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Abstract

Decentralized Trajectory Planning for Quadrotor Swarm in

Cluttered Environments with Goal Convergence Guarantee

Park, Jungwon
Department of Aerospace Engineering
The Graduate School

Seoul National University

This dissertation presents an online distributed multi-agent trajectory planning (MATP)
algorithm for a quadrotor swarm in a maze-like dynamic environment. For deadlock reso-
lution, the proposed algorithm utilizes the subgoal optimization method that ensures the
agent converges to the subgoal without deadlock and uses a waypoint from a grid-based
multi-agent path planning (MAPP) algorithm to guide the subgoal to the desired goal. In
addition, the proposed algorithm adopts a safe flight corridor (SFC) and linear safe cor-
ridor (LSC) for static obstacle avoidance and inter-agent collision avoidance. As a result,
the proposed algorithm guarantees collision avoidance, the feasibility of the constraints,
and goal convergence in a static obstacle-rich environment under a limited communication
range. For dynamic obstacle avoidance, a relative safe flight corridor (RSFC) is introduced
to cover the reachable region of the dynamic obstacles. Moreover, priority-based MAPP is
adopted to prevent other agents’ interference when avoiding dynamic obstacles. To verify
the proposed algorithm, the simulation was conducted in an empty space, random forest,
and maze. In an obstacle-free space, the proposed method can compute the trajectories for
70 agents on average 9.69 ms per agent with an Intel i7 laptop and shows the perfect success
rate. Also, our method shows 44.7% shorter flight time than buffered Voronoi cell (BVC)
and 23% shorter than with our previous work. The proposed algorithm shows the highest
success rate and shortest flight time compared to state-of-the-art baseline algorithms. In

particular, the proposed algorithm shows over 90% success rate when the velocity of moving
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3 y 1 |
"':I'H-_E _'H.I.-_ ] |I ;-



obstacles is below the agent’s maximum speed. The safety and robustness of the proposed
algorithm were validated through a hardware demonstration with ten quadrotors and one
pedestrian in a maze-like environment.

Keywords: Path Planning for Multiple Mobile Robots or Agents, Collision Avoidance,
Deadlock Resolution, Distributed Robot Systems.

Student Number: 2020-39650
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Introduction

Multi-robot systems with a group of mobile robots or unmanned aerial vehicles (UAVs)
have received considerable attention due to their application such as transportation, surveil-
lance, search, and rescue. There may be a need to deploy them in a workspace involving
dynamic obstacles or humans, such as a warehouse [3] or office [4], which raises a need for
a reliable multi-agent trajectory planning (MATP) algorithm.

Among many MATP algorithms, decentralized approaches have received much attention
due to their high scalability and low computation load, which enables online planning.
However, it has been challenging for the decentralized MATP algorithm to generate a
safe trajectory in a cluttered dynamic environment for the following reasons. First, the
MATP algorithm must guarantee deadlock-free to ensure the agents reach their desired goal.
However, many decentralized algorithms have a risk of causing a deadlock even in sparse
environments [9], [0, [7]. Second, the trajectory planning algorithm must guarantee collision
avoidance and dynamical feasibility for safety, and it should guarantee the feasibility of
the collision constraints to prevent optimization failure during the flight. However, as the

number of agents increases, it becomes more difficult to guarantee all of them at the same
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time. Third, the trajectories of dynamic obstacles are unknown in a general situation, so
we have to consider the uncertainty of the obstacle’s maneuver during trajectory planning.
It makes collision avoidance more difficult since there is not enough space to move in the
maze-like environment.

This dissertation presents an online distributed trajectory planning algorithm that can
generate a safe, deadlock-free trajectory in a cluttered environment with dynamic obstacles.
The proposed method solves a deadlock through the following three steps. First, the pro-
posed algorithm places a subgoal in a feasible region that satisfies the collision constraints
and the communication range constraints. This subgoal allows the agent to reach the sub-
goal without a deadlock. Next, subgoal optimization is conducted to make the subgoal
converges to the waypoint, which is on the grid vertex. Finally, a decentralized grid-based
multi-agent path planning (MAPP) algorithm is utilized to guide the waypoint to the de-
sired goal. As a result, the proposed algorithm can guide the agent to the desired goal.
It should be noted that if there is no dynamic obstacle and the communication range is
large enough, the proposed algorithm guarantees goal convergence, which means that the
agent can reach their desired goal. The proposed algorithm adopts a linear safe corridor
(LSC) [1] to guarantee the feasibility of the optimization problem and collision avoidance,
and it utilizes a relative safe flight corridor (RSFC) [§] to avoid dynamic obstacles. In ad-
dition, the grid-based MAPP algorithm is revised to prioritize dynamic obstacle avoidance
when the agents meet the obstacle in a narrow corridor. The proposed algorithm can be
employed for robots with a limited communication range as long as they can configure a
mobile ad-hoc network. To the best of our knowledge, this is the first decentralized MATP
algorithm that guarantees the feasibility of the optimization problem, collision avoidance,
and deadlock-free in a dense maze-like environment.

I compare the proposed algorithm with state-of-the-art methods, buffered Voronoi cell
(BVC) [2], DMPC [9], EGO-Swarm [5], and MADER  [6] in simulations with the various 2D
and 3D environment. Also, I executed an experiment with 10 quadrotors and one pedestrian

to verify the robustness of the proposed algorithm.



1.1 Literature Survey

1.1.1 Multi-Agent Collision Avoidance

There have been discussions in literature closely related to our work on multi-agent
trajectory planning. In [10, 1] [12], the trajectory generation problems are reformulated as
mixed-integer quadratic programming (MIQP) or sequential convex programming (SCP)
problems to deal with non-convex collision constraints. These methods suit well systems
with a small number of agents, but they are intractable for large teams and complex envi-
ronments because an additional adaptation process is required to find proper discretization
time steps depending on the size of agents and obstacles. In [I3] 4], linearized collision
constraints are used to reduce the computation time. They plan an initial trajectory with
a grid-based planner and then construct a safe flight corridor (SFC), which is a safe convex
region for each agent. However, they require an iterative trajectory refinement process that
costs much computation time.

To achieve high scalability, an artificial potential field (APF) [15] 16}, 17] has been con-
sidered since it requires little computation load. However, these methods are not suitable
for a maze-like environment because non-convex obstacles may cause local minima or os-
cillatory motion. Besides that, a velocity obstacle (VO)-based approach and its variants
[18, 19, 20, 21, 22] or optimization-based methods such as on-demand collision avoidance
[9, 23] and gradient-based local planning [5], 24] are presented to reduce the computation
time, but they cannot guarantee collision avoidance between agents.

For the safety of the multi-robot system, many researchers have studied distributed
algorithm that ensures safety with high scalability. The authors of [2] present buffered
Voronoi cell (BVC) to separate the safe region for agents, and the author of [25] utilize
control barrier function (CBF) and hybrid braking controllers to ensure provably collision-
free behaviors. Recently, distributed model predictive control (DMPC) [26] 27, 28] 29| [30]

has received much attention due to its versatility and theoretical guarantee of safety and
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feasibility. However, most works do not consider non-convex obstacles or dynamic obstacles.

There are several works for collision avoidance in a maze-like environment. In [31], a
token-based cooperative strategy is presented to prevent deadlock in a cluttered environ-
ment. However, it requires more time for replanning as the number of agents increases
since the agents with the token can update their trajectory. The authors of [32] extend VO
to handle a complex environment with dynamic obstacles, but it may cause an infeasible
optimization problem when the obstacle does not follow the constant velocity assumption.
On the other hand, the proposed method guarantees the feasibility of the optimization
problem.

To deal with the uncertainty of dynamic obstacles, [33] suggests search-based motion
planning that models the moving obstacle as a polyhedron that inflates over time. Similarly,
[34, 35] models dynamic obstacles using the constant velocity assumption with Gaussian
noise acceleration and finds a collision-free trajectory using nonlinear DMPC. In [36] [37],
Hamilton-Jacobi reachability analysis is used to compute the reachable region of the ob-
stacle. However, these methods show a lack of scalability due to their long computation
time.

The authors of [6] propose an asynchronous planner that guarantees to generate a safe
trajectory by executing a collision-free trajectory through communication between agents.
This method can handle a dense environment with static and dynamic obstacles, but it
often takes a few seconds to update the agent’s trajectory in practice because the planner
blocks the update while it receives other agents’ trajectories. For this reason, this method
may not respond to the unpredictable maneuver of dynamic obstacles unless the exact
trajectories of the obstacles are given, which is not realistic in the actual implementation.
On the other hand, the proposed method adopts the time-synchronized approach in which
all agents plan and execute the trajectory at the same time. Although the synchronized
approaches have limitations in fully utilizing the computational capabilities of individual
agents, the proposed algorithm can respond to dynamic obstacles within constant time

thanks to its short computation time. Also, our method constructs the collision constraints



considering the reachable region of dynamic obstacles, so it does not need exact knowledge

of the obstacle’s trajectory.

1.1.2 Decentralized Deadlock Resolution

The centralized methods like conflict-based search (CBS) [38] can guarantee no dead-
lock, but they are not appropriate for online planning due to their long computation time.
For this reason, many decentralized algorithms adopt the right-hand rule [2, 25| [39] 40, [7],
which moves the goal point to the right side after the deadlock is detected. This approach
works well in an obstacle-free environment, but there is a risk of another deadlock even
after changing the goal point.

Another deadlock resolution method is to replan each robot’s trajectory sequentially.
In [41], a local coordinator asks neighboring agents to plan different trajectories until the
deadlock is resolved. The authors of [31] introduce a token-based cooperative strategy,
that determines which robots to yield the path by bidding. However, under these methods,
there are cases where deadlock cannot be resolved by replanning an alternative trajectory
of individual agents. The authors of [32] introduce a centralized high-level coordinator
for deadlock resolution. This method is suitable for deadlock resolution in a cluttered
environment, but all agents must be connected to the centralized coordinator during the
entire mission. The authors of [42] utilize the grid-based planner to avoid conflict between
agents. However, it often fails to find the discrete path in a compact space because it treats
all other agents as static obstacles.

Several works guarantee deadlock-free in obstacle-free or sparse environments. The au-
thors of [43] introduce a warning band to prevent the agents from clustering. In [I7], an
artificial potential field (APF) is extended to solve the deadlock. The authors of [44] con-
duct deadlock analysis and resolution for 2 to 3 agents. However, these methods share the
same limitation in that they cannot solve deadlock in a cluttered environment such as a
maze. In [45, 406], the grid-based MAPP is utilized to solve deadlock, similar to the proposed

method. The authors of [45] adopt a mode-switching strategy, which converts the planner
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mode to follow the waypoint from MAPP when the deadlock is detected. The authors of
[46] utilize the discrete path from MAPP as an initial trajectory. However, these methods
do not provide a theoretical guarantee for deadlock resolution. Compared to the previous
work [1], the proposed algorithm does not require a fully connected network for collision

avoidance, and it guarantees deadlock-free for dense maze-like environments.



1.2 Contributions

The contributions of the dissertation are summarized as follows:

e Decentralized multi-agent trajectory planning algorithm that guarantees collision
avoidance, the feasibility of the optimization problem, and goal convergence in a

dense maze-like environment.

e Constraint generation method and multi-agent path planning (MAPP) for dynamic
obstacle avoidance in narrow space: (i) Relative Safe Flight Corridor for avoiding
dynamic obstacles with unknown trajectories, (ii) Priority-based MAPP to prevent

other agent’s interference when avoiding dynamic obstacles.

Table shows the comparison with the state-of-the-art algorithms. As shown in the
table, many algorithms including our previous works have a limitation on an applicable
workspace due to a lack of consideration of dynamic obstacles or deadlock resolution in
the narrow space. On the other hand, the proposed algorithm can deal with various envi-
ronments, such as a random forest or even a maze for an extreme case. Furthermore, the
proposed algorithm guarantees collision avoidance between agents, the feasibility of con-
straints, and goal convergence if there is no dynamic obstacle. To the best of our knowledge,
the proposed approach is the first MATP algorithm that can deal with a maze-like dynamic
environment while ensuring inter-collision avoidance, the feasibility of contraints, and goal

convergence.



