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Abstract

The growing demand for deep learning (DL) models has created a positive

feedback loop with the software systems for DL training. On account of the

matured optimizations of such software systems, DL models can be efficiently

trained by exploiting the computation resources of DL accelerators. However,

several difficulties that hinder the application of such optimizations are still

emerging as the structure of models diversifies, and the scale of models increases.

Without resolving those difficulties, DL training would yield inefficiencies in

practice. In this dissertation, we investigate the reasons for such inefficiencies

and design two novel software systems that resolve the inefficiencies.

We first propose Terra, a system that handles the inefficient performance of

imperative execution. Terra conducts an imperative-symbolic co-execution that

performs the imperative execution of a DL program while delegating the decou-

pled DL operations to the symbolic execution. Accordingly, Terra can execute

any imperative DL program with the optimized performance of the symbolic

execution, achieving at most 1.73x speed up compared to the imperative exe-

cution. Next, we propose BPipe to resolve the memory inefficiency of pipeline

parallelism in large language model training. We introduce a novel pipeline par-

allelism approach with an activation balancing method. With BPipe, we can

train the same model more efficiently, up to 2.17x faster, by making all devices

utilize comparable amounts of memory.

Keywords: deep learning framework, large language model training, distributed

training

Student Number: 2019-25320

i



Contents

Abstract i

Chapter 1 Introduction 1

1.1 Efficiency in Deep Learning Model Training . . . . . . . . . . . . 1

1.2 Proposed Systems . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.2.1 Imperative-Symbolic Co-Execution of Imperative Deep

Learning Programs . . . . . . . . . . . . . . . . . . . . . . 2

1.2.2 Memory-Balanced Pipeline Parallelism for Training Large

Language Models . . . . . . . . . . . . . . . . . . . . . . . 5

1.3 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

1.4 Dissertation Overview . . . . . . . . . . . . . . . . . . . . . . . . 7

Chapter 2 Background 10

2.1 Imperative and Symbolic Execution . . . . . . . . . . . . . . . . 10

2.2 Imperative Program with Symbolic Execution . . . . . . . . . . . 12

2.3 Model Parallelism in Large Language Model Training . . . . . . 15

Chapter 3 Imperative-Symbolic Co-Execution of Imperative Deep

Learning Programs 17

ii



3.1 Our Approach: Imperative-Symbolic Co-Execution . . . . . . . . 17

3.2 System Design . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

3.2.1 Imperative-Symbolic Co-Execution . . . . . . . . . . . . . 19

3.2.2 Symbolic Graph Generation . . . . . . . . . . . . . . . . . 21

3.3 Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

3.3.1 Implementation Detail . . . . . . . . . . . . . . . . . . . . 35

3.3.2 Experiment Setup . . . . . . . . . . . . . . . . . . . . . . 37

3.3.3 Imperative Program Coverage . . . . . . . . . . . . . . . . 38

3.3.4 Training Throughput . . . . . . . . . . . . . . . . . . . . . 40

3.3.5 Tracing Phase Analysis . . . . . . . . . . . . . . . . . . . 44

3.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

Chapter 4 Memory-Balanced Pipeline Parallelism for Training

Large Language Models 46

4.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

4.2 Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

4.2.1 Pipeline Memory Imbalance . . . . . . . . . . . . . . . . . 48

4.2.2 Activation Balancing . . . . . . . . . . . . . . . . . . . . . 49

4.2.3 Balanced Memory Objective . . . . . . . . . . . . . . . . 51

4.2.4 Transfer Schedule . . . . . . . . . . . . . . . . . . . . . . . 52

4.2.5 Pair-Adjacent Assignment . . . . . . . . . . . . . . . . . . 55

4.3 Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

4.3.1 Implementation and Environment Setup . . . . . . . . . . 58

4.3.2 Training Performance . . . . . . . . . . . . . . . . . . . . 59

4.3.3 Memory Balancing . . . . . . . . . . . . . . . . . . . . . . 63

4.3.4 Performance Analysis . . . . . . . . . . . . . . . . . . . . 64

4.3.5 Communication Bandwidth Requirement for Transfer . . 65

iii



4.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

Chapter 5 Related Work 70

Chapter 6 Future Work & Conclusion 75

6.1 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

6.2 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

Bibliography 77

초록 97

iv



List of Figures

Figure 1.1 An illustration of a memory imbalance and how BPipe

deals with it. With the 1F1B pipeline schedule (left), the

memory requirement of an earlier pipeline stage could

exceed the memory capacity of a GPU. In that case, a

model cannot be executed even if the total memory ca-

pacity is sufficient for the memory requirement. BPipe

(right) balances the imbalanced memory requirement

by transferring intermediate activations between earlier

stages and later stages. Therefore, we can fully utilize

the entire memory capacity. . . . . . . . . . . . . . . . . 9

Figure 2.1 Simple examples that the static compilation approach

cannot deal with. Note that AutoGraph could silently

produce an incorrect result in the Python object muta-

tion case. . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

v



Figure 2.2 An illustration of a 4-way 1F1B pipeline schedule with

eight micro-batches. Within the steady phase, forward

and backward computation progress alternately. After

the cooldown phase, parameters are updated with ac-

cumulated gradients of each micro-batch. A number in

either forward or backward denotes the micro-batch in-

dex. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

Figure 3.1 An overview of Terra. Each dotted arrow denotes a) the

PythonRunner fetches a tensor value from the GraphRun-

ner, b) the PythonRunner informs the GraphRunner of the

path that the PythonRunner takes, and c) the Python-

Runner feeds an external tensor to the GraphRunner. Rect-

angle in the optimized symbolic graph denotes the con-

trol flow operation. . . . . . . . . . . . . . . . . . . . . . 19

Figure 3.2 Illustration of how the TraceGraph is merged from the

imperative DL program. . . . . . . . . . . . . . . . . . . 21

Figure 3.3 Conceptual illustration of how Terra applies JIT compi-

lation to track a call id and a loop id . . . . . . . . . . . 23

Figure 3.4 Possible case of deadlock if Terra does not add control

dependency between the Output Fetching and the Input

Feeding operations. Note that there is no data depen-

dency between opA and opB in the symbolic graph. . . . 25

Figure 3.5 Generated symbolic graph from the TraceGraph of Fig-

ure 3.2(c) . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

Figure 3.6 The result of the case assignment algorithm for the given

TraceGraph. . . . . . . . . . . . . . . . . . . . . . . . . . 27

vi



Figure 3.7 Example workflow of how the case assignment algorithm

works, and how the symbolic graph is generated from

the ordered list of switch-cases. The dotted arrows from

a black circle denote the next_edges variable of Algo-

rithm 1. All processed nodes and edges are assigned to

an appropriate switch-case, where each rectangle of the

switch-cases denotes the basic block. X denotes that no

node exists in the basic block. . . . . . . . . . . . . . . . 31

Figure 3.8 Programming interface of Terra . . . . . . . . . . . . . . 36

Figure 3.9 Code snippets that AutoGraph fails to convert correctly. 39

Figure 3.10 The training speed-up results of Terra, AutoGraph, and

when applying XLA [74] to both systems relative to Ten-

sorFlow imperative execution. The dotted line presents

the training throughput of the imperative execution. Note

that Terra and AutoGraph share the same upper bound

of performance improvement from the symbolic execu-

tion of TensorFlow. . . . . . . . . . . . . . . . . . . . . . 41

Figure 3.11 Performance breakdown within a single training step for

both the PythonRunner and the GraphRunner. . . . . . . 43

vii



Figure 4.1 Memory imbalance among pipeline stages when train-

ing a GPT-3 13B model with 8-way pipeline parallelism.

The micro-batch size is 1, and recomputation is not ap-

plied. Both the first and last stages are off the linear line

because they require more memory due to the embed-

ding and fully-connected layers, respectively. The mem-

ory difference between the first stage and the last stage

is 37 GiB. . . . . . . . . . . . . . . . . . . . . . . . . . . 47

Figure 4.2 An illustration of the activation balancing and the corre-

sponding changes in the number of saved micro-batches

within a 4-way 1F1B pipeline schedule with eight micro-

batches. Stage 0 and stage 3 are the pair evictor and ac-

ceptor, so stage 0 evicts activations to stage 3 and loads

them before the backward computation. All transfers are

running parallel to the forward or backward computation. 50

Figure 4.3 An illustration of the activation balancing within a 4-

way interleaved 1F1B pipeline schedule with eight micro-

batches and two model chunks for each pipeline stage. . 55

Figure 4.4 An illustration of both standard assignment and pair-

adjacent assignment for 16-way pipeline parallelism on

2 nodes, each with 8 GPUs. The dotted lines represent

the communication between evictor-acceptor pairs. The

standard assignment makes each pair communicate over

the slow inter-node link. In contrast, the pair-adjacent

assignment let them transfer their activations over the

fast intra-node link. . . . . . . . . . . . . . . . . . . . . 56

viii



Figure 4.5 An illustration of how the pair-adjacent assignment as-

signs pipeline stages to GPUs when 4-way pipeline par-

allelism with 2-way tensor parallelism and 2-way data

parallelism on two nodes, each with 8 GPUs. ‘TP’ and

‘DP’ denote the rank of tensor parallelism and data par-

allelism. ‘PP’ represents the pipeline stage. . . . . . . . 57

Figure 4.6 Memory usage of each pipeline stage with the activation

balancing compared to without the activation balancing

when training a GPT-3 134B model with configuration

(4)-mb2 of Table 4.2. To estimate the memory usage

without the activation balancing, we allow the activation

balancing only for stage 0 and stage 11 since stage 0 has

insufficient memory to execute. . . . . . . . . . . . . . . 63

Figure 4.7 The relative difference in iteration time with various

batch sizes when training a GPT-3 13B with 8-way pipeline

parallelism. No recomputation is applied and the num-

ber of micro-batches is equal to the batch size. . . . . . . 64

ix



List of Tables

Table 3.1 The programs that AutoGraph fails to execute and the

reason for the failures. Note that Terra can execute all of

them. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

Table 3.2 Comparison of the training speed-up between Terra and

Terra with lazy evaluation. The results are relative speed-

up to TensorFlow imperative execution as Figure 3.10. . 44

Table 3.3 Results of the number of collected traces and the number

of fallbacks for each program. . . . . . . . . . . . . . . . . 45

Table 4.1 Model configurations for evaluation. L denotes the num-

ber of layers, D denotes hidden dimension size, and H

denotes the number of attention heads. Finally, G and B

are the numbers of GPUs used to execute the model and

batch size, respectively. . . . . . . . . . . . . . . . . . . . 58

x



Table 4.2 Training configurations of GPT-3 96B and GPT-3 134B

models. ‘tensor’ and ‘pipeline’ represent the tensor and

pipeline parallelism degrees, respectively. The remaining

GPUs are used for data parallelism, and we use ZeRO

stage-1 data parallelism [90] that splits optimizer states.

Moreover, tensor parallelism includes partitioning layer

normalization and dropout [48]. ‘mb’ denotes the micro-

batch size, and each value corresponds to a different train-

ing configuration. . . . . . . . . . . . . . . . . . . . . . . . 60

Table 4.3 MFU numbers of GPT-3 96B and GPT-3 134B models.

The numbers are the values of Megatron-LM, except the

values that are annotated with BPipe. For those con-

figurations, Megatron-LM fails to run due to the out-of-

memory error. . . . . . . . . . . . . . . . . . . . . . . . . . 62

Table 4.4 Time breakdown of transfer, forward, and backward. All

times are the elapsed time for processing a single micro-

batch. For GPT-3 13B, 8-way pipeline parallelism is used

with the attention recomputation scope and the micro-

batch size is 1. For GPT-3 96B and GPT-3 134B, we use

configuration (6)-mb2 and (4)-mb2 of Table 4.2, respec-

tively. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

Table 4.5 Time breakdown by varying the recomputation scope of

a GPT-3 13B model with 8-way pipeline parallelism. . . . 65

Table 4.6 Definition of the variables. . . . . . . . . . . . . . . . . . . 66

Table 4.7 MFU numbers of the GPT-3 96B model, when the tensor

parallelism degree is 8. . . . . . . . . . . . . . . . . . . . . 68

xi



Chapter 1

Introduction

1.1 Efficiency in Deep Learning Model Training

Within the past ten years, deep learning (DL) models have accomplished re-

markable achievements in various application domains [49, 30, 31, 114, 20, 25,

9, 76, 96]. Under the advances in DL models, software systems for DL have also

flourished, laying the foundation for efficient DL model training [1, 27, 74, 78].

Such systems provide an abstraction layer that can express various DL models

and algorithms, along with the optimized runtime that efficiently executes the

abstraction on various DL accelerators such as GPU and TPU [41].

However, it might be hard to perform efficient training due to the various

constraints when training a DL model in practice. While developing a new DL

model, users want to construct an agile development cycle. Accordingly, they

prefer a programming interface that helps fast and convenient model develop-

ment. Unfortunately, convenient usability and fast training speed are difficult

to reconcile. In addition, for large language models (LLMs) whose sizes exceed
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the memory capacity of a single DL accelerator, we must alleviate high memory

pressure to make training can be performed. Yet, it is challenging to relieve the

memory pressure without falling into suboptimal training.

In this dissertation, we propose two novel DL training systems: Terra and

BPipe. Both systems facilitate efficient training of DL models by resolving

different challenges. Terra provides a transparent way to optimize computations

while preserving the convenient programming interface, and BPipe provides an

efficient method to alleviate the memory pressure of a LLM. In the rest of this

chapter, we provide a high-level view of each system with motivations, main

ideas, and evaluation results of the two systems.

1.2 Proposed Systems

1.2.1 Imperative-Symbolic Co-Execution of Imperative Deep
Learning Programs

The rapid evolution of DL models has been fueled by the support of DL frame-

works [1, 27, 78]. Such frameworks provide users with a programming layer to

build and execute DL models, commonly adopting Python as their host lan-

guage. Typically, they execute DL programs with one of the two execution

models: imperative or symbolic execution. In the former, the Python inter-

preter executes a DL program as a normal program, invoking DL operations

on-the-fly. The invoked DL operations are executed on a separate DL accelera-

tor asynchronously, and the Python interpreter continues running the program.

