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Abstract 

Inter-organizational Collaboration  
and Optimal Cognitive Proximity  
: Moderating Effect of Knowledge 

Complexity 
 

Yeokyung Hwang 

Technology Management, Economics, and Policy Program 

The Graduate School 

Seoul National University 
 

This study examines the two-sided effects of cognitive proximity in the context of 

collaborative innovation, focusing on the moderating effect of knowledge complexity. 

Utilizing USPTO patent data of US biotechnology sector, this research confirmed an 

inverse U-shaped effect of cognitive proximity on collaborative innovation. The optimal 

level of cognitive proximity increases with higher level of knowledge complexity, which 

shows positive moderating effect of complexity on the proximity effect on collaborative 

innovation. The marginal effect of cognitive proximity also increases in complex fields, 

indicating that proximity plays stronger role as knowledge complexity increases.  
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This indicates that while cognitive proximity enhances knowledge absorption, the 

presence of knowledge complexity introduces friction, hindering knowledge diffusion 

and learning. Organizations that share more complex knowledge can achieve optimal 

collaborative performance by partnering with cognitively close counterparts. However, 

collaboration performance is lower than optimal point of lower complex fields, even if 

organization achieve optimal cognitive distance. These insights offer valuable 

implications for collaboration strategies for organizations and provide guidance for 

policymakers and stakeholders in fostering innovation networks and creating supportive 

ecosystems. 

 

Keywords: Inter-organizational Collaboration, Proximity, Knowledge complexity 

Student Number: 2021-29400 
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Chapter 1. Introduction 

Knowledge generation is a process of combining existing knowledge to create 

novelty, and diversity is important in creating ‘novel’ innovation (Fleming, 2001; Nonaka 

& Takeuchi, 1995; Schumpeter, 1934, 1939). In today's rapidly evolving society, 

knowledge is growing at an unprecedented rate in terms of both quantity and speed. This 

abundance of knowledge leads to increased specialization and division of labor, driving 

actors to seek collaboration (Fleming & Sorenson, 2004; Graf & Kalthaus, 2018). 

However, the rapid pace of knowledge expansion poses a challenge for individuals to 

ensure the necessary diversity for novel combinations (Cantner & Rake, 2014). Firms 

have to engage with different types of partners to acquire ideas and resources from the 

external environment to stay innovative and abreast of competition (Dahlander & Gann, 

2010). In this era, therefore, knowledge generation is a cumulative and interactive process 

of knowledge exchange and diffusion among different actors. (Ahuja, 2000; Powell, 

1998; Powell et al., 1996). The ability to create and learn from knowledge is now a 

critical driver of competitive advantage for both firms and regions. Therefore, it is crucial 

to comprehend the dynamics of collaborative knowledge creation among actors 

(Boschma, 2005). 

Many proximity literatures have been delved into the impact of proximity on learning, 

knowledge creation and innovation (R. Boschma, 2005). The underlying premise of 

proximity research is that the similarity and difference between actors' characteristics 

influence their interactions within collaborative spaces (Caragliu, 2022). Specifically, in 

terms of knowledge diffusion and inter-organizational learning, proximity plays a role in 
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either accelerating or impeding the flow of knowledge, ultimately affecting the speed of 

knowledge exchange. Notably, (R. Boschma, 2005) introduces a five-dimensional 

proximity framework that encompasses geographical, organizational, institutional, social, 

and cognitive spaces. In the fields of economics of innovation and innovation 

management, cognitive proximity gets particular highlights, align with the concept of 

knowledge base (Balland et al., 2020; Davids & Frenken, 2018).  

Many empirical evidences investigated the linear impacts of cognitive proximity on 

collaborative innovation (Choi & Contractor, 2019; Fitjar et al., 2016; Květoň et al., 

2022; Lauvås & Steinmo, 2021; Simensen & Abbasiharofteh, 2022). However, a 

controversy exists regarding the two-sided effects of proximities, known as the proximity 

paradox (Boschma & Frenken, 2010; Broekel & Boschma, 2012). One of the key idea is 

the notion of optimal cognitive proximity (Cohendet & Llerena, 1997; Nooteboom, 

2000). The theoretical insight put forward holds that cognitive proximity both enables 

and constrains learning (Balland et al., 2020). While cognitive diversity broadens the 

scope of learning, a certain degree of cognitive proximity is necessary to reduce 

communication costs (Nooteboom, 2000). Therefore, while much of the existing 

literature on cognitive proximity has primarily examined its linear effects, some studies 

have delved into the inverse U-shape effects of proximity and explored the existence of 

an optimal level of proximity (Broekel & Boschma, 2012; Choi & Contractor, 2019; 

Guan & Liu, 2016; Martínez Ardila et al., 2020; Nooteboom et al., 2007; Petruzzelli, 

2011; Santos et al., 2021; Wuyts et al., 2005; Zhang et al., 2019).  

Since the process of knowledge accumulation and diffusion depends on the attributes 

of underlying technologies in each sector (Dosi & Nelson, 2010; Simensen & 
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Abbasiharofteh, 2022), the friction of knowledge flow is influenced by the characteristics 

of the knowledge itself. One of the characteristics of knowledge that affects flow of 

knowledge itself is ‘knowledge complexity’. Knowledge complexity is the value of 

knowledge characterized by novelty and inimitability, and more complex knowledge is 

argued to be a fundamental building block of competitive advantage and economic 

growth (Balland & Rigby, 2017; Mewes & Broekel, 2022). As complex knowledge is 

harder to diffuse in space than simple ones, affecting inter-organizational learning process 

(Balland & Rigby, 2017). Studies on knowledge complexity is mainly on relatedness 

theory have explored how the similarity between knowledge elements affects the 

generation of new knowledge within knowledge spaces (Hidalgo et al., 2018; Kogler et 

al., 2013). However, research on how the proximity of knowledge bases of multiple 

actors within collaborative spaces, affect collaborative innovation, is still unexplored. 

Therefore, this study aims to examine how knowledge complexity moderates the two-

sided effect of cognitive proximity on collaborative innovation by empirically analyzing 

the relationship in the biotechnology sector in the United States between 1982 and 2021. 

Collaborative innovation and knowledge space is approximated with patent data of 

USPTO database. The panel regression results confirm the inverse U-shape effect of 

cognitive proximity on inter-organizational learning and collaboration and the moderation 

effect of technological complexity.  

