

저작자표시-비영리-변경금지 2.0 대한민국

이용자는 아래의 조건을 따르는 경우에 한하여 자유롭게

l 이 저작물을 복제, 배포, 전송, 전시, 공연 및 방송할 수 있습니다.

다음과 같은 조건을 따라야 합니다:

l 귀하는, 이 저작물의 재이용이나 배포의 경우, 이 저작물에 적용된 이용허락조건
을 명확하게 나타내어야 합니다.

l 저작권자로부터 별도의 허가를 받으면 이러한 조건들은 적용되지 않습니다.

저작권법에 따른 이용자의 권리는 위의 내용에 의하여 영향을 받지 않습니다.

이것은 이용허락규약(Legal Code)을 이해하기 쉽게 요약한 것입니다.

Disclaimer

저작자표시. 귀하는 원저작자를 표시하여야 합니다.

비영리. 귀하는 이 저작물을 영리 목적으로 이용할 수 없습니다.

변경금지. 귀하는 이 저작물을 개작, 변형 또는 가공할 수 없습니다.

http://creativecommons.org/licenses/by-nc-nd/2.0/kr/legalcode
http://creativecommons.org/licenses/by-nc-nd/2.0/kr/

공학박사학위논문

Decentralized Trajectory Planning for Quadrotor Swarm in
Cluttered Environments with Goal Convergence Guarantee

장애물 환경에서 목적지 도달을 보장하는 쿼드로터 군집 분산 경로 계획

2023년 8월

서울대학교 대학원

항공우주공학과

박 정 원

Decentralized Trajectory Planning for Quadrotor Swarm in

Cluttered Environments with Goal Convergence Guarantee

장애물 환경에서 목적지 도달을 보장하는 쿼드로터 군집 분산 경로 계획

지도교수 김 현 진

이 논문을 공학박사 학위논문으로 제출함

2023년 5월

서울대학교 대학원

기계항공공학부

박 정 원

박정원의 공학박사 학위논문을 인준함

2023년 6월

위 원 장 :

부위원장 :

위 원 :

위 원 :

위 원 :

Decentralized Trajectory Planning for Quadrotor Swarm in

Cluttered Environments with Goal Convergence Guarantee

A Dissertation

by

JUNGWON PARK

Presented to the Faculty of the Graduate School of

Seoul National University

in Partial Fulfillment

of the Requirements

for the Degree of

DOCTOR OF PHILOSOPHY

Department of Aerospace Engineering

Seoul National University

Supervisor : Professor H. Jin Kim

AUGUST 2023

Decentralized Trajectory Planning for Quadrotor Swarm in

Cluttered Environments with Goal Convergence Guarantee

JUNGWON PARK

Department of Aerospace Engineering

Seoul National University

APPROVED:

Youdan Kim, Chair, Ph.D.

H. Jin Kim, Ph.D.

Chan Gook Park, Ph.D.

Jaehyun Yoo, Ph.D.

Hyeonbeom Lee, Ph.D.

to my

FAMILY

with love

v

Abstract

Decentralized Trajectory Planning for Quadrotor Swarm in

Cluttered Environments with Goal Convergence Guarantee

Park, Jungwon

Department of Aerospace Engineering

The Graduate School

Seoul National University

This dissertation presents an online distributed multi-agent trajectory planning (MATP)

algorithm for a quadrotor swarm in a maze-like dynamic environment. For deadlock reso-

lution, the proposed algorithm utilizes the subgoal optimization method that ensures the

agent converges to the subgoal without deadlock and uses a waypoint from a grid-based

multi-agent path planning (MAPP) algorithm to guide the subgoal to the desired goal. In

addition, the proposed algorithm adopts a safe flight corridor (SFC) and linear safe cor-

ridor (LSC) for static obstacle avoidance and inter-agent collision avoidance. As a result,

the proposed algorithm guarantees collision avoidance, the feasibility of the constraints,

and goal convergence in a static obstacle-rich environment under a limited communication

range. For dynamic obstacle avoidance, a relative safe flight corridor (RSFC) is introduced

to cover the reachable region of the dynamic obstacles. Moreover, priority-based MAPP is

adopted to prevent other agents’ interference when avoiding dynamic obstacles. To verify

the proposed algorithm, the simulation was conducted in an empty space, random forest,

and maze. In an obstacle-free space, the proposed method can compute the trajectories for

70 agents on average 9.69 ms per agent with an Intel i7 laptop and shows the perfect success

rate. Also, our method shows 44.7% shorter flight time than buffered Voronoi cell (BVC)

and 23% shorter than with our previous work. The proposed algorithm shows the highest

success rate and shortest flight time compared to state-of-the-art baseline algorithms. In

particular, the proposed algorithm shows over 90% success rate when the velocity of moving

vi

obstacles is below the agent’s maximum speed. The safety and robustness of the proposed

algorithm were validated through a hardware demonstration with ten quadrotors and one

pedestrian in a maze-like environment.

Keywords: Path Planning for Multiple Mobile Robots or Agents, Collision Avoidance,

Deadlock Resolution, Distributed Robot Systems.

Student Number: 2020-39650

vii

Table of Contents

Page

Abstract . vi

Table of Contents . viii

List of Tables . x

List of Figures . xi

Chapter

1 Introduction . 1

1.1 Literature Survey . 3

1.2 Contributions . 7

1.3 Outline . 8

2 Bernstein Polynomial . 9

2.1 Definition . 9

2.2 Properties . 10

3 Multi-Agent Trajectory Planning . 12

3.1 Problem Statement . 12

3.2 Overview . 18

3.3 Decentralized Multi-agent Path Planning 25

3.4 Initial Trajectory Planning . 30

3.5 Collision Constraints Construction . 31

3.6 Subgoal Optimization . 45

3.7 Trajectory Optimization . 49

4 Theoretical Guarantee . 52

4.1 Collision Avoidance . 52

4.2 Feasibility of Contraints . 54

viii

4.3 Goal Convergence . 57

5 Experimental Validation . 67

5.1 Simulation in Obstacle-free Space . 68

5.2 Simulation in 2D Obstacle Space . 70

5.3 Simulation in 3D Obstacle Space . 75

5.4 Hardware demonstration . 82

6 Conclusion . 84

References . 86

Abstract (in Korean) . 94

ix

List of Tables

1.1 Comparison with the state-of-the-art algorithms. ✓ means that the algo-

rithm explicitly considers/provides the corresponding item. (CAA: collision

avoidance between agents, FO: feasibility of the optimization problem, GC:

goal convergence) . 8

3.1 Notation for Chapter 3 . 13

5.1 Performance comparison in an obstacle-free space. The flight time is the

averaged value from successful trials among 30 different simulations. The

bold number indicates the best result. 69

5.2 Comparison with previous work [1]. The bold number indicates the best

result (sr: success rate (%), Tf : flight time (s), L: flight distance per agent

(m), Tc: computation time (ms)). 75

5.3 Simulation result with 10 agents in cluttered environments. The flight time is

the averaged value from successful trials among 30 different simulations. The

best result is highlighted in bold. Note that the exact obstacles’ trajectories

are provided to MADER, while only the obstacle’s position and velocity are

provided to the LSC-GC. 78

5.4 Simulation result of LSC-GC with different maximum accelerations of dy-

namic obstacles. The flight time is the averaged value from successful trials

among 30 different simulations. The best result is highlighted in bold. . . . 79

x

List of Figures

2.1 Convex hull property of Bernstein polynomial. 11

3.1 Ad-hoc network example. 15

3.2 Collision models for collision avoidance. 17

3.3 Trajectory planning result when all agents try to reach the desired goal directly. 20

3.4 Trajectory planning result of the proposed algorithm. 20

3.5 Flowchart of the proposed distributed algorithm run by each agent. First, the

agent receives other agents’ previously planned trajectories through commu-

nication and observes obstacles’ position and velocity. Then, the agent plans

the initial trajectory from the inputs and constructs collision constraints.

After that, the subgoal is determined within a feasible region that satis-

fies the collision constraints. Finally, trajectory optimization is conducted to

generate a safe trajectory. 22

3.6 Priority assignment for dynamic obstacle avoidance. The black circle is a

dynamic obstacle and the other circles are the agents. The gray region is the

reachable region of the dynamic obstacle, and the green region is the static

obstacle. The red agent has the highest priority because it is the closest agent

to the obstacle. 27

3.7 The grid map for dynamic obstacle avoidance. The gray region is the reach-

able region of the dynamic obstacle, the gray arrow denotes that the edge is

bidirected, and the red arrow denotes that the edge is not bidirected. . . . 27

3.8 Initial trajectory planning for agents. 31

xi

3.9 LSC for inter-agent collision avoidance. The red ellipsoid is the collision

model between two agents, and the yellow-shaded region is the convex hull

that consists of the control points of the relative initial trajectory. The green-

shaded region is the LSC between two agents. The symbol with a tilde de-

notes the coordinate-transformed value. 38

3.10 Collision constraints for the last trajectory segment. The triangles are the fi-

nal points of the initial trajectories, and the circles are the previously planned

subgoals. The gray box is the static obstacle, and the color-shaded region is

the feasible region that satisfies the collision constraints. The collision con-

straint for the last segment always includes the line segment between the

final point and the subgoal, which is depicted as the thick line. 39

3.11 Trajectory planning comparison between BVC [2] and LSC. The colored

lines, small squares, and circles are desired trajectories, goal points, and de-

sired position at the end of the planning horizon (i.e. pi(Th+M)) respectively.

The color-shaded regions denote the collision constraints for the red agent

at the end of the planning horizon. 41

3.12 Trajectory prediction model with error bound (blue ellipsoid). 43

3.13 Collision model between agent i and object j (red ellipsoid) and inflated

collision model to consider the error bound (blue ellipsoid). 43

3.14 RSFC for dynamic obstacle avoidance. The red ellipsoid is the collision model

between the agent and the moving obstacle, and the orange-shaded region is

the inflated collision model that covers the reachable region of the dynamic

obstacle. The green-shaded region is the LSC between the agent and the

moving obstacle. The symbol with a tilde denotes the coordinate-transformed

value. 46

xii

4.1 Illustrations for the proof of Lemma 4.5. The square dots are the waypoints

and the circle dots are the subgoals. The circles denote the agent’s current

position. 65

4.2 Blocking agents by the grid size. The color-shaded region denotes the feasible

region of the agent. 66

5.1 Simulation results in an obstacle-free space. We averaged the value from suc-

cess cases among 30 different trials. The shaded region means the standard

deviation interval (shown best in color). 70

5.2 Trajectory generation result of the proposed method in the 2D random maze

(rc = 3 m). The circle and line are the agent at its final location and its

trajectory respectively, and the green-shaded region is the static obstacle. 72

5.3 Trajectory generation result of the proposed method in the 2D sparse maze

(rc = 3 m). The circle and line are the agent at its final location and its

trajectory respectively, and the green-shaded region is the static obstacle. 73

5.4 Trajectory generation result of the proposed method in the 2D dense maze

(rc = 3 m). The circle and line are the agent at its final location and its

trajectory respectively, and the green-shaded region is the static obstacle. 74

5.5 Trajectory planning result of the proposed method with 10 agents in the 3D

random forest. 76

5.6 Trajectory planning result of the proposed method with 10 agents in the 3D

maze. 77

5.7 Crazyflie 2.1 quadrotors that were used in the hardware demonstration. . 81

5.8 Snapshots of the experiment with 10 quadrotors and one pedestrian in the

maze-like environment. The colored circle denotes the position of the quadro-

tor. 83

5.9 Summary of the experiment in the maze-like environment. The red and black

dashed lines denote the physical and desired safe distance, respectively. . . 83

xiii

1
Introduction

Multi-robot systems with a group of mobile robots or unmanned aerial vehicles (UAVs)

have received considerable attention due to their application such as transportation, surveil-

lance, search, and rescue. There may be a need to deploy them in a workspace involving

dynamic obstacles or humans, such as a warehouse [3] or office [4], which raises a need for

a reliable multi-agent trajectory planning (MATP) algorithm.

Among many MATP algorithms, decentralized approaches have received much attention

due to their high scalability and low computation load, which enables online planning.

However, it has been challenging for the decentralized MATP algorithm to generate a

safe trajectory in a cluttered dynamic environment for the following reasons. First, the

MATP algorithm must guarantee deadlock-free to ensure the agents reach their desired goal.

However, many decentralized algorithms have a risk of causing a deadlock even in sparse

environments [5, 6, 7]. Second, the trajectory planning algorithm must guarantee collision

avoidance and dynamical feasibility for safety, and it should guarantee the feasibility of

the collision constraints to prevent optimization failure during the flight. However, as the

number of agents increases, it becomes more difficult to guarantee all of them at the same

1

time. Third, the trajectories of dynamic obstacles are unknown in a general situation, so

we have to consider the uncertainty of the obstacle’s maneuver during trajectory planning.

It makes collision avoidance more difficult since there is not enough space to move in the

maze-like environment.

This dissertation presents an online distributed trajectory planning algorithm that can

generate a safe, deadlock-free trajectory in a cluttered environment with dynamic obstacles.

The proposed method solves a deadlock through the following three steps. First, the pro-

posed algorithm places a subgoal in a feasible region that satisfies the collision constraints

and the communication range constraints. This subgoal allows the agent to reach the sub-

goal without a deadlock. Next, subgoal optimization is conducted to make the subgoal

converges to the waypoint, which is on the grid vertex. Finally, a decentralized grid-based

multi-agent path planning (MAPP) algorithm is utilized to guide the waypoint to the de-

sired goal. As a result, the proposed algorithm can guide the agent to the desired goal.

It should be noted that if there is no dynamic obstacle and the communication range is

large enough, the proposed algorithm guarantees goal convergence, which means that the

agent can reach their desired goal. The proposed algorithm adopts a linear safe corridor

(LSC) [1] to guarantee the feasibility of the optimization problem and collision avoidance,

and it utilizes a relative safe flight corridor (RSFC) [8] to avoid dynamic obstacles. In ad-

dition, the grid-based MAPP algorithm is revised to prioritize dynamic obstacle avoidance

when the agents meet the obstacle in a narrow corridor. The proposed algorithm can be

employed for robots with a limited communication range as long as they can configure a

mobile ad-hoc network. To the best of our knowledge, this is the first decentralized MATP

algorithm that guarantees the feasibility of the optimization problem, collision avoidance,

and deadlock-free in a dense maze-like environment.

I compare the proposed algorithm with state-of-the-art methods, buffered Voronoi cell

(BVC) [2], DMPC [9], EGO-Swarm [5], and MADER [6] in simulations with the various 2D

and 3D environment. Also, I executed an experiment with 10 quadrotors and one pedestrian

to verify the robustness of the proposed algorithm.

2

1.1 Literature Survey

1.1.1 Multi-Agent Collision Avoidance

There have been discussions in literature closely related to our work on multi-agent

trajectory planning. In [10, 11, 12], the trajectory generation problems are reformulated as

mixed-integer quadratic programming (MIQP) or sequential convex programming (SCP)

problems to deal with non-convex collision constraints. These methods suit well systems

with a small number of agents, but they are intractable for large teams and complex envi-

ronments because an additional adaptation process is required to find proper discretization

time steps depending on the size of agents and obstacles. In [13, 14], linearized collision

constraints are used to reduce the computation time. They plan an initial trajectory with

a grid-based planner and then construct a safe flight corridor (SFC), which is a safe convex

region for each agent. However, they require an iterative trajectory refinement process that

costs much computation time.

To achieve high scalability, an artificial potential field (APF) [15, 16, 17] has been con-

sidered since it requires little computation load. However, these methods are not suitable

for a maze-like environment because non-convex obstacles may cause local minima or os-

cillatory motion. Besides that, a velocity obstacle (VO)-based approach and its variants

[18, 19, 20, 21, 22] or optimization-based methods such as on-demand collision avoidance

[9, 23] and gradient-based local planning [5, 24] are presented to reduce the computation

time, but they cannot guarantee collision avoidance between agents.

For the safety of the multi-robot system, many researchers have studied distributed

algorithm that ensures safety with high scalability. The authors of [2] present buffered

Voronoi cell (BVC) to separate the safe region for agents, and the author of [25] utilize

control barrier function (CBF) and hybrid braking controllers to ensure provably collision-

free behaviors. Recently, distributed model predictive control (DMPC) [26, 27, 28, 29, 30]

has received much attention due to its versatility and theoretical guarantee of safety and

3

feasibility. However, most works do not consider non-convex obstacles or dynamic obstacles.

There are several works for collision avoidance in a maze-like environment. In [31], a

token-based cooperative strategy is presented to prevent deadlock in a cluttered environ-

ment. However, it requires more time for replanning as the number of agents increases

since the agents with the token can update their trajectory. The authors of [32] extend VO

to handle a complex environment with dynamic obstacles, but it may cause an infeasible

optimization problem when the obstacle does not follow the constant velocity assumption.

On the other hand, the proposed method guarantees the feasibility of the optimization

problem.

To deal with the uncertainty of dynamic obstacles, [33] suggests search-based motion

planning that models the moving obstacle as a polyhedron that inflates over time. Similarly,

[34, 35] models dynamic obstacles using the constant velocity assumption with Gaussian

noise acceleration and finds a collision-free trajectory using nonlinear DMPC. In [36, 37],

Hamilton-Jacobi reachability analysis is used to compute the reachable region of the ob-

stacle. However, these methods show a lack of scalability due to their long computation

time.

The authors of [6] propose an asynchronous planner that guarantees to generate a safe

trajectory by executing a collision-free trajectory through communication between agents.

This method can handle a dense environment with static and dynamic obstacles, but it

often takes a few seconds to update the agent’s trajectory in practice because the planner

blocks the update while it receives other agents’ trajectories. For this reason, this method

may not respond to the unpredictable maneuver of dynamic obstacles unless the exact

trajectories of the obstacles are given, which is not realistic in the actual implementation.

On the other hand, the proposed method adopts the time-synchronized approach in which

all agents plan and execute the trajectory at the same time. Although the synchronized

approaches have limitations in fully utilizing the computational capabilities of individual

agents, the proposed algorithm can respond to dynamic obstacles within constant time

thanks to its short computation time. Also, our method constructs the collision constraints

4

considering the reachable region of dynamic obstacles, so it does not need exact knowledge

of the obstacle’s trajectory.