The dynamic control flows of the DL operations are naturally expressed by

the interpretation of the program, and users can utilize any functionalities of

Python (e.g., dynamic typing and third-party libraries [10, 29]) while executing

DL operations. On the other hand, in the latter model, the Python interpreter
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embeds DL operations into a symbolic graph that represents the entire dataflow

of a DL model. Thus, users should define their DL programs only with existing

symbolic operations that DL frameworks support. In other words, the dynamic

control flows of a DL model should be explicitly represented by control flow op-

erations (e.g., tf.cond and tf.while of TensorFlow). However, the symbolic

execution can take advantages of various optimization techniques because the

symbolic graph contains a whole computation lineage of a DL model architec-

ture.

Although symbolic execution achieves higher performance compared to im-

perative execution, imperative execution has been preferred because of its us-

ability. Several systems [11, 83, 84, 27, 36, 67, 107] have been proposed to match

the speed of symbolic execution while enjoying the benefit of imperative execu-

tion. These systems attempt to generate a symbolic graph that represents an

entire imperative program and execute the graph instead of imperatively run-

ning the program. Methods for generating the symbolic graph can be broadly

classified into two approaches: single path tracing and static compilation. The

former approach generates a symbolic graph by imperatively executing a sin-

gle iteration of a program and recording the executed DL operations. Systems

that adopt the latter approach translate the abstract syntax tree (AST) of a

program into a symbolic graph.

Unfortunately, both approaches can correctly handle only a subset of im-

perative DL programs. For example, dynamic control flows in an imperative

program are not captured by the single path tracing approach. On the other

hand, the static compilation approach cannot correctly generate a symbolic

graph if a target program contains an AST node that does not have a cor-

responding symbolic operation such as try-excepts, generators, Python object

mutations, and third-party library calls. As a result, it is up to the users to

3



clearly understand the limited usability of these systems.

To overcome the limitations, we propose Terra, an imperative-symbolic co-

execution system. While the previous approaches replace the imperative execu-

tion with the symbolic execution, Terra maintains the imperative execution to

support all Python features where DL operations are delegated to the symbolic

execution. Also, Terra generates a symbolic graph by utilizing multiple traces of

an imperative program. To be specific, Terra imperatively runs an imperative

DL program for several iterations and collects traces, each of which is a linear

chain of DL operations sorted by the execution order. The collected traces are

merged into a TraceGraph, a directed acyclic graph (DAG) that encapsulates

the captured DL operations along with their diverse execution orders. Terra

stops collecting traces when the trace of the latest iteration is already embed-

ded in the TraceGraph. To generate an executable symbolic graph from the

TraceGraph, Terra adds additional information to the TraceGraph. First of all,

Terra annotates the TraceGraph to enable communication between the imper-

ative execution and the symbolic execution. In addition, Terra further analyzes

the TraceGraph to insert control flow operations explicitly, so that a symbolic

graph can be executed with the DL operations in a certain trace. After gen-

erating a symbolic graph from the TraceGraph, Terra starts the co-execution

of a skeleton imperative program, in which DL operations are not performed,

and the symbolic graph that represents the DL operations. Here, Terra contin-

ually checks whether the current trace is being expressed by the TraceGraph. If

Terra detects a new trace, Terra discards the symbolic graph and collects more

traces by running the original program imperatively. Terra then re-generates

the symbolic graph and restarts the co-execution. Consequently, Terra is able

to run any imperative DL programs correctly and efficiently even if it contains

the Python features that the previous approaches cannot handle.

4



We have implemented Terra on TensorFlow v2.4.1 and compared Terra with

TensorFlow’s imperative execution [2] and AutoGraph [67]. Our evaluation

shows that Terra can train ten imperative DL programs including convolu-

tional neural networks, transformer-based networks, and generative adversarial

networks up to 1.73x faster than the original imperative execution. However,

AutoGraph fails to support five programs for three reasons: third-party library

call, Python object mutation, and tensor materialization during conversion,

which we describe in Chapter 3.

1.2.2 Memory-Balanced Pipeline Parallelism for Training Large
Language Models

After the advent of the Transformer architecture [114], there has been a dra-

matic increase in the size of language models [9, 101, 124, 16, 77, 109, 76]. These

models show astonishing results in a wide range of applications by exploiting

more than a hundred billion parameters. Such an overwhelming number of pa-

rameters incurs high memory pressure, making large language model (LLM)

training challenging. When training a model in mixed precision [64] with the

Adam [45] optimizer, we need 20 bytes of memory for each model parame-

ter [101]. Hence, training a GPT-3 175B model needs more than 3,000 GiB to

store the model parameters and optimizer states. Yet, no GPU exists whose

memory capacity satisfies the requirement.

A few methods, such as model parallelism and activation recomputation [28,

46], alleviate the memory pressure to satisfy the requirement. Model parallelism

partitions the model parameters and optimizer states across multiple GPUs so

that each GPU stores a subset of the model parameters. It is further classi-

fied into tensor parallelism [97, 98] and pipeline parallelism [33], where tensor

parallelism splits the operations across GPUs and pipeline parallelism splits
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the layers across GPUs. On the other hand, activation recomputation releases

intermediate activations from memory right after forward computation and re-

computes them during backward computation. Since model parallelism and ac-

tivation recomputation add communication or computation overhead, how we

configure them affects training performance significantly. Therefore, finding the

configuration that achieves maximum performance and then scaling up training

with data parallelism is essential for efficient LLM training.

However, due to its nature, pipeline parallelism could hinder finding the

optimal configuration. Unlike tensor parallelism, pipeline parallelism assigns

each GPU to handle a separate pipeline stage that computes different layers in

a model. Accordingly, each pipeline stage has data dependency on others and

results in computation stalls until the required data have arrived, commonly

known as a pipeline bubble. To minimize the bubble, a 1F1B (one-forward and

one-backward) pipeline schedule [68, 24] splits an input batch into micro-batches

and processes forward computation and backward computation alternately. In

order to saturate all pipeline stages, earlier stages should reserve more memory

for computing more forward micro-batches than later stages. Consequently, a

memory imbalance exists across the pipeline stages, and executing the model

fails if the earlier stages run out of memory, as illustrated in Figure 3.1.

Our key observation is that the later stages cannot utilize the same amount

of GPU memory as the earlier stages require to precompute forward micro-

batches. Therefore, if we can exploit the spare memory of later stages as extra

memory of the earlier stages, the memory pressure will be relieved with a bal-

anced memory load. In addition, reduced memory pressure allows us to utilize

more memory to accelerate training by avoiding redundant recomputations,

increasing the micro-batch size, or decreasing the model parallelism degree.

To this end, we propose BPipe, a memory-balanced pipeline parallelism

6



approach with an activation balancing method to resolve the memory imbal-

ance. While training, BPipe flattens the memory usage of pipeline stages by

transferring activations between earlier and later stages. We propose a transfer

scheduling algorithm to minimize the number of transfers while preserving the

computation correctness. Furthermore, we design a pair-adjacent stage assign-

ment to make transfers not affect the training time. As a result, BPipe achieves

a balanced GPU memory usage and facilitates efficient LLM training.

We have implemented BPipe on Megatron-LM [48]. Our evaluation on six

HPE Apollo 6500 8-GPU A100 nodes with 800 Gbps cross-node bandwidth

shows that BPipe can accelerate training GPT-3 96B and GPT-3 134B models

by 1.25x-2.17x by executing more efficient training configurations with fewer

recomputations and larger micro-batch sizes.

1.3 Contributions

In this dissertation, we make the following contributions.

• We inspect the inefficiencies of the current systems for DL training. Such

inefficiencies cover a wide range: from usability to performance.

• We propose novel systems for DL training, Terra and BPipe, to resolve

the inefficiencies.

• We evaluate the two systems and prove that both Terra and BPipe can

facilitate more efficient training of DL models.

1.4 Dissertation Overview

The rest of the dissertation is structured as follows. In Chapter 2, we pro-

vide background knowledge to help understand Terra and BPipe. Chapter 3

7



explains Terra, a novel framework for DL programs with imperative-symbolic

co-execution. Chapter 4 presents BPipe, a framework for a LLM with a novel

pipeline parallelism method. Chapter 5 discusses related works for efficient

training of DL models. Finally, we present a future research direction and con-

clude the dissertation in Chapter 6.
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Figure 1.1 An illustration of a memory imbalance and how BPipe deals with it.

With the 1F1B pipeline schedule (left), the memory requirement of an earlier

pipeline stage could exceed the memory capacity of a GPU. In that case, a

model cannot be executed even if the total memory capacity is sufficient for the

memory requirement. BPipe (right) balances the imbalanced memory require-

ment by transferring intermediate activations between earlier stages and later

stages. Therefore, we can fully utilize the entire memory capacity.
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Chapter 2

Background

2.1 Imperative and Symbolic Execution

To train a DL model, users need to prepare a DL program that performs the

entire training process. For such a demand, various frameworks have been de-

veloped [1, 4, 27, 38, 71, 78, 111, 122] to write a DL program conveniently.

Such frameworks commonly adopt Python as their host language and provide

users with a programming layer to build and execute DL programs. Typically,

they execute DL programs with one of the two execution models: imperative or

symbolic execution.

The imperative execution (a.k.a. define-by-run) [71, 78, 111] treats a DL

program entirely as a typical Python program. The Python interpreter exe-

cutes a DL program as a normal program, invoking DL operations on-the-fly.

Whenever the Python interpreter encounters a statement that declares a DL

operation (e.g., z = torch.matmul(x, y)), the interpreter asynchronously in-

vokes a corresponding computation kernel of a DL accelerator (typically GPU

10



or TPU). The invoked DL operations are executed on the DL accelerator asyn-

chronously, and the Python interpreter continues running the program. There-

fore, the imperative execution highly improves the programmability of DL pro-

grams because users can fully utilize the convenient language features and rich

ecosystem of Python, including built-in functions, dynamic control flows, dy-

namic typing, and third-party libraries. However, since the imperative execution

cannot obtain a whole view of DL model computation, it misses optimization

opportunities that the symbolic execution explained below can carry out.

The symbolic execution (a.k.a. define-and-run) [38, 1, 4] executes a pre-

built symbolic graph, which represents the entire dataflow of a DL model. The

Python interpreter embeds symbolic operations into the symbolic graph and

then an optimized graph executor such as TVM [13], TensorRT [75], Tensor-

Flow Runtime [108], and XLA [74] undertakes the actual execution of the sym-

bolic graph. In the symbolic execution, users should express their DL model

architectures as symbolic graphs using the three kinds of symbolic operations:

DL operations, control flow operations, and auxiliary operations. The DL opera-

tions are conventional compute-intensive operations (e.g., matrix multiplication

or convolution operation), and the control flow operations determine which DL

operations to be executed based on a conditional value within the graph. Fi-

nally, to mitigate the limited usability of the symbolic execution, it supports

auxiliary operations (e.g., tf.print and tf.py_function of TensorFlow). Af-

ter the symbolic graph is constructed, graph optimizations could be applied

such as operation fusion [13, 39, 63, 75, 100, 74, 126, 131, 132], parallelized exe-

cution [51, 75, 100], device placement [65, 66, 132], layout optimization [39, 62],

and memory optimization [3, 32, 34] to accelerate training.
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1  def train_step(x):

2    y = library_call1()

3    loss = model(x, y)

4    library_call2(

5      loss.numpy())

(a) third-party library call &

tensor materialization

1  def generator():

2    for _ in tf.range(N):

3      yield tf.random.normal()

4

5  def train_step(x):

6    for y in generator():

7      x = x + y

8    return x

(b) dynamic control flow

1  dr = Dropper()

2  dr.drop_prob = 0.0 

3  def train_step(step, x):

4    if step > 100:

5      dr.drop_prob = 0.8

6    x = tf.nn.dropout(

7      x, dr.drop_prob)

8    return x

(c) Python object mutation

Figure 2.1 Simple examples that the static compilation approach cannot deal

with. Note that AutoGraph could silently produce an incorrect result in the

Python object mutation case.

2.2 Imperative Program with Symbolic Execution

Although the symbolic execution performs faster training, the imperative ex-

ecution has become mainstream in DL frameworks by virtue of its conve-

nient usability. Therefore, two approaches are proposed to achieve the usability

of imperative execution and the performance of symbolic execution simulta-

neously. They attempt to convert an imperative DL program to a symbolic

graph and exploit the symbolic execution with the converted graph. The sin-

gle path tracing approach (e.g., torch.trace [83], JAX [27], torch.fx [93],

and tf.function [107]) executes an imperative DL program once and records

all DL operations that were executed. A single linear chain of the executed DL

operations, which is called a trace, becomes a symbolic graph of the imperative

program. The symbolic graph is executed instead of the imperative program

for subsequent iterations. Although the single path tracing approach looks very

simple and intuitive, it is hard to capture the dynamic control flows of the im-

perative program with this approach. To reflect them correctly, users need to

explicitly declare the control flow operations for all dynamic control flows in
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their imperative programs, which undermines the programmability of the im-

perative program. Moreover, Python features that do not have corresponding

symbolic operations (e.g., mutation of Python objects, use of third-party li-

braries) are neither captured by the trace. It can yield an incorrect result since,

in the following iterations, a graph executor executes a symbolic graph, which

does not contain the Python features.

LazyTensor [102] extends the single path tracing approach by adopting the

lazy evaluation, in which the Python interpreter and symbolic graph executor

run alternately. The Python interpreter executes an imperative DL program as

it is and extracts a linear trace of operations. LazyTensor then checks whether

the extracted trace is already cached or not. If cached, LazyTensor directly ex-

ecutes the cached graph. If not, it compiles and executes the new graph, then

stores the graph for further executions. With the lazy evaluation, LazyTensor

could support all Python features without yielding an incorrect result. However,

it has an unavoidable performance overhead due to the alternate execution. In

other words, the graph executor progresses only when the Python interpreter

finishes checking the existence of the cached graph. Similarly, the Python in-

terpreter progresses after finishing the graph execution. Moreover, if an imper-

ative program has a dynamic control flow that is not determined by a tensor

value, LazyTensor fails to capture the control flow transparently. In this case,

LazyTensor would work inefficiently because the traces could be different for

each iteration.

The static compilation approach (e.g., TorchScript [84] and JANUS [36])

is proposed to resolve the problem of the single path tracing approach. In con-

trast to the single path tracing approach, the static compilation approach does

not extract a trace to generate a symbolic graph. Instead, it traverses an ab-

stract syntax tree (AST) of the imperative program and directly converts each
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AST node to a corresponding symbolic operation. Even if it guarantees the cor-

rectness of the program, it fails to convert a program to a symbolic graph if the

program contains a Python feature with no corresponding symbolic operation.

