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Technological diversity is both a stimulus and an indicator of innovation. It arises from the 

recombination of technologies, which leads to the creation of more diversified and 

differentiated technologies. Diversity in technology fluctuates over the course of an 

economic development. The dynamics of technological diversity provide insights into the 

growth stages of technologies and industries, and guide government policies and business 

strategies.  However, our empirical understanding of technological diversity remains 
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limited. Previous studies have measured technological diversity at the level of broad 

categories of technologies, such as industries, without considering technological 

trajectories. In addition, there is a lack of explanation for the endogenous mechanisms that 

generate and change technological diversity. 

In order to efficiently and effectively promote technological diversity as a source of 

innovation, it is crucial to fill these knowledge gaps. This study aims to quantify 

technological diversity by considering detailed trajectories and to understand the 

endogenous mechanisms of its dynamics. To this end, the study adopts an evolutionary 

perspective and takes evolutionary economics as its theoretical foundation. This study 

employs an evolutionary phylogenetic approach to quantify technological diversity, 

incorporating information from technological evolutionary processes and specific 

trajectories. The evolutionary phylogenetic tree of technology is used as a key analytical 

framework throughout the study. It also highlights technological search and organizational 

routines as factors to derive a generalized framework for the endogenous dynamics of 

technological diversity. The empirical analysis is carried out in the field of photovoltaic 

technology. 

Chapter 4 explores the quantification of technological diversity by considering detailed 

trajectories in the process of technological evolution. The analysis in this chapter uses 8,081 

photovoltaic technology patents granted by the U.S. Patent and Trademark Office (USPTO) 

from 2000 to 2018. After constructing an evolutionary phylogenetic tree for photovoltaic 

technology, technological diversity of the specific trajectories is measured by the entropy 
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for the information derived from the phylogenetic tree. The results of this chapter are used 

for further analysis in Chapter 5 and 6. The evolutionary phylogenetic tree of photovoltaic 

technology derived from this analysis provides a robust description of the actual history. 

While technological diversity has increased gradually overall, each of the trajectories have 

seen a more radical change. The analysis shows that technological diversity has stagnated 

or declined since 2015 in terms of both aggregate and trajectory-specific diversity measures, 

suggesting a weakening innovation momentum in photovoltaic technology. 

Chapter 5 examines the dynamics of technological dynamics for technological search, 

in terms of considering the nature of the technology itself. Technological search is classified 

into three patterns, analogous to biological evolution: Vertical Inheritance (VI), Horizontal 

Gene Transfer (HGT), and Mutation (MT). In this chapter, the relationship between 

diversity dynamics and technological search is derived through regression analysis. The 

empirical results indicate that the VI pattern of technological search is dominant in the 

evolution of photovoltaic technology, while HGT occurs the least frequently. Both VI and 

HGT search patterns have a statistically significant relationship with technological diversity, 

either decreasing or increasing it. However, the MT search pattern is not significantly 

related to diversity. In addition, these relationships are not found to be differentially 

affected by time period. Therefore, the findings in this chapter highlight technological 

search as a driver of diversity dynamics, with recombining technologies from neighboring 

ancestors identified in an evolutionary phylogenetic tree playing a crucial role in increasing 

technological diversity. 
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Chapter 6 discusses the relationship between organizational routines and diversity 

dynamics from the perspective of actors in technological development. The analysis 

consists of two parts: ⅰ) identifying and categorizing organizational innovation routines, 

and ⅱ) examining the relationship between routines and diversity dynamics. Innovation 

routines are identified through multidimensional firm behaviors, and then categorized into 

four types through relative comparison within the sector: Active Pioneer (AP), Efficient 

Optimizer (EO), Passive Observer (PO), and Adoptive Adventurer (AA). The study uses 

granted patent data from the USPTO and photovoltaic module data from PVsyst version 

6.0 for the period 2000-2022. The relationship between innovation routines and diversity 

dynamics is examined using regression analysis. 

The results in this chapter confirm that the method of quantifying and classifying 

innovation routines is valid for identifying inherent characteristics of firms. The regression 

results indicate that organizational routines are endogenous factors influencing 

technological diversity. The AA type shows a significant positive relationship with 

technological diversity, especially when combined with the HGT search pattern. 

Furthermore, the impact of technological search on diversity dynamics derived in Chapter 

5 depends on organizational routines.  

In conclusion, technological search drives the dynamics of technological diversity, and 

based on this, the principle of generating technological diversity is the gradual expansion 

of technological space through recombination with other relevant technologies. 

Organizational routines act as micro-criteria for the dynamics of technological diversity by 
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determining a firm’s technological search behavior (i.e., the manner, scope, and extent of 

technological search). This study introduces technological search and organizational 

routines as new factors to explain the endogenous dynamics of technological diversity, 

thereby enhancing the explanatory power of technological diversity dynamics from an 

evolutionary perspective. 

The application of evolutionary phylogenetic methodology complements the 

limitations of previous comprehensive studies and contributes to a deeper understanding of 

dynamic processes in technological development. Furthermore, these findings have 

practical implications for business strategies and government policies aimed at promoting 

technological innovation. The empirical analysis of photovoltaic technology provides a 

scientific basis for practical suggestions to address industry challenges. 

 

Keywords: Evolutionary Economics; Technology Evolution; Diversity Dynamics; 

Technological Search; Organizational Routine; Photovoltaics 

Student Number: 2013-30307 
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Chapter 1. Introduction 

1.1 Background and Motivation 

Different technologies give rise to various technologies in turn. Innovation is an 

endogenous process (Fleming, 2001; Schumpeter, 1942) that is “created by a substantial 

extent of recombination of conceptual and physical materials that were previously in 

existence (Nelson & Winter, 1982: 130).” Current technological advances have emerged 

from the nourishment of previously accumulated diverse knowledge and technologies. The 

examples are endless. The smartphone is the result of the recombination of 

telecommunication technologies accumulated from mobile phones, with cameras, touch 

screens, and various technologies in the IT field. Siri, Google Assistant, chat bot, and 

language translation systems are the result of the development of deep learning algorithms 

such as Recurrent Neural Networks (RNN) and Natural Language Processing (NLP) 

technology. The seeds of innovation lie in technological diversity. 

The concept of diversity becomes even more important when viewed through the lens 

of evolution. Diversity is a driving force in evolution, affecting both selection and variation. 

In addition, selection mechanisms produce better results with greater diversity (Fisher, 

1930; Metcalfe, 1994, 1998)1. 

This study examines technological diversity within the theoretical framework of 

 
1 Ronald A. Fisher's work, “The Genetic Theory of Natural Selection (1930),” which played a pivotal role in 

reformulating the theory of natural selection into a mathematical model based on genetics, showed that the 

more the genetic variability over which fitness selection acts, the greater the expected improvement in fitness. 
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evolutionary economics. From this perspective, technological diversity plays an important 

role in the dynamics of economic development (Dopfer, 2001; Frenken et al., 1999). 

Economies adapt and develop through the exploration and diversification of technological 

options. Technological diversity creates opportunities for experimentation, learning, and 

the emergence of new capabilities, and enhances adaptability and survivability in uncertain, 

complex, and rapidly changing environments (Kauffman & Weinberger, 1989; Levinthal, 

1998). Competition among different technologies leads to evolution toward new 

technological designs (Anderson & Tushman, 1990; Utterback & Abernathy, 1975) and 

creates niches that provide opportunities for innovation (Frenken et al., 1999). Moreover, 

maintaining technological diversity reduces dependence on a particular dominant 

technology and increases systemic flexibility, opening up possibilities for further 

innovation (Carroll & Hannan, 2018; Stirling, 2010). 

Certainly, “there are no free lunches for diversity (Weitzman, 1992: 363).” Higher levels 

of technological diversity may be associated with higher costs. This is because, in terms of 

short-term efficiency or net present value optimization, technology standardization and 

specialization are more economically feasible. The lower the level of technological 

diversity, the higher the freedom from coordination and compatibility problems and the 

greater the returns to scale that can be enjoyed through more market share (Lacerda & Van 

Den Bergh, 2016; Van Den Bergh, 2008). In addition, a high level of technological diversity 

has economic constraints in terms of resource allocation and concentration or learning 

effects according to path dependence. 



3 

 

Should we still strive for technological diversity? Standing on the shoulders of giants 

in evolutionary economics as mentioned above, the answer of this study is yes. The tapestry 

of technological progress is a mosaic of diverse technologies, each providing its own thread 

in the fabric of progress. As observed in film photography technology, home audio 

technology, or mobile operating system technology, the decline of technological diversity 

leads to industry decline or stagnation of innovation. Therefore, technological diversity is 

essential for long-term economic growth and innovation. 

From the perspective of evolutionary economics, technological development is 

described as a process of evolutionary change in technology based on the generation of 

technological diversity and competitive selection (Cohendet et al., 1992). In this process, 

technological diversity fluctuates constantly, increasing, decreasing, and sometimes 

stagnating during economic development. The emergence of an industry attracts many 

innovators and ideas, thereby increasing technological diversity. On the other hand, 

competition among different technologies leads to the emergence of dominant designs that 

are selected by the market, causing diversity to stagnate or decline (Anderson & Tushman, 

1990; Utterback & Abernathy, 1975). Technological diversity creates and modifies 

technological trajectories through dynamic changes, guiding the direction of innovation 

and enhancing the rate of innovation (Grandstand, 1998; Kim & Kogut, 1996; Quintana-

García & Benavides-Velasco, 2008; Suzuki and Kodama, 2004). The dynamics of 

technological diversity serve as an indicator of the developmental stage of a technology or 

industry and a basis for innovation activities (Gao et al., 2013; Lin et al., 2021; Pavitt, 
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1998). 

Based on information about technological diversity and its dynamics, governments set 

industrial policies and firms make decisions about strategic actions (Suarez & Utterback, 

1995; Utterback & Abernathy, 1975). Given the theoretical and practical importance of 

technological diversity and its dynamics, many scholars have attempted to gain a better 

understanding of it; however, the empirical understanding of the dynamics of technological 

diversity remains limited (Frenken et al., 1999).  

 

1.2 Objectives and Scope 

The academic gaps that have been identified in the literature can be divided into two 

main areas. 

First, there are gaps in the existing literature on quantitative measures of technological 

diversity. Scholars have measured diversity at the level of broad categories of technology, 

such as industries (e.g., Utterback & Abernathy, 1975). However, technologies evolve in a 

space with more than one technological trajectory. Technological diversity measured at the 

aggregate level may differ from the outcome along detailed technological trajectories, and 

thus quantifying technological diversity at the broad level may be subject to errors of 

generalization. 

The second is the lack of clarity on the endogenous mechanisms of technological 

diversity dynamics. In previous works, the emergence and variation of technological 

diversity have mainly relied on intuitive and conceptual explanations based on researchers’ 
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insights. While external factors such as consensus on technology concepts (Grodal et al., 

2015; Suarez et al., 2015), intra-industry competition (Anderson & Tushman, 1990), and 

increasing demand heterogeneity (Adner & Levinthal, 2001) are recognized as the main 

sources of technological diversity, the endogenous factors and processes that generate and 

change technological diversity have not been fully explained. Technological progress and 

innovation are endogenous (Fleming, 2001; Schumpeter, 1942). Therefore, understanding 

the endogenous mechanisms of the dynamics in technological diversity leads to an insight 

into the innovation process, where recombination between technologies creates novelty. 

How does technological diversity, as a source and indicator of innovation, emerge and 

change? Answering these questions, and more importantly, uncovering the principles of 

technological diversity growth, will allow for more direct and practical innovation policies 

and strategies. Therefore, this study aims to understand the dynamics of technological 

diversity, that is the endogenous mechanisms of increment, stagnation, and decline. To this 

end, evolutionary perspectives and approaches are actively adopted to fill the academic gap 

in previous studies. 

Specifically, this study applies an evolutionary phylogenetic methodology to the 

quantification of technological diversity, adding a spatial concept. An evolutionary 

phylogenetic tree is a network that represents evolutionary relationships based on genetic 

homogeneity and schematizes the different patterns that occur during evolution (Huson & 

Bryant, 2006). Evolutionary phylogenetic trees provide a holistic view of the evolutionary 

process on technology and allow the identification of specific trajectories of technological 
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development. This study quantifies technological diversity based on information from 

phylogenetic trees to observe how diversity varies across technological trajectories formed 

during the evolution of technology. 

Technological search and organizational routines are proposed as internal factors 

leading to the dynamics of technological diversity. This approach is grounded in 

perspectives of technological innovation models that focus either on the nature of the 

technology itself or the actors (Ma & Nakamori, 2005). Using evolutionary concepts from 

biology, this study defines technological search and organizational routines, respectively, 

and presents them as new measures to explain the endogenous dynamics of technological 

diversity. 

The empirical analysis is conducted on photovoltaic technology. While the endogenous 

mechanism for technological diversity dynamics proposed in this study can be broadly 

applied to a variety of technologies and industries in general, photovoltaic technology is 

taken as an empirical case based on three rationales.  

The first is the technological importance. Photovoltaic power generation is essential to 

a global energy portfolio. Over the past two decades, the photovoltaic industry has grown 

rapidly, and technological advances have been at the heart of this growth. Given the key 

role of photovoltaics in sustainability, it is therefore important to understand the current 

state and future direction of the technology for innovation.   

Second, the photovoltaic industry has been dynamic relative to the short time frame. 

Photovoltaic technology has been rapidly industrialized since 2000, experiencing 
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remarkable growth and fierce competition. Currently, the industry is on a transition path 

from maturity to either decline or regeneration. The ability to observe most of the industry’s 

life cycle over a comparatively short period of about 20 years is an advantage in terms of 

data availability. Furthermore, based on the industry life cycle theory, which uses the 

increase and decrease of diversity as an explanatory measure (Abernathy & Utterback, 

1978Klepper & Graddy, 1990; Klepper & Simons, 2005; Markard, 2020), the dynamics of 

the photovoltaic industry are representative and appropriate to explain technological 

diversity. 

Finally, photovoltaic technologies are divided into three generations based on their 

degree of commercialization. These commonly used generational classifications of 

technologies facilitate comparisons between technologies and understanding the 

chronological progression of technological advances. 

The continuous introduction and development of different technologies is crucial for 

innovation (Dopfer, 2001; Frenken et al., 1999). This study explores the dynamic 

mechanism of technological diversity by focusing on technological search and 

organizational routines as internal factors and deriving their relationships in the space of 

technological evolution. The academic significance of this study is that first, it uses an 

evolutionary phylogenetic approach as a novel methodology to identify the specific 

trajectories and explain the phenomenon of technological development, and second, it 

proposes technological search and organizational routines as new metrics to understand the 

dynamics of technological diversity. While previous studies have focused primarily on 
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exogenous factors, this study contributes to the broader discussion of technological 

evolution by shedding light on endogenous mechanisms. The results of the study contribute 

to improving the effectiveness and efficiency of innovation promotion strategies and 

policies. Specifically, it paves the way for evidence-based policy interventions and serves 

as a scientific basis for technology decision-making. Furthermore, the evolution of 

photovoltaic technology derived from the empirical analysis will directly suggest the 

direction of innovation and provide practical implications applicable to other industries 

with similar characteristics and challenges. 

 

1.3 Outline of the Study 

This study is organized as shown in Figure 1-1.  

Chapter 2 reviews the existing literature on diversity, technological search, and 

organizational routines from the theory of evolution and evolutionary economics. It also 

introduces the evolutionary phylogenetic methodology for constructing the evolutionary 

space and trajectories of technologies. Based on the theoretical and methodological 

background, the conceptual framework of diversity dynamics developed in this study is 

presented. 

Chapter 3 provides an overview of photovoltaics to set the groundwork for the 

empirical analysis. It first presents the rationale for selecting photovoltaic technology as 

the subject of the empirical analysis, followed by an overview of photovoltaic technology 

and historical facts about the industry and markets related to the technology. 
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Chapter 4 examines the dynamics of technological diversity using evolutionary 

phylogenetic methodology. The significance of this chapter is that it quantifies 

technological diversity along specific trajectories. The phylogenetic tree and the measured 

technological diversity obtained in this chapter are further used in Chapters 5 and 6. 

Chapter 5 presents the patterns of technological search for diversity dynamics. Using 

the concept of evolution in biology, technological search is specified into three patterns, 

vertical inheritance (VI), horizontal gene transfer (HGT), and mutation (MT), and 

measured quantitatively through modeling. The patterns of technological search proposed 

in this chapter are distinctive in that they enhance the explanatory power of the scope, 

direction, and path dependence of technological search by reflecting the nature of the 

technology. The relationship between each search pattern and diversity dynamics is derived 

through regression analysis. 

Chapter 6 consists of two parts. The first takes a multidimensional approach to firm 

behavior to derive organizational routines. To identify and classify innovation routines for 

firms, this study measures firms’ willingness for novelty in terms of their Knowing and 

Doing behaviors. Innovation routines are derived for each year of the analysis period for 

individual firms and categorized into four types: active pioneer (AP), efficient optimizer 

(EO), passive observer (PO), and adoptive adventurer (AA). This part of chapter 6 has 

academic implications in that it quantitatively analyzes routines, important concepts in 

evolutionary economics but limited in empirical research, through a multidimensional 

approach to firm behavior and relative comparisons within a sectoral regime. 
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The second part of Chapter 6 describes the relationship between the four types of 

innovation routines and the dynamics of technological diversity. Using the results on 

technological diversity and search patterns from Chapters 4 and 5, this study examines the 

diversity dynamics for innovation routines. It also investigates when each of the four 

innovation routines performs the three patterns of technological search. 

Finally, Chapter 7 is the conclusion of this study. By summarizing the results derived 

from the previous chapters, the study draws policy implications for the endogenous 

mechanisms of diversity dynamics in technology with respect to technological search and 

organizational routines. Based on these academic findings, practical suggestions are made 

for the innovation direction of photovoltaic technology. Finally, the limitations and 

contributions of this study are discussed, and future research directions are suggested. 
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Figure 1-1. Outline of this study 
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Chapter 2. Literature Review 

2.1 Theory of Evolution and Its Generality 

The term “evolution” refers to the phenomenon of genetic changes that accumulate over 

generations, changing the number of individuals and giving rise to new species (Lande & 

Arnold, 1983). Since Charles Darwin’s (1808-1889) of “On the Origin of Species (Darwin, 

1859)”, theoretical discussions have developed in biology. The core concepts on the theory 

of evolution are variation, retention, and selection. Evolution occurs when individuals have 

mutability, replicability, and heritability, and individuals with these traits are subject to a 

necessary and inevitable process of selection (Smith et al., 1985). 

 

2.1.1 Social Sciences with Evolutionary Approaches 

Today, the theory of evolution is widely applied beyond the biological domain. 

Especially in the social sciences, like economics, active attempts have been made to 

interpret various changes in society in terms of evolutionary perspectives and principles. 

Some critics have argued that it is inappropriate to extend the concept of biological 

evolution to other domains (e.g., Foster, 1997; Penrose, 1952; Witt, 1996). Nonetheless, 

empirical researchers have been intrigued by the evolutionary nature of socio-economic 

phenomena and have inductively developed an evolutionary perspective (Nelson, 2006). 

In fact, evolutionary propositions about social development predate Darwin, such as 

Hume (1896), Mandeville (1728), and Smith (1776) (Nelson, 2006). The most prominent 
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example is Adam Smith’s “invisible hand,” which describes the structure of a market 

economy as not artificially created by centrally controlled forces (Nelson & Winter, 1982). 

It establishes that socio-economic phenomena are the outcome of evolutionary processes 

that have occurred over a long period of time without an ultimate designer, as whether God 

or man (Nelson, 2006). 

The principles of Darwinian evolution have had an enormous impact on the theorization 

of social evolution, which existed only as an abstract concept. Darwin’s seminal 

contribution to the theory of evolution is the proposal of variation and selective retention 

as the specific mechanisms by which evolution operates. This is so extensive concept that 

it has become a very powerful source of understanding not only of changes in the 

composition and nature of biological species, but also of cultural and social changes in 

humans (Nelson, 2006). Indeed, Darwin (1859, 1971) suggested that evolutionary 

principles could be applied to morality and social groups, as well as human languages 

(Hodgson, 2005). A number of scholars in various fields, such as Bagehot (1872), James 

(1896), and Veblen (1898, 1899), argued that the Darwinian mechanisms of evolution also 

apply to mental, epistemological, moral, social, and political evolutions (Hodgson, 2005; 

Nelson, 2006). 

There are three major concepts of evolution shared by the social sciences and biology. 

The first is the perception of change (Thompson, 2001). The concept of evolution implies 

change. Evolutionary processes explain the mechanics that led to the current state of 

complex phenomena in various fields. In other words, the evolutionary perspective is 
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concerned with dynamics, not statics, and emphasizes the irreversible nature of time: 

everything is bound to change over time (J.-D. Lee et al., 2022). From an evolutionary 

perspective, a persistent state of equilibrium cannot be maintained, and continuous change 

is normal (Thompson, 2001). Furthermore, change is not constant, and each change varies 

in scale, scope, and speed.  

Second, evolution is not the equivalent of progress (Gould, 2002). Evolutionary change 

simply indicates that something is different than before and does not show whether the 

change is in the direction of progress or regression. Evolution is not purposive, so the 

outcome is not necessarily optimal. The evolutionary process requires diversity, complexity, 

and chance. The fact that diversity always exists to choose from implies that selection may 

not lead to optimal outcomes (J.-D. Lee et al., 2022). 

The last concept concerns the speed of evolution (Gould & Eldredge, 1972; Mokyr, 

1990; Simpson, 1944). Evolution occurs at different rates, from instantaneous to 

incremental. All rates of evolution are progressive and continuous at a given scale. In “On 

the Origin of Species,” Darwin repeatedly quotes the Latin maxim “Natura non facit 

saltum2 ” to emphasize the progressive nature of evolution (Darwin, 1859). However, 

whether evolution is gradual or radical depends on the time frame and analysis. Modern 

evolutionary theory recognizes that evolution sometimes proceeds rapidly (Nelson & 

Winter, 1982). The concepts of radical and revolutionary changes are not antithetical to 

evolution, just as gradual changes do not necessarily imply an evolution. 

 
2 It means that “nature does not leap”. 
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Building on this consensus, the 20th century marked as a renaissance of evolutionary 

approaches to the social sciences. A number of evolutionary social scientists emerged, 

including Schumpeter (1934), Popper (1959), Hayek (1973), and Campbell (1974). 

Grounded in their respective disciplinary traditions of philosophy, economics, sociology, 

and anthropology, their evolutionary explanations became the roots of evolutionary theory 

in the social sciences (Hodgson, 2004, 2005; Nelson, 2006). 

In addition, Dawkins (1983) proposed “Universal Darwinism”. This term, which 

captures the interdisciplinary breadth and generality of evolutionary theory, has served to 

extend the methodological debate about the application of evolutionary theory to the social 

sciences to an ontological level (Witt, 2008). Universal Darwinism explains a common 

ontological basis existing for all systems, including the natural world. Accordingly, any 

system can be explained by Darwinian principles, provided that variation, retention, and 

selection are properly defined, even if each domain has its own evolutionary mechanisms 

(Aldrich et al., 2008; Hodgson, 2001; Knudsen, 2001). The academic works that are based 

on universal Darwinism and directly utilize the framework of biological evolution to study 

socioeconomic phenomena have contributed to broadening the horizons of evolutionary 

social science (e.g., Carignani et al., 2019; Wagner & Rosen, 2014). In the following section, 

evolutionary economics, the theoretical basis of this study, is introduced among the 

evolutionary approaches to social science. 
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2.1.2 Evolutionary Economics 

In the tradition of Joseph Alois Schumpeter (1883-1950)3 , evolutionary economics 

explores economic dynamics from an evolutionary perspective. Schumpeter was concerned 

with long-term developments and structural changes in modern capitalist economies and 

emphasized the importance of innovation as a driver of economic growth. His argument 

for innovation highlighted the role of the entrepreneur and the supply side with the view 

on supply management economics4. In “The Theory of Economic Development (1934),” 

Schumpeter defined an innovation as a new combination of factors in production. His 

subsequent work, “Capitalism, Socialism and Democracy (1942),” established the 

argument that creative destruction and entrepreneurship by firms with incentives to 

innovate lead to dynamic economic growth (Burlamaqui & Kattel, 2018). 

 Schumpeter’s perspectives on innovation and economic growth can be summarized in 

three arguments (Aghion et al., 2015). First, innovation is the core engine of economic 

growth. Second, the profit motive of entrepreneurs to capture excess profits or monopoly 

power drives innovation through investment. Third, new innovations replace existing ones, 

causing destruction and creation. The innovation process is endogenous and dynamic. 

 
3 From an institutional perspective, the origins of evolutionary economics are often attributed to T. Veblen 

(Brette, 2003; Jo, 2020). However, this study follows the lineage of J. Schumpeter, and understands 

evolutionary economics in the neo-Schumpeterian and innovationist tradition of R.R Nelson and S. Winter. 

 
4 This contrasted with Keynes's theory of effective demand, which emphasized the demand side to overcome 

the Great Depression (Dabic et al., 2011; Mazzucato & Wray, 2018). In response to the Great Depression of 

1929, Keynes argued that governments should stimulate market demand through tax cuts and spending to 

stabilize the economy in the short term. Schumpeter, on the other hand, pointed to a lack of innovation as the 

fundamental cause of the recession and emphasized the importance of providing incentives for economic 

agents to innovate to enhance structural competitiveness in the long term. 
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Therefore, innovation-driven economic growth has an evolutionary character. Although 

Schumpeter explicitly refused to link his theory to biological evolution, the economy he 

described is clearly an evolutionary process (Nelson, 2006). 

On Schumpeter’s theoretical foundation, evolutionary economics developed as a 

response of the growing recognition of technological progress as a major source of 

economic development and reflection on empirical research. Evolutionary economists 

sought to elaborate on Schumpeter’s views by emphasizing innovation and dynamism 

through evolutionary thinking (e.g., Levinthal, 1998; Nelson & Winter, 1982; Saviotti, 

1996). 

Evolutionary economics takes a systemic approach to comprehending the cumulative 

and path-dependent processes of innovation (Nelson & Winter, 1982). By adopting a 

relativistic view (Samuels, 1995), the various elements of the economy are understood as 

interrelated and interconnected as a system rather than independent (Edquist, 2010; 

Malerba, 2004). The theoretical foundations were laid by R. R. Nelson and S. G. Winter in 

their book, “An Evolutionary Theory of Economic Change (1982)”5. Nelson and Winter 

contributed to overcoming the limitations of earlier evolutionary economics which was 

restricted to biological analogies, and established a theoretical framework by taking a 

computational approach to how evolutionary mechanisms operate in economic systems. 

 

 
5 The conceptual formation of evolutionary economics predates Nelson & Winter (1982). Veblen (1989) raised 

the importance of evolutionary thinking in economics, and Alchian (1950) argued that the assumptions of 

optimality and rationality are unrealistic due to the uncertainty that exists in the economy, and that economic 

phenomena can be analyzed without these assumptions by adopting Darwin's survival of the fittest. 
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2.1.2.1 Approaches in Evolutionary Economics and Its Difference from 

Mainstream Economics 

Traditionally, economics assumes “ceteris paribus” and attempts to control variables 

and simplify models to explain the causality of phenomena6 . However, contemporary 

capitalism with liberal market economies is highly complex, diverse, and exhibit a great 

deal of unpredictable change. Therefore, the answers derived from theoretical models under 

strong constraints are unlikely to be universal solutions applicable to the real world (Nelson 

& Winter, 1982). 

Evolutionary economics accepts the complexity and uncertainty of the actual economy 

as it is. Since the economic world is irreversible, historical, and dynamic (Arthur, 1994; 

Malerba et al., 1999), it develops alternative theories that are distinct from the single 

optimal solution or general equilibrium of mainstream economics from the perspective of 

a holistic system. Thus, evolutionary economics aims for appreciative theorizing rather 

than formal theorizing such as the neoclassical equilibrium model (Nelson, 1995). 

Appreciative theorizing alleviates the limits of the reality explanatory power of formal 

theorizing under the perception of reality as it is and pursues the possibility of predicting 

the future through pattern analysis of the actual economy. 

The evolutionary economics approach is characterized by the following features 

(Hodgson, 1999; Nelson & Winter, 1982). 

 
6 A concept introduced by British economist Alfred Marshall (1842-1924) to formulate microeconomic 

theory, meaning all other things being equal. It is criticized for making very strong constraints on variables 

for consistent economic analysis, and for being unrealistic. However, it is used as a basic assumption due to 

its convenience and usefulness in developing economic theory. 
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First, the methodology of evolutionary economics is based on analogies and metaphors 

from biological evolution. The key concepts of evolutionary biology, such as variation, 

mutation, selection, replication, and fitness, are translated into economic concepts such as 

innovation, imitation, market selection, and market share. However, it should be noted that 

the reason for adopting concepts from biology is that evolutionary theory is the most 

advanced in the field. It does not necessarily seek evolutionary links between 

socioeconomic phenomena and biology. Evolutionary economics considers not only 

biology but also the evolution of the universe or geological formations, to explore the 

cumulative and continuous evolution of economies (Nelson & Winter, 1982). In other 

words, it focuses on the process of economic dynamics itself and uses concepts from 

evolution to explain it (Hodgson, 1987). 

Secondly, it assumes ‘bounded rationality 7 ’ of the actors. Bounded rationality is 

intrinsic and cannot be overcome by any condition (Nelson & Winter, 1982). it leads 

individual actors to produce non-homogeneous behaviors and outcomes, and as a result, a 

wide range of differences are observed within groups (Nelson, 1991; Nelson, 1995; Saviotti, 

1991). The heterogeneity within an economic system implies asymmetries in qualitative 

dimensions such as culture and institutions, as well as quantitative dimensions such as 

technology, income, and size. 

 
7  In the context of evolutionary economics, bounded rationality refers to the notion that economic agents' 

decisions are limited by cognitive and informational constraints. It originated as a critique of mainstream 

economics' perfect rationality assumption that agents can process all available information, weigh the costs and 

benefits of alternative choices, and make optimal decisions that maximize utility. Bounded rationality is a 

realistic and adaptive approach to decision-making, where economic agents aim to achieve a good enough and 

satisfactory outcome rather than an optimal one. 
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Third, interactions are important. Actors in an economic system interact with each other 

to learn, adapt, reconfigure, and explore options then increase diversity (Stacey, 2001). It 

evolves together for scientific concepts, technologies, products, organizations, and so on, 

and each of evolutionary mechanisms on variation, selection and retention are not 

independent (Ziman, 2000). 

For the last, it concentrates on dynamics on the economy. The circumstances around 

economic actors are always changing (Hodgson, 1987; Hodgson, 1999). Since dynamic 

change processes involve uncertainty, it is not feasible for a boundedly rational agent to 

have a perfect foresight of the future. Therefore, it is not possible to maximize behavior 

and calculate optimal solutions in the mid- and long-term perspectives. Additionally, a 

process of change involving adjustments and frictions in behavior is out of equilibrium 

(Nerlove, 1972; Samuelson, 1947). Therefore, using the emergence of novelty in the form 

of new actors, technologies, products as the basis of analysis, evolutionary economics 

explains phenomena with concepts such as exploration, routines, and cumulative 

technological progress (Nelson & Winter, 1982). 

 

2.1.2.2 Innovation, and as Its Indicator, Diversity 

Evolutionary economics emphasizes the importance of a technology push for 

innovation8. This perspective stems from Schumpeter’s theory of technological innovation, 

 
8 However, it does not exclude the demand-pull perspective. Nelson & Winter (1977) showed that the 

creation and diffusion of innovations is also significantly influenced by non-market factors such as public 

organizations and educational systems, and Dosi (1982) argued that markets have a role to play in selecting 

innovations that have the potential to succeed among the technological trajectories that exist within a 

technology paradigm.  
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described previous section. For Schumpeter, technological innovation serves to bring about 

business profits from a supply standpoint and is defined as the first introduction and 

implementation of a change in technology from a commercial standpoint (Schumpeter, 

1934). All innovations in evolutionary economics as followed Schumpeter are generated 

from advances in scientific works through specialized research and development (R&D) 

activities and the accumulation of knowledge. For example, Rosenberg (1976) used the 

example of navigation and medical technology to show that the development and 

application of technology cannot be achieved without the accumulation of sufficient 

scientific knowledge, and Freeman (1982) argued that the major industries that grew 

rapidly in the 20th century, such as chemicals, pharmaceuticals, and electronics, developed 

based on organized scientific research in the professional R&D sector. 

The key concern of evolutionary economics is to observe and measure innovation. 

Innovation in evolutionary economics, which is often associated with variation in 

evolutionary theory, uses diversity as an indicator. Diversity generates from the 

accumulation of the results on mutations and gene combinations through the process of 

variation. In biological evolution, variation is the counterpart of inheritance and retention, 

and refers to the phenomenon whereby an individual’s characteristics differ over time. It 

includes both non-inherited, temporary changes due to selection pressures and mutations 

that are passed on to the next generation through genetic changes. Diversity is the result of 

variation and is “the evolutionary engine (Dopfer, 2001, p.31)” that drives the dynamics of 

a system. 
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Moreover, the diversity mechanism is independent of the selection, so it is a critical 

prerequisite for selection to operate in evolution (Basalla, 1988). This is because if diversity 

did not exist, that is, if all individuals within a population were genetically identical, with 

no differences in reproduction, there would be no room for selection to intervene (Sober, 

1984). Therefore, evolution deals with the interaction between the generation of diversity 

and selection and then, can be expressed as the observation of changes in diversity over 

time (Frenken et al., 1999). The following section reviews the core concepts and 

accumulated discussions for examining the diversity dynamics of technology from an 

evolutionary economics perspective.  

 

2.2 Dynamics of Technological Diversity in Evolutionary 

Economics 

2.2.1 Diversity 

The concept of diversity in fact played a rather minor role in mainstream economics. 

As described in the previous section, the neoclassical school presents representative agents 

and draws logical inferences from simplified and stylized attributes that are common to all 

types of agents. Therefore, differences between agents are not important in these models9. 

Diversity becomes important when the focus is on why and how equilibrium is broken and 

how this causes changes in the economy over time, as opposed to the problem of 

 
9 Exchange economies based on division of labor and trade theorize that differences in opportunity costs, i.e. 

diversity, lead to comparative advantage. However, this is “a rather limited and well-behaved sort of diversity” 

(Cohendet et al., 1992: 10). Diversity in this perspective is only the starting point of the equilibrium process for 

trade, but it does not serve as a long-term driver for the entire system. 
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maintaining equilibrium, which is addressed by the mainstream economics (Cohendet et 

al., 1992). Later, with the development of industrial economics in the 1950s and 1960s and 

the growing interest in heterogeneity in the economy, the concept of diversity has been 

extensively discussed in innovation strategies and policy instruments to solve economic 

challenges such as market concentration (Finkelstein & Friedberg, 1967), autonomy 

(Winner, 1978), technological momentum (Hughes, 1994), entrapment (Walker, 2000) and 

lock-in (Arthur, 1989) phenomena (Geroski, 1989). Especially, diversity is one of the major 

concerns in evolutionary economics, which emphasizes the role of technological diversity 

as a stimulus to innovation (Grabher & Stark, 1997; Landau et al., 1996; Rosenberg & 

Nathan, 1982).  

Evolutionary economics takes diversity as its core concept. A fundamental proposition 

of evolutionary theory is that the diversity of a system affects its development, and the 

relative importance of the diversity that survives the evolutionary process changes over 

time (Gibbons & Metcalfe, 1986). Diversity, based on evolutionary theory, refers to the 

increasing variety of an economic system through the creation of distinguishable economic 

“species” such as actors, activities, and objects (Frenken et al, 1999). In other words, it 

aims to explain the emergence of novelty. Therefore, diversity is used to express and 

measure the qualitative aspects of change that are central to economic development, such 

as the composition of the economic system (Cohendet et al., 1992; Frenken et al., 2002; 

Saviotti, 1991, 1994, 1996; Saviotti & Mani, 1995; Silverberg et al., 1988). 

The concept of diversity is used to describe economic agents such as firms and 
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consumers, their behavior, or economic factors such as countries, industries, products, and 

technologies, depending on the intent and context of the researcher. This study focuses on 

technological diversity at the micro level. Technological diversity is defined as the range 

of different technologies or technological trajectories available within a given category, 

such as an industry or system. It is important in evolutionary economics as an indicator and 

stimulus for innovation (Grabher & Stark, 1997; Landau et al., 1996; Rosenberg & Nathan, 

1982). 

Technological diversity contributes to innovation in the following ways. Technological 

diversity fosters creativity by exposing individuals and organizations to a broader range of 

ideas, perspectives, and approaches (Hargadon & Bechky, 2006; Hong & Page, 2004). In a 

study examining the dynamics of problem-solving in a collaborative environment, 

Hargadon and Bechky (2006) found that groups with diverse technological backgrounds 

produced more creative product development outcomes. Meanwhile, Hong and Page (2004) 

found that diverse groups bring a wider range of information, insights, and heuristics to the 

problem-solving process, resulting in effective and innovative approaches. 

The presence of technological diversity enriches the possibilities of new combinations 

in terms of the knowledge base, increasing the possibility of novel technologies emerging 

(Turner & Fauconnier, 1999), and allowing cross-fertilization of ideas through knowledge 

spillover, leading to greater innovation performance. (Almeida & Phene, 2004). Uzzi et al. 

(2013) argued that interactions between different technological backgrounds lead to idea 

exchange, knowledge transfer, and cross-fertilization of innovations, while Fleming and 
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Sorenson (2001) empirically analyzed that inventors with diverse collaborations in the 

pharmaceutical industry were more likely to create highly cited patents. 

In addition, a diverse technology portfolio provides flexibility and resilience to the 

technology development strategy in an uncertain environment (Rosenberg, 1996). 

According to a study by Loorbach et al. (2017), multiple technology pathways enhance a 

system’s ability to respond and adapt to changing environments. The presence of various 

technologies provides alternatives to external shocks and mitigates reliance on a single 

technology, which can lead to adaptability and resilience. 

 Regarding the theory of the firm, technological diversity affects the ability of a firm to 

recombine its existing knowledge with new components. Because technological diversity 

favors new combinations and transforms dominant knowledge, it particularly increases the 

likelihood that firms will develop radical innovation capacities (Abernathy & Clark, 1985; 

Quintana-García & Benavides-Velasco, 2008). Grandstand (1998) argued that 

technological diversity stimulates firms to generate more innovative ideas. In addition, 

Leonard-Barton (1992) suggested that technological diversification prevents and alleviates 

core rigidity that hinders innovation of firms, and Suzuki and Kodama (2004) proposed 

that technology-based firms should exploit economies of scope through technological 

diversity for long-term survival and growth. 

Regarding the relationship between technological diversity and innovation, some point 

to the limitation of technological diversity in stimulating innovation in certain contexts. 

They emphasize that specialization in a specific technology can increase efficiency and 
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productivity (Lacerda and Van Den Bergh, 2016; Van Den Bergh, 2008). The arguments 

based on resource-based theories highlight that focusing resources and efforts in a specific 

area can achieve economies of scale and lead to more effective performance. In addition, 

the path-dependent nature of technology allows for positive feedback loops to form when 

focusing on a few technologies, resulting in cumulative benefits (Arthur, 1989; Foray, 

1997). In line with these arguments, Katz (2002) describes the economics of standardized 

technologies in the telecommunications industry in the context of reducing costs, 

supporting interoperability, and fostering innovation. However, these arguments do not 

dismiss the importance of technological diversity. They can be seen as an alternative 

perspective that emphasizes certain circumstances or trade-offs that may be prioritized over 

the promotion of technological diversity. 

Technological diversity functions as both an input and an output to the evolutionary 

process of technology (Stirling, 2007). During this process, the level of technological 

diversity changes steadily, increasing, stagnating, and sometimes decreasing.  