1.1.2 Decentralized Deadlock Resolution

The centralized methods like conflict-based search (CBS) [38] can guarantee no dead-

lock, but they are not appropriate for online planning due to their long computation time.

For this reason, many decentralized algorithms adopt the right-hand rule [2, 25, 39, 40, 7],

which moves the goal point to the right side after the deadlock is detected. This approach

works well in an obstacle-free environment, but there is a risk of another deadlock even

after changing the goal point.

Another deadlock resolution method is to replan each robot’s trajectory sequentially.

In [41], a local coordinator asks neighboring agents to plan different trajectories until the

deadlock is resolved. The authors of [31] introduce a token-based cooperative strategy,

that determines which robots to yield the path by bidding. However, under these methods,

there are cases where deadlock cannot be resolved by replanning an alternative trajectory

of individual agents. The authors of [32] introduce a centralized high-level coordinator

for deadlock resolution. This method is suitable for deadlock resolution in a cluttered

environment, but all agents must be connected to the centralized coordinator during the

entire mission. The authors of [42] utilize the grid-based planner to avoid conflict between

agents. However, it often fails to find the discrete path in a compact space because it treats

all other agents as static obstacles.

Several works guarantee deadlock-free in obstacle-free or sparse environments. The au-

thors of [43] introduce a warning band to prevent the agents from clustering. In [17], an

artificial potential field (APF) is extended to solve the deadlock. The authors of [44] con-

duct deadlock analysis and resolution for 2 to 3 agents. However, these methods share the

same limitation in that they cannot solve deadlock in a cluttered environment such as a

maze. In [45, 46], the grid-based MAPP is utilized to solve deadlock, similar to the proposed

method. The authors of [45] adopt a mode-switching strategy, which converts the planner

5

mode to follow the waypoint from MAPP when the deadlock is detected. The authors of

[46] utilize the discrete path from MAPP as an initial trajectory. However, these methods

do not provide a theoretical guarantee for deadlock resolution. Compared to the previous

work [1], the proposed algorithm does not require a fully connected network for collision

avoidance, and it guarantees deadlock-free for dense maze-like environments.

6

1.2 Contributions

The contributions of the dissertation are summarized as follows:

• Decentralized multi-agent trajectory planning algorithm that guarantees collision

avoidance, the feasibility of the optimization problem, and goal convergence in a

dense maze-like environment.

• Constraint generation method and multi-agent path planning (MAPP) for dynamic

obstacle avoidance in narrow space: (i) Relative Safe Flight Corridor for avoiding

dynamic obstacles with unknown trajectories, (ii) Priority-based MAPP to prevent

other agent’s interference when avoiding dynamic obstacles.

Table 1.1 shows the comparison with the state-of-the-art algorithms. As shown in the

table, many algorithms including our previous works have a limitation on an applicable

workspace due to a lack of consideration of dynamic obstacles or deadlock resolution in

the narrow space. On the other hand, the proposed algorithm can deal with various envi-

ronments, such as a random forest or even a maze for an extreme case. Furthermore, the

proposed algorithm guarantees collision avoidance between agents, the feasibility of con-

straints, and goal convergence if there is no dynamic obstacle. To the best of our knowledge,

the proposed approach is the first MATP algorithm that can deal with a maze-like dynamic

environment while ensuring inter-collision avoidance, the feasibility of contraints, and goal

convergence.

7

Table 1.1: Comparison with the state-of-the-art algorithms. ✓ means that the algorithm
explicitly considers/provides the corresponding item. (CAA: collision avoidance between
agents, FO: feasibility of the optimization problem, GC: goal convergence)

Method
Environment Theoretical Guarantee

Maze
Dynamic
obstacle

Inter-agent
avoidance

Feasibility
of

constraints

Goal
convergence

BVC-based [2] ✕ ✕ ✓ ✕ ✕

DMPC [9] ✕ ✕ ✕ ✓ ✕

NMPC [30] ✕ ✕ ✓ ✕ ✕

EGO-Swarm [5] △∗ ✕ ✕ ✓ ✕

MIQP-based [7] △∗ ✕ ✓ ✕ ✕

MADER [6] ✕ ✓† ✓ ✓ ✕

VO-based [32] ✓ ✓ ✕ ✕ ✕

RSFC [8] ✕ ✓ ✕ ✓ ✕

LSC [1] ✓ ✕ ✓ ✓ ✕

Proposed ✔ ✔ ✔ ✔ ✔

∗ The result is not reported in the paper, but there is a possibility of extension to a sparse maze.
† Requires the future trajectory of dynamic obstacle.

1.3 Outline

The outline of the dissertation is as follows. Chapter 2 introduces the background knowl-

edge for the Bernstein polynomial. Chapter 3 presents the trajectory optimization method

for multiple UAVs in a dynamic cluttered environment. Chapter 4 demonstrates the theoret-

ical guarantee of the proposed algorithm. For validation, Chapter 5 provides experimental

results, and Chapter 6 ends the dissertation with concluding remarks.

8

2
Bernstein Polynomial

Due to the differential flatness of quadrotor dynamics, it is known that the trajectory of

a quadrotor can be represented in a polynomial function with flat outputs (x, y, z, ψ) in time

t, where x, y, z is the quadrotor’s position and ψ is the quadrotor’s yaw angle [47]. However,

it is difficult to handle collision avoidance constraints with a standard polynomial basis

because a standard polynomial basis does not provide spatial information on polynomials.

For this reason, the Bernstein polynomial [48] is utilized to represent the trajectory of

quadrotors. Bernstein polynomial is one of the special forms of the Bézier curve and has

various useful properties compared to the standard polynomial.

2.1 Definition

The Bernstein basis polynomial of degree n is defined as follows:

bk,n(τ) =

(
n

k

)
τ k(1− τ)n−k (2.1)

where τ ∈ [0, 1] and k = 0, 1, ..., n.

9

The Bernstein polynomial p(τ) ∈ R3 is defined as the linear combination of Bernstein

basis polynomials:

p(τ) =
n∑

k=0

ckbk,n(τ) (2.2)

The coefficients ck ∈ R3 are called control points of the Bernstein polynomial.

2.2 Properties

This section introduces the properties of the Bernstein polynomial. First, the Bernstein

polynomial has the convex hull property. A Convex hull is convex envelop of a set of points,

which is defined as follows:

Conv({c0, ..., cn}) =

{
n∑

k=0

λkck

∣∣∣∣∣λk ≥ 0 for all k and
n∑

k=0

λk = 1

}
(2.3)

The convex hull property means that As shown in Fig. 2.1, Bernstein polynomial p(τ) is

always confined within the convex hull of control points:

p(τ) ∈ Conv({c0, ..., cn}) for all τ ∈ [0, 1] (2.4)

This property can be used to confine the polynomial trajectory within the desired region.

Second, the start and end points of the polynomial are equal to the first and last control

points of the polynomial. More precisely, for given nth order Bernstein polynomial p(τ) with

control points c0, ..., cn, p(τ) always start at the first control point c0 and end at the last

control point cn:

p(0) = c0,p(1) = cn (2.5)

Using this property, the start and goal points of quadrotors can be assigned by placing the

first and last control points in the proper position.

Third, the sum and difference of two Bernstein polynomials are still Bernstein poly-

nomials if two polynomials have the same degree. Assume that two Bernstein polynomial

10

Figure 2.1: Convex hull property of Bernstein polynomial.

pi(τ),pj(τ), have control points ci,k=0,...,n, cj,k=0,...,n respectively. Then the sum or difference

of two Bernstein polynomials can be written as follows:

pi(τ)± pj(τ) =
n∑

k=0

ci,kbk,n(τ)±
n∑

k=0

cj,kbk,n(τ)

=
n∑

k=0

(ci,k ± cj,k)bk,n(τ)

(2.6)

Fourth, a derivative of the Bernstein polynomial can be represented as a Bernstein

polynomial. For example, assume that with ṗ(τ) and p̈(τ) have control points v0,··· ,n−1 and

a0,··· ,n−2, respectively. Then, control points of derivatives can be derived from control points

of the original Bernstein polynomial:

vk = n(ck+1 − ck), ∀k = 0, ..., n− 1 (2.7)

ak = n(n− 1)(ck+2 − 2ck+1 + ck), ∀k = 0, ..., n− 2 (2.8)

11

3
Multi-Agent Trajectory Planning

3.1 Problem Statement

Suppose that there are Na agents with the radius r in an obstacle environment O with

No dynamic obstacles. The goal is to generate a safe and dynamically feasible trajectory

that allows the agent to reach the goal point.

3.1.1 Notation

This chapter will use the notation in Table 3.1. The calligraphic letter denotes a set,

the bold letter indicates a vector, and the italic lowercase letter means a scalar value.

The superscript with parenthesis such as x(h) denotes that the symbol is generated at the

replanning step h, and the superscript will be omitted when the symbol is planned at the

current replanning step.

12

Table 3.1: Notation for Chapter 3

Symbol Definition

x(h)

This superscript indicates that the symbol is planned at the

replanning step h. It is omitted if the symbol is from the

current replanning step.

Ia, Io Set of agents and dynamic obstacle, respectively.

G = (V , E), d
Grid space (V : grid vertices, E : grid edges), grid size d >

2
√
2r

rc, Ni

Communication range rc > 2d, connected group that can

communicate with the agent i.

M , n
The number of the trajectory segments, degree of the poly-

nomial n ≥ 5.

IM , In IM = {1, · · · ,M}, In = {0, · · · , n}.

Th, ∆t Start time of the replanning step h, replanning period.

pi(t), p̂i(t) Trajectory, initial trajectory of the agent i.

ci,m,k, vi,m,k, ai,m,k, ĉi,m,k

The kth control point of themth segment of pi(t), ṗi(t), p̈i(t),

p̂i(t), respectively.

O The space occupied by the static obstacles.

r, rj Radius of the agent and dynamic obstacle j.

zi,wi,gi Desired goal, waypoint, subgoal of the agent i.

Sm, Li,j
m,k

Safe flight corridor (SFC), Linear safe corridor (LSC) be-

tween the agent i and the object j.

∥x∥, ∥x∥∞, |πi|, a ⪯ b,

⊕, Conv(X), [a,b]

Euclidean norm, L-infinity norm, makespan of the discrete

path πi, element-wise inequality, Minkowski sum, convex

hull operator, and line segment between two points a, b.

13

3.1.2 Assumption

This dissertation supposes the following assumptions:

• (Obstacle) The static obstacle space O and the dynamical limit of dynamic obstacles

are given as prior knowledge. The trajectory of the dynamic obstacle is unknown

to the agents, but each agent can observe the current position and velocity of the

obstacles.

• (Grid-based planner) All agents share the same grid space G = (V , E), where the grid

size d is larger than 2
√
2r. If the agent is on the grid, There is no collision between

the agent and static obstacles if the agent is on the grid.

• (Mission) All agents share the same grid space G = (V , E), where the grid size d is

larger than 2
√
2r. If the agent is on the grid, There is no collision between the agent

and static obstacles if the agent is on the grid.

• (Communication) This work assumes that the agents can establish an ideal mobile ad-

hoc network (MANET) to relay messages between them. In other words, the agents

i and j can communicate with each other if they satisfy the following:

∥pi(t)− pj(t)∥∞ ≤ rc (3.1)

where pi(t) is the position of the agent i, ∥ · ∥∞ is the L-infinity norm, and rc > 2d is

the communication range. This work assumes that the transmission time per hop is

negligible, and the agents within the communication range can share the information

with each other without a communication loss or delay. Fig. 3.1 shows an example.

In this example, the blue and red agents are too far apart to communicate directly,

but they are both within the communication range of the green agent. In this case,

the green agent can help them communicate by passing messages between them like

a router. In the same way, the agents that are far apart can communicate with each

14

Figure 3.1: Ad-hoc network example.

other if they have one or more router agents to relay messages. A set of agents that

can communicate with the agent i through the ad-hoc network will be denoted as a

connected group Ni.

3.1.3 Trajectory Representation

As discussed in the previous chapter, the trajectory of the quadrotor can be represented

as a polynomial with flat outputs (x, y, z, ψ). Therefore, the agent’s trajectory is represented

to a piecewise Bernstein polynomial [48], thanks to the differential flatness of quadrotor

dynamics [10]. The trajectory consists of M segments, and each segment of the trajectory

of the agent i is formulated as follows:

pi(t) =



∑n
k=0 ci,1,kbk,n(t) t ∈ [Th, Th+1]∑n
k=0 ci,2,kbk,n(t) t ∈ [Th+1, Th+2]

...
...∑n

k=0 ci,M,kbk,n(t) t ∈ [Th+M−1, Th+M]

(3.2)

where h is the current replanning step, pi(t) is the trajectory of the agent i, ci,m,k ∈ R3 is the

control point, n ≥ 5 is the degree of the polynomial, bk,n(t) is Bernstein basis polynomial,

T0 is the mission start time, Th = T0 + h∆t, and ∆t is the replanning period. Note that

15

the segment duration is equal to the replanning period ∆t. In this work, the agent’s yaw

angle is fixed as a constant. The decision vector that include all the control points of pi(t)

will be denoted as follows:

ci = [cTi,1,0, · · · , cTi,M,n]
T (3.3)

3.1.4 Collision avoidance

Inter-agent collision avoidance

The collision avoidance constraint between the agents i and j can be represented as

follows:

pi(t)− pj(t) /∈ Ci,j, ∀t (3.4)

where Ci,j is the inter-collision model, which is a compact convex set that satisfies Cj,i =

−Ci,j = {−x | x ∈ Ci,j} to maintain symmetry between agents. This work adopts the

ellipsoidal collision model as follows:

Ci,j = {x ∈ R3 | ∥Di,jx∥ < 2r} (3.5)

where ∥ · ∥ is the Euclidean norm and r is the radius of the agents, Di,j = diag([1, 1, 1/γi,j])

is the scaling matrix, and γi,j ≥ 1 is the scaling coefficient.

Static obstacle avoidance

The agent i does not collide with static obstacles if the following condition holds:

(pi(t)⊕ Ci) ∩ O = ∅,∀t (3.6)

Ci = {x ∈ R3 | ∥x∥ < r} (3.7)

where ⊕ is the Minkowski sum, O is the space occupied by the obstacles, and Ci is the

obstacle collision model that has a sphere shape as Fig. 3.2a.

16

(a) Collision model between the agent and static
obstacles.

(b) Collision model for dynamic obstacle avoid-
ance.

Figure 3.2: Collision models for collision avoidance.

17

Dynamic obstacle avoidance

The agent i does not collide with the dynamic obstacle j ∈ Io if the following condition

is satisfied:

pi(t)− pj(t) /∈ Ci,j, ∀t (3.8)

Ci,j = {x ∈ R3 | ∥Di,jx∥ ≤ r + rj} (3.9)

where rj is the radius of the dynamic obstacle j, Ci,j is the collision model between the agent

i and dynamic obstacle j that has an ellipsoidal shape as Fig. 3.2b, Di,j = diag([1, 1, 1/γi,j])

is the scaling matrix, and γi,j ≥ 1 is the scaling coefficient.

3.1.5 Dynamical limit

The dynamical limit of the agent is given as follows:

∥vi(t)∥∞ ≤ vmax,∀t (3.10)

∥ai(t)∥∞ ≤ amax,∀t (3.11)

where vi(t) and ai(t) are the velocity and acceleration of the agent i, respectively, and vmax

and amax are the agent’s maximum velocity and acceleration, respectively.

3.2 Overview

3.2.1 Goal Convergence Strategy

The root cause of deadlock in many online multi-agent trajectory planning (MATP)

algorithms is that they do not consider collision avoidance constraints when determining

the current subgoal. Suppose that all agents try to reach the desired goal directly as shown

in Fig. 3.3a. Then, as shown in Fig. 3.3b, the deadlock will occur since the direct path

18

to the goal is blocked by collision constraints. For this reason, many MATP algorithms

have used various heuristics for deadlock detection and resolution. However, to predict

whether a deadlock occurs, the other agent’s current position and desired goal point must

be considered. As a result, as the number of agents increases, it becomes more difficult

to predict where each agent will converge, which makes deadlock resolution much more

challenging.

To solve this problem, the proposed algorithm is designed to guide the agent toward

the desired goal through three steps. First, as shown in Fig. 3.4, the proposed algorithm

places the subgoal in the feasible region that satisfies the collision constraints. It ensures

that each agent reaches its subgoal. Next, the subgoal optimization is conducted to make

the subgoal converges to a waypoint, which is on the vertex of grid space G. Finally, a grid-

based multi-agent path planning (MAPP) algorithm is used to guide the waypoint to the

desired goal. Using this process, the proposed algorithm can prevent deadlock preemptively,

as shown in Fig. 3.4b. Furthermore, if the MAPP algorithm guarantees completeness, then

the proposed algorithm also guarantees goal convergence. In other words, the theoretical

property of grid-based MAPP can be applied to MATP in the continuous space using the

proposed approach.

19

(a) (b)

Figure 3.3: Trajectory planning result when all agents try to reach the desired goal directly.

(a) (b)

Figure 3.4: Trajectory planning result of the proposed algorithm.

20

3.2.2 Algorithm Overview

Fig. 3.5 and Alg. 1 describe the proposed algorithm. The proposed algorithm consists of

the communication phase (lines 3-4) and trajectory generation phase (lines 5-17). During

the communication phase, each agent configures an ad-hoc network between the agents

within the communication range. After network configuration, a decentralized grid-based

MAPP algorithm is executed to determine the waypoint of the agent (line 3, Sec. 3.3).

Then, the agent shares the previously planned trajectory and subgoal with the connected

group (line 4). In the trajectory generation phase, initial trajectories are generated using

the previously planned trajectories and the obstacles’ position and velocity. (lines 5-12,

Sec. 3.4). Next, the initial trajectories are utilized to construct feasible collision constraints

(lines 11 and 13, Sec. 3.5). In this work, the collision constraints are designed to allow

the subgoal to converge to the waypoint. After that, the subgoal is determined in the

feasible region that satisfies all collision constraints to prevent deadlock (line 14, Sec. 3.6).

Finally, the trajectory optimization problem is formulated using the collision constraints

and subgoal and solved using the convex solver (lines 15, Sec. 3.7). The above process is

repeated until all agents reach the desired goal. The detail of each module will be described

in the following sections.