We classify the representative failure cases into four categories: third-party

library call, tensor materialization during conversion, dynamic control flow,

and Python object mutation. Figure 2.1 presents simple examples of the cases.

The static compilation approach cannot convert the third-party library calls

of Figure 2.1(a) and fails when it attempts to materialize the tensor data

(loss.numpy()) during the conversion. Figure 2.1(b) shows the generator in

Python that the static compilation approach cannot convert. For Figure 2.1(c),

only JANUS handles it by implementing custom auxiliary operations (i.e.,

GetAttr and SetAttr operations) that access the Python heap during the sym-

bolic execution.

To increase the practicality of the previous approaches, AutoGraph [67]

combines the static compilation approach with the single path tracing approach.

AutoGraph converts AST nodes that correspond to dynamic control flow such

as if-else, for, and while to new AST nodes representing proper control flow

operations such as tf.cond and tf.while. Then, AutoGraph generates a sym-

bolic graph by applying the single path tracing approach to the converted AST.

Unfortunately, it cannot fully support various kinds of dynamic control flows

such as generator and try-except of Python. Hence, AutoGraph also entails the

same correctness problem of the single path tracing approach when the imper-

ative DL program employs the features described in Figure 2.1.

When the static compilation approach detects unsupported features, it just

raises an error and aborts the program execution. To avoid this, users have to

write their programs using only the supported features or put in additional ef-

forts such as annotating types and refactoring functions to use tensor objects for
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their inputs and outputs. In this regard, AutoGraph [67] and TorchScript [84]

provide the official language references [104, 85] that users should be aware

of before writing a target imperative program. However, those references usu-

ally require expert knowledge to understand, imposing a steep learning curve

for new users. For example, the language document of AutoGraph [104] spans

roughly twelve pages and divides features that AutoGraph does not support into

four categories and ten subcategories. TorchScript provides an official language

specification [85] by enumerating supported features over eleven pages.

2.3 Model Parallelism in Large Language Model Train-
ing

When training LLMs with limited GPU resources, model parallelism is neces-

sary to split the model into multiple partitions and make each part fit into a

single GPU. Depending on how the model is divided, we can classify model

parallelism into two categories: tensor parallelism and pipeline parallelism.

Tensor parallelism partitions an operation so that each GPU executes the

same operation with partial inputs. However, tensor parallelism degrades the

training efficiency with costly synchronization and GPU underutilization. For

each partitioned operation, an additional synchronize operation follows to com-

pute the same result as before partitioning. However, it usually needs collective

communication such as all-reduce and all-gather, which require a large com-

munication bandwidth. Furthermore, the computation load of a single GPU

decreases for the partitioned operation. Then, the GPU could not fully utilize

its core. For these limitations, tensor parallelism is known to be practical when

used within a node boundary [70]

On the contrary, pipeline parallelism partitions the layers of a model into
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Figure 2.2 An illustration of a 4-way 1F1B pipeline schedule with eight micro-

batches. Within the steady phase, forward and backward computation progress

alternately. After the cooldown phase, parameters are updated with accumu-

lated gradients of each micro-batch. A number in either forward or backward

denotes the micro-batch index.

multiple stages and distributes them across the GPUs. Figure 2.2 illustrates

a single training iteration when pipeline parallelism is applied, following the

1F1B pipeline schedule [68, 24]. While training, two consecutive pipeline stages

exchange intermediate activations or gradients because each pipeline stage cor-

responds to different layers. Therefore, point-to-point communication is estab-

lished between successive pipeline stages. Since the point-to-point communi-

cation of pipeline parallelism adds relatively small overhead compared to the

synchronization of tensor parallelism, the pipeline parallelism degree can in-

crease along with the model size.
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Chapter 3

Imperative-Symbolic
Co-Execution of Imperative Deep
Learning Programs

3.1 Our Approach: Imperative-Symbolic Co-Execution

To the best of our knowledge, no existing DL framework can completely convert

an arbitrary imperative DL program into a symbolic graph. We believe that a

one-to-one mapping from all Python features to corresponding symbolic oper-

ations should exist to support all imperative programs with the approaches. In

other words, building such a mapping is the same as covering all Python syntax

with symbolic operations. Moreover, the mapping should be updated as a new

feature of Python (e.g., pattern matching of Python 3.10 [82]) is introduced.

Eventually, it is equal to building a new Python execution engine for a sym-

bolic graph representing a Python program itself, which requires a tremendous

amount of time and effort.

Therefore, we take a different approach that does not replace the entire
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imperative execution with the symbolic execution as the previous approaches

do. Instead, we let the Python interpreter run an imperative program to sup-

port all Python features naturally while separating only DL operations from

the imperative execution. As the Python interpreter executes the program ex-

cept performing DL operations, the decoupled DL operations are executed by

a graph executor simultaneously. To enable the co-execution, we generate a

symbolic graph representing DL operations that would have been launched by

the Python interpreter. While the previous approaches have to build a com-

plete symbolic graph that encapsulates all semantics of the DL program for

correctness, we construct a symbolic graph solely based on collected traces of

DL operations. Although we do not embed all semantics of the DL program in

the symbolic graph, it can handle any DL program by the co-execution of the

skeleton program complementing the symbolic execution. Within the skeleton

program, DL operations are not performed but all other Python features are

preserved as the original imperative program. Executing the symbolic graph in

parallel with the skeleton program, we fully achieve the usability of the impera-

tive execution along with the optimized performance of the symbolic execution.

3.2 System Design

Terra is a system that realizes our imperative-symbolic co-execution approach.

In this section, we describe how Terra implements the co-execution of a skeleton

imperative program and a symbolic graph in detail. There are two requirements

to seamlessly maintain the imperative execution along with executing the sym-

bolic graph. First of all, Terra should allow exchanging tensor values between

the imperative execution and the symbolic execution when there exists data

dependency between each other (e.g., Figure 2.1(a)). Furthermore, the imper-
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Figure 3.1 An overview of Terra. Each dotted arrow denotes a) the PythonRun-

ner fetches a tensor value from the GraphRunner, b) the PythonRunner informs

the GraphRunner of the path that the PythonRunner takes, and c) the Python-

Runner feeds an external tensor to the GraphRunner. Rectangle in the optimized

symbolic graph denotes the control flow operation.

ative execution should inform the symbolic execution of the correct choice of

path to follow because the execution flow of the program is determined by the

Python interpreter. To achieve these, Terra implements new symbolic opera-

tions for such communication and inserts them into the symbolic graph. In the

following, we first describe the entire process of the imperative-symbolic co-

execution (§ 3.2.1). Next, we explain how Terra merges collected traces into the

TraceGraph and generates a symbolic graph from it in detail (§ 3.2.2).

3.2.1 Imperative-Symbolic Co-Execution

The co-execution of Terra consists of the following two phases: the tracing

phase and the co-execution phase. Terra begins execution in the tracing phase,

as shown in Figure 3.1. In this phase, the conventional imperative execution

is carried out with the given imperative DL program. At the same time, the

GraphGenerator collects traces of each iteration. The GraphGenerator incremen-

tally merges the traces into the TraceGraph, a directed acyclic graph (DAG)
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that encapsulates all the collected traces. Since the number of possible traces

during the imperative execution cannot be determined, the GraphGenerator col-

lects traces until the trace of the latest iteration is fully covered in the Trace-

Graph. In such a case, the GraphGenerator generates a symbolic graph from the

TraceGraph.

With the generated symbolic graph, Terra enters the co-execution phase.

In this phase, Terra uses the PythonRunner and the GraphRunner. The Python-

Runner executes a skeleton imperative program that does not launch DL oper-

ations anymore. The GraphRunner executes the generated symbolic graph with

a separate graph executor. For each DL operation, the PythonRunner skips the

actual computation and creates an empty tensor object(s) as an output(s) of

the operation. If the PythonRunner has to materialize an empty tensor (e.g.,

print a loss value), it fetches the actual data from the GraphRunner. Similarly,

the GraphRunner might need an external tensor (e.g., an input data, a Python

primitive value) from the PythonRunner. Terra implements new symbolic oper-

ations to establish the communication. For each communication, a Runner that

needs the data from the other waits until the required data becomes ready.

For every iteration in the co-execution phase, the PythonRunner keeps a trace

being made by the DL operations in the current iteration. The PythonRunner

continuously compares the trace with the TraceGraph to notify the GraphRunner

of the current control flow and check the validity of the symbolic graph in

the GraphRunner. If the latest DL operation in the trace indicates that the

PythonRunner takes a specific path, it informs the GraphRunner of the path with

a new symbolic operation, which sets a conditional input of a corresponding

control flow operation in the symbolic graph. For example, if the PythonRunner

takes the true path of the skeleton imperative program of Figure 3.1 (i.e., if x

> 0:), the GraphRunner receives such information from the PythonRunner and
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1  def func(inp, cond, N):

2    rval = random()

3    x0 = op0(inp)

4    if cond:

5      x1 = op1(x0, rval)

6      _, z = op2(inp)

7    else:

8      x1 = x0

9      z, _ = op2(inp)

10   x2 = op3(x1, z)

11   print(x2)

12   for _ in range(N):

13     x2 = op4(x2)

14   return x2 

(a) Imperative DL Program

Op0

First Trace Second Trace

Op1

Op2

Op3

Op4

Op4

Op0

Op2

Op3

Op4
Loop

Loop

(b) Collected Traces

Op0

Op1

Op2

Op3

end

Op2

Loop 1

start

Loop 1

Op4

:feed  point

:fetch point

(c) Merged TraceGraph

Figure 3.2 Illustration of how the TraceGraph is merged from the imperative

DL program.

executes the operation of the true path. Furthermore, if the latest DL operation

is not expressed in the TraceGraph, Terra considers the current trace as a new

trace that the existing symbolic graph cannot handle. Terra then cancels the

execution of the GraphRunner and falls back to the tracing phase. Thereafter,

the GraphGenerator collects more traces and generates a new symbolic graph

covering more traces than before to continue the co-execution.

3.2.2 Symbolic Graph Generation

In this section, we describe how the GraphGenerator merges the collected traces

into the TraceGraph and then generates a symbolic graph from the TraceGraph.

TraceGraph Each node of the TraceGraph corresponds to a DL operation,

and each edge denotes an execution order between two nodes. For example, if a

Conv2D operation is followed by another ReLU operation in a single trace, the

TraceGraph has a directed edge from a Conv2D node to a ReLU node. For the

first trace, the TraceGraph contains a single linear chain of nodes that have two

extra nodes; the start node and the end node. Those nodes do not correspond
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to DL operations but for indicating the start point and the end point of the

merging.

For subsequent traces, the GraphGenerator attempts to match each operation

of the trace with an existing node of the TraceGraph. The GraphGenerator uses

a pointer that points to the latest matched node of the TraceGraph, which

initially points to the start node. For each operation, the GraphGenerator checks

whether there exists an equal node among the children of the latest matched

node.

When the GraphGenerator checks the equality of two operations while merg-

ing multiple traces into a TraceGraph, it compares the type, attributes, and

the executed location of each operation. A type of an operation is a kind of

the operation, and attributes of operations are information that determines the

behavior of the operation. For example, the MatMul operation of TensorFlow

has ‘MatMul ’ as its type, and takes transpose_a and transpose_b as the oper-

ation attributes to determine whether the input matrices should be transposed

or not. If the GraphGenerator attempts to match the MatMul operation whose

transpose_a is true with the MatMul operation whose transpose_a is false, the

GraphGenerator fails to match because of the different attributes.

Each executed location of operations stands for the program location in

which the operation is actually executed. Since the executed location of the op-

eration is determined at runtime, Terra utilizes a just-in-time (JIT) compilation

to evaluate the location. As shown in Figure 3.3, Terra assigns unique call ids to

every function call and unique loop ids to every loop in a given imperative DL

program. For each function call, the call id of the function is pushed to the call

id stack, which accumulates the call ids. Terra manages the call id stack for the

entire program execution 1, including the tracing phase and the co-execution
1Current implementation of Terra does not consider multi-threading yet.
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1  def function(x, N):

2    for i in range(N):

3      x = opA(x)

4    return x

(a) Original Program

1  def function_jit(x, N):

2    try:

3      terra_runtime_info.push_call_id(call_id)

4      try:

5        terra_runtime_info.push_loop_pair(

6            (loop_id, 0))

7        for i in range(N):

8          terra_runtime_info.inc_loop_counter(

9              loop_id)

10         x = opA(x)  # another func call

11     finally:

12       terra_runtime_info.pop_loop_pair()

13     return x

14   finally:

15     terra_runtime_info.pop_call_id()

(b) Transformed Program

Figure 3.3 Conceptual illustration of how Terra applies JIT compilation to track

a call id and a loop id

phase. The pushed call id is popped when the function is returned. Thus, the

call id stack contains all information of nested function calls. Similarly, the pair

of (loop id, loop counter=0 ) of the loop is pushed to the loop id stack for each

loop. The loop counter is increased for every new iteration of the loop, and the

pair of (loop id, loop counter) is popped after exiting the loop. As same as the

call id stack, Terra manages the loop id stack for the entire program execution.

After the GraphGenerator finds the child node of the latest matched node

which satisfies all criteria, the GraphGenerator updates the latest matched node

to that child node, not creating a new node. It then continues merging the next

operation of the trace. If all the operations are matched, the GraphGenerator

sets the latest matched node to the end node, denoting that the current trace

is already captured by the TraceGraph.

When the GraphGenerator fails to match the operation with the existing

nodes, it denotes that a new trace is detected. A new node is created by creating

a new branch from the latest matched node. While expanding the TraceGraph

for the new trace, the expanded branch could be merged back into the pre-
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existing branch if there is a node that is not a child of the latest matched

node but satisfies all criteria of equality. For example, Figure 3.2(c) depicts

the TraceGraph built from the program of Figure 3.2(a), which first took the

true path (line 5-6) and took the false path (line 8-9) at the second execution.

From the program, the GraphGenerator collects two different traces as shown in

Figure 3.2(b). When the GraphGenerator attempts to merge the second trace

into the TraceGraph that contains the first trace, Op2 of the second trace

cannot be matched with Op1 and cannot be merged back into Op2 of the first

trace because two Op2 s were executed in different locations. Thus, the node for

Op2 is created in the right branch of Figure 3.2(c), and the branch is merged

when the GraphGenerator succeeds to match Op3.