In the early stages of technological evolution, or at the emergence of a new industry, 

technological diversity increases because the technology or industry is not yet clearly 

conceptualized and there is a wide range of possibilities and experimentation from various 

actors (Klepper, 1996). Subsequently, it is maximized during the growth phase of the 

industry when various technologies compete (Abernathy & Utterback, 1978), and then as 

the industry reaches maturity, certain designs become advantageous due to the need for 

standardization, economies of scale, and the pursuit of efficiency, technological diversity 
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stagnates or declines. Because the emergence of a dominant design that is widely selected 

through market acceptance creates a self-reinforcing cycle that focuses effort and 

investment around the established design. 

Reducing technological diversity traps an industry in a cycle of obsolescence, and 

eventually leads to decline (Klepper, 1997; Klepper & Graddy, 1990; Klepper & Simons, 

2005). However, the dominance of a particular design is not always permanent. When a 

dominant design or existing industrial structure becomes vulnerable to disruption or change, 

in other words, when a time-limited window of opportunity10 that favors novelty opens, 

new technologies emerge that challenge the old, and then diversity increases again through 

inter-technological competitions (Perez & Soete, 1988; Lee et al., 2005; Anderson & 

Tushman, 1990; Lin et al., 2021). The industry is put on a path of renewal rather than 

decline. 

The dynamics of technological diversity have been emphasized as an indicator for the 

developmental stage of a technology or industry, and as a basis for innovation activities 

(Gao et al., 2013; Lin et al., 2021; Pavitt, 1998). Governments and firms utilize information 

on technological diversity and its dynamics as a rationale for the design of innovation 

policies and the timing of strategic actions (Suárez & Utterback, 1995; Utterback & 

Abernathy, 1975). However, the concept of technological diversity has been consistently 

discussed as one of the main theoretical categories in evolutionary economics, our 

 
10 “Window of opportunigy” was first proposed by Perez & Soete (1988) to refer to the role of the emergence 

of a new techno-economic paradigm in the leapfrogging of latecomer firms that capitalize on the new paradigm 

and overtake incumbents. It has since been used in several studies in both a favorable and limited sense where 

new technologies, approaches, or market conditions enable the entry or success of a new firm or technology. 
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empirical understanding of it remains limited (Frenken et al., 1999). This study points to 

two gaps in previous literature that have not been fully explained. 

 

2.2.1.1 Gaps in Quantification of Technology Diversity 

Diversity dynamics in technology are the result of strategic actions taken by various 

agents in the economic development process, and the output of non-optimal satisfaction 

choice under bounded rationality (Nelson, 2009). Thus, the understanding of technological 

diversity cannot be simplified into an input-output problem based on static and balanced 

system views, as in classical economics. A dynamic disequilibrium system perspective that 

considers the environmental context is required to set up a compelling and achievable 

technology strategy. However, previous studies that have quantitatively measured 

technological diversity have been limited by a lack of consideration of this systemic aspect, 

or more specifically, the space in which technological diversity varies. They have analyzed 

technological diversity at the aggregate level of industries or other large categories of 

technologies (Anderson & Tushman, 2018; Gao et al., 2013; Lin et al., 2021; Utterback & 

Abernathy, 1975). 

Technological development is a cumulative process that builds on previous 

technological advances (Tellis and Crawford, 1981). Such accumulations are shaped as 

technology trajectories, which come together to form a technology space and serve as a 

basis for analyzing technology development patterns (Dosi, 1982, 1988; Massey, 1999; 
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Tellis & Crawford, 1981).11 Previous studies have described the space of technological 

evolution as a technological population (Frenken et al., 1999), product population (Saviotti, 

1996), technological regime (Schot & Geels, 2007), and design space (Bradshaw, 1992; 

Dennett, 1995; Frenken & Nuvolari, 2004; Frenken, 2006). Technologies evolve by 

replication and variation through exploration or movement in these spaces (Frenken et al., 

1999; Lee et al., 2016), and technological progress is achieved by the convergence of the 

developmental trajectories of sub-technologies (Dosi, 1982; Dosi & Nelson, 2010).  

The changes in technological diversity derived at the aggregate level and at each 

specific trajectory may differ. For example, according to a study on the evolution of mobile 

products by J.-D. Lee et al. (2022), the trajectories of the mobile industry divided into 

smartphones, pseudo smartphones, and pure feature phones have different evolutionary 

patterns. The number of products has varied over time, and the changes in the number of 

products in each trajectory are different. However, when the mobile industry is examined 

from an aggregate perspective rather than individual trajectories, it can be concluded that 

the diversity of the industry has generally increased from feature phones in the 90s to 

smartphones today. Therefore, quantification of technological diversity needs to be based 

on temporal and spatial information about specific technologies. 

This study employs an evolutionary phylogenetic approach to quantify technological 

 
11 Dosi (1982, 1988) proposed the concepts of technological paradigm and technological trajectory for the 

cumulative and path-dependent nature of technological development. The technological paradigm is defined 

as the set of most likely ideas, technologies, devices, materials, etc. for an industry at a point in time that are 

necessary to augment economic production through technological innovation at that point or in the future. 

Additionally, the technological trajectory is a set of possible technological directions defined by a particular 

paradigm. 
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diversity by considering the specific trajectory of technologies. A detailed description of 

the methodology is continued in Section 2.3. 

 

2.2.1.2 Undisclosed Facts: Access to the Endogenous Mechanism of 

Diversity Dynamics 

Previously, the mechanisms for the generating and change of diversity are mainly 

intuitive and conceptual explanations based on researchers’ insights. Some researchers 

have proposed that the diversity dynamics are caused by external environmental factors 

such as consensus on technological concepts (Grodal et al., 2015; Suarez et al., 2015), intra-

industry competition (Anderson & Tushman, 1990), and increasing demand heterogeneity 

(Adner & Levinthal, 2001). However, technology develops and innovates endogenously 

(Fleming, 2001; Schumpeter, 1942). Moreover, the variation and mutations that generate 

diversity in evolution are random or blind changes in genes, occurring regardless of the 

adaptation and survival needs of the individual to its environment. Therefore, a distinction 

must be made between the process of change itself, which is dominated by external factors, 

and the mechanisms that fundamentally and endogenously drive the dynamics of diversity 

(Endler, 1992; Fisher, 1930). In other words, it is necessary to understand the endogenous 

mechanisms of diversity dynamics, that is, how technological diversity is generated, 

maintained, and increased or decreased.  

The discussion of this point is the origin of this study. This study draws on two 

perspectives of the technological innovation model (Ma & Nakamori, 2005) to comprehend 
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diversity dynamics. The first one focuses on the nature of the technology itself (Arthur, 

1988; Kauffman, 1993). This perspective is the equivalent in biological evolution of being 

interested in how the physical structure of individuals, such as their DNA, affects their 

behavior and the future of the species. Complex structures and systems cannot change 

independently of their relationships to other components of the complex. Some of the 

changes are biased by structural relationships and forms (Goodwin, 1994). Technological 

systems also have a high degree of complexity and are structured by scientific relationships 

between technologies and by economics. Such characteristics of technologies themselves 

act as a structural constraint on their evolution. Therefore, variations in technology levels 

and combinations are not infinitely possible (Coccia, 2019a, 2019b; Frenken, 2006; 

Kauffman & Weinberger, 1989; Wagner & Rosen, 2014). 

The second perspective focuses on the actors who generate technological diversity in 

the real world. Changes in technological diversity are the result of strategic actions taken 

by various agents such as universities, research institutes, and companies in the 

development of technology and industry. Evolutionary economics refers to the state of 

varying differences within a population as heterogeneity (Nelson, 1991b, 2007; Saviotti, 

1991). At each level of the economy such as country, industry, and firm, actors are 

heterogeneous (Nelson & Winter, 1982). Most technologies, which are concrete, complex, 

and cumulatively developed, tend to be specific to the actors in the technological activity 

(Dosi & Nelson, 2010; Pavitt, 1998). Technology is a sort of recipe, and even the same 

technological elements can produce different results depending on the recipe, which in turn 
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depends on the ability of the actors to execute the recipe (Baldwin & Clark, 2000; Dosi & 

Nelson, 2010). Thus, the heterogeneity of actors is fundamental to the creation of diverse 

technologies. 

To sum up, this study investigates the endogenous mechanisms of diversity dynamics 

through technological search as the behaviors of recombination in technology itself, and 

organizational routines12 as an actor of technological development. the following section 

describes the theoretical background of evolutionary economics and the discussions in 

previous studies on technological search and organizational routines. 

 

2.2.2 Technological Search 

Technological search is an innovation vehicle. Novel technologies are created through 

the recombination of technologies (and technological elements), and the process of 

exploration is inevitably required. However, search does not have an unlimited scope and 

can be carried out indefinitely. A technology system is a complex system that includes 

interrelated elements (sub-technologies) intended to collectively achieve one or several 

goals within a particular structure (Simon, 1969). Hence a technology is defined based on 

its elemental characteristics, that is, an internal structure, and there is a relationship between 

technologies (or technological elements) based on physical laws of nature, operating 

principles, and economics (Frenken, 2006; Frenken et al., 1999). Previous studies have 

 
12 Organizational routines are recurrent behavioral patterns in organizations (Dosi et al., 2000; Feldman & 

Pentland, 2003; Geels, 2014; Nelson & Winter, 1982; Winter, 1988). Evolutionary economics uses the concept 

of organizational routines to understand certain aspects of firm’s behavior, performance, stability, and change. 

The detailed review of the literature is continued in Section 2.2.3. 
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argued that technology and technology elements have various relationships, including 

interdependence, complementarity, and similarity (Fleming, 2001; McNamee, 2013). Due 

to the interrelationships between technologies (or technological elements), technologies 

develop into systemic groups rather than independent individuals (Andriani & Carignani, 

2014; Coccia, 2019a, 2019b). For example, within mobile products, technologies on LCD 

and battery are correlated (Windrum et al., 2009), and rear camera technology evolves in 

dependence on CPU technology (Coccia, 2019b). An ensemble of technologies should be 

evaluated at the system level to assess the impact of each single technology on the overall 

system, which again raises the issue of complexity (Frenken, 2006). Therefore, the nature 

of technology itself, described above, serves as a structural constraint on technological 

evolution (Coccia, 2019a, 2019b; Kauffman & Weinberger, 1989; Wagner & Rosen, 2014). 

The NK model allows to sketch the evolutionary search and diversity generation process 

under such structural constraints13. The following description is based on Frenken (2006). 

The NK model consists of two basic parameters, N and K. In a technological system, 

parameter N is the number of technologies (a kind of genes) and parameter K is the 

 
13 The evolutionary properties of complex systems have been a longstanding subject in biology (Kauffman, 

1993). The interdependence of genes refers to the complex relationship between the genotype and phenotype 

of an biological organism. In evolutionary mechanisms, variation and retention occur at the genotype, the set 

of genetic information, while selection occurs at the phenotype, the totality of traits that constitute an 

organism's fitness. The complexity of organisms means that mutations in one gene can change its functional 

contribution to the overall phenotype, as well as can also affect genes that are interrelated to the phenotype. 

For this reason, the original gene set imposes structural constraints on the possible directions of further 

evolution. In this aspect, biological evolution can be conceptualized as a search process in the space of gene 

sequences guided by the fitness landscape, a mapping that assigns a measure of reproductive value to each 

genotype (De Visser & Krug, 2014; Svensson & Calsbeek, 2012). First proposed by Kauffman & Weinberger 

(1989), the NK model is a stochastic model of a genotype-fitness landscape that represents the general 

features of interaction between genes in complex system. It provides a simple model and simulation of how 

evolution occurs in the presence of contradictory constraints through the interactions between genes and the 

resulting fitness landscape of genotypes (Kauffman, 1993). 
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interrelationship between technologies based on the laws of natural science (epistasis of 

genes)14. Systems without epistatic relation are when K=0, whereas systems with maximum 

complexity, which means all elements have epistatic relations are when K=N-1. The effect 

of epistasis is examined by construction a fitness landscape. The evolutionary fitness 

landscape is formed by values of N and K, and is like a topography of mountains and 

valleys, ruggedness is measures of fitness. besides it has the property of constantly 

changing rather than being stationary (Kauffman, 1995). 

In the NK model, the evolutionary optimum corresponding to innovation is derived 

from a combination of technologies through search. Since search is a time-consuming and 

costly process, there is a tradeoff between the input of resources and the output of the search, 

which determines the scope of the search at an economically feasible level. In addition, 

search is based on the past, not a perfect prediction. After a search is performed, if it yields 

good results compared to past results, more inputs are added; otherwise, fewer inputs are 

added, giving it a path-dependent nature (Dosi & Nelson, 2010). In the end, In the end, due 

to technological interactions and economics, a local optimum rather than a global optimum 

is derived. Diversity is generated by the number and distribution of local optima and the 

differences between them (Frenken, 2006). 

 

 

 
14 In biology, a single gene is able to generate multiple traits (pleiotropy) or multiple genes are possible to 

develop only one trait (polygeny). Moreover, a variation in a gene may have either a positive effect on some 

traits or a negative effect on others. This phenomenon is called epistasis, the relationship between genes 

(Frenken, 2006). 
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2.2.2.1 Patterns of Technological Search in Previous Literature 

Several studies have been conducted on the patterns and quantification of technology 

search. Researchers mostly described search methods employed based on one-dimensional 

distance concepts, such as near and far in technological relevance or similarity (Helfat, 

1994; March, 1991; Martin & Mitchell, 1998; Miner et al., 2001; Stuart & Podolny, 1996; 

Von Hippel & Tyre, 1995). On the other hand, Katila and Ahuja (2002) expanded the 

technological search behavior of firms into a two-dimensional framework of scope and 

depth. Specifically, the scope aspect refers to the search for new technological knowledge 

that does not exist in a firm, while the depth aspect refers to the deepening of existing 

technology that the firm owns. Building on this work, several subsequent studies have 

applied the concepts of scope and depth on technological search (Caner & Tyler, 2015; 

Grimpe & Sofka, 2009; Laursen & Salter, 2006; Wu et al., 2014; Zhou & Li, 2012). Taking 

innovation perspective in a comparable context, Cecere et al. (2015) and Koski and 

Kretschmer (2007), who took the perspective of innovation, defined the introduction of 

new technological elements of a product as horizontal innovation and the enhancement of 

existing technological elements of a product as vertical innovation. 

While these studies contribute to a more multidimensional view of search by departing 

from the traditional notion of distance, they are limited by the discussion of inter-

technology relationships described above. Technological search is performed historically 

on a fitness landscape shaped by technological relationships. In other words, a 

technological search takes place within the space where technology trajectories are forming; 
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therefore, it is necessary to consider not only the distance but also the direction of the search 

(Katila and Ahuja, 2002; Koski and Kretschmer, 2007). 

The directions in which current technologies have been shaped by the past will guide 

the evolution of future technologies. More specifically, even if technologies are recombined 

according to the same approaches to technological search, there may be differences in the 

nature of the newly introduced technologies depending on the search pattern. These 

differences, in turn, will reflect the relationships between technologies, leading them to 

evolve in distinct directions. For example, colors, calculators, and www capability are some 

of the new technologies introduced in mobile products by 2003 (Koski & Kretschmer, 

2007). All of these technologies were recombined with existing mobile technologies 

through horizontal innovation, i.e., search in terms of scope, but each of them has different 

technological characteristics. In detail, color belongs to the design aspect, calculator to the 

computational aspect, and www capacity to the communication aspect of technology. Such 

differences guide the subsequent evolution of these technologies toward design, 

computation, and communication, respectively.  

As discussed so far, there are still lack of exploration in the literature on technological 

search. To clarify the endogenous mechanisms of diversity dynamics, technological search 

needs to be further refined to include direction as well as scope and depth. This study 

explores the evolutionary process by which individuals acquire genetic diversity to find 

clues to technology search. Further research on technological search and diversity 

dynamics in technology is continued in Chapter 5. 
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2.2.3 Organizational Routines 

Agents in technological development play an important role in the evolution of 

technology. They are heterogeneous, and each selecting technological elements to innovate 

within a portfolio of accessible technologies, and strategically developing technologies 

accordingly (Nelson & Winter, 1982). The decisions of actors are guided by bounded 

rationality, leading to each of different satisficing choices that is not optimal. In this 

iterative process, heterogeneity persists, and the evolution of technology depends on 

heterogeneous actors (Frenken, 2006; Nelson & Winter, 1982; Posen et al., 2013). 

The presence of actors and their intentionality in technological evolution is one of the 

major criticisms to evolutionary economics (Foster, 1997; Penrose, 1952). The main issue 

in the debate is whether innovations generated by actors contradict the blind nature of 

variation in evolution. To begin with, Darwinism does not exclude intentionality on the part 

of the actor, and just because variation is blind does not mean that it is not intentional 

(Vromen, 2004). The essence of Darwinism is that everything must be causally explained. 

So, if something can be described in a causal way, it is the outcome of an evolutionary 

process (Cordes, 2006; Hodgson, 2004; Witt, 2003). In the economic domain, innovative 

activities can be driven by the needs of the actors. However, it is not always successful and 

often produces unintended consequences (March, 1963). And as in the evolution of 

organisms, only selected innovations are maintained and transmitted. Thus, despite the 

presence of actors and their intentions, technological evolution is causally explainable 

based on evolutionary theory, and innovation does not conflict with the random nature of 
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variation. 

This study focuses on firms among the various actors for technological evolution. In 

evolutionary economics, a firm is an organization composed of various individual 

economic actors in a hierarchical order, and an entity that continuously operates, adapts, 

and evolves in business, in historical time and specific space (Jo, 2006). It is considered a 

goal-oriented and profit-seeking organization, not an organization that maximizes profits, 

as defined by mainstream economics (Winter, 1988). In addition, firms select technological 

elements from their accumulated technology base and turn them into products. Through 

products, they reflect market preferences back into technology (Lee et al., 2021; Nelson & 

Winter, 1982). In this way, they directly intermediate technology and the market. 

Technological diversity in terms of firms can be defined as the diversity of knowledge 

systems and principles underlying the nature of their products and production methods 

(Quintana-García & Benavides-Velasco, 2008). In other words, it is related to the extension 

of a firm’s technological capabilities to a wider range of technologies and knowledge areas 

(Grandstand & Oskarsson, 1994). Previous studies have analyzed patent data and found 

some consistency in the way firms diversify their technological capabilities (Piscitello, 

2000, 2004; Valvano & Vannoni, 2003). Thus, from the actor perspective, the consistency 

with which firms broaden their technological capabilities is related to the endogenous 

mechanism of diversity dynamics in technology. 

The theory of the firm from an evolutionary economic perspective 15  takes the 

 
15 In evolutionary economics, the theory of the firm is the dynamic study of the birth, growth, and extinction 

of heterogeneous firms. Through a non-reductionist approach, it acknowledges the unique significance of 
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organizational routines16  of the firm, rather than the firm itself, as the basic unit for 

grasping the firm. Through the lens of capability, organizational routines are the bearers of 

knowledge and activities for innovation and production (Baldessarelli et al., 2022; 

Parmigiani & Howard-Grenville, 2011). Firm behavior is described by routines, and firms 

are understood through what routines they have and how they change over time (Dosi & 

Nelson, 2010). 

 

2.2.3.1 Revisiting the Concept of Routines on Evolutionary Perspectives 

The term of routine was first introduced by Stene (1940) as a part of some 

organizational activity that has become habitual, and the Carnegie School established the 

foundation for the study (e.g., Cyert & March, 1963; March & Simon, 1958). Nelson and 

Winter’s seminal book, “An Evolutionary Theory of Economic Change,” is recognized as 

a pioneer in routine research. Their work sparked academic interest in the concept of 

routines and stimulated subsequent research (Baldessarelli et al., 2022; Becker, 2004; 

Parmigiani & Howard-Grenville, 2011). 

Evolutionary economics scholars have come to comprehend certain aspects of firm 

behavior, performance, stability, and change through the concept of routine. Organizational 

 
firms as goal-oriented organizations, as distinct from individuals (Herrmann-Pillath, 2002). Evolutionary 

economics examines the actual and observable behavior of firms in the real world, placing technological and 

organizational innovation and production processes at its center (Winter, 1988). 

 
16 According to the consensus of scholars, “routine” is a term at the collective level as corresponding to 

“habit”, which represents the behavioral pattern of an individual (one person) (Becker, 2004, 2005; Dosi et 

al., 2000). Therefore, the term “routine” used throughout the text means “organization routine” without 

further explanation. 
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routines are recurrent behavioral patterns of an organization (Dosi et al., 2000; Geels, 2014; 

Nelson & Winter, 1982; Winter, 1988). Routines are a kind of organizational memory that 

appear repeatedly in a firm’s production, investment, and innovation activities, and stores 

the firm’s knowledge, capability, and experience. Firms act on a particular routine that 

determines their competitive performance. Routines do not necessarily produce optimal 

results but are the best adaptations for dealing with uncertainty (Dosi & Nelson, 2010). In 

addition, firms with limited rationality make satisfactory choices at every moment; thus, 

they maintain their existing routine as long as it leads to satisfactory results. Routines are 

accumulated based on a firm’s experience; therefore, it is a unique characteristic that other 

firms cannot imitate and is the source of firm heterogeneity (Day, 1994; Dierickx & Cool, 

1989). 

Nelson and Winter (1982) emphasize that routines are fundamental components of 

organizational behavior and play an important role in shaping how organizations interact 

with their environments (Nelson & Winter, 1982). Since Nelson and Winter drew an 

analogy between routines and genes in biology, routines have been treated as the gene or 

genotype17 of a firm from an evolutionary perspective. (e.g., Hodgson, 2003; Hodgson & 

Knudsen, 2004; Nelson & Winter, 1982; Winter, 1995). Genes and genotypes in biology 

are genetic information, and a set of them can control the development and behavior of an 

 
17 A gene is the basic unit of heredity, which in biology means a section of deoxyribonucleic acid (DNA). Each 

gene exists in a specific location on a chromosome, a thread-like structure made up of DNA, and is arranged 

along the chromosome. A genotype is the genetic composition of an individual, representing a specific 

combination of genes. Genotype is responsible for various traits and characteristics of an individual and 

determines an its genetic potential. 
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entity and can be passed on to the next generation. They indicate how different or unique 

an individual is from others within the same species and determine its outward 

characteristics (Griffiths et al., 2002). Organizational routines, such as the genes/genotypes 

of firms, also determine (i) how different or unique a particular firm is from other firms in 

the same sector and (ii) behavior, which is an extroverted characteristic of firms. 

 

2.2.3.2 Routines as Recurrent Behavioral Patterns of Firm 

Specifically, (i) routines are inherent and static characteristics of firms (Day, 1994; 

Dierickx & Cool, 1989). One unanimously agreed upon point in the routine literature is 

that nothing becomes routine without recurring occurrences (Becker, 2005b). Recurrence 

is a hallmark of routines (Becker, 2004; Cohen et al., 1996). According to the Cambridge 

dictionary, recurrent means “happening again many times,” that is, something in the t-1 

period also exists or occurs in periods t and t+1. During biological evolution, the replication 

and inheritance mechanisms of genes arising from genotypes correspond to the recurrent 

characteristics of the routine (Johannsen, 1911; Lewontin, 1974). Consequently, routines 

stabilize organizations over time. In other words, the difference between the behaviors of 

periods t-1, t, and t +1 decrease (Cohen & Bacdayan, 1994; Feldman & Pentland, 2003; 

Nelson & Winter, 1982). On the other hand, even if external conditions change, the stability 

of routines and behaviors are maintained; thus, routines sometimes act as a resistance to 

change (Howard-Grenville, 2005; Kilduff, 1992; Nelson & Winter, 1982). Therefore, the 

endogenous stability or statics of routines contributes to a firm’s tendency to make 
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satisfactory choices. Firms adhere to their current routines as long as they are satisfied, 

even if the results are not optimal (Geels, 2014). 

Paradoxically, firms adapt by changing their routines according to external environment 

dynamics. Firms that succeed in changing their routines are selected by the market as 

innovative. Routines change endogenously through feedback on outcomes based on past 

routines (Becker et al., 2006; Nelson & Winter, 1982; Winter & Szulanski, 2000), and the 

path of change in routines generated by such processes (Garud et al., 2010; Rerup & 

Feldman, 2011) explains organizational and economic changes (Adler et al., 1999; Feldman, 

2000; Miner, 1991). Endogenous changes in routines that correspond to mutations in 

evolution occur gradually over long periods of time (Cohen et al., 1996; Levitt & March, 

1988). Radical changes are avoided in evolution because mutations above a certain level 

cause dissonance in adaptation to the existing environment, which is unfavorable for 

survival or does not leave offspring (Bowonder et al., 2010; Kardong, 2005). 

Consequently, routines are formed by history in a path-dependent manner (Dosi et al., 

1992; Malerba & Orsenigo, 1996; Nelson & Winter, 1982) as the basis for endogenous 

stability and change in firms for environmental adaptation (Parmigiani & Howard-

Grenville, 2011). Therefore, routine reflects a firm’s past empirical wisdom (Gavetti & 

Levinthal, 2004), which makes it a unique characteristic that other firms cannot imitate 

(Day, 1994; Dierickx & Cool, 1989). 

On the other hand, (ii) routine is a determinant of firm behavior (Hodgson, 2003; Nelson 

& Winter, 1982). In other words, routines interact with environmental factors to determine 
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firm behavior (Becker, 2005a, 2005b; Hodgson, 2003; Nelson & Winter, 1982)18. Firms 

act based on a specific routine in response to a given environmental situation at every 

moment. It seems that a firm’s behavior is induced by the environment, but it is routine, as 

the gene or genotype of a firm that fundamentally determines the behavior. Felin and Foss 

(2011) asserted the endogenous generation of abilities and behaviors and emphasized the 

role of routines by citing the “pet bee” hypothesis of Chomsky (2002)19. Routines are the 

generating principle of regular conditional mechanisms and the source of firms’ repetitive 

behavior (Hodgson, 2003). Routines include forms, rules, procedures, customs, strategies, 

and techniques underlying the composition and operation of an organization (Levitt & 

March, 1988), and allow the organization to act repeatedly in response to external 

environments under any learned context (Cohen et al., 1996). Previous studies have 

considered routine as organizational memory (Nelson & Winter, 1982), capability (Cohen 

et al., 1996), heuristic (Becker, 2005b), potential, or disposition (Hodgson, 2003; Knudsen, 

2002), and have pointed out routines as the determinants of behaviors.   

 
18 This is a biological analogy, similar to how routine as a gene or genotype develops the firm’s behavior as a 

phenotype. The relationship between genotype and phenotype in biology is a topic of ongoing discussion, and 

recent studies recognize that the genotype interacts with various environmental factors during development to 

generate a phenotype as the most realistic model (Wagner & Altenberg, 1996; Pigliucci, 2001). The reason for 

differences in appearance and behavior with same genotypes, such as identical twins, is that genotypes 

interact with external conditions to develop phenotypes. Similarly, even though phenotypes are alike, such as 

foxes and wolves, their genotypes are not necessarily the same because this is the result of the action of 

external variables (Griffiths et al., 1999). However, it is the genotype that fundamentally determines the 

phenotype of an individual. For example, no matter what environmental conditions are given, a cat or a dog 

cannot be born from a human genotype. 
19 Chomsky's (2002) “pet bee” hypothesis: Assume a “pet bee” that always exists in the child's imagination. 

Child and bee are exposed to the same environment and stimuli. However, despite uniform environmental 

stimuli, child and bee derive fundamentally different outcomes of behavior (Weiner & Palermo, 1974). The 

child will not develop the bee's navigational ability and the bee will not develop the language ability. No 

matter how external environmental conditions are reinforced, it will not help bees learn to speak, and a child's 

ability to navigate will not be comparable to bees (Felin & Foss, 2011) 
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Figure 2-1 shows the two characteristics of the routine derived from the literature 

review as mathematical concepts. In summary, routines are (i) inherent and static 

characteristics of a firm, and (ii) determine its behavior. 

  

 

Figure 2-1. Conceptual diagram of organizational routines 

 

In summary, organizational routines are formed cumulatively and path-dependently 

based on the results of past firm behavior. They serve to ensure continuity and stability of 

the firm through the repeated patterns of behavior (Becker, 2004). On the other hand, they 

are also responsible for adapting to the constant changes in the external environment and 

making gradual improvements, opening up the possibility of new behaviors when faced 

with unsatisfactory market results. In addition, organizational routines serve to generate 

ongoing heterogeneity and dynamism in the economy (Dosi, 2000). Because firms follow 

their own distinctive routines, the outcomes are different. Therefore, even if they are 
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performing the same technology in the same industry, the dynamics of technological 

diversity will be different depending on which routine the firm developed the technology 

with. 

In the following section, the evolutionary phylogenetic approach is introduced. This 

methodology is used in this study to examine the dynamics of technological diversity in 

technology exploration and organizational routines in space and time. 

 

2.3 Approaches for Technological Trajectories 

2.3.1 Technological Trajectory 

2.3.1.1 Concept of Technological Paradigm and Trajectory 

A technology is in fact a set of specific knowledge, objects, practices, and experiences, 

and this set of knowledge forms a technological paradigm. The concept of a technological 

paradigm as presented by Dosi (1982, 1988) is derived from Kuhn’s paradigm theory 

(1962). It is defined as “a model and a pattern of solution of selected technological 

problems, based on selected principles derived from natural sciences and on selected 

material technologies” (Dosi 1982: 152, emphasis in original). In other words, it is a 

common outlook for solving technological problems in a particular period or era (Dosi, 

1982; Constant, 1980), and can be defined as a set of the most likely ideas, technologies, 

devices, materials needed to increase economic production through technological 

innovation at that time or in the future for a certain industry at a certain point in time (Dosi 

& Nelson, 2010). Technological paradigms have a design concept as a solution to a problem, 



46 

 

so products that reflect the paradigm of the time will have a similar look and performance. 

Technological development is a cumulative process that builds on previous 

technological advances based on technological paradigm (Sahal, 1985; Tellis & Crawford, 

1981). The paradigm-limited scope of exploration and knowledge sharing within a 

technological ecosystem, and the resulting adherence to a particular paradigm, give rise to 

certain tendencies in technological development and form a technological trajectory 

(Castaldi et al., 2009; Dosi & Nelson, 2010). The technological trajectory, proposed by 

Dosi (1982; 1988) along with technological paradigms, is a set of possible technological 

directions prescribed by a particular paradigm, and defined as a path or pattern of 

technological development and change over time. It also implies a sense of direction, such 

as a feedback loop, generating feedback and learning through the implementation and use 

of existing technologies (Dosi, 1982; Carlsson & Stankiewicz, 1991; Castaldi et al., 2009). 

While technology trajectories serve to reduce future uncertainty, they cannot eliminate 

inherent Knightian uncertainty20  (Dosi & Nelson, 2010). Technological paradigms and 

trajectories are not static, but rather change over time. As paradigms shift, so do 

technological trajectories. 

Within a technological paradigm, multiple trajectories are possible. Not all trajectories 

generate industrial success, but innovators must choose a particular trajectory. 

 
20 Knightian uncertainty, also known as true uncertainty, is a concept first introduced by Frank H. Knight in 

“Risk, Uncertainty, and Profit (1921)”. In traditional decision theory, risk is a measurable risk in situations 

where probabilities can be assigned to possible outcomes. However, Knight argued that there are uncertain 

situations where probabilities cannot be assigned or calculated due to the lack of reliable data or the presence 

of unpredictable events. These uncertainties occur in complex and dynamic environments, where deep 

uncertainty and ambiguity make it difficult or impossible to estimate the probability of potential outcomes. 
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Technological trajectories provide a theoretical foundation for deriving technological 

characteristics to understand the basis for differential patterns of competition and R&D 

activity across industries. 

 

2.3.1.2 Methodology for Technological Trajectory 

Scholars have attempted to analyze the patterns of technological development through 

the derivation of technological trajectories based on quantitative and scientific 

methodologies. This section presents two commonly used methodologies, the principal 

component analysis (PCA) and patent network analysis. 

First, PCA was used in Savtotti and Trickett’s (1992), the first study to construct an 

evolutionary trajectory quantitatively and empirically. They examined the evolution of a 

helicopter technology that flourished in 1940 and was largely eliminated and replaced by 

other technologies by 1984. In this study, the evolutionary trajectory of the helicopter was 

visualized by performing PCA on the six technical characteristics, reducing them to two 

dimensions and plotting them on a plane.  

This methodology has also been applied to tanks by subsequent researchers (Castaldi et 

al., 2009; Kim et al., 2021). Castaldi et al. (2009) studied the development of tank 

technology between 1915 and 1945 and found that tank designs from different countries 

exhibited a high degree of redundancy and similarity along a common technological 

trajectory. In addition, Kim et al. (2021) derived the dominant design of tanks based on 

product evolution theory and argued that the interaction between scientific, technological, 
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and social factors drives product evolution. 

The PCA methodology can simplify complex datasets and highlight the most important 

patterns and changes by reducing high-dimensional data to a smaller number of principal 

components. It also has the advantage of being an unsupervised approach, requiring no 

prior knowledge or labels, and being easy to explore and visualize data in a low-

dimensional space (Jolliffe & Cadima, 2016; Vidal et al., 2016). 

On the other hand, this methodology has the limitation of assuming a linear relationship 

between variables and treating all principal components equally in their contribution to the 

variance. It also does not explicitly consider the temporal dimension. Technological 

progress involves complex and non-linear relationships, and some components may be 

more important than others. Furthermore, ignoring time dependencies can overlook 

important patterns, trends, or transitions that occur over time in a technological trajectory. 

Lastly, the possibility that some information from the original dataset may be lost in the 

process of dimensionality reduction of the variables, thus weakening the explanatory power, 

is also a shortcoming of the PCA methodology. 

The second method utilizes patent citation information or patent codes, like cooperative 

patent classification (CPC) and international patent classification (IPC), based on network 

analysis methodology to identify technology trajectories. The patent network model derives 

technological trajectories by building a network with patents or patent codes representing 

technologies as nodes and citation relationships or similarity between them as links (Li et 

al., 2017; Song et al., 2019). Verspagen (2007) empirically analyzed fuel cells by adding 
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main path analysis to patent citation networks and found that technological trajectories are 

formed selectively and cumulatively. Fontana et al. (2009) traced the technological 

trajectory of the LAN device industry through a patent citation-based weighted network 

using the citations of patents as weights. Their approach is advantageous in identifying 

high-potential patents that are likely to exist in strategic positions along the technological 

trajectory but are currently under-cited. Erdi et al. (2013) attempted to predict emerging 

technologies by utilizing a hierarchy analysis on the network represented by a vector of 

fields cited by each patent. However, hierarchy analysis does not assume a point-in-time 

analysis, so it is difficult to say whether the technology trajectory is derived. 

On the other hand, Song et al. (2019) built a patent network using technology codes 

rather than patent citations. They analyzed the evolution of hybrid electric vehicle 

technology by building a technology space map with CPC codes of patents as nodes and 

similarity between CPC codes as links. This study is unique in that it identifies the process 

by which engineers in one domain find new solutions to problems and expand their scope 

to additional technologies beyond their original domain, but it is limited by the dependence 

of its findings on the segmentation of the technological code.The main advantage of the 

patent network methodology is that it allows for longitudinal analysis. With patent 

information accumulated over a long period of time, technological trajectories can be 

studied over time. In addition, patent data contain a wealth of information such as title, 

abstract, and applicant, making it easy to draw contextual implications (Borgatti et al., 2009; 

Verspagen, 2007; Yoon & Park, 2004). However, not all inventions and innovations are 
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represented by patents, and there are often significant time lags in the filing, granting, and 

citing of patent data. Furthermore, for patent citations, it has a critical assumption that they 

express meaningful connections between technologies and are indicative of patent 

influence or prior art. All of these limitations can lead to biased representations of 

technological trajectories based on patent network analysis (Borgatti et al., 2009; Song et 

al., 2019). 

 

2.3.2 Evolutionary Phylogenetic Methodology 

Recently, several studies on technological trajectories have attempted to overcome the 

limitations by applying an evolutionary phylogenetic approach to better capture and 

represent the complexity, non-linearity, and time dependencies inherent in technological 

trajectories (Chavalarias & Cointet; J.-D. Lee et al., 2022; Li et al., 2017; Zhang, Zhang, et 

al., 2017). The evolutionary phylogenetic tree in biology is a network that consists of taxa 

with genetic homogeneity as nodes, and evolutionary relationships between taxa as links 

(Huson & Bryant, 2006; Santamaría & Therón, 2009). Evolution corresponds to navigation 

or movement in evolutionary space, an abstract space created by genetic factors. Thus, 

biologists build evolutionary phylogenies to identify the lineages from which organisms 

evolved and to explore patterns in the evolutionary process. Similarly, in the study of 

technological innovation, the construction of evolutionary phylogenetic tree in technology 

can be used to derive the trajectory of a technology’s evolution (Carignani et al., 2019; 

Cattani & Mastrogiorgio, 2021). This illustrates the dynamic changes in the technology 
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taxa. There are two ways to construct an evolutionary phylogenetic tree in technology. The 

first is to define a single entity as a node in the phylogeny. Examples from the literature 

include mobile products (Khanafiah & Situngkir, 2006), jet engine components (Carignani 

et al., 2019), and brass instruments (Ilya Tëmkin & Niles Eldredge, 2007). In the second, a 

group called a taxon is derived based on similarity and homogeneity and defined it as nodes. 

Chavalarias and Cointet (2013) constructed the phylogenetic tree for a set of keywords in 

research articles, and J.-D. Lee et al. (2022) for a set of mobile products. This study takes 

the latter approach to observe the collective evolutionary flow of technologies and to grasp 

the diversity dynamics of technology through it.    

 

 

Figure 2-2. Algorithm flow diagram for an evolutionary phylogenetic Tree 

 

The process of constructing a phylogenetic tree from homogeneous taxa is shown in 

Figure 2-2. First, derive the population of products, research articles, patents, technological 

keywords, etc. that exist at a specific time (Li et al., 2017; Wu et al., 2021; Zhang, Zhang, 

et al., 2017). Then define them as technological taxa based on their technological 
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homogeneity (Lee et al., 2022). After by matching and linking ancestor-descendant 

relationships between technology taxa, the construction of evolutionary phylogenetic tree 

in technology is completed (Chavalarias & Cointet, 2013; Lee et al., 2022). Chavalarias 

and Cointet (2013) extracted technological terms from the abstract in research articles by 

the natural language processing technique, and derived groups of technological terms that 

existed at each period by the Clique methodology. And then the evolutionary process of 

technology was observed by connecting the ancestor-descendant relationship between them. 

J.-D. Lee et al. (2022) drew an evolutionary phylogenetic tree for mobile products by 

identifying taxa with technological homogeneity for each year and deriving ancestral 

relationship between them. Based on the constructed phylogenetic tree, they examined 

differentiation and development of smartphones, as a new mobile product group, in the 

early and mid-2000s. 

The methodology for constructing a technological evolutionary phylogenetic tree is a 

type of network methodology. However, the second approach of evolutionary phylogenetic 

methodology differs in that it derives technology populations, i.e., taxa, based on 

technology genes, and uses them as the basic unit to construct technology evolutionary 

trajectories. PCA and patent networks analyze individual products, patents, and technology 

codes, which means that existing studies use explicit populations as the unit for observing 

technological change. 

Evolutionary phylogenetic analyses that derive clusters of accumulating variation based 

on the homogeneity of technological genes and build trajectories based on them are likely 
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to observe the sprouting of new innovations. As a concrete example, Apple’s portable media 

player, the iPod, has been discontinued, but it’s technologies of portable music playback, 

user interface and navigation, iTunes integration, sound quality, etc. have been transferred 

to the iPhone. Using an explicit technological group, each model of iPod in this case, for 

the unit of analysis, it is difficult to observe the flow of technology and the convergence of 

technologies that resulted in the new device, the iPhone. 