This study is structured as follows. Chapter 2 presents the theoretical background on 

proximity theory and knowledge complexity literatures. Chapter 3 provides the empirical 

settings for analysis including data and methodology. Chapter 4 shows the estimation 

results. Chapter 5 and 6 discuss and conclude overall finding of the research.  
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Chapter 2. Theoretical background 

2.1 Collaborative knowledge creation and proximity 

Proximity is a concept that pertains to the relative position of one entity (e.g., 

individual, company) in relation to another entity (Zimmermann et al., 2022). The 

literature on proximity explores how spatial factors influence the dynamics of diverse 

economic interactions, including migratory and trade flows, knowledge creation and 

diffusion, and productivity (Caragliu, 2022). In this context, space encompasses not only 

geographical dimensions but also non-geographical aspects such as collaboration space or 

knowledge space. Proximity can be understood as the friction imposed by space, which 

increases the costs associated with knowledge diffusion, thereby influencing the 

incentives for actors to generate, disseminate, and absorb new knowledge (Caragliu, 

2022). Ultimately, the objective is to unravel the black box of proximity mechanisms and 

gain a deeper understanding of how spatial factors shape economic activities and 

knowledge dynamics.  

As can be seen in Table 1, early proximity literatures start from the notion of co-

location and geographical proximity. Globalization of economy and decentralization of 

policy in 1980s leads to growing interest in regional development strategy (Balland et al., 

2020). In regional economic development, it is widely suggested that proximity effects 

are significant (Torre & Wallet, 2014). Agglomeration economies literatures focused on 

the economic advantages that firms gain from being located in concentrated areas, 

including reduced production costs, access to specialized services, etc. (Capello, 2022).  

Geographical transaction costs caused by geographical distance leads to spatial 
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configurations of various types of economic interaction in inter-firm networks (Karlsson 

& Stough, 2005; Stimson, 2022). Geographical proximity facilitates exchange of tacit 

knowledge, explaining the concentration phenomena of innovation activities (Capello & 

Nijkamp, 2009). Emergence of ICTs caused ‘distance destroying’ effect. However, in 

spite of ‘distance destroying’ effect, physical proximity still shows its power facilitating 

tacit knowledge, which is usually transferred through face-to-face exchange (Storper, 

1997).  

However, many empirical studies witness that proximity based on physical space is 

neither a sufficient nor a necessary condition for inter-organizational collaboration and 

learning to take place (Balland et al., 2020; Boschma, 2005). This suggests that 

geographic proximity alone does not explain why solutions may not always be 

transferable or why actors in close physical proximity may choose to cooperate or not 

(Zimmermann et al., 2022). In light of these limitations, researchers have introduced 

various dimensions of non-geographical proximity since the middle of 1980s for better 

interpretation of innovation and learning processes (Capello, 2022).  

One prominent framework, presented by (Boschma, 2005) , identifies four forms of 

non-geographical proximity: cognitive, organizational, institutional, and social. 

Organizational proximity refers to the closeness of actors in organizational culture. It 

encompasses shared belief system or representation coming from a sense of belonging to 

same organization (Torre & Rallet, 2005). Organizational proximity facilitating 

coordination and collaboration within or between organizations by managing knowledge 

exchanges and reducing transaction costs (Boschma, 2005).  
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Social proximity, as conceptualized by Boschma (2005), refers to the socially 

embedded relationships between individuals at a micro-level including factors such as 

friendship, kinship, and shared experiences. This notion is widely recognized as a 

fundamental requirement for interactive learning processes. Trust, a significant element in 

social proximity, is often fostered by close social connections and facilitates knowledge 

exchange (Nooteboom, 2002).  

Institutional proximity refers to how closely organizations operate within the same 

macro-level institutional framework, which includes shared reward systems, norms, and 

values. One of the key benefits of institutional proximity is the cultivation of a culture of 

shared trust. This, in turn, facilitates effective learning and innovation by enabling easier 

information transmission and fostering communication through a common language. 

Ultimately, institutional proximity creates a stable and supportive environment that 

fosters successful interactive learning.  

When it comes to inter-organizational learning and knowledge diffusion, cognitive 

proximity becomes a significant dimension to consider because knowledge diffusion as 

learning is basically the underlying process of cognitive proximity dynamics.(Balland et 

al., 2015). Cognitive proximity refers to the extent of overlap in knowledge bases among 

actors (Boschma, 2005). The presence of shared knowledge enables effective 

communication between them. However, it's important to note that simply having access 

to new knowledge does not guarantee the acquisition of new knowledge. Therefore, 

actors require certain level of absorptive capacity to effectively engage in communication 

(Cohen & Levinthal, 1990). It is worth mentioning that the configuration of knowledge 
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complementarities between actors evolves over time due to the cumulative learning 

process (Dosi & Nelson, 1994).  

 

Table 1. A diachronic synthesis in the evolution of proximity concept (Source: Capello, 2022) 

Time 
Static Dynamic 

Theory Type Theory Type 

1960s Agglomeration 
economies Spatial   

1970s Economies of 
urbanization Spatial (dichotomous) Spatial 

diffusion of innovation 
Spatial 

(continuous) 

1980s 
Industrial district Socio-economic Milieu innovateur Relational 

Economies of 
urbanization 

Geographical 
(continuous) 

Knowledge 
spillover 

Geographical 
(dichotomous) 

1990s 

  French school of 
proximity Organizational 

  Learning region Institutional 

  Regional innovation 
system Functional 

2000s ~ 10s   Evolutionary economic 
geography Cognitive 

 

2.2 Proximity paradox and optimal cognitive proximity 

The concept of proximity plays a crucial role in inter-organizational learning and 

knowledge exchange. However, there exists controversy regarding two-side effect of 

proximities, so-called proximity paradox (Boschma & Frenken, 2010; Broekel & 

Boschma, 2012). Certain amount of proximity is required for agents to connect and 

exchange knowledge, but too much proximity might harm their innovative performance 

(Broekel & Boschma, 2012). Most notable dimension of proximity presenting 
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paradoxical effect is cognitive proximity, with the notion of ‘optimal cognitive distance’ 

(Nooteboom, 2000).  