As shown in Figure 3.2(c), the GraphGenerator merges the nodes that are

executed in the same loop of the program. The GraphGenerator is aware of

the loop because it compares the program location where DL operations were

executed. It then groups those nodes within an extra loop node and conducts

merging the nodes separately. For example, Loop 1 in Figure 3.2(c) is the loop

node for the loop of Figure 3.2(a) (line 12-13). The GraphGenerator merges the

second Op4 of the first trace with the first Op4 of the first trace because they

were executed in the same loop. Also, Op4 of the second trace is merged to the

same node.

Communication between the PythonRunner and the GraphRunner To

create the symbolic operations for data communication between the PythonRun-

ner and the GraphRunner, the GraphGenerator captures communication points

and annotates such points in the TraceGraph. Those points are classified into

feed points and fetch points. The feed point is where the operation gets an input

from the Python interpreter such as training data and Python primitive values.
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1  x = opA()

2  print(x)

3  k = tf.constant(random.random())

4  # k becomes InputFeeding in the sym. graph

5  y = opB(k)

(a) Imperative Program

Output

Fetching
opA

opB
Input

Feeding

(b) Symbolic Graph

Figure 3.4 Possible case of deadlock if Terra does not add control dependency
between the Output Fetching and the Input Feeding operations. Note that there
is no data dependency between opA and opB in the symbolic graph.

Similarly, the fetch point is where the Python interpreter needs a value of the

DL tensor. For example, Op1 in Figure 3.2(a) receives rval as an input (line 5),

and the Python interpreter needs the value of x2 (line 11) to print it out. The

GraphGenerator captures those points and annotates them in the corresponding

nodes of the TraceGraph.

Although the PythonRunner executes the skeleton imperative program se-

quentially, the graph executor of the GraphRunner allows out-of-order execu-

tion. Thus, a deadlock could occur if the two Runners conduct the co-execution

naively. Suppose that Terra executes the imperative program shown in Fig-

ure 3.4(a). Terra generates the symbolic graph from the imperative program as

shown in Figure 3.4(b). Since the two operations do not have data and control

dependency in the symbolic graph (i.e., opB does not consume opA’s output),

the GraphRunner can freely select the execution order between the operations.

If the GraphRunner executes opB then opA, the deadlock would occur because

the PythonRunner should receive the output of opA to print its value before

it feeds the value k to opB in the GraphRunner. To prevent the deadlock, the

GraphGenerator adds the control dependencies (defined in TensorFlow) between

Output Fetching operations that should be executed prior to and an Input Feed-

ing operation after generating a symbolic graph. Since the TraceGraph of Terra

captures the execution orders between the collected operations, the GraphGen-
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Figure 3.5 Generated symbolic graph from the TraceGraph of Figure 3.2(c)

erator can figure out the control dependencies.

Symbolic graph generation The GraphGenerator converts the nodes in the

TraceGraph to the corresponding DL operations and creates additional Input

Feeding and Output Fetching operations to establish data communication dur-

ing the co-execution. The Input Feeding operation corresponds to the feed point

of the TraceGraph, enabling the PythonRunner to feed an external tensor to the

GraphRunner. Similarly, the Output Fetching operation corresponds to the fetch

point of the TraceGraph, allowing the PythonRunner to fetch materialized DL

tensor from the GraphRunner. As a result, the GraphGenerator represents the

entire computation lineage in the single graph with the communication opera-

tions. Without those operations, the GraphGenerator should split the symbolic

graph into smaller subgraphs at every feed-fetch point, which cannot efficiently

apply additional optimizations.

To handle the diverse control flows in the TraceGraph, GraphGenerator uti-

lizes the Switch-Case operation (e.g., tf.case of TensorFlow), which allows

executing only a single case that depends on a particular condition. For the

conditional input that informs the Switch-Case operation of which case to ex-

ecute, the GraphGenerator creates the Case Select operation along with the

Switch-Case operation, as shown in Figure 3.5. When the PythonRunner takes

a certain path, it notifies the GraphRunner via the Case Select operation.
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Figure 3.6 The result of the case assignment algorithm for the given Trace-
Graph.

Moreover, the GraphGenerator creates the While operation (e.g., tf.while

of TensorFlow) for a loop node of the TraceGraph. As the Case Select opera-

tion, the GraphGenerator creates the Loop Cond operation along with the While

operation. The PythonRunner informs the GraphRunner of whether the Python-

Runner goes to the next iteration of the loop or exits the loop via the Loop Cond

operation. As an optimization, the GraphGenerator unrolls the While operation

if the loop node took the same number of iterations in the collected traces.

We further describe how the GraphGenerator creates the Switch-Case oper-

ations correctly. GraphGenerator uses case assignment algorithm that takes a

TraceGraph as an input and returns an ordered list of switch-cases. A switch-

case is a set of (basic block, control edges) where the basic block is a linear chain

of nodes, and the control edges are the edges that point to the basic block. Every

non-overlapping linear chain of nodes in the TraceGraph is uniquely assigned
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to a basic block so that the ordered list of switch-cases can cover every trace in

the TraceGraph. If there is a loop node in the TraceGraph, the algorithm treats

it as a single node because the loop node is converted to the While operation

in the symbolic graph. For example, from the TraceGraph of Figure 3.6(a), the

algorithm returns the ordered list of switch-cases of Figure 3.6(b).

Algorithm 1: Terra’s case assignment algorithm.
Input: TraceGraph G = (V ∪ {start, end}, E) where V = {v1, v2, . . . , vn} and

E = {e1, e2, . . . , em}
Output: An ordered list of switch-cases S = [s1, s2, . . . , sp]

1 S ← []
2 next_edges ← { (start, y) ∈ E | y ∈ V }
3 // create a switch_case for each iteration
4 while next_edges ̸= ∅ do
5 switch_case ← ∅
6 new_next_edges ← ∅
7 // create a case of switch_case for each v
8 forall v ∈ { y | (x, y) ∈ next_edges} do
9 control_edges ← edges that point to v among next_edges

10 basic_block ← ∅
11 // no incoming edges to v from E \ next_edges
12 if in-degree(v,E \ next_edges) = 0 then
13 // add v to the basic block
14 basic_block ← basic_block ∪ {v}
15 // expand basic block to contain the linear chain as long as possible
16 while out-degree(v) = 1 and in-degree(next(v)) = 1 and

next(v) ̸= end do
17 v ← next(v)
18 basic_block ← basic_block ∪ {v}
19 // collect new edges from v
20 new_next_edges ← new_next_edges ∪ { (v, y) ∈ E | y ∈ V }
21 else
22 // keep control_edges for the next iteration of the outer while loop
23 new_next_edges ← new_next_edges ∪ control_edges
24 // update switch_case
25 switch_case ← switch_case ∪ {(basic_block, control_edges)}
26 S.ListAppend(switch_case)
27 next_edges ← new_next_edges
28 return S

28



Algorithm 1 describes how the case assignment algorithm works. The algo-

rithm traverses the given TraceGraph in topological order and makes each basic

block contain a linear chain of nodes as long as possible. Figure 3.7 shows an

example workflow of the algorithm when the TraceGraph of Figure 3.6(a) is an

input. At first, the next_edges is initialized with {edge a} at line 2. Then the

algorithm calculates the in-degree of node 1 from E \ next_edges at line 12.

Since node 1 has no more incoming edge except for edge a, it becomes the

first node of basic_block at line 14. Then the algorithm attempts to expand

basic_block as long as possible, but it cannot expand because the out-degree

of node 1 is 3 so that node 1 is the end of the linear chain (line 16). Thus, the

first switch-case becomes ({node 1}, {edge a}) at line 25. At the next iteration,

the next_edges becomes {edge b, edge c, edge d}, and three basic blocks are

created in the single switch-case. Two of them contain the linear chain with two

nodes–{node 2, node 3} and {node 4, node 5}–and the last basic block contains

{node 6}. When the algorithm processes edge i along with {edge g, edge h},

it does not put node 8 into the basic block because the in-degree of node 8 is

not zero (line 12) due to edge j. Thus, the basic block becomes an empty set.

Finally, the algorithm returns the ordered list of switch-cases after creating the

basic block with node 8 and node 9.

As shown in Figure 3.7, each switch-case within the result of the case as-

signment algorithm becomes the Switch-Case operation in the symbolic graph.

If a switch-case contains only a single basic block, the GraphGenerator does not

create a redundant Switch-Case operation. For each Switch-Case operation, the

GraphGenerator creates the Case Select operation. During the co-execution, the

PythonRunner informs the GraphRunner of the control edge taken via the Case

Select operation. For example, if the PythonRunner follows edge c of Figure 3.7,

the GraphRunner executes case 2 of the first Switch-Case operation.
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Now we describe the formal definitions and the proof of the correctness of

the algorithm.

Definition 1. A TraceGraph G = (V ∪ {start, end}, E) is a directed acyclic

graph (DAG) where V is set of nodes (V = {v1, . . . , vn}) and E is set of directed

edges (E = {e1, . . . , em}) that connect the nodes. The TraceGraph has two extra

nodes: the start node and the end node. The start node is a unique source node

(i.e., in-degree of the start node is 0) and the end node is a unique sink node

(i.e., out-degree of the end node is 0) of the TraceGraph.

Definition 2. A linear chain is an ordered set of nodes L = {v1, . . . , vl} ⊆ V

such that for all 2 ≤ i ≤ l, (vi−1, vi) ∈ E, the in-degrees of all nodes are 1

except v1, and the out-degrees of all nodes are 1 except vl. Also, the ordered set

of edges in the linear chain, I(L) = { (vi−1, vi) | 2 ≤ i ≤ l }, is called in-chain

edges.

Definition 3. A case c is a pair of (basic block, control edges) = (Lc, Ec)

where Lc = {v1, . . . , vl} is a linear chain and Ec is a subset of E with the

edges that point to v1 of Lc. In addition, a switch-case s is a set of cases that

satisfies the following condition:

∀ c1, c2 ∈ s such that c1 ̸= c2, Lc1 ∩ Lc2 = ∅ and Ec1 ∩ Ec2 = ∅.

In other words, different cases are mutually exclusive.

Definition 4. A trace t = (Vt ∪ {start, end}, Et) is a DAG that satisfies the

following conditions:

1. Vt = {v1, . . . , vk−1} ⊆ V and Et = {e1, . . . , ek} ⊆ E

2. ∀1 ≤ i ≤ k, ei = (vi−1, vi) where v0 = start, vk = end

Moreover, the operation nodes Op(t) of the trace t is Vt, and the path Path(t)

of the trace t is Et.
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Definition 5. An ordered list S = [s1, . . . , sp] of switch-cases covers a trace t

if the following conditions hold.

1. For all si, there exists a unique case ci = (Lci , Eci) ∈ si with a unique

edge di such that {di} = Eci ∩ Path(t). The other cases do not have

corresponding control edges for Path(t).

2. The operations in the trace are represented as the linear chains of the ci’s,
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and all edges in the trace are the union of in-chain edges, the di’s, and

ek. That is,

Op(t) =

p⋃
i=1

Lci and Path(t) =

[
p⋃

i=1

({di} ∪ I(Lci))

]
∪ {ek}.

Note that ek is the edge that points to the end node.

Definition 6. A graph Gs = (Vs ∪ {start, end}, Es) is a sub-TraceGraph

with Vs if

1. Gs is a TraceGraph and Vs ⊆ V .

2. Es = E1 ∪ E2 where

E1 = { (u, v) ∈ E | u ∈ Vs ∪ {start}, v ∈ Vs ∪ {end} }

E2 = { (u, end) | (u, v) ∈ E, u ∈ Vs ∪ {start} , v /∈ Vs ∪ {end} }.

To be specific, E1 denotes all the edges between the nodes within Vs∪{start, end}.

Furthermore, for all edges whose source node u is in Vs∪{start} and destination

node v is not in Vs ∪ {end}, the sub-TraceGraph changes the destination node

of such edges to the end node because the end node should be a unique sink

node of the TraceGraph. Then, E2 denotes the changed edges. We define the

sub-TraceGraph to use in the proof of the following theorem.

Theorem 1. Algorithm 1 generates an ordered list S of switch-cases that covers

every trace in the TraceGraph G = (V ∪ {start, end}, E).

Proof of Theorem 1. To prove the theorem, we define the following auxiliary

variables:

• processed nodes Vp =
⋃

s∈S
⋃

c∈s{ v ∈ Lc | c = (Lc, Ec) }

• connecting edges C = { (u, v) ∈ E | u ∈ Vp ∪ {start} , v /∈ Vp ∪ {end}}
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• processed TraceGraph Gp = ( Vp ∪ { start, end }, Ep )

First, the processed nodes is a set of all nodes in S, which is the same as a set

of the nodes that the algorithm visited. The connecting edges is a set of edges

where the source node of each edge is in Vp ∪ {start} and the destination node

of each edge is not in Vp ∪ {end}. Finally, the processed TraceGraph represents

the TraceGraph with the processed nodes. It has Ep such that

Ep ={ (u, v) ∈ E | u ∈ Vp ∪ {start}, v ∈ Vp ∪ {end} } ∪

{(u, end) | (u, v) ∈ C}.

Then, we use the following loop invariants prior to every iteration of the

loop at line 4.

1. The next_edges variable of the algorithm is identical to the connecting

edges C.

2. The processed TraceGraph Gp is a sub-TraceGraph with Vp.

3. The variable S is an ordered list of switch-cases, and it covers every trace

in Gp.

At the beginning of the loop, the three loop invariants hold with S = [], Vp =

∅, C = { (u, v) ∈ E | u = start, v ̸= end }, and Ep = {(start, end)}.

Next, we prove that the loop invariants are maintained after each itera-

tion. For each v at line 8, the variable basic_block is a linear chain collected

throughout the while loop of line 16 or an empty set. If the basic_block con-

tains a linear chain, Vp adds all the nodes within the linear chain. Then the

next_edges becomes the new edges that point to the nodes which are not in

Vp ∪{end} (line 20). If the basic_block is an empty set, it denotes that v is not

added to Vp. Then, the next_edges becomes the control_edges, where all the
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edges are pointing to v (line 23). Thus, the first loop invariant holds. Moreover,

the second loop invariant holds because the linear chains of each iteration ex-

tend Vp with corresponding nodes while including in-chain edges and updating

the connecting edges. Subsequently, the third loop invariant holds because each

control edges is assigned to the specific case with the corresponding linear chain

(line 25).