In addition, it has the advantage of providing an in-depth explanation of the 

phenomenon of technological development based on the similarity between evolutionary 

processes in technology and biology (Carignani et al., 2019; Cattani & Mastrogiorgio, 

2021). Technological progress and biological evolution share commonalities (Basalla, 

1988), and evolutionary stylized facts observed in biology are also found in technological 

innovation (Wagner & Rosen, 2014)21. To better understand the complex and uncertain 

behavior of technological progress, the framework of biological evolution can be used. 

Furthermore, drawing technological trajectories through evolutionary phylogenetic 

methodology has the following advantages (Carignani et al., 2019; Cattani & 

Mastrogiorgio, 2021; Chavalarias & Cointet, 2013; J. -D. Lee et al., 2022; Santamaría & 

Therón, 2009). 

First, an evolutionary phylogenetic approach considers the historical context of 

technological development. This can reveal the driving forces and actual events that shaped 

 
21 Based on universal Darwinism, Wagner and Rosen (2014) proposed the following nine stylized facts that 

biological evolution and technological innovation share: Trial and error within population, extinction and 

replacement, descent with modification, horizontal information transfer, combinatorial innovation, exaptation, 

ecosystem engineering, episodic change, and multiple and singletons. 
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the technological trajectory. It also allows us to understand the cumulative nature of 

technological progress and the flow of innovation by identifying ancestral technologies to 

current and analyzing common features or functions among different technologies. 

Second, based on evolutionary theory, phylogenetic methodology facilitates the 

classification of technologies based on evolutionary relationships, analogous to biological 

taxonomy. This can help organize and structure the technology landscape and identify 

clusters or groups of related technologies. It also enables comparative analysis between 

different technologies or technology domains. In addition, by identifying who the direct 

and neighboring ancestors of currently existing technologies are, patterns of innovation can 

be verified, such as whether current technological advances are driven by deepening 

existing technologies or by recombination with other technologies (Carignani et al., 2019; 

Youngblood et al., 2021). 

Third, it is possible to predict potential directions for future technological trajectories 

based on the past. This is because technologies evolve in a path-dependent manner. 

Analyzing speciation patterns can infer the direction of evolutionary change in different 

trajectories, and detecting convergent evolution provides possibility to predict which 

lineages will dominate in the next generation (Huson & Bryant, 2006; Santamaría & Therón, 

2009). Furthermore, by observing the formation of new lineages in technological 

phylogenetic tree, it is possible to figure out the divergence of new technologies (J.-D. Lee 

et al., 2022; Levinthal, 1998). Therefore, the evolutionary patterns of technologies observed 

in the phylogenetic tree can be used to draw implications for future developments.  
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Lastly, an evolutionary phylogenetic tree is a powerful tool for visually representing the 

evolutionary patterns of technologies and the evolutionary relationships between them. By 

illustrating patterns such as connections and branches between technologies, it is possible 

to identify important technological transitions, understand interdependencies between 

technologies, and effectively articulate the complex processes of technological evolution. 

There are also unresolved limitations to the phylogenetic tree methodology. Especially, 

subjectivity in the interpretation of evolutionary phylogenetic tree is a major concern. It is 

important to have transparent and objective criteria to mitigate bias when defining traits or 

features for building evolutionary relationships, or when interpreting evolutionary patterns 

and relationships that can be very complex. 

 

2.4 The Conceptual Framework of Diversity Dynamics in 

Technology 

How is technological diversity, as an indicator of innovation, generated and changed? 

Prior research tends to locate the principles of diversity dynamics in easily observable 

external environmental factors (Adner & Levinthal, 2001; Anderson & Tushman, 1990; 

Grodal et al., 2015; Suarez et al., 2015). However, the endogenous mechanisms that create 

and change diversity must be distinguished from the change process itself, which is driven 

by external factors (Endler, 1992; Fisher, 1930). In biological evolution, the internal factors 

of an organism play an important role as the engine of evolution (Wuketits, 1987). The 

processes of variation and retention that lead to genetic diversity dynamics occur 
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independently of the adaptation and survival of individuals to their environment. 

Technology evolve and develops by recombination through different paths of search. 

This process is driven by the decisions of heterogeneous actors. As a result of the 

recombination of technologies and the decision-making of actors, the diversity of 

technologies varies by increasing, stagnating, or decreasing (Carignani et al., 2019; Gao et 

al., 2013; Lin et al., 2021; Song et al., 2019). This study focuses on technological search 

and organizational routines of firms as internal factors for technological diversity dynamics. 

Furthermore, the impact of these internal factors on technological diversity dynamics is 

examined in the space of technological evolution, not as a whole, but for specific 

technological trajectories. 

Technologies innovate by deepening existing technologies or by combining them with 

other technologies. Therefore, the search patterns for technological innovation can be 

classified into three categories: ⅰ) deepening existing technologies, ⅱ) combining related 

technologies, or ⅲ) new technologies without relevance before. More specifically, if there 

is a dominant design for a technology in an industry, the technology seeks incremental 

innovation based on the dominant design (Lin et al., 2021). In this case, innovation can be 

considered as a deepening of existing technologies (Anderson & Tushman, 1990; Suarez et 

al., 2015). On the other hand, when a dominant design has not emerged, or a next dominant 

design needs to be identified, technological competitions for dominance occurs (Anderson 

& Tushman, 1990; Suarez et al., 2015). New dominant designs are created by 

differentiating technologies from existing ones, introducing novel technological not 
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previously present, or finding unique combinations of related technologies (Carignani et 

al., 2019; Suarez et al., 2015; Wagner & Rosen, 2014). 

Meanwhile, unlike biological evolution, the evolution of technology has actors that 

directly generate diversity. Among these actors, this study examines the dynamics of 

diversity generated by firms, which are the intermediaries between technology and markets. 

Firms are heterogeneous (Hoopers & Madsen, 2008; Rumelt et al., 1994), and such 

heterogeneity causes firms to react and behave differently even in the same situations and 

conditions (Becker & Knudsen, 2017; Kirman, 1992). In evolutionary economics, firms are 

understood by organizational routines (e.g., Dosi et al., 2001; Feldman & Pentland, 2003; 

Winter, 1988). Routines are the inherent characteristics of a firm based on experience and 

are the origin of firm heterogeneity (Day, 1994; Dierickx & Cool, 1989). Firms engage in 

satisfying choice based on their unique routines (Nelson & Winter, 1982) and make 

decisions on different technological strategies and behaviors, which affect technological 

diversity. 

In summary, technological search is a driver of diversity, directly generating and 

varying the diversity. Meanwhile, the patterns of technological search are the result of 

strategic decisions made by actors about which technologies to develop and how to develop 

them according to organizational routines. Therefore, organizational routines are micro-

criteria for diversity dynamics in technology.  
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Figure 2-3. Conceptual framework of diversity dynamics in technology 

 

Figure 2-3 is a mathematical representation of the technology diversity dynamics 

driven by technology search and organizational routines. Diversity dynamics are causally 

related to technological search and organizational routines. Through this conceptual 

framework, this study aims to understand the diversity dynamics of technology from the 

perspective of evolutionary economics. In addition, the proposed conceptual framework of 

diversity dynamics is examined in the evolutionary space of technology through an 

evolutionary phylogenetic approach.  

Based on the theoretical background and methodological discussion in the literature 

review, this study takes the photovoltaic technology as the subject of empirical analysis. 

The following chapters provide an overview of photovoltaic technologies and background 

on the market and industry environments that influence technological diversity. 

  



59 

 

Chapter 3. Industry Review 

3.1 Rationale for Case Selection: Challenges Facing the 

Photovoltaics 

Reducing carbon emissions is essential for sustainable development. In particular, to 

limit global warming to 2°C or less, we need to approach net-zero before 2050. 

Photovoltaic technology is a mature technology that plays a key role in the global 

economy’s transition to sustainability (Chowdhury et al., 2020; Paiano, 2015). There is 

general agreement that photovoltaic power capacity in the range of tens of terawatts (TW) 

is required to achieve sustainable development and “net zero 2050” (IEA, 2014, 2019, 2021; 

IRENA, 2019), and that the annual production of photovoltaic power should reach the 

terawatt scale in the future (Verlinden, 2020; Victoria et al., 2021). According to statistics 

from the International Renewable Energy Agency (IRENA), global installed capacity of 

photovoltaic power has increased more than 1,000-fold in the past two decades22. However, 

despite this growth, global photovoltaic power capacity remains at 848 gigawatts (GW) in 

2021, with 132 GW newly added. Therefore, securing annual terawatt-scale production 

remains a challenging goal for photovoltaic technology.  

The International Energy Agency (IEA) states that most of the carbon reduction aimed 

for by 2030 will come from technologies already on the market. However, by 2050, it will 

come from technologies that are currently in the demonstration or prototyping phase. As 

 
22 The global photovoltaic power capacity increases from approximately 809 megawatts (MW) in 2000 to 

848,405 MW (848 GW) in 2021 (IRENA Renewable Energy Statistics database) 
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such, they emphasize that major innovation efforts must be made during this decade to 

bring these technologies to the market on time (IEA, 2021). Generally, as technology 

advances in stages, the previous generation of technology becomes obsolete. In the case of 

photovoltaic technology, however, materials, devices, and methods first developed decades 

ago are still in use today. Photovoltaic technologies are divided into generations based on 

market maturity, but in recent years, the convergence between them has led to advances in 

technology that make generational distinctions irrelevant. The situation implies that there 

is still plenty of room for innovation in photovoltaic technology and a wide range of options 

available.  

To answer specific strategies and directions for technological innovation, it is necessary 

to assess the current position and situation in the dynamic development of the technology. 

This raises the following realistic questions about photovoltaic technology. Therefore, the 

following questions arise. What stage of development is photovoltaic technology currently 

in? How can the photovoltaic technologies existing in the market and laboratory be 

innovated? 

This study explores solutions to these questions by empirically analyzing photovoltaic 

technology on the framework of endogenous dynamics in technological diversity. 

Technological diversity enhances existing technologies and boosts innovations by 

emerging totally different technologies (Anderson & Tushman, 1990; Carignani et al., 2019; 

Suarez et al., 2015). Accordingly, it is necessary to make efforts to improve technological 

diversity to achieve sustainable growth (Lin et al., 2021). 
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More specifically, an evolutionary phylogenetic tree is used to understand the 

evolutionary process of photovoltaic technology and verify the status of technological 

diversity. in addition, by deriving the principle for increasing technological diversity, the 

study suggests future directions for photovoltaic technology.  

 

3.2 Introduction of Photovoltaic Technology 

Photovoltaic power generation is the direct conversion of energy from solar light into 

electrical power. The basic unit is a photovoltaic cell (the same word as solar cell), which 

is a photoelectric conversion device, and the assembly of photovoltaic cells connected 

electrically is called a photovoltaic module. The electrical connection of photovoltaic 

modules and other components is called a photovoltaic power generation system (Chawla 

et al., 2020). The industry consists of the value chain related to photovoltaics, which is 

divided into three general parts: upstream, core, and downstream (Binz et al., 2017; Zhang 

& Gallagher, 2016). Upstream is the materials industry, which produces polysilicon, ingots, 

and wafers in the case of crystalline silicon photovoltaic cells. Photovoltaic cells and 

modules are produced in the core sector, and finally, the downstream sector installs and 

services systems by connecting them to power devices such as inverters. This study limits 

the scope of technology analysis to the core sector, focusing on photovoltaic cells and 

modules. 

The fundamental operating principle of photovoltaic power generation is the 

photoelectric effect, which converts light into electricity through the p-n (or p-i-n) 
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semiconducting junction of a photovoltaic cell. When light is irradiated, electrons and holes 

are created inside the device, and the generated charges are transferred to the n-type and p-

type semiconductors, respectively, resulting in a potential difference, that is photovoltaic 

power. Therefore, conversion efficiency, which is how much light can be turned into 

electricity, is a performance indicator of photovoltaic technology, which generally refers to 

the progress of photovoltaic cell technology. It is also directly linked to the unit cost of 

production, with a 1% increase in the conversion efficiency of a photovoltaic cell resulting 

in a 5-7% decrease in total cost per Watt (IEA, 2014). 

 

Table 3-1. Photovoltaic technology classification 

Generation Market Maturity Technology Detailed technology 

First 
Fully 

commercial 

Crystalline  

silicon 

Mono-crystalline silicon photovoltaic cells 

Multi-crystalline silicon photovoltaic cells 

Ribbon or sheet type crystalline silicon 

photovoltaic cells 

Second 

Deployed on 

a commercial 

scale, 

but low volume 

Thin film 

compound 

Amorphous silicon thin film photovoltaic 

cells 

CdTe thin film photovoltaic cells 

Coppor-Indium-Selenide (CIS) or  

CIGS photovoltaic cells 

 Third 
Under 

demonstration 
Emerging 

Organic photovoltaic cells 

Dye-sensitized photovoltaic cells (DSSC) 

Perovskite photovoltaic cells 

Quantum dot photovoltaic cells 

Etc.  

 



63 

 

Photovoltaic cell technology is broadly classified by semiconducting material into 

crystalline silicon photovoltaic cells, compound thin-film photovoltaic cells, and emerging 

photovoltaic cells that utilize new materials such as organic or dye-sensitized materials. 

Photovoltaic technology is generally classified into first-, second-, and third-generations, 

depending on semiconducting materials and market maturity. Table 3-1 shows the 

classification of photovoltaic technologies by generation (EPIA, 2014; Lacerda & Van Den 

Bergh, 2016; Taylor et al., 2016). 

First-generation photovoltaic cells currently account for more than 90% of the market. 

Since the 1950s, the photoconversion efficiency of crystalline silicon photovoltaic cells has 

steadily increased, reaching lab-scaled efficiencies of 26-27%. First-generation technology 

has many benefits, including years of accumulated technological know-how and durability 

for a lifetime of more than 25 years. However, the physical properties of silicon materials 

limit the improvement of conversion efficiency, and the amount of silicon used accounts 

for a high proportion of the production cost. 

Second-generation photovoltaic cells are based on the deposition technology of a light-

absorbing layer with several micro-meters (μm) thick on a glass, metal, or plastic substrate. 

Materials used for the light-absorbing layer include amorphous silicon, cadmium telluride 

(CdTe), copper-indium-gallium-diselenide (CIGS) and so on. Second-generation 

photovoltaic cells emerged as an alternative to first-generation photovoltaic cells due to 

substrate freedom and lower material usage. However, as the price of polysilicon has 

stabilized, the advantage of production cost has disappeared, and the competitiveness has 
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deteriorated significantly due to difficulties in large area through uniform deposition. 

Recently, to improve the low light conversion efficiency, structural changes have been 

attempted by stacking thin films such as tandem and triple layers. 

Third-generation photovoltaic cells are the so-called next-generation photovoltaic cell 

technology, which is based on new materials, processes, and structures, ranging from dye-

sensitized photovoltaic cells that use the principle of photosynthesis to perovskite 

photovoltaic cells23 that have recently attracted attention. They are derived from attempts 

to improve the economics, applicability, and availability of raw materials of first- and 

second-generation photovoltaic cells. While most of these technologies are still in 

laboratory and require a long time to be commercialized, perovskite photovoltaic cells are 

attempting to enter the market by integrating with conventional photovoltaic cells. 

Figure 3-1 represents the technology trajectory of photovoltaics with the highest 

efficiency of laboratory-scaled photovoltaic cells as reported to the National Renewable 

Energy Laboratory (NREL), part of the U.S. Department of Energy24. There are a total of 

347 records for terrestrial photovoltaic cells (excluding groups 3-5 and concentrating types) 

compiled from 1976 to 2020 (NREL, 2022). The number of records for the highest 

efficiency is on rise, indicating that photovoltaic technology has been continuously 

 
23 Perovskite is the name given to the crystalline structure, which has a chemical composition of ABO3 with 

two cations and one anion in a ratio of 1:1:3. Perovskite, which is used as a light-absorbing layer in solar 

cells, has a crystal structure of AMX3, which is mainly a mixture of organic and inorganic materials. A is an 

organic cation such as methylammonium or formamidine, M is a metal cation such as lead (Pb), and X is a 

halogen anion such as iodide (I-) or bromide (Br-). 
24 Dosi (1982, 1988) described the process of technological innovation through the concepts of trajectories 

and paradigms. Trajectories are mappings of the dynamics of a technology, and previous studies have 

diagrammed technological trajectories by linking products with the highest technology level with a line 

(Christensen and Bower, 1996; Schaller, 1997). 
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advancing in quantity. In addition, it was composed of first-generation (blue) and second-

generation (red) technology groups before the 1990s. However, third-generation 

technologies (gray and green) are gradually added and their proportion increases. From the 

Figure 3-1, it is intuitively clear that the pace of development of photovoltaic technology 

has accelerated over time, and various technologies have been developed. 

 

 

Figure 3-1. Number of lab-scale best photovoltaic efficiency records  

(Author’s reproduction based on NREL (2022)) 

 

As described so far, photovoltaic technologies are categorized into three groups based 

on the market maturity. However, recent trends show a convergence and mutual 

development without distinction of technologies. Therefore, a specific strategy for their 

future development based on scientific and quantitative evidence is needed for more 

efficient and effective technology development. This study approaches this need by 
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identifying detailed technology trajectories, diagnosing the current state of photovoltaic 

technology, and suggesting future directions. The following section provides a review of 

the external changes surrounding photovoltaic technology, that is the changing market and 

industry landscape.  

 

3.3 Environmental Changes for Photovoltaic Technology 

Once a niche industry for powering remote locations such as space satellites, the 

photovoltaic industry has developed rapidly as awareness of the environmental impact and 

economic volatility of fossil fuel reliance increased (Bagnall & Boreland, 2008). 

Particularly, in the late 1990s, demand-pull policies, such as feed-in tariffs implemented in 

several countries, starting with Germany, Japan, and the United States, explosively 

expanded the photovoltaic market, which had remained for remote power generation, to 

the existing on-grid market (Mints, 2012). Consequently, the photovoltaic industry has 

grown rapidly since the 2000s, with an average annual growth rate of approximately 40% 

(Bagnall & Boreland, 2008). 

Such government-led industrial development has led to increased investment in 

research and development (R&D), resulting in increased technological diversity and 

innovation25. This is because the policy goal of most countries to foster the photovoltaic 

industry is not simply to reduce carbon emissions by supplying eco-friendly energy but also 

 
25 Various technological innovations have been generated, such as reducing the use of materials in wafers and 

electrodes of silicon solar cells, developing high-efficiency cell structures and technologies like selective 

emitter formation, or pointed rear contact, and applying new materials such as perovskite. As a result, the 

innovations have improved conversion efficiency and reduced manufacturing cost (Gan & Li, 2015; Green, 

2019; Green et al., 2014). 
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to induce innovation in new and renewable energy to lead the country’s economy. However, 

it is also pointed out that demand-pull policies and rushed market formation have led to the 

lock-in of photovoltaic technologies and hindered radical innovation through various 

technological advances (Che et al., 2022; J. Lee et al., 2022; Nemet, 2009; Schmidt et al., 

2016). The dynamics of a given external environment can either inspire innovation or create 

an imbalance, making it a “double-edged sword” for technology and innovation. 

The dynamics in the photovoltaic industry and market environment during the analysis 

period are summarized in Table 3-2 based in the literature review (Algieri et al., 2011; Gan 

& Li, 2015; Green, 2005, 2019a, 2019b; Hopkins & Li, 2016; Kapoor & Furr, 2015; Mints, 

2012; Wang, 2012). 
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Table 3-2. Brief description of environmental dynamics for photovoltaic technology 

 Year Changes in the market and industry 

1 

2000 

- 

2004 

Execution of demand-pull policies in Europe, led by Germany and Japan 

Rapid industrialization through government-led market creation 

Promote the production of crystalline silicon photovoltaic cells 

Rise of Al-BSF photovoltaic cells as a market dominant design 

Entry barriers lowered due to the spread of turn-key equipment  

2 

2004 

- 

2008 

European Feed-in-Tariff expands globally 

Market over-heated 

Polysilicon shortage and price surge ($30/kg → $400/kg) 

Commercialization of thin film photovoltaic cells 

3 

2008 

- 

2013 

Intensification of competition 

Aggressive scale expansion of Chinese firms (Share of global production 

capacity 1.1% (2000) → 28.4% (2008)) 

Demand contraction due to reduction and elimination of subsidies caused by 

global crisis 

Oversupply and a sharp drop in prices 

Both process and product innovation on crystalline silicon photovoltaic cells 

Industrial restructuring 

Trade dispute between western (EU, US) and China 

Introduction of perovskite as the material of photovoltaic cells 

4 

2013 

- 

Current 

Transition of market dominant design to PERC cell 

Rapid pace of technological innovation 

Expansion of innovation scope and active technology convergence 

Enhanced market competitiveness as a source of energy (2%/year 

improvement in conversion efficiency and over 15%/year reduction in 

manufacturing costs through 2010-2020) 
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Period 1 is when the industrialization of photovoltaics began in earnest. The main issue 

was the mass production of the standard technology which is the crystalline silicon 

photovoltaic cells developed in the 1960s and 1970s (Green et al., 2005; Kazmerski, 2006; 

Wand & Leuthold, 2011; Wilson et al., 2020). The aluminum back surface field (Al-BSF) 

photovoltaic cell, based on a P-type silicon wafer, was selected as the dominant design for 

the industry. As technologies converged, the turn-key equipment industry developed rapidly, 

easing technical barriers to entry. In addition, basic materials (e.g., Ethylene Vinyl Acetate) 

and structural technologies to improve the durability and reliability of photovoltaic 

modules were also rapidly applied in line with mass production. 

Meanwhile, in Period 2, the raw material instability caused by the polysilicon supply 

crisis of 2004 has led to several technological advancements through awareness of the 

material dependence of photovoltaic technology. During this period, wafer thickness was 

reduced from 300 μm to 180 μm to save the use of silicon materials, and ultra-thin 

photovoltaic cells such as applying 50 μm or less wafers were also developed (Green, 

2019a). On the other hand, as an alternative to crystalline silicon photovoltaic cells, second- 

and third-generation technologies actively developed, and particularly, it led to an increase 

in the market share of thin-film photovoltaics from 5.5% in 2004 to 11.4% in 2007 and 

13.4% in 2010 (Gan & Li, 2015; Kirkegaard et al., 2010; Price et al., 2010). 

Various technological developments prompted by the environmental crisis led to 

important patents that marked the history of photovoltaics. The first was the back contact 

solar cell (Richard M. Swanson, US 6664838), which moved all the electrodes on the front 
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to the back. This notable structured crystalline silicon photovoltaic cell succeeded in 

placing the metal contacts to the rear by controlling the contact resistance with the doping 

concentration and drew an improvement on light absorption. A patent (US 6953862) on a 

thin film photovoltaic cell manufacturing method using hydrogen plasma treatment filed 

by Sharp corporation increased the conversion efficiency of amorphous silicon thin film 

photovoltaic cells, and First Solar became the first company to achieve $1/watt in 2008 

based on a patent (US 7618236) on a manufacturing method for CdTe thin film photovoltaic 

cells filed in 2004. In addition, patents on flexible photovoltaic cell manufacturing process 

based on organic materials (Kaneka technology, US 6819163) and multi-junction 

photovoltaic cell patent (Spectrolab, US 6730118) have contributed to the development of 

emerging photovoltaic cells as an alternative to silicon-based photovoltaic cells. 

Period 3 marks the beginning of a period of intense competition and recession in the 

photovoltaic industry. The global crisis that began in the United States in 2008 dealt a heavy 

blow to the photovoltaic industry. As in each country in Europe, the world’s largest demand 

source, subsidies were greatly reduced, and the market shrank sharply. In addition, with the 

Chinese government’s strong financial support, Chinese firms, encouraged by the past 

photovoltaic boom, aggressively expanded their scale against the supply and demand 

situation in the market26. Ultimately, the photovoltaic industry faced an oversupply and 

falling prices. Uncompetitive firms were forced to exit, and the industry was reorganized 

through a shake-out. 

 
26 China emerged as the largest producer, accounting for 28.4 percent of global production in 2008, up from 

just 1.1 percent in 2000. 
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In this competitive situation, the first generation of photovoltaic technologies sought to 

replace the Al-BSF photovoltaic cells, which have become more common. Technologies 

were developed to commercialized photovoltaic cell structures implemented in the 

laboratory, such as Passivated emitter and real Contact (PERC) cells, Interdigitated Back 

Contact (IBC) cells, Silicon Hetero Junction (SHJ) cells (Khatibi et al., 2019). For this 

purpose, the existing p-type silicon substrates diversified to n-type wafers, and elemental 

technologies such as selective emitter formation, backside localized junction structure, and 

new electrode formation technology through plating or laser transfer developed for high 

efficiency (Green, 2019b). 

Moreover, to improve the physical limitations of materials and secure light absorption 

across the entire wavelength range, tandem photovoltaic cells widely studied. Researchers 

had various attempts to integrate first-generation photovoltaic cell technology with second- 

and third-generation one, such as using crystalline silicon photovoltaic cells as the bottom 

cell and thin films such as CIGS, or perovskite materials as the top cell (Green et al., 2014; 

Tonui et al., 2018). 

For third-generation technologies, investment weakened during the recession, and the 

scale of R&D was somewhat reduced. However, since the publication of a 3.8 percent 

photovoltaic cell with an organic-inorganic composite perovskite as the light-absorbing 

layer in 2009 (Kojima et al., 2009), the number of related studies increased rapidly. 

Furthermore, novel material technologies such as non-fullerene organic molecules, 

nanocrystals, and quantum dots applied to photovoltaic technology. Meanwhile, module 
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technology developed to expand applications, and innovative concepts such as colored, 

flexible, and stretchable introduced to develop niche markets outside of the existing 

residential and utility markets, such as wearable devices and car roofs (Sharma et al., 2015). 

In Period 4, photovoltaics leaps again. Throughout the recession, first-generation 

technologies continued to aggressively pursue product and process innovation. Silicon 

wafers became thinner to reduce material usage, while their size increased from 125mm in 

2010 to 166mm or 210mm to increase light absorption. PERC replaced Al-BSF 

photovoltaic cells to become the new dominant design in the market (Baliozian et al., 2020; 

Chawla et al., 2020; Wilson et al., 2020). From 2010 to 2020, the light conversion efficiency 

of silicon photovoltaic cells improved by 2% per year, while manufacturing costs decreased 

by more than 15% per year on average, making them market competitive (Wilson et al., 

2020). These advances in photovoltaic technology have enabled photovoltaics as an energy 

source to begin to compete with conventional fuels. Variations in photovoltaic cell structure, 

wafer thickness and size affect the design and assembly of photovoltaic modules and 

potentially module reliability. Hence, progress in photovoltaic cell technology has led to 

improvements in module technology. In addition, the emergence of TOPCon (Tunnel Oxide 

Passivated contact) photovoltaic cells triggered the development of bifacial modules, and 

the progress of module technology has been further accelerated as the lifecycle and 

recycling of photovoltaic modules has become an issue under the banner of sustainability 

(Frischknecht et al., 2015; Wang et al., 2022; Wilson et al., 2020). 

Up to this point, this study has been confirmed that photovoltaic technology has 
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developed in interaction with the external environment. Based on industry life cycle 

theory27, it is observed that the photovoltaic industry is currently somewhere along the path 

from maturity to either decline or renewal28. The maturity phase of the industry focuses on 

optimization and improvement of existing technologies based on dominant designs, and 

efficiency is maximized. This is followed by the decline phase, where technologies are 

standardized, firms consolidate, and innovation tends to slow down. However, when new 

technologies emerge to replace old ones, innovation is again spurred, and the stage may 

progress to a renewal phase (Markard, 2020). 

The photovoltaic industry has experienced dramatic growth over the past two decades, 

as well as dynamic conditions such as intense competition, cost pressures, and the global 

crisis. Along the way, lots of companies have entered and exited, and grid parity29 has been 

achieved through continuous product and process innovations. Whether the photovoltaic 

industry will enter a declining phase or a renewal phase, and whether photovoltaics will 

achieve the challenging goals on a sustainable energy system described above, depends on 

 
27 The model formalizes the dynamic pattern of firm entry and exit at the industry level (Abernathy & Utterback, 

1978). In the initial stage, existing firms in the industry enter the new market with simple designs (Klepper, 

1996), and many new firms, seeing a large market opportunity, enter, develop a variety of products, and drive 

the growth of the industry. A dominant design then emerges, production is standardized, the number of firms 

remains constant, and more firms exit than enter. Eventually, industry growth stagnates, unsuccessful firms 

leave the market, and the industry declines (Klepper, 1997; Klepper & Graddy, 1990; Klepper & Simons, 2005). 

The four stages of industry development are generally categorized as introduction, growth, maturity, and decline, 

but different scholars simplify or refine them further, with the disadvantage that the stage of industry 

development varies depending on the time period analyzed. Furthermore, while a large number of industries 

develop in a regular manner, there are also industries that deviate from the typical pattern, which is a limitation 

of the ILC theory. 
28 The industry life cycle is one of the major research areas and requires a separate study for accurate analysis. 

Therefore, the opinion of this study for photovoltaic industry has limitations because it is based on the 

comprehensive context provided by IRENA (2017, 2019) and IEA (2022). 
29  The level of cost that are competitive with the cost of producing electricity from conventional fossil 

generation. 
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further technological innovation. 

To find clues to specific innovation directions, this study aims to derive the endogenous 

mechanism of diversity dynamics in technology based on an understanding of 

technological evolution. As a first step, the following chapter examines the evolutionary 

phylogenetic tree of photovoltaic technology and the diversity dynamics in the evolutionary 

process. 

  



75 

 

Chapter 4. Diversity Dynamics through 

Evolutionary Phylogenetic Approach 

4.1 Quantitative Measure of Diversity on Technological 

Trajectory   

Technologies develop through detailed developmental trajectories formed by sub-

technologies (Dosi, 1982; Dosi & Nelson, 2010). Over time, technology trajectories may 

persist, diverge into new and distinct trajectories (Levinthal, 1998), or disappear (Tellis & 

Crawford, 1981). In doing so, trajectories create a technological space where technology 

evolves. However, previous studies have comprehensively analyzed technological diversity 

at the level of broad categories such as industry (Anderson & Tushman, 2018; Gao et al., 

2013; Lin et al., 2021; Utterback & Abernathy, 1975). Thus, the evolutionary space and 

detailed trajectories of technological diversity have been less discussed. It is possible to 

make the error of generalization when measuring technological diversity from an integrated 

perspective without considering the technological trajectories, as in the example of mobile 

industry presented in Section 2.3. 

This study identifies specific developmental trajectories of technologies from an 

evolutionary point of view and depicts the space they occupy in a evolutionary 

phylogenetic tree (J.-D. Lee et al., 2022). The evolutionary phylogenetic approach 

presented in this study is a novel and effective methodology that can explain the 

phenomenon of technological development by evolutionary analogy. Technology diversity 
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is measured quantitatively by considering detailed trajectories and utilizing information 

described in the phylogenetic tree.  

Diversity is essentially a property of all systems whose elements can be classified into 

categories (Leonard & Jones, 1989). The basic properties of ‘disparity’, ‘variety’, and 

‘balance’ combine to form diversity (Stirling, 1994). First, disparity is a fundamental 

characteristic for categorization by defining and classifying elements. Without disparity, 

that is, if all elements are the same, diversity itself cannot be defined. Therefore, disparity 

represents ‘how different the categories of the system are from each other’ (May, 1990). 

Meanwhile, variety is the number of categories into which a population can be divided, 

meaning ‘how many different kinds of categories exist’, and balance is the frequency 

distribution of each category, meaning ‘how much of each kind of category is present’. 

Ceteris paribus, the greater the disparity, the more variety, or the more even the balance, 

the greater the diversity.  

Scholars who understand the important role of diversity in technological innovation 

quantitatively measure numerical changes in patents (Gao et al., 2013), firms (Cohendet et 

al., 1992; Suarez et al., 2015), and products (Kauffman, 1993; Saviotti & Mani, 1995; 

Utterback & Abernathy, 1975). This approach quantifies variety characteristics of diversity 

according to a specific disparity criterion. However, diversity in technology cannot be 

judged solely quantitatively. 

As an example, suppose there are two technologies, technology A and B, that have the 

same number of patents and IPC code types (Figure 4-1). Each type of IPC codes 
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represents a technological difference as a proxy for detailed technology. For technology A, 

the distribution of patents classified by IPC codes is uniform, while for technology B, most 

patents exist in some specific IPC codes. When quantitatively measuring diversity with 

respect to variance and disparity in this example, technologies A and B are equivalent.  

However, in terms of the potential for generating various technologies and with respect to 

balance, Technology A is more diverse than Technology B (Lin et al, 2021).  

 

  

Figure 4-1. Uniform and skewed distribution of IPC code in technologies 

 

Information entropy allows to account for distributional distinction in addition to 

quantitative differences in technological diversity (Frenken, 2006; Frenken & Nuvolari, 

2002; Frenken et al., 1999; Saviotti, 1988; Zhang, Qian, et al., 2017). Based on the 

information theory, information entropy refers to the expected value in a certain system30. 

 
30 Entropy was originally developed in thermodynamics in the 19th century to describe randomly moving 
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In other words, entropy is the level of surprise, disorder, and diversity (Frenken, 2006), and 

is expressed in the form of Equation (4-1) (Shannon, 1948). 

 

𝐻(𝑍) = 𝐸𝑋~𝑍[𝐼(𝑥)] = ∑ −𝑃(𝑥𝑖)(𝑙𝑜𝑔 𝑃(𝑥𝑖))
𝑁

𝑖=1
 Eq. (4-1) 

 

𝑍 denotes the specific probability distribution and 𝐼(𝑥) is the information of event 𝑥. 

Additionally, 𝐸𝑋~𝑍[𝐼(𝑥)]  represents the expected information value of all events 

constituting Z. The larger the number of events and the more uniform the distribution, the 

greater the entropy value (Shannon, 1948). In other words, if the diversity of an event 

increases and adds uncertainty to the system, the amount of information grows, leading to 

a rise in entropy (Frenken (2006)).  

As a measure of technological diversity, entropy quantifies the distribution of 

technological elements in the space of technology. When randomness increases due to large 

and complex diversity, the probability distribution is flat, and the maximum value of 

entropy is derived. On the other hand, if the probability distribution is skewed, the entropy 

decreases due to the dominance of a particular design (technology), and the minimum value 

of entropy, that is zero, is a situation where only one design exists without diversity. 

As an example of prior research, Frenken et al. (1999) measured the diversity of 

helicopters, motorcycles, and microcomputer technologies using entropy and maximum 

 
particles but was introduced into information theory by Shannon (1984) and has since been used in a variety 

of contexts in the social sciences. 
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likelihood procedures to study the occurrence of niches. Zhang, Qian et al. (2017) measured 

the entropy of each patent attribute, identified attributes with high and low diversity, and 

analyzed the weight of patent attributes. Lin et al. (2021) derived the change in technology 

diversity by measuring the entropy of patent applications by year in a technology life cycle 

study, and identified whether the technology was in the maturity stage or the decline stage. 

To sum up, this study constructs the evolutionary phylogenetic tree of technology and 

then measures the entropy of technological diversity in each evolutionary lineage. This 

approach allows to observe the dynamics of technological dynamics considering 

technology space and trajectories. An in-depth study of diversity dynamics in technology 

along detailed technological trajectories will lead to more specific and practical suggestions 

for generating innovation.  

 

4.2 Methodology 

4.2.1 Data 

Granted photovoltaic patents were collected from the United States Patent and 

Trademark Office (USPTO) database for empirical research. Firstly, among patents granted 

from 2000 to 2020, patents are selected by specific keywords related to photovoltaics in 

abstract. In addition, after classifying the 12 Main-group level International Patent 

Classification (IPC) codes related to photovoltaic technology, the IPC codes possessed by 

each patent were analyzed. The search queries and methods are summarized in Table 4-1 

(J. Lee et al., 2022; Taylor et al., 2016; Wu & Mathews, 2012), and a total 9,663 patents 
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were initially extracted.  

 

Table 4-1. Data search method 

Period 2000~2020 

Keywords in Abstract 
“solar*” OR “photovoltaic*” OR “solarbatter*” 

OR “photo-voltaic*” 

IPC Code 

(Main 

Group) 

Common technology H01L21, H01L31, E04D13 

Crystal Si 

(1st Generation) 
H01L27, H02N6, C30B15, C30B29, C30B28 

Compound Thin Film 

(2nd Generation) 
C23C14, C23C16 

Emerging Others 

(3rd Generation) 
H01G9, H0lL51 

* Source: Author’s reconstruction based on previous studies (J. Lee et al., 2022; Taylor et al., 

2016; Wu and Mathews, 2012) and interviews with photovoltaic technology experts 

 

However, when the primary extracted patent data is organized by filing date, the number 

of patents drops dramatically after 2019. This is because it takes about two years for a 

patent to be granted from the date of filing (USPTO, 2020). Therefore, after 2019, when 

the number of patents sharply decreased, was excluded from the analysis. As a result, this 
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study used 8,081 granted photovoltaic patents filed between 2000 and 2018. 

This study used IPC codes of patents a proxy of the detailed technology. Each of 8,081 

patents held 12 Main-group IPC codes shown in Table 4-1, which are further subdivided 

into Sub-group IPC codes (e.g., H01L 21 (Main-group): H01L 21 (Main-group), H01L 

21/285 (Sub-group IPC)). Finally, 319 Sub-group IPC codes derived from 8,081 patents 

were analyzed in this study.  

 

4.2.2 Construction of Technology Evolutionary Phylogenetic 

Tree 

This section describes the methodology for constructing the evolutionary phylogenetic 

tree of technology using patent data. Despite some incompleteness, patent data are 

commonly used in the study of technology and innovation from an evolutionary perspective, 

because they provide the most direct information about technologies and their relationship 

to each other (Martinelli & Nomaler, 2014) 31 . This study refers to algorithms for 

constructing the evolutionary phylogenetic tree of technology developed by J.-D. Lee et al. 

(2022). They introduced a generalized algorithm that can be applied to technology data as 

well as products. 

 
31 Patent data contains citation information, and many studies have utilized citations to define relationships 

between patents. However, this approach assumes that patent citations reflect meaningful connections 

between technologies, indicating influence or prior art (Funk & Owen-Smith, 2017). The citations of prior 

patents are sometimes strategically selected during the patent application process, and there is a time lag 

between filing and citation. Therefore, intentionally omitted patents or delayed citations cannot accurately 

represent the relationship between technologies or the process of technological development. This study 

complements the limitations of previous studies based on patent citations by connecting ancestors and 

descendants through a scientific approach based on network theory within the information of each patent. 
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First, derive technology taxa as nodes for an evolutionary phylogenetic tree. 

Evolutionary variation does not accumulate in an individual, but rather within 

homogeneous populations, and this drives frequency-dependent evolution (Kardong, 2008). 

Similarly, in technological evolution, large trajectories of technological change can be 

identified by deriving technology taxa - groups of technologies that are technologically 

homogeneous - and linking the evolutionary relationships they form with their descendants 

(J. -D. Lee et al., 2022). Therefore, technology taxa should be organized by considering the 

homogeneity of technology gene units for technological recombination. In this study, to 

consider this point, we define the gene of a technology as a unit of IPC code and derive a 

technology taxon as a group of patents with technological homogeneity in a specific year. 

We utilize the cosine similarity of IPC codes to define the links in the patent network, so 

that it can reflect the similarity of technology genes. A group of patents is identified by 

constructing a patent network by filing time. In defining the links in the patent network, the 

cosine similarity of the IPC codes was utilized to reflect the similarity of the technology 

genes. Finally, apply community detection methodology on the patent network to derive 

homogeneous patent groups and define them as technology taxa (Despalatović et al., 2014; 

Fortunato, 2010; J.-D. Lee et al., 2022; Youngblood et al., 2021). The community detection 

algorithm is designed to organize communities (technology taxa) in such a way that the 

number of links between nodes within the same community is higher than the expected 

value of the link values formed with nodes belonging to other communities. In other words, 

this algorithm can derive groups with higher similarity of technology genes. For this 
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process, one patent is converted into a vector as presented in Equation (4-2).  