Table 1.1: Comparison with the state-of-the-art algorithms. v means that the algorithm
explicitly considers/provides the corresponding item. (CAA: collision avoidance between
agents, FO: feasibility of the optimization problem, GC: goal convergence)

Environment Theoretical Guarantee
Method e
. Feasibility
Dynamic Inter-agent Goal
Maze : of
obstacle avoidance ) convergence
constraints
BVC-based [2] X X v X X
DMPC [9] X X X v X
NMPC [30] X X v X X
EGO-Swarm [5] AN X X v X
MIQP-based [7] A* X v X X
MADER [6] X vl v v X
VO-based [32] v v X X X
RSFC [§] X v X v X
LSC [1] v X v v X
Proposed v v v v v

* The result is not reported in the paper, but there is a possibility of extension to a sparse maze.
T Requires the future trajectory of dynamic obstacle.

1.3 Outline

The outline of the dissertation is as follows. Chapter [2]introduces the background knowl-
edge for the Bernstein polynomial. Chapter 3| presents the trajectory optimization method
for multiple UAVs in a dynamic cluttered environment. Chapter 4] demonstrates the theoret-
ical guarantee of the proposed algorithm. For validation, Chapter |5| provides experimental

results, and Chapter [6] ends the dissertation with concluding remarks.



Bernstein Polynomial

Due to the differential flatness of quadrotor dynamics, it is known that the trajectory of
a quadrotor can be represented in a polynomial function with flat outputs (z, y, z,¢) in time
t, where x, y, z is the quadrotor’s position and 1 is the quadrotor’s yaw angle [47]. However,
it is difficult to handle collision avoidance constraints with a standard polynomial basis
because a standard polynomial basis does not provide spatial information on polynomials.
For this reason, the Bernstein polynomial [48] is utilized to represent the trajectory of
quadrotors. Bernstein polynomial is one of the special forms of the Bézier curve and has

various useful properties compared to the standard polynomial.

2.1 Definition

The Bernstein basis polynomial of degree n is defined as follows:
Yk n—k
ben(T) = <k:)T (1—1) (2.1)

where 7 € [0,1] and £ = 0,1, ..., n.



The Bernstein polynomial p(7) € R? is defined as the linear combination of Bernstein

basis polynomials:

p(r) = cibpa(7) (2.2)

The coefficients c;, € R? are called control points of the Bernstein polynomial.

2.2 Properties

This section introduces the properties of the Bernstein polynomial. First, the Bernstein
polynomial has the convex hull property. A Convex hull is convex envelop of a set of points,

which is defined as follows:

Conv({cg, ...,cn}) = {Z AkCE

Ar > 0 for all k& and Z)‘k = 1} (2.3)
k=0

The convex hull property means that As shown in [Fig. 2.1} Bernstein polynomial p(7) is

always confined within the convex hull of control points:
p(7) € Conv({cy, ...,c,}) for all 7 € [0, 1] (2.4)

This property can be used to confine the polynomial trajectory within the desired region.

Second, the start and end points of the polynomial are equal to the first and last control
points of the polynomial. More precisely, for given n'* order Bernstein polynomial p(7) with
control points ¢y, ..., ¢,, p(7) always start at the first control point ¢y and end at the last

control point c,,:

p(0) = co,p(1) =c, (2.5)

Using this property, the start and goal points of quadrotors can be assigned by placing the
first and last control points in the proper position.
Third, the sum and difference of two Bernstein polynomials are still Bernstein poly-

nomials if two polynomials have the same degree. Assume that two Bernstein polynomial

10

3 y 1 |
"':I'H-_E _'H.I.-_ ] |I ;-



Figure 2.1: Convex hull property of Bernstein polynomial.

p;(7), p;(7), have control points ¢; x—o,....n, Cjk=0,...n respectively. Then the sum or difference

of two Bernstein polynomials can be written as follows:

P; ( :l: pj Z C; kbk n ) + Z Cijbkm(T)
h=0 (2.6)

= Z(C’k + ¢ji)bin(T)

k=0

Fourth, a derivative of the Bernstein polynomial can be represented as a Bernstein
polynomial. For example, assume that with p(7) and p(7) have control points vy.... ,—1 and
ay,... n—2, respectively. Then, control points of derivatives can be derived from control points

of the original Bernstein polynomial:
Vi — n(ckﬂ — Ck), Vk = 0, ey N — 1 (27)

i = TL(?’L — 1)(Ck+2 — 2Ck+1 + Ck), Vk = 0, R 2 (28)

. . H kl 1_'_” ;



Multi-Agent Trajectory Planning

3.1 Problem Statement

Suppose that there are N, agents with the radius r in an obstacle environment O with
N, dynamic obstacles. The goal is to generate a safe and dynamically feasible trajectory

that allows the agent to reach the goal point.

3.1.1 Notation

This chapter will use the notation in Table [3.1] The calligraphic letter denotes a set,
the bold letter indicates a vector, and the italic lowercase letter means a scalar value.
The superscript with parenthesis such as x® denotes that the symbol is generated at the
replanning step h, and the superscript will be omitted when the symbol is planned at the

current replanning step.

12



Table 3.1: Notation for Chapter 3

Symbol Definition
This superscript indicates that the symbol is planned at the
x () replanning step h. It is omitted if the symbol is from the
current replanning step.
L., I, Set of agents and dynamic obstacle, respectively.
Grid space (V: grid vertices, &: grid edges), grid size d >
G=VE),d
2\/2r
Communication range r. > 2d, connected group that can
Ter s communicate with the agent i.
The number of the trajectory segments, degree of the poly-
M, m nomial n > 5.
I, T, Iy ={1,--- , M}, 7, ={0,--- ,n}.
Ty, At Start time of the replanning step h, replanning period.

pi(t>7 p; (t)

Trajectory, initial trajectory of the agent i.

Cim,k> Vim,ks Qim,k> Ciom,k

The k™ control point of the m'™ segment of p,(t), p;(t), P;(t),
p;(t), respectively.

@ The space occupied by the static obstacles.
T,Tj Radius of the agent and dynamic obstacle j.
Zi, Wi, & Desired goal, waypoint, subgoal of the agent .
Ry Safe flight corridor (SFC), Linear safe corridor (LSC) be-
ms ok

tween the agent ¢ and the object j.

1[I, 1%l |7v:l, a < b,

@, Conv(X), [a,b]

Euclidean norm, L-infinity norm, makespan of the discrete
path r;, element-wise inequality, Minkowski sum, convex

hull operator, and line segment between two points a, b.
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3.1.2 Assumption

This dissertation supposes the following assumptions:

e (Obstacle) The static obstacle space O and the dynamical limit of dynamic obstacles
are given as prior knowledge. The trajectory of the dynamic obstacle is unknown
to the agents, but each agent can observe the current position and velocity of the

obstacles.

e (Grid-based planner) All agents share the same grid space G = (V, £), where the grid
size d is larger than 2v/2r. If the agent is on the grid, There is no collision between
the agent and static obstacles if the agent is on the grid.

e (Mission) All agents share the same grid space G = (V, ), where the grid size d is
larger than 2v/2r. If the agent is on the grid, There is no collision between the agent

and static obstacles if the agent is on the grid.

e (Communication) This work assumes that the agents can establish an ideal mobile ad-
hoc network (MANET) to relay messages between them. In other words, the agents

7 and j can communicate with each other if they satisfy the following:

1Pi(t) — P ()]l < 7 (3.1)

where p,;(t) is the position of the agent 7, || - ||oo is the L-infinity norm, and r. > 2d is
the communication range. This work assumes that the transmission time per hop is
negligible, and the agents within the communication range can share the information
with each other without a communication loss or delay. Fig. shows an example.
In this example, the blue and red agents are too far apart to communicate directly,
but they are both within the communication range of the green agent. In this case,
the green agent can help them communicate by passing messages between them like

a router. In the same way, the agents that are far apart can communicate with each

- . .

] i -1l 7

-"x_i -|_'1__|| L
| |
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Communication range of

\ )
- the blue agent
\
\
. | —
p > P
) I .
Communication j Communication
!
!
’

Figure 3.1: Ad-hoc network example.

other if they have one or more router agents to relay messages. A set of agents that

can communicate with the agent ¢ through the ad-hoc network will be denoted as a

connected group Nj.

3.1.3 Trajectory Representation

As discussed in the previous chapter, the trajectory of the quadrotor can be represented
as a polynomial with flat outputs (z, y, z,1). Therefore, the agent’s trajectory is represented
to a piecewise Bernstein polynomial [48], thanks to the differential flatness of quadrotor

dynamics [I0]. The trajectory consists of M segments, and each segment of the trajectory

of the agent i is formulated as follows:

)
Y reo Citkbin(t)  t € [Ty, Thid]

Y im0 Ci2kbrn(t)  t € [Thir, Thyo

| 20 Cintkbia(t) € [Thyns-1, Thim]

where h is the current replanning step, p;(¢) is the trajectory of the agent 4, ¢; ,, » € R? is the
control point, n > 5 is the degree of the polynomial, by, () is Bernstein basis polynomial,

Ty is the mission start time, T), = Ty + hAt, and At is the replanning period. Note that
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the segment duration is equal to the replanning period At. In this work, the agent’s yaw
angle is fixed as a constant. The decision vector that include all the control points of p;(t)

will be denoted as follows:

C; = [021,07 T 7CZM,n]T (3.3)

3.1.4 Collision avoidance

Inter-agent collision avoidance

The collision avoidance constraint between the agents ¢ and j can be represented as

follows:

p;(t) —p;(t) € Cij, Vt (3.4)

where C; ; is the inter-collision model, which is a compact convex set that satisfies C;; =
—C;j = {—x | x € C;;} to maintain symmetry between agents. This work adopts the

ellipsoidal collision model as follows:
CZ‘J’ = {X € Rg | ||Di7jX|| < 27‘} (35)

where || - || is the Euclidean norm and r is the radius of the agents, D, ; = diag([1,1,1/v;,])

is the scaling matrix, and v; ; > 1 is the scaling coefficient.

Static obstacle avoidance

The agent ¢ does not collide with static obstacles if the following condition holds:
(Pi(t) & C)NO =10Vt (3.6)

Ci={xcR®| x| <r} (3.7)

where @ is the Minkowski sum, O is the space occupied by the obstacles, and C; is the
obstacle collision model that has a sphere shape as Fig.

3 11 3
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X
(a) Collision model between the agent and static
obstacles.
ZA
i+ T
PN
A
cl-,j(ri +T_',) pl(t) - p](t)
v -
___________ y
X Cirj

(b) Collision model for dynamic obstacle avoid-
ance.

Figure 3.2: Collision models for collision avoidance.
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Dynamic obstacle avoidance

The agent ¢ does not collide with the dynamic obstacle j € Z, if the following condition

is satisfied:

pi(t) — Pj(t) ¢ Cij, Vit (3.8)
Cij = {x e R’ ||| Dy ;x| <7 +71)} (3.9)

where 7; is the radius of the dynamic obstacle 7, C; ; is the collision model between the agent
7 and dynamic obstacle 7 that has an ellipsoidal shape as Fig. D, ; = diag([1,1,1/7,,])

is the scaling matrix, and v; ; > 1 is the scaling coefficient.

3.1.5 Dynamical limit

The dynamical limit of the agent is given as follows:
[Vi(t) oo < Vmaz, Vt (3.10)

12i ()]l co < @maz, Vt (3.11)

where v;(t) and a;(t) are the velocity and acceleration of the agent 4, respectively, and vp,q,

and a,,q.; are the agent’s maximum velocity and acceleration, respectively.

3.2 Overview

3.2.1 Goal Convergence Strategy

The root cause of deadlock in many online multi-agent trajectory planning (MATP)
algorithms is that they do not consider collision avoidance constraints when determining
the current subgoal. Suppose that all agents try to reach the desired goal directly as shown
in Fig. [3.3a] Then, as shown in Fig. [3.3D] the deadlock will occur since the direct path

18
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to the goal is blocked by collision constraints. For this reason, many MATP algorithms
have used various heuristics for deadlock detection and resolution. However, to predict
whether a deadlock occurs, the other agent’s current position and desired goal point must
be considered. As a result, as the number of agents increases, it becomes more difficult
to predict where each agent will converge, which makes deadlock resolution much more
challenging.

