,4,3";

devices = "GPU,DLA,GPU";
dla_cores = "0,2,0";
data_type = "INT8";

Figure 3.5: An example segment of JEDI configuration file

and evaluate the accuracy and performance of a deep learning application.

3.4.1 Configuration Parameters

An example segment of the configuration file is shown in Fig. 3.5. The configuration

file format is adopted from the libconfig library, C/C++ configuration library. First of

all, instances and instance_num (line 2-3) are used for specifying one or multiple deep

learning applications. If instance_num is one, only a single deep learning application is

executed in JEDI. Each element of instances shows the independent settings of each

deep learning application. The options in each instance can be classified into three types:

common/test configuration (line 6-8), application-specific configuration (line 10-13), and

i :
¥ [

oy

i

= T
[

1 11!

L

T
_-|

25

optimization parameters (line 15-24).

Common/test configurations are used for all types of deep learning applications.
app-type is used to specify the application type that is given by the user, which will be
explained in the next subsection. model _type is used to indicate the input format of the
application. In the example, the darknet-based configuration, tkDNNApplication, is used.
Another option is the ONNXApplication which represents that the ONNX file is adopted.
The number of inputs to test inference is set by sample_size. There are other common
configuration options such as weight file directory path, engine building directory path,
and calibration table path.

Application-specific configurations depend on the application type (app_type); A
user can define new options which are needed for creating a network or loading a data
set. Since the application type is given as YoloApplication, related options are listed as
application-specific options in Fig. 3.5. If the model type is tkDNNApplication, then net-
work information is read from Darknet-based configuration file [33], so cfg_path is used
for getting the path of the network configuration file. While the model type is ONNXAp-
plication, then onnx_path is used to read the onnx file. The input image path and the path
to the labeled data set are also specified as application-specific configurations.

Figure 3.5 displays the optimization parameters in the last segment. Note that
these optimization parameters are independent of deep learning applications. The num-
bers of pre-/post-processing threads are decided by the parameters pre_thread num and
post _thread _num, respectively. The number of buffers between pipeline stages is repre-
sented by the buf fer_num.

For intra-network pipelining, four parameters are defined: device_num, devices,
dla_cores, and cut_points. The number of pipeline stages is denoted by the device_num,
and devices indicates the assigned processor to each pipeline stage. For instance, the first
and the last stage are mapped to GPU while the second stage is mapped to a DLA. The
third parameter, dla_cores, indicates the mapped core ID in case the assigned processor

ey

' ! | g
:l__i -';"-1 !. ..-'.:i

26

is DLA. So the second element, which is 2, has a meaning while the first and the third
elements can be ignored. If the value is 0 or 1, it indicates the core ID of two DLAs. If the
value is greater than or equal to the number of cores, then the PND technique is applied.
In the example of Fig. 3.5, we duplicate the second stage and map two copies onto two
DLAs to run concurrently.

The number of layers allocated to each pipeline stage is specified by the cut_points
option which indicates the last layer of each pipeline stage. For instance, in line 20 of
Fig. 3.5, the first stage consists of layers #0 to #52, the next stage includes layers #53 to
#134, and the rest are allocated to the last stage. The number of streams for each pipeline
stage is denoted by the streams. In line 21, the first and last stages take one and three
GPU streams, respectively. The second stage uses four streams, two streams on each
DLA, since the PND technique is adopted.

Other parameters discussed in Section 3.3.5 are also included in the JEDI configu-
ration file: batch is the batch size that is used to run an inference with multiple inputs,
and data_type indicates the precision of the inference. JEDI supports 32-bit (FP32), 16-
bit (FP16) floating-point, and 8-bit integer (INT8) inference. Since TensorRT generates
a calibration table from a single inference engine for INTS8 inference, JEDI uses the cali-
bration table generated from the whole neural network. Based on cut-points information,
JEDI automatically divides the calibration table to generate a separate calibration table
for each pipeline stage and uses the divided table for generating the associated INTS8

inference engine.

3.4.2 Application Development

As a general deep learning framework, JEDI provides a generic interface to
support various deep learning applications. JEDI defines a virtual class named
IInferenceApplication which includes virtual methods to implement a deep learn-

ing application as listed in Table 3.1. The readCustomOptions method is used to

ey

' ! | g
4 2-1H &

27

Table 3.1: Main virtual methods for user-implemented deep learning applications in JEDI

Method Name \ Description

Read custom options which is going to be used for the application.

(e.g. Network file path, data set path, etc.)

createNetwork Create a network.

Initialize data which are used during pre-processing.

(e.g. Data set initialization)

initializePostprocessing | Initialize data which are used during post-processing.
preprocessing Run pre-processing (e.g. image loading, image resizing)
postprocessing Run post-processing.

readCustomOptions

initializePreprocessing

read application-specific options from the JEDI configuration file. The createNetwork
method creates a network and retrieves a TensorRT-specified network object: A User
may specify the network with a C++ code or add a conversion code from other for-
mats to TensorRT-based network object. Two methods, initializePreprocessing and
initializePost processing, are used for initializing data or allocating buffers that are go-
ing to be used during pre-processing or post-processing, respectively. Actual processing
codes are implemented in preprocessing and post processing methods, respectively. Reg-
istering an application is made by the registry pattern [44], and the registered application
name is used as the app_type option in the JEDI configuration file.

YoloApplication shown in Fig. 3.5 is an example of a deep learning application
development. YoloApplication is an inherited class from IlnferenceApplication that
we implemented virtual methods listed in Table 3.1. The readCustomO ptions method
is implemented to read cfg_path, image_path, and name_path. In the createNetwork
method, we call a conversion function from a Darknet configuration file or ONNX file
to TensorRT specification. The darknet configuration file is translated by the tk DNN li-
brary. And the onnx file is read by the parseFromFile method provided by TensorRT. In
the initializePreprocessing method, a data set is initialized to read the image path from
image_path, and initializePost processing allocates buffers for storing detection results.
Finally, the preprocesssing method is implemented to load and resize input images, and

post processsing calls functions related to localizing objects. With our proposed frame-

q - Ry
-:l-"i l| |l

28

Fixed Optimized cut-po: i Taple !
g - - = ptimized cut-point tuple:
input parameters Smgle‘PE Pipeline cut-point L___Pipeline cut-point '
Network Info. mapping explorer explorer
Input size option? i (Global-only) o (Full search)
Batch size 1Qptimized cut-point tuple;
Data type No
Parameter raverse Select . mapplig Parameter
.. all mapping best mapping option is
maximizer . . . fine-tuner
- - options? option single -

| Pre-. threads |
| Post-. threads|
[J Module ! Buffers !
L_ _Streams __!

Pre-. threads

| '
I i 15)
1 Post-. threads |
I

1
: :

Buffers
H Streams

"' Decided parameters

Figure 3.6: The proposed optimization process with three design space exploration mod-
ules

Table 3.2: Options for mapping on the target platform

Option [# of pipeline stages [Composition of PEs

A 2 DLA - GPU

B 3 GPU - DLA - GPU

C 3 DLA - DLA - GPU

D 4 GPU - DLA - DLA - GPU

E 1 GPU
PND-A 2 DLA (two DLAs) - GPU
PND-B 3 GPU - DLA (two DLAs) - GPU

work, a user may focus only on the implementation of an application itself, without con-

cern about acceleration techniques.

3.5 Design Space Exploration

Since JEDI supports many optimization parameters, exploring the design space to
find optimal parameter values is challenging. Rather than searching the entire design
space at once, we use a divide-and-conquer approach to reduce the search complexity.
Figure 3.6 depicts the proposed optimization process that consists of three key modules,
each of which uses JEDI to explore a subset of parameters. First of all, a group of pa-
rameters is explored manually by setting some fixed values. The group includes network
information, input data size, batch size, data type, and a mapping option. Since the Xavier

board has one GPU and two DLAs, the number of possible mapping options is limited
21 S 11
I 1

29

and finite. Table 3.2 shows the explored mapping options in the proposed methodology.
The second column indicates the number of pipeline stages, and the last column shows
to which accelerators the pipeline stages are mapped. Unlike the GPU, a DLA cannot
execute some layer types. If a layer that cannot be run is mapped to a DLA, the layer is
remapped to the GPU automatically by TensorRT, which is called GPU fallback. Since
such layers exist at the bottom part of all benchmark networks used in the experiments,
we map the last pipeline stage to GPU in all options. Except for options A, B, and E,
all options use two DLAs. For options PND-A and PND-B, the pipeline stage assigned
to DLA is duplicated and mapped to two DLAs by the PND technique. In options B,
D, and PND-B, GPU is assigned to two pipeline stages, the first and the last, since the
GPU has better computation power than DLA. If our methodology is applied to a differ-
ent hardware platform, we will define a different set of mapping options, considering the
characteristics of the processing elements in the hardware platform.

After fixed input parameters are set manually, the parameter maximizer module de-
termines the upper bounds of the following parameters to explore: the number of pre-
/post-processing threads, the number of buffers, and the number of streams. In this mod-
ule, we use mapping option E and increase the parameter values incrementally until the
performance is not improved anymore: we change the configuration file of JEDI and run
JEDI to obtain the performance and repeat this process automatically.

After the upper bound values of those parameters are determined, the next step is to
determine the pipeline cut-points by the pipeline cut-point explorer module for a given
mapping option unless the mapping option E is taken. Two versions of pipeline cut-point
explorer are used with a different purpose. First, the pipeline cut-point explorer (global-
only) is used to find the best mapping option among seven given options. In this case, only
the sampled cut-points are explored to find the mapping option with the best performance.
Then, the pipeline cut-point explorer (full search) considers all feasible cut-points. The
pipeline cut-point explorer module will be explained in the next subsection in detail.

.-3';: O | =]

30

If the mapping option E is selected, the pipeline cut-point explorer is skipped since no
network pipelining is made in this option. After pipeline cut-points are determined, the
parameter fine-tuner module performs parameter fine-tuning that is going to be explained
in Section 3.5.2.

Note that all three modules in Fig. 3.6 measure the performance by actually running
JEDI on the target Xavier board. While it incurs the significant overhead of repeated ex-
ecution of JEDI on the Xavier board, the measured performance is an ideal performance
metric that is necessary for design space exploration (DSE): communication time be-
tween pipeline stages and other unknown overheads are all considered in the measured

performance.

3.5.1 Pipeline Cut-point Explorer

Layer allocation to each pipeline stage can be represented by a cut-point tuple which
indicates the last layers mapped to each pipeline stage. All options which use more than
one accelerator require running the pipeline cut-point explorer module that searches a set
of sub-optimal cut-point tuples. The size of possible combinations of cut-points is y_C,
to select ¢ cut-points from N layers. To avoid the exponential complexity of exhaustive
search, a 2-phase heuristic is devised to find a sub-optimal tuple of cut-points. The first
phase is a global search over a sampled set of cut-points: we prune the search space by
sampling the cut-points regularly. The other cut-points are explored in the second phase,
local search. Algorithms 2 and 3 show the pseudo-code of the global search heuristic and
local search heuristic, respectively. If the pipeline cut-point explorer is used for searching
the best mapping option, the local search heuristic is skipped to reduce the search time
as shown in lines 10-13 of Algorithm 2. At the beginning of the global search phase, we
set the following three: an initial cut-point tuple, a candidate cut-point set, and a stream
number tuple. An initial cut-point tuple can be set as a sequence of ordered random

numbers. Suppose the profiling information of layer execution times on GPU or NPU is

ey

' ! | g
:l__i -';"-1 !. ..-'.:i

31

Algorithm 2 Pseudo code for global search heuristic

Input : T: Threshold value of GPU utilization
Input : K: The number of cut-point tuples with top K FPS
> For fast search, K = 1. Otherwise, K = 10
Input : cutipicur/prey * an initial/current/previous cut-point tuple
Input : str.,, : a stream number tuple of cut.,,
Input : confp. : (cut-points tuple, streams tuple) with the best FPS
Input : fpscy,/prev: FPS of the run with cute /ey
Input : gpuUtil.,,: GPU utilization with current tuple of cut-points
Input : Topg: the list of top K cut-point tuples in FPS
Input : P: The set of move policies to explore the cut-point tuples
1: cuteyr = cutinis, Cutprey =NODE, fPSprey = MAX
2: fpScur, gpuUtile,, = Run JEDI with (cutey,, streyr)
3: while New cut-point tuple is selected do
4 Select P with gpuUtil.,,
5 for each P; in P do
6: Cull prey = Culcurvfpsprev = fPScur
7.
8

cute,r = Select a new cut-point tuple with (cutcyr, P;)
fpScurs gpuUtile,,, = Run JEDI with (cutey, streyr)

9: Update Topk and con fpey With (cutcyr, fPScurs Streur)
10: if NOT Global-only and
11: gpuUtile,, > T and cut.,, € Topk then
12: Perform local search with (cutcyr, Streyr, fPScur)
13: end if
14: if fpsprev < fDScur then
15: continue with P; again
16: end if
17: end for

18: end while

available. In that case, an initial cut-point can be decided based on the profiling execution
time, aiming to balance the pipeline stage length. Since layer-wise profiling for DLA
is not available on the Xavier board, we used a random initial cut-point tuple in the
experiments. If a cut-point tuple is already searched with different fixed input parameters,
that cut-point tuple could be reused as the initial cut-point tuple.

A candidate cut-point set is a sampled set of cut-points to prune the search space
for global search. A candidate cut-point set is basically determined by sampling the cut-
points regularly, but additional cut-points can be inserted to include the cut-points of the
initial cut-point tuple. Figure 3.7 (a) shows an example of the sampled cut-point set. The
sampled cut-point set, which is shown as the solid green lines, is created by sampling

after every three layers, so 5 out of 15 cut-points are used during the global search.

32

Sampled cut-point set = {3, 6, 9, 12, 15}

(a) Sampled cut-point set for search space reduction

‘ @- I" cut-point tuple (6, 15) - move the second point to the right
® I cut-point tuple (6, 12) 1y P ple (6, 15) ! 8
- cut-point tuple (3, - shift all points to the left
21| i le (3, 9) - shift all poi he lef

(b) Global search example

® I cut-point tuple (3, 9) ‘ @ ! cut-point tuple (2, 9) - move the first point to the left

(c¢) Local search example

I cut-point tuple (6, 9) - infeasible

: cut-point tuple (3, 8) - feasible

(d) Example of feasible and infeasible cut-point tuples

Figure 3.7: Illustration of the proposed heuristic with an example

The last is a stream number tuple which contains the number of streams for each
pipeline stage. We simply set the number of streams to two for the pipeline stage mapped
to a single DLA. For options PND-A and PND-B, we set the number of streams to four to
assign two streams to each DLA. The number of streams for GPU is set to the maximum
number of streams that is decided by the parameter maximizer module. If two pipeline
stages are mapped to a single GPU, such as options B, D, and PND-B, each GPU pipeline
stage uses half of the maximum number of streams.

The proposed global search heuristic requires two internal variables, 7 and K: T is a
certain threshold of GPU utilization and K is the number of tuples to maintain during the
iterative process of global search. As shown in Algorithm 2, the global search starts with
the initial cut-point tuple, cuti,;; (line 1). We obtain the FPS, fps.,,, and GPU utilization,

gpuUtil,,, by running JEDI with the initial cut-point tuple and the number of streams

33

tuple (line 2). Then, the searching area of cut-points is expanded by defining several
cut-moving policies from the current tuple of cut-points. If gpuUtil.,, is greater than T,
the cut-points around the current cut-point tuple are moved by the following policies:
One is to move a single cut-point by one, and the other is to shift all cut-points in the
left or right direction. Otherwise, the cut-points are moved in the direction of increasing
the GPU utilization, assigning more layers to GPU. After the policy set P is selected
based on gpuUtil,,, (line 4), we obtain a new candidate tuple of cut-points according to
each moving policy P; € P (line 7). Two new cut-point tuples created this way are shown
in Fig. 3.7 (b). From the original cut-point tuple depicted with sky-blue lines ((D), the
double-dashed brown lines (@-1) indicate a new candidate cut-point tuple by moving
the second cut-point to the right direction, while the single-dashed violet lines (2)-2)
represent another candidate tuple by shifting all cut-points to the left direction. As shown
in the figure, moving is performed with the sampled cut-point set.

After we measure the FPS and GPU utilization by running JEDI (line 8), we up-
date the list of cut-point tuples with top K FPS performance, Topx. And, we update the
con fpey Which contains the cut-point tuple and the stream number tuple with the best FPS
result (line 9). The local search heuristic is executed when the gpuU'til.,, is not smaller
than 7" and cut,, is newly added to Topk (lines 10-13 in Algorithm 2) in the full search
version.

Note that variable T affects the search area of the design space and the speed of
the global search heuristic. If T is too large, the explorer is terminated fast after explor-
ing a small volume of candidate cut-points, and the local search heuristic may never be
executed. To determine a proper T value, we run the pipelining cut-point explorer sev-
eral times by reducing the 7' value in a greedy fashion until the local search heuristic
is executed for a certain number of cut-point tuples explored during the global search
phase. The number is determined empirically, for instance 10. Depending on K value, the
searching area can be extended or shrunken. If the initial cut-point tuple is a sub-optimal

.-3';: O | =]

34

Algorithm 3 Pseudo for local search heuristic

9

10:
11:
12:
13:
14:
15:
16:
17:
18:
19:
20:
21:
22:
23:
24:

PRI ALY

Input :
Input :
Input :
Input :
Input :
Input :

Cllglobal: @ Cut-point tuple passed from the global search
CUlpes : @ cut-point tuple with the best FPS

SUFeur/global © @ Stream number tuple of cut .y, /g1opal
CUleyr/preyt N CUTTENt/previous cut-point tuple

fpscur/prev/globul: FPS of the run with Cutcur/prev/glubul
Pocar: The local search move policies to move a cut-point

CUllcyr = ClUlgiopals St cur = St¥global fpsprev =MAX
if The first pipeline stage is mapped to GPU then
Update the first pipeline stage of str¢y, to 1
[Pscur = Run JEDI with (cuteyr, Streyr)
Update COnfbest with (cuteyr, fpscura StTeur)
if fpscur ¢ fPSglobar then

Rollback stre, and fpscur

end if

end if

while fpsc,, is improved do
for each cut-point of cut.,, do

for P; in Py, do
Cllprey = Clllcyr, fpsprev = fPScur
cute, = Move a cut-point of cut,, with P;
fpscur = Run JEDI with (cutcyr, Streur)
Update con fpes With (cuteur, fPScurs Streur)
if fpscur > fpSprev then
continue with P; again
else
CUleyr = CUlprey, fpScur = fpsprev
end if
end for

end for
end while

tuple found from different fixed parameters (e.g., different image size or batch size), the

fast search can be performed by setting K value to 1. Otherwise, K was set to 10 in the

experiments.

called by the global search for the current cut-point tuple, cut,,, which becomes cutgjopar
and is regarded as the initial cut-point tuple in the local search heuristic. The fpsgiopar is
initialized with the FPS performance of cutgopq . If the local search heuristic is run with
the mapping options which map two pipeline stages to GPU such as B, D, and PND-B,
we examine if it is beneficial to change str.,, by allocating one stream to the first pipeline

stage and the other streams to the last pipeline stage (lines 2-7). If the FPS result is better

The local search heuristic is shown in Algorithm 3. The local search heuristic is

35

than fpsgopa, the number of streams is changed to the newer one. Otherwise, str, is
restored to $t7gjopq. This step is added after we observe that assigning more streams to
the last stage often produces better performance in our experiments.

While the overall process of the local search heuristic is similar to the global search
heuristic, the cut-point selection policy and the cut-point selection range are different
from the global search heuristic. The local search heuristic always uses Pj,¢,; as a moving
policy that only moves a single cut-point one by one to the left or right direction. While
the global search heuristic only chooses the cut-points from the sampled candidate cut-
point set, the local search selects the cut-points from all cut-points. Figure 3.7 (c) shows
an example of moving a cut-point by the local search heuristic. The cut-point tuple with
the dashed gray line () is generated from the tuple with the solid violet line ((I)) by
moving the first cut-point from 3 to 2. Note that the local search only updates the con fp.s
to store the best solution (line 16). Topg is not affected by the local search. If the FPS
performance is improved, the same policy is tried again (lines 17-18). Otherwise, the
cut-point tuple is restored (lines 19-20), and the next policy is applied until there is no
performance improvement.

When selecting a new cut-point tuple in both the global and local search heuris-
tic, the pipeline cut-point explorer checks the feasibility of the selected cut-point tuple.
If more than one cut-point cuts an arc between two layers, it is considered infeasible.
We perform synchronization between two adjacent pipeline stages only for simple im-
plementation. If we allow more than one cut-point to cut the same arc, it is needed to
synchronize two non-adjacent pipeline stages. Since it incurs the extra overhead of syn-
chronization and buffer management, we decided to disallow it. Figure 3.7 (d) shows an
example of a feasible and infeasible cut-point tuple. The cut-point tuple with the solid
red line is infeasible since the output of the first pipeline stage is directly passed to the
last pipeline stage, not the second. On the other hand, the cut-point tuple with the dashed

violet lines is feasible.

36

Note that the pipeline cut-point explorer actually builds the TensorRT engines for
each pipeline stage and runs the application multiple times, so the run-time of the pipelin-
ing cut-point explorer depends on the number of cut-point tuples searched during execu-
tion. Suppose pipelining cut-points are the same, but the other parameters are different.
In that case, the engines are reused when performing different mapping options in the
experiments to avoid the redundant overhead of building engines.

Note that the pipeline cut-point explorer uses the utilization value of GPU as a metric
to narrow down the search space. If a hardware platform provides a way to monitor the
processor utilization, the proposed heuristic can be adapted to the hardware platform
accordingly. Since we measure the performance by running the network on the hardware

platform directly, the same method can be applied.

3.5.2 Parameter Fine-tuner

The final step of parameter optimization is running the parameter fine-tuner module.
It finds the minimum number of pre-/post-processing threads, streams for each pipeline
stage, and buffers to reduce the hardware overhead while not hurting the performance.
Since the number of possible combinations of those parameters is huge, a greedy heuristic
is devised to explore the parameters effectively. We use a constraint that the number of
buffers must be greater than or equal to other optimization parameters.