 

𝑍𝑖𝑡 = 𝑃𝑎𝑡𝑒𝑛𝑡𝑖𝑡 

𝑥𝑘 = 1 𝑖𝑓 𝑍𝑖𝑡  ℎ𝑎𝑠 𝐼𝑃𝐶 𝑐𝑜𝑑𝑒𝑘;  𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒 0 

𝐼𝑓 𝑍𝑖𝑡  ℎ𝑎𝑠 𝐼𝑃𝐶 𝑐𝑜𝑑𝑒1, 𝐼𝑃𝐶 𝑐𝑜𝑑𝑒3, 𝐼𝑃𝐶 𝑐𝑜𝑑𝑒𝑚 

𝑍𝑖𝑡 = [𝑥1, 𝑥2, 𝑥3, … , 𝑥𝑚, … ] = [1,0,1, … ,1] 

Eq. (4-2) 

 

𝑍𝑖𝑡   denotes a patent i filed at time t and is a vector representing the value of 1 if a 

patent i has the specific IPC code and 0 otherwise. A patent has one or more IPC codes that 

refer to the technology class covered by that patent. The larger the number of IPC codes 

held by a group of patents, the higher the level of technological diversity (Gao et al., 2013). 

To use a biological analogy, a patent and an IPC code are regarded as entities and genes, 

respectively. When a technology is represented as a patent, this enhances diversity by 

increasing the number of IPC codes as genes. This study uses 319 sub-group IPC codes as 

a means of representing technological characteristics of the patent. Hence one patent is 

converted into a 319-dimensional vector composed of 0 or 1. 

Since patents are converted into vectors, which are empirical units, the similarity 

between different patents can be measured, and then a patent network can be constructed 

based on it (J.-D. Lee et al., 2022). Therefore, a patent network (𝐺𝑡(𝑉, 𝐸)) for patents filed 

at a certain time is built as shown in Equation (4-3). 
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𝐺𝑡(𝑉, 𝐸) 

𝑉 = {𝑍1𝑡 , 𝑍2𝑡 , 𝑍3𝑡 , … } 

𝐸 = {𝑒𝑖𝑗|1 𝑖𝑓 𝑐𝑜𝑠𝑖𝑛𝑒 𝑠𝑖𝑚𝑖𝑙𝑎𝑟𝑖𝑡𝑦(𝑍𝑖𝑡 , 𝑍𝑗𝑡)

≥ 𝑡ℎ𝑒𝑟𝑠ℎ𝑜𝑙𝑑;  𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒 0} 

Eq. (4-3) 

 

The patent network 𝐺𝑡(𝑉, 𝐸)  at time t has a set of nodes, V, representing patents 

granted in year t, and forms links if the cosine similarity between the patents is higher than 

a certain threshold. Specifically, the link of the patent network is formed according to the 

similarity of IPC codes contained in each patent. This study set the threshold at 0.5, so let 

patents connect links when IPC code similarity of more than half.  

 

𝐶𝑜𝑚𝑚𝑢𝑛𝑖𝑡𝑦 𝐷𝑒𝑡𝑒𝑐𝑡𝑖𝑜𝑛(𝐺𝑡(𝑉, 𝐸)) = {𝐶1𝑡, 𝐶2𝑡, 𝐶3𝑡, , … , 𝐶𝑗𝑡, … } Eq. (4-4) 

 

All the nodes constituting the photovoltaic patent network in every year can be 

classified as a community, a group of homogeneous nodes (Clauset et al., 2004; Newman, 

2018). In this study, the patent community 𝐶𝑗𝑡 , derived by applying the community 

detection algorithm to the patent network of each year, is defined as a technology taxon 

existing at time t (Equation (4-4)). Technology taxon is similar to the concept of species 

in biology. Because biological crossover occurs only within a species, technological 

recombination occurs more naturally within the same taxon, which has a certain level of 

technological homogeneity (J.-D. Lee et al., 2022). To analyze the technological diversity 

for this study, taxa with a certain number of patents are required. Therefore, 108 technology 
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taxa containing 5 or more patents are identified and applied as nodes in the photovoltaic 

technology phylogenetic tree.  

The evolutionary phylogenetic tree of technology is a tree-type network with nodes for 

the technology taxa of each year and links for the ancestor-descendant relationships 

between technology taxa. To link the ancestor-descendant relationships, the technology 

taxa are converted into weighted vectors using the Term Frequency – Inverse Document 

Frequency (TF-IDF) method (J.-D. Lee et al., 2022; Zhang et al., 2014). TF-IDF method 

converts a document consisting of multiple terms into a weighted vector. The weight of a 

term is derived by multiplying the number of occurrences of the term in the document by 

the reciprocal of the number of documents in which the term appears. Hence terms that 

appear frequently in a specific document but not in others have a high weight in the 

document vector. That is, the higher the weight in the TF-IDF vector of a certain document, 

the more representative the term is of that document. Since a technology taxon in this 

analysis is a set of patents composed of IPC codes, taxa and IPC codes correspond to 

documents and terms, respectively. The formular for converting a technology taxon into a 

weighted vector by TF-IDF method is shown in Equation (4-5).  

 

𝐹𝑘𝑗𝑡 = 𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝐼𝑃𝐶 𝑐𝑜𝑑𝑒𝑘  𝑖𝑛 𝐶𝑗𝑡  

𝐼𝐹𝑘𝑡

= 𝑙𝑜𝑔 (
𝑇𝑜𝑡𝑎𝑙 𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑇𝑎𝑥𝑎 𝑖𝑛 𝑡

1 + 𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑇𝑎𝑥𝑎 𝑤ℎ𝑖𝑐ℎ ℎ𝑎𝑣𝑒 𝐼𝑃𝐶 𝑐𝑜𝑑𝑒𝑘  𝑖𝑛 𝑡 
) 

𝑤𝑘𝑗𝑡 = 𝐹𝑘𝑗𝑡 × 𝐼𝐹𝑘𝑡 

Eq. (4-5) 
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𝐶𝑗𝑡 = [𝑤0𝑗𝑡 , 𝑤1𝑗𝑡, 𝑤2𝑗𝑡, … ] 

 

𝐹𝑘𝑗𝑡  is the number of 𝐼𝑃𝐶 𝑐𝑜𝑑𝑒𝑘  present in a certain technology taxon 𝐶𝑗𝑡 , while 

𝐼𝐹𝑘𝑡 is the logarithm value of the reciprocal of the ratio of technology taxa containing at 

least one 𝐼𝑃𝐶 𝑐𝑜𝑑𝑒𝑘 in the total number of taxa existing at time t. these two values are 

multiplied to derive the weight 𝑤𝑘𝑗𝑡 of 𝐼𝑃𝐶 𝑐𝑜𝑑𝑒𝑘 which consist of the technology taxon 

𝐶𝑗𝑡, and convert 𝐶𝑗𝑡 to a weighted vector.  

Using Equation (4-5), the technology taxa existing at every time are converted into 

weighted vectors. The weighted vector value of the technology taxon is used to measure 

the similarity between technology taxa, and the ancestor-descendant relationship between 

taxa is derived using this.  

 

𝑡(𝐷𝑒𝑠𝑐𝑒𝑛𝑑𝑎𝑛𝑡) > 𝑡 − 1(𝐴𝑛𝑐𝑒𝑠𝑡𝑜𝑟)  

𝛷𝑖 = 𝑎𝑟𝑔𝑚𝑎𝑥
𝐶𝑗𝑡−1 

{𝐶𝑜𝑠𝑖𝑛𝑒 𝑆𝑖𝑚𝑖𝑙𝑎𝑟𝑖𝑡𝑦(𝐶𝑖𝑡 , 𝐶𝑗𝑡−1)} 

𝑇ℎ𝑒𝑛,  𝛷𝑖 𝑖𝑠 𝑎𝑛𝑐𝑒𝑠𝑡𝑜𝑟 𝑜𝑓 𝐶𝑖𝑡 

Eq. (4-6) 

 

As expressed in Equation (4-6), for a certain taxon at time t, an ancestor is the taxon 

of the highest cosine similarity among all taxa at time t-1, based on the principle of 

evolution (Chavalarias & Cointet, 2013; J.-D. Lee et al., 2022). After defining ancestor-

descendant relationships, the evolutionary phylogenetic tree of photovoltaic technology is 

eventually constructed as a form of tree-type network with nodes for 108 taxa and links for 
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ancestral relationship.  

Table 4-2 summarizes the operational definitions of the elements used to construct the 

evolutionary phylogenetic tree discussed in this section. Through the phylogenetic tree, we 

observed the technology trajectories and evolutionary landscapes in photovoltaic 

technology.  
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Table 4-2. Operational definitions for phylogenetic tree for photovoltaic technology 

Terminology Operational definition Description 

Technology 𝑍𝑖𝑡 Patent 

Technology 

gene 
𝐼𝑃𝐶 𝑐𝑜𝑑𝑒𝑘 IPC Code 

Technology 

vector 

𝑥𝑘 = 1 𝑖𝑓 𝑍𝑖𝑡  ℎ𝑎𝑠 𝐼𝑃𝐶 𝐶𝑜𝑑𝑒𝑘;  𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒 0 

𝐼𝑓 𝑍𝑖𝑡  ℎ𝑎𝑠 𝐼𝑃𝐶 𝐶𝑜𝑑𝑒1, 𝐼𝑃𝐶 𝐶𝑜𝑑𝑒3, 𝐼𝑃𝐶 𝐶𝑜𝑑𝑒𝑚 

𝑍𝑖𝑡 = [𝑥1, 𝑥2, 𝑥3, … , 𝑥𝑚, … ] = [1,0,1, … ,1, … ] 

Vector representation 

of the patent 

Technology 

taxon (𝐶𝑗𝑡) 

𝐺𝑡(𝑉, 𝐸) 

𝑉 = {𝑍1𝑡 , 𝑍2𝑡 , 𝑍3𝑡 , … } 

𝐸 = {𝑒𝑖𝑗|1 𝑖𝑓 𝑐𝑜𝑠𝑖𝑛𝑒 𝑠𝑖𝑚𝑖𝑙𝑎𝑟𝑖𝑡𝑦(𝑍𝑖𝑡 , 𝑍𝑗𝑡)

≥ 𝑡ℎ𝑒𝑟𝑠ℎ𝑜𝑙𝑑;  𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒 0} 

𝐶𝑜𝑚𝑚𝑢𝑛𝑖𝑡𝑦 𝐷𝑒𝑡𝑒𝑐𝑡𝑖𝑜𝑛(𝐺𝑡(𝑉, 𝐸))

= {𝐶1𝑡 , 𝐶2𝑡 , 𝐶3𝑡 , , … , 𝐶𝑗𝑡 , … } 

Patent community with 

more than threshold 

level of homogeneity 

in t 

Technology 

taxon vector 

𝐹𝑘𝑗𝑡 = 𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝐼𝑃𝐶 𝐶𝑜𝑑𝑒𝑘  𝑖𝑛 𝐶𝑗𝑡 

𝐼𝐹𝑘𝑡 = log (
𝑇𝑜𝑡𝑎𝑙 𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑇𝑎𝑥𝑎 𝑖𝑛 𝑡

1 + 𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑇𝑎𝑥𝑎 𝑤ℎ𝑖𝑐ℎ ℎ𝑎𝑣𝑒 𝐼𝑃𝐶 𝐶𝑜𝑑𝑒𝑘 𝑖𝑛 𝑡 
) 

𝑤𝑘𝑗𝑡 = 𝐹𝑘𝑗𝑡 × 𝐼𝐹𝑘𝑡 

𝐶𝑗𝑡 = [𝑤0𝑗𝑡 , 𝑤1𝑗𝑡 , 𝑤2𝑗𝑡 , … ] 

Vector representation 

of the technology taxon 

Ancestor 

(𝛷𝑖)and 

descendant 

(𝐶𝑖
𝑡) 

𝑡(𝐷𝑒𝑠𝑐𝑒𝑛𝑑𝑎𝑛𝑡) > 𝑡 − 1(𝐴𝑛𝑐𝑒𝑠𝑡𝑜𝑟)  

𝛷𝑖 = 𝑎𝑟𝑔𝑚𝑎𝑥
𝐶𝑗𝑡−1 

{𝐶𝑜𝑠𝑖𝑛𝑒 𝑆𝑖𝑚𝑖𝑙𝑎𝑟𝑖𝑡𝑦(𝐶𝑖𝑡 , 𝐶𝑗𝑡−1)} 

𝑇ℎ𝑒𝑛,  𝛷𝑖 𝑖𝑠 𝑎𝑛𝑐𝑒𝑠𝑡𝑜𝑟 𝑜𝑓 𝐶𝑖𝑡 

Relationship with the 

highest cosine 

similarity between 

adjacent period taxa 

Phylogenetic 

tree of 

Technology 

Node = Technology taxon 

Link = ancestor and descendant relationship between 

taxa in adjacent period 

Tree representing 

evolutionary 

relationships between 

taxa in chronological 

order 
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4.2.3 Operational Definition of Diversity 

Considering a systemic aspect from an evolutionary perspective, technological diversity 

in this study is defined as the diversity of a given taxon in a phylogenetic tree, which is 

measured by the information entropy of IPC codes. In more detail, the taxa comprising the 

phylogenetic tree are a set of technologically homogeneous patents, each of which has 

multiple IPC codes related to photovoltaic technology. In this study, we measure the 

entropy of a taxon based on these IPC code configurations, which we define as the diversity 

of the taxon. Thus, the technological diversity of a technology taxon can be expressed as 

Equation (4-7). 

 

𝑇𝑒𝑐ℎ𝑛𝑜𝑙𝑜𝑔𝑖𝑐𝑎𝑙 𝐷𝑖𝑣𝑒𝑟𝑠𝑖𝑡𝑦(𝐶𝑗𝑡) = ∑ −𝑝𝑘𝑗𝑡𝑙𝑛(𝑝𝑘𝑗𝑡)
𝑛

𝑘=1
 Eq. (4-7) 

 

𝑝𝑘𝑗𝑡 denotes the probability of emergence of 𝐼𝑃𝐶 𝑐𝑜𝑑𝑒𝑘 present in taxon 𝐶𝑗𝑡, and is 

derived by dividing the number of all IPC codes constituting 𝐶𝑗𝑡  by the frequency of 

emergence of 𝐼𝑃𝐶 𝑐𝑜𝑑𝑒𝑘. The diversity of a technology taxon has a higher value when the 

number of IPC codes is larger and the distribution is more uniform, and conversely, a lower 

value when the distribution is skewed toward specific IPC codes. 

In following section, the evolutionary phylogenetic tree of photovoltaic technology is 

constructed, and the diversity dynamics is examined on it. The relevance of the 

evolutionary phylogenetic tree is verified by observing whether the constructed 

photovoltaic technology phylogenetic tree depicts the actual technology development. 
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4.3 Evolution and Diversity Dynamics of Photovoltaic 

Technology 

4.3.1 Evolutionary Patterns of Photovoltaic Technology 

 

 

Figure 4-2. Photovoltaic technology phylogenetic tree 
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The evolutionary phylogenetic tree of photovoltaic technology is presented in Figure 

4-2. The y-axis represents the period from 2000 to 2018 and the root point on the x-axis 

indicates the starting point. Technology taxa have existed since 2000, and the name of the 

taxon has been specified as [YYYY-ID]. The longitudinal solid line connecting the 

technology taxon is called a branch, which expresses the ancestor-descendant relationship 

between taxa. Each branch is marked in different colors depending on the technology 

classification in Table 3-1: blue, red, and yellow for the first, second, and third generations, 

respectively. The color depth is the weight of the IPC code according to technology 

classification. In the case of branches from [2017_0] to [2018_1] for example, the color 

appears purple, which indicates a similar IPC code share of first- and second-generation 

technologies in one lineage. The IPC codes of general-purpose technologies are not 

reflected in the color representation of the phylogeny as they cannot be specific to a 

technology generation. The basic information and terminology needed to interpret the 

phylogenetic tree are shown in Figure 4-3 (Gregory, 2008). 

 

 

Figure 4-3. Anatomy of phylogeny 

(Author reproduction based on Gregory (2008)) 
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4.3.1.1 Evolutionary Patterns of Photovoltaic Technology 

Through this phylogenetic tree, the overall evolution of photovoltaic technology can be 

observed. As shown in Figure 4-4, photovoltaic technology was divided into five taxa. At 

the start point, the year 2000, photovoltaic technology consisted mainly of first-generation 

technologies. Of these, four taxa, except for [2000_3], were retained until 2004 and 2005. 

The [2000_2] taxon shows a red branch with an increasing proportion of second-generation 

technologies from 2003, but the rest of the taxa continued the pattern of technology 

evolution centered on the first-generation technology.  

 

 

Figure 4-4. Evolutionary patterns in period 1: retention 

 

This evolutionary pattern changed significantly between 2005 and 2006 (See Figure 4-

5). [2000_2] and [2000_4] speciated after 2005 and 2006, respectively, leaving many 

lineages and descendants, but the rest went extinct. Thereafter, active speciation is observed. 

For the first, the taxon [2005_0] speciates into five taxa in 2006. Among the differentiated 
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descendant taxa, however, only [2006_0] and [2006_4] are passed on, and the descendant 

of [2006_1] becomes the terminal node of the first generation of technology. On the other 

hand, the descendants of [2000_4] exhibit both cladogenesis and anagenesis 32 . The 

descendants of [2000_4] passed down until 2006 diverged from [2006_1] as nodes into 

[2007_1] and [2007_2], and the technological characteristics of the lineage represented by 

color began to change. The descendants of [2007_2] continued to evolve, varying their 

technological characteristics on an ongoing basis, giving rise in 2018 to the final 

descendants of a mix of first- and second-generation and third-generation technologies. 

 

 

Figure 4-5. Evolutionary patterns in period 2: speciation 

 

Speciation was most frequently observed from 2008 to 2010, as in Figure 4-6. The five 

taxa in 2008 gave rise to eleven descendants in 2009, followed by ten and seven in 2010 

 
32 Anagenesis is defined as the continued existence of an interbreeding population through the gradual 

evolution of a species, while cladogenesis means that a branching or splitting occurs, leading to two or more 

lineages, creating separate species (Futuyma, 2009). 



94 

 

and in 2011, respectively.  

 

 

Figure 4-6. Evolutionary patterns in period 3: aggressive speciation 

 

All taxa present in 2018, the end of the analysis period, are descended from [2000_2] 

and [2000_4]. A clade in which [2018_0], [2018_2], and [2018_4] have [2000_2] and 

[2008_0] as common ancestors. The three taxa [2018_0], [2018_2], and [2018_4] co-

evolved along the lineage originating from [2000_2] and diverged from the [2015_1] taxon. 

All of these taxa are composed of first-generation and modular technologies, but anagenesis 

(color change) is observed in the other two taxa except for [2018_2]. In particular, [2018_4] 

is more strongly characterized by second- and third-generation traits, making it stand out 

from its sister taxa. This implies that a new evolutionary pattern has emerged in this 

technical taxon since 2018, or that extinction is likely. 

[2018_1] and [2018_3] are another clade, with [2000_4] and [2008_1] as common 

ancestors. [2018_1] and [2018_3], descendants of [2000_4], exhibit very different 
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evolutionary trajectories in their technological characteristics after separating from the 

[2008_1] taxon. While [2018_1] is a mixture of first- and second-generation technology, 

[2018_3] is composed of third-generation technology. Second and third generation 

technologies share the commonality of being less mature than first generation technologies. 

Second-generation technologies temporarily formed an independent lineage (red) through 

[2006_3], [2009_6], and [2014_4], but soon became extinct and were passed down along 

the lineage of [2018_1], coexisting with first-generation technologies. Meanwhile, the 

third-generation technology established a very distinct lineage through the taxa [2008_1] 

and [2009_8]. 

 

 

Figure 4-7. Evolutionary patterns in period 4: mostly retention 

 

Table 4-3 provides a brief description of the photovoltaic technology evolution 

resulting from this work.  
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Table 4-3. Summary of evolutionary patterns observed in photovoltaic technology 

Time period Brief description of technology evolution 

Period 1 

(2000-2004) 

Retention period of most taxa, mainly composed of the 1st generation 

technology 

Period 2 

(2004-2008) 

Speciation of [2000_2] and [2000_4] taxa and extinction of others 

Period 3 

(2008-2013) 

Aggressive lineage speciation  

Both cladogenesis and anagenesis after [2008_1] 

Period 4 

(2013-2018) 

Mostly retention along to lineage 

Anagenesis after [2015_1]   

The entire 

Period 

(2000-2018) 

Gradual evolution along the technology lineage formed by genetic similarity 

Two common ancestors in 2000, mainly composed of the 1st generation 

technologies 

Five descendants in 2018, divided into three groups: 1st generation technology 

group, 1st and 2nd generation mixed group, and 3rd generation technology 

group, respectively  
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4.3.1.2 Validation of Technological Phylogenetic Tree: Qualitative 

Comparison with Historical Facts 

The validity of a technology evolutionary phylogenetic tree is based on how well it can 

identify and describe the actual history of a technology. The following discussion compares 

the photovoltaic evolutionary phylogenetic tree derived in this study with the 

developmental history of photovoltaic technology. The following discussion refers to the 

photovoltaic technology and industry review presented in Chapter 3 and Table 3-2. 

Table 4-4 provides overall summary based on the previous tables including the events 

that occurred during each period (Table 3-2), evolutionary patterns on the phylogenetic tree 

(Table 4-3), and major taxa and keywords. The keywords of the taxon are derived by using 

the TF-IDF method in the process of constructing the evolutionary phylogenetic tree. The 

top five keywords representing the taxon are drawn, as well as keywords that were not 

present in the direct ancestors but newly appear in the taxon. It should be noted that a new 

keyword does not mean the first appearance of the patent containing the content. 

Suarez et al. (2015) apply the notions of socially negotiated “category emergence” (e.g., 

Bowker & Star, 2000) to strengthen their time-to-market theory. They propose a “dominant 

category,” defined as the category in which a company chooses to position its products, the 

conceptual schema adhered to by most stakeholders in a product category and argue that a 

window of opportunity opens between the maximum point of the dominant category and 

the dominant design.  

The major and new keywords for taxa presented in Table 4-4 correspond to the 
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definition of product categories by Suarez et al. (2015) as technological categories. 

Changes in the categorical positioning of major taxa over the course of technological 

evolution are utilized to complement the qualitative interpretation. 
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Table 4-4. Qualitative comparison for validating evolutionary phylogenetic tree 

Time 

period 
Historical facts 

Evolutionary 

pattern 
Major taxon 

Top 5 keywords of taxon 

(Newly emerging keywords) 

Period 1 

(2000-

2004) 

Industrialization 

Dominant design 

(Al-BSF) 

Retention 

[2000_0] vapor, hetero, metallic, diffusion, compound 

[2000_1] tile, solder, moistureproof, sheet, degradation 

[2000_2] roof, plate, epoxy, hole, encapsulation, cost 

[2000_4] color, diffraction, plastic, appearance, reflection 

Period 2 

(2004-

2008) 

Polysilicon 

shortage (2004) 

Extinction 

Speciation 

[2005_0] 
plate, separation, groove, resin, mirror 

(antimony, sb, oxidizing, heterojunction) 

[2006_1] 
lead, pattern, thickness, diffusion, silicone 

(polyorganosiloxane, hydrosilylation, olefin, diorganopolysiloxane) 

Period 3 

(2008-

2013) 

Global crisis 

(2008) 

Speciation 

(Cladogenesis 

& Anagenesis) 

[2008_0] 
control, reflector, input, bandgap, radiation 

(truss, signal, scribe, depression, epistructure) 

[2008_1] 
paste, diffusion, electron, quantum, finger 

(nanotube, fullerene, zn, silicide, polythiophene) 
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Period 4 

(2013-

2018) 

New dominant 

design 

(PERC) 

Retention 

(Anagenesis) 

 

[2013_0] 
paste, emetter, subcell, impurity, silver 

(cmt, indentation, bristle, mc, braid, perovskite) 

[2015_1] 
module, sheet, panel, tile, frame 

(ldpe, lldpe, pontoon, hexamethylene) 

Major terminal nodes 

[2018_1] 
paste, selenium, aluminum, copper, powder 

(disparity, etcs, sicy, dh, mgxcd, cyanide) 

[2018_2] 
housing, wall, panel, mirror, dust 

(configurability, instruct, chiller, screening, blackbody) 

[2018_3] 
carbon, nanotube, polymer, perovskite, triplet 

(micelle, benzotrichalcogenophene, subunit) 
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By dividing the analyzed period into four periods, the evolution of photovoltaic 

technology can be categorized into retention (period 1, period 4) and speciation (period 2, 

period 3). Interestingly, the retention period is the time of emerging dominant designs, 

while the speciation period is characterized by external environmental shocks. 

First, the retention pattern is observed in periods 1 and 4. Period 1 was the beginning 

of the photovoltaic industrialization, where the main issue was to reliably mass-produce 

the standard technology of first-generation silicon photovoltaic cells (Green, 2005; 

Kazmerski, 2006; Wand & Leuthold, 2011; Wilson et al., 2020). The so-called conventional 

solar cell, a structure with an aluminum back surface field (Al-BSF) on a p-type silicon 

wafer, was chosen as the dominant design for the industry. 

One of the key implications of the emergence of a dominant design is that it shifts the 

relative focus of R&D efforts from product innovation to process innovation (Abernathy & 

Utterback, 1978). This fundamental change in the nature of innovation is represented in the 

evolutionary phylogenetic tree by the retention of lineages, which is observed in the years 

of the early 2000s. The representative keywords of the common ancestor [2000_2] and 

[2000_4] in the evolutionary tree capture such concerns of the early photovoltaic industry. 

The [2000_2] taxon represents technologies close to the early dominant designs with 

keywords for facing market and economic challenges such as roof and cost, and process 

technologies for performance, durability, and reliability of crystalline silicon photovoltaic 

cells (plate, crystal, diode, junction) and modules (epoxy, encapsulation). On the other hand, 

[2004_4] is characterized by the inclusion of keywords with relatively high technological 
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flexibility compared to [2000_2], such as color, diffraction, and plastic. In addition, the 

taxa [2000_0] and [2000_1], representing process and modular technologies, respectively, 

were inherited and carried forward 2004 and 2005. 

While the dominant design in Period 1 was related to the industrialization process, the 

dominant design that emerged in Period 4 resulted from technological discontinuities 

caused by environmental uncertainty (Anderson & Tushman, 1990). After an era of ferment, 

first-generation technologies that continued to innovate processes and products settled on 

PERC, one of high efficiency cell structures, as new dominant design to replace Al-BSF 

cells (Baliozian et al., 2020; Chawla et al., 2020; Wilson et al., 2020). 

Meanwhile, wafer size and thickness changes require material and process 

improvements for surface passivation layers. This has created an opportunity for second-

generation thin-film technology, based on deposition technology, to converge with first-

generation technology. Furthermore, to compensate for the physical limitations of materials 

and to secure light absorption across the entire wavelength range, tandemed photovoltaic 

cells have been actively developed (Green et al., 2014; Tonui et al., 2018), and TOPCon 

(Tunnel Oxide Passivated Contact) photovoltaic cells have been triggered to develop 

bifacial modules and building integrated photovoltaic modules. The issue of lifecycle and 

recycling of photovoltaic modules under the theme of sustainability accelerated the overall 

development of module technology (Frischknecht et al., 2015; Wang et al., 2022; Wilson 

et al., 2020). 

The factual history of period 4 described so far is observed in the phylogenetic tree as 
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an anagenesis pattern. Specifically, even though they exhibit the pattern of retention as 

same, in Period 1, the technological characteristics of the ancestors were passed down with 

the same, while in Period 4, they changed in color. Lineages with a mix of first- and second-

generation technologies, such as the [2013_0] taxon, further expanded the range of 

technologies by adding keywords for materials and structures, such as CMT (Cadmium-

Manganese-Telluride), indentation, and bristle, based on basic photovoltaic cell technology 

keywords such as paste, emitter, and impurity. Meanwhile, the lineages with [2000_2] and 

[2008_0] as common ancestors evolved with a distinct blue coloration, but in the [2015_1] 

taxon, new keywords were added from materials such as ldpe, lldpe, and hexamethylene to 

pontoon, which refers to a buoyancy system, to differentiate the technological 

characteristics of subsequent descendants. 

Second, a pattern of speciation is observed in Periods 2 and 3. Especially around 2005 

and 2008, technological speciation is active. The shock that triggered the 2005 speciation 

was the polysilicon supply crisis from 2004. This event acted as a selection mechanism for 

technological evolution, leading to the extinction of some taxa, but also revitalized 

technological development in various fields as a warning of raw material instability. The 

first-generation crystalline silicon photovoltaic cells were an axis of photovoltaic 

technology during this period, and efforts were made to mass-produce high-efficiency 

photovoltaic cells to break away from material dependence on polysilicon and secure price 

competitiveness due to its high cost (Green, 2019b). 

The other axis was investment in second-generation thin-film and third-generation 
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emerging photovoltaic cell technologies, which the industry sought to use as alternatives 

to crystalline silicon photovoltaic cells. This spurred the mass production of second-

generation technologies, leading to an increase in the market share of thin-film PV from 

5.5% in 2004 to 11.4% in 2007 and 13.4% in 2010 (Gan & Li, 2015; Kirkegaard et al., 

2010; Price et al., 2010). 

The internal node [2005_0] leads to five descendant taxa, each characterized by a first-, 

second-, and third-generation technology in 2006. This cladogenesis resulted from new 

keywords introduced into [2005_0]. While the keywords represented in [2005_0] consist 

of technologies to increase the efficiency of first-generation cells on thinner substrates, 

such as plate, separation, and groove, the new keywords consist of thin-film and next-

generation technologies, such as antimony, sb, oxidizing, and heterojunction. 

The descendant of [2000_4], [2006_1], a taxon from a different family around the same 

time, also shows a broadening of the technological category due to the influx of keywords 

such as polyorganosiloxane, hydrosilylation, and olefin.  

The global crisis that broke out in 2008 triggered cladogenesis. The photovoltaic 

industry, which has a high proportion of government-generated demand, was directly 

affected. Moreover, the increase in the number of entrants and the aggressive capacity 

expansion of Chinese companies caused an oversupply situation. Competition in the 

industry intensified, module prices dropped dramatically, and a shake-out occurred in 

which uncompetitive companies exited. 

During this industrial reorganization, photovoltaic technology has continued its efforts 
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to differentiate itself for survival, and this is expressed as the speciation phenomenon in the 

technology evolutionary tree. In [2008_0], keywords such as control, reflector, input, and 

bandgap were joined by system elements such as truss and signal, process technologies 

such as scribe and depression, and material technologies such as epistructure, giving birth 

to four descendant taxa in 2009. In this taxon, technologies that are highly related to the 

first-generation technologies led to the [2018_2] taxon with keywords such as housing, 

dust, and blackbody. 

In fact, companies mass-producing first-generation technologies have attempted to 

secure technological competitiveness by producing high-efficiency photovoltaic cells that 

have only been realized in the laboratory, such as PERC, IBC, and SHJ instead of Al-BSF 

photovoltaic cells, which have become more common under the intense competitive 

environment (Khatibi et al., 2019; Wilson et al., 2020). To this end, the existing p-type 

silicon substrate was diversified to an n-type base, and elemental technologies such as 

selective emitter formation technology, rear side localized junction structure technology, 

and electrode formation technology through plating or laser transfer were developed 

(Chawla et al., 2020; Green, 2019a, 2019b). 

On the other hand, unlike Period 2, where most of the speciated branches became 

extinct within a short period of one or two years, Period 3 showed a cladogenesis as the 

branches went through their own evolutionary process and later became the terminal nodes 

of [2018_1] and [2018_3]. Their internal node, [2008_1], coexists with keywords 

representing first- and second-generation technologies such as paste, diffusion, electron, 
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finger, zn, and silicide, and third-generation technologies such as quantum, fullerene, and 

polythiophene. Since then, it has evolved into a mixed system of first- and second-

generation technologies represented by keywords such as paste, selenium, aluminum, and 

copper ([2018_1]), and third-generation technologies such as carbon, nanotube, polymer, 

and perovskite ([2018_3]). 

 

 

Figure 4-8. Number of new keywords in descendant taxa 

 

Figure 4-8 describes the number of new keywords by year. The number of new 

keywords decreased in the retention pattern (periods 1 and 4) while increased in the 

speciation pattern (periods 2 and 3). Anderson and Tushman (1990) presented an 

evolutionary model of technological change, empirically tested by the cement, glass, and 
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small computer industries. In an era of incremental change, the matured dominant design 

passes into an era of ferment, where technological competition accelerates and 

technological discontinuities occur, leading to the emergence of a new dominant design, 

which in turn results in a period of incremental improvement. The results in Figure 4-4 

illustrate the technology cycle through the simple metric of new keyword appearances, and 

suggest that this process is also related to evolutionary patterns. 

In this section, the results confirm that the phenomena observed in the phylogenetic tree 

correspond with the actual history of photovoltaics. In summary, photovoltaic technology 

has interacted with the given environment, and the micro-variations accumulated in the 

process evolved gradually, fostering descendants like their ancestors but with relative 

superiority. 

 

4.3.2 Diversity Dynamics by Trajectory in Photovoltaics 

Figure 4-9 represents the diversity dynamics on photovoltaic technology evolution. 

First, Figure 4-9 (a) shows the level of entropy, that is the technological diversity, on taxa 

in the evolutionary phylogenetic tree constructed in Section 4.1. The darkness of the color 

indicates the level of diversity, with black being darker closer to 2018 than to the early 

2000s. Next, Figure 4-9 (b) is the average change in diversity for all taxa, and both results 

in Figure 4-3 imply that photovoltaic technologies have evolved in the direction of 

increasing diversity. In fact, the number of sub-group IPC codes in taxa has increased from 

16 in 2000 to 179 in 2018. However, as shown in (b), the diversity of photovoltaic 
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technologies has stagnated until recently, with a slight decline starting in 2015. 

As shown in the previous section, taxa in 2018 have [2000_2] and [2000_4] taxa as 

common ancestors. Taxon [2000_2] evolved around first-generation technology, while 

taxon [2000_4] evolved with second- and third-generation technology, including first-

generation. In (a) of Figure 4-9, descendants of the [2000_2] taxon, which has mostly first-

generation technology, are less diverse than descendants of the [2000_4] taxon. For the 

[2000_4] lineage, the diversity level increases significantly after 2006, whereas for the 

[2000_2] lineage, a differential change in diversity level is observed after 2009. These 

results are consistent with discussions in the previous section in the context of the silicon 

supply crisis at period 2 and the competitive environment at period 3. 
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 (a) 

 (b) 

Figure 4-9. The level of diversity of photovoltaic technology  

(a) Diversity dynamics on phylogenetic tree, (b) Average Diversity of all taxa 
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Figure 4-10 represents the diversity dynamics for the major technological trajectories 

that evolve from root to [2018_1], [2018_2], and [2018_3]. Each trajectory represents the 

first-generation ([2018_2], blue), the mixture of first- and second-generation ([2018_1], 

purple), and third-generation ([2018_3], green) technologies existing in 2018. Technology 

diversity is measured along the major trajectories of the phylogenetic tree, and then the 

three simple moving average (3-SMA) method is applied to express a smooth trend. 

 

 

Figure 4-10. Diversity dynamics for major technological trajectories 

 

The diversity dynamics of each trajectory is different from the average diversity 

dynamics shown in Figure 4-9 (b). While the diversity of overall photovoltaic technologies 

showed a gradual increase before 2015, each of diversity in major trajectories has a 

distinctly different trend. 
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First, in the [2018_2] trajectory results, which represent the evolution of first-generation 

technologies, diversity was lower than the average of all technologies before 2011 and 

showed a stagnant trend without a significant increase. This reflects the reality that first-

generation technologies in the early years of industrialization pursued incremental 

innovations based on the already established dominant design of Al-BSF cells. The 

diversity of first-generation technologies grows rapidly after 2011 before declining after 

2015. 

Second result is the trajectory from Root to the [2018_1] Taxon, which consists of a 

mix of first and second-generation technologies. In the case of the trajectory, with the 

exception of the early 2000s, the diversity was higher than the average for photovoltaic 

technology. It means constantly exploring new combinations of technologies to keep the 

technology evolving. 

Last is the trajectory of [2018_3] composed of third-generation technologies. This 

trajectory was the same as that of [2018_1], but after speciation in 2008, technological 

diversity showed decreasing and stagnating patterns. This is in line with the fact that during 

the photovoltaic industry recession, third-generation technology development was 

relatively slow due to lack of funding. Third-generation technologies remain below the 

average of photovoltaic technology diversity. Therefore, the task of the current third-

generation technologies is to improve technology diversity through the introduction and 

combination of new technologies. 
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The evolutionary approach is a historical science grounded in the past (Nosil et al., 

2020). It is nearly impossible to accurately predict the future direction of evolution because 

the causes and effects of evolution change over time under complex and uncertain 

conditions. However, patterns of evolution from the past can provide macro direction. This 

is especially true for the path-dependent and cumulative nature of technology evolution.  

Figure 4-11 is a diagram of the information derived from the technology evolutionary 

tree. By integrating the technological diversity dynamics on the major taxa presented above, 

it is possible to forecast the basic direction of future photovoltaic technology evolution. 

 

 
(a) 
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(b) 

 
(c) 

Figure 4-11. Information from evolutionary phylogenetic tree 

(a) Proportion of patents per trajectory 

(b) Number of patents per taxon in each trajectory 

(c) Cosine Similarity between ancestor and descendant taxa 

 

For the three main trajectories, (a) is the ratio of patents per trajectory to the number of 

patents in a certain year, (b) is the change in the number of patents per taxon in each 

trajectory, and (c) is the change in the cosine similarity of ancestral and descendant taxa 

within the lineage. (a) and (b) can be considered as indicators of the quantitative aspect of 
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evolution (whether there are enough descendants) while (c) as the qualitative aspect 

(whether genetic relationships are robust). 

(a) and (b) can be viewed as indicators of the quantitative aspects of evolution (whether 

there are enough descendants) and (c) can be viewed as indicators of the qualitative aspects 

(whether genetic relationships are strong). First, through (a) and (b), we observe that the 

number of patents per taxon is decreasing in all three trajectories, and that especially patents 

for first-generation technology are becoming a smaller share of total patents. A decrease in 

descendant individuals is evolutionarily unfavorable because it leads to a reduction in 

genetic diversity and a weakening of adaptive potential (Lande, 1988; Makert et al., 2010). 

Specifically, population decline means that only a fraction of the genetic diversity present 

in an individual survives to contribute to the next generation, which is equivalent to losing 

the unique genetic information present in the population. This reduces the likelihood of 

adaptive traits or variations that help the population survive and reproduce under different 

conditions, leading to a reduction in evolutionary adaptability and resilience. A smaller 

population is more vulnerable to stochastic events occurring in the external environment, 

and ultimately, a decrease in the number of descendants increases the risk of extinction of 

the population.   

In (c), the degree of evolutionary relationship between the descendant taxon and the 

ancestor is different for each lineage. While [2018_2] shows a high cosine similarity and 

has been declining since 2010, [2018_1] and [2018_3] have been increasing after an initial 

decrease and are now maintaining a strong evolutionary relationship. The higher the value 
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of cosine similarity, the stronger the evolutionary relationship. The similarity between 

ancestors and descendants and the large number of shared traits and characteristics 

indicates that the common ancestor is recent. 