To solve this problem, the proposed algorithm is designed to guide the agent toward
the desired goal through three steps. First, as shown in Fig. 3.4 the proposed algorithm
places the subgoal in the feasible region that satisfies the collision constraints. It ensures
that each agent reaches its subgoal. Next, the subgoal optimization is conducted to make
the subgoal converges to a waypoint, which is on the vertex of grid space G. Finally, a grid-
based multi-agent path planning (MAPP) algorithm is used to guide the waypoint to the
desired goal. Using this process, the proposed algorithm can prevent deadlock preemptively,
as shown in Fig. [3.4b| Furthermore, if the MAPP algorithm guarantees completeness, then
the proposed algorithm also guarantees goal convergence. In other words, the theoretical
property of grid-based MAPP can be applied to MATP in the continuous space using the
proposed approach.
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Figure 3.4: Trajectory planning result of the proposed algorithm.
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3.2.2 Algorithm Overview

Fig. and Alg. [1] describe the proposed algorithm. The proposed algorithm consists of
the communication phase (lines 3-4) and trajectory generation phase (lines 5-17). During
the communication phase, each agent configures an ad-hoc network between the agents
within the communication range. After network configuration, a decentralized grid-based
MAPP algorithm is executed to determine the waypoint of the agent (line 3, Sec. .
Then, the agent shares the previously planned trajectory and subgoal with the connected
group (line 4). In the trajectory generation phase, initial trajectories are generated using
the previously planned trajectories and the obstacles’ position and velocity. (lines 5-12,
Sec. . Next, the initial trajectories are utilized to construct feasible collision constraints
(lines 11 and 13, Sec. . In this work, the collision constraints are designed to allow
the subgoal to converge to the waypoint. After that, the subgoal is determined in the
feasible region that satisfies all collision constraints to prevent deadlock (line 14, Sec. .
Finally, the trajectory optimization problem is formulated using the collision constraints
and subgoal and solved using the convex solver (lines 15, Sec. . The above process is
repeated until all agents reach the desired goal. The detail of each module will be described

in the following sections.
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Input i

Previously planned | |
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trajectories ! L. . |
Initial trajectory
lannin
Position/Velocity of | p g i
. —
dynamic obstacles

! Initial traj.
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; Collision i

: constraint |

| construction i

! Corridors | :

i (SFC, LSC) :

- | i Trajectory !
Waypoint from ' e . —— Trajectory

decentralized MAPP | Optimization i

. | Subgoal optimization i

) i Subgoal i

Previously planned ! !

! ]

subgoal !

Figure 3.5: Flowchart of the proposed distributed algorithm run by each agent. First, the
agent receives other agents’ previously planned trajectories through communication and
observes obstacles’ position and velocity. Then, the agent plans the initial trajectory from
the inputs and constructs collision constraints. After that, the subgoal is determined within
a feasible region that satisfies the collision constraints. Finally, trajectory optimization is
conducted to generate a safe trajectory.
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Algorithm 1: Trajectory planning for the agent ¢

Input: Start point s;, desired goal z;, obstacle space O, observed
position/velocity of dynamic obstacles ez, Viez,
Output: Trajectory of the agent i, p,(¢)
1 h <+ 0;
2 while not all agents at desired goal do

// Communication phase

3 Wien, decentralizedMAPP(th_l), ggh_l), Wgh_l), Zis Prez,> Vke,):
4 pygvli),gyg\}i) — communicate(pgh_l), gih_l));

// Trajectory generation phase

5 for Vj € N;UZ, do

¢ if j € Ni then

! ‘ p;(t) < plaHInitialTraj(pg,h_l));
8 else

? ‘ D; (t) planlnitial Traj(p;, v,);
10 end
11 L7, « builldLSC(p; (1), b, (t));
12 end

13 Sy buildSFC(p;,(t), O);

14 g; subgoalOpt(gEhil), Wi, S, E;fk)’
15 p;(t) « trajOpt(S,,, Ei;f;k, g);

16 executeTrajectory(p;(t));

17 h < h+1;

18 end
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Algorithm 2: decentralizedMAPP

Input: Prev. traj pygvli), prev. subgoals gyg}i), prev. waypoints wg-}gvli), desired

goals zjen;, observed position and velocity of dynamic obstacles pycz,
Vkez,
Output: Current waypoints wjecn;,
// DOI Detection
D findDOI(p", w1V, b Vier);
1 Djey, < find (pjej\/i » Wien; » Prez,» Vier, )
2 zjey; < updateGoal(zjen;, Djen;);

// Grid-based MAPP

h—1
8 TjeN; < YUHMAPP(WEGM%ZEM, Djen,);

4 Tiep, modifyPreViousPath(ﬂj(-}éX}i), Wyé;\/li));

5 4f Djey, = 0, Ni = "™V, |#jen;| < |mjen:| then
| Tien: ¢ e,

7 end
// Waypoint update

8 Q<0

9 for Vj € N; do

10 if h =0 or the agent j satisfies , ) then
11 Q<+ QU{jk

12 w; < second waypoint of m;;

13 else

14 W W§~h_1);

15 end

16 end

// Conflict resolution
17 for Vj € Q do
18 | if w; = w,,3g € N;\{j} then

(h—1),
20 end
21 end

22 return wjcy;
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3.3 Decentralized Multi-agent Path Planning

The proposed algorithm introduces the decentralized multi-agent path planning (MAPP)
to update the waypoint, which provides guidance to the desired goal. Alg. [2| describes the
proposed waypoint update method. For every replanning step, each agent configures the
ad-hoc network between agents within the communication range, and one agent among
the connected group is selected as a local coordinator. The local coordinator collects the
previously planned trajectory, subgoals, waypoints, and desired goals of the agents in the
connected group. It also receives the observed position and velocity of the dynamic obstacles

as input.

3.3.1 Dynamic Obstacles of Interest Detection

For dynamic obstacle avoidance, the obstacle that may collide with the agent within the
planning horizon is identified as dynamic obstacles of interest (DOI) (line 1). In this work,
the obstacle k is considered as one of the DOI of the agent j (D;) if the agent’s previous
trajectory passes through the obstacle’s reachable region or the agent’s previous waypoint

is in the obstacle’s reachable region:
p" V() € Ry, 3t € [T, Th + MAY (3.12)
w' e Ry, (3.13)

(h=1)

J

(h—=1)

; (t) is the previous trajectory of the agent j, w is the previous waypoint

where p
of the agent j, R, x(t) is the reachable region of the dynamic obstacle k for the agent j,

which is estimated based on the obstacle’s dynamical limit:

Rik(t) = {x € R® | | D;s(Py + vi(t — Tn) — x))|| < 74(t)} (3.14)
. 1 ) 9

() =r+ry+ §ak7mwm1n(t — Ty, M At)*} (3.15)

] O 1]
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where p,, and v, are the observed position and velocity of the obstacle &, D, is the scaling
matrix, ag me, 15 the maximum acceleration of the obstacle k and M, > 1 is the number of
the error prediction segments to prevent overly conservative reachable region estimation.
When the agent detects the DOI, the agent moves the goal as far as possible from
the obstacle to reduce the risk of collision (line 2). To determine the new goal point, the
breadth-first search is used to find candidate grid points where the distance to the agent’s
previous waypoint is smaller than the distance to the DOI. The farthest point from the

DOI among these candidates is then selected as the new goal point for the agent.

3.3.2 Grid-based MAPP

After DOI detection, the local coordinator plans discrete paths using the MAPP algo-
rithm on the grid space G (line 3). The start points of the MAPP are the previous waypoints
WEZJ_\E), and the goal points are the desired goals updated after DOI detection. If it is the
first time to run MAPP, the start points of MAPP are the agent’s current position. To
consider the downwash between the agents, the z-axis of the grid map is extended by the
downwash coefficient. For example, if the grid size in the x and y axis is d, then the grid
size in the z-axis direction is v; jd where 7; ; is downwash coefficient.

In this work, Priority Inheritance with Backtracking (PIBT) is adopted [49] for MAPP
because it is a fast and scalable algorithm that guarantees goal reachability, which ensures
that each agent reaches the desired goal. Furthermore, I modified the algorithm to allow
the path to circumvent the obstacles since the original PIBT does not consider dynamic
obstacles. First, the proposed algorithm assigns a higher priority to the agent that has a
shorter distance to the DOI than other agents. Fig. [3.6| shows the example. The red agent
has the highest priority since it is the closest agent to the obstacle. Therefore, it can push
other agents to keep a safe distance against the obstacle. Second, when generating a grid
map for MAPP, T block the path entering the reachable region of the dynamic obstacles
from the outside as shown in Fig. This directed grid map can prevent the discrete paths

from passing through the obstacle’s reachable region.

5 - 1
"':I'H-_E _'H.I.- ok |
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Figure 3.6: Priority assignment for dynamic obstacle avoidance. The black circle is a dy-
namic obstacle and the other circles are the agents. The gray region is the reachable region
of the dynamic obstacle, and the green region is the static obstacle. The red agent has the
highest priority because it is the closest agent to the obstacle.

4 X s g

Reachable region
of the obstacle

S

Figure 3.7: The grid map for dynamic obstacle avoidance. The gray region is the reachable
region of the dynamic obstacle, the gray arrow denotes that the edge is bidirected, and the
red arrow denotes that the edge is not bidirected.
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Since PIBT is not an optimal planner, the path can be changed inconsistently for each
replanning step, which can cause a livelock. Therefore, the proposed algorithm compares
the current path with the previous one and chooses the better one. First, the previous path

is modified to match the start point as follows:

(

h—1 h—1 h—1 h—1
[773(72 ), e ,71'](.7]4 )] W; ) = 71'](-,2 Jfor
;= Vi EN (3.16)
(h—1) (h—1) (h—1)
W ™ cee T else
L [ J » 45,2 ’ » gL ]
where 7r; is the modified previous path, 71'](.7};71) is the [ waypoint of the path 71'3(-h71),

ﬂ§h_1) is the previous path of the agent j, and L is the length of the path. After that,
the current path is replaced with the modified one if all agents do not detect the DOI
(D; = 0 for Vj € N;), the member of the connected group is the same as the previous
replanning step (N; = ./\fi(hfl)), and the makespan of the current path is not shorter than
the makespan of the modified path (|7r;jen;| < |7 en;|). Note that this process guarantees
that the makespan of the discrete path will not increase unless the DOI is detected or the

member of the connected group is changed. It is because the modified previous path has a

makespan that is equal to or less than the original path.

3.3.3 Waypoint update

After planning the discrete path, the local coordinator updates the agent’s waypoint w;
to the second waypoint of the discrete path (the point one step after the start point) if the
following two conditions are satisfied (lines 10-13). First, the subgoal and waypoint at the
previous step must be equal . Second, the distance between the updated waypoint
and the endpoints of the previous trajectory’s segments must be shorter than r./2 :

gV =wi" (3.17)

3 11 3
28 | =2



_ Te
Wi = " (Do) || oo < §>Vm (3.18)

where g, and w; are the subgoal and waypoint, respectively. Otherwise, the previous way-
point is reused as the current waypoint (lines 13-15). Lastly, the proposed algorithm checks
whether the waypoints are duplicated in the connected group. If the duplicated waypoints
exist, one of them is restored to the previous waypoint. This process is repeated until there
is no duplicated waypoint (lines 17-21). Lemma shows that the proposed waypoint

update rule prevents duplicated waypoints.

Lemma 3.1. For any pair of the agents i € Z, and j € T,\{i}, w; # w; holds for every

replanning step.

Proof. 1f j € N, then the waypoints of the agent ¢ and j cannot be duplicated because the
duplicated waypoints are eliminated at the lines 17-21 in Alg. [2 Assume that j ¢ N; and
the agents i and j have the same waypoints w; = w;. Then, pgh_l)(ThH) = p,;(T},) by the
initial condition of the trajectory. Hence the following inequality holds due to (3.18]):

_ Te
Iwi = pi(T)llso = Wi =" (Tl < 5 (3.19)

Te

5 (3.20)

Wi = p;(Th)lloe = [Iw; = Pj(Th) ]l <

Therefore, the distance between two agents is smaller than the communication range by
triangle inequality:

1P:(Th) — P;(Th)lloe <7e (3.21)

However, it contradicts the assumption that j ¢ A;. Thus, there are no duplicated way-

points. ]

29 al %



3.4 Initial Trajectory Planning

An initial trajectory is a nominal trajectory to generate feasible collision constraints. In

other words, the collision constraints will be constructed that the initial trajectory satisfies.

3.4.1 Agents

The proposed algorithm generates the initial trajectory for the agent using the previ-

ously planned trajectories, as shown in Fig.