Cognitive proximity concept is closely related to the notion of learning, absorptive 

capacity and combinatory innovation. In resource base view, organizations’ resources for 

knowledge sourcing is limited, therefore their ability to collaborate and seek for external 

source of knowledge becomes crucial (Broekel & Boschma, 2012). This ability, so-called 

absorptive capacity, is based on the existing organizational knowledge base, because prior 

related knowledge facilitates recognizing, assimilating, and applying of new knowledge 

(Cohen & Levinthal, 1990). Therefore, certain level of proximity between actors’ 

knowledge base is needed to enable acquisition of knowledge in learning process 

(Boschma, 2005; Nooteboom, 2000). However, in terms of combining nature of 

innovation, diversity plays important role in knowledge creation and learning. To secure 

novelty of knowledge, cognitive differences are crucial for complementary partnership. 

As Nooteboom stated, information is only valuable if it is new but still understandable 

(Nooteboom, 2000). As both compatibility and diversity of organizational knowledge 

base are needed for successful learning, there exists optimal level of cognitive distance 

that allows organizations to maximize the learning benefits from one another (Balland et 

al., 2020; Boschma, 2005; Nooteboom, 2000).  

On the relation between cognitive distance and innovation performance, Nooteboom 

proposed that there is an inverted-U shaped relationship (Nooteboom et al., 2007). He 

presented mathematical model, explaining the effect of cognitive proximity on learning as 

the product of a line representing absorptive capacity effect and novelty effect as 

visualized in Figure 1. On one hand, absorptive effect shows positive slope line as 
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cognitive proximity increases, and on the other hand, novelty effect shows negative slope 

because as actors get cognitively close novelty of knowledge decreases. In turn, the 

learning curve follows this inverted U-shape due to the combined effects of absorptive 

and novelty effects.   

 
Figure 1. Optimal cognitive proximity (Source: adapted from Nooteboom et al., 2007, p. 1018) 

 

Various studies that explore the impact of cognitive proximity on knowledge and 

innovative performance and the presence of the optimal cognitive proximity is illustrated 

in Table 2. Martínez Ardila et al. (2020) investigated joint patents in biotechnological 

sector in 2012 and confirmed positive quadratic relationship of cognitive proximity. 

Broekel & Boschma (2012) tested proximity paradox empirically in Dutch aviation 

industry based on interview conducted in late 2008 and early 2009. The proximity 

paradox was observed for cognitive and organizational proximity, with a positive impact 
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on cooperation but a negative or no effect on innovative performance. However, the 

proximity paradox did not hold for geographical and social proximity, as both were found 

to contribute to network formation and enhance innovative performance. 

Interaction of cognitive and geographical proximity in regional university-industry 

collaboration network in Brazil is investigated by Santos et al. (2021).  

While studies introduced above focused on single point in time, there have been 

studies focusing on more dynamic perspective of cognitive proximity and collaboration. 

Petruzzelli (2011) focused on university-industry joint patent in European countries, and 

Wuyts et al. (2005) analyzed interfirm agreements in pharmaceutical, biotech and ICT 

industries. Exploitative and exploratory innovations in patent collaboration network in 

nano-energy field are explored by Guan & Liu (2016). Optimal cognitive proximity has 

been confirmed in several empirical studies on knowledge transfer in case of mergers and 

acquisitions (Ahuja & Katila, 2001; Cloodt et al., 2006). 

Several studies explored the factors affecting optimal cognitive proximity. 

Nooteboom et al. (2007) explored R&D collaboration between 116 companies over 12-

year period from 1986 to 1997. In addition to confirmation of an inverted U-shaped effect 

of cognitive distance on innovation performance of firms, authors stressed mixed 

moderation effect of cumulative technical capital.  

Zhang et al. (2019) investigated how the effect of recombination distance on 

recombinant innovation is moderated by network structural governance and relation 

governance. They showed that the inverted U-shape effect of recombinant distance 

becomes steeper when structural holes are spanned by focal firm or when alliance 

partners have lower private-public ratio.   
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Choi & Contractor (2019) focus on strategic alliances of biopharmaceutical industry 

between 2000 and 2004. Authors find that appropriate level of the overall degree of 

coordination and communication leads to better R&D alliance performance. Moderation 

effect of organizational diversity and technological base diversity is explored, but 

technological base diversity does not show significant effect as degree of coordination is 

measured in context of task interactions.  

Still, empirical evidence dealing with determinants of optimal cognitive proximity is 

lacking, in contrast to the detection of inverse U-shape.  

 

Table 2. Studies exploring inverse U-shape of cognitive proximity 

 Only inverse U-shape Moderation effect 

Single year 
Martínez Ardila et al. (2020) 

Broekel & Boschma (2012) 
Santos et al. (2021) 

Various time period 

Petruzzelli (2011) 

Wuyts et al. (2005) 

Guan & Liu (2016) 

Ahuja & Katila (2001) 

Cloodt et al. (2006) 

Nooteboom et al. (2007) 

Zhang et al. (2019) 

Choi & Contractor (2019) 

 

2.3 Knowledge complexity 

Knowledge plays a crucial role in explaining the uneven development of regions, 

particularly in terms of economic growth and competitiveness (Solow, 1956; Nelson & 

Winter, 1982; Romer, 1990; Balland & Rigby, 2017). As the world becomes increasingly 

globalized, the importance of knowledge as a critical input in production has further 
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amplified, with the ability to generate new knowledge emerging as a key driver of 

competitive advantage (Porter, 1985). The generation of new knowledge primarily stems 

from the recombination of existing knowledge, thereby making the existing knowledge 

base of a region a fundamental determinant of its innovation capacity (Boschma & 

Lambooy, 1999).  

Consequently, the disparity in economic development among regions ultimately 

hinges upon the knowledge they possess, giving rise to the concept of a knowledge-based 

region. Earlier researches have focused on the quantity of knowledge, considering 

individual patents as homogenous. However, both the quantity and quality of knowledge 

held by a region exert significant influences on its developmental trajectory(Balland & 

Rigby, 2017). It is important to recognize that not all knowledge is equal; regions 

endowed with more novel and valuable knowledge inherently possess a greater 

competitive advantage (Maskell & Malmberg, 1999). The difference in novelty and value 

of inventions has long been widely acknowledged and numerous studies have sought to 

develop indicators to evaluate the quality of inventions. Trajtenberg (1990) used forward 

citation to measure the quality of individual patents, and Lanjouw and Schankerman 

(2004) proposed composite quality index with four patent indicators - numbers of claims, 

forward citations, backward citations, and patent family size. Although patent valuations 

provide one indicator of the value of knowledge held by firms and located in different 

regions, another critical dimension of the competitive advantage conveyed by knowledge 

is its inimitability (Balland & Rigby, 2017). 