In phylogeny, the degree of relationship between ancestors and descendants is related 

to the dynamic process of evolution (Freeman & Herron, 2007; Lemey et al., 2009). During 

evolution, individuals accumulate genetic differences over time as they adapt to various 

environmental and ecological niches; therefore, changes in the similarity of evolutionary 

relationships indicate that descendants have undergone significant evolutionary change, 

either by acquiring new traits or by losing or modifying existing traits (Freeman & Herron, 

2007). Weak ancestor-descendant relationships occur when new lineages emerge and 

diversify, or when genetic traits are reduced due to genetic drift, selection mechanisms, or 

other causes, leading to the formation of new species or, conversely, extinction. Strong 

evolutionary relationships emerge when populations undergo stable selection, genetic 

convergence, or experience environmental stability, resulting in high levels of evolutionary 

conservation. Ancestral traits have an evolutionary adaptive advantage, contributing to 

their continued retention. 

To summarize Figures 4-10 and 4-11, the following points can be made. First, the first-

generation technology taxon [2018_2] are experiencing a decline in technology diversity 

and the number of patents in the lineage, and their evolutionary relationships are weakening. 

In particular, the proportion of total patents is decreasing, which is interpreted as an 

endangered species. Second, the mixed technology taxon [2018_1], which is a combination 
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of the first and second generations, shows stagnant technology diversity and a decrease in 

the number of patents, but an increase in the proportion of total patents. It also maintains a 

high evolutionary relationship. Especially, it has the highest number of patents and a high 

diversity value among three major trajectories, which is expected to be passed on to 

subsequent generations. Finally, the third-generation technology of [2018_3], like [2018_1], 

shows stagnant diversity and a decrease in the number of patents, but a noticeable increase 

in quantitative weight and a strong ancestor-descendant relationship. However, while 

[2018_3] shows an increasing proportion within the total number of photovoltaic patents, 

the small number of patents in absolute terms may pose an evolutionary threat. While they 

are expected to persist in the absence of significant external environmental change, there is 

a need to improve evolutionary adaptability and flexibility through population growth. 

This section examines how diversity has changed over the evolution of photovoltaic 

technology. After reviewing the diversity dynamics of photovoltaic technology in an 

overall context, the detailed dynamics of key trajectories are discussed. Overall, 

photovoltaic technology has seen a gradual increase in diversity, but it appears to have 

stagnated after a slight decline since 2015. The major trajectories for photovoltaic are 

identified as a first-generation technology trajectory ([2018_2]), a mixed first- and second-

generation technology trajectory ([2018_1]), and a third-generation technology trajectory 

([2018_3]). Each trajectory has repeatedly varied in diversity over the course of technology 

evolution, with differentiated diversity dynamics across technologies. However, in all three 

trajectories, stagnant or declining diversity levels in current technologies are also observed. 
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These results point to a weakening of the current innovation momentum in photovoltaic 

technology. Moreover, based on the diversity dynamics of each major trajectory and the 

quantitative and qualitative evolutionary indicators derived from the evolutionary 

phylogenetic tree, the subsequent technological evolution is predicted to be extinction for 

the first-generation technology trajectory, and retention for the technology mixing 

trajectory and the third-generation technology trajectory. 

This study proposes that technological diversity dynamics should be quantified by 

considering technological trajectories. The analysis in this section shows that there are 

differences in the diversity dynamics at the aggregate technology level and at the detailed 

trajectories. Furthermore, diversity varies across trajectories in different ways depending 

on technological characteristics. These findings suggest that it is reasonable to investigate 

the dynamics of technological diversity by considering detailed trajectories. By examining 

the dynamics of technological diversity over trajectories, it is feasible to explore the 

technological evolution in detail and identify trajectories with high innovation potential. 

 

4.4 Sub-conclusion 

Technological diversity is the seed of development. Existing studies have already 

comprehensively analyzed technological diversity at the agglomeration level (Anderson & 

Tushman, 1990; Gao et al., 2013; Lin et al., 2021). However, despite much discussion on 

technological diversity, to the best of our knowledge, no study has considered the space 

where technologies vary and grow. 
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Technology forms a trajectory over time (Dosi, 1982). More precisely, technologies at 

the sublevel form detailed trajectories over time. They are then divided into new trajectories 

that differentiate them from existing technologies or, alternatively, disappear (Tellis and 

Crawford, 1981). Technology development is the process by which one or more of these 

trajectories come together to form a space. Therefore, in order to develop a more concrete 

technology strategy, it is necessary to identify the detailed trajectories that are currently 

being formed in the industry and to measure the technological diversity of each trajectory.  

To fill this gap and make specific suggestions for innovation, this study uses a 

phylogenetic tree methodology from an evolutionary perspective to examine the dynamics 

of technological diversity by considering the spatial information of technological change 

(J.-D. Lee et al., 2022). 

For the empirical analysis, this study uses 8,081 patents granted by the USPTO for 

photovoltaic technology from 2000 to 2018 and the IPC code information of each patent. 

The results are summarized as follows:  

First, the evolutionary phylogenetic tree of photovoltaic technology fully describes the 

technological and industrial history of photovoltaics. This result provides robustness for 

considering the dynamics of technological diversity in the evolutionary phylogenetic tree. 

Photovoltaic technologies have gradually evolved by interacting with the external 

environment. It has evolved into five taxa classified into three technological categories: 

first-generation ([2018_0], [2018_2], [2018_4]), first- and second-generation mixtures 

([2018_1]), and third-generation technologies ([2018_3]). 
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Second, the dynamics of technological diversity in the aggregate level of technologies 

are different from those in the trajectory-specific technologies. The overall diversity of 

photovoltaic technologies has gradually increased over the evolutionary process. However, 

drastic changes have been observed in the major technological trajectories, and there are 

differences in the diversity dynamics of each trajectory depending on the technology 

characteristics. 

Third, in the subsequent evolution of photovoltaic technologies, first-generation 

technologies are predicted to become extinct, while mixed first- and second-generation 

technologies and third-generation technologies are predicted to be transmitted. These 

findings are based on quantitative and qualitative evolutionary metrics derived from 

diversity dynamics and evolutionary phylogenetic tree along key trajectories. However, for 

third-generation technologies, the low number of individuals (number of patents) increases 

the risk of evolutionary adaptation, which needs to be complemented to ensure sustainable 

development. 

Diversity is a necessary condition for evolutionary mechanisms (Basalla, 1988). 

Technological diversity is associated with an industry’s competitiveness, innovation 

potential and adaptability to market changes. High technological diversity promotes 

innovation and competition and stimulates markets, while low technological diversity 

reduces the dynamism of competition and makes an industry potentially vulnerable to 

disruptive innovation from other industries (Argot & Ingram, 2000; Frenken et al., 2000; 

Hanusch, 2000). 
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The diversity of photovoltaic technology has fluctuated throughout the evolutionary 

process. However, the current situation is stagnant in diversity dynamics. As of 2015, the 

diversity trend has stagnated or even decreased, decreasing in the first generation, 

stagnating at a high diversity level in the first and second-generation mixtures, and 

stagnating at a low diversity level in third-generation technologies.  

Decreasing diversity indicates a weakening of the driving force in photovoltaic 

technology development. Based on industry lifecycle theory, a sustained reduction in 

technological diversity in a photovoltaic industry that is currently passing through its 

maturity phase will eventually lead to decline (Markard, 2020). The practical implications 

for photovoltaic technology are comprehensively discussed further in Chapter 7.  
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Chapter 5. Technological Search to the 

Diversity Dynamics of Technology 

5.1 Patterns of Technological Search on Evolutionary 

Approaches 

Diversity in technology increases through the recombination of technological elements 

(Frenken, 2006; Wagner and Rosen, 2014) and changes depending on the purpose and path 

of search the technology (Carignani et al., 2019; Gao et al., 2013; Lin et al., 2021; Song et 

al., 2019). As reviewed in Chapter 2, previous literatures on technology search have 

explained the patterns of search based on the concept of distance (e.g., Stuart & Podolny, 

1996) or scope and depth (e.g., Katila & Ahuja, 2002). However, a technology search takes 

place within the space where technology trajectories are forming; therefore, it is necessary 

to consider not only the distance but also the direction of the search. To Clarify the 

endogenous mechanisms of how diversity increases, decreases, or stagnates, it is necessary 

to further refine the search patterns of technologies.  

The evolutionary approach allows us to examine technology searches in more detail. In 

other words, it is possible to grasp not only the integrated consideration of distance and 

direction but also the origin of newly introduced technologies. In biology, there are three 

methods used to ensure genetic diversity (Carignani et al., 2019; Kardong, 2008; Lawrence, 

1999).  

Vertical Inheritance (VI) is a method in which descendants receive number of genetic 
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information from direct ancestors (Lawrence, 2005). There are ancestors that are standard 

for evolution, and they convey the basic framework of genetic makeup (Carignani et al., 

2019; Wagner & Rosen, 2014). Descendants pursue gradual evolution based on the 

inherited genetic characteristics of their ancestors (Anderson & Tushman, 1990; Tellis & 

Crawford, 1981). Meanwhile, technological search through the Vertical Inheritance pattern 

is an incremental innovation that inherits and deepens the technological elements of prior 

technology. This pattern of technological search mainly takes place in the context of an 

existing dominant design, and technology generates innovation gradually and 

incrementally based on the dominant design (Lin et al., 2021).  

Horizontal gene transfer (HGT) is a pattern in which descendants receive new genetic 

information from neighboring ancestors in a different lineage than their direct ancestors 

(Lawrence, 2005; Smets & Barkay, 2005). It is a way of finding new combinations that did 

not exist before (Carignani et al., 2019), and in biology it occurs primarily by asexual 

reproduction. This type of search pattern is more readily found in the evolution of 

technology than biology because technologies have more flexible characteristics and 

elements than biological genetics (Wagner & Rosen, 2014). There is also a difference in 

the timing of trait development. In biology, traits inherited by HGT are found immediately 

in the same generation, whereas in technology, they are found in the next generation, but 

not in the same. More specifically, in the case of technological evolution, horizontally 

transferred technological elements influence new technologies in the next generation 

without causing changes to existing technologies (Cecere et al., 2015; Koski & Kretschmer, 
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2007). 

Mutation (MT) is the appearance of a trait in a descendant that was not observed in the 

previous generation. This search pattern allows fresh genetic elements to emerge and form 

new genetic combinations (Kardong, 2005). Mutations in organisms are passed down 

through the generations as long as they are favorable to survival and reproduction, or at 

least not significantly disadvantageous. However, above a certain level, it becomes adverse 

for adaptation to the existing environment, so a high level of mutation is detrimental for 

survival or fail to leave offspring. 

Once a dominant design for a technology has not been established, or a new dominant 

design needs to be identified, technologies compete to become the dominant design for the 

next generation (Anderson & Tushman, 1990; Suarez et al., 2015). The winning 

technologies are those that are differentiated from existing technologies and are derived by 

introducing new technological elements or finding novel combinations of existing or 

related technologies (Carignani et al., 2019; Suarez et al., 2015; Wagner & Rosen, 2014). 

In this case, the former, which introduces a new technological element, is the search pattern 

of Mutation in the evolutionary phylogenetic tree, and the latter, which finds a novel 

combination, can be defined as the search pattern of Horizontal Gene Transfer. 

To summarize, in an evolutionary context, technological diversity is driven by three 

patterns of technological search: Vertical Inheritance, which is deepened by inheriting the 

basic framework from direct ancestors; Horizontal Gene Transfer and Mutation, which 

introduce genetic traits outside of direct lineage. Moreover, Horizontal Gene Transfer and 
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Mutation are further segmented by the origin of the heritable traits. HGT involves searching 

genetic traits in adjacent lineage to find new combinations, while MT implements new 

genetic traits that did not exist before (Carignani et al., 2019; Kardong, 2005). The 

evolutionary approach of categorizing technological search into VI, HGT, and MT, allow 

for an explanation of the scope, direction, and path-dependency of technological search on 

the nature of technology (and technological element).  

 

5.2 Methodology  

5.2.1 Data 

The data used for the empirical analysis in this chapter is the same as in Chapter 4. 

8,081 granted photovoltaic patents were collected from the United States Patent and 

Trademark Office (USPTO) database for the period of 2000 to 2018, and 319 sub-group 

IPC codes for 12 main-group IPC codes were used.  

 

5.2.2 Operational Definition and Modeling of Search 

This study defines the technological search as the behavior of combining IPC codes 

from patents in a technology taxon. There are three search patterns classified according to, 

where the recombinant IPC code is from (Carignani et al., 2019). 
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Figure 5-1. Search pattern in the phylogenetic tree of technology 

 

As shown in Figure 5-1, patterns of technological search is measured quantitatively by 

deriving possible ordered pairs of combination between the IPC codes of Patent 𝑍𝑖𝑡 and 

Patent 𝑍𝑚𝑡  in the same technology taxon. The cases in which the IPC code of 𝑍𝑖𝑡  is 

inherited from a direct ancestor or a neighboring ancestor on the phylogenetic tree are 

defined as Vertical Inheritance (VI) or Horizontal Gene Transfer (HGT), respectively. If a 

completely new IPC code appears, it is defined as a Mutation (MT). 

Prior to measuring searches, we set up a weighted network, defined as a gene pool, with 

IPC codes as nodes, and the relatedness between them as links (Equation (5-1)). This is 
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because in forming IPC code-ordered pairs between patents, the heterogeneous relatedness 

and complexity of the space should be considered (Song et al., 2019). 

 

𝐺𝑒𝑛𝑒 𝑃𝑜𝑜𝑙(𝑉, 𝐸) 

𝑉 = {𝐼𝑃𝐶 𝑐𝑜𝑑𝑒1, 𝐼𝑃𝐶 𝑐𝑜𝑑𝑒2, 𝐼𝑃𝐶 𝑐𝑜𝑑𝑒3, ⋯ } 

𝐸 = {𝑒𝑘𝑙| ∑ 𝛿𝑚(𝐼𝑃𝐶 𝑐𝑜𝑑𝑒𝑘 , 𝐼𝑃𝐶 𝑐𝑜𝑑𝑒𝑙)

𝑍𝑚𝑡

} 

𝑅𝑒𝑙𝑎𝑡𝑒𝑑𝑛𝑒𝑠𝑠(𝝋𝒌𝒍)

=
𝐿𝑖𝑛𝑘 𝑤𝑒𝑖𝑔ℎ𝑡 𝑏𝑒𝑡𝑤𝑒𝑒𝑛 𝐼𝑃𝐶 𝑐𝑜𝑑𝑒𝑘  𝑎𝑛𝑑 𝐼𝑃𝐶 𝑐𝑜𝑑𝑒𝑙

𝑆𝑢𝑚 𝑜𝑓 𝑡𝑜𝑡𝑎𝑙 𝑙𝑖𝑛𝑘 𝑤𝑒𝑖𝑔ℎ𝑡 𝑖𝑛 𝐺𝑒𝑛𝑒 𝑃𝑜𝑜𝑙
 

𝐶𝑜𝑚𝑝𝑙𝑒𝑥𝑖𝑡𝑦(𝐺𝑒𝑛𝑒 𝑃𝑜𝑜𝑙)

=
𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝐴𝑐𝑡𝑢𝑟𝑎𝑙 𝐿𝑖𝑛𝑘𝑠 𝑖𝑛 𝐺𝑒𝑛𝑒 𝑃𝑜𝑜𝑙

𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑃𝑜𝑠𝑠𝑖𝑏𝑙𝑒 𝐿𝑖𝑛𝑘𝑠 𝑖𝑛 𝐺𝑒𝑛𝑒 𝑃𝑜𝑜𝑙
 

Eq. (5-1) 

 

𝛿𝑚(𝐼𝑃𝐶 𝑐𝑜𝑑𝑒𝑘 , 𝐼𝑃𝐶 𝑐𝑜𝑑𝑒𝑙) is a co-occurrence function and has a value of 1 if patent 

𝑍𝑚𝑡 simultaneously has both 𝐼𝑃𝐶 𝑐𝑜𝑑𝑒𝑘 and 𝐼𝑃𝐶 𝑐𝑜𝑑𝑒𝑙, and 0 otherwise. Therefore, the 

gene pool has a higher link weight when different IPC codes are technologically related, 

and emerge concurrently in many patents. The relatedness 𝝋𝒌𝒍  is defined as the link 

weight between the two IPC codes for the total in the gene pool. In addition, the spatial 

complexity of the gene pool is measured by network density, which is the number of links 

formed divided by the number of all possible links. The more complex the network, the 

more links it has and the higher its value (Furht, 2010). 
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Operational definitions for the three search patterns are as follows.  

 

𝛷𝑗 = Ancestor Taxon of 𝐶𝑗𝑡 

𝐺𝑒𝑛𝑒 𝑃𝑜𝑜𝑙(𝑉, 𝐸), 𝑉 ∈ 𝛷𝑗 

𝐼𝑃𝐶 𝑐𝑜𝑑𝑒𝑉𝐼 = {𝐼𝑃𝐶 𝑐𝑜𝑑𝑒|𝐼𝑃𝐶 𝑐𝑜𝑑𝑒 ∈  𝑍𝑖𝑡   𝑎𝑛𝑑 𝐼𝑃𝐶 𝑐𝑜𝑑𝑒 ∈ 𝛷𝑗 } 

𝑽𝑰 𝑺𝒆𝒂𝒓𝒄𝒉 (𝑍𝑖𝑡)

=
∑ ∑ (∑ 𝑦𝑖

𝑉𝐼𝝋
𝒌𝒍

𝛷𝑗𝑦𝑚𝐼𝑃𝐶 𝑐𝑜𝑑𝑒𝑙∈𝑍𝑚𝑡
)𝑍𝑚𝑡∈𝐶𝑗𝑡,𝑍𝑚𝑡≠𝑍𝑖𝑡𝐼𝑃𝐶 𝑐𝑜𝑑𝑒𝑘

𝑉𝐼

𝐶𝑜𝑚𝑝𝑙𝑒𝑥𝑖𝑡𝑦(𝐺𝑒𝑛𝑒 𝑃𝑜𝑜𝑙)
 

𝑦𝑖
𝑉𝐼 =

1

𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝐼𝑃𝐶 𝑐𝑜𝑑𝑒𝑉𝐼  𝑖𝑛 𝑍𝑖𝑡
 

𝑦𝑚 =
1

𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝐼𝑃𝐶 𝑐𝑜𝑑𝑒  𝑖𝑛 𝑍𝑚𝑡
 

Eq. (5-2) 

 

Equation (5-2) shows the Vertical Inheritance (VI) search for patent 𝑍𝑖𝑡. The gene pool 

was constructed using the IPC codes of the direct ancestor (𝛷𝑗) of taxon 𝐶𝑗𝑡 where 𝑍𝑖𝑡 

exists. VI search is measured by counting IPC codes inherited from the direct ancestors 

(𝐼𝑃𝐶 𝐶𝑜𝑑𝑒𝑉𝐼) and IPC code combinations that can form with other patents 𝑍𝑚𝑡 existing 

in the same taxon 𝐶𝑗𝑡 (𝐼𝑃𝐶 𝑐𝑜𝑑𝑒𝑘
𝑉𝐼 , 𝐼𝑃𝐶 𝑐𝑜𝑑𝑒𝑙). For each pair, the relatedness 𝝋𝒌𝒍

𝐺𝑒𝑛𝑒 𝑃𝑜𝑜𝑙 

and share of each IPC code in each patent (𝑦𝑖
𝑉𝐼 , 𝑦𝑚) are given as weights. Lastly, the more 

complex the gene pool, the more difficult it is to search; therefore, it is divided according 

to the complexity of the gene pool.  
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𝛷𝑗
c = Neighbor Ancestor Taxa of 𝐶𝑗𝑡 

𝐺𝑙𝑜𝑏𝑎𝑙 𝐺𝑒𝑛𝑒 𝑃𝑜𝑜𝑙(𝑉, 𝐸), 𝑉 ∈ 𝛷𝑗
𝑐 

𝐼𝑃𝐶 𝑐𝑜𝑑𝑒𝐻𝐺𝑇 = {𝐼𝑃𝐶 𝑐𝑜𝑑𝑒|𝐼𝑃𝐶 𝑐𝑜𝑑𝑒 ∈  𝑍𝑖𝑡 , 𝛷𝑗
𝑐    𝑎𝑛𝑑 𝐼𝑃𝐶 𝑐𝑜𝑑𝑒

∉ 𝛷𝑗  } 

𝑯𝑮𝑻 𝑺𝒆𝒂𝒓𝒄𝒉 (𝑍𝑖𝑡)

=
∑ ∑ (∑ 𝒚𝒊

𝐻𝐺𝑇𝝋
𝒌𝒍

𝜱𝒋
𝒄

𝒚𝒎𝑰𝑷𝑪 𝒄𝒐𝒅𝒆𝒍∈𝒁𝒎𝒕
)𝑍𝑚𝑡∈𝐶𝑗𝑡,𝑍𝑚𝑡≠𝑍𝑖𝑡𝑰𝑷𝑪 𝒄𝒐𝒅𝒆𝒌

𝑯𝑮𝑻

𝐶𝑜𝑚𝑝𝑙𝑒𝑥𝑖𝑡𝑦(𝐺𝑙𝑜𝑏𝑎𝑙 𝐺𝑒𝑛𝑒 𝑃𝑜𝑜𝑙)
 

𝑦𝑖
𝐻𝐺𝑇 =

1

𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝐼𝑃𝐶 𝑐𝑜𝑑𝑒𝐻𝐺𝑇  𝑖𝑛 𝑍𝑖𝑡
 

𝑦𝑚 =
1

𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝐼𝑃𝐶 𝑐𝑜𝑑𝑒  𝑖𝑛 𝑍𝑚𝑡
 

Eq. (5-3) 

 

Equation (5-3) shows the Horizontal Gene Transfer (HGT) search for patent 𝑍𝑖𝑡. There 

were two differences between HGT and VI. The first is that HGT uses a global gene pool 

that excludes the direct ancestor (𝛷𝑗
𝑐), and the other is the IPC code of 𝑍𝑖𝑡, which exists in 

the prior generation but does not exist in the direct ancestor (𝐼𝑃𝐶 𝑐𝑜𝑑𝑒𝐻𝐺𝑇). 

 

𝐼𝑃𝐶 𝑐𝑜𝑑𝑒𝑀𝑇 = {𝐼𝑃𝐶 𝑐𝑜𝑑𝑒|𝐼𝑃𝐶 𝑐𝑜𝑑𝑒 ∈  𝑍𝑖𝑡   𝑎𝑛𝑑 𝐼𝑃𝐶 𝑐𝑜𝑑𝑒

∉ 𝛷𝑗, 𝛷𝑗
𝑐  } 

𝑴𝑻 𝑺𝒆𝒂𝒓𝒄𝒉 (𝑍𝑖𝑡)

=
∑ ∑ (∑ 𝑦𝑖

𝑀𝑇𝜑𝑘𝑙

𝛷𝑗
𝑐

𝑦𝑚𝐼𝑃𝐶 𝑐𝑜𝑑𝑒𝑙 ∈𝑍𝑚𝑡
)𝑍𝑚𝑡∈𝐶𝑗𝑡,𝑍𝑚𝑡≠𝑍𝑖𝑡𝐼𝑃𝐶 𝑐𝑜𝑑𝑒𝑘

𝑀𝑇

𝐶𝑜𝑚𝑝𝑙𝑒𝑥𝑖𝑡𝑦(𝐺𝑙𝑜𝑏𝑎𝑙 𝐺𝑒𝑛𝑒 𝑃𝑜𝑜𝑙)
 

Eq. (5-4) 
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𝑦𝑖
𝑀𝑇 =

1

𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝐼𝑃𝐶 𝑐𝑜𝑑𝑒𝑀𝑇  𝑖𝑛 𝑍𝑖𝑡
 

𝑦𝑚 =
1

𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝐼𝑃𝐶 𝑐𝑜𝑑𝑒  𝑖𝑛 𝑍𝑚𝑡
 

 

Equation (5-4) shows the mutation (MT) search for patent 𝑍𝑖𝑡. The global gene pool 

is used for MT, similar to HGT; however, the IPC code of 𝑍𝑖𝑡  has not existed before 

(𝐼𝑃𝐶 𝑐𝑜𝑑𝑒𝑀𝑇).  

In addition, there are cases where IPC code pairs that are combined exist in the gene 

pool but do not form a link. There are also cases where the same IPC code pairs existing in 

different patents are combined. In the first case, although it has never had a technological 

combination, we considered it to be in the gene pool as a candidate for a combination, and 

relatedness was calculated by assigning the minimum value of technological relevance in 

the gene pool. In the second case, the maximum value of technological relevance within 

the same gene pool was used as the relatedness value. 

Finally, to measure the search in each trajectory, the value of individual patents was 

measured using Equation (5-2), (5-3), and (5-4), and an average value was then derived as 

Equation (5-5). 

 

𝑆𝑒𝑎𝑟𝑐ℎ(𝐶𝑗𝑡) =
∑ 𝑆𝑒𝑎𝑟𝑐ℎ (𝑍𝑖𝑡)𝑍𝑖𝑡∈𝐶𝑗𝑡

𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑝𝑎𝑡𝑒𝑛𝑡𝑠 𝑖𝑛 𝐶𝑗𝑡
 Eq. (5-5) 
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5.2.3 Regression Analysis 

Technological diversity changes depending on the elements of the technology that are 

explored (Carignani et al., 2019; Song et al., 2019). If a dominant design is formed in an 

industry, technology pursues incremental innovation (Lin et al., 2021), which is a gradual 

innovation pattern that inherits and deepens the technology of direct ancestors (VI). Thus, 

under these conditions, technological diversity stagnates or diminishes (Anderson & 

Tushman, 1990; Suarez et al., 2015). 

However, when a dominant design is not formed, or a new dominant design needs to be 

created, technologies compete to produce the dominant design of the next era (Anderson & 

Tushman, 1990; Suarez et al., 2015). The dominant design is a technology that differs from 

existing technologies. Therefore, it is derived by introducing an innovation that is not in 

the existing technology (MT) or by finding a new combination of related technologies 

(HGT). In this case, the technological diversity in existing industries increases with new 

combinations (Carignani et al., 2019; Wagner and Rosen, 2014).  

Regression analysis is conducted to quantitatively verify the mechanism of diversity 

dynamics. The dependent variable in the regression model is the entropy of taxon 

representing the technological diversity, whereas the explanatory variables are three 

patterns of technological search: VI, HGT, and MT. In addition, gene pool size, global gene 

pool size, and the total number of patents in the taxon are used as control variables.  
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As demonstrated in Equation (5-6), a mixed regression model was constructed with 

technological search as a fixted effect and year as a random effect. The purpose of a mixed 

regression model is to reflect the influence of exogeneous factors that may exist between 

years in the analysis of longitudinal data (Faraway, 2016). 

 

 𝑇𝐷𝑗𝑡 = 𝛽0 + 𝛽1𝑉𝐼𝑗𝑡 + 𝛽2𝐻𝐺𝑇𝑗𝑡 + 𝛽3𝑀𝑇𝑗𝑡

+ ∑ 𝛽𝑘  𝐶𝑜𝑛𝑡𝑟𝑜𝑙 𝑉𝑎𝑟𝑖𝑎𝑏𝑙𝑒𝑠𝑘

𝑘

+ 𝛾0
𝑡 + 𝜀𝑗𝑡 

Eq. (5-6) 

 

Where, j is the index of the taxon, t is the year of each taxon, and ε is an error term. 𝛾0
𝑡 

is the random effect of year t. The definition of variables is listed in Table 5-1.  

 

Table 5-1. Definition of variables 

Variables Description Proxy 

Dependent 

Variable 
 𝑇𝐷𝑗𝑡  Entropy of Taxon 

Technological 

diversity 

Independent 

Variables 

𝑉𝐼𝑗𝑡  Vertical Inheritance of Taxon 

The degree 

of search 
𝐻𝐺𝑇𝑗𝑡 

Horizontal Gene Transfer of 

Taxon 

𝑀𝑇𝑗𝑡  Mutation of Taxon 

Control 

Variables 

∑ 𝛽𝑘  𝐶𝑜𝑛𝑡𝑟𝑜𝑙 𝑉𝑎𝑟𝑖𝑎𝑏𝑙𝑒𝑠𝑘

𝑘

 

Gene Pool Size 

Global Gene Pool Size 

Number of patents in Taxon 

- 
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5.3 Technological Search as the Driver of Diversity Dynamics 

5.3.1 Changes of Search Patterns on Evolutionary 

Trajectories 

In this section, we observe the dynamics of search for the major technological 

trajectories that evolve from root to [2018_1], [2018_2], and [2018_3]. Each trajectory 

represents the first-generation ([2018_2]), the mixture of first and second-generation 

([2018_1]), and third-generation ([2018_3]) technologies existing in 2018. To demonstrate 

the relationship with technological diversity, this section presents the diversity dynamics 

resulted from Chapter 4, along with the search patterns for each trajectory. The time-

varying measures of technological diversity and search across the three trajectories are 

shown below33.   

 

 

Figure 5-2. Diversity and search in 1st generation (Root – 2018_2 taxon) over time  

 

 
33 The result is applied the 3 Simple Moving Average method to express a smooth trend. 
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Figure 5-2 shows the results of the [2018_2] trajectory, representing the evolution of 

first-generation technologies. The black dotted line represents the average change in 

diversity of all taxa in the phylogenetic tree. The grey dotted line represents the diversity 

of the [2018_2] trajectory. In the case of first-generation technology, diversity was lower 

than the average of all technologies before 2011 and showed a stagnant trend without a 

significant increase. This is because VI was the dominant search in this trajectory until 

2011, which is related to the dominant design of Al-BSF cells. However, the diversity 

shows rapid growth after 2011, which is due to the discovery of new technological 

combinations through HGT in the late 2000s during the industrial slump. Recently, VI has 

reduced, and HGT and MT have not occurred in this trajectory with the diversity of first-

generation technologies decreasing since 2015. In other words, in the case of first-

generation technology, technological diversity should be promoted by trying new 

technology combinations utilizing other technologies. 

 

 

Figure 5-3. Diversity and search in 1st & 2nd generation (Root – 2018_1 taxon) over time 
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Figure 5-3 shows the trajectory from Root to the [2018_1] Taxon, which consists of a 

mix of first and second-generation technologies. In the case of the trajectory, with the 

exception of the early 2000s, the diversity was higher than the average for photovoltaic 

technology. In addition, compared to the first-generation technology, which was mostly VI, 

it showed a high level of MT at first, and both HGT and MT occurred steadily until the 

early 2010s. This implies that unlike first-generation technologies, technological 

development began with the introduction of new technologies and continued until the early 

2010s, through constant searching for new combinations of technologies. 

Historically, to implement lab-scale technology for industrial use, first-generation 

technology has applied second-generation technology. In particular, as the thickness and 

size of wafers becomes thinner and larger, the formation of thin-film for surface passivation 

has become increasingly important. This is reflected in the patterns of the MT and HGT in 

the trajectory. 

In 2018, however, the diversity in this trajectory was stagnant at a high level. This is 

because of competitions between various technologies and the market selection to derive 

the new dominant technology design (Anderson & Tushman, 1990; Lin et al., 2021). 

Therefore, for first and second-generation mixed technologies, now is the time to focus on 

deriving a new dominant design by deepening the existing technology through VI, rather 

than seeking additional improvement in diversity. 
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Figure 5-4. Diversity and search in 3rd generation (Root – 2018_3 taxon) over time 

 

Figure 5-4 shows the trajectory of [2018_3] composed of third-generation technologies. 

This trajectory was the same as that of [2018_1], but after speciation in 2008, technological 

diversity showed decreasing and stagnating patterns. The third-generation technology 

describes similar patterns of diversity as the first and second-generation mixture 

technologies, that is, a stagnant trend. However, it remains at a lower level than the average 

for photovoltaic technological diversity. Therefore, the current mission of third-generation 

technology is to enhance technological diversity through the introduction and combination 

of new technologies.  

In this section, it is confirmed that the dynamics on diversity and search patterns 

observed in the major trajectories of evolutionary phylogenetic tree corresponds well to the 

developmental history of first-, second-, and third-generation photovoltaic technologies. 

Therefore, the results validate the appropriateness of the measures proposed in this study. 



136 

 

5.3.2 Relation between Diversity Dynamics and Technological 

Search 

In this section, the mechanism of diversity dynamics for searching is revealed through 

the results of the regression model constructed in Section 5.2.3. 

 

Table 5-2. Descriptive summary and correlation coefficients for variables 

Variable Obs Mean S.D. 1. 2. 3. 4. 5. 6. 7. 

𝑇𝐷𝑗𝑡 103 1.69 1.07 1.00 0.29 0.10 -0.10 0.69 0.55 0.69 

𝑉𝐼𝑗𝑡 103 11.49 14.42  1.00 0.21 -0.13 0.16 0.29 0.60 

𝐻𝐺𝑇𝑗𝑡 103 0.66 1.78   1.00 0.37 -0.15 -0.15 0.048 

𝑀𝑇𝑗𝑡 103 1.85 7.94    1.00 -0.13 -0.24 
-

0.086 

Gene Pool Size 103 26.04 33.08     1.00 0.40 0.67 

Global Gene 

Pool Size 
103 65.41 49.22      1.00 0.37 

Number of 

patents in Taxon 
103 59.43 82.62       1.00 

 

Table 5-2 presents the basic statistics and correlation coefficients of the variables. An 

interesting fact found in Table 5-2 is that HGT is the least common search method in 

photovoltaic technology. This implies that photovoltaic technologies have developed 
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mainly by deepening existing technologies (VI) or introducing new technologies (MT), not 

present in previous trajectories, while innovation through convergence of existing 

trajectories is lacking. 

The correlation analysis between the variables shows that the explanatory variables VI, 

HGT, and MT have low correlation coefficients of 0.4 or less, indicating that there is no 

multicollinearity problem. However, for the control variables, such as size, we observe that 

their correlation with other variables is higher than 0.6. To check whether this level of 

correlation could introduce error into the regression analysis, a variance inflation factor 

(VIF) analysis is performed. VIF analysis is a method of measuring the level of correlation 

between variables by performing a regression analysis with a specific variable as the 

dependent variable and the remaining variables as explanatory variables. 

 

Table 5-3. Result of variance inflation factor analysis 

Variable VIF 

Intercept 1.000 

Entropy 3.202 

VI 2.230 

HGT 1.474 

MT 1.260 

Gene_pool_size 2.726 

Global_Gene_pool_size 1.696 

Size 3.420 
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The results of VIF analysis are described in Table 5-3. The Size variable has the highest 

VIF value of 3.420. Generally, a VIF value of less than 10 is considered to be free of 

multicollinearity issues; therefore, multicollinearity is not an issue in this study. 

 

Table 5-4. Results of the regression 

Dependent variable: 

Entropy  
Model 1 Model 2 Model 3 Model 4 

Intercept 
-0.00 

(0.082) 
-0.00 

(0.082) 
-0.00 

(0.084) 
-0.01 

(0.085) 

Vertical Inheritance of 

Taxon 

-0.15 
(0.081) 

- - 
-0.22** 
(0.077) 

Horizontal Gene Transfer 

of Taxon 
- 

0.20*** 
(0.058) 

- 
0.24*** 
(0.060) 

Mutation of Taxon - - 
0.066 

(0.065) 
-0.020 
(0.064) 

Gene Pool Size 
0.26** 
(0.091) 

0.38*** 
(0.080) 

0.33*** 
(0.083) 

0.28*** 
(0.054) 

Global Gene Pool Size 
0.31*** 
(0.079) 

0.31*** 
(0.078) 

0.29*** 
(0.081) 

0.35*** 
(0.081) 

Number of patents in 

Taxon 

0.52*** 
(0.10) 

0.33*** 
(0.077) 

0.39*** 
(0.080) 

0.51*** 
(0.096) 

Number of Obs. 103 103 103 103 

Likelihood -99.35 -95.68 -100.77 -95.32 

Notes:  

1. Standard errors are in parentheses. 

2. ***, **, and *denote statistical significance at the 0.1%, 1%, and 5%levels, respectively. 

3. bold denote statistical significance at the 0.1%, 1%, and 5%levels 
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Table 5-4 presents the results of the regression analysis. Models 1, 2, and 3 were 

analyzed by considering only one explanatory variable, VI, HGT, and MT, respectively. 

Model 4 was analyzed by considering all three explanatory variables. Diversity showed a 

statistically significant negative (-) relationship with VI, a statistically significant positive 

(+) relationship with HGT, and no statistically significant relationship with MT. The same 

result was derived from Model 4, which analyzed all three searches by integration.  

According to the results, VI search reduced the diversity level. Because VI is a gradual 

innovation pattern that selects superiority among various technologies and passes them on 

to the next generation, it only maintains and improves the technological composition of the 

ancestors. 

 However, HGT searches increase diversity. In Models 2 and 4, the HGT showed a 

statistical significance level of 0.1%. This result emphasizes the importance of 

combinatorial innovation, which finds new combinations of existing technologies in the 

same industry but in different trajectories.  

Interestingly, MT search had no significant effect on enhancing diversity. The results 

imply that the introduction of new technology, not previously active in the industry, does 

not “immediately” affect technological diversity. Specifically, a new technology does not 

affect diversity by simply being introduced. However, after being introduced, it survives in 

the technology space and affects diversity through VI based on direct ancestors or HGT 

based on neighboring ancestors. 

The results of the control variable showed that the greater the genetic pool of ancestors, 
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that is, the technology space whether direct or neighboring, the higher the diversity level 

of descendants. This is because the greater the space for searching for diverse technologies, 

the greater the possibility of generating various combinations. 

The robustness of the mixed effects regressions presented in this chapter is checked by 

adding both period dummy variables and the interaction terms between period and 

technological search in pooled ordinary least squares (OLS). The robustness checks show 

that even with the heterogeneous effects of year, the effects of VI, HGT, and MT’s 

technology search patterns on technology diversity are consistent with the original model. 

In addition, the interaction of period and technological search is not significantly related to 

technological diversity. This suggests that the relationship between diversity and 

technological search derived from this study is independent of the effects of time of year, 

such as the life cycle of an industry or technology and is an endogenous determinant of 

technological diversity unaffected by exogenous changes. Details of the robustness checks 

are provided in Appendix Ⅰ. 

To summarize, technological diversity is affected by the patterns of technological search, 

and the level of diversity in descendants is proportional to the genetic space of their 

ancestors. Search by vertical inheritance patterns reduces the level of diversity while search 

by horizontal gene transfer patterns increases it. In addition, search by mutation patterns 

has no significant effect. These results are independent of time or external effects, 

indicating that technological search is an internal driver of technological diversity. The 

results suggest that the search for new combinations of technologies, leveraging new 
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technological elements from neighboring ancestors that can be identified through 

technological phylogenetic tree, is the principle of increasing technological diversity. 

 

5.4 Sub-conclusion 

This study investigates the diversity dynamics of photovoltaic technology on 

technological search from an evolutionary perspective. Three search patterns, namely 

vertical inheritance (VI), horizontal gene transfer (HGT), and mutation (MT), were 

hypothesized as drivers of diversity dynamics and empirically tested on an evolutionary 

phylogenetic tree. 

To this end, a dataset of 8,081 photovoltaic technology patents filed and granted with 

the US Patent and Trademark Office (USPTO) from 2000 to 2018 is constructed, and the 

IPC code of the patents is used as a proxy for photovoltaic technology. In addition, this 

study proposes quantitative measures of technology diversity and technological search 

patterns along the photovoltaic technology phylogenetic tree. The relationship between 

diversity dynamics and technological search is derived through regression analysis. The 

results are summarized as follows: 

First, VI is the main search pattern in photovoltaic technology, while HGT is minor. 