S; h = O,t S [TO7TM]

Isl(t) = < p(h_l)(t) h > Ovt € [Tha Th-‘rM—l] (322>

(2

pghil)(Th_’_M_l) h > O,t € [Th+M—1; Th-i—M]

\

where p,(t) is the initial trajectory, and s; is the start point of the agent i. The control

point of the initial trajectory is represented as follows:

/

S; h=0
Cimk =4 i B h>0m<M (3.23)

CE}EQ h>0m=M

where ¢; ,,, 1, is the control point of the initial trajectory.
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p™ V(1)

Previous
trajectory
t=Th-1 t=T, t =Thim-1
p(t)
Initial
trajectory
t=Tp t € [Tham-1, Thim]

Figure 3.8: Initial trajectory planning for agents.

3.4.2 Dynamic obstacles

For the dynamic obstacle j € Z,, the predicted obstacle’s trajectory is used as the initial

trajectory, i.e.:

p;(t) = p; + v;(t = Th) (3.24)

where p,(t) is the initial trajectory of the obstacle j, and p; and v; are the observed

position and velocity of the obstacle, respectively.

3.5 Collision Constraints Construction

The collision constraints should satisfy the following conditions to achieve collision
avoidance and goal convergence. First, they should ensure maximum safety even in envi-
ronments with dynamic obstacles. Second, they must ensure the feasibility of the trajectory
optimization problem until all agents reach their desired goal. Third, they must not block
the agent while it converges to the subgoal. This section presents a collision constraint

construction method that satisfies the above conditions.
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3.5.1 Static obstacle avoidance

A safe flight corridor (SFC) [50)] is utilized to prevent collision with static obstacles. In
general, SFC is defined as a convex set that prevents the agent from a collision with static

obstacles, i.e.:

(SBCINO 40 (3.25)

where S is a SFC, and C; is an obstacle collision model. Assume that the control points of

the agent ¢ are confined in the corresponding SFC:
Cim,k € Sm7 Vm, k (326)

where S,, is a SFC for the m'* trajectory segment. Then, the agent i does not collide with
static obstacles due to the convex hull property ([2.4)).
The SFC is constructed as follows:

(

S({si,wi}) h=0
Sy h>0,m< M,(3.28

Sm=1 Swit’ h>0m < M,else (3.27)
SUeinme™  w;})) h>0,m=M,(3.29

S({¢imn, g,(h‘”}) h > 0,m = M, else
Conv({&mo,- Eimn}) CST), m< M—1 (3.28)
(Conv({éinrn 8" ", wi}) ©C)NO =0 (3.29)

where S, is the SFC for m'* trajectory segment, S(P) is a convex polyhedron that includes
the point set P and satisfies (S(P) @ C;) N O = 0, and Conv(-) is the convex hull operator
that returns a convex hull of the input set. In this work, S(P) is constructed using the axis-

search method [5I]. Alg. |3 describes the axis-search method. First, the SFC is initialized
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Algorithm 3: buildSFC
Input: point set P, obstacle space O
Output: safe flight corridor S(P)
// Initialization
1 §p < axis-aligned bounding box that contains P;
2 S(P) < S();
3 M+ {£x, +y, £2};
// Inflate the SFC along the axis direction
4 while M s not empty do

5 for p in M do

6 if S(P) can expand to direction p then
7 | expand S(P) to direction p;

8 else

9 | M = M\

10 end

11 end
12 end

using an input point set (line 1). After that, for all directions, the algorithm verifies whether
the SFC is expandable (lines 5). If it is expandable, the SFC is expanded by a pre-specified
length (line 6). This algorithm guarantees to return a convex polyhedron that satisfies the
definition of SFC.

Compared to [52], S,(:;; )is used instead of Sr(,i;fll Vif is satisfied. It allows the agent
converges faster to the subgoal by discarding the inefficient SFC. In addition, it should be
noted that the SFC for the last trajectory segment always includes the line segment between
the points ¢; s, and ggh_l). Therefore, the SFC does not block the agent while it converges
to the subgoal. Lemma shows that the proposed SFC always exists and guarantees

static obstacle avoidance for every replanning step.

Lemma 3.2. (Ezistence of feasible SFC) Assume that ") e gl for Ym, k at the

i,m,k

replanning step h > 0. Then, a non-empty convex set S,, that satisfies and (S, ®
C;) N O =0 always exists for Vh,m.

Proof. If h =0, S = [Si,W(O)] satisfies 1} and (S, ® C;) N O = () by the assumption

(2

that collision does not occur when the agent is on the grid.
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Assume that S exists and satisfies (87(,?71) ®C)NO = for Vm. If m < M, then S,,
in (3.27)) satisfies (S,,,®C;)NO = O by the assumption. If m = M and (3.29) is satisfied, then

Sur = Conv({&arn, 8"V, wi}) satisfies (3.27) and (S & C;)NO = 0 by (3.29). If m = M
and 1} is not satisfied, the SFC can be constructed as Sy = Conv({éLM,n,g(h*l)}).

It fulfills (3.27) and S,,, = Conv({éi,Mm,ggh_l)}) = Conv({c(.fﬁ\}}n),ggh_l)}) C S](\Zb_l), which

1y

implies (S, ® C;) N O = () by the assumption. Thus, there exists S, that satisfies ([3.27)

and (S,, ® C;) N O = 0 for every replanning step by mathematical induction. O

3.5.2 Inter-agent collision avoidance

A linear safe corridor (LSC) [I] is utilized for inter-agent collision avoidance. LSC be-

tween the agents ¢ and j € Z, is defined as a linear constraint that satisfies the following

conditions:
Ly ={xeR®| (x — &mp) -0l —d’ >0} (3.30)
n = —nl’ (3.31)
B = L (mas(Cy i)+ (€ — i) 1) (332

where d:njk is the safety margin and n% € R? is the normal vector of the plane that
separates the inter-agent collision model C; ; and the convex hull 7:[7;7]‘777” max(C, j,n%) =
MmaXxec, ; X ° n’J. Let H; ;. be the convex hull of the control points of relative trajectory
and ﬁwm be the convex hull of the control points of relative initial trajectory, i.e. H; jm =
Conv({Cimnr — Cimu | k = 0, n}), Hijm = Conv({€mp — Cimn | k = 0,---,n}).

Lemmas and [3.5] present the main properties of LSC.

Lemma 3.3. If the trajectories of all agents satisfy H;;jm N Cij = 0,Vj € L,\i,m =

1,---, M, then there is no collision between agents.

Proof. For any pair of the agents i and j, the m'"* segment of the relative trajectory between
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two agents is a Bernstein polynomial:

Pi(t) = P;(t) = D _(Cimp — Cimp)bin(t) (3.33)
k=0
Due to the convex hull property of the Bernstein polynomial, the following condition holds

for vm7t € [Th+m717 Tthm]'
pi(t) — P;(t) € Hijm (3.34)

p;(t) — p;(t) € Ci; (3.35)

Thus, there is no collision between agents because they satisfy the collision constraint ((3.4)

for any segment m. m

Lemma 3.4. (Safety of LSC) If ¢;m i € E;’ik, Cjmk € Lfnzk, for¥m, k then H; ;,,NC;; =0
which tmplies that the agent i does not collide with the agent j.

3 i:j j:i
Proof. Since Cimy € L1, Cimr € Ly s

(3.30) for each agent i and j:

the following inequality can be derived using

(Ci,m,k — éj,m,k) : Ili)’@j + (cj,m,k — éz’,m,k) . n{n’i — (d;’zj,k + dﬁn’lyk) >0 (336)

This can be simplified as follows:

(Cim = Cam) 3]+ (Cime = Ejome) -1 = (dpfy + ] y) >0 (3.37)
(Cime — Cjmk) - n’’ > max(C; j, n’7) (3.38)

The above inequality satisfies for Vk, thus for any A, > 0s.t. Y ;A = 1
D MelCimp — Cjma) - 0l > max(Cyj,nk) (3.39)
k=0

Hijm NCij =0 (3.40)
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Thus, there is no collision between the agents by Lemma [3.3] O

Lemma 3.5. (Ezistence of feasible LSC) If "r’:l”m NC;; =0 forVi,j € I,,m,k, then there
exists Ejnjk that satisfies the definition of LSC and ¢€; i € ,Cirfk, for¥i, g €Z,,m,k.

Proof. ﬁum and C; ; are disjoint compact convex sets. Thus, by the hyperplane separation

theorem [53], there exists ng such that:

~

min(H,; j m, ns) > max(C; ;, ny) (3.41)

~

where min(H,; jm, ns) = min, o XD Suppose that the normal vector and safety margin
of E;fk is given as follows:

n’/ = —n’’ =n, (3.42)

dpl =d), = §(maX<Cz‘,j: 7)) + (€imk — Cjmp) - 1,7 (3.43)

They fulfill the definition of LSC, and they satisfy (¢;mx — Cjmk) -0 — djn]k = %((ézmk —
Cjmp) - L — max(C; ;,n%)) > 0 due to |D It indicates that ¢;,, 1, € C;‘n]k for Vi, 7 €
Lo, m, k. O

In this work, the LSC between the agents ¢ and j € Z, is generated as follows if it is
not the LSC for the last trajectory segment (m < M):

Ezn]k ={xeR®| (x—¢jmy) 0 — dzrrfk > 0} (3.44a)
- 1 .
Ayl =7+ 5 € = En) -] (344b)

where n% € R3 is the normalized vector that points toward the closest point on the convex
hull 7-Alwm from the origin, and 7:L,]m = Conv({€Cimxr — Cimp | k € I,}. Fig. describes
the LSC construction process. First, the coordinate transformation is performed to convert
the inter-collision model C;; to the sphere as shown in the middle figure of Fig. [3.9] Next,
the Gilbert—Johnson—Keerthi (GJK) algorithm is conducted [54] to find the closest points

between the convex hull ﬂljm and the collision model. The normal vector of the LSC is

2] 8
I Bl !
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the normal vector from the origin to the closest point on the convex hull, and the safety
margin can be computed from the (3.44)) using the normal vector. Finally, the desired LSC
is generated by reversing the coordinate transform, as shown in the green shaded area in
the right figure of Fig. [3.9]

The LSC for the last trajectory segment is constructed as follows so that the agent can

converge to the subgoal:

£y = bx € B (x— plf) -] — dif, > 0) (3.450)
nkl = pglj pjlf_ (3.45b)
Hpc’ls - pc%sH
i L i
Bitye =7+ 50— bl (3.45¢)
where pi}i € [Cimtn; g§h‘”] and Pi}i € [¢jmn, g§h_1)] are the closest points between [€; ar., ggh_l)

and [éj,Mm,gy_l)], respectively, and [a, b] is the line segment between two points, a and

b. Similar to SFC, the LSC for the last trajectory segment also contains the line segment

[éi,M,n,ggh_l)]. Therefore, the collision constraints for the last trajectory segment always

include the line segment [€; asn, g(h_l)] as shown in Fig. . As a result, each agent can

secure the free space to proceed to the subgoal ggh_l), and the subgoal will converge to the

waypoint w;.
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Figure 3.10: Collision constraints for the last trajectory segment. The triangles are the final
points of the initial trajectories, and the circles are the previously planned subgoals. The
gray box is the static obstacle, and the color-shaded region is the feasible region that satisfies
the collision constraints. The collision constraint for the last segment always includes the
line segment between the final point and the subgoal, which is depicted as the thick line.

Lemma [3.6| presents that the proposed LSC guarantees inter-collision avoidance.

Lemma 3.6. (Safety of LSC) If ¢; i € Ef;f;k, Cjmk € Efnzk for Ym, k then the agents i

and j do not collide with each other.