The greedy heuristic consists of three steps. First, it increases the parameters one
by one to check whether the performance is improved or not by running JEDI with the
changed configurations. Even though we use the maximum parameter values obtained
in the parameter maximizer module that assumes mapping option E, we may improve
the performance by using larger values if a different mapping option is selected. If the
performance is improved, the fine-tuner sets the performance value as the best value. In
the second step, the fine-tuner reduces the values of all parameters one by one to get
the minimum parameter values while maintaining the performance as much as possible.

ey

37

The percentage of allowable performance degradation is given as an input. Finally, the
number of streams assigned to GPU is adjusted while maintaining the total number of

streams in case two pipeline stages are mapped to GPU.

3.6 Experiments

3.6.1 Set-Up

All experiments were conducted on a Jetson AGX Xavier board with Jetpack 4.3 and
TensorRT 6. We used the tkDNN [41] library that makes TensorRT easy to use. Since it
does not support pipelining, however, we modified the library to create a separate infer-
ence engine for each pipeline stage. In addition, the experiments are conducted by using
a darknet-based network format except for the Section 3.6.6.3 which uses the ONNX
file format. Table 3.3 lists the benchmark networks supported by tkDNN; They are all
object detection networks. Since the DLA does not support leaky relu or mish activation
currently, we replaced those with relu activation and retrained the networks. If there is
any layer that the DLA does not support among the layers mapped to the DLA, the layer
is actually executed on the GPU, which is called GPU fallback. We set the maximum
frequency on the MAXN power mode, which does not limit the power budget. In the
pipelining heuristic, we use 5,000 test images to estimate the FPS of each candidate set
of cut-points. After the final configuration is determined, we perform each experiment
five times and get the average value.

Table 3.3 lists the object detection benchmark applications. Although most of the
networks are based on Yolo, the networks vary in accuracy and the number of layers.
Since the DLA does not support leaky relu or mish activation, we replace those with
relu activation and retrain the networks. All networks except Yolov4csp read and resize
images to 416x416 during pre-processing. For Yolov4csp, input images are converted to

letter box images rather than resizing that may distort the image.

38

Table 3.3: The labels and the number of layers of benchmark applications.

4 of mAP (AP) mAP (AP50)

Network Label layers GPU DLA GPU DLA
° | FP16 [INTS8 | FP16 [INT8 | FP16 [INT8 | FP16 INTS
Yolov2 [45] Y2 54 0.224 | 0.222 | 0.224 | 0.216 | 0.436 | 0.435 | 0.437 | 0.432
Yolov2tiny [45] Y2t 24 0.096 | 0.096 | 0.096 | 0.093 | 0.246 | 0.245 | 0.246 | 0.244
Yolov3 [46] Y3 179 | 0.286 | 0.289 | 0.286 | 0.270 | 0.506 | 0.515 | 0.506 | 0.511
Yolov3tiny [46] Y3t 35 0.133 | 0.133 | 0.133 | 0.127 | 0.312 | 0.310 | 0.312 | 0.308
Yolov4 [47] Y4 269 | 0.399 | 0.395 | 0.399 | 0.342 | 0.612 | 0.611 | 0.612 | 0.597
Yolov4tiny [47] Y4t 57 0.203 | 0.200 | 0.203 | 0.183 | 0.392 | 0.389 | 0.392 | 0.380
Yolvo4csp [48] Yi4c 290 | 0.427 | 0.421 | 0.427 | 0.401 | 0.608 | 0.604 | 0.608 | 0.598
CSPNet [49] CN 228 | 0.359 | 0.359 | 0.359 | 0.332 | 0.586 | 0.588 | 0.586 | 0.585
Densenet+Yolo [50] | DY 508 | 0.190 | 0.205 | 0.190 | 0.137 | 0.380 | 0.412 | 0.380 | 0.318

We used COCO2014 trainval data set and 416x416-size images for training all the
networks except Yolov4csp. Yolov4csp is trained with COCO2017 train data set and
512x512-size letter box images. The input image size for inference is 416x416, and
COCO2017 val is used for measuring the FPS performance and energy consumption.
We use CodaLab [51] to obtain the mean average precision (mAP) of networks with
COCO2017 test data set and check the accuracy of the networks which are converted
from their original activation to relu activation.

In Table 3.3, the AP50 is the mean average precision when the intersection over
union (IoU) threshold is 0.5, and the AP is the mean from AP50 to AP95. Even though
the mAP values are measured without pipelining on each processor, they are not affected
after pipelining is applied. As shown in Table 3.3, there is no significant mAP difference
between 16-bit floating-point (FP16) and 8-bit integer (INT8) precision except for one
case; In the case of Densenet+Yolo with INT8 precision on DLA, we could achieve no-
ticeably lower accuracy with INT8 precision. Nonetheless, we include this benchmark
to evaluate the complexity of the proposed technique since it is the largest benchmark

available.

39

1.70

£ 150
1 NN PRTON T P
E’f;;g H midl W HHDHH Ml I HDHH ail [HHDHH ol 1] I‘IHDHH nu
= Y2 Y2t Y3 Y3t Y4 Y4t Y4c CN DY
[Option A [Option B [1Option C 1 Option D [Option E [Option PND-A H Option PND-B
(a) FP16
o 1.70
= 1.50
-
& (1):;8 mll HHD il HHEI [l I_IHH HH HHH I_IHD | uﬂﬂ HHD "IRRI I I_IHD
= Y2 Y2t Y3 Y3t Y4 Y4t Y4c CN DY
E Option A [Option B [1Option C [Option D EOption E [Option PND-A B Option PND-B
(b) INTS

Figure 3.8: FPS comparison among options on FP16 and INTS precision

3.6.2 Design Space Exploration Results

The proposed optimization methodology is applied to each benchmark network.
First, we run the pipeline cut-point explorer with the global search for all mapping options
to find the best mapping option. Figure 3.8 displays the throughput ratio obtained by the
global search among difference mapping options for FP16 precision (Figure 3.8 (a)) and
INTS precision (Figure 3.8 (b)). We compute the relative FPS ratio over the lowest FPS
for each network. Option E shows the least performance in large networks. However, for
light-weight networks which have a small number of layers with a short inference time,
option E outcomes the decent result or the best result even when using INT8 precision.
This is because the overhead caused by pipelining overshadows the benefits in such net-
works. The result of using INTS precision shows this tendency more clearly since using
GPU only gives the best performance in light-weight networks.

It is observed that PND-A outperforms the other options for large networks except
for CSPNet. For CSPNet that uses grouped convolution in early layers, it is difficult to
balance the pipeline stages mapped to GPU and DLA because the execution time of a

grouped convolution layer is moved from the GPU to a DLA. To make matters worse,

q L] & 3
¥ — I o

40

Table 3.4: The search time and range of the network pipelining heuristic

Network _ FP16 . INTS8
Search Time | Searched Searched Search Time | Searched Searched
(Hours) tuples design space (%) (Hours) tuples design space (%)
Y2 43 249 0.900 4.3 243 0.878
Y2t 2.1 178 6.910 1.8 172 6.677
Y3 8.2 223 0.023 7.0 260 0.027
Y3t 2.1 183 2.366 1.8 174 2.250
Y4 9.9 283 0.009 10.1 344 0.010
Y4t 4.0 294 0.906 2.6 214 0.659
Y4c 11.0 319 0.008 12.2 320 0.008
CN 12.1 308 0.015 16.0 424 0.021
DY 38.1 386 0.002 29.0 325 0.001

CSPNet has a very long residual path from one-third point to the end of the network,
which incurs a severe limitation to acquire feasible cut-point tuples. As a result, the per-
formance gain of CSPNet is relatively small compared with other large networks, and
the obtained throughput is not dependent on the number of DLAs used. Since option D
has four pipeline stages and selecting a competitive and feasible cut-point tuple is very
difficult, it gives a poor performance, unlike other large networks.

We examine the exploration complexity of the proposed methodology counting the
total number of explored tuples in the pipeline cut-point explorer module. Table 3.4 shows
the results with FP16 and INTS8 precision, summing up the tuples explored during the
global search step and the tuples explored in the full search step for the best mapping
option. Note that each tuple is unique since we reuse the results when the same cut-
point tuple is explored in the search process. The table also shows the percentage of the
searched design space by the proposed heuristic. Since the design space of possible cut-
point tuples is huge, the proposed heuristic prunes the design space drastically so that the
searched design space takes a very small portion. For example, for Densenet+Yolo that
has 508 layers, we explore only 0.001% ~ 0.002% of the total search space. Note that
the number of searched tuples is not exploding as the network size increases.

Note that there is no single best option for all networks and precision, and the FPS

performance varies up to 53% on FP16 precision and 60% on INT8 precision, depending
A 21U &

41

Table 3.5: Fine-tuned configurations of the selected cut-points from our methodology

Label - FP16 . INTS8
Option [Cuts. | Pre. [Post. | Buf. | Streams | Option [Cuts. [Pre. [Post. [Buf. [Streams

Y2 |PND-A| 23 2 1 5 4,2 PND-A 16 4 1 7 4,2
Y2t |PND-A| 11 5 2 10 4,2 E - 6 3 18 2
Y3 |PND-A| 57 1 1 4 4,2 PND-A 59 2 1 8 4,2
Y3t |PND-A| 5 5 1 11 4.4 E - 6 2 20 5
Y4 |PND-A| 82 1 1 5 4,2 PND-A 87 2 1 8 4,2
Y4t |PND-B |3045| 4 1 7 24,1 E - 6 1 12 4
Y4c |PND-A| 80 1 1 16 43 PND-A 88 2 2 18 4.4
CN C 30,35| 1 1 5 2,2,3 |PND-B [34,106| 1 1 4 1,42
DY |PND-A| 95 1 1 4 4,2 PND-A 98 2 1 4 4,2

on which mapping option is used.

3.6.3 Parameter Fine-tuning Results

In this experiment, we fine-tuned the system-level optimization parameters after we
selected the best mapping option of each network. The best configuration of each network
for FP16 and INTS precision is shown in Table 3.5. Option represents the mapping option
in Table 3.2. Cuts., Pre., Post., Buf. and Streams indicate the cut-point tuple, the number
of pre/post processing threads, and the number of buffer and streams, respectively. For
example, the best option for Yolov2 with FP16 precision is using the PND-A mapping
option that consists of two stages. The first stage is mapped to a DLA from layers #0
to #19, and the second stage is mapped to the GPU from layers #20 to the last layer. It
is noteworthy that the number of pre-processing threads and the number of buffers are
larger for INT8 precision than for FP16 precision. It is because that the inference time
becomes smaller if INT8 quantization is used. Also, light-weight networks use many pre-
processing threads in both precision types since the inference time is much shorter than

the pre-processing time.

42

3.6.4 Comparison with Other Methods
3.6.4.1 Comparison of Performance Results

We compared the performance results of the proposed methodology with the other
three methods. Two schemes, denoted as Base(D) and Base(G), are the default TensorRT
implementation where a single execution context is mapped to a DLA or GPU stream
without the CPU-GPU pipelining (pre-/post-processing pipelining), respectively. In the
case of Base(D), the layers that cannot be executed on the DLA are mapped to GPU auto-
matically by the GPU fallback. The profile-based method, denoted as Profiled, is a similar
method to the state-of-the-art approach of [12], which uses a genetic algorithm (GA) to
make the pipelining decision based on the per-layer profiled information. The execution
time of each layer on GPU could be profiled by using the TensorRT IProfiler. In the work
of [12], they estimated the layer-by-layer basis execution time on an NPU by multiply-
ing some multiple to the per-layer execution time on a GPU. Similarly, we estimated the
execution time on a DLA by weighting the GPU execution by the average performance
ratio between DLA and GPU based on the total inference time since layer-wise profiling
is not available on a DLA. We implemented the GA in which a chromosome consists of
genes that represent the mapping of layers to the processing elements. While the original
GA method of [12] does not limit the number of pipeline stages, we limit the number of
pipeline stages to 4. The profile-based method determines the pipeline cut-points only.
Hence we fine-tuned the optimization parameters similar to the proposed method.

Figures 3.9 and 3.10 show the performance comparison among four methods for
FP16 and INT8 precision, respectively. As shown in Fig. 3.9 (a) and Fig. 3.10 (a), the
profile-based method and the proposed method achieve significantly higher performance
than the baseline method since the pipelining and parallelization techniques are effective
for throughput improvement. The proposed method achieves the FPS performance im-

provement by 101% ~ 680% over the baseline GPU. The proposed method gives higher

43

~F
600 = I Nt
L0 55 & ;
Sl e o= o o o
M a00 wied caa s T ek | [P s e 1 [n n
o il | malll|)]| 2]| 2200 " 25 z 0
= Y2 Y2t Y3 Y3t Y4 Y4t Y4c CON DY

Y2 Y2t Y3 Ydt Y4 Yt Ydc ON DY Base(D) M Base(G) Profiled [Proposed

Base(D) [Base(G) Profiled Proposed
(a) FPS (b) Energy
< 800 <100
= 600 ST
é 400 é 50 H H H H
200 25 ”
o ==l o el =0 eall| &l el 0 ” n 1 M
Y2 Y2t Y3 Y3t Y4 Y4t Y4c CN DY Y2 Y2t Y3 Y3t Y4 Y4t Y4c CN DY
Base(D) [Base(G) Profiled Proposed Base(D) [Base(G) Profiled Proposed
(c) CPU utilization (d) GPU utilization

Figure 3.9: FPS, energy comparison, and CPU/GPU utilization among four methods
with FP16 precision

FPS performance than the profile-based method by up to 32%. It confirms the superiority
of the proposed technique over the profiling-based method that is popularly taken in the
previous work. The profile-based method and the proposed method give the same result
for Yolov2tiny and Yolov3tiny networks with INT8 precision since both methods select
the same mapping option E which uses the GPU only.

Figure 3.9 (b) and Fig. 3.10 (b) show the comparison results among the methods
in terms of energy consumption. Because the throughput obtained from the proposed
method is higher than the baseline, the energy consumption is reduced noticeably, up
to 55%, even though it consumes more power by using all processing elements. The
proposed method is also better than the profile-based method by up to 18%.

The CPU and GPU utilization results among four methods are shown in (c) and (d)
of Fig. 3.9 and Fig. 3.10. The profiled-based and proposed methods exploit both proces-
sors more effectively thanks to pipelining and parallelization than the baseline methods.
Note that the profile-based method of Yolov2 and Yolov3 with FP16 precision, and CSP-
Net with FP16 and INTS precision show higher GPU utilization compared to the pro-
posed method because more layers are allocated to the GPU. In the case of Yolov2tiny

-":lﬂ-_ﬂ 'kl:. H .I_.-ii = l.
| = | I

44

11

900 RN
g
n 600 3

a
300

O = N W

ﬂn”n”n”””

Y2 Y2t Y3 Y3t Y4 Y4t Y4c CN DY
Base(D) M Base(G) Profiled [Proposed

3

8.

2
ENERGY (kJ)

Y2 Y2t Y3 Y3t Y4 Y4t Y4c CN DY
Base(D) EBase(G) Profiled Proposed

(a) FPS (b) Energy
£ 288 > 100
Z 75
< 400 & 50
5% NPT RS
0 n n a n a n n n n 0 |-| n n n
Y2 Y2t Y3 Y3t Y4 Y4t Y4c CN DY Y2 Y2t Y3 Y3t Y4 Y4t Ydc CN DY
Base(D) [Base(G) Profiled Proposed Base(D) [Base(G) Profiled Proposed
(c) CPU utilization (d) GPU utilization

Figure 3.10: FPS, energy comparison, and CPU/GPU utilization among four methods
with INT8 precision

with FP16 precision, the selected mapping option of the profile-based method only uses a
single DLA even though two DLAs are available in the Xavier. So the FPS of the profile-
based method is lower than the FPS of the proposed one even though the GPU utilization
of the profile-based method is much higher than the proposed method. Yolov2tiny with
FP16 precision, Yolov2tiny, Yolov3tiny, and Yolov4tiny with INT8 precision cannot fully
utilize the GPU since the CPU processing parts such as pre-/post-processing threads be-

come the bottleneck among the pipeline stages.

3.6.4.2 Comparison with an interleaved execution on different

processors without the pipelining

To use multiple processors simultaneously without partitioning the inference, it is
possible to run the image on different processors in an interleaved fashion. For each pro-
cessor, once the inference is complete, data is read from the buffer and the next image is
processed, increasing parallelism without pipelining. We compare the interleaved method
and the proposed method with INT8 precision for three networks: Yolov4, Yolov4csp, and

Densenet+Yolo.

45

)
0
<+ N
B
—

[
2
208
216
199
230

a2 =] o g
= 100 2 % - =
o M [=
Y4 Ydc DY
[0 Base(G) Interleaved

Interleaved+Proposed Proposed

Figure 3.11: Comparison with interleaved execution on different processors

Figure 3.11 shows the results of the experiment. The second item, Interleaved, is
the result when running the application in the interleaved fashion with three buffers and
three streams. This is because different processors need to have at least one stream. The
third one, Interleaved+Proposed, is the result of applying the pre- and post-processing
pipelining, multi-threading, and multiple execution contexts techniques as the proposed
method. The results are obtained by reducing the parameters from their maximum values
until there is no performance degradation.

The experimental results show that the interleaved method is more effective than
the baseline method. In addition, the experimental results of the Interleaved+Proposed
method are comparable to the proposed method that applies the proposed techniques
including the pipelining. However, the Interleaved+proposed method is not as effective
as the proposed method because not all layers could be executed in DLA due to GPU

fallback.

3.6.4.3 Comparison of using the solution obtained by the profile-

based method as the initial solution

Although the profile-based method does not show the best results, the solution ob-
tained by the profile-based method can be used as an initial solution of the proposed
heuristic. However, the profile-based method does not explore the solution by mapping

options, but rather determines the mapping layer by layer. Therefore, we experiment with
3 y 1 1
M=l ol

46

Table 3.6: FPS comparison of using the solution obtained by the profile-based method as
the initial solution

Mapping FPS
Network option Using a random Using the initial
initial solutions | solution by Profiled
Y4 A 101 101
Y4c C 134 134
DY B 103 100

the same mapping options as the mapping found by the profile-based method. We com-
pare the results of using the initial solution and the results of the heuristic starting with
a random solution. In this experiment, we use FP16 precision because the profile-based
method shows various mapping configurations in FP16 precision than in INTS8 precision.

Table 3.6 shows the FPS comparison when the solution obtained by the profile-
based method is used as the initial solution. Both methods give similar results. Indeed,
both methods find the same mappings for the Yolov4 and the Yolov4csp. This confirms

that the heuristic is not much influenced by the initial solution.

3.6.4.4 Comparison with Other Exploration Methods

In this section, the proposed parameter optimization method is compared with two
other GA-based meta-heuristic methods among the four latest networks with INTS preci-
sion. The first method is the comprehensive-GA method which searches all the parameters
proposed in this paper through a genetic algorithm at once. The range of the parameter
values such as pre-/post-processing thread numbers, the number of buffers, and stream
numbers are determined by the parameter maximizer that is shown in Fig. 3.6. The other
method is Fine-tuning-GA which uses a meta-heuristic for fine-tuning. The latter method
uses our heuristic to find the best mapping option and the cut-point tuples. Then, a GA-
based meta-heuristic is performed to find optimal fine-tuning parameters.

Comparison results are shown in Table 3.7. We compare the FPS, the number of

searched points, and the number of built engines. The FPS of all the methods is sim-

47

Table 3.7: Comparison of exploration methods

Comp.-GA FT.-GA Proposed

Label FPS Searched |Built engines # FPS Searched points # FPS Searched points #|Built engines #
points # GPU[DLA Mapping[Param. Mapping[Param. GPU[DLA

Y4 (212 497 | 253 | 329 |213| 344 162 |216| 344 19 61 276

Y4t [808| 1261 | 173 | 495 |[822| 214 559 |810| 214 35 24 74

Y4c [232| 1204 [409| 779 |232| 320 143 |233| 320 14 69 250

CN |148| 335 171 220 | 147| 424 161 |147| 424 15 85 270

ilar, meaning that all methods find near-optimal solutions successfully. The number of
searched points of fine-tuning-GA and the proposed method are divided into two parts:
Mapping, and Param. Mapping indicates the number of explored cut-point tuples during
the execution of the pipeline cut-point explorer, and Param is the number of tested param-
eter combinations to minimize the resource usage in the fine-tuning step. The proposed
method runs 88% ~ 94% less searched points for parameter fine-tuning compared to the
fine-tuning-GA method. The total number of searched points is 27% ~ 80% smaller than
that of the comprehensive-GA method except CSPNet network.

Built engines # is the number of built engines during exploration. The engine build-
ing time takes a significant portion of the overall exploration time. Since GPU engine
building time is much longer than DLA engine building time, building a small number
of GPU engines is helpful to reduce the exploration time. As shown in Table 3.7, our
proposed method builds fewer engines than the comprehensive-GA method. Because our
proposed method builds engines on sampled cut-points and limited cut-point locations
based on utilization, built engines are easily reused compared to the comprehensive-GA
method. In summary, the proposed method is efficient in exploring optimization parame-

ters compared to other meta-heuristic techniques.

3.6.5 Experiments with Varying Configurations

In the experiment above, the proposed methodology is applied for a given input

size and the batch size. In this experiment, we vary the input size and batch size. Four

48

Table 3.8: Comparison of the best result of reused cut-points from 416x416 and the re-
explored cut-points with our fast heuristic search

(a) Input size with 512 x 512 (Energy unit: J)

Baseline | Reused cut-points Re-explored cut-points Searched Built
Label | (512x512) from 416x416 with fast heuristic search engines #

FPS [Energy | FPS [Energy Option [Cuts. [FPS [Energy tuples GPU DLA

Y4 | 49 | 1897 | 143 1343 PND-A| 72 | 155 1361 78 45 | 80
Y4t | 91 658 | 576 346 E - | 576 346 54 21 29
Y4c | 40 | 1951 | 160 1225 PND-A| 72 | 169 | 1250 54 34 | 58
CN | 54 | 1806 | 110 1707 E - | 113 | 1521 79 30 | 79

(b) Input size with 608 x 608 (Energy unit: J)

Baseline | Reused cut-points Re-explored cut-points Searched Built
Label | (608x608) from 416x416 with fast heuristic search engines #

FPS [Energy | FPS [Energy Option [Cuts. [FPS [Energy tuples GPU DLA

Y4 | 42 | 2544 | 100 1971 PND-A| 72 | 106 | 1998 65 40 | 64
Y4t | 78 826 | 415 482 E - |415| 482 55 21 29
Ydc | 34 | 2572 | 111 1794 PND-A | 72 | 121 | 1795 54 34 | 58
CN | 42 | 2544 | 77 2517 E - 78 | 2254 64 29 | 65

networks with INTS8 precision are used for benchmarks: CSPNet, Yolov4, Yolov4tiny,
and Yolov4csp. We already obtained sub-optimal pipeline cut-point tuples of all mapping
options from Section 3.6.2. Instead of finding a sub-optimal cut-point tuple from scratch,
we reuse the obtained tuples as an initial cut-point tuple as explained in Section 3.5.1 and

set the internal variable K to 1 in Algorithm 2.