This raises the fundamental question of what kind of knowledge is challenging to 

replicate. Knowledge is known to be spatially sticky (Asheim & Isaksen, 2002). 
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However, not all knowledge is. Some features contribute to this challenge, including the 

high cost associated with acquiring new knowledge, the implicit or complex nature of 

knowledge itself, and the substantial costs involved in assimilating and absorbing it 

effectively (Balland & Rigby, 2017). Therefore, high-value, non-ubiquitous, complex and 

tacit knowledge is hard to copy (Maskell & Malmberg, 1999). On the other hand, 

knowledge with more routinized form tend to be easier to move over space (Balland & 

Rigby, 2017).  

Then, which regions possess more valuable and harder-to-replicate knowledge? To 

address this, Fleming & Sorenson (2001) proposed a search-based, recombinant 

innovation model, utilizing data from the United States Patent and Trademark Office 

(USPTO) to develop indicators that estimate the level of difficulty in combining distinct 

knowledge subsets within each patent. Another approach, introduced by Hidalgo & 

Hausmann (2009), involves measuring complexity through the diversity of products at a 

national level, drawing on the concept of the product space. Building upon this, Balland 

& Rigby (2017) defined knowledge complexity as "the kinds of knowledge are more 

difficult to develop or to replicate than others" and argued that cities characterized by 

more complex technological configurations tend to generate knowledge that is inherently 

more difficult to replicate. They constructed city-technology knowledge networks to 

propose the notion of Knowledge Complexity Index (KCI) and adopted the method of 

reflection, as outlined in Hidalgo and Hausmann's work. KCI encompasses two key 

variables: city diversity, capturing the breadth of knowledge domains within a city, and 

technology ubiquity, reflecting the extent to which specific technologies are pervasive 

across cities. In this research the method of Balland & Rigby (2017) is chosen.  
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Broekel (2019) proposed more network-based measure of knowledge complexity 

called structural diversity. Structural diversity represents the diversity of (subnetwork) 

topologies in technologies’ combinatorial networks and it is based on the concept of 

Network Diversity Score (NDS) developed by Emmert-Streib & Dehmer (2012) .  

Knowledge complexity, characterized by novelty and inimitability, affects the flow of 

knowledge and inter-organizational learning. Balland & Rigby (2017)show that complex 

knowledge tends to be produced in few regions and not easy to be diffused. Mewes & 

Broekel (2022) stated as follows: 

“… since complex technologies entail more information, they are more difficult to 

learn, and to copy limiting their diffusion.”  

However, the effect of knowledge complexity on inter-organizational learning and 

cognitive proximity is not explored. Therefore, this study aims to investigate complex 

dynamics of cognitive proximity, inter-organizational learning, and knowledge 

complexity.    
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Chapter 3. Data and methodology 

3.1 Empirical context: US biotechnology sector 

Biotechnology is defined as ‘the application of science and technology to living 

organisms, as well as parts, products and models thereof, to alter living or nonliving 

materials for the production of knowledge, goods and services’ (OECD 2005). It 

encompasses scientific and industrial fields that aim to comprehend and manipulate living 

or biologically-active substances at the molecular level, often utilizing DNA techniques 

and genetic information analysis (Patent Expert Issues: Biotechnology, 2023). The 

application of modern biotechnology is anticipated to bring significant advancements in 

various domains, including healthcare, pharmaceuticals, energy generation, textiles, 

chemicals, plastic, paper, fuel, food processing, and environmental preservation. 

(Biotechnology, 2023; Patent Expert Issues: Biotechnology, 2023).  

Biotechnology offers technological solutions for many of the health and resource-

based problems facing the world, leading to the concept of “bioeconomy” (OECD, 2009). 

In recent years, biotechnology has gained substantial attention from governments, 

research institutions, and industries around the world. The European Commission has 

emphasized the importance of biotechnology as a key driver of innovation and 

competitiveness in Europe . Additionally, the role of biotechnology in achieving 

sustainable development goals and addressing global health issues is also acknowledged 

(Jorgensen, 2017).  

Biotechnology is one of the most competitive and intensive in knowledge in the 

global economy (Martínez Ardila et al., 2020). This sector is highly driven by innovative 
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technologies and methodologies in other fields of science such as computing, data 

sciences, and the recent emergence of machine learning and artificial intelligence (Philp 

& Winickoff, 2019). These knowledge intensive and complex aspect of biotechnology 

make it suitable for analyzing potential impact of knowledge complexity in innovation 

network. Due to the complex and interdisciplinary nature of the field, collaborative 

efforts between academia, industry, and research institutions across different countries 

has facilitated knowledge exchange and cross-disciplinary research in biotechnology 

(OECD, 2009). The most well-known is the Human Genome Project, a public-private 

sector collaborative effort that sequenced the entire human genome two years ahead of 

schedule in 2003, after 13 years of work (OECD, 2009). The importance of establishing 

and innovation ecosystem for technological advancement in biotechnology is stressed by 

Philp & Winickoff (2019).  

The United States is a prominent country in the field of biotechnology, with a 

substantial share of biotechnology-related patents, among OECD countries. Especially, 

advances in genetic engineering approaches and DNA sequencing technologies over four 

and a half decades have accelerated innovation significantly in the United States (Philp & 

Winickoff, 2019). Moreover, biotechnology-related fields occupy the top three positions 

of US national research and development (R&D) expenditure, which has been steadily 

increasing since the 1970s. Therefore, US provides ample opportunities to explore 

interactions among diverse institutions without neglecting cross-national heterogeneity.  
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Figure 2. Economies' share in biotechnology-related patents, OECD countries 

(Source : OECD, 2022) 

 

Figure 3. R&D Expenditures for institutions with over $1M (Source : NCSES, 2023) 
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Table 3. R&D Expenditures for Institutions With Over $1M in US, 2021, top 15 of 43 
fields, Source : NCSES, 2023 
No. Field of study R&D expenditures [$1,000] 
1 Health sciences 29,884,728 
2 Biological and biomedical sciences 16,557,201 
3 Agricultural sciences 3,548,896 
4 Electrical and communications engineering 3,080,363 
5 Computer and information sciences 2,951,923 
6 Physics 2,463,331 
7 Other engineering 2,397,439 
8 Chemistry 1,999,546 
9 Mechanical engineering 1,881,551 
10 Education 1,616,705 
11 Bioengineering and biomedical engineering 1,560,381 
12 Civil engineering 1,482,377 
13 Aerospace engineering 1,451,964 
14 Other life sciences 1,439,006 
15 Psychology 1,326,030 