Proof. If m < M, then the LSC guarantees collision avoidance due to Lemma [3.4 If
m= M:

(Cimk = Peis) - 137 + (Chmk = Pis) - 03y — (digy, + day) >0 (3.46)

This can be simplified as follows:

(Cimk = Cjmik) - 037 + (Poiy — PUs) - 057 — (dyp, +dypp) >0 (3.47)
(Comk — Cim) - 07 + [1Pe, — Plull — 2r + [Ipi, — pLLl > 0 (3.48)
(Cimk — cj,m,k) . n}j > 2r (3.49)
o & =
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The above inequality holds for ¥m, thus the agents do not cause a collision by Lemma |3.3

In conclusion, there is no collision between the agents ¢ and j. O

Fig. shows the difference between LSC and BVC [2]. Since the BVC is generated
using the agent’s current position only, the desired trajectories from the BVC remain within
each static cell, which leads to a conservative maneuver as shown in Fig.[3.1Tal On the other
hand, the LSC can utilize the full trajectory at the previous step. Thus, the agent can show

more aggressive maneuvers while ensuring collision avoidance, as depicted in Fig. |3.11b]
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(a) BVC [2]

(b) LSC

Figure 3.11: Trajectory planning comparison between BVC [2] and LSC. The colored lines,
small squares, and circles are desired trajectories, goal points, and desired position at the
end of the planning horizon (i.e. p;(Thiar)) respectively. The color-shaded regions denote
the collision constraints for the red agent at the end of the planning horizon.
e e -
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3.5.3 Dynamic obstacle avoidance

Since the exact trajectory of the dynamic obstacle is unknown, the reachable region
of the obstacles should be considered when generating the constraints. To solve this prob-
lem, the proposed algorithm reformulates the predicted obstacle’s trajectory as piecewise

Bernstein polynomials:

(

Y oheoCikbrn(t)  t € [Th, Thi]
p;i(l) =4 : (3.50)

\ Y one0Cintkben(t) € [Thonr—1, Thyn]

where ¢;,, 5 is the control point of the predicted trajectory. Then, the reachable area of
the object is estimated through the dynamical limit of the object. As depicted in Fig. [3.12]
the reachable area can be expressed using the predicted trajectory and the error bound

B;(t) C R? between the predicted trajectory and the actual trajectory of the object:

p;(t) € p;(t) & B;(t) (3.51)

where p,(t) is the predicted trajectory of the 5t object and the @ is the Minkowski sum.
Finally, as illustrated in Fig. [3.13] the sufficient condition of dynamic obstacle avoidance

can be derived as follows:

(pi(t) =, (1) N (B;(t) & Ciy) =0, t € [Th, Thin] (3.52)

42 al %



Agent i
@ = :

B; (1)

Figure 3.12: Trajectory prediction model with error bound (blue ellipsoid).

. . PN

2r A

Cl,]
0 y Bi(t) © Ci;

X

Figure 3.13: Collision model between agent ¢ and object j (red ellipsoid) and inflated
collision model to consider the error bound (blue ellipsoid).

This work utilizes a relative safe flight corridor (RSFC) [8] for dynamic obstacle avoid-
ance. RSFC covers the obstacle’s reachable region by inflating the collision model over time

as follows:

Cij(t) = {x € R* | || Dy ;x| < 7;(t)} (3.53)

J

1
rit)=r+r;+ §aj7maxmin(t — Tp, M AL)? (3.54)
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where C; ;(t) is the inflated collision model, 7;(t) is the radius of the inflated collision model,
@ maz 18 the maximum acceleration of the obstacle j, and M, > 1 is the number of error
prediction segments. Since the inflated collision model includes the obstacle’s reachable

region, the sufficient condition of dynamic obstacle avoidance can be represented as follows:
pi(t) - f)j(t) ¢ CAi,j(ﬂ: vt € [Th7 Th+1]7 h (355)

where p,(t) is the initial trajectory of the obstacle j.

Lemma 3.7. (Sufficient condition for dynamic obstacle avoidance) If the agent i satisfies
at the replanning steps h, then there is no collision between the agent i and the

dynamic obstacle j € T, at the replanning steps h.

Proof. Assume that the bound of the obstacle’s trajectory is given as follows:

b,(1) — B, (1) € By (1) (3.56)
where p,(t) is the initial trajectory of the obstacle j, and B;(t) = {x € R® | [|x[| <
20 mae(t — T,)?} is a error bound. Let a € C;; and b € B;(t). Then, ||D;;(a + b)| <
|D; jall + [|D; || < v+ 7 4 3|ajmasl|(t — Th)? since 7;; > 1. It implies that:

Ci; @ B,(t) C Ci (1), ¥t € [Ty, T, + M.At] (3.57)
Thus, the following equations hold for Vh,t € [T}, Th11]:

pi(t) = ;(t) & Cii(1)

= pi(t) —p;(1) ¢ Ciy @ B;(t) (- (B.57))

= pi(t) ¢ Ci; @ B;(1) © {D,(1)} (3.58)

= Ppi(t) € Ciy © {p;(t)} (. (8-56))

= pi(t) = p;(t) € Ci
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In (3.58)), the property of Minkowski sum that a € A< a+b € A® {b} is used. The last
equation is equal to the original collision constraint (3.9). Therefore, if the agents satisfy
(3.55) for all replanning step h, the agent does not collide with the dynamic obstacles. [

Based on the sufficient condition, the RSFC between the agent 7 and the obstacle j is
defined as a linear constraint tangent to the inflated collision model:

L, ={x R’ | Dij(x — &jmu) -mil —d7, > 0} (3.59)

m,

di;wj,k = fj,m,k -+ €ijm (360)

where n’/ is the normal vector, dzmj . 1s the safety margin, 7;,, is the control point of the
Bernstein polynomial 7;(¢), and e; j,,, < 0 is the slack variable to prevent the constraint
from becoming infeasible.

Fig. describes the RSFC construction process. First, the coordinate transformation
is performed to convert the inflated collision model to the sphere. Next, the proposed
algorithm finds the closest point between the collision model and the segment of the relative
initial trajectory, p;(t) —p;(t). The RSFC is the tangent plane to the inflated collision model
at the closest point (See the green plane of the middle figure of Fig. . Finally, the RSFC
is generated by reversing the coordinate transform, as illustrated in the right figure of Fig.

B.14

3.6 Subgoal Optimization

A subgoal is an intermediate goal point for the agents to reach the waypoint. As dis-
cussed in section the subgoal must be placed in a feasible region that satisfies the
collision constraints to avoid deadlock. In addition, it must converge to the waypoint to
ensure goal convergence. For this reason, the proposed algorithm places the subgoal as

the closest point to the waypoint within the feasible region. The subgoal is determined by

3 11 3
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solving the following optimization problem:

minimize ||g; — w;|
g.

7

subject to g; € [s;, wy] ifh=0
g clgh "V w] ifth>0 (3.61)
g € Sm
g €Ly, VieN;

where g, is the subgoal at the replanning step h. Note that the subgoal optimization problem
can be converted to linear programming (LP) problem (See (4.31])). Lemma shows the

properties of the subgoal.

Lemma 3.8. For the agentsi € Z,, j € T,\{i}, the subgoal satisfies the following:

(i) There exists a grid edge e € € such that [g;, w;] C [gl(-hfl), w;| C e for Vh > 0.

(i) g; # g;-
(1i1) [gghfl), w;| N [gghfl), w;] CV for Yh > 0.

(iv) If there exists an edge e € £ such that g; € e and g; € e, then g; or g; is on the grid
vertex of the grid G = (V,€).

Proof. (i) If h = 0, there exists a grid edge e € £ such that [si,wgo)] C e because s; is on
the grid vertex by the assumption and WEO) is the waypoint of discrete path from MAPP.
Also, g§°) € [si,wgo)] due to . Therefore, [g§.°),w§°>] C [sl-,wgo)] Ce.

Assume that there exists a grid edge e*™1) € & such that [ggh_l),wgh_l)] c e If
gl(-h_l) #* Wgh_l), then w; = Wl(h_l) by the waypoint update rule . Hence [g;, w;] C

[gghfl),wi] C e since g; € [gghfl),wi]. If gghfl) = wghfl), then there exists a grid edge
e such that [g;,, w;] C [gz(»h*l),wi] = [Wghfl), w;] C e because wghfl),wi are the consecutive

waypoints of the discrete path from grid-based MAPP. Thus, there exists a grid edge e € £
such that [g;, w;] C [ggh_l), w;| C e for every replanning step by mathematical induction.

.__:l'x . _'k..-l_ -I_-li .-".ll
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(ii) ||g; — g;ll > 2r because g, € Eé\jn and g; € Eg\’/zn. It implies that g; # g;.
(iii) If A = 0, [Si,Wl(-O)] N [sj,wg-o)] C V because the waypoints are planned using grid-
based MAPP that ensures collision avoidance. Thus, [gf w1 n [gg.o),w(-o)] C V since

Wi J
g W s, w!”] by (3

Suppose that [gi - wz(.h_l)] n [gﬁh_l),wéh_l)] cV.

(Case 1) Ifg," " # wi M and g™ # w)™™, [, wiln[g)"™, wil € Vsince w ™ =

w; and w§h_1)
[g w;| N [gg-h_l) w;] C V by (3.61).
(h—1) (h—1)

(h—1) h—1) h—1 h—1 h—1
(Case 2) If g2 = W( ) and g( ) = W;- ). then [g§ ), wilNlg; 7wyl = [wy 7 wiln

= w; by the waypoint update rule (3.17). Therefore, [g,, w;|] N [g;, w;] C

(W Wj] C V since Alg. [2| updates the waypoints without any conflict. Therefore,
h—1 h—1

g wil N lgg, wil € (8" wil N [gy" ™V wil c V.

(Case 3) Assume that only one of the subgoals is equal to the waypoint. In other words,

(h=1) (h—1)

(h 2 7é W(h Y and g =) — W=D without loss of generality. Then, [g;" 7, w;|N[g;" 7, w;] =

J

(h-1) __ (h—1) (h—1)
8 » Wi ]Q[Wj )

such that [ (h 1) ( )] C e" 1 can be found due to (i) of Lemma [3.8] Also, it satisfies

g'hil),Wj] N e C V because W(h #w'" and w; # wi = w""" by Lemma

Therefore, [g;, wi] N [g;, ;] C g™ win [ggh U,Wj] C V. Thus, (iii) of Lemmaholds

Wj] by the waypoint update rule (3.17)). Here, a grid edge e*~1) € &

[w

for every replanning step by mathematical induction.

(iv) Assume that there exists an edge e such that gl

and W;o)

(0)

€e,g; ©

7

€ e. Since s;, 8, W

are on the vertex of the grid, the necessary condition of g§°) ¢V and ggo) ¢V is:
1w, (1[5, w3y 4 0 (3.62

However, it implies that there exists a collision between discrete paths, which is impossible
by the MAPP algorithm. Thus, g” = w\” € Vor g’ = wl” e V.

Assume that (iv) of Lemmaholds at the replanning step h—1 and the edge e satisfies
g, €candg; €e If g(-hfl) ¢ e or gg-hfl) ¢ e, then g, = w; € V or g, = w; € V by the
constraint g, € [gghfl), i) Ifg ) € eand g e e, then gghfl) €Vor gg-h*l) € V by the
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due to (iii) of Lemma . If w; # ggh_l), then the waypoint w; satisfies w; = g

Y €V without loss of generality. If w; = gghfl), then w; ¢ e
(h=1)

i

assumption. Suppose that g
or
: : : _(h-1)
w; ¢ e since the waypoints cannot be duplicated by Lemma m Therefore, g, = g; eV
(h=1)

for every case because of the constraint g; € [g;

., w;] and the assumption that g; € e.

To summarize, if there exists an edge e € £ such that g, € e or g; € ¢, then g; € V or

g; € V by the mathematical induction. O]

3.7 Trajectory Optimization

3.7.1 Cost function

The cost functions are formulated to minimize the distance to the subgoal, the jerk of

the trajectory, and the size of the slack variables for dynamic obstacle avoidance:

M
Jerr<pi(t>> = Werr Z 5mHCi,m,n - gz”2 (363>
m=1
Thtnr || 3 2
Jarpt) = waer [ | Gmit)| (3.64)
Th

M
Jslk = Wglk Z Z 6?7j7m (365)

JjE€L, m=1
where w,,, Wyer, Wer > 0 are the weight coefficients, and 9,, is discrete delta function defined

as follows:

1 m:Moré@m 1n — &;
G = " (3.66)

0 else

3.7.2 Communication range

If the communication range is not considered when generating the trajectory, the agent
may collide with an agent outside the range. Moreover, if the distance between the agent

31 O T
-"'H._= - -1 1
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and its waypoint is longer than half the communication range, an agent outside the range
can assign the same waypoint. Therefore, the following constraints are added to prevent

the collision and duplicated waypoints between agents outside the range:
TC
||Ci,m+l,k — Ci,m,O”oo < 5 -, Vi > O,m, k, (367)

I€imn = Willoo < %,Vm (3.68)

where 7. is the communication range.

3.7.3 Other constraints

The properties of Bernstein polynomial , , and are utilized to formulate
the initial condition to match the agent’s current state. Similarly, the continuity constraints
are imposed to make the trajectory continuous up to the acceleration. The dynamical limit
, can be represented to affine inequality using the convex hull property of
the Bernstein polynomial . Lastly, the final stop condition is added for the feasibility
of the optimization problem (i.e., ¢; p = Cimn—1 = Cimn—2). These constraints can be

represented as the affine constraints:
AeqCi = bgg (3.69)

Adynci j bdyn (370)

where c; is the vector that concatenates the control points of the trajectory p,(t).
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3.7.4 Optimization problem

The trajectory optimization is conducted by solving the following quadratic program-

ming (QP) problem:

minimize
c;

subject to

Jerr + Jder + Jslk

Cimk € Sm VYm, k
Ciamp € L7, Vi e N, UL, m, k
€ijm S 0 V] S IO, m

(3-67), (3-63), (3-69), (3.70)

(3.71)

The trajectory optimization problem can be solved by using a conventional convex solver.