This means that photovoltaic technology has mainly pursued gradual innovation within the 

technology trajectory formed by the sub-technology itself. Correspondingly, there has been 

a lack of innovation in trying to find new technology combinations through convergence 

between existing sub-technologies. 
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Second, the results of the regression analysis show that VI decreases the level of 

diversity, while HGT increases it. This implies that in order to promote technological 

diversity, a new combination of technologies should be developed using relevant 

technologies in the industry. In addition, MT has a statistically insignificant effect on 

diversity. In other words, a newly introduced technology in the technology space should 

first survive and then affect diversity through VI and HGT. The results of the control 

variables confirm that the greater the technological range of ancestors, whether immediate 

or neighbors, the higher the level of diversity in their descendants. Furthermore, the 

relationship between technological diversity and technological search patterns is 

independent of temporal or external factors. 

Figure. 5-5 summarizes the result on the dynamic mechanism of technological diversity. 

Technological diversity increases significantly with the recombination of technologies 

from neighboring ancestors that can be identified in the evolutionary phylogenetic tree of 

technology. 

 

 

Figure 5-5. The mechanism of diversity dynamics on technological search 
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In the case of photovoltaic technology, governments have recognized that demand-

driven policies in the early 2000s led to the technological lock-in of crystalline silicon 

photovoltaic cells and are working to reduce barriers between technologies to overcome 

current technological challenges (e.g., Shockley-Queisser limit 34 ). For example, the 

photovoltaic cell part of South Korea’s “Alchemist” project, which previously presented 

research challenges in technology groups such as crystalline silicon photovoltaic cells or 

thin-film photovoltaic cells35, now presents end goals such as “solar cells that overcome 

the theoretical limit efficiency of 35% or more” or “glass window-type transparent solar 

cells” without detailed technological restrictions. This indicates a willingness to allow 

technological convergence and innovation. This technological inclusiveness is expected to 

lead to an increase in technological diversity. 

The finding in this chapter points to a strategic approach for success in such endeavor: 

the principle of generating technological diversity identified in this study is to recombine 

with other technologies within the scope of technological relevance and gradually expand 

the space for evolution. Therefore, the direction for photovoltaic technology to expand 

technological possibilities beyond the existing barriers and for further development is to 

create combinatorial innovation through recombination within the range of accumulated 

technologies in the photovoltaic space. Specific proposals for this are discussed in Chapter 

7. 

 
34 Also known as the radiative efficiency limit in physics. It is the maximum theoretical efficiency of a 

photovoltaic cell with a single p-n junction. 
35 For example, the new task of the Climate Change Response Technology Development Project in 2015 is 

“Development of non-silicon-based next-generation thin-film solar cell source technology.” 
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Chapter 6. Organizational Routine to the 

Diversity Dynamics of Technology 

6.1 Derivation of Organizational Routine by Multi-dimensional 

Behaviors 

At the micro level of the economy, differences are observed in each of the various 

dimensions that describe firms such as size, age, structure, strategy, and performance 

(Hoopes & Madsen, 2008; Rumelt et al., 1994). In other words, firms are heterogeneous, 

and they react differently to the same situations and conditions and are differentially 

affected by change (Becker & Knudsen, 2017; Kirman, 1992). Firm heterogeneity36 has 

significant implications for the change and development of social, economic, and 

innovation systems (Hoopes & Madsen, 2008; Nelson, 1991a; Nelson, 1995; Wagner, 

2011). 

Technology is as a recipe. The same technology (or technology elements) can produce 

different results depending on the recipe, which in tern relies on the actor’s ability to 

execute the recipe (Baldwin & Clark, 2000; Dosi & Nelson, 2010). Firms with their own 

routines behave differently and generate performance based on bounded rationality. 

Consequently, heterogeneity persists in an economy as well as technological diversity 

generates (Dosi & Nelson, 2010). 

 
36 Heterogeneity in evolutionary economics refers to the state in which differences exist within a group 

(Nelson, 1991b, 2007; Saviotti, 1991). 



145 

 

From the evolutionary economics perspective, the firm theory uses a firm’s 

organizational routine, not the firm itself, as the basic unit for understanding the firm37. 

Routines are repetitive patterns of organizational behavior (Dosi et al., 2000; Feldman & 

Pentland, 2003; Geels, 2014; Nelson & Winter, 1982; Winter, 1988). Heterogeneous firm 

and its behavior to generate technological diversity is explained by its routine, and can be 

understood through its routine and how it changes over time (Dosi & Nelson, 2010). 

Therefore, identifying firm heterogeneity and the organizational routines underlying it is a 

prerequisite to understanding the mechanisms of technological diversity dynamics for 

actors.  

Evolutionary economics considers routine through the lens of capabilities (Baldessarelli 

et al., 2022; Parmigiani & Howard-Grenville, 2011). Routines are a type of black-box entity 

that runs in the subconscious realm of a firm and leads to tangible results (Cohen & 

Bacdayan, 1994; Dosi et al., 2000; Nelson, 1995). Scholars have built a theoretical 

foundation for routines in terms of “what” and “why,” and explored the impact of routines 

on firms’ performance (Baldessarelli et al., 2022; Pharmigiani & Howard-Grenville, 2011). 

However, to the best of our knowledge, few studies have directly measured and identified 

the routines of individual firms. The difficulty of empirical research on routines is that 

routine is a concept with a high level of complexity in an abstract form that is latent in the 

 
37 In evolutionary economics, the firm theory is the dynamic research of the generation, growth, and 

extinction of heterogeneous firms. Through a non-reductional approach, firms, which are goal-oriented 

organizations, are considered distinct from individuals (Herrmann-Pillath, 2002). Evolutionary economics 

considers the actual and observable behavior of firms, and places technological and organizational innovation 

at the center (Winter, 1988). 
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firm. This makes it difficult to construct a database for empirical analysis and define basic 

empirical operations such as comparisons (Pentland et al., 2010). 

Based on the proposed concept of routines in Figure 2-1, this study uses observable 

firm behavior as data for empirical research on routine. Then, with two major originalities, 

we quantify and categorize innovation routines to present a qualitative indicator of firm 

heterogeneity. The first is a multidimensional approach to routines, as they have a high 

level of complexity in producing satisfactory performance (Cattani & Malerba, 2021). 

Recent economic studies have embraced a multidimensional approach to explain the 

complexity inherent in socioeconomic phenomena (Stojkoski et al., 2023). In addition, 

integrated results are derived by combining various data on economic activities, such as 

transactions (trade data), technology development (patent data), and production (product 

data) (Stojkoski et al., 2023). This study adopts a two-dimensional approach to a firm’s 

Knowing and Doing to quantitatively measure an innovation routine, and uses patent and 

product data, respectively. 

The key conceptual advantage of routine research is that it links the competitive 

dynamics of an industry with the nature of the firm-level processes of search and adaptation 

(Cattani & Malerba, 2021; Gavetti & Levinthal, 2004). Routines have context-specificity 

(Cohen et al., 1996; Pisano & Teece, 1994; Teece et al., 1997); therefore, it is necessary to 

consider the sectoral regime to connect routines and industrial dynamics, because there is 

a firm-level routine for an industry in a homogenous environment. The second is to measure 

organizational routines using the concepts of exploration and exploitation in each 
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dimension of Knowing and Doing, and to compare them relatively within the sectoral 

regime. Specifically, a firm’s willingness for novelty38 was identified as an indicator of 

exploration and exploitation, and innovation routines were classified into four types 

through a relative comparison between firms: active pioneers, efficient optimizers, adaptive 

adventurers, and passive observers. 

 

6.2 Research Framework to Identify Organizational Routines 

6.2.1 Innovation Routine via Innovation Behaviors: Knowing 

and Doing 

The routine to be identified in this study is limited to a firm’s innovation routine. Based 

on Schumpeter’s definition of innovation as “the realization of a new union” 39 

(Schumpeter, 1911; 159) the innovation routine is defined as a recurrent behavioral pattern 

for an organization to realize a new combination. As the routine inherent in a firm does not 

appear on the surface, it is approached through the observable behavior of a firm derived 

from the routine. 

Based on the concept of routine presented in Figure 2-1, this study derives the routine 

𝒙𝒄 by taking the inverse of the behavior of firm c at time t, 𝒚𝒄,𝒕 (Figure 6-1). Specifically, 

 
38 This term is based on Schumpeter’s definition of innovation, that is the realization of a new combination 

(Schumpeter, 1934).  
 
39 The definition of innovation as a new combination is generally known as Schumpeter's theory although its 

basic idea is much older. Adam Smith describes those engaged in what we today call R&D&I as “often 

capable of combining together the powers of the most distant and dissimilar objects (Smith 1976; I.i.9)”. 

Marx also explicitly used the expression “new combination” (Marx, 1959;255) in Das Kapital (1959)’s 

discussion of the role of technological progress (Kurz, 2012). 
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the firm’s innovation routine 𝒙𝒄
𝑰𝒏𝒏𝒐𝒗𝒂𝒕𝒊𝒐𝒏 is derived from its behavior to generate a new 

technological combination, 𝒚𝒄,𝒕
𝑰𝒏𝒏𝒐𝒗𝒂𝒕𝒊𝒐𝒏. 

 

 

Figure 6-1. Identification of innovation routines through behavior 

 

A firm’s innovation behavior is divided into Knowing and Doing. In this study, Knowing 

is a behavior for what to know, and is an innovation in technology development. Doing’ is 

a behavior for what to do, and is an implementation of technological innovation through 

product development. The innovation routine of a firm is expressed in two dimensions, 

Knowing and Doing, as in the following formula in Equation (6-1): 

 

Innovation = (Knowing, Doing) 

𝒙𝒄
𝑰𝒏𝒏𝒐𝒗𝒂𝒕𝒊𝒐𝒏 = ([𝒇𝒕

−𝟏(𝒚𝒄,𝒕
𝑲𝒏𝒐𝒘𝒊𝒏𝒈

)] , [𝒇𝒕
−𝟏(𝒚𝒄,𝒕

𝑫𝒐𝒊𝒏𝒈
)]) 

= (𝒙𝒄
𝑲𝒏𝒐𝒘𝒊𝒏𝒈

, 𝒙𝒄
𝑫𝒐𝒊𝒏𝒈

) 

∴  𝒙𝒄
𝑰𝒏𝒏𝒐𝒗𝒂𝒕𝒊𝒐𝒏= (𝒙𝒄

𝑲𝒏𝒐𝒘𝒊𝒏𝒈
, 𝒙𝒄

𝑫𝒐𝒊𝒏𝒈
) 

Eq. (6-1) 
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6.2.2 Measuring the Willingness for Novelty: Exploration and 

Exploitation 

This study observes a firm’s willingness for novelty in generating new technological 

combinations to derive innovation routines from Knowing and Doing. The degree of 

willingness for novelty uses the concepts of exploration and exploitation as indicators. 

The continuous survival and growth of a firm depend on its ability to explore new 

possibilities and exploit old certainties (Kuran, 1988; March, 1991). Specifically, a firm’s 

innovation activities are the result of choosing either the “exploration” of opportunities 

through new knowledge or technology in a future-oriented way, or the “exploitation” of 

existing knowledge, products, and services based on the past (Farjoun, 2010; Smith et al., 

2010). 

The concepts and mechanisms of exploration and exploitation were presented by March 

(1991) in the field of organizational theory. He provided various concepts related to 

exploration and exploitation and broadly defined them. Exploration was described by him 

as search, variation, risk-taking, experimentation, play, flexibility, discovery, and 

innovation. And is the “pursuit of new knowledge,” Exploration is an activity in which a 

firm expands its future competencies by adding external novelty to knowledge, resources, 

and capabilities (Nooteboom, 2000), and searching for unfamiliar spaces (Cattani & 

Malerba, 2021). 

On the other hand, exploitation is the “use of the already known,” such as refinement, 

choice, production, efficiency, selection, implementation, and execution (March, 1991). 
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Exploitation is an activity that refines existing capabilities, technologies, and paradigms by 

recombining existing ones or adding existing and external ones (Nooteboom, 2000), and 

searching for spaces already known to innovators (Cattani & Malerba, 2021). 

Therefore, the concepts of exploration and exploitation are comprehensive. As a result, 

exploration and exploitation are used in various fields such as technological innovation, 

management strategy, and organizational learning (e.g., Auh & Menguc, 2005; Benner & 

Tushman, 2003; Bierly & Daly, 2007). Table 6-1 summarizes some of the concepts of 

exploration and exploitation defined in previous studies. 
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Table 6-1. Definition of exploration and exploitation 

Articles Exploration Exploitation 

Benner & 

Tushman, 

2003 

radical innovations or those for 

emergent customers or markets are 

exploratory, since they require new 

knowledge or departures from 

existing skills 

incremental technological 

innovations and innovations designed 

to meet the need of existing 

customers are exploitative and build 

upon existing organizational 

knowledge. 

He & Wong, 

2004 

technological innovation activities 

aimed at entering new product-

market domains 

technological innovation activities 

aimed at improving existing product-

market positions 

Rothaermel & 

Deeds, 2004 

exploration alliances are entered into 

with the motivation to discover 

something new; they focus on the ‘R’ 

in the research and development 

process 

exploitation alliances focus on the 

‘D’ in the R&D and are entered into 

with the goal to join existing 

competencies across organizational 

boundaries to make synergies 

Auh & 

Menguc, 2005 

exploration is concerned with 

challenging existing ideas with 

innovative and entrepreneurial 

concepts 

exploitation is chiefly interested in 

refining and extending existing skills 

and capabilities 

Lavie & 

Rosenkopf, 

2006 

search, variation, risk taking, 

experimentation, play, flexibility, 

discovery, innovation 

refinement, choice, production, 

efficiency, selection, implementation, 

execution 

Bierly & Daly, 

2007 

the creation or acquisition of new 

knowledge 

the ability to leverage existing 

knowledge to create new 

organizational products and processes 

Lin et al., 

2007 

adaptation(exploration) attaches 

importance to adaptive mechanisms 

that call for experimentation, 

variation, search, and innovation 

alignment(exploitation) enables firms 

to engage in refinement, 

implementation, efficiency, and 

production 

Bierly et al., 

2009 

exploration refers to the application 

of external knowledge to produce 

new products and technologies 

exploitation refers to the application 

of the external knowledge to refine 

the organization’s existing products 

and improve its processes 
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Exploration and exploitation are in a paradoxical relationship, interrelated by an 

organization’s ambidexterity to respond and adapt to environmental change (Benner & 

Tushman, 2003; Raisch & Zimmermann, 2017; Smith & Lewis, 2011). Recent studies 

explain that exploration and exploitation are complementary forces that tend to reinforce 

each other when they occur simultaneously over time (Raisch et al., 2009), but have a trade-

off in terms of resources (Cattani & Malerba, 2021; Koryak et al., 2018; Tushman & 

O’Reilly, 1996), and produce continuous organizational tension (Lubatkin et al., 2006; 

Smith & Lewis, 2011). 

This study uses the concepts of exploration and exploitation as indicators of a firm’s 

willingness for novelty. In other words, exploration and exploitation are located at both 

ends as complementary substitutes for a firm’s innovation behavior. It is defined as a firm 

with an explorative innovation routine if it is conducted in an unfamiliar space because of 

its strong willingness for novelty; conversely, it is defined as a firm with an exploitative 

innovation routine if it is conducted in a familiar space. 

 

6.2.3 Classification of Innovation Routines 

Innovation routine is categorized based on the degree of willingness for novelty in the 

firm’s Knowing and Doing behavior, that is, exploration and exploitation. The firm’s 

innovation routine, expressed in Equation 6-1, is classified into a two-dimensional space, 

with the x-axis representing Knowing and the y-axis representing Doing. In addition, the 

degree of willingness for novelty is expressed in exploration and exploitation, and relative 
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comparisons are made between firms. 

The innovation routine space, expressed in two dimensions, has four quadrants: 

“explorative/explorative,” “exploitative/explorative,” “explorative/exploitative,” and 

“explorative/exploitative” (see Figure 6-2). The types of innovation routines were 

categorized according to each quadrant. 

 

 

Figure 6-2. Classification of innovation routines 

 

Quadrant 1 is exploratory in terms of both Knowing and Doing. It is active and 

challenging, and has a strong will to actively disrupt and change the existing market 
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through innovative efforts. Schumpeter 40  divided economic actors into two types, 

“energetic-dynamic and hedonic–static,” based on their disposition to act (Becker & 

Knudsen, 2017; Becker et al., 2012)41. Quadrant 1 corresponds to Schumpeter’s energy-

dynamic entrepreneur. They have the disposition of “experiment with something new” 

(Schumpeter, 1911:162) and are not resistant to change, but rather the obstacles caused by 

change are given as motivation to promote new combinations (innovation). This study 

categorizes these firms under the “active pioneer” routine. 

The firms in quadrant 2 are explorative in “Knowing,” but exploitative in Doing. Firms 

of this type focus on improving productivity and profitability through process innovation 

by optimizing existing processes. Alternatively, deep-technology ventures that seek various 

applications based on the core technology also fall under this category. They have an 

“efficient optimizer” routine. 

The firms in quadrant 3 are exploitative in both Knowing and Doing. They are 

Schumpeter’s hedonic-static actors and have the disposition of “essentially do what they 

have learned” (Schumpeter, 1911: 542). This type has strong internal resistance to change 

and is motivated by necessity. They moved only within the accepted boundaries and 

repeated the work performed previously. Their innovation routine is a type of “passive 

 
40 Schumpeter, 1911: 119, 120, 162, 164, 183, 464, 528, 530, 542-3 

 
41 “Disposition” is genetically innate, and the same behavioral response occurs in a particular environment. It 

is a concept distinct from “character” that interacts with and is influenced by the environment (Cloninger, 

1987; 1993). According to Cambridge Dictionary, “disposition” means 1) the particular type of character that 

a person naturally has, and 2) a natural tendency to do something, or to have or develop something, whereas 

‘character’ means the particular combination of qualities in a person or place that makes them different 

from others. 

 

https://dictionary.cambridge.org/dictionary/english/particular
https://dictionary.cambridge.org/dictionary/english/type
https://dictionary.cambridge.org/dictionary/english/character
https://dictionary.cambridge.org/dictionary/english/person
https://dictionary.cambridge.org/dictionary/english/naturally
https://dictionary.cambridge.org/dictionary/english/natural
https://dictionary.cambridge.org/dictionary/english/tendency
https://dictionary.cambridge.org/dictionary/english/develop
https://dictionary.cambridge.org/dictionary/english/particular
https://dictionary.cambridge.org/dictionary/english/combination
https://dictionary.cambridge.org/dictionary/english/quality
https://dictionary.cambridge.org/dictionary/english/person
https://dictionary.cambridge.org/dictionary/english/place
https://dictionary.cambridge.org/dictionary/english/others
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observer.” 

Finally, quadrant 4 includes firms that are explorative in Knowing and exploitative in 

Doing. Firms with this routine explore and exploit new opportunities, while balancing risks 

and rewards. This study classifies those who have various technology portfolios and mainly 

engage in product innovation as “adaptive adventurer” types. 

In summary, this study uses the following structure to firstly quantify and categorize a 

firm’s innovation routines and secondly conduct the relation between technological 

diversity dynamics and organizational routines (see Figure 6-3). The research framework 

was used to empirically categorize photovoltaic firms. The methodology and results of the 

analysis are presented in the following sections.  

 

 

Figure 6-3. Structure of this study 
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6.3 Methodology 

6.3.1 Data 

In this study, patent and product data were used as proxies for behaviors for Knowing 

and Doing in photovoltaic firms. Patent data are patents granted by the United States Patent 

and Trademark Office (USPTO), and product data are photovoltaic module data collected 

using the photovoltaic system design software PVsyst version 6.0. The analysis period was 

2000 to 2022, and the targets were photovoltaic firms that launched products and held 

patents during this period42. 

During the analysis period, 33 photovoltaic firms with both products and patents were 

identified. Each firm has a considerable difference in the number of patents granted, and 

the technological scope of each firm’s patents also varies significantly. Therefore, to ensure 

a balanced number of granted patents for each firm, the data were refined as shown in the 

following way (Figure 6-4). First, firms with less than 900 patents used all their granted 

patents as data, while firms with more than 900 patents were filtered using International 

Patent Classification (IPC) codes. Firms with more than 1,000 patents even after IPC 

filtering, such as Samsung, LG, Mitsubishi, and Sharp, were filtered using keywords in the 

abstract.  

 

 
42 Photovoltaic firms were derived by being consolidated and organized patent applicants based on firms in 

the product data. For example, LG represents all affiliates like LG Electronics, LG Display, etc., and Hanwha 

includes Q-Cells and Solar One. 



157 

 

 

Figure 6-4. Data preprocessing flow and search query for patents 

 

As a result of the primary data extraction and refinement, the data of 6,821 patents and 

2,408 products were derived for 33 firms. Table 6-2 shows the top five firms in terms of 

number of patents and products. Each of the 33 firms exhibited large differences in the 

number of patents and products. Although some firms have similar numbers of patents and 

products, most of them show large differences, and the preponderance of patents and 

products also differs from firm to firm. In other words, by observing the number of patents 

and products, we can predict the existence of heterogeneous innovation routines. 

However, among the 33 firms that were initially drawn, some firms did not have 
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sufficient data for the analysis. After excluding these firms, 19 firms were included in this 

study. A total of 5,993 patents and 1,094 products were used as the data. 

 

Table 6-2. Top five patent and product for 33 firms 

Rank Firm 
# of 

patents 

# of 

products 
Rank Firm 

# of 

patents 

# of 

products 

1 Fuji Electric 856 4 1 CSI solar 1 474 

2 SunPower 738 59 2 S-Energy 1 36 

3 GE 618 10 3 Solarwatt 4 111 

4 LG 613 70 4 Solibro 5 36 

5 BP Solar 536 35 5 
Calyxo TS 

Solar 
8 22 

 

6.3.2 Measuring Innovation Routines for Each Firm 

6.3.2.1 Measuring Routine from Knowing behavior 

In this section, the behavior of a firm in terms of Knowing–that is, the routine of 

innovation activities for technology development–is quantitatively measured. In this study, 

the process through which each firm builds its own patent network is defined as innovation 

activity for Knowing. Specifically, each firm’s routine was quantitatively measured by 

observing the process of establishing a network of patents registered with the USPTO. The 

patent network (𝑮𝒄,𝒕) of a specific firm c at time t is defined as Equation (6-2).  
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𝐺𝑐,𝑡 = (𝑉, 𝐸) 

𝑉 = {𝑣| 𝑣 ∈ 𝐺𝑟𝑎𝑛𝑡𝑒𝑑 𝑃𝑎𝑡𝑒𝑛𝑡 𝑜𝑓 𝑓𝑖𝑟𝑚 𝑐 𝑎𝑡 𝑦𝑒𝑎𝑟 𝑡} 

𝐸 = {𝑒𝑖𝑗|𝑖𝑓 𝑠𝑖𝑚𝑖𝑙𝑎𝑟𝑖𝑡𝑦(𝑣𝑖 , 𝑣𝑗) ≥ 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 𝑒𝑖𝑗

= 1 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒 𝑒𝑖𝑗 = 0} 

Eq. (6-2) 

 

The Patent network (𝐺𝑐,𝑡) of firm c at time t is built as an unweighted and undirected 

network, where V and E represent sets of nodes and edges, respectively. V is a node 

constructing a firm’s patent network, that is, patents granted to the firm until time t. Each 

patent is a vector represented by 0 and 1 according to its subgroup-level IPC code (e.g., 

H01L 21/285). 

The similarity between patents can be measured by expressing them as vectors. In this 

study, the similarity is interpreted as the technological similarity between patents, 

measuring how similar the sublevel IPC code composition held by each patent is. We used 

the Jaccuard similarity, which is commonly used to measure the similarity of the 

components of two sets, as a metric (Besta et al., 2020). As of 2022, if each firm’s patents 

have a similarity above the average Jaccuard similarity, the two patents are considered as 

related, and a link is formed. 

As an example of the patent network, SunPower’s patent network over time is presented 

in Figure 6-5. A firm’s patent network expands and evolves with newly granted patents 

added every year. At this time, it is observed that most newly added patents follow the 

“preferential attachment” or “rich get richer” rule (Csárdi et al., 2007; Jeong et al., 2003; 

Newman, 2001). That is, the new patent forms a link with the central patent, in which the 
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connections between the existing patents are mainly concentrated. Firms that strongly 

follow a preferential attachment to the evolution of patent networks gradually innovate 

based on existing technologies, which means that they have a strong exploitation routine 

for “Knowing.” Therefore, the explorative or exploitative nature of the routine for Knowing 

can be identified by quantitatively measuring the degree of compliance with preferential 

attachment rules. 

 

 

Figure 6-5. Patent network evolution of SunPower 
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The degree of preferential attachment in an evolving network can be measured using 

the attachment rate. 𝐺𝑐,𝑡−1 and 𝐺𝑐,𝑡 are the patent networks of firm c at time t-1 and t, 

respectively. Among the nodes of 𝐺𝑐,𝑡−1, the probability (𝑃(𝑣𝑘)) that a node (𝑣′) appears 

newly at time t is connected to 𝑣k, a node with a degree centrality value of k, as expressed 

in Equation (6-3). 

 

𝑃(𝑣𝑘) ∝ 𝐴𝑘 Eq. (6-3) 

𝐴𝑘 = 𝑘𝛼 Eq. (6-4) 

 

𝑨𝒌 is an attachment kernel. In case of the log-linear model, it is expressed as Equation 

(6-4). In the Equation, the alpha value (α ) is an attachment exponent. It is a linear 

preferential attachment (Scale Free Network) when α = 1 , a sub-linear preferential 

attachment when 0 < α < 1 , a super-linear preferential attachment when α > 1 , and a 

random network when α = 0 . That is, the larger the value of α , the stronger the 

preferential attachment property. The general formula for the attachment kernel is 

Equation (6-5) (Jeong et al., 2003). 

 

𝐴𝑘(𝑡) =
𝑚𝑘(𝑡)𝑁(𝑡)

𝑛𝑘(𝑡)𝑚(𝑡)
 Eq. (6-5) 

 

𝐴𝑘(𝑡) in Equation (6-5) indicates the attachment rate of a node with a degree centrality 
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k when the network 𝐺𝑐,𝑡−1  evolves into 𝐺𝑐,𝑡 . 𝑛𝑘(𝑡)  in the denominator indicates the 

number of nodes 𝑣k  with a degree centrality value of k in 𝐺𝑐,𝑡−1 , and 𝑚(𝑡)  is the 

number of all newly formed links. 𝑚𝑘(𝑡)  of the numerator is the number of links 

connected to 𝑣k  among the newly formed links at time t, and 𝑁(𝑡)  is the number of 

existing nodes possessed by 𝐺𝑐,𝑡−1 (Jeong et al., 2003). 

There are various formulas for the attachment kernel; however, this study used the 

corrected Newman method to measure the attachment rate (Pham et al., 2015). 

 

𝐴𝑘 =
1

∑ 𝑤𝑘(𝑡)𝑡
∑ 𝑤𝑘(𝑡)𝐴𝑘(𝑡)

𝑇

𝑡=1

 

𝑤𝑘(𝑡) = 𝑚(𝑡)1𝑛𝑘(𝑡)≠0 

Eq. (6-6) 

 

The attachment rate expressed in Equation (6-5) may have an error value due to the 

length of time the network evolves. As a complement, the corrected Newman method is 

presented in Equation (6-6) (Newman, 2001; Pham et al., 2015). This method measures 

the attachment rate at every moment the network evolves, assigns more weight to the time 

when many links are created, and averages the weight. 

In this study, the α value of 𝑘𝛼 is estimated using the attachment rate measured by the 

corrected Newman method (Kunegis et al., 2013). For estimation, the log was taken on 

both sides of Equation (6-4), and the ordinary least squares method was used. By defining 
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the value of α as the firm’s willingness for novelty, it is possible to quantitatively grasp 

how much the firm follows the rule of preferential attachment in Knowing for technology 

development. A firm with a larger α has an exploitative routine for Knowing and innovates 

based on existing knowledge and technology. On the other hand, a firm with a large 1 − α 

has an explorative routine for Knowing and innovates through new knowledge and 

technology.  

 

6.3.2.2 Measuring Routine for Doing behavior 

In this section, the firm’s innovation routine for Doing is quantitatively measured using 

photovoltaic module data. Unlike patents, which are continuously filed and granted each 

year, firms do not release their products every year. In general, firms conduct sales activities 

with products of the corresponding design after the product launch and launch new products 

when market competitiveness changes (Golder & Tellis, 2004; He et al., 2019; Rink & 

Swan, 1979; Shahmarichatghieh et al., 2015). Due to these differences, patent and product 

data have different characteristics and require suitable analysis methods. Therefore, we 

adopt a different approach from Section 6.2.3, in order to measure a firm’s routine using 

product data. Specifically, we measured the characteristic probability distribution of each 

firm’s products and observed its changes over time. The degree of this change is defined as 

the firm’s willingness for novelty for Doing, and either the explorative or exploitative 

nature of the routine is derived. 

A firm’s products consist of detailed technological characteristics (Saviotti, 1985; 
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Saviotti & Metcalfe, 1984). For example, tanks comprise armor thickness, speed, and 

weight (Castaldi et al., 2009), whereas mobile products comprise CPU speed and image 

quality (J.-D. Lee et al., 2022). This study considered three technological characteristics of 

photovoltaic products: photovoltaic cell technology, module efficiency, and nominal power. 

Then, the probability mass function (PMF) for the three characteristics of the products 

produced up to a certain time T is derived using Equation (6-7). 

 

𝑃𝑀𝐹𝑇(𝑋 = 𝑥) =
∑ 𝑃𝑟𝑜𝑑𝑢𝑐𝑡𝑖,𝑡,𝑥𝑡≤𝑇

∑ 𝑃𝑟𝑜𝑑𝑢𝑐𝑡𝑖,𝑡𝑡≤𝑇
 Eq. (6-7) 

 

Equation (6-7) is a probability mass function when X technology characteristic at 

period T is x value. ∑ 𝑷𝒓𝒐𝒅𝒖𝒄𝒕𝒊,𝒕,𝒙𝒕≤𝑻  is the number of products whose X technological 

characteristic has x value among the products released by time T, and ∑ 𝑷𝒓𝒐𝒅𝒖𝒄𝒕𝒊,𝒕𝒕≤𝑻  is 

the total number of products released up to time T. 

Figure 6-6 shows the results of plotting the change in the probability distribution of 

each of the three technological characteristics released during the periods of (1) 2000 to 

2010 (red), and (2) 2000 to 2022 (blue). The probability distributions of the efficiency and 

nominal power shifted to the right, and a more uniform distribution was observed. In other 

words, the level of technological characteristics increased over time, and products with 

various efficiencies and nominal powers were released. However, in the case of 

photovoltaic cell technology applied to modules, both mono-crystalline and multi-

crystalline silicon photovoltaic cell technologies have become far more dominant than 
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before. This suggests that the crystalline silicon photovoltaic cell module has become the 

dominant design in terms of photovoltaic technology. 

 

 

 

Figure 6-6. Probability Mass Function of technological characteristics for all products 

 

Equation (6-7) is applied to the product data of each firm to derive the probability 

distribution of the technological characteristics of the products released by each firm every 

year. The firm’s willingness for novelty for Doing is derived by measuring the distance 
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between the probability distribution functions of the technological characteristics of the 

firms conducted in this way. 

 

𝐾𝐿𝐷(𝑃𝑀𝐹𝑐,𝑇(𝑋), 𝑀) = ∑ 𝑃𝑀𝐹𝑐,𝑇(𝑥)

𝑥∈𝑋

log (
𝑃𝑀𝐹𝑐,𝑇(𝑥)

𝑀(𝑥)
) 

𝑀 =
1

2
(𝑃𝑀𝐹𝑐,𝑇 + 𝑃𝑀𝐹𝑐,𝑇′) 

𝐽𝑆𝐷(𝑃𝑀𝐹𝑐,𝑇 , 𝑃𝑀𝐹𝑐,𝑇′)

=
1

2
𝐾𝐿𝐷(𝑃𝑀𝐹𝑐,𝑇 , 𝑀) +

1

2
𝐾𝐿𝐷(𝑃𝑀𝐹𝑐,𝑇′ , 𝑀) 

Eq. (6-8) 

 

The Jensen-Shannon Divergence (JSD) is used as a metric to measure the distance 

between probability distributions (Equation (6-2)). The JSD is a measure that derives the 

distance between distributions, and is proposed as a measure of distance by compensating 

for the asymmetry of the Kullback-Leibler Divergence (KLD) (Kullback & Leibler, 1951; 

Shannon, 1948; Wu et al. al., 2021)43. 𝑷𝑴𝑭𝒄,𝑻(𝑿) is the probability mass function of the 

characteristic X of the technology at time T of firm c, and 𝑷𝑴𝑭𝒄,𝑻′(𝑿) is that of time 𝑻′. 

M is the mid-distribution between the two probability distributions. Changes in the 

probability distribution of the three characteristics between the first time and last time a 

 
43 KLD is a function that computes the difference between distributions using the concept of information 

gain. The definition of KLD between different distributions P(x), Q(x) for the same random variable x is as 

follows: 𝐷𝐾𝐿(𝑃|𝑄) = 𝐸𝑋~𝑃[log
𝑃(𝑋)

𝑄(𝑋)
] = ∑ (𝑃(𝑥)𝑥 log

𝑃(𝑥)

𝑄(𝑥)
) = ∑ (𝑃(𝑥)𝑥 log 𝑃(𝑥) − 𝑃(𝑥) log 𝑄(𝑥)). 

When the probability distributions P(x) and Q(x) are identical, 𝐷𝐾𝐿(𝑃|𝑄)=0, and vice versa. In addition, the 

value of 𝐷𝐾𝐿(∙) is always greater than zero. However, since KLD is asymmetry, it can represent the 

difference between two distributions, but not the distance. 
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product was released were measured using the JSD, and the sum of these changes was 

defined as the willingness for novelty. 

 

6.3.3 Relative Classification of Routines within a Sectoral 

Regime 

Table 6-3 summarizes the discussion thus far on quantifying innovation routines in a 

firm’s Knowing (Section 6.2.3) and Doing (Section 6.2.4). 

 

Table 6-3. Innovation routines by Knowing and Doing 

 

Knowing Doing 

Explorative Exploitative Explorative Exploitative 

Method 
𝛂 = Attachment exponent 

Level of Preferential Attachment 

∑ 𝑱𝑺𝑫(𝑷𝑴𝑭𝒄,𝑻𝑷𝑴𝑭𝒄,𝑻𝟎
))

𝑿𝒊

= Distance between probability distribution 

of product′s technical characterisitcs year 

𝑻 and 𝑻𝟎 

Measure 

𝟎 < 𝛂 ∑ 𝑱𝑺𝑫(𝑷𝑴𝑭𝒄,𝑻𝑷𝑴𝑭𝒄,𝑻𝟎
))

𝑿𝒊

≥ 𝟎 

0 (+) (+) 0 

 

We derive the innovation routine for Knowing by measuring the extent to which a firm’s 

patent network follows a preferential attachment rule. The larger the value of 𝛂, which 

indicates the degree of preferential attachment of each firm’s patent network, the more 

exploitative the firm is, and conversely, the smaller the value of 𝛂, the more explorative it 
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is. On the other hand, the innovation routine for Doing is derived by measuring how 

differentiated technological characteristics in a new product are compared to previously 

released products through JSD. The higher the JSD value, the greater the difference 

between the newly released product and the existing product. Therefore, firms follow an 

explorative routine. 

As explained in the section 6.1, a comparison of routines between firms must be relative 

within the same sectoral regime. In this study, the influence of the sectoral regime is 

controlled because the analysis target is limited to firms that manufacture core value chains 

in the photovoltaic industry. However, it is necessary to control for the influence of external 

environmental changes over time. Firm behavior is the result of the interaction between a 

unique routine and a given environment, and different behaviors can be derived from the 

same routine in the environmental context in which a firm is located each year. For example, 

if a firm has an explorative innovation routine, but reduced R&D activities during a global 

recession, its innovation behavior in that year can be observed to be more exploitative than 

before. The dynamics of the external environment are a selection pressure that all firms in 

the same industry are affected by. Therefore, the changes in the average are representative 

of the external influences that existed across the industry at that time.  

This study attempted to correct the influence of environmental factors by max-min 

scaling the values of α and JSD for each firm each year and subtracting the average value 

for that year. Using these adjusted values of α and JSD, each firm’s innovation routine was 

expressed for every year during the analysis period. Consequently, each firm has a 
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quantified innovation routine value for Knowing and Doing every year. 

In addition, as Equation (6-1) suggests, a firm’s innovation routine is expressed as an 

ordered pair of each innovation routine for Knowing and Doing. The coordinate value of 

the innovation routine in Knowing is expressed by subtracting the adjusted α value from 1. 

The coordinate values of the routine in Doing are expressed as adjusted JSD values. Thus, 

we derived the firm’s innovation routine coordinates for each year (Equation (6-9)).  

 

 𝒙𝒄
𝑰𝒏𝒏𝒐𝒗𝒂𝒕𝒊𝒐𝒏(𝒕) 

= (𝒙𝒄
𝑬𝒙𝒑𝒍𝒐𝒓𝒂𝒕𝒊𝒐𝒏(𝒕), 𝒙𝒄

𝑬𝒙𝒑𝒍𝒐𝒊𝒕𝒂𝒕𝒊𝒐𝒏
(𝒕))

=   (𝟏 − 𝜶𝒄
𝒂𝒅𝒋𝒖𝒔𝒕(𝒕), ∑ 𝑱𝑺𝑫𝒂𝒅𝒋𝒖𝒔𝒕(𝑷𝑴𝑭𝒄,𝒕𝑷𝑴𝑭𝒄,𝑻𝟎

))
𝑿𝒊

) 

Eq. (6-9) 

 

6.3.4 Regression Analysis 

In this section, the types of innovation routine for the taxa in the evolutionary 

phylogenetic tree of photovoltaic technology (Chapter 4) are established and used to 

examine the relation between diversity dynamics and innovation routine types and, and 

further, technological search. First, the type of routine for each taxon is derived as shown 

in Equation (6-10). 

 

𝑅𝑜𝑢𝑡𝑖𝑛𝑒 𝐷𝑢𝑚𝑚𝑦 𝑜𝑓 𝑇𝑎𝑥𝑜𝑛𝑗𝑡 = 1  

if 𝑃𝑎𝑡𝑒𝑛𝑡(𝑇𝑎𝑥𝑜𝑛𝑗𝑡)⋂𝑃𝑎𝑡𝑒𝑛𝑡(𝑅𝑜𝑢𝑡𝑖𝑛𝑒 𝐹𝑖𝑟𝑚′𝑠 𝑃𝑎𝑡𝑒𝑛𝑡) ≠ ∅  

𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒, 𝑅𝑜𝑢𝑡𝑖𝑛𝑒 𝐷𝑢𝑚𝑚𝑦 𝑜𝑓 𝑇𝑎𝑥𝑜𝑛𝑗𝑡 = 0  

Eq. (6-10) 
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The routine type of a 𝑇𝑎𝑥𝑜𝑛𝑗𝑡  in the photovoltaic technology evolutionary tree 

follows the patents within 𝑇𝑎𝑥𝑜𝑛𝑗𝑡  and the type of firm as its assignee. They are 

represented by dummy variables that are 1 if they are included in a particular routine type, 

and 0 otherwise. In addition, just as in biology there are many different genes within a given 

species, a certain technological taxon can be expressed by more than one routine. 