21

Figure 3.5: Flowchart of the proposed distributed algorithm run by each agent. First, the
agent receives other agents’ previously planned trajectories through communication and
observes obstacles’ position and velocity. Then, the agent plans the initial trajectory from
the inputs and constructs collision constraints. After that, the subgoal is determined within
a feasible region that satisfies the collision constraints. Finally, trajectory optimization is
conducted to generate a safe trajectory.

22

Algorithm 1: Trajectory planning for the agent i

Input: Start point si, desired goal zi, obstacle space O, observed

position/velocity of dynamic obstacles p̄k∈Io , v̄k∈Io

Output: Trajectory of the agent i, pi(t)

1 h← 0;

2 while not all agents at desired goal do

// Communication phase

3 wj∈Ni
← decentralizedMAPP(p

(h−1)
i , g

(h−1)
i , w

(h−1)
i , zi, p̄k∈Io , v̄k∈Io);

4 p
(h−1)
j∈Ni

,g
(h−1)
j∈Ni

← communicate(p
(h−1)
i ,g

(h−1)
i);

// Trajectory generation phase

5 for ∀j ∈ Ni ∪ Io do

6 if j ∈ Ni then

7 p̂j(t)← planInitialTraj(p
(h−1)
j);

8 else

9 p̂j(t)← planInitialTraj(p̄j, v̄j);

10 end

11 Li,j
m,k ← buildLSC(p̂i(t), p̂j(t));

12 end

13 Sm ← buildSFC(p̂i(t),O);

14 gi ← subgoalOpt(g
(h−1)
i ,wi,Sm,Li,j

m,k);

15 pi(t)← trajOpt(Sm,Li,j
m,k,gi);

16 executeTrajectory(pi(t));

17 h← h+ 1;

18 end

23

Algorithm 2: decentralizedMAPP

Input: Prev. traj p
(h−1)
j∈Ni

, prev. subgoals g
(h−1)
j∈Ni

, prev. waypoints w
(h−1)
j∈Ni

, desired
goals zj∈Ni

, observed position and velocity of dynamic obstacles p̄k∈Io ,
v̄k∈Io

Output: Current waypoints wj∈Ni

// DOI Detection

1 Dj∈Ni
← findDOI(p

(h−1)
j∈Ni

, w
(h−1)
j∈Ni

, p̄k∈Io , v̄k∈Io);

2 zj∈Ni
← updateGoal(zj∈Ni

,Dj∈Ni
);

// Grid-based MAPP

3 πj∈Ni
← runMAPP(w

(h−1)
j∈Ni

, zj∈Ni
, Dj∈Ni

);

4 π̂j∈Ni
← modifyPreviousPath(π

(h−1)
j∈Ni

, w
(h−1)
j∈Ni

);

5 if Dj∈Ni
= ∅, Ni = N (h−1)

i , |π̂j∈Ni
| ≤ |πj∈Ni

| then
6 πj∈Ni

← π̂j∈Ni

7 end
// Waypoint update

8 Q ← ∅;
9 for ∀j ∈ Ni do

10 if h = 0 or the agent j satisfies (3.17), (3.18)) then
11 Q ← Q∪ {j};
12 wj ← second waypoint of πj;

13 else

14 wj ← w
(h−1)
j ;

15 end

16 end
// Conflict resolution

17 for ∀j ∈ Q do
18 if wj = wq,∃q ∈ Ni\{j} then
19 wj ← w

(h−1)
j ;

20 end

21 end
22 return wj∈Ni

24

3.3 Decentralized Multi-agent Path Planning

The proposed algorithm introduces the decentralized multi-agent path planning (MAPP)

to update the waypoint, which provides guidance to the desired goal. Alg. 2 describes the

proposed waypoint update method. For every replanning step, each agent configures the

ad-hoc network between agents within the communication range, and one agent among

the connected group is selected as a local coordinator. The local coordinator collects the

previously planned trajectory, subgoals, waypoints, and desired goals of the agents in the

connected group. It also receives the observed position and velocity of the dynamic obstacles

as input.

3.3.1 Dynamic Obstacles of Interest Detection

For dynamic obstacle avoidance, the obstacle that may collide with the agent within the

planning horizon is identified as dynamic obstacles of interest (DOI) (line 1). In this work,

the obstacle k is considered as one of the DOI of the agent j (Dj) if the agent’s previous

trajectory passes through the obstacle’s reachable region or the agent’s previous waypoint

is in the obstacle’s reachable region:

p
(h−1)
j (t) ∈ Rj,k,∃t ∈ [Th, Th +M∆t] (3.12)

w
(h−1)
j ∈ Rj,k (3.13)

where p
(h−1)
j (t) is the previous trajectory of the agent j, w

(h−1)
j is the previous waypoint

of the agent j, Rj,k(t) is the reachable region of the dynamic obstacle k for the agent j,

which is estimated based on the obstacle’s dynamical limit:

Rj,k(t) = {x ∈ R3 | ∥Dj,k(p̄k + v̄k(t− Th)− x))∥ < r̂k(t)} (3.14)

r̂k(t) = r + rk +
1

2
ak,maxmin(t− Th,Me∆t)

2} (3.15)

25

where p̄k and v̄k are the observed position and velocity of the obstacle k, Dj,k is the scaling

matrix, ak,max is the maximum acceleration of the obstacle k and Me ≥ 1 is the number of

the error prediction segments to prevent overly conservative reachable region estimation.

When the agent detects the DOI, the agent moves the goal as far as possible from

the obstacle to reduce the risk of collision (line 2). To determine the new goal point, the

breadth-first search is used to find candidate grid points where the distance to the agent’s

previous waypoint is smaller than the distance to the DOI. The farthest point from the

DOI among these candidates is then selected as the new goal point for the agent.

3.3.2 Grid-based MAPP

After DOI detection, the local coordinator plans discrete paths using the MAPP algo-

rithm on the grid space G (line 3). The start points of the MAPP are the previous waypoints

w
(h−1)
i∈Ni

, and the goal points are the desired goals updated after DOI detection. If it is the

first time to run MAPP, the start points of MAPP are the agent’s current position. To

consider the downwash between the agents, the z-axis of the grid map is extended by the

downwash coefficient. For example, if the grid size in the x and y axis is d, then the grid

size in the z-axis direction is γi,jd where γi,j is downwash coefficient.

In this work, Priority Inheritance with Backtracking (PIBT) is adopted [49] for MAPP

because it is a fast and scalable algorithm that guarantees goal reachability, which ensures

that each agent reaches the desired goal. Furthermore, I modified the algorithm to allow

the path to circumvent the obstacles since the original PIBT does not consider dynamic

obstacles. First, the proposed algorithm assigns a higher priority to the agent that has a

shorter distance to the DOI than other agents. Fig. 3.6 shows the example. The red agent

has the highest priority since it is the closest agent to the obstacle. Therefore, it can push

other agents to keep a safe distance against the obstacle. Second, when generating a grid

map for MAPP, I block the path entering the reachable region of the dynamic obstacles

from the outside as shown in Fig. 3.7. This directed grid map can prevent the discrete paths

from passing through the obstacle’s reachable region.

26

Figure 3.6: Priority assignment for dynamic obstacle avoidance. The black circle is a dy-
namic obstacle and the other circles are the agents. The gray region is the reachable region
of the dynamic obstacle, and the green region is the static obstacle. The red agent has the
highest priority because it is the closest agent to the obstacle.

Figure 3.7: The grid map for dynamic obstacle avoidance. The gray region is the reachable
region of the dynamic obstacle, the gray arrow denotes that the edge is bidirected, and the
red arrow denotes that the edge is not bidirected.

27

Since PIBT is not an optimal planner, the path can be changed inconsistently for each

replanning step, which can cause a livelock. Therefore, the proposed algorithm compares

the current path with the previous one and chooses the better one. First, the previous path

is modified to match the start point as follows:

π̂j =


[π

(h−1)
j,2 , · · · ,π(h−1)

j,L] w
(h−1)
j = π

(h−1)
j,2 for

∀j ∈ Ni

[w
(h−1)
j ,π

(h−1)
j,2 , · · · ,π(h−1)

j,L] else

(3.16)

where π̂j is the modified previous path, π
(h−1)
j,l is the lth waypoint of the path π

(h−1)
j ,

π
(h−1)
j is the previous path of the agent j, and L is the length of the path. After that,

the current path is replaced with the modified one if all agents do not detect the DOI

(Dj = ∅ for ∀j ∈ Ni), the member of the connected group is the same as the previous

replanning step (Ni = N (h−1)
i), and the makespan of the current path is not shorter than

the makespan of the modified path (|π̂j∈Ni
| ≤ |πj∈Ni

|). Note that this process guarantees

that the makespan of the discrete path will not increase unless the DOI is detected or the

member of the connected group is changed. It is because the modified previous path has a

makespan that is equal to or less than the original path.

3.3.3 Waypoint update

After planning the discrete path, the local coordinator updates the agent’s waypoint wi

to the second waypoint of the discrete path (the point one step after the start point) if the

following two conditions are satisfied (lines 10-13). First, the subgoal and waypoint at the

previous step must be equal (3.17). Second, the distance between the updated waypoint

and the endpoints of the previous trajectory’s segments must be shorter than rc/2 (3.18):

g
(h−1)
i = w

(h−1)
i (3.17)

28

∥wi − p
(h−1)
i (Th+m−2)∥∞ <

rc
2
,∀m (3.18)

where gi and wi are the subgoal and waypoint, respectively. Otherwise, the previous way-

point is reused as the current waypoint (lines 13-15). Lastly, the proposed algorithm checks

whether the waypoints are duplicated in the connected group. If the duplicated waypoints

exist, one of them is restored to the previous waypoint. This process is repeated until there

is no duplicated waypoint (lines 17-21). Lemma 3.1 shows that the proposed waypoint

update rule prevents duplicated waypoints.

Lemma 3.1. For any pair of the agents i ∈ Ia and j ∈ Ia\{i}, wi ̸= wj holds for every

replanning step.

Proof. If j ∈ Ni, then the waypoints of the agent i and j cannot be duplicated because the

duplicated waypoints are eliminated at the lines 17-21 in Alg. 2. Assume that j /∈ Ni and

the agents i and j have the same waypoints wi = wj. Then, p
(h−1)
i (Th+1) = pi(Th) by the

initial condition of the trajectory. Hence the following inequality holds due to (3.18):

∥wi − pi(Th)∥∞ = ∥wi − p
(h−1)
i (Th+1)∥∞ <

rc
2

(3.19)

∥wi − pj(Th)∥∞ = ∥wj − pj(Th)∥∞ <
rc
2

(3.20)

Therefore, the distance between two agents is smaller than the communication range by

triangle inequality:

∥pi(Th)− pj(Th)∥∞ < rc (3.21)

However, it contradicts the assumption that j /∈ Ni. Thus, there are no duplicated way-

points.

29

3.4 Initial Trajectory Planning

An initial trajectory is a nominal trajectory to generate feasible collision constraints. In

other words, the collision constraints will be constructed that the initial trajectory satisfies.

3.4.1 Agents

The proposed algorithm generates the initial trajectory for the agent using the previ-

ously planned trajectories, as shown in Fig. 3.8.

p̂i(t) =


si h = 0, t ∈ [T0, TM]

p
(h−1)
i (t) h > 0, t ∈ [Th, Th+M−1]

p
(h−1)
i (Th+M−1) h > 0, t ∈ [Th+M−1, Th+M]

(3.22)

where p̂i(t) is the initial trajectory, and si is the start point of the agent i. The control

point of the initial trajectory is represented as follows:

ĉi,m,k =


si h = 0

c
(h−1)
i,m+1,k h > 0,m < M

c
(h−1)
i,M,n h > 0,m =M

(3.23)

where ĉi,m,k is the control point of the initial trajectory.

30

Figure 3.8: Initial trajectory planning for agents.

3.4.2 Dynamic obstacles

For the dynamic obstacle j ∈ Io, the predicted obstacle’s trajectory is used as the initial

trajectory, i.e.:

p̂j(t) = p̄j + v̄j(t− Th) (3.24)

where p̂j(t) is the initial trajectory of the obstacle j, and p̄j and v̄j are the observed

position and velocity of the obstacle, respectively.

3.5 Collision Constraints Construction

The collision constraints should satisfy the following conditions to achieve collision

avoidance and goal convergence. First, they should ensure maximum safety even in envi-

ronments with dynamic obstacles. Second, they must ensure the feasibility of the trajectory

optimization problem until all agents reach their desired goal. Third, they must not block

the agent while it converges to the subgoal. This section presents a collision constraint

construction method that satisfies the above conditions.

31

3.5.1 Static obstacle avoidance

A safe flight corridor (SFC) [50] is utilized to prevent collision with static obstacles. In

general, SFC is defined as a convex set that prevents the agent from a collision with static

obstacles, i.e.:

(S ⊕ Ci) ∩ O ≠ ∅ (3.25)

where S is a SFC, and Ci is an obstacle collision model. Assume that the control points of

the agent i are confined in the corresponding SFC:

ci,m,k ∈ Sm,∀m, k (3.26)

where Sm is a SFC for the mth trajectory segment. Then, the agent i does not collide with

static obstacles due to the convex hull property (2.4).

The SFC is constructed as follows:

Sm =



S({si,wi}) h = 0

S(h−1)
m+2 h > 0,m < M, (3.28)

S(h−1)
m+1 h > 0,m < M, else

S({ĉi,M,n,g
(h−1)
i ,wi})) h > 0,m =M, (3.29)

S({ĉi,M,n,g
(h−1)
i }) h > 0,m =M, else

(3.27)

Conv({ĉi,m,0, · · · , ĉi,m,n}) ⊂ S(h−1)
m+2 , m < M − 1 (3.28)

(Conv({ĉi,M,n,g
(h−1)
i ,wi})⊕ Ci) ∩ O = ∅ (3.29)

where Sm is the SFC for mth trajectory segment, S(P) is a convex polyhedron that includes

the point set P and satisfies (S(P)⊕ Ci) ∩O = ∅, and Conv(·) is the convex hull operator

that returns a convex hull of the input set. In this work, S(P) is constructed using the axis-

search method [51]. Alg. 3 describes the axis-search method. First, the SFC is initialized

32

Algorithm 3: buildSFC

Input: point set P , obstacle space O
Output: safe flight corridor S(P)
// Initialization

1 S0 ← axis-aligned bounding box that contains P ;
2 S(P)← S0;
3 M← {±x,±y,±z};
// Inflate the SFC along the axis direction

4 whileM is not empty do
5 for µ inM do
6 if S(P) can expand to direction µ then
7 expand S(P) to direction µ;
8 else
9 M←M\µ;

10 end

11 end

12 end

using an input point set (line 1). After that, for all directions, the algorithm verifies whether

the SFC is expandable (lines 5). If it is expandable, the SFC is expanded by a pre-specified

length (line 6). This algorithm guarantees to return a convex polyhedron that satisfies the

definition of SFC.

Compared to [52], S(h−1)
m+2 is used instead of S(h−1)

m+1 if (3.28) is satisfied. It allows the agent

converges faster to the subgoal by discarding the inefficient SFC. In addition, it should be

noted that the SFC for the last trajectory segment always includes the line segment between

the points ĉi,M,n and g
(h−1)
i . Therefore, the SFC does not block the agent while it converges

to the subgoal. Lemma 3.2 shows that the proposed SFC always exists and guarantees

static obstacle avoidance for every replanning step.

Lemma 3.2. (Existence of feasible SFC) Assume that c
(h−1)
i,m,k ∈ S

(h−1)
m for ∀m, k at the

replanning step h > 0. Then, a non-empty convex set Sm that satisfies (3.27) and (Sm ⊕

Ci) ∩ O = ∅ always exists for ∀h,m.

Proof. If h = 0, S(0)
m = [si,w

(0)
i] satisfies (3.27) and (Sm ⊕ Ci) ∩ O = ∅ by the assumption

that collision does not occur when the agent is on the grid.

33

Assume that S(h−1)
m exists and satisfies (S(h−1)

m ⊕Ci)∩O = ∅ for ∀m. If m < M , then Sm
in (3.27) satisfies (Sm⊕Ci)∩O = ∅ by the assumption. Ifm =M and (3.29) is satisfied, then

SM = Conv({ĉi,M,n,g
(h−1)
i ,wi}) satisfies (3.27) and (SM ⊕Ci)∩O = ∅ by (3.29). If m =M

and (3.29) is not satisfied, the SFC can be constructed as SM = Conv({ĉi,M,n,g
(h−1)
i }).

It fulfills (3.27) and Sm = Conv({ĉi,M,n,g
(h−1)
i }) = Conv({c(h−1)

i,M,n ,g
(h−1)
i }) ⊂ S(h−1)

M , which

implies (Sm ⊕ Ci) ∩ O = ∅ by the assumption. Thus, there exists Sm that satisfies (3.27)

and (Sm ⊕ Ci) ∩ O = ∅ for every replanning step by mathematical induction.

3.5.2 Inter-agent collision avoidance

A linear safe corridor (LSC) [1] is utilized for inter-agent collision avoidance. LSC be-

tween the agents i and j ∈ Ia is defined as a linear constraint that satisfies the following

conditions:

Li,j
m,k = {x ∈ R3 | (x− ĉj,m,k) · ni,j

m − d
i,j
m,k ≥ 0} (3.30)

ni,j
m = −nj,i

m (3.31)

di,jm,k =
1

2
(max⟨Ci,j,ni,j

m ⟩+ (ĉi,m,k − ĉj,m,k) · ni,j
m) (3.32)

where di,jm,k is the safety margin and ni,j
m ∈ R3 is the normal vector of the plane that

separates the inter-agent collision model Ci,j and the convex hull Ĥi,j,m, max⟨Ci,j,ni,j
m ⟩ =

maxx∈Ci,j x · ni,j
m . Let Hi,j,m be the convex hull of the control points of relative trajectory

and Ĥi,j,m be the convex hull of the control points of relative initial trajectory, i.e. Hi,j,m =

Conv({ci,m,k − ĉj,m,k | k = 0, · · · , n}), Ĥi,j,m = Conv({ĉi,m,k − ĉj,m,k | k = 0, · · · , n}).

Lemmas 3.4 and 3.5 present the main properties of LSC.