The time complexity of the convex QP solver is known to O(N3L) [55] where N is the

number of decision variables, and L is the number of bits in the input, which is propor-

tional to the number of inequality constraints. Since the number of inequality constraints

is proportional to the number of robots and the computation time of other modules is neg-

ligible when the number of agents is large enough, the computation time of the proposed

algorithm increases approximately linearly with the number of robots.

o1

&

| &1



Theoretical Guarantee

This chapter addresses the theoretical properties of the proposed algorithm. Section
describes proof that the proposed algorithm guarantees collision avoidance. Section
presents proof that the proposed algorithm ensures the feasibility of the optimization
problem so that the planner never fails to return the trajectory during the mission. Section
proves that the proposed algorithm guarantees goal convergence if the communication

range is large enough.

4.1 Collision Avoidance

Since the proposed algorithm utilizes a safe flight corridor (SFC) and linear safe corridor
(LSC), it guarantees inter-collision avoidance and static obstacle avoidance during the
mission. Moreover, Theorem presents that the proposed algorithm prevents the collision

between agents out of the communication range.

Theorem 4.1. (Collision avoidance) The trajectory from does not cause inter-agent

collision or collision between the agent and static obstacles.
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Proof. By Lemma , there exists S, for Vh, m that satisfies (S,, ®C;) NO = (). Therefore,

the constraint c; ,, ;, € S,, ensures static obstacle avoidance due to the convex hull property

of Bernstein polynomial ([2.4)).

For the agent 7 € N, there is no collision between the agents i and j due to Lemma

m. For the agent j ¢ N;, the following inequality holds for all agents due to (3.67)):

T .
||Ci,m,k‘ - Ci,l,OHoo S Ec - Vi € I(mma k

(4.1)

Due to the convex hull property (2.4]) and end-point property (2.5)) of Bernstein polynomial,

the following holds for all agent ¢ € Z:
Te .
”pz(t) - C’i,l,UHoo S E -, Vi < Ia,t c [ThanH»M]

Te .
sz(t) - pz<Th)HOO < E - Vi € Iaat S [ThaTthM]

Due to the assumption that j ¢ N;:
Ip;(Th) — pj(Th)Hoo > Te

Ipi(Th) — pi(t) + P;(t) — P;(Th) + Pi(t) — P;(t)[lc > e

According to (4.3) and triangle inequality:

Hpi(t> - Pz’(Th)H + HPj(t) - Pj(Th)H

+ i) = pj (D)l = 7e

Ipi () = ;1) = [[Pi(t) = p;(H)lloc = 2r

(4.2)

(4.3)

(4.6)

(4.7)

Therefore, there is no collision between the agents ¢ and j. In conclusion, the trajectory

from (3.71]) guarantees inter-agent collision avoidance and static obstacle avoidance.

]

Also, it should be noted the proposed algorithm guarantees dynamic obstacle avoidance
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if the slack variables in the RSFC are all zero.

Theorem 4.2. (Dynamic obstacle avoidance) If ¢;pmy € E:njk and €;j,m = 0 for Ym, k,
then the agent i does not collide with the dynamic obstacle j € I, at the replanning steps
h.

Proof. Since e j,,, = 0 for Vm, din]k = 7jmk- Lhe following inequalities holds by 1) for
Vj€eZ,,m,k:

Dij(Cimp — Cimp) -0 — df;j;k >0 (4.8)
Di,j (Ci,m,k — (Aljjm’k) . nf;f — T’Ajm%k > 0, (49)

Here, the Bernstein basis is multiplied as follows:

Z Di,j (Ci,m,k - éj,m,k)bk,n(Th,m) : nzﬁj - fj,m,kbk,n(Th,m) >0 (410)
k=0
Dy j(ps(t) — b;(t)) -y — 75(t) > 0.t € [T, Thm) (4.11)

where 7j = (t=Thym-—1)/At. It implies that p,(t)—p;(t) ¢ CA”(t) forVm,t € [Thim—1, Thim)-
Thus, there is no collision between the agent ¢ and j at the replanning step h by Lemma

B.7 O

4.2 Feasibility of Contraints

This section presents the proof that Alg. (1| ensures it returns a feasible trajectory for
any arbitrary input. This can be proved by showing that the initial trajectory p,(t) is one
of the solutions to the trajectory optimization problem. Lemma [4.1] shows that the feasible

SFC exists for every replanning step.

Lemma 4.1. (Ezistence of the feasible SFC) Assume that e s for¥Ym, k at the

i,m,k

replanning step h > 0. Then, ¢ mi € Sy for Vh,m, k.

3 11 3
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Proof. It h =0, then &, s = s; € S for Vm, k due to (3.23). If b > 0, m < M, and (3.28)
is satisfied, & C Conv({&mo, - » Eimn}) C SUry) = Sp. I h >0, m < M, and (3.28)
is not satisfied, ¢, r = Cgizni)m € Snfﬂl = §,, for Vk due to (3.23) and (3.27). If h > 0

and m = M, then &y = Cipum € S({éinm,gEh*l)}) C Sy for VE by 1) and l}
Thus, ¢;m i € Sy for Vh,m, k. O

Suppose that ’}-A[”m is the convex hull of the control points of relative initial trajectory

between the agents ¢ and j:
Hijm = Conv({€imp — Cjmu | k € T,}) (4.12)

Lemma presents that the feasible LSC always exists for every replanning step.

Lemma 4.2. (Ezistence of the feasible LSC) Assume that HD A Cij =0, forVj €

i,5,m
Ni,h > 0,m,k. Then, there exists E”k that satisfies (“) (-) and €;m i € L Jk for
Vi e Ni, h,m, k.

Proof. If h = 0, the normal vector of LSC can be given as follows:

Si—Sj

ny = —7 (4.13)
[Isi — sl
Therefore, C; i =S; € Efnjk for Vj € N;,m, k:
Si € Ejn]k & (s; — €jmp) MY dj,€ >0
& (8 —s5) my = (r+ (s —s) -my)) 2 0 (4.14)
1 o
<:>§(si—sj)~nﬁ;f—r20:> l|lsi —s;]| > 2r
If h > 0 and m < M, the following equation holds by (3.23)):

2 h—1
%i,j,m - Hl(,j,mll (415)
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Therefore, 7:[”m and C; ; are disjoint non-empty convex sets due to Lemma :
Hijm N Cij =0 (4.16)

By the hyperplane separation theorem [53], there exists ng such that:

~

min(H; jm, ns) > 2r (4.17)

~

where min(H,; j ,, ns) = min, . X Here, the normal vector of the LSC can be given
as follows:

n'/ = —n/' =n, (4.18)

Then, the following equation holds:

(&imk — Cjum) -1 — )7
) (4.19)

= §<ézmk — Cjmk) " n'J —r >0

Therefore, ¢; i € Ein]k for Vj € Nj,m < M, k.
If h > 0and m = M, then ¢; px = €; mn for Vi by (3.23)). Also, the LSC when m = M

satisfies €; a1 € Eﬁ\jk for Yk because [C; pr.n, ggh_l)] C E}jk for Vk. Therefore, ¢; pp € Ei\jk
for Vj € N;, k. This concludes the proof. O

Based on the above Lemmas, Theorem shows that there exists at least one solution

that satisfies all constraints of the trajectory optimization problem.

Theorem 4.3. (Feasibility of constraints) If the segment duration is equal to the replanning

period At, p,(t) is one of the solutions of for every replanning step.

Proof. It h = 0, p;(t) satisfies SFC and LSC constraints due to Lemmas [£.1] The
constraints for dynamic obstacle avoidance are negligible due to slack variables. p;(t) fulfills

the initial condition, continuity constraint, final stop condition, dynamical limit constraints,
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and because €;,,x = s; for Vm, k. p;(t) also satisfies due to the assumption
that d > 2v/2r. Therefore, p;(t) is one of the solutions that satisfy all constraints in (3.71]).

Assume that there exists a solution at the previous replanning step h — 1. Then, p; ()
satisfies SFC and LSC constraints due to Lemmas [4.1] [£.2] The constraints for dynamic
obstacle avoidance are negligible due to slack variables. p;(¢) fulfills the initial condition,
continuity constraint, final stop condition, and dynamical limit constraints, , and
due to . Therefore, the solution of always exists for every replanning

step by mathematical induction. O]

Moreover, Theorem presents that the solution to the subgoal optimization problem

always exists for every replanning step.

Theorem 4.4. (Feasibility of subgoal optimization) The solution of always exists

for every replanning step.

Proof. If h = 0, the start point s; satisfies all constraints of the subgoal optimization

problem |D Ith >0, g(h_l) satisfies the constraints of the problem because g(h_l) €Su

% 7

by (3.27)) and gghfl) € L’?V}n by (3.45)). This concludes the proof. n

Theorems [4.3] and [4.4] ensure that Alg. [I] always returns the feasible trajectory for any

arbitrary inputs if the grid-based MAPP is complete.

4.3 Goal Convergence

This section demonstrates that the proposed algorithm guarantees goal convergence
under the assumption that all agents are connected by the network and there is no dynamic
obstacle. The proof consists of three steps. First, I demonstrate the convergence of the agent
towards the subgoal. Next, I prove that the subgoal converges to the waypoint. Finally, I
complete the proof by demonstrating that the proposed decentralized MAPP allows the

waypoint to reach the desired goal.
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Lemma shows that the cost function of the trajectory optimization problem mono-
tonically decreases for every replanning step. For the proof, the sum of the cost functions

of the trajectory p,(t) will be denoted as J(p,(t)).

Lemma 4.3. Assume that there is no dynamic obstacle and the subgoal for the agent i
is fired. Then, the cost function of the agent’s trajectory monotonically decreases for each

replanning step as follows:

T V(1) > J(b,(1) > J(py(t)) (4.20)

Proof. Due to the definition of the initial trajectory (3.22), Jew(pgh_l) (1) > Jerr(Di(2))-

Moreover, the following inequality holds for every replanning step:

Jaer (V1)) = Jaer (D3(2))

Th
= Wder /
Th

Therefore, J(pl(-hfl)(t)) > J(D;(1))-

(4.21)

AR
=Dl dt >0

P

By Theorem , p,(t) is one of the solutions to the trajectory optimization problem.
Since p,(t) is the optimal solution to the optimization problem, J(p;(t)) > J(p;(t)). This

concludes the proof. O

Based on Lemma [4.3] Lemma presents that the proposed algorithm allows the agent

to reach the subgoal.

Lemma 4.4. (Convergence to the subgoal) Assume that there is no dynamic obstacle and

the subgoal for the agent i is fized. Then, the agent © converges to the subgoal.

Proof. Assume that ¢; y,, # g;. Then, the trajectory p,(¢) with the following control points

58 |

] S o)) &

1V



can be generated:

Cimvn+ N —Cinvn) m=ME>n—2
Eimp = (4.22)

Cim.k else

where €; ,,,  is the control point of p,(¢), and A € [0, 1]. Here, p,(t) is one of the solutions
of the trajectory optimization problem (3.71]) if A is small enough. It satisfies the initial
condition, continuity constraint, and final stop condition. If m < M, p,(t) satisfies the
collision constraints due to Theorem . Ifm=M, ¢ nmk € [Cinn &) C SuN Ly since

the subgoal is fixed as gz('h’*l)

= g,. It indicates that p,(¢) fulfills the collision constraints.
Therefore, p,(t) is a feasible solution of the trajectory optimization problem (3.71]) if A

satisfies the following:

IA(g: — Civn)lloo < 27 (4.23)
i HM, < Vyran 4.24
At ’OO =Y (4.:24)
n(n —1)A(g; — €ivn)
I oo < Guman (4.25)

At?
where is the sufficient condition of the communication range constraint , and
, are the sufficient conditions of dynamical limit constraints, which can be
derived using the convex hull property of Bernstein polynomial. Note that if A\ is small

enough, there exists non-zero A that satisfies the above constraints.