3.6.5.1 Scaling up Input Size

Since our proposed method provides a high FPS performance of a deep learning
application, a user may want to increase mAP by scaling up the image size. We conducted
the experiments while scaling up the image size to 512x512 and 608x608, as shown in
Table 3.8. The third main column shows the result when we reuse the best cut-points of
the previous experiment. The fine-tuning of other parameters except for the cut-points is
newly done. The results with reused cut-points still overwhelm the baseline in both FPS
and energy consumption metrics. The fourth main column shows the results with the

newly found cut-points from the proposed method with a fast search heuristic. We obtain
11 21U &1
A ==

49

Table 3.9: Comparison of the best result of reused cut-points from batch 1 and the re-
explored cut-points with our fast heuristic search

(a) Batch size 4 (Energy unit: J)

Baseline | Reused cut-points Re-explored cut-points Searched Built
Label | (batch 4) from batch 1 with fast heuristic search engines #

FPS [Energy | FPS [Energy Option [Cuts. [FPS [Energy tuples GPU DLA

Y4 | 95 | 1196 | 221 906 PND-A| 67 |239| 922 61 45 | 61
Y4t | 255| 341 | 894 236 E - | 894 | 236 55 21 29
Ydc | 85 | 1160 |242 834 PND-A| 72 |268 | 827 53 35 | 57
CN | 112] 1103 | 170 1140 E - 175 | 1017 74 28 | 76

(b) Batch size 8 (Energy unit: J)

Baseline | Reused cut-points Re-explored cut-points Searched Built
Label | (batch 8) from batch 1 with fast heuristic search wples engines #
FPS [Energy | FPS [Energy Option [Cuts. [FPS [Energy P GPU DLA
Y4 [115] 1109 | 221 891 PND-A| 65 [241| 918 85 51 82
Y4t | 341 | 303 |908 234 E - 1908 | 234 55 21 29
Y4c | 100 | 1089 | 245 820 PND-A| 72 |269| 828 58 38 | 61
CN | 127] 1052 | 178 1107 E - 179 | 996 77 30 | 78

the higher FPS and similar energy consumption by finding new sub-optimal cut-points. In
addition, the number of searched tuples for finding sub-optimal cut-points is reduced by
74% ~ 85% compared to the first exploration case, and the number of built engines is also
reduced by 63% ~ 85%. This experiment proves that the changing image size may affect
the resultant configuration, and it is confirmed that reusing the pre-explored cut-points as

initial cut-points effectively reduces the search time in the proposed methodology.

3.6.5.2 Scaling up Batch Size

When multiple images come from multiple cameras, adjusting the batch size is a
popular way to improve the throughput performance. Table 3.9 shows the results with
increased batch sizes. Similar to the experiment of increasing the input size, we reused
the selected cut-points from batch 1 and conducted a re-exploration of cut-points with a
fast search heuristic. As displayed in the table, we could obtain higher FPS performance
and similar energy consumption by increasing the batch size. In addition, the number of

searched tuples for finding sub-optimal cut-points is reduced by 74% ~ 83% conllparec_l
i 1l &

50

Table 3.10: Inference time comparison between baseline method and the found mapping

by the proposed method
Base(G) Proposed
Network Inference time | Inference time | Communication | Overhead ratio
(us) (us) overhead (us) (%)
Y4 8055 14570 392 2.69
Y4c 7550 13297 373 2.81
DY 8235 14108 203 1.44

to the first exploration case, and the number of built engines is also reduced by 60% ~

85%.

3.6.6 Analysis and Discussion
3.6.6.1 Overhead of Partitioning inference

We examine the communication overhead of partitioning deep learning inference.
Table 3.10 shows the inference time comparison between the proposed method and the
baseline method with INTS precision. The communication overhead is newly added time
due to the partitioning of the network. Since the overhead is relatively small compared to
the inference time, the partitioning inference is a reasonable way to improve the perfor-
mance.

Figure 3.12 shows gantt charts for two cases of the Yolov4 network. The first one
is the case when running on a single GPU without the pipelining, and another one is the
case when running with a found mapping by the proposed method. Since the DLA is
much slow processor than the GPU, the inference part on DLA (Inferl.) in Fig. 3.12 (b)
is longer than the entire inference of the baseline scheme in Fig. 3.12 (a). Nonetheless
the bottleneck is resolved as confirmed in the experimental results by various techniques,

such as PND, multi-threading, multiple execution context, and so on.

51

CPU:: Thread | Pre. (6344 us) |
GPU:: Stream \ Infer. (B055 us)
CPU:: Thread |2207 ush» Post.

(a) When running on a single GPU without the pipelining

CPU: Thread | Pre. (6344 us) |

DLA:: Stream | Inferl. (9020 us)

GPU:: Stream | Tnfer2. (5550 us) |

CPU:: Thread [2207 usf» Post.

(b) When running with a found mapping by the proposed method

Figure 3.12: Gantt charts for different mappings of the Yolov4 network

Table 3.11: Inference time comparison between baseline and the found mapping by the
proposed method

Network [Multiple [Profiled (us) [Measured (us) [Difference ratio (%)

Y4 2.95 13436 14570 7.79
Y4c 2.76 12216 13297 8.13
DY 2.72 12855 14108 8.88

3.6.6.2 Difference from the Profile-based Method

Since per-layer profiling is not available for DLA, the profile-based method esti-
mates the layer-wise execution time on DLA by multiplying the ratio of GPU time to
DLA time by the per-layer time obtained for GPU. Although the experimental results
show that the profile-based method is worse than the proposed method that evaluates the
mapping by running on a device, it is necessary to check the difference with the profile-
based method.

Table 3.11 shows the comparison of the inference time between baseline and the
mapping found by the proposed method with INT8 precision. The multiple in the table
is the ratio to estimate per-layer execution time on DLA. The difference ratio is a ratio
of difference over measured time. The estimated inference time is shorter than the mea-
sured inference time. This can be a problem in the worst-case response time analysis
since the schedulability can be overestimated. In addition, Figure 3.13 displays the gantt

chart based on the estimated layer-wise execution time for a mapping found by the pro-

i

52

CPU: Thread | Pre. (6344 us) |

DLA:: Stream | Inferl. (8146 us) |

GPU:: Stream | Tnfer2. (5290 us) |

CPU:: Thread [2207 usf» Post.

Figure 3.13: Gantt chart based on estimated layer-wise execution time for a found map-
ping by the proposed method

posed method. Compared to Fig. 3.12 (b), the difference on DLA is not negligible. This
shows the estimated layer-wise execution time is not accurate, and can be misleading for

mapping decision and analysis.

3.6.6.3 Supporting a Transformer Network

Transformer [52] is an emerging network with a complex structure. Transformer
has multiple matrix multiplication layers. Currently, commercially available embedded
boards have NPUs targeting CNNs, and these NPUs cannot perform matrix multiplication
layers. Therefore, the only processor that can run the transformer network is the GPU in
practical. From this point of view, it is difficult to apply the proposed techniques for
transformers in practice.

Since transformers are quite computationally intensive, networks are also being de-
veloped that reduce the computation. EfficientFormer [53] is a vision transformer that
replaces some layers with latency-friendly layers to run faster. This reduces the number
of layersm, such as matrix multiplication, so that parts of the network can be performed
in DLA. We try to check the viability of our proposed method for the transformer using
an EfficientFormer written in ONNX file format.

However, there are also other difficulties in applying proposed techniques to the
transformer. First, there is an internal error in TensorRT when trying to run a partitioned
network at arbitrary points. As TensorRT is a closed code, this error cannot currently be
resolved. The second issue is related to the GeLU activation in the EfficientFormer. The

GeLU operator is currently not a primitive operator on ONNX, the GeLU operator is

53

replaced by a combination of layers in ONNX. Some of these layers fall back to the GPU
when running through TensorRT. Since the number of DLA parts in TensorRT is limited,
this also implies that there are difficulties in applying proposed techniques.

In conclusion, the proposed techniques cannot be applied to transformer networks
due to limitations associated with NPUs. Nevertheless, the proposed techniques will still
be effective when NPUs that support operations of transformer become available, we

believe. We leave it as a future work.

54

Chapter 4

Optimization of Multiple Deep Learning

Applications under Real-time Constraints

4.1 Overview

In this chapter, we find mappings and frequencies of multiple deep learning appli-
cations while keeping deadline constraints and reducing energy consumption. NPUs and
SDKs introduce additional challenges that are not considered in systems consisting of
CPUs and GPUs only. To address these issues, we propose a three-step methodology.
First, we select Pareto-optimal mappings for each deep learning application. Then, we
find mapping combination for multiple applications among the mapping candidates se-
lected in the previous step. Finally, the frequency is tuned to reduce energy consumption.

The rest of this chapter is organized as follows. We review the related work to our
work in the next section. Afterward, we introduce the system model with a motivational
example and notation to clarify the problem in Section 4.3. After the proposed method-

ology is presented in Section 4.4, the experiment results are displayed in Section 4.5.

4.2 Related Work

This section reviews the related work in the following two subsections involved in

the proposed method: mapping/scheduling multiple applications and running multiple

7]

55

DL applications.

4.2.1 Mapping and Scheduling Multiple Applications

Since the mapping and scheduling problem of multiple applications on multiple pro-
cessing elements (PEs) is known to be NP-hard [54], numerous sub-optimal techniques
have been proposed. They are classified into a design-time approach, run-time approach,
and a hybrid approach that combines the design-time analysis and run-time adaption [55].

In the design-time approach, it is assumed that all applications are running concur-
rently. If there is a dynamic variation of workload, the worst-case scenario is considered.
Earlier works used list scheduling heuristics, named BIL [56] and HEFT [57], to schedule
multiple applications onto heterogeneous processors. They assume that each application
is specified by a DAG, and the execution time of a node on each processor is known.

Kang et al. [58] proposed a two-phase optimization scheme for the mappings of mul-
tiple applications represented by SDF (Synchronous Dataflow) graphs [15]. They find a
Pareto-optimal set of static schedules for each graph via a genetic algorithm in the first
step, then explore the combination of per-graph schedules with the schedulability anal-
ysis with another genetic algorithm. Their two-step approach is similar to our proposed
technique, while their assumed hardware platforms are homogeneous processors.

If the workload varies at run time, the run-time approach is usually taken, aiming to
maximize the load balancing if there are no real-time constraints. Niknafs et al. [5S9] pro-
posed a mapping and scheduling method for incoming tasks. They optimize the energy
consumption with the mixed-integer linear programming formulation and the heuristic
while satisfying the deadline of tasks. Also, they investigated the effect of the work-
load prediction in terms of keeping the deadline and minimizing the energy consumption
while not discussing how workload prediction can be made. Khasanov et al. [60] pre-
sented a run-time management method for multi-threaded applications to reduce energy

consumption without deadline violation on a homogeneous multiprocessor system. They

56

introduced the multidimensional knapsack problem-based heuristic for fast scheduling.
Run-time techniques usually assume that the execution time of each application is known
as a priori. Donyanavard et al. [61] collect data through periodic sensing and predict the
performance and power based on the data. And they introduced a fast heuristic of run
time task allocation to reduce the energy consumption while retaining the throughput.
However, they did not consider real-time constraints.

To utilize the benefits of design-time approaches and run-time approaches, hybrid
methods have been studied extensively. Some researchers assume that the dynamic be-
havior of a system can be modeled as a finite set of scenarios and make a static schedule
for each scenario. Gheorgita et al. [62] introduced the concept of system scenarios and
proposed the methodology to reduce the energy consumption. They identified the sce-
nario and optimized the system per scenario at design time. At the run time, the scenario
is predicted, and the system is arranged with a pre-optimized setting. Schor et al. [63]
proposed a design flow for mapping applications on manycore systems representing the
dynamic scenario variation with an FSM which has a finite number of scenarios. Assum-
ing that the mappings are resident, they found a sub-optimal mapping for each scenario
by an evolutionary algorithm. It aims to minimize the maximum core utilization.

The other researchers find a set of static mappings for each application and find
an appropriate static mapping at run time depending on the scenario. Jung et al. [64]
specified the dynamic behavior of applications by the dataflow model and FSM. They
performed design-time analysis for each application subject to the number of processors.
At run time, the number of used processors is changed according to the state to satisfy
the throughput constraint. Quan et al. [65] proposed a scenario-based run-time mapping
algorithm on an MPSoC-based embedded system. After finding a set of mappings of each
application, they cluster workload scenarios and find the static mapping for each scenario.
Their method finds the critical task that hinders achieving the goal throughput of each
application and re-maps the task to fulfill the objective. Also, they expand their approach

ey

' ! | g
:l__i -';"-1 !. ..-'.:i

57

Table 4.1: Comparison with the related works of running multiple deep learning applica-
tions

Optimization L Usin Schedulabilit Experiment on Ener,
Works Ieipproach Pipeline NPUg check ' a rgal platform awarefgss

NestDNN [67] Hybrid v v

DeepEye [4] Hybrid v v v
S3DNN [8] Run A v
DART [10] Design v v v
LalLaRAND [13] Run v v v
Pujol et al. [9] Design v v v

Kang et al. [12] Design v v v v

Proposed Hybrid v v v v v

by adding a run-time throttling step that estimates the overhead of reconfiguration [66].
However, they evaluated the proposed technique with an in-house system level simulator,
not a real hardware platform.

To the best of our knowledge, there is no previous work that considered all technical
challenges identified in this work. Our proposed technique belongs to the hybrid approach

based on the finite set of scenarios similar to [63].

4.2.2 Running Multiple Deep Learning Applications

Research on the execution of multiple DL applications in embedded systems has
recently become active. Table 4.1 summarizes the comparison of some related works and
positions the proposed method.

NestDNN [67] presented a framework that schedules multiple DL applications con-
sidering run-time resource requirements. At design time, they created a multi-capacity
model consisting of models that provide a resource-accuracy trade-off for each applica-
tion. Then, they monitor the resource and select the proper model for each application at
run time. However, they did not exploit model-parallelism nor pipelining of each appli-
cation. DeepEye [4] proposed a wearable camera that is capable of running multiple DL

applications. They segregated layers into the computation- and memory-heavy layers at

design time. At run time, they interleaved the execution of layers of multiple applications
] J

58

on a CPU-GPU heterogeneous system in a pipeline manner. It aims to reduce the la-
tency of inference while prolonging the battery lifetime. Although both hybrid schemes,
NestDNN [67] and DeepEye [4], considered the trade-off between energy and perfor-
mance, they did not consider the real-time requirements of applications.

S3DNN [8] introduced a run-time methodology that optimizes real-time correctness
while increasing the throughput for multiple deep neural networks (DNNs). Their method
selectively fuses multiple images to use fewer DNN instances and schedule instances to
GPUs with a least-slack-first (LSF) policy. In spite of using the deadline-aware schedul-
ing policy, it does not guarantee to keep the deadline. So, we put a triangle in the table
to mean the partial consideration of the schedulability. They did not exploit the model
parallelism of applications. DART [10] proposed a framework for multiple DNNs on a
CPU-GPU heterogeneous system. They mapped the layers of DNNs onto CPU and GPU
via a heuristic at design time. They ensured the schedulability of real-time applications
and increased the throughput of best-effort applications. Albeit they applied the admis-
sion control for new tasks at run time, it does not change the mappings. LalLaRand [13] is
a framework targeting a CPU-GPU heterogeneous system similar to DART. It allocates
layers to processors at run time, supporting dynamic layer-level quantization. The main
goal is to improve the schedulability of the system while minimizing the accuracy loss by
layer-level mapping and quantization. All these methods [4, 10, 13] exploit the temporal
parallelism of inference by pipelining in a CPU-GPU heterogeneous system. However,
their target platform does not contain an NPU that incurs several limitations in its usage.

Pujol et al. [9] and Kang et al. [12] presented the design-time method on a heteroge-
neous platform including NPU. The former implemented DL applications in Apollo [68]
on the Xavier board. They executed multiple networks while keeping the schedulability.
However, each neural network instance runs on a single type of processor in their method
without exploiting the model parallelism or pipelining. The latter, Kang et al. [12], uses
a GA technique to find per-layer mapping of multiple DL applications, aiming at mini-

.-3';: O | =]

59

A = {appo, app,, app,, apps}
Asco = {appo}a

Asc1 = {appo, app1, app2},
Agcz = {appy, app,, apps},
Asc3 = {app3}

(b) FSM-A: An example finite state machine of the patrol
robot

(a) The patrol robot with
front, rear, and side-view
cameras

Figure 4.1: Motivational example: patrol robot

mizing the WCRT for each application and energy consumption. They assume that layer-
wise profiling information is given for all processing elements. Since it is not possible
for NPU, they estimated the execution time of a layer on NPU by multiplying the GPU
execution time and the average performance ratio between GPU and NPU. Unlike the
proposed technique, they do not consider the scenarios, assuming that all DL applications
run concurrently. Moreover, NPU is not used on a real platform in their experiments even
though they considered the NPU in the analysis. With these limitations, they could find
the mapping of all applications together at once. On the contrary, we propose a three-step
approach to consider scenarios and the technical challenges imposed by the NPU and its
SDK.

As displayed in Table 4.1, the mapping problem addressed in this work has not been

tackled by the previous work, to the best of our knowledge.

4.3 System Model

4.3.1 Motivational Example

Let us consider a patrol robot that explores a certain space, as shown in Fig. 4.1 (a).
The robot moves around and searches for objects around it. The robot has cameras on all
four sides: back and forth, left and right. It executes multiple object detection networks

to detect objects while moving. We assume that objects within a certain distance can be

a-:rﬂ-! :"i 1_]| "'flll_ T].

60

detected by other means such as ultrasonic sensors. If an object is detected, we run an ob-
ject detection network to identify the object. It means that the number of object networks
may vary at run time. Such system behavior can be described by an FSM, as illustrated in
Fig. 4.1 (b). Each state has the applications to be executed. In the figure, each application
appo, appi, appz, and apps denotes the application corresponding to each camera at
the front, left, right, and back, respectively. For instance, state sc indicates the state that
consists of applications appg, app1, and app; running at the same time. In addition, each
inference has a deadline because its result is used as an input to determine the action of
the robot. Furthermore, the deadline constraint can vary depending on the speed of the
robot. If the robot moves faster, then the object detection should be finished earlier. It is
also important to reduce energy consumption since the robot is battery-powered.

In this paper, we propose a design methodology for running multiple deep learning
(DL) applications with real-time constraints on a heterogeneous processor system while
minimizing the energy consumption, to support this motivational example. Even though
we use an FSM to describe the dynamic system behavior, what is needed in the proposed
approach is how long the system stays and which applications are running in each state.
Thus we omit the explanation of how state transition occurs and which state is the initial
state. In this paper, we assume that the residence time of all states is the same for sim-
plicity. If the state transition probability is given, however, we will be able to compute
the relative residence time of all states. Since this computation is out of the scope of this

work, it is left as future work.

4.3.2 Notation

Notations used for system model and the problem definition are summarized in Ta-
ble 4.2.
Architecture Specification: The target platform has a set of heterogeneous PEs,

P‘E, and processor type proc can be one of CPU, GPU, and DLA. Each processor has a

3 ™ | §
-':l"-\-"i -';"-1 !. ..-'.:i

61

Task on DLA <

*>Stage

--»> Task (kernel) on GPU

i r--*Layer*----i
processing - processing
v . v

Stage/task on CPU

Network

Stage/task on CPU

Figure 4.2: Pipelining of the DL application

Table 4.2: Notations for system model and problem definition

Sign [Description

PE A set of heterogeneous PEs

freqproc A set of frequencies for processor type proc
| freq| The sum of all | freq,roc|

Aa A set of multiple DL applications
app; An application in 4

S; A set of stages of app;

Di A period and relative deadline of app;
s’j A jth stage of app;

7 A kth task of s

s The number of tasks in s’

P(s") and P(1;”)

A period of s5~ and ’C;(’j , respectively

Ci and C The WCET of s; and ‘C;("j , respectively
J k

Ne A set of scenarios

SC; A scenario in SC

Ay, A set of applications to be run on sc;

|freqcrul, | freqcru|, and | freqpral.

62

set of discrete frequencies: freqcpu, freqcpu, freqpra. We denote |freq| as the sum of

Application Specification: We denote a given set of multiple DL applications as
A, and each application app; consists of layers. After pipelining decision is made, an
application app; can be represented by a tuple (S;, p;), where S; and p; are the set of
stages and the invocation period of app;, respectively. Stage sj- € S; is a pipelining stage
of app; corresponding to the pre- or post-processing step or an inference part partitioned
to GPU or a DLA. The blue and green box in Fig. 4.2 illustrates two stages mapped to
a DLA and the GPU, respectively. The applications run periodically with the implicit
deadline assumption under which the period becomes the relative deadline.

Mapping and Scheduling Specification: A task is a unit used in the analysis. Since

the profiling granularity and the scheduling policy are different among processors, tasks
are defined differently depending on the mapped processor. For GPU, a task corresponds
to a kernel that may include one or more layers since TensorRT fuses layers to a single
kernel via layer fusion, as displayed with a purple box in Fig. 4.2. While per-kernel
profiling on the GPU is viable and each kernel runs in a non-preemptive way [69, 70],
per-kernel profiling is not provided for DLA. Hence, the pipeline stage mapped to a DLA
becomes a single task in the DLA (blue box in Fig. 4.2). The pre- or post-processing
of the inference is a preemptable task that is mapped on the CPU. Stage s; consists of
one or more tasks, each of which is denoted by rﬁ(’j , and the number of tasks in the
stage is denoted by \s’J| Note that the inference is sequentially executed due to the data
dependency between tasks [10], and the order of task execution in the GPU is set by
TensorRT [19]. Note that a DL application has a chain structure of tasks, which is also
assumed in [10, 13].

The period of a stage sz. or a task r;;’j , denoted by P(s;) or P(ri’j) respectively, is the
same as the period of an application, p;. In addition, Cs; and er(‘ ; represent the WCET
of stage s; and task ’tfc"j , respectively. We assume that the execution time of a task is
inversely proportional to the frequency of the mapped processor. The mapping decision
of app; is denoted as a function Map : S; — PE. A stage is a mapping unit, and it
can be mapped to a single PE. The tasks in the same stage are mapped to the same
PE. Data transfer overhead is considered since we measure the latency through direct
measurement, including the extra kernels added by TensorRT as depicted in Fig. 2.1.
Since the migration overhead is huge, the mapping decision is made statically and not
changed at run time.