Lemma 3.3. If the trajectories of all agents satisfy Hi,j,m ∩ Ci,j = ∅,∀j ∈ Ia\i,m =

1, · · · ,M , then there is no collision between agents.

Proof. For any pair of the agents i and j, themth segment of the relative trajectory between

34

two agents is a Bernstein polynomial:

pi(t)− pj(t) =
n∑

k=0

(ci,m,k − cj,m,k)bk,n(t) (3.33)

Due to the convex hull property of the Bernstein polynomial, the following condition holds

for ∀m, t ∈ [Th+m−1, Th+m].

pi(t)− pj(t) ∈ Hi,j,m (3.34)

pi(t)− pj(t) /∈ Ci,j (3.35)

Thus, there is no collision between agents because they satisfy the collision constraint (3.4)

for any segment m.

Lemma 3.4. (Safety of LSC) If ci,m,k ∈ Li,j
m,k, cj,m,k ∈ Lj,i

m,k for ∀m, k then Hi,j,m∩Ci,j = ∅

which implies that the agent i does not collide with the agent j.

Proof. Since ci,m,k ∈ Li,j
m,k, cj,m,k ∈ Lj,i

m,k, the following inequality can be derived using

(3.30) for each agent i and j:

(ci,m,k − ĉj,m,k) · ni,j
m + (cj,m,k − ĉi,m,k) · nj,i

m − (di,jm,k + dj,im,k) > 0 (3.36)

This can be simplified as follows:

(ci,m,k − cj,m,k) · ni,j
m + (ĉi,m,k − ĉj,m,k) · ni,j

m − (di,jm,k + dj,im,k) > 0 (3.37)

(ci,m,k − cj,m,k) · ni,j
m > max⟨Ci,j,ni,j

m ⟩ (3.38)

The above inequality satisfies for ∀k, thus for any λk ≥ 0 s.t.
∑n

k=0 λk = 1:

n∑
k=0

λk(ci,m,k − cj,m,k) · ni,j
m > max⟨Ci,j,ni,j

m ⟩ (3.39)

Hi,j,m ∩ Ci,j = ∅ (3.40)

35

Thus, there is no collision between the agents by Lemma 3.3.

Lemma 3.5. (Existence of feasible LSC) If Ĥi,j,m ∩Ci,j = ∅ for ∀i, j ∈ Ia,m, k, then there

exists Li,j
m,k that satisfies the definition of LSC and ĉi,m,k ∈ Li,j

m,k for ∀i, j ∈ Ia,m, k.

Proof. Ĥi,j,m and Ci,j are disjoint compact convex sets. Thus, by the hyperplane separation

theorem [53], there exists ns such that:

min⟨Ĥi,j,m,ns⟩ > max⟨Ci,j,ns⟩ (3.41)

where min⟨Ĥi,j,m,ns⟩ = minx∈Ĥi,j,m
x·ns. Suppose that the normal vector and safety margin

of Li,j
m,k is given as follows:

ni,j
m = −nj,i

m = ns (3.42)

di,jm,k = dj,im,k =
1

2
(max⟨Ci,j,ni,j

m ⟩+ (ĉi,m,k − ĉj,m,k) · ni,j
m) (3.43)

They fulfill the definition of LSC, and they satisfy (ĉi,m,k− ĉj,m,k) ·ni,j
m − d

i,j
m,k =

1
2
((ĉi,m,k−

ĉj,m,k) · ni,j
m − max⟨Ci,j,ni,j

m ⟩) > 0 due to (3.41). It indicates that ĉi,m,k ∈ Li,j
m,k for ∀i, j ∈

Ia,m, k.

In this work, the LSC between the agents i and j ∈ Ia is generated as follows if it is

not the LSC for the last trajectory segment (m < M):

Li,j
m,k = {x ∈ R3 | (x− ĉj,m,k) · ni,j

m − d
i,j
m,k ≥ 0} (3.44a)

di,jm,k = r +
1

2
(ĉi,m,k − ĉj,m,k) · ni,j

m (3.44b)

where ni,j
m ∈ R3 is the normalized vector that points toward the closest point on the convex

hull Ĥi,j,m from the origin, and Ĥi,j,m = Conv({ĉi,m,k − ĉj,m,k | k ∈ In}. Fig. 3.9 describes

the LSC construction process. First, the coordinate transformation is performed to convert

the inter-collision model Ci,j to the sphere as shown in the middle figure of Fig. 3.9. Next,

the Gilbert–Johnson–Keerthi (GJK) algorithm is conducted [54] to find the closest points

between the convex hull Ĥi,j,m and the collision model. The normal vector of the LSC is

36

the normal vector from the origin to the closest point on the convex hull, and the safety

margin can be computed from the (3.44) using the normal vector. Finally, the desired LSC

is generated by reversing the coordinate transform, as shown in the green shaded area in

the right figure of Fig. 3.9.

The LSC for the last trajectory segment is constructed as follows so that the agent can

converge to the subgoal:

Li,j
M,k = {x ∈ R3 | (x− pj,i

cls) · n
i,j
M − d

i,j
M,k ≥ 0} (3.45a)

ni,j
M =

pi,j
cls − pj,i

cls

∥pi,j
cls − pj,i

cls∥
(3.45b)

di,jM,k = r +
1

2
∥pi,j

cls − pj,i
cls∥ (3.45c)

where pi,j
cls ∈ [ĉi,M,n,g

(h−1)
i] and pj,i

cls ∈ [ĉj,M,n,g
(h−1)
j] are the closest points between [ĉi,M,n,g

(h−1)
i]

and [ĉj,M,n,g
(h−1)
j], respectively, and [a, b] is the line segment between two points, a and

b. Similar to SFC, the LSC for the last trajectory segment also contains the line segment

[ĉi,M,n,g
(h−1)
i]. Therefore, the collision constraints for the last trajectory segment always

include the line segment [ĉi,M,n,g
(h−1)
i] as shown in Fig. 3.10. As a result, each agent can

secure the free space to proceed to the subgoal g
(h−1)
i , and the subgoal will converge to the

waypoint wi.

37

F
ig
u
re

3.
9:

L
S
C

fo
r
in
te
r-
ag
en
t
co
ll
is
io
n
av
oi
d
an

ce
.
T
h
e
re
d
el
li
p
so
id

is
th
e
co
ll
is
io
n
m
o
d
el

b
et
w
ee
n
tw

o
ag
en
ts
,
an

d
th
e
ye
ll
ow

-s
h
ad

ed
re
gi
on

is
th
e
co
n
ve
x
h
u
ll
th
at

co
n
si
st
s
of

th
e
co
n
tr
ol

p
oi
n
ts

of
th
e
re
la
ti
ve

in
it
ia
l
tr
a
je
ct
or
y.

T
h
e

gr
ee
n
-s
h
ad

ed
re
gi
on

is
th
e
L
S
C
b
et
w
ee
n
tw

o
ag
en
ts
.
T
h
e
sy
m
b
ol

w
it
h
a
ti
ld
e
d
en
ot
es

th
e
co
or
d
in
at
e-
tr
an

sf
or
m
ed

va
lu
e.

38

Figure 3.10: Collision constraints for the last trajectory segment. The triangles are the final
points of the initial trajectories, and the circles are the previously planned subgoals. The
gray box is the static obstacle, and the color-shaded region is the feasible region that satisfies
the collision constraints. The collision constraint for the last segment always includes the
line segment between the final point and the subgoal, which is depicted as the thick line.

Lemma 3.6 presents that the proposed LSC guarantees inter-collision avoidance.

Lemma 3.6. (Safety of LSC) If ci,m,k ∈ Li,j
m,k, cj,m,k ∈ Lj,i

m,k for ∀m, k then the agents i

and j do not collide with each other.

Proof. If m < M , then the LSC guarantees collision avoidance due to Lemma 3.4. If

m =M :

(ci,m,k − pj,i
cls) · n

i,j
M + (cj,m,k − pi,j

cls) · n
j,i
M − (di,jM,k + dj,iM,k) > 0 (3.46)

This can be simplified as follows:

(ci,m,k − cj,m,k) · ni,j
M + (pi,j

cls − pj,i
cls) · n

i,j
M − (di,jM,k + dj,iM,k) > 0 (3.47)

(ci,m,k − cj,m,k) · ni,j
M + ∥pi,j

cls − pj,i
cls∥ − 2r + ∥pi,j

cls − pj,i
cls∥ > 0 (3.48)

(ci,m,k − cj,m,k) · ni,j
M > 2r (3.49)

39

The above inequality holds for ∀m, thus the agents do not cause a collision by Lemma 3.3

In conclusion, there is no collision between the agents i and j.

Fig. 3.11 shows the difference between LSC and BVC [2]. Since the BVC is generated

using the agent’s current position only, the desired trajectories from the BVC remain within

each static cell, which leads to a conservative maneuver as shown in Fig. 3.11a. On the other

hand, the LSC can utilize the full trajectory at the previous step. Thus, the agent can show

more aggressive maneuvers while ensuring collision avoidance, as depicted in Fig. 3.11b.

40

(a) BVC [2]

(b) LSC

Figure 3.11: Trajectory planning comparison between BVC [2] and LSC. The colored lines,
small squares, and circles are desired trajectories, goal points, and desired position at the
end of the planning horizon (i.e. pi(Th+M)) respectively. The color-shaded regions denote
the collision constraints for the red agent at the end of the planning horizon.

41

3.5.3 Dynamic obstacle avoidance

Since the exact trajectory of the dynamic obstacle is unknown, the reachable region

of the obstacles should be considered when generating the constraints. To solve this prob-

lem, the proposed algorithm reformulates the predicted obstacle’s trajectory as piecewise

Bernstein polynomials:

p̂j(t) =



∑n
k=0 ĉj,1,kbk,n(t) t ∈ [Th, Th+1]

...
...∑n

k=0 ĉj,M,kbk,n(t) t ∈ [Th+M−1, Th+M]

(3.50)

where ĉj,m,k is the control point of the predicted trajectory. Then, the reachable area of

the object is estimated through the dynamical limit of the object. As depicted in Fig. 3.12,

the reachable area can be expressed using the predicted trajectory and the error bound

Bj(t) ⊂ R3 between the predicted trajectory and the actual trajectory of the object:

pj(t) ∈ p̂j(t)⊕ Bj(t) (3.51)

where p̂j(t) is the predicted trajectory of the jth object and the ⊕ is the Minkowski sum.

Finally, as illustrated in Fig. 3.13, the sufficient condition of dynamic obstacle avoidance

can be derived as follows:

(pi(t)− p̂j(t)) ∩ (Bj(t)⊕ Ci,j) = ∅, t ∈ [Th, Th+M] (3.52)

42

Figure 3.12: Trajectory prediction model with error bound (blue ellipsoid).

Figure 3.13: Collision model between agent i and object j (red ellipsoid) and inflated
collision model to consider the error bound (blue ellipsoid).

This work utilizes a relative safe flight corridor (RSFC) [8] for dynamic obstacle avoid-

ance. RSFC covers the obstacle’s reachable region by inflating the collision model over time

as follows:

Ĉi,j(t) = {x ∈ R3 | ∥Di,jx∥ ≤ r̂j(t)} (3.53)

r̂j(t) = r + rj +
1

2
aj,maxmin(t− Th,Me∆t)

2 (3.54)

43

where Ĉi,j(t) is the inflated collision model, r̂j(t) is the radius of the inflated collision model,

aj,max is the maximum acceleration of the obstacle j, and Me ≥ 1 is the number of error

prediction segments. Since the inflated collision model includes the obstacle’s reachable

region, the sufficient condition of dynamic obstacle avoidance can be represented as follows:

pi(t)− p̂j(t) /∈ Ĉi,j(t), ∀t ∈ [Th, Th+1], h (3.55)

where p̂j(t) is the initial trajectory of the obstacle j.

Lemma 3.7. (Sufficient condition for dynamic obstacle avoidance) If the agent i satisfies

(3.55) at the replanning steps h, then there is no collision between the agent i and the

dynamic obstacle j ∈ Io at the replanning steps h.

Proof. Assume that the bound of the obstacle’s trajectory is given as follows:

pj(t)− p̂j(t) ∈ Bj(t) (3.56)

where p̂j(t) is the initial trajectory of the obstacle j, and Bj(t) = {x ∈ R3 | ∥x∥ ≤
1
2
aj,max(t − Th)

2} is a error bound. Let a ∈ Ci,j and b ∈ Bj(t). Then, ∥Di,j(a + b)∥ ≤

∥Di,ja∥+ ∥Di,jb∥ ≤ r + rj +
1
2
∥aj,max∥(t− Th)2 since γi,j ≥ 1. It implies that:

Ci,j ⊕ Bj(t) ⊂ Ĉi,j(t), ∀t ∈ [Th, Th +Me∆t] (3.57)

Thus, the following equations hold for ∀h, t ∈ [Th, Th+1]:

pi(t)− p̂j(t) /∈ Ĉi,j(t)

⇒ pi(t)− p̂j(t) /∈ Ci,j ⊕ Bj(t) (∵ (3.57))

⇒ pi(t) /∈ Ci,j ⊕ Bj(t)⊕ {p̂j(t)}

⇒ pi(t) /∈ Ci,j ⊕ {pj(t)} (∵ (3.56))

⇒ pi(t)− pj(t) /∈ Ci,j

(3.58)

44

In (3.58), the property of Minkowski sum that a ∈ A ⇔ a+b ∈ A⊕{b} is used. The last

equation is equal to the original collision constraint (3.9). Therefore, if the agents satisfy

(3.55) for all replanning step h, the agent does not collide with the dynamic obstacles.

Based on the sufficient condition, the RSFC between the agent i and the obstacle j is

defined as a linear constraint tangent to the inflated collision model:

Li,j
m,k = {x ∈ R3 | Di,j(x− ĉj,m,k) · ni,j

m − d
i,j
m,k > 0} (3.59)

di,jm,k = r̂j,m,k + ei,j,m (3.60)

where ni,j
m is the normal vector, di,jm,k is the safety margin, r̂j,m,k is the control point of the

Bernstein polynomial r̂j(t), and ei,j,m ≤ 0 is the slack variable to prevent the constraint

from becoming infeasible.

Fig. 3.14 describes the RSFC construction process. First, the coordinate transformation

is performed to convert the inflated collision model to the sphere. Next, the proposed

algorithm finds the closest point between the collision model and the segment of the relative

initial trajectory, p̂i(t)−p̂j(t). The RSFC is the tangent plane to the inflated collision model

at the closest point (See the green plane of the middle figure of Fig. 3.14). Finally, the RSFC

is generated by reversing the coordinate transform, as illustrated in the right figure of Fig.

3.14.

3.6 Subgoal Optimization

A subgoal is an intermediate goal point for the agents to reach the waypoint. As dis-

cussed in section 3.2.1, the subgoal must be placed in a feasible region that satisfies the

collision constraints to avoid deadlock. In addition, it must converge to the waypoint to

ensure goal convergence. For this reason, the proposed algorithm places the subgoal as

the closest point to the waypoint within the feasible region. The subgoal is determined by

45

F
ig
u
re

3.
14
:
R
S
F
C

fo
r
d
y
n
am

ic
ob

st
ac
le

av
oi
d
an

ce
.
T
h
e
re
d
el
li
p
so
id

is
th
e
co
ll
is
io
n
m
o
d
el

b
et
w
ee
n
th
e
ag
en
t
an

d
th
e

m
ov
in
g
ob

st
ac
le
,
an

d
th
e
or
an

ge
-s
h
ad

ed
re
gi
on

is
th
e
in
fl
at
ed

co
ll
is
io
n
m
o
d
el

th
at

co
ve
rs

th
e
re
ac
h
ab

le
re
gi
on

of
th
e

d
y
n
am

ic
ob

st
ac
le
.
T
h
e
gr
ee
n
-s
h
ad

ed
re
gi
on

is
th
e
L
S
C

b
et
w
ee
n
th
e
ag
en
t
an

d
th
e
m
ov
in
g
ob

st
ac
le
.
T
h
e
sy
m
b
ol

w
it
h
a

ti
ld
e
d
en
ot
es

th
e
co
or
d
in
at
e-
tr
an

sf
or
m
ed

va
lu
e.

46

solving the following optimization problem:

minimize
gi

∥gi −wi∥

subject to gi ∈ [si,wi] if h = 0

gi ∈ [g
(h−1)
i ,wi] if h > 0

gi ∈ SM

gi ∈ L
i,j
M,n ∀j ∈ Ni

(3.61)

where gi is the subgoal at the replanning step h. Note that the subgoal optimization problem

can be converted to linear programming (LP) problem (See (4.31)). Lemma 3.8 shows the

properties of the subgoal.

Lemma 3.8. For the agents i ∈ Ia, j ∈ Ia\{i}, the subgoal satisfies the following:

(i) There exists a grid edge e ∈ E such that [gi,wi] ⊂ [g
(h−1)
i ,wi] ⊂ e for ∀h > 0.

(ii) gi ̸= gj.

(iii) [g
(h−1)
i ,wi] ∩ [g

(h−1)
j ,wj] ⊂ V for ∀h > 0.

(iv) If there exists an edge e ∈ E such that gi ∈ e and gj ∈ e, then gi or gj is on the grid

vertex of the grid G = (V , E).

Proof. (i) If h = 0, there exists a grid edge e ∈ E such that [si,w
(0)
i] ⊂ e because si is on

the grid vertex by the assumption and w
(0)
i is the waypoint of discrete path from MAPP.

Also, g
(0)
i ∈ [si,w

(0)
i] due to (3.61). Therefore, [g

(0)
i ,w

(0)
i] ⊂ [si,w

(0)
i] ⊂ e.

Assume that there exists a grid edge e(h−1) ∈ E such that [g
(h−1)
i ,w

(h−1)
i] ⊂ e(h−1). If

g
(h−1)
i ̸= w

(h−1)
i , then wi = w

(h−1)
i by the waypoint update rule (3.17). Hence [gi,wi] ⊂

[g
(h−1)
i ,wi] ⊂ e(h−1) since gi ∈ [g

(h−1)
i ,wi]. If g

(h−1)
i = w

(h−1)
i , then there exists a grid edge

e such that [gi,wi] ⊂ [g
(h−1)
i ,wi] = [w

(h−1)
i ,wi] ⊂ e because w

(h−1)
i ,wi are the consecutive

waypoints of the discrete path from grid-based MAPP. Thus, there exists a grid edge e ∈ E

such that [gi,wi] ⊂ [g
(h−1)
i ,wi] ⊂ e for every replanning step by mathematical induction.