The difference between J,..(p;(t)) and Je..(p;(t)) is:

Jer?"(f)i(t)) - Jer’/‘(f’i(t))
= el — GoanlP(0 = (1= 2?) (4.26)
— A(L- (1-2)?)
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where A = we||8; — Ciarnll* > 0. The difference between Jue, (P;(t)) and Juer (P;(t)) is:

Jerr 7, t ) Jer?"(f)i(t))

[ ]
—f)l t dt
Thynm-1 d?
Thim 43 ~ 2
/T %(pz@) —Cimn)|| dt
htM—1
/Th+M P 9 (4.27)
Thynm—1 dt?
Thanm 43 2
_ N / L Ap ||
Thyn—1 dt?
— —B)?

where B > 0 is a positive scalar value, and Ap,(¢) is the Bernstein polynomial with the
control point Ac; , x, which is given as follows:

ACi ik = o h (4.28)
0 else

To summarize, the cost difference between p,(t) and p,(t) is represented as follows:

AJ = J(D;(t) — J(pi(t))
=A(1—(1-))?) — B)\? (4.29)

=24\ — (A+ B)\

Note that AJ > 0 when 0 < A < A+B Thus, if A satisfies 0 < A < A+B, then J(p; (h=1) (t)) >
J(p,;(t)) > J(p;(t)) > J(p;(t)) due to Lemma and the fact that p,(¢) is the optimal
solution of the trajectory optimization problem. It implies that the proposed algorithm
makes the cost function strictly decreasing until ¢; a7, = 8.

Assume that ¢, a7y, = -+ = € m—1+1n = &; and pgh_l)(t) # g;. Then, the following
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holds:
T V(1) = J(p(t))
> J(p" V(1) — J(Bi(2)) (. Lemma E3)
> Jore (DY V(1)) = e (Bi(1)) (- (@E21))

h—1
= wer, ety 0, — &ill > 0

(4.30)

Therefore, the cost of the trajectory is strictly decreasing until cgfnl) =p;(Ty) = g;- It

implies that the agent converges to the subgoal. This concludes the proof. O]

Lemma shows that the subgoal converges to the waypoint if there is no dynamic
obstacle and the grid size is larger than 2v/2r.

Lemma 4.5. If there is no dynamic obstacle and d > 2+/2r, then the subgoal converges to

the waypoint.

Proof. The subgoal optimization problem (3.61) can be reformulated as follows:

minimize §

subject to § € [0, 1]
(4.31)
w; + 5(g§h_1) — Wl) c SM

w; + 5(g§h71) —w;) € E}jn Vi eN;

where ¢ is the variable such that g, = w; +9 (ggh_l)

—w;). Since Sy, is a convex polyhedron,
it can be represented as the intersection of linear constraints a;,6 — b, < 0. Hence the

Lagrangian function of the subgoal optimization problem (4.31]) of the agent i is given as:

L=05-Xd+M(6—1)

+) " A(as6 = by) (452)

i,j h—1 i i,j
+ 37 N — (wi +0(g" Y —wi) — pliL) )
JEN;
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where \g, A1, A, and \; ; are the Lagrangian multipliers.

Assume that there is a non-empty set of the agents D C Z, whose subgoals do not
converge to the waypoint. By Lemma [4.4] all agents reach their subgoals after some replan-
ning step, and this replanning step will be denoted as hgy. If h > hg, 0* = 1 is the optimal
solution of the subgoal optimization problem because the subgoal of the agent ¢ does not
converge to the waypoint. Therefore, \y = 0 by the complementary slackness condition
of KKT conditions [53]. Moreover, if h > hg, there exists a grid edge e € & such that
Conv({éivMyn,gEh_l),wi}) = [ggh_l),wi] € e for the agent i € D due to (i) of Lemma .
Since the grid edge does not collide with static obstacles, the condition is satisfied, so
[gghfl), w;| C Sy by . It implies that the agent 7 always satisfies the SFC constraint
regardless of 0 € [0,1]. Thus, Ays = 0 by the complementary slackness condition of KKT

conditions. As a result, the Lagrangian function for the agent i € D when h > hy can be

simplified as follows:

L=6+M0-1)

irj h—1 i ij (4.33)
+ 3 Nl = (wi+ 38 = wi) = pii) - mi)
JEN;
By the stationary condition of KKT conditions:
oL h—1 ij
%:1+>\1—Z)\m~(g§- ) —wy)-ni =0 (4.34)

JEN;

Since the agent converges to the subgoal after the replanning step hy, pifs =g, pi’li =g,
(h=1)

and g, = g,. Hence the above equation can be simplified as follows:
8L g W; T g 1
S =1+A- ZAM(g )& —g) (4.35)
JeN; g — gj”
T
Y, B V) (4.36)
JeN: lg: — gj”
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To fulfill the above condition, there must exist an agent j € N; that satisfies A\;; > 0
and (g; — g;)" (w; — g;) > 0 because \; > 0 and \;; > 0 by the dual feasibility of KKT
conditions. Since A; ; > 0, the agent j must satisfy the following due to the complementary

slackness of KK'T conditions:

dﬁ\jk — (w; + (ggh_l) —w;) — pill) . nﬁ\j =0 (4.37)
1 (h—1) i i g — 8
r+clg gl — (g —ph) o =0 (4.38)
2 ! : g — gj”
g — g;ll = 2r (4.39)

To summarize, if there is a non-empty agent set D whose subgoals do not converge to the
waypoint, then there must exist an agent j that satisfies the following conditions for each
agent ¢ € D:

(g — ) (Wi —g) >0 (4.40)

lg; — g;ll = 2r (4.41)

Let us define the agent B(i) € Z that satisfies and to a blocking agent of
the agent i, where B(-) indicates the blocking agent of the input. Suppose that B(i) ¢ D
when i € D. Then, the agents i and B(7) must be on the same grid edge after the replanning
step hg, as shown in Fig. . It is because B(i) converges to its waypoint and the distance
between two agents is 2r by . However, the waypoints of two agents must be different
due to Lemma [3.1] so B(i) cannot satisfy (£.40)). Thus, B(i) € D for Vi € D.

Since the assumption that D is not an empty set, there exists an agent ¢ in D that

satisfies the following:

A(i) > A(j),¥j € D (4.42)

where A(i) = ||w; — g;||. As discussed earlier, the agent ¢ has its blocking agent B(i) € D,
and the agents ¢ and B(i) are on different grid edges due to (iv) of Lemma [3.8/ Therefore,
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A(B(i)) is computed as follows:

AB() - d —2r + A(i), if ng, > 0 i)

d— /412 — A(i)?, else

Ny = (WB(i) - gB(i))T(Wi - gi) (4-44)

Fig. 4.1b] and illustrate the derivation process of the above equations. Note that
A(B(i)) > A(3) holds since the grid size is d > 2v/2r. Therefore, this contradicts the
assumption that the agent ¢ satisfies . Fig. shows the blocking agents by the grid
size. If the grid size is d = 2v/2r, the agents can be blocking agents of other agents, as
shown in the left figure of Fig. u However, if the grid size holds d > 2v/2r, at least one
agent has no blocking agent as the blue agent in Fig. |4.2 Thus, there is no non-empty

agent set D whose subgoals do not converge to the waypoint. This concludes the proof. [

Using Lemmas [4.4] and .5 Theorem demonstrates that the proposed algorithm

guarantees goal convergence.

Theorem 4.5. Assume that there is no dynamic obstacle, the mission is solvable for the
grid-based MAPP, and the communication range r. is large enough that all agents can

communicate with each other. Then, the agent converges to the desired goal.

Proof. Due to Lemmas [£.4] and [4.5 the agent converges to the waypoint. Therefore, it
is enough to show that the proposed algorithm allows the waypoint to reach the desired
goal. By the definition of the modified previous path , the makespan of the modified
previous path 7; is equal to or less than the previous discrete path ﬂ;h_l). Therefore, the
makespan of the discrete path is monotonically decreasing since the discrete path from the
MAPP is discarded if the makespan of the path is not smaller than the makespan of 7;
(See lines 5-7 of Alg. . Assume that the makespan of the discrete path does not decrease
so that all agents cannot proceed further after the replanning step hy. Then, there exists an

agent ¢ that satisfies wgh_l) #+ ﬁfg_l) for the replanning step h > hg. However, the agent ¢
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N
g, wi® = gf®

(a) The position of agents when B(i) ¢ D and
1€D

A(i) A(B'(i))
=d—2r+ A4()
(b) ng; >0
A(B())

=d — J4r? - A(i)?

(C) g < 0

Figure 4.1: Illustrations for the proof of Lemma The square dots are the waypoints and
the circle dots are the subgoals. The circles denote the agent’s current position.
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d = 2\2r d > 2\2r

Figure 4.2: Blocking agents by the grid size. The color-shaded region denotes the feasible

region of the agent.

has to update its waypoint to wgg_l) because it will satisfy the waypoint update rules (3.17

and (3.18) due to Lemmas and Thus, the makespan of the discrete path decreases

until all waypoints reach their desired goals. This concludes the proof. O]

Remark 4.1. If not all agents are connected to the same network, the makespan of the
discrete path can increase when a new agent is connected to the network. Therefore, livelock
may occur depending on the environment. However, if the grid-based MAPP algorithm is

deadlock-free, the proposed algorithm also guarantees deadlock-free due to Lemmas[{.4] and

£
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Experimental Validation

This section presents the simulation and experiment results. The agent is modeled with
radius 7 = 0.15 m, maximum velocity vp., = 1.0 m/s, maximum acceleration a,,q, = 2.0
m/s? based on the experimental result with Crazyflie 2.1. The degree of polynomials of the
trajectory is n = 5, the number of segments is M = 10, and the segment time is At = 0.2 s.
Therefore, the total planning horizon is 2 s. The replanning period is assigned to be At = 0.2
s to satisfy the assumption in Thm. [4.3] so the trajectories are updated with the rate of
5 Hz at the same time. For decentralized MAPP, PIBT was implemented based on the
source code of [56]. The grid size is d = 0.5 m to fulfill the assumption that d > 2v/2r. The
Octomap library [57] is used to represent the obstacles, and the Gilbert—Johnson—Keerthi
(GJK) algorithm was implemented using the OpenGJK package [58]. The mazes used in
the simulation are generated by randomized Prim’s algorithm [59]. The parameters of the
cost function are wy, = 1, wger = 0.01, wgr = 100, and the CPLEX solver [60] was used for
subgoal and trajectory optimization. The simulation was executed on a laptop with Intel

Core i7-9750H @ 2.60GHz CPU and 32G RAM.
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5.1 Simulation in Obstacle-free Space

To verify the scalability of the proposed algorithm, I compare the following online

trajectory planning algorithms in an obstacle-free space:
e Distributed Model Predictive Control [9] (DMPC)
e Buffered Voronoi Cell approach [2] (BVC)
e Linear Safe Corridor approach [1] (LSC)
e Linear Safe Corridor with Goal Convergence (LSC-GC, proposed algorithm)

The simulation is conducted with 10 to 70 agents in a 3 m X 3 m x 2 m space. For each
number of agents, 30 trials were conducted to measure the success rate, and the start and
goal points were randomly deployed for each mission. The test is judged to be a failure when
the agents collided with each other or could not reach the goal point within 60 s. In this
simulation, the degree of polynomials of the trajectory is n = 5, the number of segments
is M = 10, and the segment time is At = 0.2 s to match the total planning horizon to
1 s. The communication range of the LSC-GC is 3 m. For DMPC, a smaller model with
r=0.1 m and D, ; = diag([1,1,1/2.25]) is used when judging the collision because DMPC
uses soft constraints for collision avoidance. DMPC was tested in MATLAB R2020a, and
the other methods were implemented in C++, Ubuntu 18.04.

Fig. and Table describe the simulation result in the obstacle-free space. DMPC
shows good scalability with respect to computation time, but the collision occurs for all
failure cases even though it uses a smaller collision model when judging the collision. BVC
and LSC-based approaches do not cause the collision, but deadlock or livelock occurs as
the number of agents increases. On the contrary, the proposed method shows the perfect
success rate in the identical setting since it guarantees goal convergence. Moreover, The
proposed method has a 44.7% shorter flight time than BVC and 23% shorter flight time
than the LSC-based approach. It is because other algorithms trigger deadlock resolution
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Figure 5.1: Simulation results in an obstacle-free space. We averaged the value from success
cases among 30 different trials. The shaded region means the standard deviation interval
(shown best in color).

when the deadlock is detected. As a result, the agents may be clustered until the deadlock
is detected. On the other hand, the proposed algorithm prevents deadlock preemptively by
placing the subgoal in a feasible region. Therefore, the agents can reach the desired goal
without unnecessary movement. The proposed algorithm requires a similar computation
time as the LSC-based approach. The proposed algorithm takes 9.69 ms per agent for 70

agents, which implies that it shows good scalability enough to achieve online replanning.