Scenario Specification: A set of scenarios is specified as an FSM where a state
corresponds to a scenario. The set of states (scenarios) is represented as SC. Each scenario
sc € SC consists of a set of applications to be run, A, which is a subset of 4. For
example, in Fig. 4.1 (b), A5 consists of three applications, appg, appi, and app;. As

.-3';: O | =]

63

each scenario has a different behavior, the exploration is needed to be done per scenario.

4.3.3 Problem Formulation

The problem addressed in this paper can be defined as follows.

Input: All applications in A4 and the scenarios, represented by an FSM, are given as
input. The available frequency range of processors is already known at design time.

Constraints: The range of throughput constraints is given. For instance, it may be
needed to process 15 or 30 image frames per second(FPS), depending on the robot speed.
Since we assume the implicit deadline, the deadline constraint is inverse of the throughput
constraint'. There exist other constraints imposed by the NPU and its SDK, as described
in Chapter 1.

Objective: We aim to reduce the energy consumption of the system. If we do not
know how long it stays in each scenario at runtime, it is not feasible to estimate the actual
energy consumption. Thus, the average energy consumption over scenarios is used as
the objective function in the experiments. Note that the proposed methodology can be
applied with a different formula for expected energy consumption.

Output: The output of the design-time analysis is the mapping of stages in applica-
tions onto processors and the frequency of processors for each scenario and each deadline

constraint. In a real deployment, the output includes the measured energy consumption.

'We use throughput constraint (FPS) and deadline constraint interchangeably to indicate a real-time
constraint in this paper. For example, the throughput constraint of 30 FPS (frame per second) indicates the

deadline constraints of 33,333us. +7 7 =]
] 211 &l

64

Proposed method

| Step 1 |Finding Pareto-optimal mapping solutions for each applicationl
= .

| Step 2 | Exploring the mapping combination |
L

| Step 3 | Tuning frequencies for varying deadline constraints |

Input f Output ‘
|Applications| Constraints | | Mapping of applications |
| Scenarios || Frequencies | |Frequencies for each scenario/ constraintl

Figure 4.3: Overall flow of the proposed mapping methodology

4.4 Proposed Optimization Methodology

As shown in Fig. 4.3, the proposed methodology consists of three steps explained in

this section.

4.4.1 Step 1: Finding Pareto-optimal Mapping Solutions for
Each Application

Because of the challenges imposed by the NPU and its SDK, we first determine the
Pareto-optimal mappings for each application instead of making the mapping decision
for all applications at once. We aim to simultaneously minimize the average end-to-end
latency and average power consumption of each processor via a genetic algorithm (GA).
Genetic algorithm is a widely used meta-heuristic inspired by evolutionary processes in
nature, where sub-optimal solutions are found iteratively, starting with randomly gener-
ated initial solutions. A solution of the problem is encoded as a chromosome, and the
objective function value, called fitness, of each solution is evaluated and compared in
each generation. Since there exist several GA solvers publicly available, it is used in the
current implementation of the proposed methodology. Other meta-heuristics can be used
as long as multiple objectives are supported.

Figure 4.4 illustrates the overview of this step. The GA gets the network as the
input and initializes multiple chromosomes or generates a given number of initial ran-

3]

65

Stepl GA
oy Pareto-optimal solutions

Networki]ll %

Initialization for each application
P -t [Fitness cval Jq| ® =
- latency Networkl Chromosome for Stepl
b ' t 29[40] 1] C
- each proc. avg — [20] OI I C‘I
power Mutation Cut points Option

Figure 4.4: The overview of step 1

Table 4.3: Options for intra-network pipelining

Options [# of pipeline stages [Composition of PEs
A 2 DLAO - GPU
B 3 GPU - DLAO - GPU
C 3 DLAO - DLA1 - GPU
D 4 GPU - DLAO - DLA1 - GPU
E 1 GPU

dom solutions. After fitness evaluation, we select a set of chromosomes and create new
chromosomes (offspring) through evolutionary operations such as crossover and muta-
tion. This step is performed on the real board since the fitness evaluation is performed
by direct measurement of latency and average power consumption on the real hardware
platform.

The chromosome structure is shown on the right side of Fig. 4.4. The first three
genes indicate pipeline cut points, and the last gene specifies the mapping option. A cut-
point indicates the index of the last layer partitioned into a stage. For instance, the first
pipeline stage consists of the Oth layer through the 29th layer. We compare five pipelining
options that are listed in Table 4.3. Since the networks we used in this paper have some
layers that cannot be performed on a DLA at the last part of the network, the last stage
is assigned to GPU in all options. In options C and D, we distinguish two DLAs with
DILAO and DLAI. In options B and D, the GPU is allocated two stages since the GPU has
more computation power than DLA. In the example, option C is chosen in which three
pipeline stages are mapped to DLAO, DLA1, and GPU, respectively, and two cut-points
are specified: the second pipeline stage covers from the 30th layer to jt(_)_eth {q:}/er{ .alnid tflelz

M= H =

66

last pipeline stage starts from the 41st layer to the end of the network. A cut point value of
—1 means that there is no corresponding cut point. The maximum number of cut-points
is three for mapping option D. For mapping option E, no cut-point needs to be explored.
It is noteworthy that DLAO and DLA1 can be switched in the mapping options depicted
in Table 4.3.

The proposed chromosome structure can be applied to other systems. For a given
hardware platform, it is needed to define the possible mapping options first and increase
the number of genes for pipeline cut-points up to the maximum number of pipeline stages
in the mapping options.

The number of possible cut-point combinations depends on the number of layers and
the number of pipeline stages. Since exhaustive exploration is very time-consuming, we
reduce the number of cut-points to explore by filtering out some cut points. We exclude
the cut points between the convolutional layer and its activation because the convolutional
layer and the next activation layer are fused in the TensorRT. If there are consecutive
layers that cannot be mapped to DLA, cut-points between them are also excluded.

For each Pareto-optimal solution, we estimate the WCET of each task on each pro-
cessing element with a measure-based method. For the CPU task (pre/post-processing
task), we measure the execution time using the POSIX time library. As for DLA, the
assigned stage is regarded as a single task, and its execution time is measured by aug-
menting the code segment at the start and the end of the DLA task. As explained above, a
GPU task corresponds to a kernel in the associated pipeline stage. The execution time of
a task (kernel) on GPU is measured by the TensorRT IProfiler. To estimate the WCET of
a task from measurements, we find the bigger value between the measured biggest value
and the value obtained by adding six times the standard deviation to the mean. The esti-
mated WCET of each task is saved in a database and used for the schedulability check
in the next step. In addition, the average power of processors and average-case execu-
tion time (ACET) for each mapping solution are also measured. This information is used

ey

67

Step2 GA
, - Chromosome for Step2
Smtom]} |eeping stages to PEs| AT Y | g

I Frequency decision | Solution index || Output:
. [Schedulability check |—ioreach app || -Mapping of apps
Constraints ‘| Fitness: -Frequencies for each

| - Estimated energy || scenario/constraint

Fitness calculation |

Figure 4.5: The overview of step 2

to calculate the fitness value in the next step. We use the maximum frequencies for all

processors in this step.

4.4.2 Step 2: Exploring the Mapping Combination

After Pareto-optimal mapping solutions for each application are determined, we find
a sub-optimal combination of individual mapping solutions of all applications and clock
frequencies of processors for scenarios. To find a sub-optimal combination, a GA and
two heuristics are devised, aiming to minimize the expected energy consumption.

The workflow of this step is described in Fig. 4.5, and the chromosome structure
of the GA is shown in the center of the figure. Each gene represents a mapping solution
index. In the example of Fig. 4.5, the mapping of the first application is the 36th mapping
among all Pareto-optimal mappings of the corresponding application. Since we cannot
change the mapping of an application dynamically due to the limitation of the SDK, the
selected mapping defined by a gene is fixed in all scenarios.

How to compute the fitness value of a chromosome is depicted in Algorithm 4.
First, it checks whether the number of tasks (stages) assigned to DLAs is more than
four (line 2). If it exceeds four, the maximum fitness value is assigned to indicate that
this chromosome cannot be a feasible solution. For a feasible solution, mapping stages to
PEs is determined by a heuristic (line 5). Note that the mapping solution of an application
does not say which DLA is used between two DLAs. Thus we devise a simple heuristic

to determine which DLA will be used for each application.

68

Algorithm 4 Pseudo code for chromosome evaluation

1: procedure EVALUATECHROMOSOME(chromosome)
2 Check the number of DLA mapped stages
3 if not executable on DLAs then
4: return MaxInt
5: end if
6: mappings = MapStageToPE(chromosome)
7 totalFitness = 0
8 for each scenario do
9 schedulable, fitness = SetFreq(scenario,mappings)
> Schedulability check and fitness calculation are done in this function

10: if not schedulable then

11: return MaxInt

12: end if

13: totalFitness += fitness

14: end for

15: return totalFitness / the number of scenarios

16: end procedure

Next, the schedulability test for each scenario is performed on each processor. How
to perform the schedulability test will be explained below in this section. Since the clock
frequency affects the execution time of each task on a mapped processor, we select the
frequencies of processors to minimize the energy consumption for each scenario while
satisfying the schedulability constraint (line 8). Note that this exploration is done per
scenario to cope with the different behavior of the scenarios. If no feasible schedule is
found in any scenario, the maximum fitness value is immediately returned to mark the

solution as infeasible. Otherwise, the average fitness value over all scenarios is returned.

4.4.2.1 Mapping Stages to PEs

The proposed heuristic for mapping stages to PEs is depicted in Algorithm 5. At
first, it parses the mapping option for each selected mapping of application (line 3). Then,
the neighbor application list is made for each application (line 4). The list of neighbor
applications of the target application consists of the applications that will be executed
simultaneously in some scenarios. We sort the applications in the decreasing order of
the maximum length of the DLA stage (task). Mapping is done in a round-robin fashion

using the mapping index on each processor (lines 5-16). If a stage is maplped_to the CPU,

-':l"-\-"i _.;.._ 1_!. ..-'.:5

69

Algorithm 5 Pseudo code for mapping stages to PE

1:
2
3
4:
5:
6.
7
8

9:
10:
11:
12:
13:

14:
15:
16:
17:
18:
19:
20:
21:
22:
23:
24
25:

Input : AppList: the list of applications

> In the decreasing order of the max length of DLA stage (task)

Input : mappings: the table to save mapping info
procedure MAPSTAGETOPE(chromosome)
CPUIdx, DLAIdx =0, 0
Parse mapping option of app
nearAppList = MakeNeighborAppList()
for each app in AppList do
if app is already mapped then
continue
end if
for each stage do
if stage maps on CPU then
mappings[app][stage] = CPUIdx

CPUIdx = (CPUIdx + 1) % CPUCoreNum

else if stage maps on GPU then
mappings[app][stage] = 0
else stage maps on DLA
mappings[app][stage] = DLAIdx
DLAIdx = (DLAIdx + 1) % DLANum
end if
end for
for nearApp in nearAppList[App] do
Repeat the line 6 to 16 for nearApp
end for
end for
return mappings
end procedure

> Based on chromosome

> One GPU on the board

it is mapped to the indexed core of the CPU, and the index is incremented. In the case of

GPU, the mapping index is always zero since there is only one GPU in the target board. If

a stage is mapped to a DLA, two DLAs are alternatively mapped. Since the applications

are sorted based on the DLA workload, the heuristic aims to balance the workloads of two

DLAs available in the hardware platform. After the mapping for the current application

is complete, we map the neighbor applications in the same fashion (lines 17-18).

4.4.2.2 Frequency Decision

After the mapping of stages is settled, we determine the frequency of each processor.

Since the frequency affects the execution time, we perform the schedulability test for each

frequency combination. Since the number of frequency combinations is too large to be

70

1] 2 +1 &]

{

Algorithm 6 Pseudo code for frequencies decision

Input : ProcList: the list of processors > In the order of GPU, CPU, and DLA
1: procedure SETFREQ(scen,maps)
2 set frequencies for all processors (freqs) as maximum
3 i, schedulable, minSchedulable, minFitness = 0, False, False, MaxInt
4: Save curr fregs as the best fregs
5: for two iterations do
6
7
8

for each processor in ProcList do
set curr processor frequency as maximum
: while True do
9: schedulable = checkScheduability(scen,maps,freqs)

10: if schedulable then

11: fitness = calculateFitness(scen,maps,freqs)
12: if fitness < minFitness then

13: save curr freqs as the best freqs

14: minFitness, minSchedulable = fitness, True
15: end if

16: else

17: if curr frequency is not the maximum then
18: Revert to the previous frequency

19: end if

20: break

21: end if

22: if curr frequency is the minimum frequency then
23: break

24: else

25: Set curr processor frequency one level down
26: end if

27: end while

28: end for

29: end for

30: return minSchedulable, minFitness

31: end procedure

explored exhaustively inside a GA, a heuristic is devised to explore the frequencies in a
greedy fashion as depicted in Algorithm 6. The initial frequency combination is set by
using the maximum frequency of each processor (line 2). Since the algorithm reduces
frequencies in a greedy way, we examine the reduction amount of power consumption
per each frequency change and determine the order based on the reduction amount. The
order turns out to be GPU, CPU, and DLA in the process of fitness calculation covered
in the next paragraph. We select the processor whose frequency is to be changed (line
6), starting from the maximum frequency (line 7), and check the schedulability with the
current frequency combination (line 9). If it passes the schedulability test, we calculate

|
L
I

71

the fitness value that is the expected energy consumption and save it if it is the minimum
fitness (lines 11-14). And we reduce the current processor’s frequency one level down
(line 22). If the schedulability test fails, we go back to the previous frequency (line 17).
We repeat this process until the frequency becomes the lowest one (lines 19-20). Then,
we select the next processor whose frequency is to be altered (line 6), starting from the
last schedulable frequency combination found so far. In the first iteration, we find the
lowest schedulable frequency in the order of GPU, CPU, and DLA in a greedy fashion.
In the next iteration, it searches the frequency range between the highest frequency and
the found frequency to check if the energy can be lowered with a higher frequency, again

in a greedy fashion.

4.4.2.3 Fitness Calculation

Fitness is defined as the average energy consumption for all scenarios in a given
period. We use the average value for all scenarios since we do not know which scenario
to stay how long. It can be applied differently if we have the probability information.
To estimate energy consumption, we first identify the relationship between the frequency
and power consumption for each processor by the regression analysis based on the mea-
surement. We consider both static and dynamic power consumption.

For the estimation of static power consumption, we change the frequencies over
an available range as displayed in Table 4.7 2. We estimate the static power on a fixed
frequency when no application runs, which is similar to the work of [72]>. So we figure
out the relation between frequency and static power by measuring the power after setting
the minimum and maximum frequencies to be equal.

For dynamic power estimation, we measure the average power consumption of each

application by varying the frequency of each processor. For the CPU and GPU, we use

ZWhile the Xavier board allows a user to change the processor frequencies [71], the voltage is under the
direct control of the board power management firmware. Hence, we tune the processor frequencies only.

3The static power in this paper means the power when no application runs in the P-state. So, the static
power can be affected by the frequency.

3 L, =71 --'-i
11]

72

the mapping option E. On the other hand, option A is used for DLAs with all mappable
layers for DLA. When changing the frequency of one processor, we set the frequencies
of the other processors to be maximum. Then, we obtain the relationship between the
frequency and dynamic power by subtracting the estimated static power from the mea-
sured total power. Such regression analysis is conducted individually for four benchmark
applications that are described in Table 4.4.

With the obtained relationship between the frequency and dynamic power, we esti-
mate the average dynamic power consumption of the given mapping at a given frequency.
The average power consumption of each processor on each mapping solution is measured
in step 1 with the maximum frequencies as explained in Section 4.4.1. We apply the rela-
tionship to estimate the dynamic power consumption of processors at the given frequen-
cies for a given mapping. The dynamic energy consumption is computed by multiplying
the computed dynamic power consumption and the average execution time. The aver-
age execution time is estimated to be inversely proportional to the frequency from the
profiled ACET. For static energy consumption, we multiply the estimated static power
consumption and the period. The estimated energy consumption is the sum of the static

and dynamic energy consumption.

4.4.2.4 Schedulability Analysis

For schedulability analysis, we estimate the worst-case response time (WCRT) for
each chain-structured DL application by tailoring the compositional performance analy-
sis [21]. If the sum of the WCRTSs for each part of an application considering the jitter is
no greater than the deadline constraint, the deadline constraint is satisfied. We can assign
the distinct priority levels to the tasks mapped on the CPU, and the tasks are scheduled
by preemptive scheduling with a fixed priority. However, the tasks mapped on GPU or
DLA have the same priority.

The worst-case response time of a CPU task, tfgj € s; of app;, is bounded by equa-

ey

' ! | g
:l__i -';"-1 !. ..-'.:i

73

tion (4.1) which is well-known for fixed-priority preemptive scheduling [73, 21]. The
WCRT of the task is the converged value of . The hp(‘cf(’j) is a set of higher or equal
priority tasks that are mapped to the same PE with ’c;;’j and belong to the other applica-

tions. For simple notation, T indicates a task in hp(’cf{’j). Jx, is the jitter of the 7).

Vm—i-.]»ch
=Cyi+ S0 o) 1-C,

wehp(t)) (4.1)

where 1 = CT,:,-
k

In the case of GPU, the kernels within a stream are executed in a FIFO order, and
kernels are executed in a non-preemptive way [69, 70]. Since the priority of all GPU
tasks is equal, the WCRT may be over-estimated if we consider worst-case interference
from all tasks. Thanks to the chain structure of an deep learning application and the FIFO
scheduling policy of GPU, we can reduce the pessimism of the analysis. The worst-case
response time of stages mapped to the GPU can be calculated by the formula as shown

in equation (4.2).

r=Cy+ Z By s, 4.2)

In this formula, ep(s’) means a set of stages that are mapped to the same PE with s

of app; and belong to the other applications. Bs,- represents the maximum interference

-+ Se

from stage s, to s where s, indicates a stage in ep(s). It is the maximum sum of WCETs

P

of as many successive tasks in s, as min(|s’j\,([PES

) 14 1) -]se|), which is likely to be
smaller than the entire WCET of stage s, Cs,. Suppose that stage s; consists of 7 kernels
(tasks), and the interfering stage s, consists of 3 kernels. Since kernels in a stage are

queued sequentially, a kernel of an application can be interfered by at most one kernel of

74

the other application, thanks to the FIFO scheduling policy. Thus the maximum number

of interfering kernels cannot be more than the number of kernels in s', |s%]. In case the

number of kernels in the interfering stage is smaller than \s§.|, we compute the maximum

possible number of interfering kernels by multiplying the number of kernels in the stage

P(s;)
P(se)

and the number of interference, which is bounded by [5% | + 1. If stage s, that has three
kernels can interrupt twice maximally, the six kernels may interfere the target stage si- at
most. Then, the minimum value between \s’/| (=7),and 2 |s,| (= 6) becomes the number
of kernels that may interfere.

Since the stage mapped to a DLA consists of a single task as explained in Sec-
tion 4.3, the schedulability test for a DLA also can be performed with equation (4.2).
The estimated worst-case response time of an application is the sum of the response time

of the stages considering the jitter. Since we assume implicit deadline constraints, the

estimated WCRT should be no greater than the period for each application.

4.4.2.5 Complexity Analysis

Since Algorithm 1 calls Algorithm 2 and Algorithm 3, we first investigate the com-
plexity of Algorithm 2 and Algorithm 3. First of all, we assume that the schedulability
analysis has a given time complexity, 7 (PE, Ay,), which is a function of processors and
applications. Even though the response time analysis is known as NP-Hard [74], it is
usually computed fast for the problem size assumed in this paper. In Algorithm 5, the
amount of computation is proportional to the number of all stages because the mapping
is determined in a round-robin manner so that its time complexity is O(%;|S;|). Since it
uses a space for nearAppList, the space complexity is O(|A4| - |4| +X;|Si]).

Algorithm 3 has a nested loop of two levels. Since each loop runs at most the sum-
mation of the number of frequencies for each processor, the time complexity is O(| fregs| -
T(PE, As,)). The space complexity of Algorithm 3 is O(|freq|+ X|Si|+ |PE|), includ-
ing the space for frequencies and processors. Since Algorithm 1 calls Algorithms 2 and

ey

' ! | g
4 2-1H &

75

3 for each scenario, Algorithm 1 has the time complexity of O(|SC| - (X;|S:| + | fregs| -
T(PE,As))) and the space complexity of O(|freq|+X;|S:| +|PE|+|4|-|A4|).

4.4.3 Step 3: Tuning Frequencies for Varying Deadline Con-

straints

While we consider the tightest deadline constraint in the previous step, the deadline
constraint can be loosened at run time if the robot moves slowly. It means that there
is a chance to use lower frequencies while satisfying the deadline constraint when the
deadline constraint is loosened. In the last step of the proposed methodology, we explore
the frequency combinations, varying the deadline constraints. We use the same heuristic
as Algorithm 6 for each deadline constraint. Since running the heuristic at run time incurs
non-negligible overhead, we sample the deadline constraints and construct a table that
contains the frequency combination for the sample deadline constraint. For example, if
the maximum deadline constraint is given as 30 FPS*, we define a set of discrete deadline
constraints and perform the heuristic at design time. At run time, we refer to the table to
get the frequency combination of the closest tighter deadline constraint than the actually

required deadline.

4.5 Experiments

4.5.1 Set-Up

The hardware platform used in the experiments is a Jetson AGX Xavier board with
Jetpack 4.3 and TensorRT 6. We use the tkDNN [41] library and JEDI framework to
deploy DL applications in a pipeline way on TensorRT easily. We use four deep learning
networks described in Table 4.4 as benchmark applications that are specified with tkDNN

and JEDI. Since the leaky relu activation is not supported on the DLA, we used the

“4Since we assume the implicit deadline, the deadline constraint is inverse of the throughput constraint.
The higher FPS indicates the tighter deadline constraint.

76

networks, provided in JEDI, that replace leaky relu with relu. The COCO2017 val is used
for inference with an image size of 256x256 with FP16 precision, and the batch size
is set to one. In the target board, the power consumption is measured by the tegrastats
command.