Finally, we prove the theorem by showing the following propositions are

true.

1. For each iteration, |Vp| strictly increases.

2. After the termination of the outermost while loop, Vp = V and Gp = G.

The first proposition shows that the outermost loop eventually finishes, and the

second proposition shows that the variable S covers every trace in G. First of

all, for an iteration, let N = {v1, v2, . . . , v|N |} from { y | (x, y) ∈ next_edges} at

line 8. Then, suppose that |Vp| is not increased, which denotes

∀vi ∈ N, in-degree(vi, E \ next_edges) ̸= 0

at line 12. In other words, it implies that

∀ vi, ∃ vj ∈ N such that vj ̸= vi, vj ∼ vi

where x ∼ y indicates that for x ∈ V and y ∈ V , there exists a path from x to y

in G. Without loss of generality, assume that v2 ∼ v1. Then, there should exist

j such that 3 ≤ j ≤ |N | and vj ∼ v2. However, this requires a cycle in G in

the end, which contradicts to the assumption: G is a DAG. Thus, |Vp| strictly

increases throughout the iterations.

Now suppose that Vp ⊈ V after the termination of the outermost loop. Then,

there exists v ∈ V \ Vp. However, this contradicts to the termination condition
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of the loop because there exists a path from start to v by the definition of the

TraceGraph. Thus, Vp = V and Gp = G after the termination of the outermost

while loop.

3.3 Evaluation

In this section, we evaluate Terra in the following two aspects:

• Can Terra exploit symbolic execution from imperative DL programs that

AutoGraph, the static-compilation-and-tracing approach, cannot? (§ 3.3.3)

• How much does Terra speed up imperative DL programs? (§ 3.3.4)

3.3.1 Implementation Detail

Frameworks We use TensorFlow [1] v2.4.1 as our baseline DL framework.

We have built Terra on TensorFlow v2.4.1, and our approach is applicable to

other DL frameworks if they support both imperative and symbolic execution

(e.g., MXNet [12] and PyTorch [78]).

We modified the imperative execution model of TensorFlow for both Graph-

Generator and PythonRunner. When the Python interpreter executes DL oper-

ations imperatively in the tracing phase, the interpreter makes the GraphGen-

erator record each operation as a symbolic representation, which is a NodeDef

of TensorFlow. During the co-execution phase, functions that trigger an actual

computation of a DL operation are modified to perform validating the symbolic

graph and creating an empty tensor object. To annotate feed points, we modi-

fied FuncGraph.capture to capture all external tensors. Similarly, we modified

EagerTensor.numpy to annotate fetch points.

All evaluated imperative DL programs are implemented with the imperative

API of TensorFlow, which has become the standard interface since TensorFlow
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1  import tensorflow as tf

2  

3  for inputs, labels in train_data_loader:

4    with tf.TerraGradientTape() as tape:

5      logits = model(inputs)

6      loss = loss_fn(logits, labels)

7    grads = tape.gradient(

8        loss, model.trainable_variables)

9    optimizer.apply_gradients(

10       zip(grads, model.trainable_variables))

Figure 3.8 Programming interface of Terra

v2.0. We compare Terra with TensorFlow imperative execution and with Auto-

Graph [67], a state-of-the-art system that combines the static compilation ap-

proach with the single path tracing approach. We compile a single training step

function of each imperative DL program (i.e., @tf.function(autograph=True)).

Usability Figure 3.8 shows an example code of using Terra to speed up the

training process. All the programmers have to do is just to modify a single

line of code in their imperative DL program: changing from tf.GradientTape

to tf.TerraGradientTape at line 4. Since all imperative TensorFlow programs

must use GradientTape to train DL models, Terra is applicable to all imperative

programs transparently without programmers’ extra burden. Terra generates

the symbolic graph from the DL operations within the TerraGradientTape

context and the gradient computations (tape.gradient).

Furthermore, since Terra utilizes the Python Interpreter throughout the

execution, it provides a transparent debuggability as the imperative execution

does. Terra can print out the same traceback as executing as the imperative

execution while AutoGraph cannot.

Fallback handling When the PythonRunner detects a new trace in the co-

execution phase, Terra cancels the execution of the GraphRunner. Then, the
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PythonRunner executes all the DL operations that have been matched within

the current iteration to make the program state as if it were being performed

imperatively from the beginning. While executing the matched operations, some

of them could be executed twice if the GraphRunner already executed the op-

erations. This can be a problem for stateful operations, which hold and change

the program state such as I/O operations and communication operations. To

prevent this problem, stateful operations are not recorded by the GraphGenera-

tor so that those operations are not included in the symbolic graph. Any inputs

and outputs of the stateful operations are connected with the symbolic graph

through the Input Feeding and the Output Fetching operations.

We exceptionally allow the GraphGenerator to record and generate stateful

operations that are related to variables (both trainable and non-trainable) of

a DL model such as the ReadVariableOp operation and the AssignVariableOp

operation of TensorFlow to optimize performance. To ensure correct execution,

the GraphGenerator inserts control dependencies between those operations (e.g.,

ensuring read after write) automatically while generating the symbolic graph.

Furthermore, for the variables whose update operations are generated in the

symbolic graph (e.g., updating moving averages of batch normalization), the

PythonRunner makes a checkpoint of those variables at the beginning of each

iteration. Whenever the GraphRunner’s execution is canceled, the PythonRunner

restores such variables from the checkpoint and executes the operations that

the PythonRunner has succeeded to match.

3.3.2 Experiment Setup

Environments We conduct all the experiments on a single machine that is

equipped with 8-core AMD Ryzen 7 2700X @ 3.7GHz and an NVIDIA TITAN

Xp GPU. We use Ubuntu 18.04, CUDA 11.0, cuDNN 8.0, and Python 3.8.8.
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Table 3.1 The programs that AutoGraph fails to execute and the reason for the
failures. Note that Terra can execute all of them.

Program Reason of the failure

DropBlock [21] Python object mutation
MusicTransformer [44] Python object mutation
SDPoint [50] Python object mutation
BERT-CLS [52] third-party library call
FasterRCNN [116] tensor materialization during conversion

Imperative DL Programs For the experiments, we use ten imperative

DL programs collected from open-source GitHub repositories: DropBlock [21],

BERT-Q&A [22], MusicTransformer [44], SDPoint [50], BERT-CLS [52],

GPT2 [99], DCGAN [105], ResNet50 [106], FasterRCNN [116], and YOLOv3 [125].

3.3.3 Imperative Program Coverage

Terra handles all the benchmark programs successfully with the imperative-

symbolic co-execution. However, since AutoGraph does not support the entire

set of Python features, it fails to execute five out of ten programs.

Figure 3.9 shows the codes that AutoGraph fails to convert. First, Drop-

Block [21] keeps keep_prob in the class object and alters it during training.

However, AutoGraph cannot detect the mutation throughout the training. Sim-

ilarly, AutoGraph cannot capture the object mutations of both MusicTrans-

former [44] and SDPoint [50]. For MusicTransformer, the object mutation is

not related to the algorithmic characteristic of the model but the programming

style of the user. It wraps the entire training process in a single trainer class,

which is a common design pattern for implementing a program that trains a

DL model [23]. The _train_step method calculates the loss value of the model

for each training step, and it writes the value to the loss_value attribute
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1  class DropBlock2D(tf.keras.layers.Layer):

2    def set_keep_prob(self, keep_prob=None):

3      if keep_prob is not None:

4        self.keep_prob = keep_prob

5      w, h = tf.cast(self.w, tf.float32), \

6          tf.cast(self.h, tf.float32)

7      self.gamma = (1. - self.keep_prob) * (w * h) \

8          ...         

9   def call(self, x, training=False):

10     ...

11     mask = _bernoulli(sampling_mask_shape, self.gamma)

12     ...

(a) DropBlock

1  class MusicTransformerDecoder(tf.keras.models.Model):

2    def _train_step(self, inp_tar, out_tar, 

3                    lookup_mask, training):

4      predictions = self.call(inp_tar, lookup_mask,

5                              training)

6      self.loss_value = self.loss(out_tar, predictions)

7      ...

8

9    def train_on_batch(self, ...):

10     # not a conversion scope

11     ...

12     loss = tf.reduce_mean(self.loss_value)

(b) MusicTransformer

1  class SDResNet(tf.keras.models.Model):

2    def stochastic_downsampling(self, blockID, ratio):

3      downsampling_ratio = ratio is None and 0.5 or ratio

4      for l in self.layers:

5        if isinstance(l, _ConvBlock):

6          if l.blockID == blockID:

7            l.downsampling_ratio = downsampling_ratio

8          else:

9            l.downsampling_ratio = 1.

(c) SDPoint

1  from sklearn.metrics import f1_score

2  class SparseF1Score(object):

3    def __call__(self, y_true, y_predict):

4      y_true = tf.reshape(

5          tf.constant(y_true), [-1]).numpy()

6      y_predict = tf.reshape(

7          tf.argmax(y_predict, -1), [-1]).numpy()

8      f1 = f1_score(y_true, y_predict,

9          average=self.average)

10     return f1

(d) BERT-CLS

1  def calc_batch_padded_shape(meta):

2    return tf.cast(tf.reduce_max(

3        meta[:, 6:8], axis=0), tf.int32).numpy()

(e) FasterRCNN

Figure 3.9 Code snippets that AutoGraph fails to convert correctly.
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(line 6 of Figure 3.9(b)). However, AutoGraph cannot write the new loss value

to the attribute because it does not access the Python heap while carrying

out the symbolic execution. Thus, when the Python interpreter attempts to

read loss_value (line 12), it fails to read the updated loss. Terra correctly

captures those mutations because the PythonRunner accesses the Python heap

and updates the objects in the co-execution phase. BERT-CLS [53] and Faster-

RCNN [116] show the example cases of tensor materialization during conver-

sion. For both cases, AutoGraph fails to generate a graph because they cannot

evaluate the exact value of the tensors while generating the symbolic graph.

Moreover, BERT-CLS should evaluate the tensor values to calculate the target

metric via a third-party library [10], which AutoGraph does not support. How-

ever, Terra is not affected by such cases because the GraphGenerator collects

traces while Terra carrying out the imperative execution in the tracing phase.

Then in the co-execution phase, the PythonRunner materializes those tensors

via the Output Fetching operations of the symbolic graph.

According to the AutoGraph language document [104], more failures could

exist if an imperative DL program contains unsupported Python features such

as the use of Python generator, try-except, and None type values. To resolve all

the limitations in AutoGraph, new functions to handle each failure should be

implemented and it requires a huge engineering effort. Terra simply avoids the

conversion-related problems by the imperative-symbolic co-execution.

3.3.4 Training Throughput

Figure 3.10 presents the training speed-up of Terra compared to TensorFlow im-

perative execution. For all programs, we measure the average training through-

puts from 100 to 200 steps, and each experiment is conducted ten times. Terra

achieves higher performance than the imperative execution for every program.
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To estimate whether Terra fully achieves the optimized performance of symbolic

execution, we also compare the performance of Terra with AutoGraph, which

shares the same graph executor of TensorFlow with Terra. AutoGraph closely

follows the performance of the symbolic execution because it totally replaces

the imperative execution with the symbolic execution. For the five programs

that AutoGraph can execute, the performance improvements of Terra are on

par with AutoGraph, which shows that Terra highly achieves the symbolic ex-

ecution’s optimized performance. Experiment settings such as batch size and

the dataset are included in Appendix E.

Since Terra generates a symbolic graph and utilizes the symbolic execu-

tion, we evaluate the performance of Terra by applying XLA [74] as shown in

Figure 3.10. Compared to the imperative execution, Terra improves the per-

formance of seven programs by up to 1.73x when applying XLA. XLA is not

applicable to GPT2 and FasterRCNN due to the dynamic shape of the input

data. For each training iteration, the shapes of input data to the models can

change. However, XLA cannot efficiently handle dynamic shapes because it as-

sumes static shapes. For YOLOv3, we profile the execution and find that the

current XLA fails to efficiently cluster operations for YOLOv3. To be more

specific, YOLOv3 includes some DL operations such as ResizeNearestNeighbor

and Where, which are not supported by XLA. Thus, XLA cannot efficiently

fuse DL operations. In addition, we observe that Terra’s performance decreases

more than that of AutoGraph for YOLOv3 because the schedules of some Out-

put Fetching operations are reordered because of XLA kernels, causing a longer

stall in the PythonRunner. However, this problem can be addressed by extending

XLA to support our custom operations.

We profile the execution of both PythonRunner and GraphRunner to analyze

the performance of Terra. We focus on the performance analysis in the co-
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Figure 3.11 Performance breakdown within a single training step for both the
PythonRunner and the GraphRunner.

execution phase because Terra’s execution is mostly in this phase. The number

of transitions between the two phases and the overhead analysis for the tracing

phase are included in Appendix F. Figure 3.11 shows the performance break-

down of the two Runners in a single training step. ‘PythonRunner Exec’ denotes

the Python interpreter’s active running time, such as executing user code or vali-

dating the symbolic graph. Both ‘PythonRunner Stall’ and ‘GraphRunner Stall’

indicate the stall time in which the PythonRunner waits for the GraphRunner to

fetch the materialized tensor or vice versa. Finally, we measure GPU’s active

time to run the CUDA kernels along with the overhead of TensorFlow’s graph

executor as ‘GraphRunner Exec’. For all programs except for FasterRCNN, the

GraphRunner is not stalled, implying that the GraphRunner fully exploits the

optimized performance of the symbolic execution. In FasterRCNN, the stall of

the GraphRunner occurs when the PythonRunner receives a materialized tensor

from the GraphRunner and feeds it back to the GraphRunner. For YOLOv3, the

PythonRunner’s execution time is longer than that of the GraphRunner, which

yields the slightly larger performance gap between Terra and AutoGraph in

Figure 3.10.
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Table 3.2 Comparison of the training speed-up between Terra and Terra with
lazy evaluation. The results are relative speed-up to TensorFlow imperative
execution as Figure 3.10.