 

3.2 Data 

To empirically analyze this relationship, the biotechnology sector in the United States 

will be investigated using patent network data from 1982 to 2021. For data, patent data of 

biotechnology field is extracted from United States Patent and Trademark 

Office(USPTO)(USPTO, 2023). Collaboration is measured with patent co-authorship 

network at organizational level. Bunch of literatures dealing with knowledge network and 

collaboration utilize patent data to measure collaboration between actors. Despite having 

certain drawbacks, patents are extensively employed in empirical studies on technological 

knowledge creation due to their unique ability to offer detailed information on 

technological knowledge (Griliches, 1990). Patents are often favored as the primary 

large-scale data source in this context (Mewes & Broekel, 2022). To construct panel 
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dataset, patents relevant in biotechnology sector is identified by selecting patents 

including ipc codes belong to “Biotechnology” in WIPO’s IPC concordance table (WIPO, 

2023). The period of 1982 to 2021 is concerned. Individual assignees and non-US 

assignees are removed, and only collaboration between US assignees is considered. As 

collaboration is under interest, only patents co-applied by organizations in US is 

considered, which results in a total of 14,353 patents and 1,766 assignees. 

Table 4. Descriptive statistics 

Dimensions Value 
Number of patents 14,353 
Period 1982-2021 
Number of organizations 1,766 
Patents per organization 2.33 
Organizations per patent 2.12 

 

 
Figure 4. Number of collaborative patents yearly 
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3.3 Variables 

3.3.1 Dependent variables 

This study aims to focus on bilateral relationships rather than full networks, panel data 

with pairwise observation is constructed based on this dataset. Collaborative innovation is 

measured by the number of co-patents between actors. Maximum value of LINK is 68, 

and mean value is 0.454. 

 

3.3.2 Explanatory variables 

Cognitive proximity is measured by Jaccard similarity of actors’ ipc code portfolio at 

time t. It is defined as follows: 

 𝐶𝑂𝐺!",$ =
%𝐼𝑃𝐶!,$ ∩ 𝐼𝑃𝐶",$%
%𝐼𝑃𝐶!,$ ∪ 𝐼𝑃𝐶",$%

 Eq. (1) 

Here 𝐼𝑃𝐶!,$ and 𝐼𝑃𝐶",$ refers to two vectors including 4-digit ipc codes of patents 

each organization applied in period t. The cognitive proximity ranges from zero to one. If 

ipc portfolios of two organizations are same, COG have value of 1, and if there’s no 

sharing ipc codes between organizations COG is zero.  

Knowledge complexity is measured on the knowledge that is conveyed between 

actors, not about the knowledge base of each actor. Here variable KC indicates mean 

knowledge complexity of ipc codes appearing in co-patents in time t. To measure 

knowledge complexity of each ipc codes, methods of reflection from Balland & Rigby 

(2017) is followed. Knowledge complexity is based on the configuration of actor-

knowledge network, among those that exhibits Relative Technological Advantage (RTA) 

(Balland & Rigby, 2017).  
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RTA is measure of whether an organization’s share of knowledge k in organization’s 

knowledge portfolio is larger than the share of knowledge k in entire population. Usually, 

𝑅𝑇𝐴!,%,$ = 1 if RTA is higher than 1 and 0 if not. 

 
𝑝𝑎𝑡𝑒𝑛𝑡𝑠!,%,$/∑ 𝑝𝑎𝑡𝑒𝑛𝑡𝑠!,%,$%

∑ 𝑝𝑎𝑡𝑒𝑛𝑡𝑠!,%,$/! ∑ ∑ 𝑝𝑎𝑡𝑒𝑛𝑡𝑠!,%,$%!
 Eq. (2) 

Based on RTA, bipartite network M is constructed where 𝑀!,% = 𝑅𝑇𝐴!,% of 

orgnization i on knowledge k. Following the method of reflections, two variables - the 

diversity of cities and the ubiquity of technological classes - based on bipartite network M 

are recursively combined. 

 𝐷𝐼𝑉𝐸𝑅𝑆𝐼𝑇𝑌 = 𝐾!,& =<𝑀!,%
%

	 Eq. (3) 

 𝑈𝐵𝐼𝑄𝑈𝐼𝑇𝑌 = 𝐾%,& =<𝑀!,%
!

	 Eq. (4) 

After n interactions of sequentially combining two equations, KCI of each knowledge 

is obtained. 

 𝐾𝐶𝐼% = 𝐾%,' =
1
𝐾%,&

<𝑀!,%𝐾!,'()
%

 Eq. (5) 

In this study the 19 iteration steps are conducted to obtain KCI. This measure is 

fundamentally relative, because it is a measure of inimitability. Therefore, knowledge 

complexity of each ipc codes differs at every time period. 
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3.3.3 Control variables 

Social proximity is measured by natural logarithm of the number of co-patents in last 

two period. As social proximity indicates the extent of mutual relationship and trust 

between actors, previous collaboration is measured. To avoid endogeneity issue in fixed 

effect model, natural logarithm is applied. 

 𝑆𝑂𝐶!",$ = 𝑙𝑛C𝐿𝐼𝑁𝐾!",$() + 𝐿𝐼𝑁𝐾!",$(*G Eq. (6) 

Geographical proximity is measured by the inverse of the inverse of the natural 

logarithm of the physical distance. The shortest distance between two points on a global 

ellipsoid (WGS84 ellipsoid) is computed for absolute physical distance. (C.F.F. Karney, 

2013) Absolute distance ranges from 0 to 14879.58 km. To convert distance to proximity 

measure, log of distance is inversed. 

 𝐺𝐸𝑂!" =
1

𝑙𝑛C𝑑𝑖𝑠𝑡!" + 1G
 Eq. (7) 

Institutional proximity measures whether two organizations are in same institutional 

background. Institutional background is categorized into two, private or public sector. 

This study follows binary measure of previous studies, equal to 1 if two organizations are 

in same sector and 0 if not.  