For GA implementation, the DEAP [75] framework is used. In the first step of the
proposed method, the maximum evolution count is set to 20,000 and the population size
to 65. In each generation, two chromosomes are created as offspring of each survivor
through genetic operations such as uniform crossover, one-point mutation, and random
selection. We execute the GA on the target board since it requires running the network
to obtain the performance value by measurement. In the second step, we proceed up to
10,000 generations with 128 chromosomes in the population. The same operations in the
previous step are used except that Lexicase [76] is used for the selection operation. To
check the maximum achievable deadline constraint, we find the mappings from the lower
constraint, then use the found mapping as an initial solution for exploring the higher
constraints. In this step, the GA is run on a host computer that consists of Ubuntu 18.04.6

LTS, AMD Ryzen 9 3950X 16-Core Processor with 64GB RAM.

4.5.2 Finding Pareto-optimal Mappings of Each Application

As mentioned in Section 4.4.1, we filter out the cut points to reduce the design
space. Table 4.4 shows the number of layers and selected cut points for each network.
The number of candidate cut points is reduced to fewer than a half of the total number of
layers. The total number of cut-point combinations is calculated based on the mapping
options of Table 4.3. For example, in the case of Yolov2, it is calculated as follows: (212) +
(3) -2+ (%) + (%) = 2025. The last column shows how many Pareto-optimal solutions

could be obtained by the proposed GA. The number of Pareto-optimal solutions is 0.2%

- 8.6% of total candidates.

77

Table 4.4: The benchmark networks and the volume of design space for step 1 to find the
Pareto-optimal mappings.

Selected Total Pareto

Network Layer # cut-points # | cand.# | sol. #
Yolov2 [45] 54 22 2025 112
Yolov3 [46] 179 78 82161 158
Yolov2tiny [45] 24 10 221 19
Yolov3tiny [46] 35 10 221 14

Table 4.5: Information on three different system behaviors: which applications are per-
formed in each state

(a) FSM-B (b) FSM-C
State [Applications (A;.) State [Applications (A;.)
sco | appo sco | appo, apps
SCq apps 5C appo
SC2 appo, appi §5C2 apps
sc3 | appi,apps sc3 | appo, appi
SCq appo, appz Scq appi, apps
SC5 app2, apps §Cs appo, app2
sc | appo, appi, appa sc6 | app2, apps
scy appi, appz, apps scq appi, app;
(c) FSM-D

State \ Applications (A;.)

S€o appo

SCi appo, appi

SC2 appo, appi, appz

S€3 appo, appi, app2, apps

4.5.3 Exploring Mapping Combination and Tuning Frequencies

In this experiment, we evaluate the second step of the proposed scheme with four
different system behaviors that are represented by FSMs. In addition to our motivational
example of Fig. 4.1 (b) denoted by FSM-A, Table 4.5 shows which applications are per-
formed in each state for other three FSMs. Since the transition of states does not affect
the result of the mapping, we omit the transition information between state.

FSM-B is an extended version of FSM-A with twice more scenarios. In FSM-C, the
maximum number of applications running concurrently is limited to two. Meanwhile,

the number of applications is increasing in FSM-D. The most import_elmt factor is the

.:l_"i]

78

maximum number of applications running concurrently since the schedulability test is
conducted in this step. We also conduct the experiments with two different combinations
of applications as denoted by cases o and 3 shown in Table 4.6. In the case of «, all
applications from appg to apps are the same network, Yolov2. We assign the priority of
tasks mapped to CPU in the following order: appg, apps, appi1, appz. On the other hand,
the tasks mapped onto GPU or DLA have an equal priority. Although all applications are
assumed to have the same period in all experiments, the proposed method allows them to
have distinct periods.

We compare the proposed method with the following three methods.

* Local(LC): It allows dynamic task migration across the scenarios. We find the sub-
optimal mapping of applications for each scenario by a GA. However, it is not
feasible in practice since dynamic task migration is too costly in the target platform.
Nonetheless, this method serves as a decent indicator to check how close is the

proposed method to the ideal case.

* Baseline(BS): It is a typical case of running each deep learning application on a
single processing element, GPU. Since all applications have some layers that are
not supported by DLA, it uses only GPU in the inference, which corresponds to

option E in Table 4.3.

* Global(GB): It uses a GA to find a sub-optimal static mapping of all applications,
assuming that all applications are running concurrently, ignoring the scenarios. It
produces the same mapping for all system behaviors from FSM-A to FSM-D. The

frequency for each processor is set to the maximum without applying step 3.

* Work of [12] (SOTA): It also explores static mapping with maximum frequencies
ignoring scenarios similar to GB, but it uses the estimated layer-wise execution
times. After obtaining the mapping result from the SOTA method, we recalculate

the fitness and schedulability analysis with the actual execution Ein‘,les_fpr fai{ coms
A _.;_. 4 .I-- I; = |

79

Table 4.6: Cases for a combination of applications in FSMs

Case | appo | appr | appy | app3
o Yolov2 Yolov2 Yolov2 Yolov2
B Yolov2 | Yolov2tiny | Yolov3tiny | Yolov3

Table 4.7: The frequency range used in the exploration

Processor \ Frequency range (MHz)
DLA 550.4, 640, 729.6, 806.4, 896,
972.8,1062.4, 1152, 1228.8, 1395.2
GPU 675.75, 828.75, 905.25, 1032.75,
1198.5, 1236.75, 1338.75, 1377
CPU 1190.4, 1267.2, 1344, 1420.8, 1497.6, 1574.4, 1651.2,
1728, 1804.8, 1881.6, 2035.2, 2112, 2188.8, 2265.6

parison.

* Proposed(PR): It finds a static mapping combination tailored for each system be-
havior. It explores the design space with the objective to reduce the average energy

consumption by considering scenarios and constraints.

In this experiment, we make three comparisons. Firstly, we compare the tightest
deadline constraint that each method can support without schedulability violation. Also,
the comparison is made in terms of the fitness value. Then we evaluate the effect of
frequency tuning in terms of energy reduction. Lastly, we confirm the necessity of the

proposed heuristics compared with the exhaustive search in terms of speed.

4.5.3.1 Comparison of the maximum achievable FPS

Table 4.8 shows the maximum FPS that each method can achieve. In all FSMs ex-
cept for FSM-D, the PR method can satisfy the tighter deadline constraint (higher FPS)
than both BS and GB methods. The PR could satisfy 15% ~ 86% tighter constraint com-
pared to the BS method, and up to 40% tighter constraint than the GB method. Since the
static mapping is determined by the worst-case scenario in the PR method and FSM-D
runs all applications in state SC4, PR and GB have the same FPS constr_laint for FSM-D.
7 _ .I |

A

80

Table 4.8: Comparison of the maximum achievable FPS among methods

Case o - FSMs Case B - FSMs
Methods AT S TCc[D[A[B[C[D
LS 47477140 [32]32[38]28
BS 3232442421 |21 [33]15
GB 40 28
SOTA [12] 39 26
PR 47 14715640 32[32]38]28

Table 4.9: Mapping and frequency tuning result for FSM-A from the proposed method

(a) Mapping result for FSM-A when FPS constraints are 47 and 32 for cases o and [, respectively

Case [o [B

appo | D[0-29],G[30-53] | D[0-29],D[30-40],G[41-53]
app1 | D[0-29],G[30-53] D[0-16],G[17-23]
appy | D[0-29],G[30-53] D[0-16],G[17-34]
appz | D[0-29],G[30-53] G[0-178]

(b) Frequency (MHz) tuning example on SC3 of FSM-A for varying FPS constraints with the
same static mapping as (a)

Case o Case B
40 FPS [45 FPS [47 FPS 25 FPS [30 FPS [32 FPS
CPU 1574.4 2112.0 2265.6 1958.4 1651.2 1728.0
GPU 1032.75 | 1236.75 | 1338.75 | 1032.75 | 1338.75 | 1377.0

Processor

While comparison with BS confirms the advantage of utilizing heterogeneous processors,
comparison with GB confirms the advantage of considering the scenarios in the mapping
decision. The work of [12] shows slightly worse results than the GB method. When using
estimated time, the mappings obtained by [12] could satisfy 50 FPS and 32 FPS for each
case, respectively, but recalculation with the actual execution times shows different re-
sults. This is because the worst-case execution time could be underestimated when using
the estimated time so that an infeasible solution can be falsely classified as feasible.

The proposed method shows a similar result as LC except for FSM-C of case a. In
the LC method, DLA mapping can be changed for each scenario. Hence we can assign
a different DLA to each application when two applications are running in all scenarios

in FSM-C. On the other hand, two applications are mapped to the same DLA in some

81

scenarios in the PR method. In case B, the entire Yolov3 is mapped GPU since its exe-
cution time is much larger than the other networks and GPU is faster than DLAs. Since
GPU becomes the bottleneck in the schedulability check, the PR yields the same result
to the ideal one, LC. Comparison with LC proves the effectiveness of the proposed static
mapping technique.

Table 4.9 (a) shows a mapping decision example that the proposed method produces
for FSM-A. In the table, D[0-40], G[41-53] means that pipelining option A is taken,
layers #0 to #40 are mapped to DLA, and the rest are mapped to GPU. In case «, all
applications use the same mapping result since they are all Yolov2. In case 3, however,
the selected options are different for applications: option C is used for app0 and option E
is used for app3 while option A is used for the others. It indicates that we need to explore
different mapping options for applications. Table 4.9 (b) describes how frequencies can
be changed as the deadline constraint varies at run-time after mapping decision is made
to achieve the maximum FPS as shown in Table 4.9 (a). The DLA frequency, which is not
shown in the table, turns out to be maximum at all times. It means that reducing the GPU
or the CPU frequency is better than reducing the DLA frequency in terms of average
energy consumption. Since the GPU consumes more power than the CPU, the proposed
heuristic tries to reduce the GPU frequency as much as possible while satisfying the
schedulability constraint. Since the CPU performs pre-processing and post-processing
tasks that have a linear dependency on the inference part, we may need to reduce the
CPU execution time by increasing the CPU frequency under a lower FPS constraint in
order to satisfy the constraint on the end-to-end worst-case response time. While the
GPU frequency decreases as the FPS constraint is loosened, there is no such tendency in
the CPU frequency. It explains why the CPU frequency increases as the FPS constraint
decreases from 30 FPS to 25 FPS for case B in Table 4.9 (b).

To evaluate the effectiveness of the proposed GA-based heuristic for the second step
of the proposed scheme, we find an optimal mapping of the GB method by exploring

.-3';: O | =]

82

Table 4.10: Throughput constraint (FPS) variation

Case | FSM-A | FSM-B [FSM-C [FSM-D
o [35,40,45 | 35,40,45 [40,45,50 [30.35,40
B] 20,2530 [20,25,30 | 25,30,35 | 15,20,25

exhaustively the design space that is vast (112* mappings for the case o). It is observed
that the resultant mapping is the same as found by the proposed GA heuristic. Since
only a few mappings can satisfy the deadline constraint, the proposed GA-based scheme
could find the optimal solution in our experiments, we believe. The proposed GA-based
heuristic explored much less design space. This experiment confirms the efficacy of the

proposed GA-based exploration method as the second step of the proposed methodology.

4.5.3.2 Frequency tuning effect

In this experiment, we examine the effect of frequency tuning as the deadline con-
straint varies at run time. For a given mapping, we visit each scenario to find the best
frequency combination of processors in terms of estimated energy consumption. Note
that we can obtain a higher FPS performance than that of Table 4.8 for the GB method
in case there is no scenario that runs all applications. With the given mapping obtained
from the GB method, we increase the throughput constraint until there is any scenario
that cannot meet the constraint. The modified maximum achievable FPS from the GB
method for each FSM turns out to be 45, 45, 51, and 40 FPS for case o, while it is the
same as PR in Table 4.8 for case [. It is still lower than the maximum achievable FPS
obtained from the PR method. We vary the deadline constraint as described in Table 4.10,
where the tightest constraint is determined by the GB method.

Figure 4.6 shows how the fitness ratio varies as the deadline constraint varies for
the FSM-A benchmark with cases o and 3, respectively. The fitness value represents the
estimated energy consumption during the same time duration. The fitness ratio is the
relative fitness over the lowest value. The figure demonstrates the energy can be reduced

ey

' ! | g
:l__i -';"-1 !. ..-'.:i

83

2.00 2.50
2.00

= o 2 2
5 % da ST = 2z
= B 19 | i | BV = 1.5 ©f|w© &l | < w0 [N
2 1.00 = = o ® 3= 2 2l e ol 7|~ ||
g ol & =l = 2 1.00 ol |7 7| ||| S|=
= 2|~ = = ol|= N 4)
& 050 | & 0.50 H ~ =]
0.00 0.00
35 40 45 20 25 30
Constraint (FPS) Constraint (FPS)
OLC ©EPR [EGB SOTA OLC @EPR [GB SOTA
(a) case o (b) case B
Figure 4.6: Fitness ratio as the FPS constraint varies for FSM-A
;% 1.50 -g 1.50
é) 1.00 g 1.00
2 g S s g S, = g S <
&0 — — — — 5 — Ml Al
£ 0.50 £ 050
Z <
0.00 0.00
FSM-A FSM-B FSM-C FSM-D FSM-A FSM-B FSM-C FSM-D
(a) case o (b) case B

Figure 4.7: Average fitness ratio over the FPS constraint variation for all benchmarks

while satisfying the constraint by manipulating the frequencies. In addition, the difference
between the PR and both GB and SOTA methods is large, while the gap between PR and
LC methods is small. In this comparison, the GB method does not tune the frequency as
the constraint varies.

To study the effectiveness of frequency tuning, we propose an alternative method
which is a variant of the PR method. We apply the frequency tuning algorithm to the
resultant mapping obtained by the GB method, calling this method as PR-GB. Figure 4.7
shows the average fitness ratio of methods over the FPS constraint variation. In this figure,
the fitness ratio is the relative fitness over the fitness value of the PR method on each
bundle. While the difference between methods PR and GB is noticeable, PR and PR-GB

show almost no difference. Also, GB and SOTA methods give similar results. It means
o 1 —
A <o 8t
84 -

Table 4.11: Average fitness evaluation time and end-to-end execution time during 50
generations in GA

Case o B
Method heuristic | brute-force | heuristic [brute-force
FSM-A 1.41 46.13 2.28 61.00
Average fitness FSM-B 3.44 99.76 5.07 131.78
evaluation time (sec) | FSM-C 3.08 87.30 3.98 118.78
FSM-D 1.68 57.08 3.30 87.21
FSM-A | 317.66 13390.05 519.03 17405.57
Average FSM-B | 1119.19 35457.24 1223.27 34586.12
total time (sec) FSM-C | 1268.51 36095.17 726.65 23861.59
FSM-D | 439.59 17972.25 867.07 27643.66

{ * Start/Stop applications
* Change frequencies

Response

Request

Figure 4.8: The run time management following scenarios

that the frequency adjustment is more important than the mapping decision for energy
reduction. In addition, the difference between the two proposed methods (PR and PR-GB
methods) and the ideal case (LC method) is smaller than the gap between the proposed

methods and both GB and SOTA methods.

4.5.3.3 Execution time for fitness evaluation

Since frequency tuning is a key issue for energy reduction, we explore the frequency
combination of processors in the fitness evaluation of each candidate mapping in step 2,
as explained in Section 4.4.2.2. Table 4.11 shows the average execution time for fitness
evaluation and the end-to-end time of the proposed method during 50 generations in
the proposed GA-based heuristic, compared with a brute-force exhaustive method. The
speedup by the heuristic is more than at least 26 times for fitness evaluation and 28 times
for end-to-end execution than the brute-force method. It is confirmed by experiments that
both schemes produce the same fitness value for the resultant mappings. It proves the

effectiveness of the proposed frequency selection heuristic.

85

1.50 1.50

— o0 (=3

£ 100 5 & 52 58 200 = i P TRl
5} — — = o o N =k
: = NEE NEE NEE N 2 = HEE NES &S
g £ 0.50
£ 050 5 05

0.00 0.00

FSM-A FSM-B FSM-C FSM-D FSM-A FSM-B FSM-C FSM-D
EPR HOPR-GB [IGB ESOTA BPR OPR-GB LGB ESOTA
(a) case o, (b) case B

Figure 4.9: Average energy ratio over the FPS constraint variation, measured after real
deployment

4.5.4 Real Deployment

We apply the proposed methodology to run benchmark applications on the target
board. A run-time controller is implemented to control the execution status of applica-
tions according to the scenario, as illustrated in Figure 4.8. It consists of multiple threads
to communicate with the applications. In the experiment, a thread requests execution
of the associated application to process each input periodically and suspends itself until
the completion of the processing is informed. The communication overhead between the
controller and applications is considered in the latency estimation at the design time by
subtracting the overhead from the deadline at the design-time optimization. The commu-
nication overhead is set by the bigger value between the measured value and the value
that the mean plus six times the standard deviation. The frequencies are managed by the
controller for each scenario and each constraint. While we change the processor frequen-
cies, we set the frequency of the other components to the maximum. The controller runs
on a single dedicated core which is not used for DL applications. Note that the run-time
management itself is not a contribution of this paper.

In this experiment, we run applications on the target board during the same duration,
10 seconds, varying the scenarios for each mapping and frequency tuning result for each

deadline constraint. The energy consumption is calculated by multiplying the running

86

time and the average power consumption of the system that includes not only processors
but also the other components. We compare the PR, PR-GB, GB, and SOTA methods, ex-
cluding the LC method that is infeasible on a real platform. We perform each experiment
three times and get the average value. Figure 4.9 shows the measured average energy
consumption over the FPS variation for two cases o and . The energy ratio indicates the
relative energy consumption over the lowest value on each bundle. In both cases, the gap
between PR and PR-GB is not noticeable, as expected by our estimation result. The pro-
posed methods could save the energy by 22% ~ 31%, compared with the GB and SOTA
methods. Albeit the estimated energy saving (Fig. 4.7) is slightly higher than the actual
saving shown in Fig. 4.9, the difference is not significant. It confirms that the proposed

method effectively reduces energy consumption in a real hardware platform.

87

Chapter 5

Supporting Deep Learning Applications in a
Model-based Design Methodology

5.1 Opverview

In this chapter, we decide mappings for both dataflow applications and deep learn-
ing applications. Since it is difficult to consider deep learning applications in traditional
model-based embedded software design methodology, we extend the model-based design
flow. First, we find Pareto-optimal mappings for each deep learning application, similar to
the previous chapter. Next, we find mappings for dataflow applications and deep learning
applications together by the heuristic and meta-heuristic.

The rest of the chapter is organized as follows. In Section 5.2, we review the related
work. After presenting a system model to clarify the problem in Section 5.3, the pro-
posed methodology is explained in Section 5.4. The experiment results are discussed in

Section 5.5.

5.2 Related work

We review the previous studies in the following three main subjects related to the
proposed methodology: mapping of multiple dataflow applications, mapping of deep

learning applications, and integrating deep learning applications into the model-based

1] ©

88

design.

5.2.1 Mapping of Multiple Dataflow Applications

Since the mapping and scheduling of a dataflow graph onto a multiprocessor system
is an NP-hard problem [54], many approximate methods for finding the optimal solution
have been proposed such as heuristics based on list scheduling [56, 57, 56] explored map-
pings by heuristics, meta-heuristics using a genetic algorithm (GA) [77]. While most of
works focus on the mapping and scheduling of a single dataflow graph, only a few works
deal with the mapping of multiple dataflow graphs onto multiple processing elements, to
the best of our knowledge. In case there exist real-time constraints on dataflow applica-
tions, we need to check a mapping solution satisfies those constraints by schedulability
analysis for throughput constraint or worst-case response time analysis for latency con-
straint, which is recognized as a very challenging problem in real-time community [78].
A simple solution to avoid this difficulty is to map each dataflow graph onto a disjoint set
of processors, avoiding interference between applications on the same processor. Then,
we can map each dataflow separately onto the assigned processors.

Schor et al. [63] proposed an evolutionary algorithm to find a mapping to minimize
the maximum utilization. Kang et al. [58] proposed a two-step approach. In the first step,
they find a set of Pareto-optimal parallel schedules of each individual dataflow graph
using a multi-objective evolutionary algorithm. In the second step, another evolution-
ary algorithm is to used to find the best combination of Pareto-optimal solutions of all
dataflow graphs, aiming to minimize resource usage. For each mapping candidate, worst-
case response time analysis is performed to check if the deadline constraint is satisfied

for each dataflow graph.

89

5.2.2 Mapping of Multiple Deep Learning Applications

As deep learning applications are getting popular in embedded systems, extensive
studies have been conducted recently to find the optimal mapping of DL applications
specified by the associated SDK on a heterogeneous hardware platform. Xiang et el. [10]
partition deep neural networks (DNNs) into pipeline stages, and map stages to processing
elements by a heuristic. They focus on increasing the schedulability of multiple DNNs
by balancing the utilization among PEs. While early works, including [10], considered
CPU-GPU heterogeneous systems as the target hardware platform, recent works consider
the DL hardware accelerators, also called NPU (neural processing unit) [9, 12]. Pujol et
al. [9] consider an entire network as the mapping unit to a single PE without partitioning
to leverage the associated SDK with each PE, assuming that the number of DL applica-
tions is more than the processing elements. Kang et al. [12] explore the per-layer mapping
of DNNs with a GA, assuming that the layer-wise profiling information is given for each
DL application. Even though they considered NPUs in the mapping step, no experiment
with the NPU on a real hardware platform was made. Note that all works [9, 10, 12]
consider the mapping of multiple DL applications only without considering other tasks

running concurrently.

5.2.3 Integrating Deep Learning Applications into the Model-
based Design

Since supporting DL applications in the model-based design methodology is a re-
cent demand, there exist only a few previous studies that tackle this problem in the model-
based design methodology. The work of [17] introduces an extended SDF model, called
the SDF/L model, that specifies two types of loop structures explicitly and shows how
to specify a DL application with the SDF/L model. They leave it as future work on how
to perform task-mapping of the SDF/L graph, exploiting the data-level parallelism. Mi-

nakova et al. [11] transform a CNN (convolutional neural network) to an SDF graph and
M=l ol

90

find the mapping of SDF by using the genetic algorithm (GA). After the mapping deci-
sion is made, they translate the CNN network to a CSDF graph that is partitioned into
sub-graphs that are run on each processing element. In this work, a CNN network has
to be translated into two different models, the SDF model for mapping, and the CSDF
model for code generation and execution. Such translation requires considerable effort.
Since the translated SDF model has a wide range of sample rates, finding an optimal
mapping onto multiple processors itself is a challenging problem. Both works [17, 11]
do not consider the mapping exploration of multiple applications.