47

(ii) ∥gi − gj∥ ≥ 2r because gi ∈ L
i,j
M,n and gj ∈ L

j,i
M,n. It implies that gi ̸= gj.

(iii) If h = 0, [si,w
(0)
i] ∩ [sj,w

(0)
j] ⊂ V because the waypoints are planned using grid-

based MAPP that ensures collision avoidance. Thus, [g
(0)
i ,w

(0)
i] ∩ [g

(0)
j ,w

(0)
j] ⊂ V since

[g
(0)
i ,w

(0)
i] ⊂ [si,w

(0)
i] by (3.61).

Suppose that [g
(h−1)
i ,w

(h−1)
i] ∩ [g

(h−1)
j ,w

(h−1)
j] ⊂ V .

(Case 1) If g
(h−1)
i ̸= w

(h−1)
i and g

(h−1)
j ̸= w

(h−1)
j , [g

(h−1)
i ,wi]∩[g(h−1)

j ,wj] ⊂ V since w
(h−1)
i =

wi and w
(h−1)
j = wj by the waypoint update rule (3.17). Therefore, [gi,wi] ∩ [gj,wj] ⊂

[g
(h−1)
i ,wi] ∩ [g

(h−1)
j ,wj] ⊂ V by (3.61).

(Case 2) If g
(h−1)
i = w

(h−1)
i and g

(h−1)
j = w

(h−1)
j , then [g

(h−1)
i ,wi]∩[g(h−1)

j ,wj] = [w
(h−1)
i ,wi]∩

[w
(h−1)
j ,wj] ⊂ V since Alg. 2 updates the waypoints without any conflict. Therefore,

[gi,wi] ∩ [gj,wj] ⊂ [g
(h−1)
i ,wi] ∩ [g

(h−1)
j ,wj] ⊂ V .

(Case 3) Assume that only one of the subgoals is equal to the waypoint. In other words,

g
(h−1)
i ̸= w

(h−1)
i and g

(h−1)
j = w

(h−1)
j without loss of generality. Then, [g

(h−1)
i ,wi]∩[g(h−1)

j ,wj] =

[g
(h−1)
i ,w

(h−1)
i]∩[w(h−1)

j ,wj] by the waypoint update rule (3.17). Here, a grid edge e(h−1) ∈ E

such that [g
(h−1)
i ,w

(h−1)
i] ⊂ e(h−1) can be found due to (i) of Lemma 3.8. Also, it satisfies

[w
(h−1)
j ,wj] ∩ e(h−1) ⊂ V because w

(h−1)
j ̸= w

(h−1)
i and wj ̸= wi = w

(h−1)
i by Lemma 3.1.

Therefore, [gi,wi]∩ [gj,wj] ⊂ [g
(h−1)
i ,wi]∩ [g(h−1)

j ,wj] ⊂ V . Thus, (iii) of Lemma 3.8 holds

for every replanning step by mathematical induction.

(iv) Assume that there exists an edge e such that g
(0)
i ∈ e, g

(0)
j ∈ e. Since si, sj, w

(0)
i ,

and w
(0)
j are on the vertex of the grid, the necessary condition of g

(0)
i /∈ V and g

(0)
j /∈ V is:

[si,w
(0)
i] ∩ [sj,w

(0)
j] ̸= ∅ (3.62)

However, it implies that there exists a collision between discrete paths, which is impossible

by the MAPP algorithm. Thus, g
(0)
i = w

(0)
i ∈ V or g

(0)
j = w

(0)
j ∈ V .

Assume that (iv) of Lemma 3.8 holds at the replanning step h−1 and the edge e satisfies

gi ∈ e and gj ∈ e. If g
(h−1)
i /∈ e or g

(h−1)
j /∈ e, then gi = wi ∈ V or gj = wj ∈ V by the

constraint gi ∈ [g
(h−1)
i ,wi]. If g

(h−1)
i ∈ e and g

(h−1)
j ∈ e, then g

(h−1)
i ∈ V or g

(h−1)
j ∈ V by the

48

assumption. Suppose that g
(h−1)
i ∈ V without loss of generality. If wj = g

(h−1)
i , then wi /∈ e

due to (iii) of Lemma 3.8. If wj ̸= g
(h−1)
i , then the waypoint wi satisfies wi = g

(h−1)
i or

wi /∈ e since the waypoints cannot be duplicated by Lemma 3.1. Therefore, gi = g
(h−1)
i ∈ V

for every case because of the constraint gi ∈ [g
(h−1)
i ,wi] and the assumption that gi ∈ e.

To summarize, if there exists an edge e ∈ E such that gi ∈ e or gj ∈ e, then gi ∈ V or

gj ∈ V by the mathematical induction.

3.7 Trajectory Optimization

3.7.1 Cost function

The cost functions are formulated to minimize the distance to the subgoal, the jerk of

the trajectory, and the size of the slack variables for dynamic obstacle avoidance:

Jerr(pi(t)) = werr

M∑
m=1

δm∥ci,m,n − gi∥2 (3.63)

Jder(pi(t)) = wder

∫ Th+M

Th

∥∥∥∥ d3dt3pi(t)

∥∥∥∥2

dt (3.64)

Jslk = wslk

∑
j∈Io

M∑
m=1

e2i,j,m (3.65)

where wm, wder, wslk > 0 are the weight coefficients, and δm is discrete delta function defined

as follows:

δm =

 1 m =M or ĉi,m+1,n = gi

0 else

(3.66)

3.7.2 Communication range

If the communication range is not considered when generating the trajectory, the agent

may collide with an agent outside the range. Moreover, if the distance between the agent

49

and its waypoint is longer than half the communication range, an agent outside the range

can assign the same waypoint. Therefore, the following constraints are added to prevent

the collision and duplicated waypoints between agents outside the range:

∥ci,m+l,k − ci,m,0∥∞ ≤
rc
2
− r,∀l > 0,m, k, (3.67)

∥ci,m,n −wi∥∞ ≤
rc
2
,∀m (3.68)

where rc is the communication range.

3.7.3 Other constraints

The properties of Bernstein polynomial (2.5), (2.7), and (2.8) are utilized to formulate

the initial condition to match the agent’s current state. Similarly, the continuity constraints

are imposed to make the trajectory continuous up to the acceleration. The dynamical limit

(3.10), (3.11) can be represented to affine inequality using the convex hull property of

the Bernstein polynomial (2.4). Lastly, the final stop condition is added for the feasibility

of the optimization problem (i.e., ci,M,n = ci,M,n−1 = ci,M,n−2). These constraints can be

represented as the affine constraints:

Aeqci = beq (3.69)

Adynci ⪯ bdyn (3.70)

where ci is the vector that concatenates the control points of the trajectory pi(t).

50

3.7.4 Optimization problem

The trajectory optimization is conducted by solving the following quadratic program-

ming (QP) problem:

minimize
ci

Jerr + Jder + Jslk

subject to ci,m,k ∈ Sm ∀m, k

ci,m,k ∈ Li,j
m,k ∀j ∈ Ni ∪ Io,m, k

ei,j,m ≤ 0 ∀j ∈ Io,m

(3.67), (3.68), (3.69), (3.70)

(3.71)

The trajectory optimization problem can be solved by using a conventional convex solver.

The time complexity of the convex QP solver is known to O(N3L) [55] where N is the

number of decision variables, and L is the number of bits in the input, which is propor-

tional to the number of inequality constraints. Since the number of inequality constraints

is proportional to the number of robots and the computation time of other modules is neg-

ligible when the number of agents is large enough, the computation time of the proposed

algorithm increases approximately linearly with the number of robots.

51

4
Theoretical Guarantee

This chapter addresses the theoretical properties of the proposed algorithm. Section

4.1 describes proof that the proposed algorithm guarantees collision avoidance. Section

4.2 presents proof that the proposed algorithm ensures the feasibility of the optimization

problem so that the planner never fails to return the trajectory during the mission. Section

4.3 proves that the proposed algorithm guarantees goal convergence if the communication

range is large enough.

4.1 Collision Avoidance

Since the proposed algorithm utilizes a safe flight corridor (SFC) and linear safe corridor

(LSC), it guarantees inter-collision avoidance and static obstacle avoidance during the

mission. Moreover, Theorem 4.1 presents that the proposed algorithm prevents the collision

between agents out of the communication range.

Theorem 4.1. (Collision avoidance) The trajectory from (3.71) does not cause inter-agent

collision or collision between the agent and static obstacles.

52

Proof. By Lemma 3.2, there exists Sm for ∀h,m that satisfies (Sm⊕Ci)∩O = ∅. Therefore,

the constraint ci,m,k ∈ Sm ensures static obstacle avoidance due to the convex hull property

of Bernstein polynomial (2.4).

For the agent j ∈ Ni, there is no collision between the agents i and j due to Lemma

3.4. For the agent j /∈ Ni, the following inequality holds for all agents due to (3.67):

∥ci,m,k − ci,1,0∥∞ ≤
rc
2
− r,∀i ∈ Ia,m, k (4.1)

Due to the convex hull property (2.4) and end-point property (2.5) of Bernstein polynomial,

the following holds for all agent i ∈ I:

∥pi(t)− ci,1,0∥∞ ≤
rc
2
− r,∀i ∈ Ia, t ∈ [Th, Th+M] (4.2)

∥pi(t)− pi(Th)∥∞ ≤
rc
2
− r,∀i ∈ Ia, t ∈ [Th, Th+M] (4.3)

Due to the assumption that j /∈ Ni:

∥pi(Th)− pj(Th)∥∞ ≥ rc (4.4)

∥pi(Th)− pi(t) + pj(t)− pj(Th) + pi(t)− pj(t)∥∞ ≥ rc (4.5)

According to (4.3) and triangle inequality:

∥pi(t)− pi(Th)∥+ ∥pj(t)− pj(Th)∥

+ ∥pi(t)− pj(t)∥∞ ≥ rc

(4.6)

∥pi(t)− pj(t)∥ ≥ ∥pi(t)− pj(t)∥∞ ≥ 2r (4.7)

Therefore, there is no collision between the agents i and j. In conclusion, the trajectory

from (3.71) guarantees inter-agent collision avoidance and static obstacle avoidance.

Also, it should be noted the proposed algorithm guarantees dynamic obstacle avoidance

53

if the slack variables in the RSFC are all zero.

Theorem 4.2. (Dynamic obstacle avoidance) If ci,m,k ∈ Li,j
m,k and ei,j,m = 0 for ∀m, k,

then the agent i does not collide with the dynamic obstacle j ∈ Io at the replanning steps

h.

Proof. Since ei,j,m = 0 for ∀m, di,jm,k = r̂j,m,k. The following inequalities holds by (3.59) for

∀j ∈ Io,m, k:

Di,j(ci,m,k − ĉj,m,k) · ni,j
m − d

i,j
m,k > 0 (4.8)

Di,j(ci,m,k − ĉj,m,k) · ni,j
m − r̂j,m,k > 0, (4.9)

Here, the Bernstein basis is multiplied as follows:

n∑
k=0

Di,j(ci,m,k − ĉj,m,k)bk,n(τh,m) · ni,j
m − r̂j,m,kbk,n(τh,m) > 0 (4.10)

Di,j(pi(t)− p̂j(t)) · ni,j
m − r̂j(t) > 0, t ∈ [Th+m−1, Th+m] (4.11)

where τh,m = (t−Th+m−1)/∆t. It implies that pi(t)−p̂j(t) /∈ Ĉi,j(t) for ∀m, t ∈ [Th+m−1, Th+m].

Thus, there is no collision between the agent i and j at the replanning step h by Lemma

3.7.

4.2 Feasibility of Contraints

This section presents the proof that Alg. 1 ensures it returns a feasible trajectory for

any arbitrary input. This can be proved by showing that the initial trajectory pi(t) is one

of the solutions to the trajectory optimization problem. Lemma 4.1 shows that the feasible

SFC exists for every replanning step.

Lemma 4.1. (Existence of the feasible SFC) Assume that c
(h−1)
i,m,k ∈ S

(h−1)
m for ∀m, k at the

replanning step h > 0. Then, ĉi,m,k ∈ Sm for ∀h,m, k.

54

Proof. If h = 0, then ĉi,m,k = si ∈ S(0)
m for ∀m, k due to (3.23). If h > 0, m < M , and (3.28)

is satisfied, ĉi,m,k ⊂ Conv({ĉi,m,0, · · · , ĉi,m,n}) ⊂ S(h−1)
m+2 = Sm. If h > 0, m < M , and (3.28)

is not satisfied, ĉi,m,k = c
(h−1)
i,m+1,k ∈ S

(h−1)
m+1 = Sm for ∀k due to (3.23) and (3.27). If h > 0

and m = M , then ĉi,M,k = ĉi,M,n ∈ S({ĉi,M,n,g
(h−1)
i }) ⊂ SM for ∀k by (3.23) and (3.27).

Thus, ĉi,m,k ∈ Sm for ∀h,m, k.

Suppose that Ĥi,j,m is the convex hull of the control points of relative initial trajectory

between the agents i and j:

Ĥi,j,m = Conv({ĉi,m,k − ĉj,m,k | k ∈ In}) (4.12)

Lemma 4.2 presents that the feasible LSC always exists for every replanning step.

Lemma 4.2. (Existence of the feasible LSC) Assume that H(h−1)
i,j,m ∩ Ci,j = ∅, for ∀j ∈

Ni, h > 0,m, k. Then, there exists Li,j
m,k that satisfies (3.44), (3.45), and ĉi,m,k ∈ Li,j

m,k for

∀j ∈ Ni, h,m, k.

Proof. If h = 0, the normal vector of LSC can be given as follows:

ni,j
m =

si − sj
∥si − sj∥

(4.13)

Therefore, ĉi,m,k = si ∈ Li,j
m,k for ∀j ∈ Ni,m, k:

si ∈ Li,j
m,k ⇔ (si − ĉj,m,k) · ni,j

m − d
i,j
m,k ≥ 0

⇔ (si − sj) · ni,j
m − (r +

1

2
(si − sj) · ni,j

m) ≥ 0

⇔ 1

2
(si − sj) · ni,j

m − r ≥ 0⇒ ∥si − sj∥ ≥ 2r

(4.14)

If h > 0 and m < M , the following equation holds by (3.23):

Ĥi,j,m = H(h−1)
i,j,m+1 (4.15)

55

Therefore, Ĥi,j,m and Ci,j are disjoint non-empty convex sets due to Lemma 4.2:

Ĥi,j,m ∩ Ci,j = ∅ (4.16)

By the hyperplane separation theorem [53], there exists ns such that:

min⟨Ĥi,j,m,ns⟩ ≥ 2r (4.17)

where min⟨Ĥi,j,m,ns⟩ = minx∈Ĥi,j,m
x ·ns. Here, the normal vector of the LSC can be given

as follows:

ni,j
m = −nj,i

m = ns (4.18)

Then, the following equation holds:

(ĉi,m,k − ĉj,m,k) · ni,j
m − d

i,j
m,k

=
1

2
(ĉi,m,k − ĉj,m,k) · ni,j

m − r ≥ 0
(4.19)

Therefore, ĉi,m,k ∈ Li,j
m,k for ∀j ∈ Ni,m < M, k.

If h > 0 and m =M , then ĉi,M,k = ĉi,M,n for ∀k by (3.23). Also, the LSC when m =M

satisfies ĉi,M,n ∈ Li,j
M,k for ∀k because [ĉi,M,n,g

(h−1)
i] ⊂ Li,j

M,k for ∀k. Therefore, ĉi,M,k ∈ Li,j
M,k

for ∀j ∈ Ni, k. This concludes the proof.

Based on the above Lemmas, Theorem 4.3 shows that there exists at least one solution

that satisfies all constraints of the trajectory optimization problem.

Theorem 4.3. (Feasibility of constraints) If the segment duration is equal to the replanning

period ∆t, p̂i(t) is one of the solutions of (3.71) for every replanning step.

Proof. If h = 0, p̂i(t) satisfies SFC and LSC constraints due to Lemmas 4.1, 4.2. The

constraints for dynamic obstacle avoidance are negligible due to slack variables. p̂i(t) fulfills

the initial condition, continuity constraint, final stop condition, dynamical limit constraints,

56

and (3.67) because ĉi,m,k = si for ∀m, k. p̂i(t) also satisfies (3.68) due to the assumption

that d > 2
√
2r. Therefore, p̂i(t) is one of the solutions that satisfy all constraints in (3.71).

Assume that there exists a solution at the previous replanning step h− 1. Then, p̂i(t)

satisfies SFC and LSC constraints due to Lemmas 4.1, 4.2. The constraints for dynamic

obstacle avoidance are negligible due to slack variables. p̂i(t) fulfills the initial condition,

continuity constraint, final stop condition, and dynamical limit constraints, (3.67), and

(3.68) due to (3.23). Therefore, the solution of (3.71) always exists for every replanning

step by mathematical induction.

Moreover, Theorem 4.4 presents that the solution to the subgoal optimization problem

always exists for every replanning step.

Theorem 4.4. (Feasibility of subgoal optimization) The solution of (3.61) always exists

for every replanning step.

Proof. If h = 0, the start point si satisfies all constraints of the subgoal optimization

problem (3.61). If h > 0, g
(h−1)
i satisfies the constraints of the problem because g

(h−1)
i ∈ SM

by (3.27) and g
(h−1)
i ∈ Li,j

M,n by (3.45). This concludes the proof.

Theorems 4.3 and 4.4 ensure that Alg. 1 always returns the feasible trajectory for any

arbitrary inputs if the grid-based MAPP is complete.

4.3 Goal Convergence

This section demonstrates that the proposed algorithm guarantees goal convergence

under the assumption that all agents are connected by the network and there is no dynamic

obstacle. The proof consists of three steps. First, I demonstrate the convergence of the agent

towards the subgoal. Next, I prove that the subgoal converges to the waypoint. Finally, I

complete the proof by demonstrating that the proposed decentralized MAPP allows the

waypoint to reach the desired goal.

57

Lemma 4.3 shows that the cost function of the trajectory optimization problem mono-

tonically decreases for every replanning step. For the proof, the sum of the cost functions

of the trajectory pi(t) will be denoted as J(pi(t)).