To control heterogeneity of actors, the experience of organizations is measured by the 

number of periods each organization appeared in the collaboration network. As all 

variables are measured in dyad level, mean of experience of each actor in pair is 

calculated. Natural logarithm of the number of inventors is used as the size of the 

organization. Mean value is also calculated for dyad value. 
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Table 5. Descriptive statistics of variables 

Variable Obs. Mean Std. Dev. Min Max 
LINK 22,071 .454 1.331 0 68 
COG 22,071 .048 1.008 -1.072 3.423 
KC 22,071 .07 1.066 -.457 2.667 
SOC 22,071 .377 .514 0 4.836 
GEO 22,071 .248 .25 .104 1.103 
INST 22,071 .898 .303 0 1 
EXPR 22,071 5.737 2.684 0 12 
SIZE 22,071 6.871 1.49 .916 10.56 

 

3.4 Mathematical specification 

3.4.1 Econometric specification 

The hypothesis can be specified in mathematical forms. Mathematical specification 

follows that of Nooteboom et al.(2007). Novelty value (N) shows downward sloping line: 

 𝑁 = 𝑎& − 𝑎)𝑃, 𝑎&, 𝑎) > 0 Eq. (8) 

As cognitive proximity (P) increases, which means when actors become cognitively 

closer, novelty effect decreases. In this study novelty effect is assumed to be largely 

exogenous, following Nooteboom et al.(2007). Absorptive capacity (A) shows upward 

sloping line: 

 𝐴 = 𝑏& + 𝑏)𝑃 ,  		 𝑏&, 𝑏) > 0 Eq. (9) 

As cognitive proximity increases, absorption effect increases. Here we focus on the 

absorption effect. To specify the effect of knowledge complexity (KC), it is assumed that 

higher KC weakens absorption effect, thus shifting the line downward. 
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 𝐴 = 𝑏& + (𝑏) + 𝐾𝐶)𝑃,   𝑏&, 𝑏) > 0 Eq. (10) 

Multiplying (8) and (10) results in collaborative innovation (L) of the pair of actors. 

 𝐿 = 𝐴 ∗ 𝑁 = 𝑎&𝑏& + (𝑎&𝑏) − 𝑎)𝑏&)𝑃 + 𝑎&𝐾𝐶 ∗ 𝑃 − 𝑎)𝐾𝐶 ∗ 𝑃* − 𝑎)𝑏)𝑃* Eq. (11) 

Equation (11) specifies the basic model to be used for an econometric test. 

 
Figure 5. Visualization of mathematical specification 

 

3.4.2 Detecting inverted U-shape 

To identify inverted U-shape relations, this study follows methodology of Lind & 

Mehlum, (2010). Given the specification Eq. (11), it can be generalized into estimation 

form like follows: 

 𝐿 = 𝛽& + 𝛽)𝑃 + 𝛽*𝑃* + 𝛽+𝑃KC + 𝛽,𝑃*𝐾𝐶 + 𝛽-𝐾𝐶 Eq. (12) 

Two standard one-side test is conducted for lower and upper bound. Hypothesis for 

inverted U-shape is like followed: 

 
𝐻&.: 𝛽) + 𝛽* 𝑓 ′(𝑥/) ≤ 0𝑣𝑠. 𝐻).: 𝛽) + 𝛽* 𝑓 ′(𝑥/) > 0,	

𝐻&0: 𝛽) + 𝛽*𝑓 ′(𝑥1) ≥ 0𝑣𝑠. 𝐻)0: 𝛽) + 𝛽* 𝑓 ′(𝑥1) < 0.	
Eq. (13) 

The presence of inverse U-shape implies β) + 2β*𝑥/ > 0 and 𝛽) + 2𝛽*𝑥1 < 0.  

 

	× 	=
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3.4.3 Checking moderation effect of inverted U-shape 

To identify the moderation effect on inverted U-shape relations, this study follows 

methodology of Haans et al. 2013. Give Eq. (12), the first order condition is as follows: 

 𝜕𝐿
𝜕𝑃

= 𝛽) + 2𝛽*𝑃 + 𝛽+𝐾𝐶 + 2𝛽,𝑃 ∗ 𝐾𝐶 Eq. (14) 

Deriving P which yields the turning point, 

 𝑃∗ =
−𝛽) − 𝛽+𝐾𝐶
2𝛽* + 2𝛽,𝐾𝐶

 Eq. (15) 

To figure out how turning point 𝑃∗ changes as TC changes, we takederivative with 

respective to TC. 

 
𝜕𝑃∗

𝜕𝐾𝐶
=

𝛽)𝛽, − 𝛽*𝛽+
2(𝛽* + 𝛽,𝐾𝐶)*

 Eq. (16) 

As the denominator is strictly larger than zero, the direction of shift depends on the 

sign of numerator. 

Therefore, when 𝛽)𝛽, − 𝛽*𝛽+is positive, turning point P* will move right as TC 

increases. 
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Chapter 4. Estimation result 

4.1 Estimation model 

The estimation model used in this study is a panel negative binomial regression with 

fixed effects. The dependent variable (DV) is a count variable with only non-negative 

values, which makes the negative binomial regression suitable. The fixed effects are 

tested using the Hausman test. The estimation equation is specified as follows: 

 
𝐿𝐼𝑁𝐾!,$ = 𝛽& + 𝛽)𝐶𝑂𝐺!,$() + 𝛽*𝐶𝑂𝐺!,$()* + 𝛽+𝐶𝑂𝐺!,$() ∗ 𝐾𝐶!,$() + 𝛽,𝐶𝑂𝐺!,$()*

∗ 𝐾𝐶!,$() + 𝛽-𝐾𝐶!,$() + 𝐶𝑜𝑛𝑡𝑟𝑜𝑙!,$() + 𝛼! + 𝛿$ + 𝜖!,$ 
Eq. (17) 

The equation follows the mathematical specification outlined earlier, incorporating 

time lags for causal analysis. 

Three variations of the model are constructed: (1) Base model (model 1), (2) Model 2 

with added time-variant control variables, and (3) Model 3 with added time-consistent 

control variables. 