Recently, Jeong et al. [79] proposed a methodology based on the genetic algorithm
to explore the mappings for multiple dataflow graphs on CPU-GPU heterogeneous sys-
tem with a deep learning application. In their work, they assume that the mapping for
the deep learning application is fixed and find the mapping of dataflow graphs, aiming
to reduce the worst-case response time for each dataflow application. To the best of our
knowledge, the proposed method is the first approach that supports multiple deep learn-
ing applications running concurrently with other dataflow applications in a model-based

design methodology on a heterogeneous hardware platform, including NPUs.

5.3 System Model

5.3.1 Motivational Example

Figure 5.1 displays a motivational example where DL applications and dataflow
applications are running together. The Image processing application is represented by a
task graph that consists of eight tasks that process images. After processing the image, the
Det application gets the output data from the Image processing application and performs
object detection. The object detection network consists of many layers for inference in
addition to pre-/post-processing tasks. The example has four sets of such combinations

of a dataflow application and a deep learning (DL) application as shown in Figure 5.1. In

91

Image

processingl processing?2

it
[}
1
1
+-

Taskl

1

1
| e B e |
1

1

\

e

1
1 Image

1
: Image N Det3
1

processing3 Post-processing]

[vt BGR vt NV12 |.

Read Image > NVI2 I_: Rescale-1 »| Bilateral [—» to BGR-1 —Tbo
S ig IV Det
Rescale-2 > ;(\) tB\G.\Rl—; —» Save Image

D DL application by SDK D Dataflow application |:| Task

Figure 5.1: A motivational example

this research, we target the case where both deep learning applications and the dataflow

applications run simultaneously, like the motivational example.

5.3.2 Notation and Problem Definition

Architecture specification: The target hardware platform consists of heteroge-
neous processing elements (PEs), PE. In this work, three processor types are used in
the Xavier board: CPU, GPU, and DLA. And a set of PEs for each processor type is
represented as PE.p,, PE,p,, and PEy,, respectively.

Application specification: Two types of applications are distinguished. DL appli-
cations are specified by a DL SDK, TensorRT in this work, while other applications are
specified by a dataflow graph. We denote a given set of applications in each type as D and
A, respectively. As shown in Figure 5.1, an edge between two applications denotes the
data dependency between them. The connected applications form an application group,
denoted by G;. Group G; is defined by a tuple (A", D', E', p', pr'). A’; € 4 and Dj, € D are
applications that belong to group G;. The last three elements indicate edges between ap-
plications, the invocation period, and the priority, respectively. There may exist multiple
groups, and the set of groups is denoted as G. A dataflow application A; is characterized

by a tuple <V},E§->, where V; and E; represent the set of tasks and the set of edges be-

i

92

=P COHO0 COOPLE
Proc PS&IHE Proc ebblllg

| Task on CPU]| Task on DLA || Task on GPU”Sul) task(kernel)on GPU”TaSk on CPU|

Figure 5.2: Task/Sub-task definition on the deep learning application specified by SDK

tween tasks, respectively. For the dataflow application, A‘ task T4/ is naturally defined
by the model. For instance, in Figure 5.1, the Image processing application consists of
eight tasks inside.

For a DL application D, however, it is characterized by a tuple (V/,E.) only after
pipelining of the application is made, where Vk" is a set of tasks and E,’< is a set of edges
between tasks. How to pipeline a DL application is explained in the next section. After
pipelining decision is made, the DL application consists of multiple pipeline stages, each
of which is mapped to a PE. Figure 5.2 shows an example that has four pipeline stages
colored differently. Each pipeline stage is defined as a task for DL application, ke Vki .
For the task mapped to the GPU colored yellow, the SDK forms a set of kernels after
optimization. The purple box in the yellow GPU-mapped task represents a kernel that
merges two layers after layer fusion. Since a kernel is a unit of profiling, we define each
kernel as a sub-task in the GPU.

Since per-kernel profiling is not possible on a DLA, however, the entire set of layers
becomes a single task on a DLA. A DL application has a pre-processing task that feeds
input data to the inference body and a post-processing task that processes the output data.
Those tasks should be mapped to the CPU core. Note that a pipelined DL application
has a chain structure of tasks, which is also assumed in [10] since there is a dependency
between pipeline stages and the execution order of kernels is set by the SDK [19]. In
summary, a DL application consists of chain-structured tasks (Ti{k € V,j).

Scheduling specification: We denote the worst-case execution time (WCET) of
task 77" as C(t5"). The invocation period of task Ty" is denoted as P(t}"), which is the

Sy |

93

same as p', the period of graph G;. We assume that the graphs run periodically with
the implicit deadline assumption that the period becomes the relative deadline. Thus, the
deadline of group G; is its period, p’. The average latency of a group G; is represented
as L(G;), and the execution time on each processing element pe € PE is denoted by
ET(pe,G;). Similarly, the latency of a DL application D, is denoted by L(D}). Mean-
while, R(G;) indicates the worst-case response time (WCRT) of a group G;, and it is nec-
essary to check whether the WCRT violates the deadline. The calculation of the WCRT
is explained in Section 5.4.2.3.

Even though a group is assigned a priority, pr/, it is applicable only for the tasks
mapped on the CPU. Since there is no way to set the priority of a task on a DLA, tasks
mapped on a DLA are executed in the FIFO order. Even though there are two priority
levels in GPU, they are usually not used. Similar to DLAs, the GPU executes the mapped
tasks in the FIFO order.

We denote the set of mapped tasks on processing element pe € PE as Map(pe).
Based on the mapped tasks on pe, we calculate the utilization of pe, U(pe), as
Z@xe Map(pe) (C (’cﬁfx)) /p'. In the proposed methodology, we choose Pareto-optimal map-
ping candidates, explained in the next section. The set of mapping candidates of D}'c is rep-
resented by Cand (D)) where D), € D, and the x-th candidate is denoted by Cand (D, x).

Table 5.1 summarized the notations in this work.

5.4 Proposed Methodology

Figure 5.3 (a) shows the traditional embedded software design flow based on the
dataflow model, which is explained in Section 2.5. To support a deep learning applica-
tions in the model-based design, we propose the extensions which is described in Fig-
ure 5.3 (b). In step 1, a set of Pareto-optimal mapping candidates for each DL application
is obtained independently and applied to the extended model-based design framework as

additional input information. In step 2, we try to find an optimal mappi_lng of tasks by a
4 2 2 DYl

-'-\-\."i _.;_._.I--!i ..-'.:E

94

Table 5.1: Notations used in a system model

Notation \ Description
peand PE | A PE and a set of PEs (pe € PE)
PEproc A set of PEs for processor type proc (G; € G)
Giand G A group and a set of groups (G; € G)
A’j A dataflow application in G;
Dy A DL application in G;
Vi and E; A set of tasks and a set of edges in A}, or Dj,
T A task in AL or DI,
(%) The WCET of 1y"
p' and pr' A period and priority of G;
L(D}) The average latency of D},
ET(pe,G;) | The execution time on pe when running G;
R(G;) The WCRT of G;
Map(pe) A set of mapped tasks on pe
U (pe) The utilization of pe
Cand(Dj) | The mapping candidates of D}

meta-heuristic with a given set of objectives. For each DL application, we select a map-
ping candidate while we decide on the mapping of dataflow tasks simultaneously in this
step. The last step is to generate the target code for each processing element, which will

not be discussed in this work.

5.4.1 Step 1: Finding the Pareto-optimal Mapping Solutions of
Each Deep Learning Application
The problem addressed in this step is summarized as follows.

* Input: All deep learning applications in D are provided.

* Objective: We define multiple objectives to minimize the latency of each deep
learning application D), € 9D and the execution time on GPU and DLA, which can
be described in Equation 5.1.

Minimize : (L(D}),ET (D%, pe))

(5.1
where D}; € D, pe € PE;,, and PEy,

95

Application specification Platform
Task code | Task Graph | |specification

SDK-based
mapping
exploration

v
¥
v
v
¥
¥

b
]

D | s

Mapping candidates
for deep learning applications

A o AL AL LT AL LTEE LTI S

Fm |
Program synthesis (Code generation) (b) B ded
xtended parts

(a) Model-based embedded software design flowl for deep learning applications

DODDDDDDINN

Performance
estimation

-
. /
Mapping 2
4

«Ole

Figure 5.3: Overall flow of the model-based embedded software design and the
proposed extension

¢ Problem: For each deep learning application Di € D, find all Pareto-optimal map-
ping candidates. i.e. mapping of D: Di — Cand(D}).

* Output: The set of Pareto-optimal mappings of each deep learning application,
Cand (D;) A mapping candidate indicates how a DL application is partitioned into

pipeline stages and to which PEs the pipeline stages are mapped.

To solve this problem, the genetic algorithm is used in our implementation of the

proposed methodology, as there are publicly available GA optimizers that are well-

maintained. Other meta-heuristics that support multiple objectives can also be used.

Similar to the work in the previous chapter, we organize the mapping options as

shown in Table 5.2 when partitioning the object detection application, Det, in the moti-

vational example. For example, option C indicates the layers are partitioned into three

stages. The pre-/post-processing tasks are mapped to the CPU while the inference body

Table 5.2: Mapping options for pipelining of a DL application

Options [# of stages [Composition of PEs
A 2 DLAO - GPU
B 3 GPU - DLAO - GPU
C 3 DLAO - DLAI1 - GPU
D 4 GPU - DLAO - DLA1 - GPU
E 1 GPU

96

is partitioned into three pipeline stages that are mapped to two DLAs and GPU, respec-
tively. Note that DLAO and DLA1 are interchangeable without difference in terms of
performance. The last pipeline stage is mapped onto the GPU in all mapping options
since the last stage contains some layers that cannot be executed on a DLA. And no stage
is mapped to the CPU. Those restrictions imposed by TensorRT need to be considered in
the organization of the mapping options. It means that a set of mapping options may vary
depending on the DL applications and the hardware platform.

After mapping options are identified, mapping candidates of the DL application are
represented with the chromosome structure described in Figure 5.4 (a). The length of the
chromosome is decided by the maximum number of pipeline stages. Since the maximum
number of stages is four in Table 5.2, we set three genes for pipelining cut-points and one
gene for the mapping option. In the example of Figure 5.4 (a), layers #0 ~ #23 and layers
#24 ~ #144 are mapped to the GPU and DLAQO, respectively, since the mapping option is
option B. And the rest of the layers are also mapped to GPU. If there is no corresponding
cut-point, the gene has a value of —1.

We define multiple objectives for GA fitness evaluation as described in Equa-
tion (5.1): end-to-end latency, the execution time on GPU, and the execution time on
DLA and find Pareto-optimal solutions as mapping candidates for each deep learning ap-
plication. We use the measured values as fitness values while running the network on a
real board for each mapping candidate. Analytical performance estimation is not feasible
because the layer-wise execution time could not be obtained for DLAs and the effect of
optimization techniques of TensorRT on the performance cannot be estimated.

Suppose that a mapping is selected for a DL application, Det. Then the DL ap-
plication can be transformed into a chain-structured task graph as shown in Figure 5.2.
The dependency between the Image processing application and Det remains by grafting
task Pre-processing to task cvtBGRtoNV12-1. Such graph transformation is necessary to
determine the mapping dataflow tasks and check the schedulability in the next step.

.-3';: O | =]

97

I-V For each DL network
Mapping option <—

[23 | 144 | -1]] B |

pd N

a8 fF 4 [o | 64 |

< ~

< >
- Mapping candidate index
Cut points

(b) Chromosome structure for Heuristic+ GA

(a) Chromosome structure for step 1 method in step 2

|'> For each DL network For each task <—|
| 48 4 | 0 | 64 |CPU#O| GPU |CPU#1|CPU#3| GPU |CPU#2|
< >< —>
Mapping candidate index Mapping of tasks

(c) Chromosome structure for Entire-GA method in step 2

Figure 5.4: Chromosome structures: (a) for stepl, (b) for Heuristic+ GA method in
step2, and (c) for Entire-GA method in step2.

5.4.2 Step 2: Mapping Exploration

In this step, we determine the mapping of each DL application among Pareto-
optimal mapping candidates and the mapping of dataflow tasks onto PEs. The problem is

summarized as follows.

e Input: All dataflow applications in 4 and the set of Pareto-optimal mappings

candidates for each deep learning application, Cand (D;() where D;; eD.

¢ Constraint: The WCRT of group G; should be less than or equal to its deadline,
period. i.e. R(G;) < p' whereVG; € G.

* Objective: We aim to minimize the maximum utilization to balance the utilization

of PEs, Maxpecpz(Util(pe)).

Minimize : Maxpecpz (U (pe)) (5.2)

* Problem: Find the mapping of tasks i/ to PEs, or T4/ — P, in each dataflow

application A; and select the mapping candidate of each deep learning applications.

98

Initialization:

Chromosomes for Chromosomes for
Entire-GA (Fig. 6 (c¢)) | [Heuristic+GA (Fig. 6 (b))
~
Selecting chromosomes |<—
<~

For each chromosome :

@ Mapping DL :> @ Mapping dataflow
applications to PEs tasks by heuristic

Y 2

(3 Worst-case response
time analysis

| @ Fitness calculation |

Crossover,

Yes -« No Mutation
Done <Lonverge

l:l Entire-GA I:I Heuristic+GA I:I Common

Figure 5.5: Procedure of the proposed mapping exploration technique

For the selected mapping candidate, we decide the mapping to PEs of each selected

mapping candidate: Cand (D}, x) — PE.
* Output: The mappings of dataflow applications and deep learning applications.

To solve this problem, we propose to use a GA algorithm. Since the execution time
of GA increases as the problem size grows, two methods are devised. In the first method,
denoted Heuristic+GA, we use a heuristic to determine the mapping of dataflow appli-
cations, while the GA decides the mapping of DL applications. A solution candidate is
represented by a chromosome whose structure is depicted in Figure 5.4 (b). Each gene
indicates the index of mapping candidates for each DL application. For example, 4 in-
dicates the 4-th mapping candidate belonging to the second application. It contains as
many genes as the number of DL applications. In the second method, denoted Entire-GA,
we use the GA to select the mapping of dataflow applications simultaneously with the
selection of the mapping of DL applications. The corresponding chromosome structure
is shown in Figure 5.4 (¢). The chromosome is divided into two parts.jT-he }eift [;aﬁt.l 1ng1j1i

99

cates the index of mapping candidates for each DL application, same as the first method.
The right part indicates the mapping of dataflow tasks. For example, in the figure, the
gene of GPU means that the corresponding tasks are mapped to the GPU while others
are mapped to the specific core of the CPU.

Figure 5.5 shows the procedure of the proposed mapping exploration technique that
consists of four main steps in the evolving process. In the initialization phase, we generate
initial chromosomes randomly. Before entering into the evolving process, we first check if
the combination of mapping candidates is executable on the target platform. As explained
in Section 5.3, the number of DLA-mapped tasks is limited by the SDK'. If it violates the
constraint, then the chromosome is discarded by setting the fitness value to the maximum
value.

In the first step of the iteration, we perform mapping of DL applications to PEs. In
this step, we determine which DLA and which CPU core is used for each DL application.
After the mapping of DL application is determined, we use a heuristic to determine the
mapping of dataflow applications in the Heuristic+GA method. This step is skipped in the
Entire-GA method since the chromosome includes the mapping information of dataflow
applications.

After all mappings are decided, we check the schedulability of applications through
the worst-case response time analysis and compute the fitness value to select the dominant
species in the evolutionary process. With the selected dominant solutions, we perform GA
operations such as crossover and mutation, to define the next generation chromosomes.
Such an evolutionary process is repeated until no better solution, or chromosome, is found
during a given number of iterations.

Since the Entire-GA method explores a wider design space than the Heuristic+ GA
method, it is likely to find a better solution, taking much longer time. We improve the

convergence speed of the Entire-GA method by using the mapping solutions found by

IIn the version we used, the number of DLA-mapped tasks is limited to four.

100

the Heuristic+GA method as initial chromosomes. Using good initial chromosomes is
useful for better exploration [80]. If no mapping is found by the Heuristic+ GA method
due to tight real-time constraint, we loosen the constraint to find solutions to obtain initial

chromosomes for the Entire-GA method.

5.4.2.1 Mapping DL Applications to PEs

The mapping option in Table 5.2 indicates the processor type, not a specific pro-
cessing element. For instance, we may use any DLA between two DLASs in the system
when mapping option A or B is taken. Similarly, the pre-/post-processing tasks of a DL
application can be mapped to any core in a multi-core CPU. To evaluate the fitness value
of a chromosome, we need to determine which PE to use for each DL application. Since
our objective is to balance the processor utilization, we use a simple scheme as follows:
First, we sort the mapped tasks on each processor in the decreasing order of profiled exe-
cution time. Next, we perform a greedy mapping of tasks to PEs in a round-robin fashion
starting from the longest task. For example, if there are three tasks mapped onto DLA,
they are mapped to DLAO, DLA1, and DLAO in the order of the execution length if there

are two DLAs.

5.4.2.2 Mapping Dataflow Tasks by a Simple Heuristic

Algorithm 7 displays the pseudo-code of the proposed mapping heuristic for
dataflow tasks in the Heuristic+GA scheme. This heuristic is called for each chromosome
that indicates a candidate mapping combination of all DL applications. In other words,
we determine the mapping of dataflow tasks after the mapping of pipeline stages of all
DL applications onto processing elements is completed. Since mapping is performed for
each chromosome during the evolution process, we use a simple greedy heuristic, sacri-
ficing performance for faster execution speed. We first compute the PE utilization based

on the mapping result of DL applications (line 2). Next, we sort the dataflow tasks in

101

Algorithm 7 Pseudo code of mapping heuristic for dataflow tasks

1: procedure MAPMODELTASKS(chromosome)

2 utils = calculateCurrentU'til()

3 for each rask in ordered task list do

4 minValue = MaxInt

5: for each mappable processor proc do

6: minPEULil, core = getMinUltil(proc, utils)

7 value = getUtillfMappedTo(task, proc, core)
8 if value < minValue then

9: minValue, minProc, minCore = value, proc, core
10: end if

11: end for

12: mappingInfo[task] = (minProc, minCore)

13: updateUtil(minValue, minProc, minCore)

14: end for

15: end procedure

the decreasing order of the maximum WCET value among the mappable processors and
determine the mapping in the sorted order (line 3). We find the PE with the minimum
utilization for each mappable processor (lines 5-6). And we compute the maximum uti-
lization among all PEs in the selected processor when the current task is mapped to the
corresponding PE (getUtillfMappedTo function in line 7). To minimize the maximum
utilization, we select the PE with the minimum value and map the task to the PE (lines
8-10). Afterwards, the PE utilization is updated according to the mapping (line 11).

The time complexity of Algorithm 7 is O(|V;| - |P‘E|) where |V;| indicates the num-
ber of tasks for all dataflow applications and |P‘E| is the number of PEs. This is because
it checks the utilization of all PEs to find the PE with the lowest utilization for each task
to map. The space complexity is O(|V;| + |PE|) since the space to store the mapping

information of tasks and PE utilizations depends on the number of tasks and PEs.

5.4.2.3 Worst-case Response Time Analysis

For each group, the worst-case response time (WCRT) analysis is conducted and the
schedulability is checked by comparing the deadline constraint and the estimated WCRT.
We use a compositional performance analysis (CPA) to estimate the WCRT for each

group [21, 22]. In the CPA, the WCRT analysis is performed for each PE separately and
] O 1 &
Al =-TLH <

102

the dependency between tasks mapped to different PEs is modeled as an event stream that
is specified by a tuple (period, jitter, the minimum distance between two events). Starting
from the PE that the source task in a group is mapped to, WCRT analysis is performed
one PE at a time up to the PE where the last task in the group is mapped to, following the
task dependency. In case there exist multiple dependency paths in a group, we choose the
maximum WCRT of all paths as the WCRT of the group.

Since the scheduling policy of processors is not identical, we apply a different
WCRT analysis method for each processor type. For CPU that uses a fixed-priority pre-
emptive scheduling [73] scheme, we use a well-known response time analysis formulated

as follows:

Vm—i-.]»ch
_h C T

By 1-C(th)

TEhp(Ty") (5.3)

where r° = CT,:X
%

Equation (5.3) estimates the WCRT of a task ‘cifx which is mapped to the CPU. Task
set hp(r;’x) is a set of higher or equal priority tasks that are mapped to the same PE with
task 1", J, is the jitter of task T;. The estimated WCRT of CPU task ;" becomes the
converged value of .

In the GPU, the mapped tasks are executed in a FIFO order without preemption [69].

The WCRT of task ‘c;'x mapped to the GPU can be computed by the following equation.

r=Cw)+ > By (5.4)

X

‘CeEep(‘ci?’)

Task set ep(‘c;’x) indicates a set of tasks that are mapped to the same PE with ’c;’x.

B;f represents the maximum interference from task T, € ep(r;’x) to the target task r;’x .

103

P()
P(t,)

If 1, is a dataflow task, the number of interference is bounded by | 1+ 1. Ifitis a
pipeline stage of another DL application, we need to consider the number of sub-tasks
in the task. Suppose task ‘c;’x and 1, are both pipeline stages that have five and two sub-

tasks, respectively. Sub-tasks in ‘c;’x can be interfered at most five times since sub-tasks

are scheduled in the FIFO order. On the other hand, task T, can interfere with task ’C;’x

at most ([;,((TE:))} + 1 times. If the task T, can interfere with at most twice, four sub-tasks
(min(5,2-2)) in T, may interfere with task ‘c;’x.

Equation (5.4) is also applied to DLA since the same non-preemptive scheduling
policy is used as the GPU. We check whether the estimated WCRT violates the given
deadline constraint. If the estimated WCRT is bigger than the deadline, the mapping

does not satisfy the schedulability constraint.

5.4.2.4 Fitness Calculation

As the objective function of GA in the second step, we aim to minimize the max-
imum PE utilization in order to balance the utilization of PEs, which is also taken in
the work of [63]. With this objective in mind, we define two types of fitness values as
described in Equation (5.5). One is the maximum utilization of each processing ele-
ment (Max,.cpz(U(pe)))) and the other is the maximum WCRT value of each group
(Maxg,eg(R(G;)). Since the implicit deadline constraint should be satisfied for each
group, by setting the latter fitness value, dominant solutions at each generation are more
likely to satisfy the deadline constraint. If the estimated WCRT does not satisfy the dead-
line constraint, the solution is not feasible. Based on the fitness values of each candidate

solution, we select the solution with the minimum value of the maximum utilization.