Program Terra Terra
LazyEval

ResNet50 x1.25 x1.13
BERT Q&A x1.23 x0.94
DCGAN x1.56 x1.34

Moreover, Figure 3.11 shows that the GraphRunner takes a longer time than

the PythonRunner in most cases. The result implies the reason why the perfor-

mance improvements of Terra are comparable to the performance improvements

of AutoGraph. The execution of the PythonRunner is efficiently concealed by

the execution of the GraphRunner with the co-execution. To demonstrate the

effect of the co-execution, we serialize the execution of the PythonRunner and

the GraphRunner then evaluate the performance for the simple programs among

our benchmarks. Within the serialized execution, the GraphRunner does not

start the execution along with the PythonRunner. Instead, it starts the execu-

tion when the PythonRunner requires tensor data through the Output Fetching

operation. Eventually, the serialized execution is the same as the lazy evalua-

tion that LazyTensor [102] does. Our results in Table 3.2 show that the lazy

evaluation cannot fully achieve high performance of the symbolic execution.

Even worse, it could become slower than the imperative execution when the

execution time of the GraphRunner is not much longer than the execution time

of the PythonRunner.

3.3.5 Tracing Phase Analysis

Table 3.3 shows the number of collected traces and the number of fallbacks from

the co-execution of Terra. The results show that the symbolic graphs of all the
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Table 3.3 Results of the number of collected traces and the number of fallbacks
for each program.

Program # Collected Traces # Fallbacks

ResNet50 [106] 2 0
BERT-Q&A [22] 2 0
YOLOv3 [125] 2 0
DCGAN [105] 2 0
GPT2 [99] 2 0
BERT-CLS [53] 2 0
DropBlock [21] 3 0
SDPoint [50] 4 1
FasterRCNN [116] 2 0
MusicTransformer [44] 2 0

programs can be generated with at most four traces. This indicates that our

approach–collecting multiple traces and incrementally generating the symbolic

graph–is a plausible strategy. Furthermore, the number of collected traces for

BERT-CLS, FasterRCNN, and MusicTransformer shows that Terra correctly

executes the programs with only two traces, while AutoGraph cannot execute

them at all.

3.4 Summary

We propose Terra, a novel approach to execute imperative Python DL pro-

grams. Terra performs imperative-symbolic co-execution, which addresses the

problem of converting an imperative program to a symbolic graph completely.

Terra generates a symbolic graph only from the DL operations of an imperative

DL program. It then carries out the imperative execution, simultaneously ex-

ecuting the symbolic graph. Therefore, Terra achieves optimized performance

while maintaining all Python features of the imperative program. Our evalua-

tion shows that Terra can speed up all imperative DL programs, even for the
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programs that AutoGraph cannot handle.
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Chapter 4

Memory-Balanced Pipeline
Parallelism for Training Large
Language Models

4.1 Motivation

When training a LLM, increasing the degree of pipeline parallelism yields a

memory imbalance problem between pipeline stages. Using the 1F1B pipeline

schedule, as illustrated in Figure 2.2, the first stage has to store activations

as many micro-batches as the pipeline parallelism degree during the warmup

phase. For the other stages, the number of micro-batches in the warmup phase

decreases linearly, so the last stage holds activations of a single micro-batch.

Consequently, the imbalance of memory usage exists across the pipeline stages,

and its magnitude amplifies with an escalation in the pipeline parallelism degree.

Figure 4.1 shows the memory usage of each pipeline stage when training a

GPT-3 13B [9] model with 8-way pipeline parallelism using 8 NVIDIA A100 80

GiB GPUs. In 8-way pipeline parallelism, the first stage computes eight micro-
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Figure 4.1 Memory imbalance among pipeline stages when training a GPT-
3 13B model with 8-way pipeline parallelism. The micro-batch size is 1, and
recomputation is not applied. Both the first and last stages are off the linear line
because they require more memory due to the embedding and fully-connected
layers, respectively. The memory difference between the first stage and the last
stage is 37 GiB.

batches during the warmup phase. Therefore, the difference in the number of

micro-batches between stage 0 and stage 7 is seven, causing a 37 GiB memory

imbalance. In other words, stage 7 only utilizes up to half of the memory due

to the imbalance. Even worse, attempting to accelerate training by utilizing the

unused memory of the last pipeline stage (e.g., increasing the micro-batch size)

might fail because the first stage no longer has enough memory.

Asymmetric partitioning of the pipeline stage (i.e., later stages contain more

layers than earlier stages) might eliminate the imbalance, but it incurs ineffi-

ciency because the pipeline latency is minimized when each pipeline stage has

the same computation time [68, 24, 60, 129]. Alternatively, Chimera [57] re-

lieves the imbalance by replicating model parameters so that each GPU holds

two pipeline stages. However, since replicating model parameters doubles the
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memory usage, the overall memory usage increases for the same pipeline degree.

To the best of our knowledge, BPipe is the first work that speeds up train-

ing LLMs by addressing the memory imbalance with smart activation transfer

across GPUs.

4.2 Method

In this section, we describe an activation balancing method that solves the

memory imbalance problem by transferring activations between pipeline stages.

First, we formalize the memory imbalance and provide a high-level view of

the activation balancing. Then, we define the balanced memory objective and

demonstrate an activation transfer scheduling algorithm that achieves the ob-

jective. Finally, we describe how we assign pipeline stages to GPUs to minimize

the transfer time.

4.2.1 Pipeline Memory Imbalance

On p-way pipeline parallelism with m micro-batches, the memory usage of the

pipeline stage s can be expressed as M(s) = W (s) + A(s), where A(s) is the

maximum amount of saved activations and W (s) is the size of model parameters

including optimizer states. To simplify, assume that a model has repetitive layers

which account for almost all of the model parameters, such as Transformer

models [20, 88, 9]. If all pipeline stages have an even number of layers, W (s) =

W0 is constant. Then, A(s) that varies with the pipeline stage s determines

the memory usage. If we define µ(s) as the maximum number of saved micro-

batches on stage s, A(s) becomes A(s) = A0µ(s), where A0 is the size of saved

activations per micro-batch, which is also a constant value when each pipeline

stage has the same number of layers. As a result, M(s) can be written as the
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following.

M(s) = W0 +A0µ(s) (4.1)

According to Figure 2.2, each pipeline stage in the 1F1B pipeline schedule

possesses at most µ(s) = min(p−s,m). In the practical case, m≫ p is satisfied

because such a case fully saturates all pipeline stages. Therefore, µ(s) of the

1F1B pipeline schedule satisfies the following relation.

µ(s) = p− s (4.2)

Substituting µ(s) in Eq. 4.1 with p − s, Eq. 4.1 denotes that the difference in

the number of saved micro-batches is a cause of the imbalance of M(s).

4.2.2 Activation Balancing

BPipe eliminates the memory imbalance by reducing the difference in the num-

ber of saved micro-batches for all pipeline stages. Eq. 4.1 and Eq. 4.2 show that

the memory usage of the pipeline stage decreases linearly as the pipeline stage

increases. Accordingly, we pair each stage s with stage p− s−1 to balance µ(s)

and µ(p − s − 1). The memory imbalance within each pair can be written as

the following equation.

M(s)−M(p− s− 1) = A0(p− 2s− 1) (4.3)

Eq. 4.3 implies that the pipeline stages with s < p−1
2 occupy more memory

than the stages with s > p−1
2 . We define the former stages as evictors and

the latter stages as acceptors. Each pair then consists of an evictor and an

acceptor, where the evictor evicts activations to its pair acceptor to balance

µ(s) and µ(p− s− 1).

Figure 4.2 illustrates the activation balancing within a 4-way 1F1B pipeline

schedule with eight micro-batches. Now, assume we want to make µ(0) as 3.
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Figure 4.2 An illustration of the activation balancing and the corresponding
changes in the number of saved micro-batches within a 4-way 1F1B pipeline
schedule with eight micro-batches. Stage 0 and stage 3 are the pair evictor
and acceptor, so stage 0 evicts activations to stage 3 and loads them before
the backward computation. All transfers are running parallel to the forward or
backward computation.
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While stage 0 proceeds the forward computation of the third micro-batch, stage

0 evicts the saved activations to stage 3, a pair acceptor of stage 0. The num-

ber of saved micro-batches does not increase after the forward computation

due to the eviction. BPipe always evicts the latest micro-batch among the

saved to minimize the number of transfers. Therefore, the second micro-batch is

evicted instead of the first micro-batch. The evicted activations should be loaded

by stage 0 before processing the corresponding backward computation at the

steady phase. Stage 0 evicts another micro-batch before loading because each

forward computation and loading increase the number of saved micro-batches

by 1, respectively. For example, evicting the micro-batches whose indices are

3 and 5 in Figure 4.2 represent it. At the cooldown phase, stage 0 loads the

activations without the additional eviction because no forward computation is

executed along with the loading. As a result, µ(0) becomes three, as shown in

the graph of Figure 4.2.

4.2.3 Balanced Memory Objective

From Eq. 4.2, the sum of the maximum number of saved micro-batches for any

evictor-acceptor pair is µ(s) + µ(p − s − 1) = p + 1. Including a buffer for the

additional evictions at the steady phase, the value becomes p + 2. Now, the

optimally balanced number of micro-batches µopt is derived as µopt = ⌈p+2
2 ⌉,

and the optimal memory balance Mopt is W0 +A0µopt.

An objective of the activation balancing is accomplishing µ(s) ≤ µopt for

all pipeline stages throughout the training. An evictor with pipeline stage s

achieves the objective by evicting at most (p − s) − µopt + 1 micro-batches to

its pair acceptor. Simultaneously, the pair acceptor saves at most s+ 1 micro-

batches following the pipeline schedule and (p−s)−µopt+1 micro-batches from

the evictor. µ(p − s − 1) then becomes p + 2 − µopt, where the value is less or
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equal to µopt. Therefore, both the evictor and acceptor achieve the objective.

The memory objective implies that BPipe does not trigger any transfer of

activations for the evictors whose stages already satisfy the objective. In other

words, the activation balancing operates when p ≥ 4, and only the evictors

whose pipeline stage satisfies s ≤ ⌊p−4
2 ⌋. For example, the innermost pair of

pipeline stages, which is stage 1 and stage 2 in Figure 4.2, does not transfer

activations because they already satisfy the objective.

4.2.4 Transfer Schedule

To achieve the memory objective, we propose a transfer scheduling algorithm.

The algorithm gets a pipeline parallelism degree p, a pipeline stage s of an evic-

tor, the number of micro-batches m, and a computation schedule C of 1F1B

pipeline as inputs and returns a transfer schedule T for stage s. A computa-

tion schedule is an array of computation decisions. Each computation decision

Ci comprises the type of computation made and the index of the micro-batch

being processed. For example, C of pipeline stage 0 in Figure 4.2 has 22 com-

putation decisions, including pipeline bubbles. C0 has 0 as a micro-batch index

with a FORWARD computation type, C9 has 1 as a micro-batch index with

a BACKWARD computation type, and C18 has an empty micro-batch index

because the computation type of C18 is a BUBBLE .

Algorithm 2 describes the details of scheduling for the given inputs. The

algorithm traverses the computation schedule, deciding when to evict or load.

Within the warmup phase, n_evict micro-batches are evicted to make µ(s)

equal to µopt (lines 9-13). When the algorithm encounters a BACKWARD type

computation decision at i and finds that the micro-batch required to compute

the backward (i.e., Ci.idx) has been evicted, it loads the micro-batch at i − 1

(lines 14-18). However, this load would make µ(s) exceed µopt if Ci belongs to
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Algorithm 2: Transfer Scheduling Algorithm
1: Input: p, s, m, 1F1B computation schedule C
2: Output: transfer schedule T
3: µopt ← ⌈p+2

2 ⌉
4: n_evict← min(p− s,m)− µopt

5: evicted← ∅
6: Ti ← None ∀0 ≤ i < |C|
7: for i = 0 to |C| − 1 do
8: if Ci.type = FORWARD then
9: if µopt − 1 ≤ Ci.idx < µopt − 1 + n_evict then

10: /* warmup phase */
11: Ti ← Evict(Ci−1.idx)
12: evicted← evicted ∪ {Ci−1.idx}
13: end if
14: else if Ci.type = BACKWARD then
15: /* steady or cooldown phase */
16: if Ci.idx ∈ evicted then
17: Ti−1 ← Load(Ci.idx)
18: evicted← evicted \ {Ci.idx}
19: if Ci−1.type = FORWARD then
20: /* steady phase */
21: /* evict to keep µ(s) ≤ µopt */
22: Ti−2 ← Evict(Ci−3.idx)
23: evicted← evicted ∪ {Ci−3.idx}
24: end if
25: end if
26: end if
27: end for
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the steady phase. In other words, when Ci−1 is a FORWARD type, both Ci−1

and the load at i − 1 increase µ(s) so that µ(s) exceeds µopt. The algorithm

prevents it by evicting an additional micro-batch that will be needed at the

furthest future at i − 2, whose index is Ci−3.idx (lines 19-23). On the other

hand, if Ci belongs to the cooldown phase, Ci−1 is the BUBBLE type which

does not increase µ(s). Thus, µ(s) does not exceed µopt, and the algorithm does

not evict an additional micro-batch.

The generated transfer schedule T contains an array of transfer decisions

that interleaved with the 1F1B computation schedule. While processing the

1F1B schedule, BPipe simultaneously processes the transfer schedule. BPipe

evicts the saved activations of the j-th micro-batch if Ti is Evict(j) and loads

them if Ti is Load(j). When Ti is None, a default decision in line 6, BPipe

does not process any transfer.

Following the computations with the corresponding transfer decisions, BPipe

achieves the memory objective for all pipeline stages with the minimum num-

ber of transfers. The number of transfers is the summation of the number of

Evicts and Loads. We only consider the number of Evicts because each eviction

requires exactly one corresponding Load before processing the backward com-

putation. Subsequently, we can interpret the micro-batch eviction as analogous

to cache eviction. In other words, an evictor manages a cache storage whose

capacity is µopt. It evicts an item (i.e., forward micro-batch) to the memory

space of its pair acceptor when the cache is full. Deciding which item to evict

is then determined based on a cache eviction policy. Unlike common caching

scenarios, we know exactly when each item is required in the future. Therefore,

as evicting the item that will be needed in the furthest future is optimal [7],

our scheduling algorithm minimizes the number of transfers.

Although the algorithm assumes a 1F1B computation schedule as an input,
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Figure 4.3 An illustration of the activation balancing within a 4-way interleaved
1F1B pipeline schedule with eight micro-batches and two model chunks for each
pipeline stage.

we can extend it to other variants of 1F1B [69, 70, 121, 5, 133] because all

of them have a memory imbalance. As an representative example, we descibe

how we can apply the algorithm to the interleaved 1F1B pipeline schedule [70].