Lemma 4.3. Assume that there is no dynamic obstacle and the subgoal for the agent i

is fixed. Then, the cost function of the agent’s trajectory monotonically decreases for each

replanning step as follows:

J(p
(h−1)
i (t)) ≥ J(p̂i(t)) ≥ J(pi(t)) (4.20)

Proof. Due to the definition of the initial trajectory (3.22), Jerr(p
(h−1)
i (t)) ≥ Jerr(p̂i(t)).

Moreover, the following inequality holds for every replanning step:

Jder(p
(h−1)
i (t))− Jder(p̂i(t))

= wder

∫ Th

Th−1

∥∥∥∥ d3dt3p(h−1)
i (t)

∥∥∥∥2

dt ≥ 0
(4.21)

Therefore, J(p
(h−1)
i (t)) ≥ J(p̂i(t)).

By Theorem 4.3, p̂i(t) is one of the solutions to the trajectory optimization problem.

Since pi(t) is the optimal solution to the optimization problem, J(p̂i(t)) ≥ J(pi(t)). This

concludes the proof.

Based on Lemma 4.3, Lemma 4.4 presents that the proposed algorithm allows the agent

to reach the subgoal.

Lemma 4.4. (Convergence to the subgoal) Assume that there is no dynamic obstacle and

the subgoal for the agent i is fixed. Then, the agent i converges to the subgoal.

Proof. Assume that ĉi,M,n ̸= gi. Then, the trajectory p̃i(t) with the following control points

58

can be generated:

c̃i,m,k =

 ĉi,M,n + λ(gi − ĉi,M,n) m =M,k ≥ n− 2

ĉi,m,k else

(4.22)

where c̃i,m,k is the control point of p̃i(t), and λ ∈ [0, 1]. Here, p̃i(t) is one of the solutions

of the trajectory optimization problem (3.71) if λ is small enough. It satisfies the initial

condition, continuity constraint, and final stop condition. If m < M , p̃i(t) satisfies the

collision constraints due to Theorem 4.1. If m =M , c̃i,M,k ∈ [ĉi,M,n,gi] ⊂ SM ∩Li,M,k since

the subgoal is fixed as g
(h−1)
i = gi. It indicates that p̃i(t) fulfills the collision constraints.

Therefore, p̃i(t) is a feasible solution of the trajectory optimization problem (3.71) if λ

satisfies the following:

∥λ(gi − c̃i,M,n)∥∞ ≤
rc
2
− r (4.23)∥∥∥∥nλ(gi − c̃i,M,n)

∆t

∥∥∥∥
∞
≤ vmax (4.24)

∥n(n− 1)λ(gi − c̃i,M,n)

∆t2
∥∞ ≤ amax (4.25)

where (4.23) is the sufficient condition of the communication range constraint (3.67), and

(4.24), (4.25) are the sufficient conditions of dynamical limit constraints, which can be

derived using the convex hull property of Bernstein polynomial. Note that if λ is small

enough, there exists non-zero λ that satisfies the above constraints.

The difference between Jerr(p̂i(t)) and Jerr(p̃i(t)) is:

Jerr(p̂i(t))− Jerr(p̃i(t))

= werr∥gi − ĉi,M,n∥2(1− (1− λ)2)

= A(1− (1− λ)2)

(4.26)

59

where A = werr∥gi − ĉi,M,n∥2 > 0. The difference between Jder(p̂i(t)) and Jder(p̃i(t)) is:

Jerr(p̂i(t))− Jerr(p̃i(t))

= −
∫ Th+M

Th+M−1

∥∥∥∥ d3dt3 p̃i(t)

∥∥∥∥2

dt

= −
∫ Th+M

Th+M−1

∥∥∥∥ d3dt3 (p̃i(t)− ci,M,n)

∥∥∥∥2

dt

= −
∫ Th+M

Th+M−1

∥∥∥∥ d3dt3λ∆pi(t)

∥∥∥∥2

dt

= −λ2
∫ Th+M

Th+M−1

∥∥∥∥ d3dt3∆pi(t)

∥∥∥∥2

dt

= −Bλ2

(4.27)

where B > 0 is a positive scalar value, and ∆pi(t) is the Bernstein polynomial with the

control point ∆ci,m,k, which is given as follows:

∆ci,m,k =

 gi − ĉi,M,n m =M,k ≥ n− 2

0 else

(4.28)

To summarize, the cost difference between p̂i(t) and p̃i(t) is represented as follows:

∆J = J(p̂i(t))− J(p̃i(t))

= A(1− (1− λ)2)−Bλ2

= 2Aλ− (A+B)λ2

(4.29)

Note that ∆J > 0 when 0 < λ < 2A
A+B

. Thus, if λ satisfies 0 < λ < 2A
A+B

, then J(p
(h−1)
i (t)) ≥

J(p̂i(t)) > J(p̃i(t)) ≥ J(pi(t)) due to Lemma 4.3 and the fact that pi(t) is the optimal

solution of the trajectory optimization problem. It implies that the proposed algorithm

makes the cost function strictly decreasing until ĉi,M,n = gi.

Assume that ĉi,M,n = · · · = ĉi,M−l+1,n = gi and p
(h−1)
i (t) ̸= gi. Then, the following

60

holds:

J(p
(h−1)
i (t))− J(pi(t))

≥ J(p
(h−1)
i (t))− J(p̂i(t)) (∵ Lemma 4.3)

≥ Jerr(p
(h−1)
i (t))− Jerr(p̂i(t)) (∵ (4.21))

= werr∥c(h−1)
i,M−l,n − gi∥ > 0

(4.30)

Therefore, the cost of the trajectory is strictly decreasing until c
(h−1)
i,1,n = pi(Th) = gi. It

implies that the agent converges to the subgoal. This concludes the proof.

Lemma 4.5 shows that the subgoal converges to the waypoint if there is no dynamic

obstacle and the grid size is larger than 2
√
2r.

Lemma 4.5. If there is no dynamic obstacle and d > 2
√
2r, then the subgoal converges to

the waypoint.

Proof. The subgoal optimization problem (3.61) can be reformulated as follows:

minimize δ

subject to δ ∈ [0, 1]

wi + δ(g
(h−1)
i −wi) ∈ SM

wi + δ(g
(h−1)
i −wi) ∈ Li,j

M,n ∀j ∈ Ni

(4.31)

where δ is the variable such that gi = wi+δ(g
(h−1)
i −wi). Since SM is a convex polyhedron,

it can be represented as the intersection of linear constraints asδ − bs ≤ 0. Hence the

Lagrangian function of the subgoal optimization problem (4.31) of the agent i is given as:

L = δ − λ0δ + λ1(δ − 1)

+
∑
s

λs(asδ − bs)

+
∑
j∈Ni

λi,j(d
i,j
M,k − (wi + δ(g

(h−1)
i −wi)− pj,i

cls) · n
i,j
M)

(4.32)

61

where λ0, λ1, λs, and λi,j are the Lagrangian multipliers.

Assume that there is a non-empty set of the agents D ⊂ Ia whose subgoals do not

converge to the waypoint. By Lemma 4.4, all agents reach their subgoals after some replan-

ning step, and this replanning step will be denoted as h0. If h > h0, δ
∗ = 1 is the optimal

solution of the subgoal optimization problem because the subgoal of the agent i does not

converge to the waypoint. Therefore, λ0 = 0 by the complementary slackness condition

of KKT conditions [53]. Moreover, if h > h0, there exists a grid edge e ∈ E such that

Conv({ĉi,M,n,g
(h−1)
i ,wi}) = [g

(h−1)
i ,wi] ∈ e for the agent i ∈ D due to (i) of Lemma 3.8.

Since the grid edge does not collide with static obstacles, the condition (3.29) is satisfied, so

[g
(h−1)
i ,wi] ⊂ SM by (3.27). It implies that the agent i always satisfies the SFC constraint

regardless of δ ∈ [0, 1]. Thus, λ∀s = 0 by the complementary slackness condition of KKT

conditions. As a result, the Lagrangian function for the agent i ∈ D when h > h0 can be

simplified as follows:

L = δ + λ1(δ − 1)

+
∑
j∈Ni

λi,j(d
i,j
M,k − (wi + δ(g

(h−1)
i −wi)− pj,i

cls) · n
i,j
M)

(4.33)

By the stationary condition of KKT conditions:

∂L

∂δ
= 1 + λ1 −

∑
j∈Ni

λi,j(g
(h−1)
i −wi) · ni,j

M = 0 (4.34)

Since the agent converges to the subgoal after the replanning step h0, p
j,i
cls = gj, p

i,j
cls = gi

and g
(h−1)
i = gi. Hence the above equation can be simplified as follows:

∂L

∂δ
= 1 + λ1 −

∑
j∈Ni

λi,j
(gi −wi)

T (gi − gj)

∥gi − gj∥
= 0 (4.35)

∑
j∈Ni

λi,j
(gj − gi)

T (wi − gi)

∥gi − gj∥
= 1 + λ1 (4.36)

62

To fulfill the above condition, there must exist an agent j ∈ Ni that satisfies λi,j > 0

and (gj − gi)
T (wi − gi) > 0 because λ1 ≥ 0 and λi,j ≥ 0 by the dual feasibility of KKT

conditions. Since λi,j > 0, the agent j must satisfy the following due to the complementary

slackness of KKT conditions:

di,jM,k − (wi + (g
(h−1)
i −wi)− pj,i

cls) · n
i,j
M = 0 (4.37)

r +
1

2
∥gi − gj∥ − (g

(h−1)
i − pj,i

cls) ·
gi − gj

∥gi − gj∥
= 0 (4.38)

∥gi − gj∥ = 2r (4.39)

To summarize, if there is a non-empty agent set D whose subgoals do not converge to the

waypoint, then there must exist an agent j that satisfies the following conditions for each

agent i ∈ D:

(gj − gi)
T (wi − gi) > 0 (4.40)

∥gi − gj∥ = 2r (4.41)

Let us define the agent B(i) ∈ I that satisfies (4.40) and (4.41) to a blocking agent of

the agent i, where B(·) indicates the blocking agent of the input. Suppose that B(i) /∈ D

when i ∈ D. Then, the agents i and B(i) must be on the same grid edge after the replanning

step h0, as shown in Fig. 4.1a. It is because B(i) converges to its waypoint and the distance

between two agents is 2r by (4.41). However, the waypoints of two agents must be different

due to Lemma 3.1, so B(i) cannot satisfy (4.40). Thus, B(i) ∈ D for ∀i ∈ D.

Since the assumption that D is not an empty set, there exists an agent i in D that

satisfies the following:

∆(i) ≥ ∆(j),∀j ∈ D (4.42)

where ∆(i) = ∥wi − gi∥. As discussed earlier, the agent i has its blocking agent B(i) ∈ D,

and the agents i and B(i) are on different grid edges due to (iv) of Lemma 3.8. Therefore,

63

∆(B(i)) is computed as follows:

∆(B(i)) =

 d− 2r +∆(i), if ndir > 0

d−
√

4r2 −∆(i)2, else

(4.43)

ndir = (wB(i) − gB(i))
T (wi − gi) (4.44)

Fig. 4.1b and 4.1c illustrate the derivation process of the above equations. Note that

∆(B(i)) > ∆(i) holds since the grid size is d > 2
√
2r. Therefore, this contradicts the

assumption that the agent i satisfies (4.42). Fig. 4.2 shows the blocking agents by the grid

size. If the grid size is d = 2
√
2r, the agents can be blocking agents of other agents, as

shown in the left figure of Fig. 4.2. However, if the grid size holds d > 2
√
2r, at least one

agent has no blocking agent as the blue agent in Fig. 4.2. Thus, there is no non-empty

agent set D whose subgoals do not converge to the waypoint. This concludes the proof.

Using Lemmas 4.4 and 4.5, Theorem 4.5 demonstrates that the proposed algorithm

guarantees goal convergence.

Theorem 4.5. Assume that there is no dynamic obstacle, the mission is solvable for the

grid-based MAPP, and the communication range rc is large enough that all agents can

communicate with each other. Then, the agent converges to the desired goal.

Proof. Due to Lemmas 4.4 and 4.5, the agent converges to the waypoint. Therefore, it

is enough to show that the proposed algorithm allows the waypoint to reach the desired

goal. By the definition of the modified previous path (3.16), the makespan of the modified

previous path π̂j is equal to or less than the previous discrete path π
(h−1)
j . Therefore, the

makespan of the discrete path is monotonically decreasing since the discrete path from the

MAPP is discarded if the makespan of the path is not smaller than the makespan of π̂j

(See lines 5-7 of Alg. 2). Assume that the makespan of the discrete path does not decrease

so that all agents cannot proceed further after the replanning step h0. Then, there exists an

agent i that satisfies w
(h−1)
i ̸= π

(h−1)
i,2 for the replanning step h > h0. However, the agent i

64

(a) The position of agents when B(i) /∈ D and
i ∈ D

(b) ndir > 0

(c) ndir ≤ 0

Figure 4.1: Illustrations for the proof of Lemma 4.5. The square dots are the waypoints and
the circle dots are the subgoals. The circles denote the agent’s current position.

65

Figure 4.2: Blocking agents by the grid size. The color-shaded region denotes the feasible
region of the agent.

has to update its waypoint to π
(h−1)
i,2 because it will satisfy the waypoint update rules (3.17)

and (3.18) due to Lemmas 4.4 and 4.5. Thus, the makespan of the discrete path decreases

until all waypoints reach their desired goals. This concludes the proof.

Remark 4.1. If not all agents are connected to the same network, the makespan of the

discrete path can increase when a new agent is connected to the network. Therefore, livelock

may occur depending on the environment. However, if the grid-based MAPP algorithm is

deadlock-free, the proposed algorithm also guarantees deadlock-free due to Lemmas 4.4 and

4.5.

66

5
Experimental Validation

This section presents the simulation and experiment results. The agent is modeled with

radius r = 0.15 m, maximum velocity vmax = 1.0 m/s, maximum acceleration amax = 2.0

m/s2 based on the experimental result with Crazyflie 2.1. The degree of polynomials of the

trajectory is n = 5, the number of segments isM = 10, and the segment time is ∆t = 0.2 s.

Therefore, the total planning horizon is 2 s. The replanning period is assigned to be ∆t = 0.2

s to satisfy the assumption in Thm. 4.3, so the trajectories are updated with the rate of

5 Hz at the same time. For decentralized MAPP, PIBT was implemented based on the

source code of [56]. The grid size is d = 0.5 m to fulfill the assumption that d > 2
√
2r. The

Octomap library [57] is used to represent the obstacles, and the Gilbert–Johnson–Keerthi

(GJK) algorithm was implemented using the OpenGJK package [58]. The mazes used in

the simulation are generated by randomized Prim’s algorithm [59]. The parameters of the

cost function are wm = 1, wder = 0.01, wslk = 100, and the CPLEX solver [60] was used for

subgoal and trajectory optimization. The simulation was executed on a laptop with Intel

Core i7-9750H @ 2.60GHz CPU and 32G RAM.

67

5.1 Simulation in Obstacle-free Space

To verify the scalability of the proposed algorithm, I compare the following online

trajectory planning algorithms in an obstacle-free space:

• Distributed Model Predictive Control [9] (DMPC)

• Buffered Voronoi Cell approach [2] (BVC)

• Linear Safe Corridor approach [1] (LSC)

• Linear Safe Corridor with Goal Convergence (LSC-GC, proposed algorithm)

The simulation is conducted with 10 to 70 agents in a 3 m × 3 m × 2 m space. For each

number of agents, 30 trials were conducted to measure the success rate, and the start and

goal points were randomly deployed for each mission. The test is judged to be a failure when

the agents collided with each other or could not reach the goal point within 60 s. In this

simulation, the degree of polynomials of the trajectory is n = 5, the number of segments

is M = 10, and the segment time is ∆t = 0.2 s to match the total planning horizon to

1 s. The communication range of the LSC-GC is 3 m. For DMPC, a smaller model with

r = 0.1 m and Di,j = diag([1, 1, 1/2.25]) is used when judging the collision because DMPC

uses soft constraints for collision avoidance. DMPC was tested in MATLAB R2020a, and

the other methods were implemented in C++, Ubuntu 18.04.

Fig. 5.1 and Table 5.1 describe the simulation result in the obstacle-free space. DMPC

shows good scalability with respect to computation time, but the collision occurs for all

failure cases even though it uses a smaller collision model when judging the collision. BVC

and LSC-based approaches do not cause the collision, but deadlock or livelock occurs as

the number of agents increases. On the contrary, the proposed method shows the perfect

success rate in the identical setting since it guarantees goal convergence. Moreover, The

proposed method has a 44.7% shorter flight time than BVC and 23% shorter flight time

than the LSC-based approach. It is because other algorithms trigger deadlock resolution

68

T
ab

le
5.
1:

P
er
fo
rm

an
ce

co
m
p
ar
is
on

in
an

ob
st
ac
le
-f
re
e
sp
ac
e.
T
h
e
fl
ig
h
t
ti
m
e
is
th
e
av
er
ag
ed

va
lu
e
fr
om

su
cc
es
sf
u
l
tr
ia
ls

am
on

g
30

d
iff
er
en
t
si
m
u
la
ti
on

s.
T
h
e
b
ol
d
n
u
m
b
er

in
d
ic
at
es

th
e
b
es
t
re
su
lt
.