Minimize : (Maxpecpz(U(pe)),Maxc,cg(R(G;))) (5.5)

104

Table 5.3: Benchmark networks and the number of mapping candidates obtained by step
1

Subgraph [Network [# of layers [# of selected candidates
Det1 Yolov4 [47] 269 51
Det?2 Yolov2tiny [45] 24 14
Det3 Yolvo3tiny [46] 35 12
Det4 Yolov4csp [48] 290 65

Table 5.4: Mappable processors of tasks in dataflow applications

Tasks ‘ Processor ‘ ‘ Tasks ‘ Processor
Readlmage CPU cvt_ZNV12_.BGR-1 | CPU,GPU
cvt BGR.NV12 | CPU,GPU Rescale-2 GPU
Rescale-1 GPU cvt_NV12_BGR-2 | CPU,GPU
Bilateral CPU,GPU || Savelmage CPU

5.5 Experiments

5.5.1 Comparison with a Previous Work

As a preliminary experiment, we evaluate the approach taken by previous works,
which is to translate a DL application to a dataflow model. The work of [18] provides
an example in which a Resnet152 network [81] is specified by an extended SDF model,
called SDF/L. We implement the same network using TensorRT and compare both im-
plementations on the same target board. The pre-/post-processing parts are mapped to
the CPU, and other parts are mapped to GPU in both methods. It is observed that the
previous approach could achieve only 18 FPS (frame per second) performance while the
version of TensorRT achieves 81 FPS performance. It confirms that transforming a DL
application to a dataflow may suffer from significant performance loss if the same degree
of optimizations is not applied as TensorRT. In addition, model conversion takes a huge

amount of effort.

105

1.30

5 L o 6.00
£ L0 I g 400
£l =
=100 I I = 2,00 I I I I I
oo N 0N BN [] £ 000 ® n n 1.
= T3 233 383 s 3 g g SSsgssgss8ss ¢
£ 2949%%9%¢% T%% = 7939393974999 %
s 5 Z 2 ES s £ Z &) o £ Z ¢ £ Z L £ Z S £ Z
Z A% mnE z = A © 2 =@ E z R E A F A
8] g =] E =R 2z R =R R =S
5 g g = g g : g
= = = = = o o =
=
15 FPS 20 FPS 25 FPS 10 FPS 15 FPS 20 FPS 25 FPS
Deadline constraints Deadline constraints
(a) Fitness (b) Exploration time

Figure 5.6: Comparison of three methods for the motivational example: Heuristic+GA,
Entire-GA, and Baseline

5.5.2 Set-up

Since there is no previous work that tackles the same mapping problem, we devise
a GA-based scheme by merging two recent previous works, [79] and the work of the
previous chapter, and take it as a baseline technique to compare, denoted by Baseline in
the experimental results. The former work is used to map multiple DL applications on
the target board first, and the latter is used to map dataflow tasks after DL application
mapping is completed. In contrast, two proposed methods, Heuristic+GA and Entire-GA
perform the mapping of DL applications and dataflow applications simultaneously.

We implement the GA meta-heuristic with the DEAP library [75]. The GA runs on
a host computer consisting of AMD Ryzen 9 3950X Processor. Experiments are made
with the aforementioned motivational example in Figure 5.1 and randomly generated
graphs. We conduct each experiment three times and get the average value to measure
the mapping exploration time and the best fitness value. The target system is the Xavier
board with Jetpack 4.6 and TensorRT 8.0.1. We reduce the available number of CPU

cores to four to observe the effect of resource contention between tasks on the CPU.

5.5.3 Experimental Results: Motivational Example

We profile the tasks with TensorRT IProfiler and POSIX time library. We set the

WCET of the task as the value obtained by adding six times the stand:fl:lrd, dey.iation] to the
A =—TH &

106 en: i

21/
A

mean of the profiled execution times. We deploy four different DL networks as described
in Table 5.3, each of which corresponds to a Det in Figure 5.1. For example, Det4, which
is connected to Image processing4, is a Yolov4csp network in Figure 5.1. Also, we set the
priorities of application groups in the following order: G;(Image processingl + Detl),
G4, Gy, G3. The mappable processors of each task are described in Table 5.4.

Finding mapping candidates: The number of Pareto-optimal mappings selected
from step 1 for each DL application is shown in Table 5.3. In this step, we run the GA
with 65 chromosomes for 1000 iterations with uniform crossover, one-point mutation,
and Lexicase selection [76]. Multiplying those numbers for all DL applications defines
the design space size for selecting the mapping candidates in step 2.

Design space exploration: We vary the deadline constraint of all groups from 10
FPS to 25 FPS, assuming implicit deadlines®. In this experiment, we run the GA at most
100 iterations with 2048 chromosomes by making the GA terminate if there is no better
solution found in 10 iterations.

Figure 5.6 shows the relative fitness (maximum utilization) and exploration time
over the minimum value in each bundle. The lower value is better in the figure. For all
deadline constraints, the Entire-GA method shows the best results as shown in Figure 5.6
(a). Up to a deadline constraint of 20 FPS, the Heuristic+ GA and Entire-GA methods
give a similar result. But with the deadline constraint of 25 FPS, Entire-GA gives better
results by a large margin. This is because the size of the design space for Heuristic+GA is
too narrow to find good solutions. The Baseline method could not find a feasible solution
at a tight deadline constraint of 25 FPS. Also, at lower deadline constraints, it shows 5%
~ 7% worse fitness than Entire-GA. As for exploration time, the Heuristic+ GA method
took the least amount of time to perform, as depicted in Figure 5.6 (b) since it explores
a smaller design space than the other methods. The Entire-GA method takes the longest

time as expected.

ZImplicit deadline means the period is equal to the relative deadline. For example, 10 FPS means a
deadline of 100 milliseconds.
A

' ! | g
:l__i -';"-1 !. ..-'.:i

107

, L10 o 900

g 10 2 6.00

Z 1.00 :

s Lphrhnel I T R

Z 0.90 = 000 ™ - - -

= < = g < = g = = g = = 2] < < ¥ 4 o 8 4 a § oo o< ¥

[E;,UE(JUEUU:GU: = g 3 B Jd U £ U d E T d A2
ISBEEBEREEEE § 1:3iilriliilo:
2 EmEZ EMmME B L oA e 2 EMmME EMR 5 EMAM G EA
gm gf-ﬂ gm gi’:—l -g ém %‘:m gm %Lﬂ
= z = = E = = st o

10 FPS 15 FPS 20 FPS 25 FPS

10 FPS 15 FPS 20 FPS 25 FPS
Deadline constraints

Deadline constraints

(a) Fitness (b) Exploration time

Figure 5.7: Comparison of three methods with four randomly generated dataflow appli-
cations.

1.40 12.00
g2 E s
£ 1o I < I I
= = 4.00
]
el gg gl banl Sow =0 b DT 11
= « < g < 9 242 g 2 < og 8 “ < g < =% g < x g < < g
£ OU%UUEUUEUU: 2 QU:EDEQU:EOE
F - A AR O A 8 P22t git Lo
fEe 28428488 €8 2 f§zaf322 282 ¢ A
£ & 2 4 2 3 £ = Z £ @ £ & £ A £ &
g 2 £ Z g g 5
= = 4 o < = = - -

10 FPS 15 FPS 20 FPS 25 FPS

10 FPS 15 FPS 20 FPS 25 FPS
Deadline constraints

Deadline constraints

(a) Fitness (b) Exploration time

Figure 5.8: Comparison of three methods with eight randomly generated dataflow appli-
cations.

Code generation: To check the viability of the proposed methodology, we syn-
thesize the target codes with a model-based design framework [18] and run them on

the target hardware platform. The sample of the motivational example is available on a

GitHub?.

5.5.4 [Experimental Results: Randomly Generated Dataflow
Graphs

In this experiment, we randomly generate dataflow graphs by the SDF3 [82] while

using the same four DL applications as the motivational example. We assume that all

3https://github.com/cap-lab/HOPES/tree/master/HOPES_UI/schematics/
Test_Examples/ExternalTask/ImgProcessing.files
O -
; H 2-1]
—

.{j]
1
108

n’

https://github.com/cap-lab/HOPES/tree/master/HOPES_UI/schematics/Test_Examples/ExternalTask/ImgProcessing.files
https://github.com/cap-lab/HOPES/tree/master/HOPES_UI/schematics/Test_Examples/ExternalTask/ImgProcessing.files

1.10 16.00

@ @
£ 1o £ 1200
£ 100 S 800
ool g
2 0.90 2 000 = - - - =
= < < g < <« o < < 2 < < g 38 < < % = = £ = = & < =< g
2 E;/ U =2 00U =2 0 U 20 U a Bl EE T = Yi T = Er? o = ti U =
23t g 8 OO IO I
ZEm S EmEZ EmL EM] 2 Em S Em S EmE EM
g A g5 A g5 A E M =] E A E R = g om
3 E} 2 3 | | 3
= e =z e < = = z =
10 FPS 15 FPS 20 FPS 25 FPS 10 FPS 15 FPS 20 FPS 25 FPS
Deadline constraints Deadline constraints
(a) Fitness (b) Exploration time

Figure 5.9: Comparison of three methods with sixteen randomly generated dataflow ap-
plications.

applications are independent. Each dataflow graph consists of 10 nodes. We vary the
number of dataflow graphs and the average WCET of the dataflow tasks. The average
WCET of dataflow tasks is inversely proportional to the number of graphs to make the
total workload of dataflow applications remain similar. It means that the average WCET
of dataflow tasks is four times larger with 4 dataflow graphs than that with 16 dataflow
graphs. In the case that the number of graphs is 16, the WCET of a dataflow task is
randomly set in the range of 10 ~ 100us on the GPU, and 100 ~ 500us on the CPU. And
we set a half of dataflow tasks can be run on GPU only. We make the average WCET of
CPU-mapped tasks be about five times of that of GPU-mapped tasks.
Figures 5.7-5.9 show the results of the experiment when the number of graphs is
4, 8, and 16, respectively. As expected, the Entire-GA method shows the best fitness.
The fitness gap between the Entire-GA method and the Heuristic+ GA method tends to
increase as the deadline constraint is tightened. In some cases, the Heuristic+ GA method
could not find a solution even when the Baseline method found a solution. But in most
cases when the Heuristic+ GA method finds a solution, it finds a better solution than
the Baseline method. Hence these two methods are not dominating each other in terms of
fitness. When no solution could be found by the Heuristic+ GA method when the deadline
constraint is 25 FPS, we loosened the constraint to 10 FPS and found the solution that is

used as the initial chromosome in the Entire-GA method.

109

As for the exploration time, the Heuristic+GA method takes the least time by more
than three times than the Entire-GA method. This experiment clearly demonstrates the
trade-off between two methods in terms of fitness and exploration time. And it also shows
that the proposed two methods are significantly better than the previous state-of-the-art

method which is the Baseline method.

110

Chapter 6

Conclusion and Future work

In this dissertation, we propose the system-level optimization methodology for a sin-
gle deep learning application as well as multiple deep learning applications. In addition,
we extend the model-based methodology to support deep learning applications.

For a single deep learning application, we introduce a novel framework, called JEDI,
for deep learning inference acceleration with TensorRT on NVIDIA Jetson embedded
platforms. The proposed framework allows users to exploit various types of parallelism,
including multi-threading, multiple streams, pipelining of the network, and partial net-
work duplication. Also, various optimization parameters can be configured in JEDI to
increase the throughput performance. In addition, we devise a novel method to efficiently
explore the huge design space consisting of optimization parameters. We apply two
heuristics to automatically explore the other optimization parameters. The JEDI frame-
work is used to obtain the performance by running the network on the real hardware
platform during the optimization process. The proposed framework and methodology are
evaluated with real-life object detection networks on a real hardware platform, NVIDIA
Jetson AGX Xavier. The proposed method achieves significant FPS performance im-
provement by 101% ~ 680% and reduces the energy consumption up to 55% over the
baseline that uses the GPU only.

As for multiple deep learning applications, we propose a scenario-based mapping

111

methodology to run multiple deep learning applications on heterogeneous processors,
aiming to reduce energy consumption while satisfying the real-time constraints. The pro-
posed technique considers several technical challenges imposed by the use of NPU and
its associated SDK. The proposed method consists of three steps. In the first step, we
obtain the Pareto-optimal mappings for each application. In the second step, we seek
a sub-optimal mapping combination of applications, considering the scenarios and real-
time constraints. In the last step, we fine-tune the frequencies of processors if the deadline
constraint is loosened. The proposed method is confirmed by using real-life applications
with different scenarios. We could satisfy up to 40% higher deadline constraints and
reduce the energy consumption by 22% ~ 31% compared to the state-of-the-art static
mapping methods with real-life applications and different scenarios on a real platform.

Lastly, we propose a novel technique to support deep learning applications in a
model-based embedded software design methodology leveraging the optimization ca-
pability of a deep learning SDK. We first find a set of Pareto-optimal mapping candi-
dates for each deep learning application, independently of the model-based design flow.
Adding the obtained mapping solution to the model-based design framework, we explore
the mapping of dataflow applications and the mapping candidates of deep learning appli-
cations together with the meta-heuristic. The viability and efficacy of the technique are
confirmed by experiments with a non-trivial real-life example and randomly generated
graphs. We could reduce at least 5% of the maximum utilization over the previous state-
of-the-art method that separates the mapping of deep learning applications and dataflow
applications. More importantly, the proposed technique could find a solution when the
previous method fails to find one.

While much of the research has been presented in this thesis, it is left to future work
to apply the proposed framework and methodologies to new hardware platforms, SDKs,
and applications that are continuously being developed. In the case of hardware platforms
and SDKGs, Intel’s OpenVINO is one example. However, OpenVINO, which is an SDK

.-3';: O | =]

112

provided by Intel, does not support many layers like TensorRT on GPUs and ARM-based
processors, which are widely used in embedded systems. Therefore, we have not been
able to apply our proposed methodology using OpenVINO. In addition, as the trend of
deep neural networks changes from CNNs to transformers, it is necessary to develop a
methodology for transformers. However, commercially available NPUs do not currently
support the operations mainly used by transformers. Therefore, it is difficult to apply the
proposed methodology to transformers current.

However, we believe that the proposed methodology is still effective if platforms
and SDKs are continually developed and new NPUs supporting transformer networks
are released. In this process, the methodologies may need to be enhanced due to the

additional constraints imposed by new processors, associated SDK, and applications.

113

Bibliography

[1]

(2]

[3]

[5]

[7]

Zirui Xu, Fuxun Yu, Chenchen Liu, and Xiang Chen. Reform: Static and dynamic
resource-aware dnn reconfiguration framework for mobile device. In Proceedings
of the 56th Annual Design Automation Conference 2019, pages 1-6, 2019.

S Rallapalli, H Qiu, A Bency, S Karthikeyan, R Govindan, B Manjunath, and R Ur-
gaonkar. Are very deep neural networks feasible on mobile devices. IEEE Trans.
Circ. Syst. Video Technol, 2016.

Loc N Huynh, Youngki Lee, and Rajesh Krishna Balan. Deepmon: Mobile gpu-
based deep learning framework for continuous vision applications. In Proceedings
of the 15th Annual International Conference on Mobile Systems, Applications, and
Services, pages 82-95, 2017.

Akhil Mathur, Nicholas D Lane, Sourav Bhattacharya, Aidan Boran, Claudio For-
livesi, and Fahim Kawsar. Deepeye: Resource efficient local execution of multiple
deep vision models using wearable commodity hardware. In Proceedings of the
15th Annual International Conference on Mobile Systems, Applications, and Ser-
vices, pages 68-81, 2017.

Duseok Kang, Euiseok Kim, Inpyo Bae, Bernhard Egger, and Soonhoi Ha. C-
good: C-code generation framework for optimized on-device deep learning. In 2018
IEEE/ACM International Conference on Computer-Aided Design (ICCAD), pages
1-8, 2018.

Siqgi Wang, Gayathri Ananthanarayanan, Yifan Zeng, Neeraj Goel, Anuj Pathania,
and Tulika Mitra. High-throughput cnn inference on embedded arm big. little mul-
ticore processors. IEEE Transactions on Computer-Aided Design of Integrated Cir-
cuits and Systems, 39(10):2254-2267, 2019.

Linpeng Tang, Yida Wang, Theodore L Willke, and Kai Li. Scheduling com-
putation graphs of deep learning models on manycore cpus. arXiv preprint
arXiv:1807.09667, 2018.

114

[8]

[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

Husheng Zhou, Soroush Bateni, and Cong Liu. S” 3dnn: Supervised streaming and
scheduling for gpu-accelerated real-time dnn workloads. In 2018 IEEE Real-Time
and Embedded Technology and Applications Symposium (RTAS), pages 190-201.
IEEE, 2018.

Roger Pujol, Hamid Tabani, Leonidas Kosmidis, Enrico Mezzetti, Jaume
Abella Ferrer, and Francisco J Cazorla. Generating and exploiting deep learning
variants to increase heterogeneous resource utilization in the nvidia xavier. In 3/st
Euromicro Conference on Real-Time Systems (ECRTS 2019), volume 23, 2019.

Yecheng Xiang and Hyoseung Kim. Pipelined data-parallel cpu/gpu scheduling
for multi-dnn real-time inference. In 2019 IEEE Real-Time Systems Symposium
(RTSS), pages 392-405. IEEE, 2019.

Svetlana Minakova, Ergian Tang, and Todor Stefanov. Combining task- and data-
level parallelism for high-throughput cnn inference on embedded cpus-gpus mp-
socs. In Alex Orailoglu, Matthias Jung, and Marc Reichenbach, editors, Embedded
Computer Systems: Architectures, Modeling, and Simulation, pages 18-35, Cham,
2020. Springer International Publishing.

Duseok Kang, Jinwoo Oh, Jongwoo Choi, Youngmin Yi, and Soonhoi Ha. Schedul-
ing of deep learning applications onto heterogeneous processors in an embedded
device. IEEE Access, 8:43980-43991, 2020.

Woosung Kang et al. Lalarand: Flexible layer-by-layer cpu/gpu scheduling for real-
time dnn tasks. In Proceedings of the RTSS, 2021.

Soonhoi Ha and Hyunok Oh. Decidable dataflow models for signal processing:
Synchronous dataflow and its extensions. Handbook of Signal Processing Systems,
pages 1083-1109, 2013.

Edward A Lee and David G Messerschmitt. Synchronous data flow. Proceedings
of the IEEE, 75(9), 1987.

Greet Bilsen et al. Cycle-static dataflow. IEEE Transactions on signal processing,
44(2):397-408, 1996.

Hyesun Hong, Hyunok Oh, and Soonhoi Ha. Hierarchical dataflow modeling of
iterative applications. In Proceedings of the 54th Annual Design Automation Con-
ference 2017, pages 1-6, 2017.

115

(18]

[19]

(20]

(21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

Eunjin Jeong, Dowhan Jeong, and Soonhoi Ha. Dataflow model-based software
synthesis framework for parallel and distributed embedded systems. ACM Transac-
tions on Design Automation of Electronic Systems (TODAES), 26(5):1-38, 2021.

NVIDIA TensorRT. https://developer.nvidia.com/tensorrt/,
2023. [Online; accessed 02-June-2023].

Sourabh Katoch, Sumit Singh Chauhan, and Vijay Kumar. A review on genetic
algorithm: past, present, and future. Multimedia Tools and Applications, 80:8091—
8126, 2021.

JC Palencia Gutiérrez, JJ Gutiérrez Garcia, and M Gonzalez Harbour. On the
schedulability analysis for distributed hard real-time systems. In Proceedings Ninth
Euromicro Workshop on Real Time Systems, pages 136—143. IEEE, 1997.

Marek Jersak. Compositional performance analysis for complex embedded appli-
cations. PhD thesis, Braunschweig, Techn. Univ., 2005.

David Harel and Michal Politi. Modeling reactive systems with statecharts: the
STATEMATE approach. McGraw-Hill, Inc., 1998.

Rajesh Devaraj, Arnab Sarkar, and Santosh Biswas. Supervisory control approach
and its symbolic computation for power-aware rt scheduling. /EEE Transactions on
Industrial Informatics, 15(2):787-799, 2018.

Jeronimo Castrillon et al. Maps: Mapping concurrent dataflow applications to het-
erogeneous mpsocs. IEEE Transactions on Industrial Informatics, 9(1):527-545,
2011.

M. Pelcat et al. Preesm: A dataflow-based rapid prototyping framework for sim-
plifying multicore dsp programming. In Education and Research Conference (ED-
ERC), 2014 6th European Embedded Design in, pages 36-40, Sept 2014.

Joseph Buck et al. Ptolemy: A framework for simulating and prototyping heteroge-

neous systems. In Readings in hardware/software co-design, pages 527-543. 2001.

Claudius Ptolemaeus. System design, modeling, and simulation: using Ptolemy II,

volume 1. Ptolemy. org Berkeley, 2014.

Rajesh Devaraj and Arnab Sarkar. Resource-optimal fault-tolerant scheduler de-
sign for task graphs using supervisory control. IEEE Transactions on Industrial
Informatics, 17(11):7325-7337, 2020.

116

https://developer.nvidia.com/tensorrt/

[30]

[31]

(32]

[33]

[34]

[35]

[36]

[37]

[38]

[39]

Martin Abadi et al. Tensorflow: A system for large-scale machine learning. In
ODSI, 2016.

Yangqing Jia, Evan Shelhamer, Jeff Donahue, Sergey Karayev, Jonathan Long,
Ross B. Girshick, Sergio Guadarrama, and Trevor Darrell. Caffe: Convolutional
architecture for fast feature embedding. CoRR, abs/1408.5093, 2014.

Adam Paszke et al. Pytorch: An imperative style, high-performance deep learning
library. In NIPS. 2019.

Joseph Redmon. Darknet: Open source neural networks in c. http://
pjreddie.com/darknet/, 2013-2016.

Google TensorFlow Lite. https://www.tensorflow.org/lite/, 2023.
[Online; accessed 02-June-2023].

Gopalakrishna Hegde, Siddhartha, Nachiappan Ramasamy, and Nachiket Kapre.
Caffepresso: An optimized library for deep learning on embedded accelerator-based
platforms. In 2016 International Conference on Compliers, Architectures, and
Sythesis of Embedded Systems (CASES), pages 1-10, 2016.

Tianqgi Chen, Thierry Moreau, Ziheng Jiang, Lianmin Zheng, Eddie Yan, Haichen
Shen, Meghan Cowan, Leyuan Wang, Yuwei Hu, Luis Ceze, et al. {TVM}: An
automated end-to-end optimizing compiler for deep learning. In /3th {USENIX}
Symposium on Operating Systems Design and Implementation ({OSDI} 18), pages
578-594, 2018.