In the interleaved schedule, each pipeline stage carries out the computations

of model chunks, which are non-contiguous subsets of layers [70]. Assume a

pipeline stage s of p-way pipeline parallelism. When each pipeline stage has v

model chunks, p(v − 1) + 2(p − s − 1) + 1 micro-batches are calculated before

the first backward computation. Then, µopt is derived as the following.

µopt = ⌈
p(v − 1) + 2(p− s− 1) + 1 + p(v − 1) + 2(p− (p− s− 1)− 1) + 1 + 1

2
⌉

= pv + 1

Now, the transfer scheduling of the interleaved 1F1B pipeline schedule is

similar to that of the vanilla 1F1B schedule. Figure 4.3 illustrates how the

activation balancing operates to the interleaved 1F1B pipeline schedule. Within

the warmup phase, an evictor evicts the p− 2(s+ 1) micro-batches to its pair

acceptor. In the steady or cooldown phase, it loads the evicted micro-batches

to perform the backward computations.
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Figure 4.4 An illustration of both standard assignment and pair-adjacent as-
signment for 16-way pipeline parallelism on 2 nodes, each with 8 GPUs. The
dotted lines represent the communication between evictor-acceptor pairs. The
standard assignment makes each pair communicate over the slow inter-node
link. In contrast, the pair-adjacent assignment let them transfer their activa-
tions over the fast intra-node link.

4.2.5 Pair-Adjacent Assignment

As BPipe processes a transfer schedule simultaneously with a 1F1B com-

putation schedule, each transfer should take less time than FORWARD or

BACKWARD not to affect the training time. To minimize the transfer time,

we propose a pair-adjacent assignment that locates each evictor-acceptor pair

in the same node in a cluster. Within the same node, each pair can exploit a

high-bandwidth intra-node communication link like NVLink rather than using

a relatively slower inter-node communication link like Ethernet or InfiniBand.

Figure 4.4 illustrates how pipeline stages are assigned to GPUs using 16-way

pipeline parallelism on a cluster with two nodes, each of which has 8 GPUs. A

standard assignment assigns pipeline stages to GPUs in order, as Figure 4.4(a)

shows. However, it assigns all pipeline pairs to different nodes. Instead, BPipe

assigns pair stages to adjacent GPUs, as shown in Figure 4.4(b). Each pair then

resides in the same node and utilizes fast intra-node communication. Although

the pair-adjacent assignment entails additional inter-node communication of

dependent data between consecutive pipeline stages, it is beneficial because
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Figure 4.5 An illustration of how the pair-adjacent assignment assigns pipeline
stages to GPUs when 4-way pipeline parallelism with 2-way tensor parallelism
and 2-way data parallelism on two nodes, each with 8 GPUs. ‘TP’ and ‘DP’
denote the rank of tensor parallelism and data parallelism. ‘PP’ represents the
pipeline stage.

the bytes transferred between pairs are much bigger than the bytes exchanged

between consecutive stages.

When pipeline parallelism is used with either tensor or data parallelism, the

pair-adjacent assignment assigns pipeline stages considering other parallelism

methods. Figure 4.5 illustrates how the pair-adjacent assignment operates with

data and tensor parallelisms. BPipe prioritizes pipeline parallelism over data

parallelism because the gradient synchronization of data parallelism is per-

formed only once for each training step. On the other hand, BPipe prioritizes

tensor parallelism over pipeline parallelism to ensure that the frequent collective

communication of tensor parallelism always takes place within a node. Hence,

when the tensor parallelism degree is equal to the number of GPUs in a sin-

gle node, BPipe transfers activations across the node boundary. Nevertheless,
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Table 4.1 Model configurations for evaluation. L denotes the number of layers,
D denotes hidden dimension size, and H denotes the number of attention heads.
Finally, G and B are the numbers of GPUs used to execute the model and batch
size, respectively.

Model L D H G B

GPT-3 13B 40 5120 40 8 32
GPT-3 96B 80 9984 104 32 128
GPT-3 134B 84 11520 120 48 192

the activation balancing is feasible across the node boundary in our evaluation

setup.

4.3 Evaluation

To evaluate BPipe, we ask the following questions.

• Does BPipe facilitate faster training of large language models? (§ 4.3.2)

• Does BPipe flatten the memory usage of each pipeline stage? (§ 4.3.3)

• Does BPipe efficiently evict and load activations without performance

degradation? (§ 4.3.4)

4.3.1 Implementation and Environment Setup

We have implemented BPipe on Megatron-LM v3 [48]. We utilize separate

CUDA streams for evicting and loading activations so that activations can

be transferred concurrently with either forward or backward computation. In

addition, we manually manage CUDA memory for activations that are needed

for backward computation and reuse pre-allocated memory after the eviction

to avoid unexpected memory fragmentation.

Our evaluations are conducted on a cluster of six HPE Apollo 6500 Gen10

Plus nodes, each of which is equipped with 8 NVIDIA 80 GiB A100 GPUs
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connected over NVLink and 4 Mellanox 200 Gbps HDR InfiniBand HCAs for

communication. All experiments are executed on the NVIDIA PyTorch NGC

22.09 container. We evaluate GPT-3 [9] throughout the experiments, one of

the most representative LLMs. We use three different model configurations, as

shown in Table 4.1, in which the largest model has 134 billion parameters in

total. Sequence length and vocabulary size are 2,048 and 51,200 for all models,

respectively, and we use mixed precision training [64]. Although we evaluate

only GPT-3 models, BPipe is applicable to any model as long as pipeline

parallelism is used to train the model.

4.3.2 Training Performance

To evaluate whether BPipe can accelerate training, we find the fastest config-

uration for training GPT-3 96B and GPT-3 134B models, with and without

BPipe. Our baseline is Megatron-LM v3 [48], a state-of-the-art LLM training

framework. We perform a grid search to find the best configuration as follows.

In addition to the notations in Table 4.1, we define tensor parallelism degree as

t, pipeline parallelism degree as p, data parallelism degree as d, and micro-batch

size as mb. Then, the following constraints exist.

• H mod t = 0

– The number of attention heads should be divisible by the tensor

parallelism degree because tensor parallelism for Transformer layers

splits attention heads.

• 8 mod t = 0 (8 is the number of GPUs in a single node)

– Tensor parallelism is practical when used within a node boundary

due to its costly synchronization.
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Table 4.2 Training configurations of GPT-3 96B and GPT-3 134B models. ‘ten-
sor’ and ‘pipeline’ represent the tensor and pipeline parallelism degrees, respec-
tively. The remaining GPUs are used for data parallelism, and we use ZeRO
stage-1 data parallelism [90] that splits optimizer states. Moreover, tensor paral-
lelism includes partitioning layer normalization and dropout [48]. ‘mb’ denotes
the micro-batch size, and each value corresponds to a different training config-
uration.

Model Model Parallelism mb Recompute
scopeID tensor pipeline

GPT-3
96B

(1) 1 16 1 layer
(2) 2 8 1,2 layer
(3) 4 4 1 attention

2 layer
(4) 8 2 1 attention

2,4 layer
(5) 2 16 1 attention

2,4 layer
(6) 4 8 1,2 attention

4,8 layer
(7) 8 4 1,2 attention

4,8 layer

GPT-3
134B

(1) 2 12 1,2 layer
(2) 4 6 1 attention

2,4 layer
(3) 8 3 1 attention

2,4 layer
(4) 4 12 1,2 attention

4 layer
(5) 8 6 1,2 attention

4,8 layer
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• L mod p = 0

– The number of layers should be divisible by the pipeline parallelism

degree when pipeline parallelism evenly divides the layers.

• B mod (mb× d) = 0

– The total batch size should be divisible by the micro-batch size times

data parallelism degree. The number of micro-batches is then com-

puted as B/(b× d).

• t× d× p = G

– Multiplication of the degrees of tensor, data, and pipeline parallelism

should be equal to the total number of GPUs.

Under the constraints, we enumerate all possible tuples of (t, p, d,mb). We

evaluate them with Megatron-LM for each recomputation scope in the order

of none, attention, and layer, where the none scope does not recompute any

activation, the attention scope recomputes only the self-attention of the Trans-

former layer, which is known as the selective recomputation [48], and the layer

scope recomputes the entire Transformer layer. We apply early stopping when

succeeding to execute with fewer recomputations because carrying out more re-

computations for the same (t, p, d,mb) is inefficient. Then, each (t, p, d,mb) with

a recomputation scope composes a single training configuration. For BPipe, we

evaluate the configurations that Megatron-LM cannot execute since the acti-

vation balancing does not accelerate training. If BPipe fails due to the out-of-

memory error, we exclude those configurations. As a result, Table 4.2 lists all

feasible training configurations.

We use model FLOPS utilization (MFU) as an evaluation metric, a ratio of

the observed throughput to the hardware maximum throughput [48]. Table 4.3
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Table 4.3 MFU numbers of GPT-3 96B and GPT-3 134B models. The numbers
are the values of Megatron-LM, except the values that are annotated with
BPipe. For those configurations, Megatron-LM fails to run due to the out-of-
memory error.

Model Model Parallelism mb Recompute
Scope MFU [%]ID tensor pipeline

GPT-3
96B

(1) 1 16 1 layer 38.08
(2) 2 8 1 layer 40.46

2 layer 30.29
(3) 4 4 1 attention 37.59

2 layer 40.51
(4) 8 2 1 attention 35.47

2 layer 30.07
4 layer 38.08

(5) 2 16 1 attention 48.78 (BPipe)
2 layer 36.78
4 layer 29.79

(6) 4 8 1 attention 37.09
2 attention 50.64 (BPipe)
4 layer 36.23
8 layer 25.74

(7) 8 4 1 attention 36.18
2 attention 36.56
4 layer 38.04
8 layer 24.31

GPT-3
134B

(1) 2 12 1 layer 39.98
2 layer 38.64

(2) 4 6 1 attention 39.90
2 layer 41.40
4 layer 30.06

(3) 8 3 1 attention 37.77
2 layer 31.76
4 layer 38.81

(4) 4 12 1 attention 39.19
2 attention 52.06 (BPipe)
4 layer 37.22

(5) 8 6 1 attention 38.45
2 attention 38.72
4 layer 38.72
8 layer 24.01
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Figure 4.6 Memory usage of each pipeline stage with the activation balancing
compared to without the activation balancing when training a GPT-3 134B
model with configuration (4)-mb2 of Table 4.2. To estimate the memory usage
without the activation balancing, we allow the activation balancing only for
stage 0 and stage 11 since stage 0 has insufficient memory to execute.

shows that BPipe can execute the configuration that achieves 52.06% MFU,

though Megatron-LM cannot execute it due to the memory imbalance problem.

Consequently, BPipe accelerates training the models by 1.25x compared to the

fastest training configuration that Megatron-LM can execute and 2.17x than

the most inefficient configuration of Megatron-LM.

4.3.3 Memory Balancing

Figure 4.6 presents the change in memory usage when using BPipe. Without

the activation balancing, the maximum memory usage difference between the

pipeline stages is larger than 25 GiB. The model cannot be executed because

the first stage runs out of memory. However, the difference sharply reduces to

10 GiB with BPipe because BPipe flattens the memory usage of each evictor-
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Figure 4.7 The relative difference in iteration time with various batch sizes
when training a GPT-3 13B with 8-way pipeline parallelism. No recomputation
is applied and the number of micro-batches is equal to the batch size.

acceptor pair. As a result, BPipe facilitates faster training with more efficient

resource utilization, as Table 4.3 shows.

If the model size grows, the pipeline parallelism degree should increase be-

cause increasing the tensor parallelism degree is bounded up to the number

of GPUs in a single node. Then, the memory imbalance would also increase

following the pipeline parallelism degree. For example, Megatron-LM v2 [70]

and v3 [48] use 64-way pipeline parallelism for scaling up GPT-3 model to 1

trillion parameters. It implies that BPipe can dramatically flatten the memory

imbalance, paving the way for more efficient training of LLMs.

4.3.4 Performance Analysis

We inspect the efficiency of BPipe by comparing the iteration time before and

after applying the activation balancing. Figure 4.7 shows the additional time

cost of the activation balancing, varying the batch size from 32 to 1,024 when

training a GPT-3 13B model with 8-way pipeline parallelism. The cost occupies

1.1% even when the number of micro-batches is sufficiently large.
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Table 4.4 Time breakdown of transfer, forward, and backward. All times are
the elapsed time for processing a single micro-batch. For GPT-3 13B, 8-way
pipeline parallelism is used with the attention recomputation scope and the
micro-batch size is 1. For GPT-3 96B and GPT-3 134B, we use configuration
(6)-mb2 and (4)-mb2 of Table 4.2, respectively.

Model transfer forward backward

GPT-3 13B 7.63 ms 36.32 ms 83.57 ms
GPT-3 96B 15.63 ms 143.37 ms 287.90 ms
GPT-3 134B 12.06 ms 126.87 ms 256.30 ms

Table 4.5 Time breakdown by varying the recomputation scope of a GPT-3 13B
model with 8-way pipeline parallelism.

Recompute
scope transfer forward backward

none 22.48 ms 36.32 ms 74.12 ms
attention 7.63 ms 36.32 ms 83.57 ms
layer 0.58 ms 36.32 ms 110.33 ms

BPipe achieves a low time cost by virtue of the asynchronous activation

transfer. If we transfer activations synchronously, the time overhead shoots up

to 11%, as Figure 4.7 shows. On the contrary, asynchronous transfer overlaps

with the computation because the computation time takes far longer than the

transfer time. The transfer overlaps even if the model size grows because the

computation time increases more steeply than the transfer time, as Table 4.4

shows. Furthermore, the size of activations to transfer increases with fewer

recomputations. However, the transfer time does not exceed the forward time

even for the no recomputation, as Table 4.5 shows.

4.3.5 Communication Bandwidth Requirement for Transfer

Since each transfer of the activation balancing should finish earlier than the

forward computation of a single micro-batch, we can calculate the required
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Table 4.6 Definition of the variables.