 

 𝑇𝐷𝑗𝑡 = 𝛽0 + 𝛽1𝑉𝐼𝑗𝑡 + 𝛽2𝐻𝐺𝑇𝑗𝑡 + 𝛽3𝑀𝑇𝑗𝑡 + 𝛾0
𝑡

+ ∑ 𝛽𝑘  𝐶𝑜𝑛𝑡𝑟𝑜𝑙 𝑉𝑎𝑟𝑖𝑎𝑏𝑙𝑒𝑠𝑘

𝑘

+ ∑ 𝛽𝑚𝑅𝑜𝑢𝑡𝑖𝑛𝑒 𝐷𝑢𝑚𝑚𝑦𝑗𝑡𝑚

𝑚

+ 𝛽𝑟
𝑉𝐼𝑅𝑜𝑢𝑡𝑖𝑛𝑒 𝐷𝑢𝑚𝑚𝑦𝑗𝑡𝑟𝑉𝐼𝑗𝑡

+ 𝛽𝑟
𝐻𝐺𝑇𝑅𝑜𝑢𝑡𝑖𝑛𝑒 𝐷𝑢𝑚𝑚𝑦𝑗𝑡𝑟𝐻𝐺𝑇𝑗𝑡

+ 𝛽𝑟
𝑀𝑇𝑅𝑜𝑢𝑡𝑖𝑛𝑒 𝐷𝑢𝑚𝑚𝑦𝑗𝑡𝑟𝑀𝑇𝑗𝑡 + 𝜀𝑗𝑡 

Eq. (6-11) 

 

The routine dummy variables for each taxon are then introduced as additional variables 

into the existing regression equations (Equations (5-6)) to analyze the dynamics of 

technological diversity and the patterns of search, resulting in the regression equations, 

Equations (6-10). An independent routine dummy term (∑ 𝛽𝑚𝑅𝑜𝑢𝑡𝑖𝑛𝑒 𝐷𝑢𝑚𝑚𝑦𝑗𝑡𝑚𝑚 ) is 

added to show the independent effect of taxa’s routine type, and an interaction term of 

search and routine dummy is added to describe the interaction with technological search 

(𝛽𝑟
𝑉𝐼 , 𝛽𝑟

𝐻𝐺𝑇 , 𝛽𝑟
𝑀𝑇). 
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6.4 Organizational Routine as a Micro Criteria to Diversity 

Dynamics 

6.4.1 Innovation Routines of Photovoltaic Firms 

 

In this section, the analysis of identifying innovation routines of photovoltaic firms is 

presented. First, the results from Knowing and Doing are discussed, respectively. Then four 

types of innovation routines are observed through routine coordinate.   

 

  

(a) Samsung (b) Hanwha 

Figure 6-7. Attachment Rate (log scale) – Degree (log scale) scatter plot 

 

Figure 6-7 shows the results of estimating the statistically significant α of Samsung 

and Hanwha with a log-scaled attachment rate and exponential centrality k on their patent 

networks, which evolved by 2022 (p-value < 0.05). Samsung’s α value was 0.305. This 

means that Samsung’s willingness for novelty for Knowing is exploitative by 0.305 and 
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explorative by 0.695. In contrast, Hanwha’s α value is 0.910. This means that Hanwha 

has a very strong exploitative routine in innovation for Knowing and generally utilizes 

existing knowledge and technology in a familiar space.  

 

Table 6-4. Level of willingness for novelty of Knowing in 19 firms (p <0.05) 

Rank Firm 

willingness 

for novelty 

(1-𝛂) 

# of 

patents 
Rank Firm 

willingness 

for novelty 

(1-𝛂) 

# of 

patents 

1 Samsung 0.695 150 11 Kaneka 0.171 183 

2 TSMC Solar 0.667 183 12 Solar World 0.157 65 

3 Sharp 0.566 132 13 SunPower 0.152 738 

4 Schott Solar 0.561 91 14 Fuji Electric 0.139 853 

5 Kyocera 0.538 270 15 First Solar 0.119 249 

6 Panasonic 0.499 290 16 Hanwha 0.09 671 

7 
Bosch Solar 

Energy 
0.483 359 17 BP Solar -0.087 536 

8 GE 0.462 555 - 
Global Solar 

Energy 
1.391 24 

9 LG 0.4 534 - REC -0.001 19 

10 Mitsubishi 0.291 83     
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Table 6-4 shows the explorative degree of willingness for novelty (1- α) for Knowing 

and the number of patents owned by 19 firms. The firm with the most exploratory 

innovation routine in Knowing is Samsung, followed by TSMC Solar and Sharp44. These 

firms actively introduce new technologies outside the existing technology space. Excluding 

the top six firms, the explorative degree of thirteen firms was less than 0.5. This suggests 

that the firms in this study primarily innovated based on existing technologies in the 

photovoltaic industry. On the other hand, the firm with the most exploitative innovation 

routines was BP Solar. The α values of BP Solar and REC exceed 1, which means that 

they are only developing technology to deepen their own knowledge. Meanwhile, the 

number of patents and explorative innovation routines are irrelevant. Regardless of whether 

the number of granted patents is large or small, even if firms have the same number of 

patents, a firm’s technological development creates innovations of different attributes based 

on its unique search routine. 

Table 6-5 presents the results of the explorative degree of the innovation routine in 

Doing and the number of products for each firm. Each figure is the sum of the differences 

in the probability distribution of the three technological characteristics between the first 

and last product launches by 2022. The higher the number, the greater the differentiation 

of the new product compared to the existing product, which means that it has an explorative 

innovation routine for Doing. Among the 19 photovoltaic firms, firms from 1st to 10th, 

such as Solar World, Bosch Solar Energy, and Hanwha, showed a willingness for novelty 

 
44 The highest value is shown in Global Solar Energy, however, due to the lack of observations, relative 

comparison is not reasonable. 
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of 1.0 or more, indicating a relatively more explorative innovation routine. However, values 

below 0.5 were derived for Global Solar Energy, Samsung, and Fuji Electric, indicating 

that they mainly launched new products with little introduction of new technologies.  

 

Table 6-5. Level of willingness for novelty of Doing in 19 firms 

Ra

nk 
Firm 

willingness 

for novelty 

(∑ 𝑱𝑺𝑫(𝑷𝑴𝑭𝒄,𝟐𝟎𝟏𝟖𝑷𝑴𝑭𝒄,𝑻𝟎
)

𝑿𝒊

) 

# of 

products 

Ra

nk 
Firm 

willingness 

for novelty 

(∑ 𝑱𝑺𝑫(𝑷𝑴𝑭𝒄,𝟐𝟎𝟏𝟖𝑷𝑴𝑭𝒄,𝑻𝟎
)

𝑿𝒊

) 

# of 

products 

1 
Solar 

World 
1.545 79 11 Panasonic 0.957 37 

2 
Schott 

Solar 
1.465 95 12 Kyocera 0.882 32 

3 

Bosch 

Solar 

Energy 

1.461 46 13 Mitsubishi 0.855 38 

4 Hanwha 1.329 293 14 BP Solar 0.670 35 

5 REC 1.264 95 15 
TSMC 

Solar 
0.637 9 

6 
First 

Solar 
1.241 61 16 GE 0.554 10 

7 LG 1.236 70 17 

Global 

Solar 

Energy 

0.449 15 

8 SunPower 1.127 59 18 Samsung 0.235 11 

9 Kaneka 1.085 17 19 
Fuji 

Electric 
0.191 4 

10 Sharp 1.053 113     
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The results in Tables 6-4 and 6-5 do not reflect the impact of the external environment 

that existed at each point in time. Especially, in the case of Table 6-5, comparisons across 

firms are unreasonable given the distinct product release dates for each firm. Therefore, a 

correction for time-specific external impacts is needed, as discussed in Section 6.3.3. 

 

 

Figure 6-8. Average routine changes: Level of exploration for Knowing and Doing 

 

Figure 6-8 shows the average routine changes for the 19 firms analyzed in the previous 

section. In this study, since the number of firms analyzed was limited to 19, it is 

unreasonable to assume that their average tendencies represent the dynamics of the industry. 

Nevertheless, it was confirmed that industrial issues and trends coincide, as discussed in 

Chapter 3. More specifically, during the downturn of the photovoltaic industry, as in Period 

3 in Table 3-1, a decrease in explorative routines in both Knowing and Doing is confirmed. 

Particularly for “Knowing,” all periods except for the downturn show a positive slope. The 
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change in dominant design due to the increase in the speed and scope of innovation in the 

photovoltaic industry may have triggered a change in the trend from 2015 to 2019 in 

“Doing,” which previously showed a steady decline. 

 

 

Figure 6-9. Innovation routines of each photovoltaic firm 

 

Figure 6-9 represents the average innovation routine coordinates of each of the 19 firms. 

Each point in the figure represents the coordinates of a given firm’s average innovation 
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routine. Among the 19 firms, the active pioneer type (quadrant 1) and the efficient optimizer 

type (quadrant 2) each contain three firms, accounting for 15.7% of the total. The passive 

observer type in the third quadrant has six firms (31.5%), while the adaptive explorer type 

had seven firms (36.8%) in the fourth quadrant. Nineteen firms had innovation routines that 

were more heterogeneous in Knowing than in Doing. The explorative and exploitative for 

Knowing are similarly divided into 52.8% and 47.2%, respectively. However, the 

explorative and exploitative for Doing are 31.4% and 68.6%, respectively, showing a 

difference of approximately two times. In other words, the photovoltaic firms used in the 

analysis have a homogeneous tendency toward exploitative innovation routines for Doing. 

 

Table 6-6. Type of innovation routines for each photovoltaic firm 

Efficient Optimizer (Quadrant 2) Active Pioneer (Quadrant 1) 

Bosch Solar Energy 

REC 

Schott Solar AG 

TSMC Solar 

Global Solar Energy 

LG 

Samsung 

Passive Observer (Quadrant 3) Adoptive Adventurer (Quadrant 4) 

First Solar 

Hanwha 

Kyocera 

Solar World 

SunPower 

BP Solar 

Fuji Electric 

GE 

Kaneka 

Mitsubishi 

Panasonic 

Sharp 
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The type of innovation routines for each of 19 firms are shown in Table 6-6. It is 

important to note that the innovation routines derived from this study are a measure of a 

firm’s propensity to be novel, not of the innovativeness of its technology. For example, 

SunPower is considered to have high technological competency for implementing the 

innovation of inter-digitized back-contact technology, but it is identified a passive observer 

type in the innovation routines. 

The innovation routine derived from this study is consistent with the results of the 

previous studies in Chapter 2, which argued that routine is a firm-specific characteristic 

(see Figures 6-10, 6-11). 

First, through the dense phenomenon observed in each firm’s annual routine in Figure 

11, we found that each firm’s innovation routine was maintained or gradually changed over 

a long period. Firms such as GE and Sharp maintained their existing innovation types by 

repeating the innovation routine, even though there were environmental changes in the 

photovoltaic industry during the analysis period, as shown in Table 6. Recurrence is a key 

characteristic of routines (Becker, 2004; Cohen et al., 1996). Repeated routines have path 

dependencies based on experience and become unique characteristics that are difficult for 

other firms to imitate (Day, 1994; Dierickx & Cool, 1989; Nelson & Winter, 1982). 

However, the recurrence of a routine based on the past reflects its processual nature (Becker, 

2004). Firms gradually adapt to a given environment based on feedback on outcomes, and 

endogenous changes occur during this process (Becker et al., 2006; Nelson & Winter, 1982; 

Winter & Szulanski, 2000). 
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Figure 6-10. Annual innovation routine of each selected firm 
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To discuss Figure 6-10 in more detail, a gradual change in routines was observed for 

Kyocera, Fuji Electric, Hanwha, and Bosch Solar Energy. First, Kyocera, Fuji Electric, and 

Hanwha were observed to have changed their innovation types through willingness for 

novelty that increased gradually each year. Kyocera increased their willingness for novelty 

in Knowing, and Fuji Electric in Doing. In the case of Hanwha, the willingness for novelty 

increased in both Knowing and Doing. Gradual change is an essential characteristic of 

routines. A series of steady changes over time leads to more substantive changes and 

adaptation to new circumstances (Becker, 2004). 

Bosch Solar Energy, on the other hand, displays a more drastic routine change within 

the innovation type. Bosch Solar Energy steadily increased the willingness for novelty of 

Doing since 2004, when data were observed with the Efficient Optimizer type. However, 

this trend reversed from 2010, with a large decrease between 2011 and 2012. Since then, 

Bosh Solar Energy has maintained a changed or reduced innovation routine. Bosh Solar 

Energy established a new plant in 2010 and subsequently made significant investments in 

the photovoltaic business by acquiring a US solar module manufacturer but announced its 

exit in 2013. Chapter 2 explained that radical change was avoided from the viewpoint of 

evolution and revealed that routine changes gradually and progressively. Further research 

is required to identify the causal relationship; however, Bosh Solar Energy suggests that 

there is a relationship between the life and death of firms and radical changes in routines. 
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Active Pioneer 

(Quadrant 1) 

  

Efficient 

Optimizer 

(Quadrant 2) 

  

Passive Observer 

(Quadrant 3) 

  

Adoptive 

Adventurer 

(Quadrant 4) 

  

Figure 6-11. Routine contour of each firm by type 
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Figure 6-11 shows that even within the same innovation type, each firm has a unique 

innovation routine. As a concrete example, First Solar and Kyocera’s average innovation 

routines fall under the Passive Observer category. However, in terms of their innovation 

type, First Solar shows a vertical aspect, whereas Kyocera shows a horizontal aspect. In 

other words, both firms have exploitative innovation routines in Knowing and Doing, but 

their directions are vertically and horizontally different. When the environment changes, 

First Solar will respond with a differentiated Doing routine, and Kyocera with a Knowing 

routine. Therefore, after a long period of time, there is a possibility that the two firms will 

become very heterogeneous or, isomorphic, through changes in their innovation routines. 

In summary, the firm’s innovation routine identifies willingness for novelty values in 

which the influence of the external environment is controlled for in Knowing and Doing. It 

was observed that 68.6% of the 19 firms in the photovoltaic industry showed an exploitative 

innovation routine for Doing, thus performing more stably and resembling innovations in 

production compared to technology development. In Knowing, the adaptive explorer type 

with an explorative innovation routine accounted for the largest portion (36.8 %). We find 

that firms’ innovation routines do not change significantly over time and undergo gradual 

changes. This means that firms continue to act within a specific category, proving the basic 

theory of evolutionary economics in which firms make routine-based satisfying choices 

with bounded rationality (Foss, 2003; Nelson & Winter, 1982; Simon, 1990; Simon, 1997). 

Furthermore, within each type, it was observed that each firm had a unique innovation 

routine aspect. Therefore, the innovation routines of the firms derived from the results are 
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different and have unique characteristics, suggesting that the routine identification method 

presented in this study is effective. 

 

6.4.2 Relation between Diversity Dynamics and 

Organizational Routines 

This section establishes the relationship between technological diversity and 

organizational routines. The technological diversity derived in Chapter 4 covers the overall 

technologies produced across the photovoltaic sector, from wide range of agents such as 

universities, research institutes, and companies. Therefore, we analyze the impact of 

organizational routines on the technological evolution of the entire sector. 

To begin, the types of innovation routines are represented for each taxon in evolutionary 

phylogenetic tree of photovoltaic technology, resulted previously in Figure 4-2. The result 

is shown in Figure 6-12. The figure shows that the characteristics of each type presented 

in Section 6.2.3 are reflected in the aspects of technological evolution, and that the 

evolutionary patterns depend on each type of innovation routine. More specifically, AP and 

AA types, both explorative in Knowing, are represented in all major technological 

trajectories, such as root to [2018_1], [2018_2], and [2018_3]. The speciation of the lineage 

also all oriented from these two types. Conversely, EO and PO types, both exploitative in 

Knowing, are observed in the lineages of [2018_1] and [2018_2]. This means, these two 

types developed the first- and second-generation technologies for which a market exists. 
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Efficient Optimizer (Quadrant 2) Active Pioneer (Quadrant 1) 

 

 

 

 

 

Passive Observer (Quadrant 3) Adoptive Adventurer (Quadrant 4) 

Figure 6-12. Type of innovation routines on evolutionary phylogenetic tree 
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Calculating the number of patents per firm as a simple average of the total patents for 

each type45, AA types has the most with 376 patents per firm while EP types have the least 

with 187. Despite the difference in in the number of patents held, however, EO types are 

hardly identified on the evolutionary phylogenetic tree compared to the other types. EO 

types are highly exploitative in Doing, so they prioritize product development through 

process innovation than patentable R&D. The phenomenon observed in the evolutionary 

phylogenetic tree of technology can be seen as the reflection of characteristic on type. 

Moreover, AP types are mostly observed after the mid-2000s, because two of the three 

companies in this type, LG and Samsung, started their photovoltaic businesses by then. 

The patterns of technological evolution by each type of innovation routines examined 

in the evolutionary phylogenetic tree suggest that organizational routines are related to 

technological evolution. To confirm the relationship quantitatively and specifically, this 

study conducted a regression analysis for technological diversity and organizational 

routines. 

  

 
45 The number of patents per company for the other types is 236 for AP types and 347 for PO Types. The 

total number of patents by type is 708 for AP types, 561 for EO types, 2,084 for PO types, and 2,632 for AA 

types. 
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Table 6-7. Result of regression 

Dependent variable: Entropy Model 1 

Intercept 
-0.292* 

(0.147) 

Vertical Inheritance (VI) of Taxon 
-0.265*** 

(0.079) 

Horizontal Gene Transfer (HGT) of Taxon 
0.268*** 

(0.059) 

Mutation (MT) of Taxon 
-0.028 

(0.061) 

Gene Pool Size 
0.350*** 

(0.083) 

Global Gene Pool Size 
0.374*** 

(0.083) 

Number of patents in Taxon 
0.440*** 

(0.124) 

Active Pioneer (AP) Dummy 
0.166 

(0.134) 

Efficient Optimizer (EO) Dummy 
-0.178 

(0.232) 

Passive Observer (PO) Dummy 
-0.142 

(0.123) 

Adoptive Adventure (AA) Dummy 
0.405** 

(0.144) 

Number of Obs. 103 

Likelihood -92.551 

Notes:  

1. Standard errors are in parentheses. 

2. ***, **, and *denote statistical significance at the 0.1%, 1%, and 5%levels, respectively. 

3. Bold denotes statistical significance at the 0.1%, 1%, and 5% levels. 
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Table 6-7 shows the results of the regression analysis. Model 1 analyzes the dynamics 

of diversity, considering both the technological search derived in Chapter 5 and the types 

of innovation routines in this chapter as explanatory variables. Consistent with the findings 

in the previous chapter, technological diversity is statistically significant but either 

negatively (-) or positively (+) related to VI or HGT, respectively. the results of the control 

variables also show a significantly positive relationship between technological diversity 

and the genetic pool whether direct or neighboring ancestors. 

In terms of the relationship between innovation routine type and technology diversity, 

only the AA type is statistically significant. The relationship is positive, indicating that the 

AA types influence the increase in technological diversity in the sector. 

To further explore the specific relationship of diversity mechanisms to innovation 

routines, additional regression analysis is conducted for interactive variables between the 

four innovation types and the three exploration patterns. However, only significant results 

are presented and discussed in this section (Models 2-5 in Table 6-8). For other results not 

presented in this section, please refer to the appendix.  
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Table 6-8. Result of regression for interactive variables 

Dependent variable: 

Entropy 

Model 2 

AA * HGT 

Model 3 

AP * MT 

Model 4 

EP * MT 

Model 5 

PO * HGT 

Intercept 
-0.255 

(0.127) 

-0.065 

(0.100) 

0.021 

(0.087) 

0.195 

(0.126) 

Search of Taxon 
0.072 

(0.075) 

0.025 

(0.056) 

0.060 

(0.063) 

0.788** 

(0.304) 

Active Pioneer (AP) 

Dummy 
 

0.336** 

(0.128) 
  

Active Pioneer 

* Search of Taxon 
 

1.674*** 

(0.316) 
  

Efficient Optimizer 

(EO) Dummy 
  

0.222 

(0.272) 
 

Efficient Optimizer  

* Search of Taxon 
  

2.725** 

(0.978) 
 

Passive Observer (PO) 

Dummy 
   

-0.245 

(0.144) 

Passive Observer  

* Search of Taxon 
   

-0.591 

(0.307) 

Adoptive Adventurer 

(AA) Dummy 

0.346* 

(0.139) 
   

Adoptive Adventurer  

* Search of Taxon 

0.303** 

(0.110) 
   

Gene Pool Size 
0.454*** 

(0.080) 

0.336*** 

(0.073) 

0.349*** 

(0.082) 

0.385*** 

(0.080) 

Global Gene Pool Size 
0.346*** 

(0.073) 

0.382*** 

(0.078) 

0.305*** 

(0.079) 

0.325*** 

(0.077) 

Number of patents in 

Taxon 

0.202* 

(0.087) 

0.335*** 

(0.078) 

0.437*** 

(0.092) 

0.347*** 

(0.084) 

Number of Obs. 103 103 103 103 

Likelihood -91.375 -87.466 -96.463 -94.837 

Notes:  

1. Standard errors are in parentheses. 

2. ***, **, and *denote statistical significance at the 0.1%, 1%, and 5%levels, respectively. 

3. Bold denotes statistical significance at the 0.1%, 1%, and 5%levels. 
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The interaction between AA and HGT is analyzed in Model 2. The result shows 

significantly positive relationship between technological diversity and HGT performed by 

AA. In Chapter 5, we pointed out finding novel combinations of technologies using new 

technological elements from neighboring ancestors that can be identified in the 

technological evolutionary tree, that is HGT, is the principle of increasing technological 

diversity. The result of Model 2 suggests that HGT contributes to an increase in overall 

technological diversity, especially when it is performed by AA types. It emphasizes the 

importance of combinatorial innovation concluded in previous chapter, as well as implies 

that organizational routine making decisions of technological search affect the entire 

technological evolution of the sector.  

The other three types, not statistically significant in Model 1, were also correlated with 

technological diversity through an interaction with technological search. First, Models 3 

and 4 show the regression results of interactions for MT with AP or EO. In Chapter 5, MT 

did not have a significant relation with diversity dynamics. Like HGT, MT combines 

external technologies rather than the deepening of existing technologies, but it introduces 

a completely new domain of technology, which increases the risk of adaptation from an 

evolutionary perspective (Kardong, 2005). However, MT interacted with AP or EO 

improves the technological diversity at a high significance level of 0.1%. The types of AP 

and EO are both explorative in Doing. Hence, the new technologies introduced by MT are 

possibly adopted in their production in an exploratory manner. The technology reflected in 

the product feeds back into the R&D through market selection, creating a virtuous cycle 
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that reduces the risk of evolutionary adaptation caused by MT. Therefore, AP and EO types 

play a positive role in enhancing technological diversity by adding a high degree of novelty 

through MT to technological evolution.  

Finally, Model 5 presents the result for the interaction of PO with HGT. In contrary to 

all previous results of positive (+) relation, HGT by PO types affect negatively (-) to 

technological diversity. This indicates the nature of HGT performed by PO type is different 

from others. Specifically, HGT increases technological diversity by making the distribution 

of technologies (IPC codes in this study) uniform within a taxon through the introduction 

of new technologies. However, when resulting in skewing the distribution of technologies, 

HGT may affect diversity negatively. PO types are firms with exploitative routines in both 

Knowing and Doing. According to Schumpeter’s typology, they are “hedonic-static actors 

who essentially do what they have learned (Schumpeter, 1911: 542).” Therefore, from a 

sectoral perspective on overall technologies, they search for the deepening or substitution 

of existing technologies despite HGT, rather than for new technological combinations not 

existed in sector. Therefore, the technologies that PO type firms search for through the HGT 

pattern will be biased toward specific technologies associated with existing technologies, 

negatively impacting the level of technological diversity.  

To summarize, the pattern of technological evolution is differentiated by innovation 

routines, and thus routines can affect diversity dynamics in technology. more specifically, 

among the four types of innovation routines identified in this work, AA types have 

significantly positive relation with technological diversity. Especially, HGT performed by 
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AA types increases the level of technological diversity. In addition, the results demonstrate 

that the relationship between technological search and diversity changes depending on the 

routine of the firm. The effect of organizational routines on technological diversity 

prioritizes technological search as a driver of the diversity dynamics concluded in Chapter 

5. In other words, organizations act as a micro-criteria to technological diversity dynamics, 

suggesting that routines making decisions prior to technological search affect technological 

evolution of entire sector.  

 

6.5 Sub-conclusion 

This chapter aimed to investigate the dynamics of technological diversity on 

organizational routine, given the hypothesis that routines play a role in determining the 

technological search discussed in Chapter 5.  

The first step of the study is to identify and categorize organizational routines. A firm’s 

organizational routines can be identified through observable behaviors. Routine is a 

concept with a high level of complexity and should be derived through multi-dimensional 

behaviors rather than single actions. This study attempts to identify innovation routines 

through a two-dimensional approach to a firm’s Knowing and Doing. To this end, with 

exploration and exploitation as indicators, each year of the analysis period measures the 

extent to which each firm wants to be innovative (willingness for novelty). By comparing 

their average values within the sectoral regime where firms under the same environmental 

change and selection pressure gather, the innovation routine is categorized into four types: 
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active pioneers, efficient optimizers, passive observers, and adaptive explorers.  

For the next step, based on the innovation types of photovoltaic firms, we investigate 

their relationship with the technological evolution and diversity dynamics on overall 

photovoltaic technologies as discussed in Chapter 4. The evolutionary patterns of each 

innovation types are examined on the evolutionary phylogenetic tree and then regression 

analysis is performed. The results of the analysis are summarized below.  

 First, the results of the empirical analysis of 19 photovoltaic firms indicate that the 

routine quantification method proposed in this study is effective in identifying routine as a 

unique characteristic of a firm. The innovation routine of each firm has not changed 

significantly over time. Despite the dynamics of the photovoltaic industry observed during 

the analysis period, firms continued to repeat their existing routines and adhered to 

innovation patterns. These results show the unanimous consensus of scholars regarding the 

nature of routine and recurrence (Becker, 2004, 2005b; Cohen et al., 1996). Meanwhile, 

some firms such as Kyocera, Fuji Electric, and Hanwha have gradually changed their 

routines and adapted to the environment. Their routines move gradually every year, leading 

to changes in the type of innovation in the firm. Previous studies have revealed that this 

routine change progresses gradually over a long period of time based on past results 

(Becker et al., 2006; Cohen et al., 1996; Levitt & March, 1988). This is because rapid 

changes can be unfavorable for adaptation to the existing environment (Bowonder et al., 

2010; Kardong, 2005). Bosch Solar Energy suggests that a radical change in routine is 

related to the life and death of the firm. Each firm has aspects of its innovation routine that 
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differentiate it from other firms, even if they belong to the same type. In other words, each 

firm has its own direction for endogenous routine changes, which means that there is a 

possibility that the heterogeneity of firms will increase or become homogeneous over a 

long period. 

Second, organizational routines affect the patterns of technological evolution. The result 

shows that the evolutionary patterns of overall photovoltaic technologies reflect the 

characteristics of firms’ innovation routine types. In addition, the results of the regression 

analysis with diversity dynamics support organizational routines as a factor in the 

endogenous mechanism of technological diversity dynamics. AA types confirm a 

significant positive relationship with technological diversity, especially when combined 

with the HGT pattern of technological search. Such result further emphasizes the 

importance of combinatorial innovation derived in Chapter 5. We also found that the two 

types of exploratory innovators in Doing, AP and EO types, contribute to the overall 

increase in technological diversity by performing the MT pattern of technological search, 

which previously did not show significant relationship with diversity. Meanwhile, the HGT 

pattern of technological search, which has been significantly positive in all previous 

analyses, tend to reduce the overall technological diversity when performed by PO types. 

The results suggest that the organizational routine for making decisions prior to 

technological search affect the dynamics of technological diversity as micro-criteria.  

  



194 

 

Chapter 7. Conclusion 

7.1 Summary of the Study 

What is the endogenous mechanism behind technological diversity dynamics? To 

answer this question, which have not been fully explained in previous literature, this study 

quantitatively identifies the general endogenous mechanisms of technological diversity in 

terms of technological search and organizational routines. Additionally, an evolutionary 

phylogenetic tree methodology, commonly used in biology and product evolution studies, 

is applied to identify technological trajectories, and examine diversity dynamics across 

these trajectories. The significance of this study is that the evolutionary phylogenetic tree 

of technology is a methodology that considers the process of technology evolution and 

compensates for the limitations of previous comprehensive approaches to technological 

diversity. The empirical analysis focused on the photovoltaic technology. the case selection 

is based on the importance of photovoltaic technology for sustainability, and the ease of 

interpretation provided by the industrial dynamics and technological classification in 

photovoltaics. Given the key role in the energy portfolio, continued innovation is essential. 

Through the understanding diversity dynamics from an evolutionary perspective, this study 

aims to provide a generalized framework for the endogenous mechanisms of technological 

diversity. Then based on this, the study derives practical and pragmatic suggestions for the 

of the further development of photovoltaic technology. 

Chapter 2 reviews previous literature on diversity, technological search, and 
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organizational routines drawing on the theory of evolution and evolutionary economics as 

the academic foundation of this research. It also introduces the evolutionary phylogenetic 

methodology to construct the evolutionary space of technologies and identify detailed 

technological trajectories. The conceptual framework of endogenous dynamics in 

technological diversity, proposed in this study, is derived from this theoretical and 

methodological background. The study examines technological search and organizational 

routines as internal factors influencing technological diversity dynamics. Technological 

search is hypothesized to be a driver of diversity that directly creates and modifies diversity, 

while organizational routines act as micro-criteria for diversity dynamics by making 

decisions about technological search. 

Chapter 3 provides a review of photovoltaic technologies, industries, and markets, 

which are subject to empirical analysis. First, it describes the rationale for selecting the 

case study, which is based on global expectations and challenges related to carbon emission 

reduction and sustainability in photovoltaic technology. Next, an overview of photovoltaic 

technology and historical facts regarding industry and market changes are presented to 

provide a better understanding of the empirical analysis. 

In Chapter 4, the technological evolution and the dynamics of technological diversity 

are observed using an evolutionary phylogenetic methodology. The analysis employs data 

from 8,081 photovoltaic technology patents granted by the USPTO from 2000 to 2018, 

along with the subgroup IPC codes included in each patent. Entropy, a measure of diversity 

from information theory, is used to evaluate the information in the constructed evolutionary 
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phylogenetic tree. The results of the evolutionary phylogenetic tree and diversity measures 

of photovoltaic technologies presented in Chapter 4 served as the basis for the subsequent 

analyses in Chapters 5 and 6.  

The observed phenomena in the evolutionary phylogenetic tree of photovoltaic 

technology derived in this chapter fit well with actual historical facts. Technological 

evolution in photovoltaics follows a gradual pattern, with first-, second-, and third-

generation technologies forming their own trajectories. The diversity of photovoltaic 

technology gradually increases during the evolutionary process. However, there is a 

discrepancy between the overall and trajectory-specific levels of diversity measurement, 

indicating that examining diversity by technology trajectory is necessary to understand the 

evolution of specific technologies. Furthermore, based on the information in the 

evolutionary phylogenetic tree and the diversity results, the subsequent evolution of the 

major trajectories as of 2018 is predicted. According to the result, the trajectory of the first-

generation technology is at risk of extinction, while the trajectories of either the mixed first- 

and second-generation or the third-generation are expected to be retention. However, the 

trajectory of the third-generation technology needs to be supplemented because its small 

population increases its evolutionary risk. Meanwhile, both in aggregate and within 

trajectories, the diversity of photovoltaic technology has stagnated or declined since 2015. 

This suggests a weakening of the current innovation momentum in photovoltaic technology, 

as technological diversity serves as a stimulus and indicator of innovation as well. 

Chapter 5 focuses on the relationship between diversity dynamics and technological 
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search, which is characterized by three patterns from an evolutionary perspective: vertical 

inheritance (VI), horizontal gene transfer (HGT), and mutation (MT). The empirical 

analysis in this chapter uses the same data as in Chapter 4, and regression analysis is 

performed.  

The evolution of photovoltaic technology mainly involves technological search in the 

VI pattern, while the HGT pattern is the least common. This indicates that photovoltaic 

technology pursued incremental innovation within the existing trajectories and lacked new 

technology combinations through cross-trajectory exchange. Regression analysis revealed 

a statistically significant relationship between technological diversity and two patterns of 

technological search, VI and HGT, with a decreasing and increasing effect, respectively. 

However, the search of MT is not significantly related to diversity. Furthermore, the greater 

the range of ancestral technologies, whether direct or neighboring, the higher the level of 

diversity in the descendants. These result hold across time periods, confirming that the 

relationship between technological diversity and technological search is endogenous, 

independent of temporal or external factors. 

The results in Chapter 5 indicate that a significant increase in technological diversity 

occurs by recombining technologies from neighboring ancestors identified in the 

evolutionary phylogenetic tree of technology. In other words, this implies that the principle 

of increasing technological diversity is to gradually expand the evolutionary space by 

recombining with other technologies to the extent that technological relatedness exists. 

Finally, Chapter 6 examines the relationship between organizational routines and 
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diversity dynamics, and by extension, technological search patterns. This work uses granted 

patent data from USPTO and photovoltaic module data from PVsyst version 6.0 for the 

period 2000 to 2022. This chapter is divided into two parts: i) identifying and categorizing 

routines, and ii) examining the relationship between routines and diversity.  

In the first part, organizational routines, which are inherent to an organization, are 

identified as externally observable behaviors of the firm. Because routines are highly 

complex, they should be approached as multidimensional behaviors rather than a single 

behavior. This study takes a two-dimensional approach to Knowing and Doing to derive 

innovation routines for firms. The indicators of exploration and exploitation measures the 

extent to which firms are willing to be novel in each behavior, and their mean values are 

compared within the sectoral regime to classify them into four types: active pioneer (AP), 

efficient optimizer (EO), passive observer (PO), and adoptive adventurer (AA).  

The empirical analysis of 19 photovoltaic companies confirmed that the quantification 

method of routines proposed in this study is a valid to identify routines as unique 

characteristics of firms. Each firm adheres to its existing innovation routines despite 

changes in the external environment, and some of the changes in routines occur gradually 

over time. It is also observed that even firms belonging to the same type of routines have 

their own unique aspects of innovation routines. The results suggest that each firm has its 

own distinctive orientation to endogenous changes in routines, which may lead to variation 

of heterogeneity within sectors over time. 

In the second part, this study explored the relationship between each type of innovation 
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routine and diversity dynamics through regression analysis. The results showed that 

organizational routines affect technology evolution. In addition, by observing the pattern 

of photovoltaic technology evolution by innovation routine type, the characteristics of each 

type are reflected in the evolutionary process in the overall photovoltaic technology. 

The regression results support organizational routines as a factor in the endogenous 

mechanism of technological diversity dynamics. Among the four types of innovation 

routines, the AA type showed a statistically significant effect on the overall increase in 

technological diversity. Specifically, technological diversity is increased when this type 

performs the HGT pattern of technological search, further emphasizing the importance of 

combinatorial innovation derived in Chapter 5. 

To identify a more detailed relationship, each interaction between the four types of 

innovation routines and the three patterns of technological search is confirmed (a total of 

twelve interactions). The results show that the relationship between technological search 

and diversity changes depending on firm’s routine. Specifically, it is inferred that the MT 

pattern of technological search which was not significantly related to diversity in previous 

analyses, has the effect of increasing overall technological diversity when performed by AP 

types and EO types. On the other hand, it was confirmed that the HGT pattern of 

technological search, which showed a significant positive relationship in all previous 

analyses, tends to reduce the overall technological diversity when performed by PO types. 

The conclusion of Chapter 6 is that the organizational routines that make decisions prior to 

technological search affect the dynamics of technological diversity as micro criteria. 



200 

 

 

 

Figure 7-1. Endogenous dynamic of technological diversity in terms of technological 

search and organizational routines 

 

The results of the study are summarized in Figure 7-1. The dynamics of technological 

diversity should be examined by identifying specific trajectories, not just by considering 

technology as a whole. In addition, for the endogenous dynamics of technological diversity, 

technological search and organizational routines are internal factors. Technological search 

drives dynamics of technological diversity, and organizational routines act as micro criteria 

for this process. 

 

7.2 Implications and Limitations 

7.2.1 Practical Implications 

Technological diversity allows the exploration of new possibilities, promotes adaptation 

to changing environments and contributes to the long-term development of industries and 

economies. Maintaining a certain level of technological diversity is essential to attract the 
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expansion of the knowledge base and spillovers, and to generate innovation through cross-

technology recombination. To be sure, technological diversity may be reduced at certain 

times, such as when production efficiency is emphasized, and market stabilization requires 

standardized technologies. It is also possible that firms, especially those driven by returns 

to scale, may not be as proactive in increasing technological diversity. 

This study has consistently maintained the evolutionary economics position that 

technological diversity generally plays a positive role in promoting innovation. For long-

term sustainable development, policy makers should promote technological diversity46 . 

Moreover, the empirical case of photovoltaic technology shows that technologies evolve 

by interacting with the external environment. In the face of change and uncertainty, 

technological diversity provides a means of responding flexibly and building resilience. 

The empirical findings of this study on endogenous dynamics of technological diversity 

have strong implications for government policies and firm strategies to maintain and 

increase technological diversity. 

First, for the design of policies and strategies, it is necessary to understand the overall 

evolution of the technology, while simultaneously identifying the evolutionary patterns of 

specific trajectories. The differences in evolutionary patterns across trajectories found in 

this study highlight the importance of analyzing specific trajectories rather than making 

generalizations about the entire sector. The Car Allowance Revate System (CARS), also 

 
46 Discussing the appropriate level of technological diversity is beyond the scope of this study and is left to 

future work.  
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known as the Cash-for-Clunkers program, is an example of a failed policy instrument that 

did not take technological trajectories into account. This program is a government initiative 

implemented around 2009-2010 in several countries, including the United States, Germany, 

the United Kingdom, and France, to revitalize the automotive industry, stimulate economic 

activity, and reduce carbon emissions. While the specifics varied from country to country, 

the general idea was to provide financial incentives to consumers who traded in older, less 

fuel-efficient vehicles for newer, more fuel-efficient models. However, the program is 

considered to have failed to achieve its environmental and economic goals (Klier & Linn, 

2011). Reasons for the failure include not incorporate vehicle life cycles and potential 

backlash effects, as well as ignoring the detailed technological trajectory of automotive 

innovation, namely the rapid technological development of hybrid and electric vehicles 

(Naumov et al., 2023). There are even more examples of corporate strategies that failed 

because they didn’t take technology trajectories into account.47 By considering detailed 

trajectories as well as overall patterns of technological evolution, it is possible to identify 

promising technologies to allocate resources more effectively and, conversely, to develop 

targeted interventions to promote the adoption of technologies that have lagged behind 

despite their potential. It can also help prevent technological lock-in caused by a focus on 

specific technologies.  

Second, combinatorial innovation is beneficial to the extent that it is technically feasible, 

 
47 For examples, Kodak lost share in the camera industry because it failed to read the paradigm shift from 

analog to digital and the new trajectory of the camera market. Nokia, on the other hand, despite being the first 

to develop smartphones and tablet PCs, ended up with a weak presence in the market due to a lack of 

commercialization judgment and timing.  
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rather than the introduction of entirely new technologies. The endogenous mechanism of 

technological diversity revealed by this study is that technological diversity increases 

significantly when one technology is recombined with other related technologies. Scholars 

have long recognized combinatorial innovation as a powerful source of novelty (Gilfillan, 

1935; Usher, 1954; Fleming, 2001; Hargadon & Sutton, 1997). Recombining different 

technologies can produce new and useful solutions to complex problems. However, not all 

cases of recombination lead to success because the process of recombination is inherently 

uncertain. Factors such as compatibility, selection pressure, and the operating environment 

influence the outcome of recombination, much like the uncertain nature of species in 

evolution. Contrary to common misconceptions about innovation, the introduction and 

combination of entirely new technologies poses evolutionary risks in terms of adaptability 

and efficiency. Consider the example of Amazon’s Fire Phone, introduced in 2014. It 

incorporated new technologies that hadn’t existed in mobile phones before, such as 3D 

display, but failed to make much of a splash in the market due to its high price and limited 

app ecosystem. While reuniting with a mutant technology may seem highly innovative, the 

failure to adapt to the market highlights the risks involved. Conversely, recombination 

between related technologies has distinct advantages for innovation. Related technologies 

share a degree of compatibility that reduces the potential risks and uncertainties of 

recombination. Such recombination also makes them easier to adopt and integrate into 

existing systems (Christensen, 2013; Garud et al., 1997). To facilitate this approach, 

interdisciplinary collaboration can be encouraged through research funding programs, 
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networking events, and open innovation initiatives. Public-private collaboration platforms 

and incentives for industry-academia collaboration can further promote combined 

innovation in related technologies. To promote combined innovation, public policies can 

strengthen technology transfer programs and streamline licensing procedures. Providing 

funding for transfer costs and enhancing access to existing technologies can incentivize 

innovators while smoothing the path to innovation. Initiatives such as the European Union’s 

Horizons 2020 and the United Kingdom’s Innovate UK are examples of policies and 

programs to encourage combinatorial innovation48. 