 

4.2 Estimation result and Hypothesis testing 

The estimation results are shown in Table 3. The hypothesis is tested following 

previous section 3.3.2 & 3.3.3. The coefficient of the square term (β*) is significant and 

value of -0.957, which is negative, satisfying the conditions for an inverse U-shape. The 

extreme point is 0.089 and falls within the range of the COG (-1.072 ~ 3.423). The slopes 

at the lower and upper bounds have significant signs. Therefore, the detection of an 

inverse U-shape is confirmed. 
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Table 6. Estimation results 

 (1) (2) (3) (4) 

COG  .3124*** .1772*** .1708*** 
  (.0274) (.0268) (.0269) 

COG^2  -.0449*** -.1057*** -.0957*** 

  (.0153) (.0157) (.0157) 
COG*KC  .1268*** .1001*** .1096*** 

  (.0279) (.0242) (.0241) 

COG^2 * KC  -.0673*** -.0303** -.0354*** 
  (.0134) (.0121) (.0121) 

KC  -.1452*** -.2186*** -.2185*** 

  (.0189) (.0183) (.0181) 
SOC -.1193***  .0665** .0903*** 

 (.0241)  (.0306) (.0309) 

GEO -1.2473***   -1.2669*** 
 (.1633)   (.1681) 

INST -.3753**   -.4416** 

 (.1741)   (.1802) 
EXPR -.4571***  -.4693*** -.4796*** 

 (.0082)  (.0084) (.0086) 

SIZE .0195   -.0136 
 (.0649)   (.0673) 

Const 3.7221*** .3006*** 3.1491*** 4.1331*** 

 (.6053) (.058) (.0677) (.6295) 

Obs. 21,758 21,758 21,758 21,758 

Net effect na .3168 .1736 .1689 

Log likelihood -8311.75 -10624.61 -8245.53 -8204.77 
Standard errors are in parentheses 
*** p<.01, ** p<.05, * p<.1  
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The derivative of the optimal point (𝑃∗) is significantly different from zero, indicating 

a significant shift in the optimal point. Additionally, the product of the coefficients 

(𝛽)𝛽, − 𝛽*𝛽+) is positive, satisfying the condition for a positive sign of the derivative of 

the optimal point. This confirms the moderation effect of KC on the inverse U-shape of 

COG. 

Table 7. Test result of detecting inverted U-shape 

 Lower bound Upper bound 

Interval -1.072 3.423 

Slope 2.223 -6.383 

t-value 6.260 -6.013 

P>|t| 1.96e-10 9.23e-10 

 

4.3 Predicted margin and marginal effects 

Based on the regression results, the predicted margins of COG can be visualized 

(Figure 4). In the visualization, the blue line represents the predicted values of COG when 

KC is at its minimum, the green line represents the predicted values when KC is at its 

maximum, and the red line represents the predicted values when KC is at the midpoint 

between the minimum and maximum values. 

The graph shows a clear rightward shift of the optimal point as KC increases. This 

aligns with the hypothesis that cognitive proximity becomes more important in achieving 

optimal collaboration performance when disseminating and learning more complex 

knowledge. The absorption effect graph also indicates a downward shift, supporting the 

assumption made in this study that the absorption effect moved downward. Therefore, the 

moderation effect of KC on COG weakened the absorption effect. 
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Another notable finding is that the curvature of the graph steepens as KC increases. 

This is evident from the average marginal effect graph (Figure 5). The steeper slope of 

the marginal effect indicates that COG becomes more sensitive to changes in complex 

knowledge. This suggests that finding collaboration partners becomes more challenging 

in complex knowledge domains, as slight variations in cognitive proximity have a 

significant impact on collaboration performance. This phenomenon is attributed to the co-

evolving dynamics of cognitive proximity, where collaboration increases cognitive 

proximity. Therefore, dynamic cognitive proximity makes organizations harder to find 

collaboration partners in complex knowledge domains. 

In sum, the overall results support the presence of an inverse U shape, indicating that 

moderate levels of cognitive proximity are associated with higher levels of inter-

organizational learning. The moderation effect of knowledge complexity was significant, 

indicating that complex knowledge is more difficult to absorb and collaborate on. The 

study also found that the marginal utility of cognitive proximity becomes more 

pronounced with greater knowledge complexity. 
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Figure 6. Predictive margin of COG for different level of KC 
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Figure 7. Average marginal effects of COG for different level of KC 

 

4.4 Robustness check 

In order to show the robustness of the model, two additional analyses were performed. 

Firstly, to address concerns about false-positive results, a modified model was estimated 

by including a variable representing cognitive proximity as a categorical variable with 

values ranging from 1 to 4 based on quantiles. Secondly, a panel logit model was 

employed as an additional approach to validate the results. The results of these alternative 

model confirmed the robustness of the findings. The detailed results of this robustness 

check can be found in the appendix.  
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Chapter 5. Discussion 

The analysis results confirmed a clear inverse U-shaped effect of cognitive proximity 

on the dependent variable, aligning with previous research findings. Organizations with 

low cognitive proximity tend to have disparate knowledge base, sharing few common 

knowledge. Collaboration between them can offer great chance to obtain novel 

knowledge from each other which expands organization’s knowledge base and becomes 

the source for innovation. However, obtaining new knowledge is much difficult when it 

comes from unfamiliar field. Thus, too low cognitive proximity causes reduced learning 

outcomes.   

On the other hand, organizations with high cognitive proximity have an increased 

ability to understand each other's knowledge. There exists higher potential for knowledge 

acquisition through collaboration. However, for each organization to benefit from 

collaboration, there should be complementary knowledge. Similar knowledge base 

between organizations lead to higher possibility that I possess the knowledge that the 

other party has. This increases the possibility of the other party becoming a competitor 

rather than a collaborator and reduces the potential synergy that can be obtained through 

collaboration. Therefore, excessively high cognitive proximity also leads to lower 

collaborative outcomes. Consequently, it is important to seek collaboration partners with 

an appropriate level of cognitive proximity to achieve optimal collaborative outcomes.  

Furthermore, two-way moderation effect of knowledge complexity on the proximity 

effect is confirmed. First, the optimal level of cognitive proximity increases with higher 

level of knowledge complexity, which shows positive moderating effect of complexity on 
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the proximity effect on collaborative innovation. Complex technologies require higher 

cognitive proximity for effective collaboration. This is due to the difficulty in diffusing 

complex knowledge. Complex knowledge has tacit and nuanced characteristics, making 

its diffusion challenging. Therefore, organizations achieve higher collaborative 

performance when engaging in communication with closer cognitive proximity, as 

complex knowledge is inherently difficult to disseminate.  

There also exists downward shift of the optimal point aligns with the hypothesis of the 

negative impact of knowledge complexity on the absorption effect. Even at the optimal 

cognitive proximity, complex knowledge exhibits lower learning outcomes compared to 

less complex knowledge. This is because complex knowledge is challenging to diffuse 

during inter-organizational collaboration, resulting in relatively lower learning 

performance. 