Variable Definition

L number of layers
H number of attention heads
D hidden dimension size
l sequence length
p pipeline parallelism degree
t tensor parallelism degree
b micro-batch size
f forward computation time of a single micro-batch [sec]

network bandwidth of a single GPU with the forward computation time. Using

the variables in Table 4.6, we can derive the bandwidth requirements as the

following. According to Megatron-LM v3 [48], the bytes of activation memory

per each forward micro-batch are:

No recomputation:
Llbh

pt
(34 +

5Hl

h
) bytes (4.4)

Attention recomputation scope: 34
Llbh

pt
bytes (4.5)

Layer recomputation scope: 2
Llbh

p
bytes (4.6)

Dividing Eq (4.4) to (4.6) by f , bandwidth requirements are derived as the

following equations.

No recomputation:
1

109
Llbh

ptf
(34 +

5Hl

h
) GB/s (4.7)

Attention recomputation scope:
34

109
Llbh

ptf
GB/s (4.8)

Layer recomputation scope:
2

109
Llbh

pf
GB/s (4.9)
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If a single node has 8 GPUs, two GPUs within the node where an evictor-

acceptor pair resides should have larger bandwidth than Eq (4.7) to (4.9) when

the tensor parallelism degree is 1, 2, or 4. For the tensor parallelism degree

of 8, inter-node bandwidth divided by 8 should be larger than the derived

bandwidths.

In our evaluation, the fastest configuration of BPipe for the GPT-3 96B

model uses 4-way tensor parallelism, 8-way pipeline parallelism, attention re-

computation scope, and the micro-batch size of 2. Then the total bytes to

transfer are 3.48 GB. Since each forward computation takes 143.37 ms in Ta-

ble 4.4, the required bandwidth is 24.25 GB/s. As the forward computation

time does not change by the recomputation scope, we can derive that NVLink

is also sufficient for no recomputation in which the required bandwidth is 100.31

GB/s.

When the tensor parallelism degree is equal to the number of GPUs in a

single node, BPipe transfers activations across the node boundary. However,

the inter-node transfer is feasible if (1) a cluster has a fast inter-node network

such as InfiniBand and (2) recomputation is used for training. Moreover, we al-

leviate the bandwidth requirements with the following optimization. In general,

backward computation takes twice as long as forward computation. Therefore,

we allow the consecutive Evict-Load to be performed over the timespan of con-

secutive BACKWARD-FORWARD computation within the steady phase. For

example, in Figure 4.2, evicting and loading the micro-batches whose indices

are 3 and 1 can be completed within the sum of the time required for backward

and forward computations. The bandwidth requirements are then relieved as

the following equations.

No recomputation:
1

109
2Llbh

3ptf
(34 +

5Hl

h
) GB/s (4.10)
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Table 4.7 MFU numbers of the GPT-3 96B model, when the tensor parallelism
degree is 8.

Model Model Parallelism mb Recompute
scope

Megatron
MFU [%]

BPipe
MFU [%]ID tensor pipeline

GPT-3
96B

(7) 8 4 1 attention 36.18 35.80
2 attention 36.56 36.52
4 layer 38.04 38.00
8 layer 24.31 27.47

Attention recomputation scope:
68

3 · 109
Llbh

ptf
GB/s (4.11)

Layer recomputation scope:
4

3 · 109
Llbh

pf
GB/s (4.12)

Table 4.7 presents the MFU values when the tensor parallelism degree is 8 for

the GPT-3 96B model. The results show that BPipe is feasible even when the

tensor parallelism degree is 8. Furthermore, when the micro-batch size is 8, the

MFU value of BPipe is higher than the MFU value of Megatron-LM. For such a

large micro-batch size, we observed that PyTorch periodically vacates the cache

allocator due to high memory pressure, resulting in performance degradation.

BPipe partially avoids such inefficiency with the activation balancing.

4.4 Summary

We propose BPipe, a memory-balanced pipeline parallelism method for train-

ing LLMs. With the activation balancing that transfers intermediate activa-

tions between pipeline stages, BPipe resolves the memory imbalance problem

of pipeline parallelism. While training, all pipeline stages utilize a comparable

amount of memory by storing a balanced amount of activations in the unit of
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micro-batch. Our evaluation shows that BPipe speeds up training large-scale

GPT-3 models by executing faster training configurations that are not feasible

without BPipe.
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Chapter 5

Related Work

Symbolic representation and DL compiler To broaden the possibilities

of optimizations and to support various DL accelerators transparently, inter-

mediate representations and compilers for DL have been proposed [1, 13, 19,

54, 110, 89, 113, 17, 128, 74, 93, 26, 42, 130]. All of them define a fixed set of

operations that could be lowered to executable bytecodes for various hardware.

Furthermore, they introduce more fine-grained primitives for DL operations and

contribute to more efficient kernel implementations [13, 110, 54]. For a compu-

tation graph that a set of intermediate representations define, DL compilers

optimizer either intra-operation level or inter-operations level. Since Terra cre-

ates a symbolic graph from an imperative DL program, Terra is instrumental

in utilizing such representations and applying optimizations to an arbitrary DL

program.

Kernel optimization DL models are composed of typical operations such as

matrix multiplication and convolution. Thus, it is worthwhile to optimize spe-
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cific kernels to obtain higher training performance. For example, cuBLAS [72]

and cuDNN [15] offer de facto kernels when using GPUs to train. Similar to

domain-specific language [13, 110, 54] that offer more fine-grained primitives

for the operations, CUTLASS [73] provides template abstractions that can be

used as building blocks within manual kernels. Recently, optimized implemen-

tations [98, 115, 86, 18] of the self-attention in the Transformer layer [114] exist

after it became the essential building block of DL models.

Data parallelism Data parallelism replicates [59] or shares [56] model pa-

rameters and optimizer states across accelerators. An input batch is divided into

multiple mini-batches for each training step, so each device conducts forward-

backward computation with a different mini-batch. After each device finishes a

single training step, all devices carry out an all-reduce collective communication

to synchronize gradients and then update the model parameters [59]. Thereby,

all devices always have the same parameters throughout the training. Whenever

a model fits into a single device, increasing the data parallelism degree is the

best way to scale up the training.

Beyond replicating model parameters, ZeRO [90] and Fully Sharded Data

Parallelism (FSDP) [127] reduce the memory pressure by splitting optimizer

states. They propose more aggressive splits, including gradients and model pa-

rameters, with more frequent collective communication.

Pipeline parallelism To further minimize the pipeline bubble, various pipeline

schedules [69, 70, 57, 121, 5, 133] are proposed. Such schedules stem from the

1F1B schedule but sacrifice memory usage or even model correctness. Alter-

natively, it is possible to reduce the bubble in certain training scenarios. For

example, token-level scheduling [60] is proposed for an auto-regressive language
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model [9]. However, it is effective when the batch size is much smaller than the

pipeline parallelism degree, which is unlikely in practical LLM training scenar-

ios. TSPipe [61] reduces the bubble in the teacher-student knowledge distillation

scenario by saturating forward and backward computations of both teacher and

student models.

Tensor parallelism Mesh-TensorFlow [97] introduces an abstraction that

can express arbitrary operation partitioning. It also presents that data paral-

lelism is one of the cases of tensor parallelism that splits tensors across the

batch dimension. Moreover, some model-specific tensor parallel strategies exist

that efficiently reduce memory pressure with moderate synchronization costs.

For example, Megatron-LM [98] proposes an efficient partitioning strategy of

two consecutive matrix multiplications in the Transformer layer. Additionally,

partitioning along the sequence dimension of the Transformer layer is also fea-

sible [58, 48].

Other memory saving approaches Throughout forward computation, the

memory pressure of a device increases since the activations should be reserved

for the corresponding backward computation. This memory pressure could be

reduced by releasing the activations after the forward computation and recom-

puting them during the backward computation [28, 47]. Since recomputation

incurs an overhead equal to the forward computation time, which activations to

discard and reserve should be well-decided. For a linear chain of computation,

Chen et al. [14] proposed an algorithm that can reduce memory consumption to

sub-linear cost. Checkmate [34] solves a mixed integer linear program to find an

optimal recomputation strategy for an arbitrary model structure. When models

are constructed with repetitive layers, recomputing activations layer by layer
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is widely adopted in practice. In addition to the layerwise strategy, recent re-

search [48] has shown that the memory pressure of Transformer models could

be efficiently reduced by recomputing only their attentions.

On the other side, various systems have been proposed that utilize CPU

memory. In general, a CPU has orders of magnitude larger and cheaper mem-

ory than a GPU. Hence, such systems exploit CPU memory as a swap storage

of limited GPU memory [95, 117, 81, 79, 32, 94, 91]. However, utilizing CPU

memory is not scalable because communication between CPU and GPU is slow

due to the limited communication bandwidth of PCIe. Therefore, CPU offload-

ing is worthy of consideration when the number of GPUs that could be utilized

is very small compared to the size of the model to train.

Communication optimization In distributed training, the time proportion

of the communication is not negligible with respect to the computations. There-

fore, we can perform more efficient training by optimizing communication. For

data parallelism, ByteScheduler [80] proposes a generic communication sched-

uler. It efficiently overlaps computation and communication based on Bayesian

optimization.

Communication pattern becomes more complex with various parallelism

methods. To deal with this, CoCoNet [35] provides an abstraction and a com-

piler stack that jointly optimize computation and communication. For Trans-

former models [20, 88, 76], Megatron-LM [70] reduces the bytes for point-to-

point communication when both tensor and pipeline parallelism methods are

used. Moreover, it overlaps the synchronization of tensor parallelism with back-

ward computation to minimize the synchronization overhead of tensor paral-

lelism.
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Automatic search for the optimal training configuration Beyond the

DL compilers [13, 39, 128] that only consider computations of a given DL model,

various systems [118, 40, 55, 92, 103, 120, 8, 43, 37, 129, 112] exist that au-

tomatically search for the optimal execution plan for a pair of a DL model

and a cluster environment. Such systems target large-scale model training in-

cluding LLMs because writing a distributed DL program is challenging, and

manually exploring all possible distributed configurations is painful for users.

Those systems try to extend the abstraction of DL operations to cover the prim-

itives of parallelism methods. Therefore, they configure a unified search space

and explore it to find the best result. As BPipe rewrites the memory usage of

pipeline parallelism, BPipe can expand the search space and help find better

configurations.
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Chapter 6

Future Work & Conclusion

6.1 Future Work

As the size of DL models continuously grows, DL frameworks need to be aware

of the programming interface for distributed training. Although modern DL

frameworks such as HuggingFace [119] and PyTorch Lightning [23] provide

a modularized programming interface, users should struggle to apply various

parallelism methods without expert knowledge. Especially for pipeline paral-

lelism, it is hard to express the semantics with a simple abstraction because

each pipeline stage executes a different program with different data. Therefore,

distributed-friendly abstractions are being redesigned [123, 129, 112, 6]. Based

on the knowledge that we have learned from Terra and BPipe, we are going to

research a distributed DL framework that provides an expressive abstraction

and facilitates an efficient training of large-scale deep learning models.

Furthermore, applying pipeline parallelism to DL models that have compli-

cated dataflow is not trivial. For example, unlike the encoder-only model [20]
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or decoder-only model [9], the encoder-decoder model [88] needs to send the

output of the encoder to all layers of the decoder. Moreover, multi-modal mod-

els [87, 96] have heterogeneous model components. Since each of them has a

different structure, naive partitioning could incur inefficient training. Thus, we

will investigate the applicability of pipeline parallelism for various DL models

and then study the best policy.

6.2 Conclusion

In this dissertation, we propose two systems for efficient training of DL mod-

els. First, Terra is a novel execution model of an imperative DL program. Terra

preserves the convenience of the imperative execution while facilitating the opti-

mizations of the symbolic execution with the imperative-symbolic co-execution.

Therefore, Terra resolves the limited program coverage and the unsoundness of

the existing systems. Our evaluation shows that Terra can accelerate the train-

ing of DL programs, even for the programs that the existing systems fail to

execute. In addition, we propose BPipe, a novel pipeline parallelism method

for training LLMs. The current pipeline parallelism entails the memory im-

balance problem, in which all pipeline stages reserve asymmetric amounts of

memory. It disturbs efficient training because some pipeline stages could run

out of memory. BPipe deals with the memory imbalance problem by trans-

ferring intermediate activation, making all pipeline stages utilize comparable

amounts of memory. As a result, the evaluation results of BPipe demonstrate

that BPipe reserves room for more efficient training with a balanced memory

load.
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초록

딥러닝 모델에 대한 수요가 빠르게 증가하면서, 딥러닝 학습을 위한 소프트웨어

시스템들의 빠른 발전도 촉진하고 있다. 그러한 소프트웨어 시스템들은 딥러닝

모델들이 여러 딥러닝 가속기들의 계산 리소스를 최대로 이용하면서 학습할 수

있도록 상당히 완성도 있는 최적화를 지원한다. 하지만, 딥러닝 모델 구조가 다양

해지고, 모델의 크기가 계속 증가하면서 그러한 최적화에 방해가 되는 요소들이

끊임없이 생겨나고 있다. 만약 그러한 요소들을 해결하지 못하면, 비효율적으로

딥러닝 학습을 수행하게 된다. 이 논문에서는, 이러한 비효율성의 종류와 원인을

분석하고, 이를 해결하는 두 가지 새로운 시스템을 소개한다.

첫 번째 시스템 테라는 (Terra) 명령형 (imperative) 수행 모델이 갖는 비효율

적인 학습 속도를 해결한다. 테라는 명령형으로 딥러닝 프로그램을 수행을 하는

동시에딥러닝연산들을분리하여심볼릭 (symbolic)수행한다.그에따라,테라는

명령형 수행을 염두에 두고 작성된 딥러닝 프로그램에도 심볼릭 수행의 빠른 최적

화를 적용할 수 있게 하고, 명령형 수행 대비 최대 1.73배 빠른 학습을 지원한다.

그 다음으로 소개하는 시스템인 비파이프는 (BPipe) 대규모 모델 학습에서 메모

리 비효율성을 해결한다. 비파이프는 학습 중간 생성되는 활성화 텐서량의 균형을

맞추는 새로운 파이프라인 병렬 학습 방법을 제시한다. 비파이프를 사용하면, 분

산학습에서 모든 딥러닝 가속기들이 비슷한 양의 메모리를 사용하도록 만들어서,

최대 2.17배 만큼 빠른 학습을 수행할 수 있다.

주요어: 딥러닝 프레임워크, 대규모 언어 모델 학습, 분산학습

학번: 2019-25320
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