M
et
ri
c

M
et
h
o
d

T
h
e
n
u
m
b
er

of
ag
en
ts

10
20

30
40

50
60

70

S
u
cc
es
s
ra
te

(%
)

D
M
P
C

10
0

10
0

93
.3

86
.7

76
.7

63
.3

26
.7

B
V
C

10
0

90
50

43
.3

13
.3

0
0

L
S
C

10
0

10
0

90
83
.3

73
.3

66
.7

60
L
S
C
-G

C
1
0
0

1
0
0

1
0
0

1
0
0

1
0
0

1
0
0

1
0
0

F
li
gh

t
ti
m
e
(s
)

D
M
P
C

4
.6
6

6
.4
1

7
.3
5

8
.9
8

9
.6
9

1
1
.4

1
2
.6

B
V
C

7.
05

12
.8

19
.3

26
.3

30
.3

-
-

L
S
C

5.
90

8.
40

11
.7

14
.8

21
.8

22
.8

29
.5

L
S
C
-G

C
6.
88

8.
67

10
.3

12
.3

14
.8

16
.0

19
.5

R
u
n
ti
m
e
p
er

ag
en
t
(m

s)

D
M
P
C

8.
28

8.
65

8.
97

8.
97

9.
18

9.
55

9.
95

B
V
C

5.
46

6.
80

7.
57

8.
23

8.
62

9.
81

10
.7

L
S
C

4.
90

6.
26

7.
08

7
.8
7

8
.2
3

8
.9
4

9
.5
3

L
S
C
-G

C
4
.7
8

6
.0
2

7
.0
7

7.
90

8.
50

9.
28

9.
69

69

Figure 5.1: Simulation results in an obstacle-free space. We averaged the value from success
cases among 30 different trials. The shaded region means the standard deviation interval
(shown best in color).

when the deadlock is detected. As a result, the agents may be clustered until the deadlock

is detected. On the other hand, the proposed algorithm prevents deadlock preemptively by

placing the subgoal in a feasible region. Therefore, the agents can reach the desired goal

without unnecessary movement. The proposed algorithm requires a similar computation

time as the LSC-based approach. The proposed algorithm takes 9.69 ms per agent for 70

agents, which implies that it shows good scalability enough to achieve online replanning.

5.2 Simulation in 2D Obstacle Space

In this section, the LSC-based approach [1] and the proposed algorithm are compared

in the following 2D obstacle environments:

(i) Random forest. 40 static obstacles are deployed in a random position and ten agents

are deployed in a circle with a 4 m radius. The goal point of the agent is at the

antipodal point of the start point, as shown in Fig. 5.2.

(ii) Sparse maze. It consists of 6 × 6 cells, and each cell size is 1.0 m × 1.0 m, thus three

agents can pass the corridor simultaneously. The maze has two entrances, and there

70

are five agents at each entrance. Each agent’s goal point is assigned to the entrance

on the other side of the maze, as depicted in Fig. 5.3.

(iii) Dense maze. It consists of 9 × 9 cells, and each cell size is 0.5 m × 0.5 m, thus only

one agent can pass the corridor. Each agent’s goal point is assigned to the entrance

on the other side of the maze, as illustrated in Fig. 5.4.

The mission is judged to be a failure when a collision occurred or when the agent failed to

reach the goal within 60 s. For each map, 30 trials were executed changing the obstacle’s

position. For LSC and LSC-GC, the degree of polynomials of the trajectory is n = 5, the

number of segments is M = 10, and the segment time is ∆t = 0.2 s to match the total

planning horizon to 2 s.

Table 5.2 describes the simulation results in obstacle environments. The LSC-based ap-

proach shows the perfect success rate in sparse environments and does not cause a collision

in all cases. However, it fails to reach the goal in the dense maze because it cannot solve a

deadlock when there is no space to yield to a higher-priority agent. On the other hand, the

proposed algorithm achieves the perfect success rate for all types of environments regardless

of the communication range. It validates that the proposed algorithm can solve a deadlock

even in a dense maze-like environment without a centralized coordinator.

The proposed method shows a 27.6% shorter flight time and a 7.4% shorter flight

distance compared to LSC-PB when the communication range is rc =∞. It is because the

LSC-based approach performs a deadlock resolution only when the distance between the

agents is close enough. On the contrary, the proposed algorithm utilizes the final trajectory

point, not the current position, for deadlock resolution. Therefore, the agent does not need

to wait until other agents clump together. In addition, the flight time and distance of

the proposed algorithm reduce as the communication range increases since the agent can

update the waypoint further away from the current position by the waypoint update rule

(3.18).

71

(a) t = 3 s (b) t = 7 s

(c) t = 11 s (d) t = 17 s

Figure 5.2: Trajectory generation result of the proposed method in the 2D random maze
(rc = 3 m). The circle and line are the agent at its final location and its trajectory respec-
tively, and the green-shaded region is the static obstacle.

72

(a) t = 6 s (b) t = 10 s

(c) t = 14 s (d) t = 24 s

Figure 5.3: Trajectory generation result of the proposed method in the 2D sparse maze (rc =
3 m). The circle and line are the agent at its final location and its trajectory respectively,
and the green-shaded region is the static obstacle.

73

(a) t = 5 s (b) t = 10 s

(c) t = 15 s (d) t = 25 s

Figure 5.4: Trajectory generation result of the proposed method in the 2D dense maze (rc =
3 m). The circle and line are the agent at its final location and its trajectory respectively,
and the green-shaded region is the static obstacle.

74

Table 5.2: Comparison with previous work [1]. The bold number indicates the best result
(sr: success rate (%), Tf : flight time (s), L: flight distance per agent (m), Tc: computation
time (ms)).

Env. Method sr Tf L Tc

Random
forest

LSC [1] (rc =∞) 100 25.7 11.8 8.15
LSC-GC (rc = 2 m) 100 28.8 11.7 7.86
LSC-GC (rc = 3 m) 100 20.7 11.3 8.01
LSC-GC (rc = 4 m) 100 19.9 11.3 8.23
LSC-GC (rc =∞) 100 19.1 11.1 8.16

Sparse
maze

LSC [1] (rc =∞) 100 33.7 13.9 9.05
LSC-GC (rc = 2 m) 100 34.4 13.5 8.51
LSC-GC (rc = 3 m) 100 27.1 13.1 8.62
LSC-GC (rc = 4 m) 100 23.7 12.6 8.66
LSC-GC (rc =∞) 100 23.9 12.7 8.67

Dense
maze

LSC [1] (rc =∞) 0 - - -
LSC-GC (rc = 2 m) 100 61.4 16.5 7.30
LSC-GC (rc = 3 m) 100 51.0 16.6 7.44
LSC-GC (rc = 4 m) 100 50.9 17.1 7.31
LSC-GC (rc =∞) 100 48.3 16.7 7.24

5.3 Simulation in 3D Obstacle Space

In this section, the following state-of-the-art algorithms are compared in a 3D cluttered

environment:

• EGO-Swarm [5]

• MADER [6]

• Linear Safe Corridor approach [1] (LSC)

• Linear Safe Corridor with Goal Convergence (LSC-GC, proposed algorithm)

The simulation was performed with ten agents in two types of environments: random

forest and maze.

75

(a) t = 3 s (b) t = 8 s

(c) t = 11 s (d) t = 18 s

Figure 5.5: Trajectory planning result of the proposed method with 10 agents in the 3D
random forest.

76

(a) t = 3 s (b) t = 10 s

(c) t = 16 s (d) t = 24 s

Figure 5.6: Trajectory planning result of the proposed method with 10 agents in the 3D
maze.

77

T
ab

le
5.
3:

S
im

u
la
ti
on

re
su
lt

w
it
h

10
ag
en
ts

in
cl
u
tt
er
ed

en
v
ir
on

m
en
ts
.
T
h
e
fl
ig
h
t
ti
m
e
is

th
e
av
er
ag
ed

va
lu
e
fr
om

su
cc
es
sf
u
l
tr
ia
ls

am
on

g
30

d
iff
er
en
t
si
m
u
la
ti
on

s.
T
h
e
b
es
t
re
su
lt

is
h
ig
h
li
gh

te
d
in

b
ol
d
.
N
ot
e
th
at

th
e
ex
ac
t
ob

st
ac
le
s’

tr
a
je
ct
or
ie
s
ar
e
p
ro
v
id
ed

to
M
A
D
E
R
,
w
h
il
e
on

ly
th
e
ob

st
ac
le
’s
p
os
it
io
n
an

d
ve
lo
ci
ty

ar
e
p
ro
v
id
ed

to
th
e
L
S
C
-G

C
.

E
n
v
ir
on

m
en
t

M
et
ri
c

M
et
h
o
d

V
el
o
ci
ty

of
d
y
n
am

ic
ob

st
ac
le
s

N
o
d
y
n
.
ob

s.
0.
5
m
/s

1.
0
m
/s

2.
0
m
/s

F
or
es
t

S
u
cc
es
s
ra
te

(%
)

E
G
O
-S
w
ar
m

90
-

-
-

M
A
D
E
R

43
.3

20
13
.3

0
L
S
C

10
0

-
-

-
L
S
C
-G

C
1
0
0

1
0
0

9
0

3
0

F
li
gh

t
ti
m
e
(s
)

E
G
O
-S
w
ar
m

17
.3

-
-

-
M
A
D
E
R

19
.5

32
.3

29
.5

-
L
S
C

16
.1

-
-

-
L
S
C
-G

C
1
3
.4

1
4
.1

1
4
.4

1
8
.7

R
u
n
ti
m
e
p
er

ag
en
t
(m

s)

E
G
O
-S
w
ar
m

2
.7

-
-

-
M
A
D
E
R

22
5.
8

27
4.
7

27
2.
5

28
2.
6

L
S
C

7.
3

-
-

-
L
S
C
-G

C
12
.9

1
4
.4

1
4
.2

1
3
.8

M
az
e

S
u
cc
es
s
ra
te

(%
)

E
G
O
-S
w
ar
m

0
-

-
-

M
A
D
E
R

0
0

0
0

L
S
C

0
-

-
-

L
S
C
-G

C
1
0
0

1
0
0

9
3
.3

6
6
.7

F
li
gh

t
ti
m
e
(s
)

E
G
O
-S
w
ar
m

-
-

-
-

M
A
D
E
R

-
-

-
-

L
S
C

37
.7

-
-

-
L
S
C
-G

C
2
1
.9

2
8
.7

2
9
.6

3
1
.8

R
u
n
ti
m
e
p
er

ag
en
t
(m

s)

E
G
O
-S
w
ar
m

7.
7

-
-

-
M
A
D
E
R

27
9.
0

29
6.
9

28
7.
2

28
3.
6

L
S
C

4
.7

-
-

-
L
S
C
-G

C
11
.3

1
2
.3

1
2
.2

1
2
.7

78

Table 5.4: Simulation result of LSC-GC with different maximum accelerations of dynamic
obstacles. The flight time is the averaged value from successful trials among 30 different
simulations. The best result is highlighted in bold.

Environment Metric
Max. acc. of obs. Velocity of dynamic obstacles

(m/s2) 0.5 m/s 1.0 m/s 2.0 m/s

Forest

Success rate (%)

0 70 3.3 13.3
1 96.7 80 6.7
2 100 90 30
3 100 83.3 13.3

Flight time (s)

0 12.9 13.2 14.1
1 12.8 13.3 17.2
2 14.1 14.4 18.7
3 16.3 26.9 40.6

Maze

Success rate (%)

0 66.7 26.7 33.3
1 96.7 76.7 43.3
2 100 93.3 66.7
3 0 0 0

Flight time (s)

0 26.3 26.1 26.6
1 26.9 27.2 28.1
2 28.7 29.6 31.8
3 - - -

79

(i) Random forest. The random forest consists of ten trees with the dimension 0.5 m ×

0.5 m × 2.5 m. A circle swap mission was conducted in the random forest. The agents

start at a circle with a 4 m radius and 1 m height, and the goal points are at the

antipodes of the start points, as shown in Fig. 5.5.

(ii) Maze. The maze consists of 9 × 9 cells, and the dimension of each cell is 0.8 m × 0.8

m × 2.5 m. The maze was created from randomized Prim’s algorithm [59]. The maze

has two entrances, and five agents were deployed for each entrance. The mission of

the agents is to reach the other side of the maze, as shown in Fig. 5.6.

For MADER and the proposed algorithm, the simulations with four dynamic obstacles were

executed. The dynamic obstacles were modeled as a sphere with a radius of 0.15 m, and they

rotated in a circle with the 2 m radius and 1 m height, with the maximum acceleration

of 2 m/s2. For a fair comparison, the sensor range of all methods was increased enough

to recognize all obstacles. In addition, although it is unfair to the proposed algorithm, the

exact trajectories of dynamic obstacles were provided to MADER, while only the obstacle’s

position and velocity were provided to the proposed algorithm. The communication range

of the LSC-GC is 3 m. 30 trials were conducted for each environment, and the test was

considered a failure when the collision occurred or the agent failed to reach the goal point

within 60 s.

Table 5.3 describes the simulation result in cluttered environments with dynamic ob-

stacles. EGO-Swarm shows the fastest computation speed in the random forest, but there

were several cases where the agents collided with each other. It is because EGO-Swarm

optimizes the trajectory without hard constraints, so it cannot guarantee inter-collision

avoidance. MADER did not cause the collision since it utilizes the trajectories of all agents

and obstacles during the planning. However, MADER shows a low success rate even in the

random forest because it often fails to find the detour path when trees are placed densely.

On the other hand, the proposed algorithm shows the highest success rate and the shortest

flight time for all environment configurations. In particular, the proposed algorithm shows

80

over 90% success rate for both random forest and maze when the velocity of the dynamic

obstacle is less than or equal to the agent’s maximum velocity. It indicates that the pro-

posed algorithm can avoid moving obstacles in a narrow space without exact knowledge of

the obstacle’s trajectory.

Table 5.4 shows the simulation result of the proposed method with different maximum

accelerations of dynamic obstacles. Since the maximum acceleration determines the size of

the obstacle’s reachable region, it can control the conservatism of the collision constraints.

As shown in the table, the success rate decreases as the maximum acceleration decreases

since collisions occur more frequently. On the other hand, if the maximum acceleration

is too big (> 2m/s2), the agents can fail to reach the desired goal due to conservative

constraints. As a result, the proposed algorithm shows the highest success rate when the

obstacle’s maximum acceleration is 2 m/s2.

Figure 5.7: Crazyflie 2.1 quadrotors that were used in the hardware demonstration.

81

5.4 Hardware demonstration

The hardware demonstration was conducted with ten Crazyflie 2.1 quadrotors and one

pedestrian acting as dynamic obstacles in the maze-like environment, as shown in Fig. 5.8.

Fig. 5.7 shows the quadrotors used in the experiment. In the demonstration, the agents are

patrolling the two waypoints while avoiding the pedestrians, and the maximum acceleration

of the pedestrian is set to 2 m/s2. The human was modeled as an ellipsoidal obstacle with

the radius rj∈Io = 0.35 m and the scaling matrix Di,j = diag([1, 1, 1/4]). The velocity

of the pedestrian was estimated using the linear Kalman filter. The proposed algorithm

was designed to run onboard each agent in a distributed manner as long as the agent has

sufficient computation and communication capability. In the reported experiments, due

to the hardware limit of the Crazyflie 2.1 quadrotor, the trajectory for each agent was

computed on a single laptop. But it should be noted that the computation was done in

a distributed manner. The Crazyswarm [61] was used to broadcast the trajectory to the

agents, and the Optitrack motion capture system is utilized to measure the agent’s position.

Fig. 5.9a and Fig. 5.9b describe the histogram of the minimum distance between agents

and minimum distance to dynamic obstacles, respectively. As shown in Fig. 5.9a, the inter-

agent distance invaded the desired safe distance for a short period due to a tracking error of

the Crazyflie controller, but it did not lead to an actual collision between agents. Further-

more, the agents did not collide with the pedestrian during the hardware demonstration, as

shown in Fig. 5.9b. Fig. 5.9c illustrates the computation time per agent during the exper-

iment. The average computation time was 13.7 ms, and there was no timeout case during

the flight.

82

(a) t = 32 s (b) t = 36 s

(c) t = 39 s (d) t = 42 s

Figure 5.8: Snapshots of the experiment with 10 quadrotors and one pedestrian in the
maze-like environment. The colored circle denotes the position of the quadrotor.

(a) Minimum distance between
agents

(b) Minimum distance to
pedestrian

(c) Computation time per
agent

Figure 5.9: Summary of the experiment in the maze-like environment. The red and black
dashed lines denote the physical and desired safe distance, respectively.

83

6
Conclusion

This dissertation presented the online decentralized MATP algorithm that guarantees

to generate collision avoidance, the feasibility of the constraints, and goal convergence in a

cluttered environment. The decentralized MAPP is utilized for deadlock resolution, and the

linear safe corridor (LSC) and relative safe flight corridor (RSFC) are utilized to construct

feasible constraints considering the reachable region of dynamic obstacles. The dissertation

demonstrates that the proposed algorithm guarantees the feasibility of the optimization

problem, collision avoidance, and goal convergence for every replanning step.

The simulation result shows that the proposed method does not cause collision or dead-

lock in static environments, regardless of the density of the obstacles or communication

range. In obstacle-free space, the proposed method can compute the trajectories for 70

agents on average 9.69 ms per agent with an Intel i7 laptop. The proposed algorithm has

a 44.7% shorter flight time than the buffered Voronoi cell-based approach (BVC) and 23%

shorter flight time than our previous work. Moreover, the proposed algorithm shows the

highest success rate and shorter flight time in dynamic environments compared to state-of-

the-art baselines: EGO-Swarm and MADER. In particular, the proposed algorithm shows

84

over 90% success rate when the velocity of moving obstacles is below the agent’s maximum

speed. The hardware demonstration was conducted with ten Crazyflie quadrotors and one

pedestrian to validate the safety and operability of the proposed algorithm, and there was

no collision during the flight.

The possible future works of this dissertation will be increasing the robustness. If the

tracking or estimation error is larger than the collision model, the proposed algorithm can

cause a collision. Also, the prediction error of the dynamic obstacle’s trajectory highly

affects the overall performance. Therefore, there exists room for the development of state

estimation, reachability analysis, and trajectory prediction.

85

References

[1] J. Park, D. Kim, G. C. Kim, D. Oh, and H. J. Kim, “Online distributed trajectory

planning for quadrotor swarm with feasibility guarantee using linear safe corridor,”

IEEE Robotics and Automation Letters, vol. 7, no. 2, pp. 4869–4876, 2022.

[2] D. Zhou, Z. Wang, S. Bandyopadhyay, and M. Schwager, “Fast, on-line collision avoid-

ance for dynamic vehicles using buffered voronoi cells,” IEEE Robotics and Automation

Letters, vol. 2, no. 2, pp. 1047–1054, 2017.

[3] L. Wawrla, O. Maghazei, and T. Netland, “Applications of drones in warehouse oper-

ations,” Whitepaper. ETH Zurich, D-MTEC, 2019.

[4] K. McGuire, C. De Wagter, K. Tuyls, H. Kappen, and G. C. de Croon, “Minimal navi-

gation solution for a swarm of tiny flying robots to explore an unknown environment,”

Science Robotics, vol. 4, no. 35, p. eaaw9710, 2019.