5.2 Simulation in 2D Obstacle Space

In this section, the LSC-based approach [I] and the proposed algorithm are compared

in the following 2D obstacle environments:

(i) Random forest. 40 static obstacles are deployed in a random position and ten agents
are deployed in a circle with a 4 m radius. The goal point of the agent is at the

antipodal point of the start point, as shown in Fig. [5.2]

(ii) Sparse maze. It consists of 6 x 6 cells, and each cell size is 1.0 m x 1.0 m, thus three

agents can pass the corridor simultaneously. The maze has two entrances, and there
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are five agents at each entrance. Each agent’s goal point is assigned to the entrance

on the other side of the maze, as depicted in Fig. [5.3]

(iii) Dense maze. It consists of 9 x 9 cells, and each cell size is 0.5 m x 0.5 m, thus only
one agent can pass the corridor. Each agent’s goal point is assigned to the entrance

on the other side of the maze, as illustrated in Fig. [5.4]

The mission is judged to be a failure when a collision occurred or when the agent failed to
reach the goal within 60 s. For each map, 30 trials were executed changing the obstacle’s
position. For LSC and LSC-GC, the degree of polynomials of the trajectory is n = 5, the
number of segments is M = 10, and the segment time is At = 0.2 s to match the total
planning horizon to 2 s.

Table [5.2] describes the simulation results in obstacle environments. The LSC-based ap-
proach shows the perfect success rate in sparse environments and does not cause a collision
in all cases. However, it fails to reach the goal in the dense maze because it cannot solve a
deadlock when there is no space to yield to a higher-priority agent. On the other hand, the
proposed algorithm achieves the perfect success rate for all types of environments regardless
of the communication range. It validates that the proposed algorithm can solve a deadlock
even in a dense maze-like environment without a centralized coordinator.

The proposed method shows a 27.6% shorter flight time and a 7.4% shorter flight
distance compared to LSC-PB when the communication range is r. = oco. It is because the
LSC-based approach performs a deadlock resolution only when the distance between the
agents is close enough. On the contrary, the proposed algorithm utilizes the final trajectory
point, not the current position, for deadlock resolution. Therefore, the agent does not need
to wait until other agents clump together. In addition, the flight time and distance of
the proposed algorithm reduce as the communication range increases since the agent can
update the waypoint further away from the current position by the waypoint update rule

B-13).
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(c)t=11s (d)t=17s

Figure 5.2: Trajectory generation result of the proposed method in the 2D random maze
(r. =3 m). The circle and line are the agent at its final location and its trajectory respec-
tively, and the green-shaded region is the static obstacle.
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(c)t=14s (d)yt=24s

Figure 5.3: Trajectory generation result of the proposed method in the 2D sparse maze (r. =
3 m). The circle and line are the agent at its final location and its trajectory respectively,
and the green-shaded region is the static obstacle.
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(c)t=15s (d)t=25s

Figure 5.4: Trajectory generation result of the proposed method in the 2D dense maze (r. =
3 m). The circle and line are the agent at its final location and its trajectory respectively,
and the green-shaded region is the static obstacle.
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Table 5.2: Comparison with previous work [1]. The bold number indicates the best result
(sr: success rate (%), Ty: flight time (s), L: flight distance per agent (m), 7¢.: computation
time (ms)).

Env. Method sr T L T,
LSC [ (r. = o0) 100 25.7 11.8 8.15
Random LSC-GC (r, = 2 m) 100 28.8 11.7 7.86
forost LSC-GC (r. = 3 m) 100 20.7 11.3 8.01
LSC-GC (r, = 4 m) 100 19.9 11.3 8.23
LSC-GC (r. = ) 100 19.1 11.1 8.16
LSC [ (r. = o0) 100 33.7 13.9 9.05
Sparse LSC-GC (r, =2 m) 100 34.4 13.5 8.51
aze LSC-GC (r, = 3 m) 100 27.1 13.1 8.62
LSC-GC (r, = 4 m) 100 23.7 12.6 8.66
LSC-GC (r, = o) 100 23.9 12.7 8.67

LSC [1] (r. = o0) 0 - - -
Dense LSC-GC (r, =2 m) 100 61.4 16.5 7.30
ez LSC-GC (r, = 3 m) 100 51.0 16.6 7.44
LSC-GC (r, = 4 m) 100 50.9 17.1 7.31
LSC-GC (r, = 00) 100 48.3 16.7 7.24

5.3 Simulation in 3D Obstacle Space

In this section, the following state-of-the-art algorithms are compared in a 3D cluttered

environment:
e EGO-Swarm [5]
e MADER [0]
e Linear Safe Corridor approach [1] (LSC)
e Linear Safe Corridor with Goal Convergence (LSC-GC, proposed algorithm)

The simulation was performed with ten agents in two types of environments: random

forest and maze.
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Figure 5.5: Trajectory planning result of the proposed method with 10 agents in the 3D
random forest.
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Figure 5.6: Trajectory planning result of the proposed method with 10 agents in the 3D

maze.
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Table 5.4: Simulation result of LSC-GC with different maximum accelerations of dynamic
obstacles. The flight time is the averaged value from successful trials among 30 different
simulations. The best result is highlighted in bold.

Environment Motric Max. acc. of obs. Velocity of dynamic obstacles
v (m/s?) 05m/s 1.0m/s 20m/s
0 70 3.3 13.3
1 . .
Success rate (%) 5 91?); 28 635
Forest 3 100 83.3 13.3
ores 0 2.9 13.2 14.1
. ) 1 12.8 13.3 17.2
Flight time (s) 2 14.1 14.4 187
3 16.3 26.9 40.6
0 66.7 26.7 33.3
1 . . 43.
Success rate (%) 5 2%; gg ; 6?3 37
3 0 0 0
Maze 0 26.3 26.1 26.6
. i 1 26.9 27.2 28.1
Flight time (s) 2 28.7 20.6 31.8
3 i} i} i}




(i) Random forest. The random forest consists of ten trees with the dimension 0.5 m x
0.5 m x 2.5 m. A circle swap mission was conducted in the random forest. The agents
start at a circle with a 4 m radius and 1 m height, and the goal points are at the

antipodes of the start points, as shown in Fig. [5.5]

(ii) Maze. The maze consists of 9 x 9 cells, and the dimension of each cell is 0.8 m x 0.8
m x 2.5 m. The maze was created from randomized Prim’s algorithm [59]. The maze
has two entrances, and five agents were deployed for each entrance. The mission of

the agents is to reach the other side of the maze, as shown in Fig. [5.6]

For MADER and the proposed algorithm, the simulations with four dynamic obstacles were
executed. The dynamic obstacles were modeled as a sphere with a radius of 0.15 m, and they
rotated in a circle with the 2 m radius and 1 m height, with the maximum acceleration
of 2 m/s%. For a fair comparison, the sensor range of all methods was increased enough
to recognize all obstacles. In addition, although it is unfair to the proposed algorithm, the
exact trajectories of dynamic obstacles were provided to MADER, while only the obstacle’s
position and velocity were provided to the proposed algorithm. The communication range
of the LSC-GC is 3 m. 30 trials were conducted for each environment, and the test was
considered a failure when the collision occurred or the agent failed to reach the goal point
within 60 s.

Table describes the simulation result in cluttered environments with dynamic ob-
stacles. EGO-Swarm shows the fastest computation speed in the random forest, but there
were several cases where the agents collided with each other. It is because EGO-Swarm
optimizes the trajectory without hard constraints, so it cannot guarantee inter-collision
avoidance. MADER did not cause the collision since it utilizes the trajectories of all agents
and obstacles during the planning. However, MADER shows a low success rate even in the
random forest because it often fails to find the detour path when trees are placed densely.
On the other hand, the proposed algorithm shows the highest success rate and the shortest
flight time for all environment configurations. In particular, the proposed algorithm shows
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over 90% success rate for both random forest and maze when the velocity of the dynamic
obstacle is less than or equal to the agent’s maximum velocity. It indicates that the pro-
posed algorithm can avoid moving obstacles in a narrow space without exact knowledge of
the obstacle’s trajectory.

Table shows the simulation result of the proposed method with different maximum
accelerations of dynamic obstacles. Since the maximum acceleration determines the size of
the obstacle’s reachable region, it can control the conservatism of the collision constraints.
As shown in the table, the success rate decreases as the maximum acceleration decreases
since collisions occur more frequently. On the other hand, if the maximum acceleration
is too big (> 2m/s?), the agents can fail to reach the desired goal due to conservative
constraints. As a result, the proposed algorithm shows the highest success rate when the

obstacle’s maximum acceleration is 2 m/s?.

Figure 5.7: Crazyflie 2.1 quadrotors that were used in the hardware demonstration.
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5.4 Hardware demonstration

The hardware demonstration was conducted with ten Crazyflie 2.1 quadrotors and one
pedestrian acting as dynamic obstacles in the maze-like environment, as shown in Fig. [5.§
Fig. shows the quadrotors used in the experiment. In the demonstration, the agents are
patrolling the two waypoints while avoiding the pedestrians, and the maximum acceleration
of the pedestrian is set to 2 m/s?. The human was modeled as an ellipsoidal obstacle with
the radius 7jez, = 0.35 m and the scaling matrix D, ; = diag([1,1,1/4]). The velocity
of the pedestrian was estimated using the linear Kalman filter. The proposed algorithm
was designed to run onboard each agent in a distributed manner as long as the agent has
sufficient computation and communication capability. In the reported experiments, due
to the hardware limit of the Crazyflie 2.1 quadrotor, the trajectory for each agent was
computed on a single laptop. But it should be noted that the computation was done in
a distributed manner. The Crazyswarm [61] was used to broadcast the trajectory to the
agents, and the Optitrack motion capture system is utilized to measure the agent’s position.

Fig. and Fig. describe the histogram of the minimum distance between agents
and minimum distance to dynamic obstacles, respectively. As shown in Fig. the inter-
agent distance invaded the desired safe distance for a short period due to a tracking error of
the Crazyflie controller, but it did not lead to an actual collision between agents. Further-
more, the agents did not collide with the pedestrian during the hardware demonstration, as
shown in Fig. [5.9b| Fig. |5.9¢| illustrates the computation time per agent during the exper-

iment. The average computation time was 13.7 ms, and there was no timeout case during

the flight.
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(c)t=139s

(d)t=42s

Figure 5.8: Snapshots of the experiment with 10 quadrotors and one pedestrian in the
maze-like environment. The colored circle denotes the position of the quadrotor.
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Figure 5.9: Summary of the experiment in the maze-like environment. The red and black
dashed lines denote the physical and desired safe distance, respectively.
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Conclusion

This dissertation presented the online decentralized MATP algorithm that guarantees
to generate collision avoidance, the feasibility of the constraints, and goal convergence in a
cluttered environment. The decentralized MAPP is utilized for deadlock resolution, and the
linear safe corridor (LSC) and relative safe flight corridor (RSFC) are utilized to construct
feasible constraints considering the reachable region of dynamic obstacles. The dissertation
demonstrates that the proposed algorithm guarantees the feasibility of the optimization
problem, collision avoidance, and goal convergence for every replanning step.

The simulation result shows that the proposed method does not cause collision or dead-
lock in static environments, regardless of the density of the obstacles or communication
range. In obstacle-free space, the proposed method can compute the trajectories for 70
agents on average 9.69 ms per agent with an Intel i7 laptop. The proposed algorithm has
a 44.7% shorter flight time than the buffered Voronoi cell-based approach (BVC) and 23%
shorter flight time than our previous work. Moreover, the proposed algorithm shows the
highest success rate and shorter flight time in dynamic environments compared to state-of-

the-art baselines: EGO-Swarm and MADER. In particular, the proposed algorithm shows
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over 90% success rate when the velocity of moving obstacles is below the agent’s maximum
speed. The hardware demonstration was conducted with ten Crazyflie quadrotors and one
pedestrian to validate the safety and operability of the proposed algorithm, and there was
no collision during the flight.

The possible future works of this dissertation will be increasing the robustness. If the
tracking or estimation error is larger than the collision model, the proposed algorithm can
cause a collision. Also, the prediction error of the dynamic obstacle’s trajectory highly
affects the overall performance. Therefore, there exists room for the development of state

estimation, reachability analysis, and trajectory prediction.
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