Third, customized strategies and policy portfolios are needed that take into account firm-

or group-specific characteristics. This study quantitatively derives the organizational 

routines of photovoltaic firms and identifies the heterogeneity within the industry. It then 

concludes that this heterogeneity affects the endogenous dynamics of technological 

diversity in different ways. 

Organizational routines are inherent characteristics that underpin firm stability and 

gradual change. These routines build on accumulated knowledge, capabilities, and past 

successes and shape how tasks are performed, knowledge is shared, and resources are 

 
48 Horizon 2020 is the European Union's research and innovation funding program that ran from 2014 to 

2020. With a budget of approximately €80 billion, it was the largest EU research and innovation framework 

program ever, focusing on (1) funding researcher-led projects through the European Research Council (ERC) 

and supporting researcher mobility and training through the Marie Sklodowska-Curie action; (2) building 

Europe's industrial leadership by supporting research and innovation in key sectors and strengthening the 

competitiveness of SMEs; and (3) encouraging interdisciplinary collaboration and partnerships to address 

societal challenges. Meanwhile, Innovate UK is an executive non-departmental public body funded by UK 

Research and Innovation (UKRI). Innovate UK focuses on providing funding, connecting businesses with 

expertise and resources, and facilitating collaboration between businesses, research institutions and other 

stakeholders. Each of references are the websites of Horizon 2020 and UKRI, respectively.  
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allocated. By incorporating routines into strategy formulation, managers can facilitate 

learning and resource allocation reliably and efficiently. When organizational routines are 

not considered, market relevance can decline due to loss of focus and differentiation. The 

story of Yahoo, once a dominant Internet company, illustrates not only the importance of 

identifying and adjusting one’s own organizational routines to remain competitive and 

relevant, but also the dangers of rapid change and blind replication of routines. To compete 

with Google, Yahoo overlooked its own strengths, such as its existing presence in web 

portals, news, and email services, and blindly copied Google’s search engine and 

advertising strategy, losing its own identity and market share.  

Policymakers should also consider the organizational routines that produce 

heterogeneity. In a situation where individual firms are different from each other and their 

groups have heterogeneous characteristics, policy attempts to satisfy all firms with the 

average by assuming a representative firm are unlikely to succeed. Therefore, the existence 

of heterogeneity must be taken into account when designing policies for firms in order to 

maintain a balance between promoting innovation and ensuring responsible development, 

and to improve the effectiveness of policies without alienating policy consumers. 

By recognizing the importance of firm-specific routines and heterogeneity, and adopting 

tailored strategies and policies, policymakers and managers can create an enabling 

environment for innovation and growth. Understanding the stability and endogenous 

change inherent in routines allows for the development of targeted interventions and 

support mechanisms that match the unique characteristics of firms and industries. 
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7.2.2 Suggestions for Photovoltaic Technology 

This study suggests the following implications for the current and future directions of 

photovoltaic technology. 

First, photovoltaic technology has experienced a decline in diversity and search 

dynamics since 2015. Diversity is a necessary condition for the evolutionary mechanism to 

operate (Basalla, 1988). Such a decrease in diversity implies that the driving force of 

photovoltaic technology development has weakened. This study points out that 

contemporary photovoltaic technology is biased toward vertical inheritance, pursuing 

incremental innovation within the trajectory of existing technologies, and is least likely to 

pursue horizontal gene transfer seeking new technology combinations.  

A clue to photovoltaic technology lies here. Technological diversity should be promoted 

through recombination of related technologies, including technologies that have already 

been developed and currently exist within the photovoltaic industry. 

More specifically, the integration of technologies, regardless of generation, to realize 

high-efficiency photovoltaic cells, such as IBC cells, SHJ cells, TOPCon cells or silicon-

based tandem photovoltaic cells, is the correct direction to pursue according to 

technological trajectories. First and second-generation mixed technologies must be 

included in the selection process, in order to create the dominant design with the highest 

diversity level. The drastic drop in the diversity level observed in the first-generation 

technologies that enjoyed market leadership thus far disproves the notion that current 

photovoltaic technology is in a technological transition period. 
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Lab-scale innovations in third-generation technologies can also quickly secure 

practicality by “standing on the shoulders of giants.” For example, perovskite technology 

faces many barriers to market entry, as it is classified as an emerging technology. This, 

despite its high potential and unprecedented photoelectric conversion efficiency 

improvement from 10% in 2012 to 25% in 2019. The time taken to secure technological 

maturity can be accelerated through convergence with existing technologies in which the 

technological foundation is well understood as well as mass production is stabilized. 

Recently, the tandem structure of perovskites on crystalline silicon substrates has shown a 

31.3% technological advance (National Renewable Energy Laboratory, 2022). In addition, 

efforts are ongoing to apply the roll-to-roll method for mass production of thin-film solar 

cells (Kim et al., 2020; Rajagopal & Jen, 2018; Williams et al., 2016). Such convergence 

contributes greatly to diversity in photovoltaic technology by simultaneously increasing 

the technological scope and depth. This technological diversity enhances the flexibility of 

the system and increases the likelihood of finding better solutions in response to uncertainty 

(Stirling, 2010). In summary, for third-generation technology, it is appropriate to use 

existing technologies to increase diversity and improve practical completeness, and then 

derive a dominant design using this as a stepping-stone. 

Second, to promote innovation and production on photovoltaics, relevant policies 

should consider firm heterogeneity and characteristics. Thus, this study sheds light on and 

confirms the existence of heterogeneity through the innovation routines of companies in 

the photovoltaic industry. The Adaptive Adventurer (AA) type dominates the innovation 
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routines of the nineteen photovoltaic firms analyzed in this study. The predominance of the 

AA type, significantly related to increasing technological diversity, can be interpreted as a 

positive sign for photovoltaic technology innovation. Moreover, the MT pattern of 

technological search performed by AP and EO types is found to be effective in reducing 

the risk of evolutionary adaptation in new technologies and introducing a high level of 

novelty to the sector. Therefore, policy should support these firms to continue pursuing 

technologies that do not exist in the sector and ensure that the technologies they introduce 

are diffused, allowing other firms to expand the sector-wide technology space through 

technological search in the HGT pattern. 

While photovoltaic firms are heterogeneous in their Knowing related to R&D, they are 

more homogeneous in their Doing related to production. Specifically, the production 

activities of the photovoltaic industry are generally exploitative. From a government 

viewpoint, such homogeneity of firms is favorable for achieving policy goals and 

improving the efficiency and effectiveness of policy instruments. However, an exploitative 

disposition to production is not beneficial from an innovation perspective. Unlike other 

actors for technology development, companies serve as intermediaries between technology 

and the market. This means that when firms continuously receive feedback on market 

responses to technology and organically link R&D and production, innovativeness across 

sectors will grow. Despite the development and growth of photovoltaic technology as a 

localized power source, the current concentration on utility-scale applications reflects an 
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exploitative routine in the Doing of photovoltaic firms49 . The IEA (2022) predicts that 

utility-scale photovoltaics remains a competitive source; however, the deployment of large-

scale installations will become increasingly difficult due to a lack of suitable locations. It 

also points to the need to increase support for all sectors of photovoltaics and parallel 

development of on- and off-grid photovoltaics to align with the net-zero carbon scenario 

milestone.  

This broadening of photovoltaic module applications is based on existing photovoltaic 

cell technologies, and thus aligns with the principle of increasing technological diversity 

mentioned earlier. Diversifying applications by developing modules with flexible, 

stretchable, or transparent characteristics based on second- and third-generation 

technologies featuring substrate freedom will lead to increased technological diversity. 

Recently, the rapid development of electric-powered transportation and wearable devices 

has expanded the applications of photovoltaic technology. Therefore, the government 

should provide a scheme to broaden the application of photovoltaic technology to create a 

virtuous cycle of innovation in technology and products. 

 

7.2.3 Contributions and Limitations 

This study extends the scholarly discussion on the endogenous dynamics of 

technological diversity by empirically examining technological search and organizational 

 
49 As of 2021, utility-scale plants account for 52% of global solar capacity, while residential accounting for 

28% and commercial and industrial for 19%, respectively. Decentralized (off-grid) applications account for 

only 1%. 
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routines based on evolutionary economics. More specifically, by classifying technological 

search into specific patterns based on evolutionary concepts in biology, the explanatory 

power of technological search for the development of technology is enhanced. In addition, 

this study measures, identifies, and classifies organizational routines, which are key 

concepts in evolutionary economics. It is of academic significance that organizational 

routines, an abstract and complex concept inherent in firms, are empirically analyzed 

through a multidimensional approach and relative comparison. 

This study is particularly noteworthy for its use of an evolutionary phylogenetic 

methodology, which employs data-driven analysis facilitated by algorithms. The 

application of this methodology holds a pivotal position in hypothesis testing within the 

study, which inherently adopts an evolutionary approach. The absence of this methodology 

would have posed significant challenges and limitations, hindering the comprehensive 

exploration and understanding of the endogenous dynamics of technological diversity. 

 As a practical implication, this work evaluates the current state and provides practical 

advice on the future direction of photovoltaic technology. However, this work also has 

some limitations.  

First, this study aims to derive a generalizable framework for the endogenous 

mechanisms of technological diversity. However, it is based on an empirical analysis of a 

specific case, photovoltaic technology. Although the study describes the rationale for the 

case selection, the framework needs to be strengthened for generalization through further 

research on other industries. Technological and industrial dynamics are influenced by a 
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variety of situational contexts and are heterogeneous from others. Therefore, a more robust 

and generalized theory of the endogenous dynamics of technological diversity should be 

developed through comparative studies of different technologies. 

Second, this study focuses on the mechanisms by which technological diversity is 

generated and changed, and identifies the patterns of technological search and 

organizational routines as factors. However, it is likely that there are other factors besides 

these two factors in the endogenous mechanism of technological diversity. This study also 

found that different patterns of technological search have heterogeneous effects on 

technological diversity, but it did not identify under what contextual circumstances 

different patterns of technological search are used. Therefore, further research should be 

conducted to solidify the discussion on technological diversity. 

The third is to validate the evolutionary phylogenetic tree of technology. Although the 

technological evolutionary tree is a quantitative and scientific construct based on data and 

algorithms, its validation using a qualitative approach is limited. This study attempted to 

compensate for this by using keywords to describe key taxa that are nodes of the 

phylogenetic tree, but it is still insufficient. This limitation is also pointed out by J.-D. Lee 

et al. (2022). The taxa-level phylogenetic analysis used in this study is an appropriate 

method for observing the macroscopic flow of technological evolution. Conversely, the 

currently constructed phylogenetic tree of technological evolution has limitations for 

quantitative analysis at the micro level. One way to overcome this limitation is to represent 

the unit of analysis, i.e., technology, as a smaller micro-level unit than taxa, thus increasing 
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the number of observations for analysis. Future research could address this limitation by 

applying various embedding techniques from machine learning to transform technologies 

into analyzable objects. Alternatively, probabilistic models can be integrated into network 

analysis frameworks, such as Bayesian networks, to attempt statistical analysis and 

prediction. This approach allows dealing with uncertainty through probabilistic models and 

simultaneously understanding of evolutionary relationships between technologies and 

structural aspects of technological evolution through networks. Therefore, the development 

of quantitative and objective metrics and model frameworks should be further explored in 

future studies. 

The last one relates to the data aspect. On the one hand, photovoltaic patent and module 

data have fundamental limitations as proxies for technology and product, respectively. 

Therefore, further empirical analysis should be conducted on more technologies and 

products to solidify the theoretical discussions. On the other hand, due to data limitation, 

only nineteen firms are empirically analyzed in Chapter 6. Specifically, Chinese firms, 

which are major players in the photovoltaic industry, are not included in the analysis. 

Therefore, there are restrictions in interpreting the results as a holistic view of trends for 

the photovoltaic industry. No dataset can ever be a perfect representation of the diverse and 

complex real world. This is an inevitable limitation of any researcher conducting 

quantitative analysis using data as a proxy for reality. However, it is expected that 

subsequent efforts to improve the quantity and quality of data through continuous data 

construction will improve the relevance of quantitative analysis results to reality.  
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Appendix Ⅰ. Robustness Check 

A Ⅰ. ⅰ Robustness Check for Chapter 5 

The ordinary least square (OLS) model with the addition of both period dummies and 

interaction terms for search and period to reflect heterogeneous selection pressures 

(exogeneous changes) across years, is shown in Equation A-1. The model uses 

technological diversity measured by information entropy as the dependent variable and the 

other variables in Table 5-1 as explanatory variables. 

 

 𝑇𝐷𝑗𝑡 = 𝛽0 + 𝛽1𝑉𝐼𝑗𝑡 + 𝛽2𝐻𝐺𝑇𝑗𝑡 + 𝛽3𝑀𝑇𝑗𝑡

+ ∑ 𝛽𝑘  𝐶𝑜𝑛𝑡𝑟𝑜𝑙 𝑉𝑎𝑟𝑖𝑎𝑏𝑙𝑒𝑠𝑘𝑡

𝑘

+ ∑ 𝛽𝑝 𝑃𝑒𝑟𝑖𝑜𝑑 𝐷𝑢𝑚𝑚𝑦𝑝

𝑝

+ 𝛽𝑚
𝑉𝐼𝑃𝑒𝑟𝑖𝑜𝑑 𝐷𝑢𝑚𝑚𝑦𝑝𝑉𝐼𝑗𝑡

+ 𝛽𝑚
𝐻𝐺𝑇𝑃𝑒𝑟𝑖𝑜𝑑 𝐷𝑢𝑚𝑚𝑦𝑝𝐻𝐺𝑇𝑗𝑡

+ 𝛽𝑚
𝑀𝑇𝑃𝑒𝑟𝑖𝑜𝑑 𝐷𝑢𝑚𝑚𝑦𝑝𝑀𝑇𝑗𝑡 + 𝜀𝑗𝑡 

Eq. (A-1) 

  

𝑃𝑒𝑟𝑖𝑜𝑑 𝐷𝑢𝑚𝑚𝑦𝑝 refers to the period-specific dummy, which has a dummy value of 

period 1 if t is 2000~2004, period 2 if t is 2005~2008, period 3 if t is 2009~2013, and period 

4 if t is 2014~2018 according to the criteria of periods presented in Table 3-2. Then the 

interaction effects of each time period and the three patterns of search are estimated (𝛽𝑚
𝑉𝐼 , 

𝛽𝑚
𝐻𝐺𝑇, 𝛽𝑚

𝑀𝑇). 

First, to check the robustness of the original regression, the results of a pooled OLS 
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with period dummies are shown in Table A1. In Model 5, which utilizes all-period dummy 

variables to capture the effect of all periods, VI has a negative effect on technological 

diversity, HGT has a positive effect, and MT is not significantly correlated. These results 

are in line with those in Table 5-4, suggesting that the technological search has a consistent 

effect on technological diversity. 

Second, Table A2 present the regression results for the interaction terms. Each of search 

patterns has a consistent relationship with technological diversity regardless of the addition 

of period dummies and interaction terms. In particular, the interaction terms are not 

significantly correlated with technological diversity, indicating that the effect of 

technological search on technological diversity is not differentiated by period. In other 

words, the technological search is an endogenous determinant of technological diversity, 

even after accounting for heterogeneity in period. 
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Table A1. Result of regression (Robustness check for Chapter 5) 

Dependent variable: 

Entropy 
Model 1 Model 2 Model 3 Model 4 Model 5 

Intercept 
0.093 

(0.063) 
-0.057 
(0.064) 

0.0092 
(0.074) 

-0.062 
(0.076) 

-0.056 
(0.050) 

Vertical Inheritance 

of Taxon 

-0.22** 

(0.080) 
-0.21* 

(0.082) 
-0.19* 

(0.084) 
-0.18* 

(0.083) 
-0.21* 

(0.080) 

Horizontal Gene 

Transfer of Taxon 

0.23*** 

(0.063) 
0.23*** 

(0.064) 

0.23*** 

(0.065) 

0.24*** 

(0.065) 

0.23*** 

(0.062) 

Mutation of Taxon 
-0.018 
(0.062) 

-0.036 
(0.064) 

-0.051 
(0.064) 

-0.054 
(0.064) 

-0.021 
(0.062) 

Gene Pool Size 
0.26** 

(0.087) 

0.31*** 

(0.088) 

0.29** 

(0.090) 

0.25* 

(0.097) 

0.16 
(0.10) 

Global Gene Pool 

Size 

0.25*** 

(0.070) 

0.40*** 

(0.072) 

0.34*** 

(0.068) 

0.28*** 

(0.079) 

0.099 
(0.12) 

Number of patents in 

Taxon 

0.49*** 

(0.10) 

0.47*** 

(0.10) 

0.47*** 

(0.11) 

0.49*** 

(0.11) 

0.53*** 

(0.10) 

Period 1 Dummy 
-0.53** 

(0.18) 
- - - 

-0.60*** 

(0.18) 

Period 2 Dummy - 
0.31 

(0.17) 
- - 

-0.057 
(0.16) 

Period 3 Dummy - - 
-0.024 
(0.13) 

- 
0.11 

(0.10) 

Period 4 Dummy - - - 
0.24 

(0.19) 
0.49* 

(0.21) 

Number of Obs. 103 103 103 103 103 

Adj R-squeared 0.69 0.68 0.67 0.67 0.70 

Notes:  

1. Standard errors are in parentheses. 

2. ***, **, and * denote statistical significance at the 0.1%, 1%, and 5% levels, respectively. 

3. Bold denotes statistical significance at the 0.1%, 1%, and 5% levels. 
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Table A2. Result of regression for interactive variables (Search*Period) 

Dependent variable: 

Entropy 

Model 6 

Period 1*Search 

Model 7 

Period 2*Search 

Model 8 

Period 3*Search 

Model 9 

Period 4*Search 

Intercept 
0.382* 

(0.173) 

-0.054 

(0.062) 

0.010 

(0.073) 

-0.063 

(0.077) 

Vertical Inheritance  

of Taxon 

-0.179 

(0.101) 

-0.121 

(0.091) 

-0.193 

(0.108) 

-0.181* 

(0.086) 

Horizontal Gene 

Transfer of Taxon 

0.857** 

(0.285) 

0.152* 

(0.070) 

0.175** 

(0.072) 

0.233*** 

(0.066) 

Mutation of Taxon 
1.220 

(0.790) 

-0.023 

(0.062) 

-0.045 

(0.063) 

-0.054 

(0.064) 

Gene Pool Size 
0.354*** 

(0.087) 

0.327*** 

(0.086) 

0.294*** 

(0.088) 

0.256* 

(0.111) 

Global Gene Pool Size 
0.391*** 

(0.082) 

0.373*** 

(0.070) 

0.368*** 

(0.067) 

0.255** 

(0.085) 

Number of patents  

in Taxon 

0.398*** 

(0.105) 

0.418*** 

(0.104) 

0.453*** 

(0.104) 

0.522*** 

(0.114) 

Period Dummy 
-0.154 

(0.337) 

0.240 

(0.168) 

0.093 

(0.131) 

-4.550 

(4.252) 

Period Dummy  

* VI 

0.454 

(0.513) 

-0.112 

(0.167) 

-0.080 

(0.142) 

-0.028 

(0.161) 

Period Dummy  

* HGT 

-1.235 

(0.678) 

0.252 

(0.174) 

0.262 

(0.181) 

-1.510 

(1.545) 

Period Dummy  

* MT 

1.531 

(1.314) 

0.914 

(0.559) 

0.820 

(0.471) 

-18.792 

(18.313) 

Number of Obs. 87 103 103 103 

Adj R-squared 0.740 0.698 0.684 0.667 

Notes:  

1. Standard errors are in parentheses. 

2. ***, **, and * denote statistical significance at the 0.1%, 1%, and 5% levels, respectively. 

3. Bold denotes statistical significance at the 0.1%, 1%, and 5% levels. 
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Figure A1. Result of residual analysis 

 

Figure A1 is the residual scatter plot for Model 5. The mean of the residuals is virtually 

zero (-5.61 e-17) and is distributed in a random manner. Therefore, the results of the 

residual analysis can be considered to follow the Gauss - Markov Theorem, suggesting that 

linear estimation through the OLS method applied in this study is appropriate. 
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A Ⅰ. ⅱ Robustness Check for Chapter 6 

The regression model to ensure the robustness of the routine regression presented in 

Chapter 6 is a pooled OLS model. Since the pooled OLS model does not control for the 

time-of-year effect that the traditional mixed regression model does, an additional analysis 

was performed in which the data was split into two time periods (Period 1 & Period 2; 

Period 3 & Period 4). 

As shown in Table A3, the regression analysis performed by the pooled OLS method 

yielded the same results as the original results. In addition, while the periodized analysis 

resulted in consistent with the original results for HGT, some of the regression models for 

Period 1 & Period 2 (VI of Taxon, AA Dummy) showed different statistical significance 

from the original results (Table 5-1). This is expected to be due to the lack of observations. 

Meanwhile, the analysis to check the robustness of the interaction between technological 

search and organizational routine (see Table A4) also produced the same statistical 

significance and coefficient positive-negative trend as the original results, except for one 

variable in Model 7 (PO Dummy) (Table 5-2). From the results, it can be interpreted as 

confirmation of the robustness of the original regression results. 

  

  



257 

 

Table A3. Results of regression (Robustness check for Chapter 6) 

Dependent variable: 

Entropy 
Model 1 

Model 1 

for period 1 & 2 

Model 1 

for period 3 & 4 

Intercept 
-0.326* 

(0.140) 

0.099 

(0.958) 

-0.016 

(0.164) 

Vertical Inheritance 

(VI) of Taxon 

-0.232** 

(0.084) 

-0.175 

(0.289) 

-0.310** 

(0.102) 

Horizontal Gene 

Transfer (HGT) of 

Taxon 

0.267*** 

(0.065) 

0.168 

(0.090) 

0.410** 

(0.136) 

Mutation (MT) of 

Taxon 

-0.056 

(0.061) 

-0.003 

(0.072) 

0.588 

(0.435) 

Gene Pool Size 
0.358*** 

(0.087) 

1.669 

(1.240) 

0.338*** 

(0.0874) 

Global Gene Pool 

Size 

0.363*** 

(0.070) 

0.245 

(0.859) 

0.366*** 

(0.106) 

Number of patents 

in Taxon 

0.365** 

(0.132) 

0.056 

(1.417) 

0.429** 

(0.132) 

Active Pioneer 

(AP) Dummy 

0.194 

(0.143) 

0.550 

(0.270) 

-0.146 

(0.174) 

Efficient Optimizer 

(EO) Dummy 

-0.083 

(0.245) 

0.415 

(1.005) 

-0.108 

(0.248) 

Passive Observer 

(PO) Dummy 

-0.122 

(0.134) 

-0.098 

(0.266) 

-0.215 

(0.157) 

Adoptive 

Adventure (AA) 

Dummy 

0.420** 

(0.153) 

0.411 

(0.311) 

0.611*** 

(0.180) 

Number of Obs. 103 37 66 

Likelihood 0.695 0.319 0.687 

Notes:  

1. Standard errors are in parentheses. 

2. ***, **, and * denote statistical significance at the 0.1%, 1%, and 5%levels, respectively. 

3. Bold denotes statistical significance at the 0.1%, 1%, and 5% levels. 
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Table A4. Results of regression for interactive terms 

Dependent variable: 

Entropy 

Model 2 

AA * HGT 

Model 3 

AP * MT 

Model 4 

EP * MT 

Model 5 

PO * HGT 

Intercept 
-0.291* 

(0.117) 

-0.081 

(0.086) 

0.020 

(0.066) 

0.195 

(0.119) 

Search of Taxon 
0.065 

(0.077) 

0.018 

(0.055) 

0.042 

(0.061) 

0.788* 

(0.314) 

Active Pioneer (AP) 

Dummy 
 

0.352** 

(0.133) 
  

Active Pioneer 

* Search of Taxon 
 

1.71*** 

(0.326) 
  

Efficient Optimizer 

(EO) Dummy 
  

0.259 

(0.284) 
 

Efficient Optimizer  

* Search of Taxon 
  

2.743** 

(1.012) 
 

Passive Observer (PO) 

Dummy 
   

-0.231 

(0.155) 

Passive Observer  

* Search of Taxon 
   

-0.607 

(0.318) 

Adoptive Adventurer 

(AA) Dummy 

0.398** 

(0.143) 
   

Adoptive Adventurer  

* Search of Taxon 

0.301** 

(0.110) 
   

Gene Pool Size 
0.471*** 

(0.082) 

0.347*** 

(0.074) 

0.348*** 

(0.083) 

0.389*** 

(0.082) 

Global Gene Pool Size 
0.352*** 

(0.063) 

0.387*** 

(0.068) 

0.310*** 

(0.067) 

0.323*** 

(0.064) 

Number of patents in 

Taxon 

0.165* 

(0.090) 

0.308*** 

(0.081) 

0.408*** 

(0.096) 

0.320*** 

(0.089) 

Number of Obs. 103 103 103 103 

Adjust R-squared 0.713 0.643 0.663 0.719 

Notes:  

1. Standard errors are in parentheses. 

2. ***, **, and * denote statistical significance at the 0.1%, 1%, and 5% levels, respectively. 

3. Bold denotes statistical significance at the 0.1%, 1%, and 5% levels. 
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Appendix Ⅱ. Interaction Result of Regression 

Table A5. Interaction between Active Pioneer and search patterns 

Dependent variable: 

Entropy 

Model 1 

VI 

Model 2 

HT 

Model 3 

MT 

Intercept 
-0.132 

(0.117) 

-0.137 

(0.104) 

-0.065 

(0.100) 

Search of Taxon 
-0.110 

(0.122) 

0.105 

(0.070) 

0.025 

(0.056) 

Active Pioneer Dummy 
0.288 

(0.148) 

0.272* 

(0.135) 

0.336** 

(0.128) 

Active Pioneer 

* Search of Taxon 

-0.065 

(0.143) 

0.242* 

(0.112) 

1.674*** 

(0.316) 

Gene Pool Size 
0.274** 

(0.090) 

0.407*** 

(0.078) 

0.336*** 

(0.073) 

Global Gene Pool Size 
0.258*** 

(0.080) 

0.284*** 

(0.078) 

0.382*** 

(0.078) 

Number of patents in Taxon 
0.442*** 

(0.111) 

0.242** 

(0.083) 

0.335*** 

(0.078) 

Number of Obs. 103 103 103 

Likelihood -99.068 -93.829 -87.466 

Notes:  

1. Standard errors are in parentheses. 

2. ***, **, and * denote statistical significance at the 0.1%, 1%, and 5%levels, respectively. 

3. Bold denotes statistical significance at the 0.1%, 1%, and 5% levels. 
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Table A6. Interaction between Efficient Optimizer and search patterns 

Dependent variable: 

Entropy 

Model 1 

VI 

Model 2 

HT 

Model 3 

MT 

Intercept 
0.058 

(0.090) 

0.023 

(0.086) 

0.021 

(0.087) 

Search of Taxon 
-0.177* 

(0.084) 

0.162** 

(0.060) 

0.060 

(0.063) 

Efficient Optimizer Dummy 
-0.166 

(0.260) 

-0.179 

(0.239) 

0.222 

(0.272) 

Efficient Optimizer  

* Search of Taxon 

-0.457* 

(0.202) 

0.504* 

(0.227) 

2.725** 

(0.978) 

Gene Pool Size 
0.240** 

(0.089) 

0.387*** 

(0.080) 

0.349*** 

(0.082) 

Global Gene Pool Size 
0.297*** 

(0.079) 

0.310*** 

(0.077) 

0.305*** 

(0.079) 

Number of patents in Taxon 
0.690*** 

(0.132) 

0.401*** 

(0.092) 

0.437*** 

(0.092) 

Number of Obs. 103 103 103 

Likelihood -97.411 -94.269 -96.463 

Notes:  

1. Standard errors are in parentheses. 

2. ***, **, and * denote statistical significance at the 0.1%, 1%, and 5% levels, respectively. 

3. Bold denotes statistical significance at the 0.1%, 1%, and 5% levels. 
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Table A7. Interaction between Passive Observer and search patterns 

Dependent variable: 

Entropy 

Model 1 

VI 

Model 2 

HT 

Model 3 

MT 

Intercept 
0.047 

(0.123) 

0.195 

(0.126) 

0.006 

(0.108) 

Search of Taxon 
0.003 

(0.165) 

0.788** 

(0.304) 

0.031 

(0.071) 

Passive Observer Dummy 
-0.017 

(0.145) 

-0.245 

(0.144) 

-0.012 

(0.134) 

Passive Observer  

* Search of Taxon 

-0.190 

(0.170) 

-0.591 

(0.307) 

0.160 

(0.131) 

Gene Pool Size 
0.262** 

(0.091) 

0.385*** 

(0.080) 

0.329*** 

(0.084) 

Global Gene Pool Size 
0.284*** 

(0.081) 

0.325*** 

(0.077) 

0.297*** 

(0.081) 

Number of patents in Taxon 
0.511*** 

(0.108) 

0.347*** 

(0.084) 

0.397*** 

(0.090) 

Number of Obs. 103 103 103 

Likelihood 
-100.617 -94.837 -102.230 

Notes:  

1. Standard errors are in parentheses. 

2. ***, **, and * denote statistical significance at the 0.1%, 1%, and 5% levels, respectively. 

3. Bold denotes statistical significance at the 0.1%, 1%, and 5% levels. 
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Table A8. Interaction between Adoptive Adventure and search patterns 

Dependent variable: 

Entropy 

Model 1 

VI 

Model 2 

HT 

Model 3 

MT 

Intercept 
-0.199 

(0.275) 

-0.255 

(0.127) 

-0.241 

(0.139) 

Search of Taxon 
-0.062 

(0.403) 

0.072 

(0.075) 

0.126 

(0.126) 

Adoptive Adventure Dummy 
0.296 

(0.278) 

0.346* 

(0.139) 

0.324* 

(0.152) 

Adoptive Adventure  

* Search of Taxon 

-0.125 

(0.399) 

0.303** 

(0.110) 

-0.066 

(0.133) 

Gene Pool Size 
0.308*** 

(0.092) 

0.454*** 

(0.080) 

0.393*** 

(0.087) 

Global Gene Pool Size 
0.342*** 

(0.080) 

0.346*** 

(0.073) 

0.326*** 

(0.081) 

Number of patents in Taxon 
0.424*** 

(0.109) 

0.202* 

(0.087) 

0.279** 

(0.093) 

Number of Obs. 103 103 103 

Likelihood 
-97.313 -91.375 -100.529 

Notes:  

1. Standard errors are in parentheses. 

2. ***, **, and * denote statistical significance at the 0.1%, 1%, and 5% levels, respectively. 

3. Bold denotes statistical significance at the 0.1%, 1%, and 5% levels. 
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Abstract (Korean) 

 

기술의 다양성(diversity)은 혁신의 자극제이자 지표이다. 다양한 기술의 존

재 하에 재조합을 통한 혁신이 발생하고, 또 혁신의 결과로 차별화된 기술이 

탄생하면서 기술이 다양 해진다. 경제의 발전 과정에서 기술 다양성은 증감 

및 정체를 반복하며 끊임없이 변화한다. 기술 다양성의 역학은 기술과 산업의 

성장 단계에 대한 정보를 제공하며, 정부 혁신 정책과 기업의 전략적 행동에 

대한 근거로 활용된다. 그러나 기술 다양성과 그 역학(dynamics)이 갖는 이론

적, 실천적 중요성에 비해 우리의 경험적 이해는 여전히 제한적이다. 선행연구

는 기술 다양성을 산업과 같은 큰 범주에서 포괄적으로 측정하여 세부적인 기

술 궤적에 대한 고려가 결여되어 있을 뿐 아니라 기술 다양성 역학의 내생적 

메커니즘에 대해 충분히 설명하지 못한다.  

기술 다양성과 그 역학에 대한 이론적 근거가 부재한 상황에서 혁신을 추

진하고자 수행되는 기술 다양성 증가의 노력은 효율적이고 효과적인 결과를 

불러오기 어렵다. 본 연구는 기술 다양성의 내생적 역학을 이해하여 보다 직

접적이고 실천적인 혁신 정책 및 전략 방안을 찾고자 하였다. 이를 위해 다양

성에 대한 진화적 관점에 주목하고, 진화경제학을 이론적 기반으로 한다.  

보다 구체적으로, 기술다양성의 정량화에 진화계통도 방법론을 활용한다. 

데이터와 알고리즘에 기반한 이 방법론을 통해 기술 진화 과정과 세부 궤적의 

정보를 다양성 측정에 반영한다. 본 연구는 진화계통도 방법론을 연구 전반에 

걸쳐 중요한 분석적 틀로 활용한다. 그리고 다양성 역학의 내생적 요인으로 
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기술 탐색과 조직 루틴을 지목한다. 이것은 기술 자체의 본질과 기술을 개발

하는 행위자의 관점에서 기술 다양성 역학의 메커니즘을 규명하기 위한 접근

이다. 실증 분석은 태양광 발전 기술을 대상으로 한다. 

4장은 2000년부터 2018년까지 미국 특허청에 등록된 8,081개 태양광 기술 

특허를 활용하여 태양광 발전 기술의 진화 계통도를 구축하고, 기술 발전 궤

적을 도출한다. 기술 다양성의 정량화는 진화계통도에서 도출한 기술 궤적과 

정보에 대해 정보이론의 엔트로피가 활용된다. 4장에서 도출된 기술진화계통도

와 측정한 다양성의 정보는 이어 5장과 6장의 분석에서도 활용한다. 분석 결

과로 도출한 태양광 기술 진화계통도는 태양광 기술발전의 실제 역사를 잘 설

명하였다. 점진적 증가를 보인 평균적 다양성 추세와 달리 세부 기술 궤적은 

보다 급진적인 변화가 존재했다. 한편 전체적 및 세부적 다양성 양상 모두 

2015년을 기점으로 기술 다양성이 정체되거나 감소하는 경향이 관찰되어 현재 

태양광 기술의 혁신 동력이 약화되고 있음을 발견하였다.  

5장은 기술 자체의 본성에 관심을 두고, 기술 탐색에 대한 다양성 역학의 

메커니즘을 살펴본다. 기술 탐색은 생물 진화의 개념에 근거하여 ⅰ) 수직적 전

승(vertical inheritance), ⅱ) 수평적 정보전달(horizontal gene transfer), 그리고 ⅲ) 돌

연변이(mutation)의 3가지의 패턴으로 분류하였다. 데이터는 4장과 동일하며, 

다양성과 기술탐색의 관계 규명에 회귀분석이 수행되었다. 실증결과, 태양광 

기술의 진화과정에서는 주로 수직적 전승 패턴의 기술 탐색이 확인되었고, 수

평적 정보전달 패턴이 가장 적었다. 한편 수직적 전승과 수평적 정보전달의 

탐색 패턴은 다양성과 통계적 유의미한 관계에 있고 각각 다양성을 경감 또는 
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증가시키는 것으로 나타났다. 그러나 다양성과 돌연변이 탐색과의 관계는 유

의미하지 않았다. 5장에서 도출된 결과는 기술 탐색이 다양성 변화의 동인임을 

지목한다. 즉, 기술 다양성은 기술 진화계통도에서 식별할 수 있는 이웃 선조

의 기술요소를 재 조합함으로써 유의미한 증가가 발생한다.  

6장은 기술개발의 행위자로서 조직 루틴과 다양성 역학의 관계를 고찰한다. 

연구는 ⅰ) 루틴의 식별 및 유형화와, ⅱ) 루틴과 다양성의 관계 규명의 2개 부분

으로 구분된다. 먼저 다차원적 기업 행동을 통해 혁신 루틴을 식별하고, 산업 

내 상대비교를 통해 ⅰ) 활동적 개척자(active pioneer), ⅱ) 효율적 최적화자

(efficient optimizer), ⅲ) 소극적 관찰자(passive observer), 그리고 ⅳ) 적응형 탐험

가(adoptive adventurer)의 4가지 유형으로 구분한다. 관계성 규명은 회귀분석을 

수행하며, 2000년부터 2022년까지 미국 특허청 등록 특허와 태양광 시스템 시

뮬레이션 프로그램인 PVsyst version 6.0의 태양광 모듈 데이터를 활용한다. 

연구 결과 6장에서 제안하는 혁신 루틴의 정량화 및 유형화 방법은 기업의 

고유한 특성인 루틴을 식별하는 유효한 접근임을 확인하였다. 또한 4가지 혁

신 유형과 기술 다양성에 대한 회귀분석 결과를 통해 조직 루틴이 기술 다양

성 메커니즘의 내생적 요인임을 밝혔다. 구체적으로 적응형 탐험가유형은 기

술 다양성과 유의미한 양의 관계에 있으며, 특히 이 유형이 수평적 정보전달

을 했을 때 전체 기술 다양성 증가에 영향을 미친다. 나아가 조직 루틴에 따

라 기술 다양성에 대한 기술 탐색의 영향이 (5장의 결과) 변화하는 것이 확인

되었다.  

요약하자면, 기술의 탐색은 직접적으로 기술 다양성을 변화시키는 동인
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(driver)이다. 이에 기반한 기술 다양성 증가의 원리는 기술적 연관성이 존재하

는 범위 내에서 다른 기술과 재 조합하여 점진적으로 진화 공간을 확대시키는 

것으로 도출되었다. 한편 조직 루틴은 기술 다양성 역학에 대한 미시적 기준

(micro criteria)으로 작용한다. 조직 루틴은 기업의 기술 탐색 행동을 결정하며, 

보다 구체적으로 기술 탐색의 방식과 범위, 정도를 결정한다. 결과적으로 기술 

다양성은 조직 루틴에 기반한 기술 탐색 패턴에 의해 역동성을 가진다는 것이 

본 연구가 제시하는 실증적 이론이다. 

본 연구는 기술탐색과 조직 루틴을 기술 다양성 역학을 설명하는 새로운 

지표로 제시하여 학술적 논의의 지평을 넓혔다는 것에 의의가 있다. 특히 진

화적 관점에서 기술 탐색을 세분화하여 기술 탐색의 설명력을 높이고, 기업 

행동에 대한 다차원적 접근과 부문(sector) 내 상대비교를 통해 조직 루틴을 식

별하는 새로운 방법을 제시한다. 나아가 진화계통도 방법론은 기술 전반에 대

한 통합적 접근을 취하였던 선행연구의 한계를 보완하고 동태적인 기술 발전 

과정에 대한 이해를 확장하는데 기여한다. 

마지막으로 본 연구의 결과는 기술 혁신을 유인하고 고무시키기 위한 기업 

전략과 정부 정책적 측면에 효율성 및 효과성을 부여하는 역할로서 실천적 의

의가 있다. 태양광 기술에 대한 실증분석 결과는 현재 직면한 산업의 현안에 

대한 실리적이고 실제적 방안을 도출하는 과학적 근거가 될 것으로 기대한다.  

 

주요어 : 진화경제학; 기술 진화; 다양성 역학; 기술 탐색; 조직 루틴; 태양광 
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