Seyyed Salar Latifi Oskouei, Hossein Golestani, Matin Hashemi, and Soheil Ghiasi.
Cnndroid: Gpu-accelerated execution of trained deep convolutional neural networks
on android. In Proceedings of the 24th ACM international conference on Multime-
dia, pages 1201-1205, 2016.

Nicholas D. Lane, Sourav Bhattacharya, Petko Georgiev, Claudio Forlivesi, Lei
Jiao, Lorena Qendro, and Fahim Kawsar. Deepx: A software accelerator for low-
power deep learning inference on mobile devices. In 2016 15th ACM/IEEE Inter-
national Conference on Information Processing in Sensor Networks (IPSN), pages
1-12, 2016.

Azalia Mirhoseini, Anna Goldie, Hieu Pham, Benoit Steiner, Quoc V Le, and Jeff
Dean. A hierarchical model for device placement. In International Conference on

Learning Representations, 2018.

117

http://pjreddie.com/darknet/
http://pjreddie.com/darknet/
https://www.tensorflow.org/lite/

[40]

[41]

[42]

[43]

[44]

[45]

[46]

[47]

[48]

[49]

[50]

Duseok Kang, DongHyun Kang, Jintaek Kang, Sungjoo Yoo, and Soonhoi Ha. Joint
optimization of speed, accuracy, and energy for embedded image recognition sys-
tems. In 2018 Design, Automation Test in Europe Conference Exhibition (DATE),
pages 715720, 2018.

Micaela Verucchi, Gianluca Brilli, Davide Sapienza, Mattia Verasani, Marco Arena,
Francesco Gatti, Alessandro Capotondi, Roberto Cavicchioli, Marko Bertogna, and
Marco Solieri. A systematic assessment of embedded neural networks for object
detection. In 2020 25th IEEE International Conference on Emerging Technologies
and Factory Automation (ETFA), volume 1, pages 937-944. IEEE, 2020.

ONNX. https://github.com/onnx/onnx, 2023. [Online; accessed 02-
June-2023].

NVIDIA Ploygraphy. https://docs.nvidia.com/deeplearning/
tensorrt/polygraphy/docs/index.html, 2023. [Online; accessed 02-
June-2023].

Martin Fowler. Patterns of Enterprise Application Architecture: Pattern Enterpr
Applica Arch. Addison-Wesley, 2012.

Joseph Redmon and Ali Farhadi. Yolo9000: better, faster, stronger. In Proceedings
of the IEEE conference on computer vision and pattern recognition, pages 7263—
7271, 2017.

Joseph Redmon and Ali Farhadi. Yolov3: An incremental improvement. arXiv
preprint arXiv:1804.02767, 2018.

Alexey Bochkovskiy, Chien-Yao Wang, and Hong-Yuan Mark Liao. Yolov4: Opti-
mal speed and accuracy of object detection. CoRR, abs/2004.10934, 2020.

Chien-Yao Wang, Alexey Bochkovskiy, and Hong-Yuan Mark Liao. Scaled-yolov4:
Scaling cross stage partial network. In Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition, pages 13029-13038, 2021.

Chien-Yao Wang, Hong-Yuan Mark Liao, Yueh-Hua Wu, Ping-Yang Chen, Jun-
Wei Hsieh, and I-Hau Yeh. Cspnet: A new backbone that can enhance learning
capability of cnn. In Proceedings of the IEEE/CVF conference on computer vision
and pattern recognition workshops, pages 390-391, 2020.

Densenet201+Yolo. https://github.com/AlexeyAB/darknet/, 2020.
[Online; accessed 01-July-2021].

118

https://github.com/onnx/onnx
https://docs.nvidia.com/deeplearning/tensorrt/polygraphy/docs/index.html
https://docs.nvidia.com/deeplearning/tensorrt/polygraphy/docs/index.html
https://github.com/AlexeyAB/darknet/

[51]

[52]

[53]

[54]

[55]

[56]

[57]

[58]

[59]

[60]

Codalab. https://competitions.codalab.org/, 2023. [Online; ac-
cessed 02-June-2023].

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones,
Aidan N Gomez, Lukasz Kaiser, and Illia Polosukhin. Attention is all you need.

Advances in neural information processing systems, 30, 2017.

Yanyu Li, Geng Yuan, Yang Wen, Ju Hu, Georgios Evangelidis, Sergey Tulyakov,
Yanzhi Wang, and Jian Ren. Efficientformer: Vision transformers at mobilenet
speed. Advances in Neural Information Processing Systems, 35:12934-12949,
2022.

Michael R. Garey et al. Computers and Intractability; A Guide to the Theory of
NP-Completeness. W. H. Freeman & Co., 1990.

Amit Kumar Singh, Muhammad Shafique, Akash Kumar, and Jorg Henkel. Map-
ping on multi/many-core systems: survey of current and emerging trends. In Pro-

ceedings of the 50th Annual Design Automation Conference, pages 1-10, 2013.

Hyunok Oh and Soonhoi Ha. A static scheduling heuristic for heterogeneous pro-
cessors. In Euro-Par’96 Parallel Processing: Second International Euro-Par Con-
ference Lyon, France, August 26-29, 1996 Proceedings, Volume II 2, pages 573—
577. Springer, 1996.

Haluk Topcuoglu, Salim Hariri, and Min-You Wu. Performance-effective and low-
complexity task scheduling for heterogeneous computing. [EEE transactions on
parallel and distributed systems, 13(3):260-274, 2002.

Shin-haeng Kang, Duseok Kang, Hoeseok Yang, and Soonhoi Ha. Real-time co-
scheduling of multiple dataflow graphs on multi-processor systems. In Proceedings

of the 53rd Annual Design Automation Conference, pages 1-6, 2016.

Mina Niknafs et al. Runtime resource management with workload prediction. In
Proceedings of the DAC, DAC °19, New York, NY, USA, 2019. Association for
Computing Machinery.

Robert Khasanov and Jeronimo Castrillon. Energy-efficient runtime resource man-
agement for adaptable multi-application mapping. In 2020 Design, Automation &
Test in Europe Conference & Exhibition (DATE), pages 909-914. IEEE, 2020.

119

https://competitions.codalab.org/

[61]

[62]

[63]

[64]

[65]

[66]

[67]

[68]

[69]

Bryan Donyanavard, Tiago Miick, Santanu Sarma, and Nikil Dutt. Sparta: Run-
time task allocation for energy efficient heterogeneous many-cores. In Proceedings
of the Eleventh IEEE/ACM/IFIP International Conference on Hardware/Software
Codesign and System Synthesis, pages 1-10, 2016.

Stefan Valentin Gheorghita, Martin Palkovic, Juan Hamers, Arnout Vandecappelle,
Stelios Mamagkakis, Twan Basten, Lieven Eeckhout, Henk Corporaal, Francky
Catthoor, Frederik Vandeputte, et al. System-scenario-based design of dynamic em-
bedded systems. ACM Transactions on Design Automation of Electronic Systems
(TODAES), 14(1):1-45, 2009.

Lars Schor, Iuliana Bacivarov, Devendra Rai, Hoeseok Yang, Shin-Haeng Kang, and
Lothar Thiele. Scenario-based design flow for mapping streaming applications onto
on-chip many-core systems. In Proceedings of the 2012 international conference on

Compilers, architectures and synthesis for embedded systems, pages 71-80, 2012.

Hanwoong Jung, Chanhee Lee, Shin-Haeng Kang, Sungchan Kim, Hyunok Oh, and
Soonhoi Ha. Dynamic behavior specification and dynamic mapping for real-time
embedded systems: Hopes approach. ACM Transactions on Embedded Computing
Systems (TECS), 13(4s):1-26, 2014.

Wei Quan and Andy D Pimentel. A scenario-based run-time task mapping algo-
rithm for mpsocs. In Proceedings of the 50th Annual Design Automation Confer-

ence, pages 1-6, 2013.

Wei Quan et al. Scenario-based run-time adaptive mpsoc systems. Journal of Sys-
tems Architecture, 2016.

Biyi Fang, Xiao Zeng, and Mi Zhang. Nestdnn: Resource-aware multi-tenant on-
device deep learning for continuous mobile vision. In Proceedings of the 24th An-
nual International Conference on Mobile Computing and Networking, pages 115—
127, 2018.

APOLLO: an open autonomous driving platform. https://apollo.auto/,
2018. [Online; accessed 15-Mar-2022].

Tanya Amert et al. Gpu scheduling on the nvidia tx2: Hidden details revealed. In
Proceedings of the RTSS, 2017.

120

https://apollo.auto/

[70]

[71]

[72]

[73]

[74]

[75]

[76]

[77]

(78]

[79]

Ming Yang. Avoiding pitfalls when using nvidia gpus for real-time tasks in au-
tonomous systems. In Proceedings of the 30th Euromicro Conference on Real-Time
Systems, 2018.

NVIDIA Jetson Developer Guide. https://docs.nvidia.com/Jjetson/
archives/l4t-archived/14t-3231/, 2023. [Online; accessed 02-June-
2023].

Ergian Tang, Svetlana Minakova, and Todor Stefanov. Energy-efficient and high-
throughput cnn inference on embedded cpus-gpus mpsocs. In Embedded Computer
Systems: Architectures, Modeling, and Simulation: 21st International Conference,
SAMOS 2021, Virtual Event, July 4-8, 2021, Proceedings, pages 127-143. Springer,
2022.

John P Lehoczky. Fixed priority scheduling of periodic task sets with arbitrary
deadlines. In [1990] Proceedings 11th Real-Time Systems Symposium, pages 201—
209. IEEE, 1990.

Friedrich Eisenbrand and Thomas Rothvof3. Static-priority real-time scheduling:
Response time computation is np-hard. In 2008 Real-Time Systems Symposium,
pages 397-406. IEEE, 2008.

Félix-Antoine Fortin, Francois-Michel De Rainville, Marc-André Gardner, Marc
Parizeau, and Christian Gagné. DEAP: Evolutionary algorithms made easy. Journal
of Machine Learning Research, 13:2171-2175, jul 2012.

Thomas Helmuth, Lee Spector, and James Matheson. Solving uncompromising
problems with lexicase selection. IEEE Transactions on Evolutionary Computation,
19(5):630-643, 2015.

Edwin SH Hou, Nirwan Ansari, and Hong Ren. A genetic algorithm for mul-
tiprocessor scheduling. [EEE Transactions on Parallel and Distributed systems,
5(2):113-120, 1994.

Amit Kumar Singh, Piotr Dziurzanski, Hashan Roshantha Mendis, and Lean-
dro Soares Indrusiak. A survey and comparative study of hard and soft real-time
dynamic resource allocation strategies for multi-/many-core systems. ACM Com-
puting Surveys (CSUR), 50(2):1-40, 2017.

Dowhan Jeong et al. Parallel scheduling of multiple sdf graphs onto heterogeneous
processors. IEEE Access, 2021.

121

https://docs.nvidia.com/jetson/archives/l4t-archived/l4t-3231/
https://docs.nvidia.com/jetson/archives/l4t-archived/l4t-3231/

[80]

[81]

[82]

Borhan Kazimipour, Xiaodong Li, and A Kai Qin. A review of population initializa-
tion techniques for evolutionary algorithms. In 2014 IEEE congress on evolutionary
computation (CEC), pages 2585-2592. IEEE, 2014.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning
for image recognition. In Proceedings of the IEEE conference on computer vision

and pattern recognition, pages 770-778, 2016.

Sander Stuijk, Marc Geilen, and Twan Basten. Sdf" 3: Sdf for free. In Sixth Inter-
national Conference on Application of Concurrency to System Design (ACSD’06),
pages 276-278. IEEE, 2006.

122

2 o

U= A2FAA F 2 chZelAlolde] tiet S7tehe S0E FE1]
S18) e uT = Hute] Sols GPUSH T E L2 A4 §UNPU)o|ek1 sHs
o SEgo] 7471 HEE ofe o)71F ZRAAY ZFHE AFe] tehta
oleh. Eak | o cfZ Aol el mhay LA AL 98] £ZE o] A
7| E(SDK)7} A3 ek. § #d SDKef= | @
e S 919 SE|ntol A7t EitE|o] e,

o] 2] SDK: 2 Ao 2 =29 #35}s} |9, SDKE 20| GPU
% shhe] He) Qaolq S 5 LRAAE Zol ALgste] FES SstA o
ot Jeju kel A oA £ 22 AW A AT s SeshA) £ .
Azgo] o)71F ZRANZ T 9] tie] agHoR dasteld ofis
m2 AN SAle] ALgslor & Wt gt

ThA] oA | el ofSel Aol de Al2g Aol A HAstehe Zo] Wash
o}, olef gt Wetel A 2 FA| AVHA AR Y BAIE A2 of ko
A shte] g el o E el se] HAsk Az Aok 24 sl ofel | ey
ofZelAlol o] HAst m J)uk AA WEEAA | B oA ol d A dolet
LA 717 F8 FAE e B =RoAE NPUE H£5 o 7% ZeAA7) B
A5l NVIDIA Jetson Q| F]= Sk} wh 222 95t (24 § 2d SDK

r

oli
ok

TensorRTE- tAF© 2 sttt
1A, d Hd FEO AR Eol7] fIet AAAR A9t 7y ES
AT, e 229, spolwafolyd, wx e, YEYT BA 5§ 21 ohEel
A FEs} 7 A0t TR | B ofEEAlolAS 7HEStstr] SRt
ceret 143 el e Qs e gas e HAs AHe s
oA otetu|ElE £sh= ATer | 2
& maAy a4 dolols Beln the
5}7] wj2ol| o]7]F ZEA| A 7He] o] e}

v} sheto)e) g4 mEAsE 49 shele
D TH T

—_

r'LﬂJ,

fEelAol el A8 & AU A

wfetul e 2 2siate A 30

e
2,
Y
ofl:
filo
=)
e
N
o)
=
ol
i)
>
Jm
fﬁ :@

=

.-'-\.\.I-l'

123

245} U 22 AR ol TensorRTE AHEaHs § @ cfZ 270148]
A8l NPUS F 5t o) 715 T A A Al 2804 A2 2e s 2)z9] 2glo]

ot 9711 o] A Mz ap 25 Foff GPURES AHE-3E 2ol HIsH 101% ~ 680% | 2]

A . o] AFollM= oI o]7]F rAMTE e A JHiY = Al2F oA

oA | 2d fZeAol el Az oA JAAF ujE YL Addt nE
ofZa] ol o] AXZ Aok 24 WESUA 117 A Hastele Ao] 2

o]t} A WAl A WA 7 oAl Aol thet welE A i £RAS
=

AEgey. 18 g Aok 24e WEshEA el ol Hel

U7 2H]8 Z4Itk. o] NPUS EFsH A4 =S o] ZAE]A TensorRT 714t
HEZ fE Aol M A ABL T H20] 2
2)70) A3t ket ALke] 9.2 ALgste] 2 wiE o] ulsh Arh 40%) R
ulgt AIZE AR BHESHL o U %) Al S 229% ~ 31%7H4] £ 4 99
upxare 2 g el of S el do] Qulel S Alzge] Ye) B ge] utet el

S 2mEg o] AA HHECNA J 2 fBeAol i ALk W

2 ol BA7E H AL vk A57HA o] 22 7t | 2 e Aelde Re=

5

N
rD‘l
o,
=
fu)

124

d

2701 %

=
=

SELEEEERE

=g 7Ao1d%} HlolH

=

o | 23 ol

=2A14

S

o}) .5

A 2]

]

shz o

= g

y.3Ke)
5=

eJ7o] & %4t

S 7)5t o=
a9 2 A

Z=2

il

%4 5% o]

o
il
ajo

AHEl
jm

ZAIA Al
3h @ 2017-22440

1L

125

	Chapter 1 Introduction
	1.1 Motivation
	1.2 Contribution
	1.3 Dissertation Organization

	Chapter 2 Background
	2.1 NVIDIA Jetson AGX Xavier
	2.2 NVIDIA TensorRT
	2.3 Genetic Algorithm
	2.4 Compositional Performance Analysis
	2.5 Model-based Design Methodology

	Chapter 3 Optimization of a Single Deep Learning Application
	3.1 Overview
	3.2 Related Work
	3.2.1 Deep learning Frameworks
	3.2.2 Optimization For a Single Deep Learning Application

	3.3 Parallelization Techniques
	3.3.1 Pre/Post-Processing Pipelining and Parallelization
	3.3.2 Intra-PE Parallelization
	3.3.3 Intra-network Pipelining
	3.3.4 Partial Network Duplication
	3.3.5 Other Optimization Methods

	3.4 JEDI Framework
	3.4.1 Configuration Parameters
	3.4.2 Application Development

	3.5 Design Space Exploration
	3.5.1 Pipeline Cut-point Explorer
	3.5.2 Parameter Fine-tuner

	3.6 Experiments
	3.6.1 Set-Up
	3.6.2 Design Space Exploration Results
	3.6.3 Parameter Fine-tuning Results
	3.6.4 Comparison with Other Methods
	3.6.5 Experiments with Varying Configurations
	3.6.6 Analysis and Discussion

	Chapter 4 Optimization of Multiple Deep Learning Applications under Real-time Constraints
	4.1 Overview
	4.2 Related Work
	4.2.1 Mapping and Scheduling Multiple Applications
	4.2.2 Running Multiple Deep Learning Applications

	4.3 System Model
	4.3.1 Motivational Example
	4.3.2 Notation
	4.3.3 Problem Formulation

	4.4 Proposed Optimization Methodology
	4.4.1 Step 1: Finding Pareto-optimal Mapping Solutions for Each Application
	4.4.2 Step 2: Exploring the Mapping Combination
	4.4.3 Step 3: Tuning Frequencies for Varying Deadline Constraints

	4.5 Experiments
	4.5.1 Set-Up
	4.5.2 Finding Pareto-optimal Mappings of Each Application
	4.5.3 Exploring Mapping Combination and Tuning Frequencies
	4.5.4 Real Deployment

	Chapter 5 Supporting Deep Learning Applications in a Model-based Design Methodology
	5.1 Overview
	5.2 Related work
	5.2.1 Mapping of Multiple Dataflow Applications
	5.2.2 Mapping of Multiple Deep Learning Applications
	5.2.3 Integrating Deep Learning Applications into the Model-based Design

	5.3 System Model
	5.3.1 Motivational Example
	5.3.2 Notation and Problem Definition

	5.4 Proposed Methodology
	5.4.1 Step 1: Finding the Pareto-optimal Mapping Solutions of Each Deep Learning Application
	5.4.2 Step 2: Mapping Exploration

	5.5 Experiments
	5.5.1 Comparison with a Previous Work
	5.5.2 Set-up
	5.5.3 Experimental Results: Motivational Example
	5.5.4 Experimental Results: Randomly Generated Dataflow Graphs

	Chapter 6 Conclusion and Future work
	Bibliography
	요 약

<startpage>17
Chapter 1 Introduction 1
 1.1 Motivation 1
 1.2 Contribution 7
 1.3 Dissertation Organization 9
Chapter 2 Background 10
 2.1 NVIDIA Jetson AGX Xavier 10
 2.2 NVIDIA TensorRT 11
 2.3 Genetic Algorithm 12
 2.4 Compositional Performance Analysis 13
 2.5 Model-based Design Methodology 14
Chapter 3 Optimization of a Single Deep Learning Application 16
 3.1 Overview 16
 3.2 Related Work 16
 3.2.1 Deep learning Frameworks 17
 3.2.2 Optimization For a Single Deep Learning Application 17
 3.3 Parallelization Techniques 19
 3.3.1 Pre/Post-Processing Pipelining and Parallelization 19
 3.3.2 Intra-PE Parallelization 20
 3.3.3 Intra-network Pipelining 21
 3.3.4 Partial Network Duplication 22
 3.3.5 Other Optimization Methods 22
 3.4 JEDI Framework 23
 3.4.1 Configuration Parameters 25
 3.4.2 Application Development 27
 3.5 Design Space Exploration 29
 3.5.1 Pipeline Cut-point Explorer 31
 3.5.2 Parameter Fine-tuner 37
 3.6 Experiments 38
 3.6.1 Set-Up 38
 3.6.2 Design Space Exploration Results 40
 3.6.3 Parameter Fine-tuning Results 42
 3.6.4 Comparison with Other Methods 43
 3.6.5 Experiments with Varying Configurations 48
 3.6.6 Analysis and Discussion 51
Chapter 4 Optimization of Multiple Deep Learning Applications under Real-time Constraints 55
 4.1 Overview 55
 4.2 Related Work 55
 4.2.1 Mapping and Scheduling Multiple Applications 56
 4.2.2 Running Multiple Deep Learning Applications 58
 4.3 System Model 60
 4.3.1 Motivational Example 60
 4.3.2 Notation 61
 4.3.3 Problem Formulation 64
 4.4 Proposed Optimization Methodology 65
 4.4.1 Step 1: Finding Pareto-optimal Mapping Solutions for Each Application 65
 4.4.2 Step 2: Exploring the Mapping Combination 68
 4.4.3 Step 3: Tuning Frequencies for Varying Deadline Constraints 76
 4.5 Experiments 76
 4.5.1 Set-Up 76
 4.5.2 Finding Pareto-optimal Mappings of Each Application 77
 4.5.3 Exploring Mapping Combination and Tuning Frequencies 78
 4.5.4 Real Deployment 86
Chapter 5 Supporting Deep Learning Applications in a Model-based Design Methodology 88
 5.1 Overview 88
 5.2 Related work 88
 5.2.1 Mapping of Multiple Dataflow Applications 89
 5.2.2 Mapping of Multiple Deep Learning Applications 90
 5.2.3 Integrating Deep Learning Applications into the Model-based Design 90
 5.3 System Model 91
 5.3.1 Motivational Example 91
 5.3.2 Notation and Problem Definition 92
 5.4 Proposed Methodology 94
 5.4.1 Step 1: Finding the Pareto-optimal Mapping Solutions of Each Deep Learning Application 95
 5.4.2 Step 2: Mapping Exploration 98
 5.5 Experiments 105
 5.5.1 Comparison with a Previous Work 105
 5.5.2 Set-up 106
 5.5.3 Experimental Results: Motivational Example 106
 5.5.4 Experimental Results: Randomly Generated Dataflow Graphs 108
Chapter 6 Conclusion and Future work 111
Bibliography 114
요 약 123
</body>