[5] X. Zhou, J. Zhu, H. Zhou, C. Xu, and F. Gao, “Ego-swarm: A fully autonomous

and decentralized quadrotor swarm system in cluttered environments,” in 2021 IEEE

International Conference on Robotics and Automation (ICRA). IEEE, 2021, pp.

4101–4107.

[6] J. Tordesillas and J. P. How, “Mader: Trajectory planner in multiagent and dynamic

environments,” IEEE Transactions on Robotics, 2021.

[7] C. Toumieh and A. Lambert, “Decentralized multi-agent planning using model predic-

tive control and time-aware safe corridors,” IEEE Robotics and Automation Letters,

2022.

86

[8] J. Park and H. J. Kim, “Online trajectory planning for multiple quadrotors in dynamic

environments using relative safe flight corridor,” IEEE Robotics and Automation Let-

ters, vol. 6, no. 2, pp. 659–666, 2020.

[9] C. E. Luis, M. Vukosavljev, and A. P. Schoellig, “Online trajectory generation with

distributed model predictive control for multi-robot motion planning,” IEEE Robotics

and Automation Letters, vol. 5, no. 2, pp. 604–611, 2020.

[10] D. Mellinger, A. Kushleyev, and V. Kumar, “Mixed-integer quadratic program tra-

jectory generation for heterogeneous quadrotor teams,” in Robotics and Automation

(ICRA), 2012 IEEE International Conference on. IEEE, 2012, pp. 477–483.

[11] F. Augugliaro, A. P. Schoellig, and R. D’Andrea, “Generation of collision-free tra-

jectories for a quadrocopter fleet: A sequential convex programming approach,” in

Intelligent Robots and Systems (IROS). IEEE, 2012, pp. 1917–1922.

[12] Y. Chen, M. Cutler, and J. P. How, “Decoupled multiagent path planning via incre-

mental sequential convex programming,” in Robotics and Automation (ICRA), 2015

IEEE International Conference on. IEEE, 2015, pp. 5954–5961.

[13] W. Hönig, J. A. Preiss, T. S. Kumar, G. S. Sukhatme, and N. Ayanian, “Trajectory

planning for quadrotor swarms,” IEEE Transactions on Robotics, vol. 34, no. 4, pp.

856–869, 2018.

[14] M. Debord, W. Hönig, and N. Ayanian, “Trajectory planning for heterogeneous robot

teams,” in 2018 IEEE/RSJ International Conference on Intelligent Robots and Sys-

tems (IROS). IEEE, 2018, pp. 7924–7931.

[15] A. Rahmani, K. Kosuge, T. Tsukamaki, and M. Mesbahi, “Multiple uav deconfliction

via navigation functions,” in AIAA Guidance, Navigation and Control Conference and

Exhibit, 2008, p. 6626.

87

[16] A. K. Pamosoaji and K.-S. Hong, “A path-planning algorithm using vector potential

functions in triangular regions,” IEEE Transactions on Systems, Man, and Cybernet-

ics: Systems, vol. 43, no. 4, pp. 832–842, 2013.

[17] S. H. Semnani, A. H. de Ruiter, and H. H. Liu, “Force-based algorithm for motion

planning of large agent,” IEEE Transactions on Cybernetics, 2020.

[18] J. Van Den Berg, S. J. Guy, M. Lin, and D. Manocha, “Reciprocal n-body collision

avoidance,” in Robotics research. Springer, 2011, pp. 3–19.

[19] D. Bareiss and J. Van den Berg, “Reciprocal collision avoidance for robots with lin-

ear dynamics using lqr-obstacles,” in Robotics and Automation (ICRA), 2013 IEEE

International Conference on. IEEE, 2013, pp. 3847–3853.

[20] J. Alonso-Mora, T. Naegeli, R. Siegwart, and P. Beardsley, “Collision avoidance for

aerial vehicles in multi-agent scenarios,” Autonomous Robots, vol. 39, no. 1, pp. 101–

121, 2015.

[21] C. Y. Tan, S. Huang, K. K. Tan, R. S. H. Teo, W. Q. Liu, and F. Lin, “Collision

avoidance design on unmanned aerial vehicle in 3d space,” Unmanned Systems, vol. 6,

no. 04, pp. 277–295, 2018.

[22] S. H. Arul and D. Manocha, “Dcad: Decentralized collision avoidance with dynamics

constraints for agile quadrotor swarms,” IEEE Robotics and Automation Letters, vol. 5,

no. 2, pp. 1191–1198, 2020.

[23] S. Kandhasamy, V. B. Kuppusamy, and S. Krishnan, “Scalable decentralized multi-

robot trajectory optimization in continuous-time,” IEEE Access, vol. 8, pp. 173 308–

173 322, 2020.

[24] X. Zhou, Z. Wang, X. Wen, J. Zhu, C. Xu, and F. Gao, “Decentralized spatial-temporal

trajectory planning for multicopter swarms,” arXiv preprint arXiv:2106.12481, 2021.

88

[25] L. Wang, A. D. Ames, and M. Egerstedt, “Safety barrier certificates for collisions-free

multirobot systems,” IEEE Transactions on Robotics, vol. 33, no. 3, pp. 661–674, 2017.

[26] A. Richards and J. P. How, “Model predictive control of vehicle maneuvers with guar-

anteed completion time and robust feasibility,” in Proceedings of the 2003 American

Control Conference, 2003., vol. 5. IEEE, 2003, pp. 4034–4040.

[27] A. Richards and J. How, “Decentralized model predictive control of cooperating

uavs,” in 2004 43rd IEEE Conference on Decision and Control (CDC)(IEEE Cat.

No. 04CH37601), vol. 4. IEEE, 2004, pp. 4286–4291.

[28] P. Wang and B. Ding, “A synthesis approach of distributed model predictive control

for homogeneous multi-agent system with collision avoidance,” International Journal

of Control, vol. 87, no. 1, pp. 52–63, 2014.

[29] C. E. Luis and A. P. Schoellig, “Trajectory generation for multiagent point-to-point

transitions via distributed model predictive control,” IEEE Robotics and Automation

Letters, vol. 4, no. 2, pp. 375–382, 2019.

[30] E. Soria, F. Schiano, and D. Floreano, “Predictive control of aerial swarms in cluttered

environments,” Nature Machine Intelligence, vol. 3, no. 6, pp. 545–554, 2021.

[31] V. R. Desaraju and J. P. How, “Decentralized path planning for multi-agent teams

with complex constraints,” Autonomous Robots, vol. 32, no. 4, pp. 385–403, 2012.

[32] J. Alonso-Mora, J. A. DeCastro, V. Raman, D. Rus, and H. Kress-Gazit, “Reactive

mission and motion planning with deadlock resolution avoiding dynamic obstacles,”

Autonomous Robots, vol. 42, no. 4, pp. 801–824, 2018.

[33] S. Liu, K. Mohta, N. Atanasov, and V. Kumar, “Towards search-based motion planning

for micro aerial vehicles,” arXiv preprint arXiv:1810.03071, 2018.

89

[34] M. Kamel, J. Alonso-Mora, R. Siegwart, and J. Nieto, “Robust collision avoid-

ance for multiple micro aerial vehicles using nonlinear model predictive control,” in

2017 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS).

IEEE, 2017, pp. 236–243.

[35] H. Zhu and J. Alonso-Mora, “Chance-constrained collision avoidance for mavs in dy-

namic environments,” IEEE Robotics and Automation Letters, vol. 4, no. 2, pp. 776–

783, 2019.

[36] M. Chen, J. C. Shih, and C. J. Tomlin, “Multi-vehicle collision avoidance via hamilton-

jacobi reachability and mixed integer programming,” in 2016 IEEE 55th Conference

on Decision and Control (CDC). IEEE, 2016, pp. 1695–1700.

[37] M. Chen, S. Bansal, J. F. Fisac, and C. J. Tomlin, “Robust sequential trajectory

planning under disturbances and adversarial intruder,” IEEE Transactions on Control

Systems Technology, vol. 27, no. 4, pp. 1566–1582, 2018.

[38] G. Sharon, R. Stern, A. Felner, and N. R. Sturtevant, “Conflict-based search for opti-

mal multi-agent pathfinding,” Artificial Intelligence, vol. 219, pp. 40–66, 2015.

[39] H. Zhu and J. Alonso-Mora, “B-uavc: Buffered uncertainty-aware voronoi cells for

probabilistic multi-robot collision avoidance,” in 2019 International Symposium on

Multi-Robot and Multi-Agent Systems (MRS). IEEE, 2019, pp. 162–168.

[40] M. Abdullhak and A. Vardy, “Deadlock prediction and recovery for distributed collision

avoidance with buffered voronoi cells,” in 2021 IEEE/RSJ International Conference

on Intelligent Robots and Systems (IROS). IEEE, 2021, pp. 429–436.

[41] M. Jager and B. Nebel, “Decentralized collision avoidance, deadlock detection, and

deadlock resolution for multiple mobile robots,” in IEEE/RSJ International Confer-

ence on Intelligent Robots and Systems., vol. 3. IEEE, 2001, pp. 1213–1219.

90

[42] B. Şenbaşlar, W. Hönig, and N. Ayanian, “Robust trajectory execution for multi-robot

teams using distributed real-time replanning,” in Distributed Autonomous Robotic Sys-

tems. Springer, 2019, pp. 167–181.

[43] Y. Chen, M. Guo, and Z. Li, “Recursive feasibility and deadlock resolution in mpc-

based multi-robot trajectory generation,” arXiv preprint arXiv:2202.06071, 2022.

[44] J. S. Grover, C. Liu, and K. Sycara, “Deadlock analysis and resolution for multi-robot

systems,” in International Workshop on the Algorithmic Foundations of Robotics.

Springer, 2020, pp. 294–312.

[45] S. Dergachev and K. Yakovlev, “Distributed multi-agent navigation based on reciprocal

collision avoidance and locally confined multi-agent path finding,” in 2021 IEEE 17th

International Conference on Automation Science and Engineering (CASE). IEEE,

2021, pp. 1489–1494.

[46] J. Hou, X. Zhou, Z. Gan, and F. Gao, “Enhanced decentralized autonomous aerial

robot teams with group planning,” IEEE Robotics and Automation Letters, vol. 7,

no. 4, pp. 9240–9247, 2022.

[47] D. Mellinger and V. Kumar, “Minimum snap trajectory generation and control for

quadrotors,” in Robotics and Automation (ICRA), 2011 IEEE International Confer-

ence on. IEEE, 2011, pp. 2520–2525.

[48] R. T. Farouki, “The bernstein polynomial basis: A centennial retrospective,” Computer

Aided Geometric Design, vol. 29, no. 6, pp. 379–419, 2012.

[49] K. Okumura, M. Machida, X. Défago, and Y. Tamura, “Priority inheritance with

backtracking for iterative multi-agent path finding,” Artificial Intelligence, vol. 310, p.

103752, 2022.

91

[50] M. E. Flores, “Real-time trajectory generation for constrained nonlinear dynamical

systems using non-uniform rational b-spline basis functions,” Ph.D. dissertation, Cal-

ifornia Institute of Technology, 2008.

[51] J. Park, J. Kim, I. Jang, and H. J. Kim, “Efficient multi-agent trajectory planning with

feasibility guarantee using relative bernstein polynomial,” in 2020 IEEE International

Conference on Robotics and Automation (ICRA), 2020, pp. 434–440.

[52] J. Park, I. Jang, and H. J. Kim, “Decentralized deadlock-free trajectory planning for

quadrotor swarm in obstacle-rich environments - extended version,” 2022. [Online].

Available: https://github.com/qwerty35/lsc dr planner

[53] S. Boyd, S. P. Boyd, and L. Vandenberghe, Convex optimization. Cambridge univer-

sity press, 2004.

[54] E. G. Gilbert, D. W. Johnson, and S. S. Keerthi, “A fast procedure for computing

the distance between complex objects in three-dimensional space,” IEEE Journal on

Robotics and Automation, vol. 4, no. 2, pp. 193–203, 1988.

[55] D. Goldfarb and S. Liu, “An o(n3l) primal interior point algorithm for convex quadratic

programming,” Mathematical programming, vol. 49, no. 1, pp. 325–340, 1990.

[56] K. Okumura, Y. Tamura, and X. Défago, “Iterative refinement for real-time multi-

robot path planning,” in 2021 IEEE/RSJ International Conference on Intelligent

Robots and Systems (IROS), 2021, pp. 9690–9697.

[57] A. Hornung, K. M. Wurm, M. Bennewitz, C. Stachniss, and W. Burgard, “Octomap:

An efficient probabilistic 3d mapping framework based on octrees,”Autonomous robots,

vol. 34, no. 3, pp. 189–206, 2013.

[58] M. Montanari and N. Petrinic, “Opengjk for c, c# and matlab: Reliable solutions to

distance queries between convex bodies in three-dimensional space,” SoftwareX, vol. 7,

pp. 352–355, 2018.

92

https://github.com/qwerty35/lsc_dr_planner

[59] M. Foltin, “Automated maze generation and human interaction,” Brno: Masaryk Uni-

versity Faculty Of Informatics, 2011.

[60] I. CPLEX, “12.7. 0 user’s manual,” 2016.

[61] J. A. Preiss, W. Honig, G. S. Sukhatme, and N. Ayanian, “Crazyswarm: A large nano-

quadcopter swarm,” in International Conference on Robotics and Automation (ICRA).

IEEE, 2017, pp. 3299–3304.

93

국 문 초 록

본 논문에서는 동적 장애물이 있는 미로와 같은 환경에서 쿼드로터 군집을 위한 온라인

분산 다중 로봇 경로 계획 알고리즘을 제안한다. 제안하는 방법은 교착 상태 해소를 위해

에이전트가 목표지점에 수렴할 수 있도록 중간 목표 지점을 최적화하는 방법을 사용하였으

며 그리드 기반 다중 에이전트 경로 계획 알고리즘에서 계산되는 경로점들을 사용하여 중간

목표점을 최종 목표점으로 유도하는 방법을 사용한다. 제안하는 알고리즘은 안전 비행 복도

(safe flight corridor)을 사용하여 정적 장애물과의 충돌을 방지하며 선형 안전 복도 (linear

safe corridor)를 사용하여 에이전트 간의 충돌을 방지한다. 그 결과, 제안하는 방법은 제한된

통신 범위 아래에서도 정적 장애물 환경에서 충돌 회피, 제한 조건들의 실현 가능성, 목적지

수렴을 보장한다. 또한 본 논문에서는 상대적 안전 비행 복도 (relative safe flight corridor)

을 사용하여 장애물의 도달 가능 영역을 우회하는 방법으로 동적 장애물을 회피하는 방법을

제안한다. 그리고 좁은 환경에서는 에이전트가 서로 뭉치는 현상이 자주 발생하게 되므로

우선순위 기반의 다중 에이전트 경로 계획 알고리즘을 사용하여 동적 장애물을 회피할 때

다른 에이전트들이 간섭하는 현상을 방지한다.

제안하는 방법을 검증하기 위해 장애물이 없는 공간, 랜덤 포레스트, 미로 환경에서 시뮬

레이션을 진행하였다. 제안하는 방법은 장애물이 없는 공간에서 Inter i7 노트북으로 에이전

트당 평균 9.69 ms만에 70개의 에이전트에 대한 경로를 생성할 수 있으며 100%의 성공률을

보여주었다. 또한, 제안하는 방법은 보로노이 기반 방법 (buffered Voronoi cell) 보다 비행

시간이 44.7% 더 짧았으며 기존 선행 연구보다 비행시간이 23% 더 짧은 것으로 나타났다.

그리고 제안하는 방법은 동적 장애물이 있는 환경에서는 최신 알고리즘과 비교했을 때 가장

높은 성공률과 낮은 비행시간을 보여주는 것을 확인하였다. 특히 제안하는 방법은 동적 장

애물의 속도가 에이전트의 최대속도 이하일때 90 % 이상의 성공률을 보여주었다. 제안하는

알고리즘의 안전성과 강건성을 검증하기 위해 보행자가 있는 미로 같은 환경에서 실험을

10대의 쿼드로터를 진행하는 실험을 진행하였으며 충돌 또는 교착상태가 발생하지 않음을

확인하였다.

94

주요어: 다중 로봇 경로 계획, 분산 로봇 시스템, 충돌 회피, 교착 상태 해소

학 번: 2020-39650

95

	1 Introduction
	1.1 Literature Survey
	1.2 Contributions
	1.3 Outline

	2 Bernstein Polynomial
	2.1 Definition
	2.2 Properties

	3 Multi-Agent Trajectory Planning
	3.1 Problem Statement
	3.2 Overview
	3.3 Decentralized Multi-agent Path Planning
	3.4 Initial Trajectory Planning
	3.5 Collision Constraints Construction
	3.6 Subgoal Optimization
	3.7 Trajectory Optimization

	4 Theoretical Guarantee
	4.1 Collision Avoidance
	4.2 Feasibility of Contraints
	4.3 Goal Convergence

	5 Experimental Validation
	5.1 Simulation in Obstacle-free Space
	5.2 Simulation in 2D Obstacle Space
	5.3 Simulation in 3D Obstacle Space
	5.4 Hardware demonstration

	6 Conclusion
	References
	Abstract (in Korean)

<startpage>15
1 Introduction 1
 1.1 Literature Survey 3
 1.2 Contributions 7
 1.3 Outline 8
2 Bernstein Polynomial 9
 2.1 Definition 9
 2.2 Properties 10
3 Multi-Agent Trajectory Planning 12
 3.1 Problem Statement 12
 3.2 Overview 18
 3.3 Decentralized Multi-agent Path Planning 25
 3.4 Initial Trajectory Planning 30
 3.5 Collision Constraints Construction 31
 3.6 Subgoal Optimization 45
 3.7 Trajectory Optimization 49
4 Theoretical Guarantee 52
 4.1 Collision Avoidance 52
 4.2 Feasibility of Contraints 54
 4.3 Goal Convergence 57
5 Experimental Validation 67
 5.1 Simulation in Obstacle-free Space 68
 5.2 Simulation in 2D Obstacle Space 70
 5.3 Simulation in 3D Obstacle Space 75
 5.4 Hardware demonstration 82
6 Conclusion 84
References 86
Abstract (in Korean) 94
</body>