Secondly, the marginal effect of cognitive proximity also increases in complex fields, 

indicating that proximity plays stronger role as knowledge complexity increases. This 

suggests that learning outcomes are more sensitive to cognitive proximity in complex 

domains, where even small differences in cognitive proximity can lead to significant 

differences in learning outcomes. In specialized domains, knowledge is often narrow in 

scope, making it easy to deviate from the domain's boundaries with slight cognitive 

proximity changes. Moreover, the acquisition of new knowledge decreases rapidly as the 

domain is narrow. Therefore, a precise alignment of proximity between collaboration 

partners becomes more crucial in complex knowledge fields.  

Furthermore, this steep slope near the optimal proximity implies that long-term 

collaboration is much harder. Due to dynamic nature of collaboration process, common 
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knowledge increases through learning therefore reducing complementary knowledge 

between partners. In long-term, proximity between partners become closer as time passes. 

As a result, organizations move away from the optimal distance, diminishing their 

performance as collaboration continues. Therefore, organizations find it challenging to 

identify optimal partners for achieving the best collaborative outcomes in complex 

knowledge domains. 

Overall, these findings emphasize the importance of considering both cognitive 

proximity and the characteristics of knowledge in collaborative innovation. Organizations 

need to carefully assess the level of cognitive proximity and knowledge complexity to 

form effective partnerships and maximize collaborative performance. 
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Chapter 6. Conclusion 

6.1 Research summary 

The study explores the role of cognitive proximity in collaborative innovation and the 

moderating effect of knowledge complexity on the relationship between cognitive 

proximity and collaboration. The empirical analysis utilizes USPTO patent data from 

1982 to 2021 within the biotechnology sector of United States.  

The estimation results confirm the presence of an inverted U shape, indicating that 

appropriate level of cognitive proximity enhance inter-organizational learning. The two-

way moderation effect of knowledge complexity was also significant. Firstly, the optimal 

cognitive proximity increases as knowledge complexity increases, implicating that 

organizations need to be cognitively closer for successful learning due to weakened 

absorption effect.  

Secondly, the marginal effect of proximity is also moderated by knowledge 

complexity. As knowledge become more complex, the slope of U-shape gets steeper. 

This indicates that the impact of cognitive proximity becomes more pronounced with 

higher knowledge complexity and an alignment of proximity in collaboration becomes 

more crucial in complex knowledge fields. This result also implies that in long-term, it is 

much harder for organizations in complex industry to maintain partnership with single 

partner.  

In summary, organizations sharing complex knowledge can achieve optimal 

collaboration performance by partnering with cognitively close partners. Also, the 

importance of cognitive proximity is more pronounce in more complex fields. The 
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findings emphasize the intricate relationship between cognitive proximity, knowledge 

complexity, and the absorptive capacity of inter-organizational learning. 

 

6.2 Implications  

This study has several significant implications. Firstly, this study contributes to the 

academic literature by offering a more comprehensive understanding of cognitive 

proximity dynamics. It challenges the simplistic linear models that have been commonly 

used in previous studies on proximity and emphasizes the importance of considering the 

two-sided nature of cognitive proximity. Previous research has primarily focused on 

modeling simple linear relationships, failing to fully capture the intricate dynamics of 

cognitive proximity. In contrast, the present study delves into the intricate dynamics of 

cognitive proximity, taking into account the moderating effect of knowledge complexity. 

By considering the intricate interplay between individuals' cognitive proximities, this 

research offers valuable insights into the collaboration strategies that can be employed by 

organizations. 

Secondly, the research provides valuable insights into collaboration strategies that 

organizations can employ by examining the interplay of cognitive proximities. It 

highlights the significance of finding collaborative partners who can effectively maximize 

collaborative performance, particularly in complex technology domains. By 

understanding and leveraging cognitive proximity, organizations can enhance their 

collaborative efforts and achieve better outcomes. This suggests that organizations should 

carefully select partners who possess specialized knowledge and expertise in order to 

enhance their collaborative endeavors. Moreover, to overcome cognitive distance 
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between organizational knowledge base, they can improve absorptive capacity by 

investing more on explorative R&D or constructing easier institution for external 

collaboration, when collaborating in complex fields. In terms of the duration of the 

collaboration organizations should expect short-term collaboration and seek for potential 

partner more often in more complex field. 

Furthermore, the study offers insights for formulating policies aimed at fostering 

innovation networks. It suggests that encouraging collaboration among actors specializing 

in the same field, rather than excessively diverse fields, may be more effective in 

establishing complex technology clusters or networks. Moreover, the overall period of 

project should be not so long because as time passes each actor in cluster will become 

similar, lowering innovation performance. This finding can guide policymakers and 

stakeholders in designing strategies to create supportive ecosystems for innovation and 

facilitate technology transfer.  

 

6.3 Limitations and future research suggestions 

One limitation of the study is that this study focused on examining cognitive 

proximity and knowledge complexity within the biotechnology sector. Future research  

should adopt more sectoral perspective that encompasses a broader range of industries to 

generalized the impact of knowledge complexity on cognitive proximity.  

Also, moderation effect of knowledge complexity in other forms of proximity will be 

interesting for future research. Analyzing other types of proximity will bring broader 

understanding of proximity mechanism.  
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Additionally, exploring organizational heterogeneity more extensively will provide 

more policy-side implication. Specific type of interactions such as university-industry 

collaboration or triple helix relations will provide more comprehensive understanding of 

how cognitive proximity and knowledge complexity manifest in different contexts. By 

incorporating these perspectives, further research can yield valuable insights with policy 

implications in facilitate technology transfer, and create supportive ecosystems for 

innovation. 
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Appendix 1: Matrix of correlations between variables  

[1.1] Matrix of correlations between variables 

Variables (1) (2) (3) (4) (5) (6) (7) (8) 

 (1) COG 1.0000        

 (2) COG_alt 0.9450 1.0000       

 (3) KC 0.3069 0.3091 1.0000      

 (4) SOC 0.3135 0.3300 0.5654 1.0000     

 (5) GEO -0.0354 -0.0576 0.0216 0.0586 1.0000    

 (6) INST 0.0022 -0.0236 -0.0229 -0.0407 0.0958 1.0000   

 (7) EXPR -0.0246 0.0212 -0.2379 -0.0842 -0.0518 -0.0898 1.0000  

 (8) SIZE 0.1221 0.2146 0.0655 0.1065 -0.1510 -0.3636 0.3065 1.0000 
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Appendix 2: Robustness check results  
[2.1] Negative binomial model, fixed-effects, categorical COG variables (COG_alt) 

 (1) (2) (3) (4) 
 COG_alt  .1611 .5214*** .4771*** 
    (.1086) (.1055) (.1053) 

 COG_alt^2  .0165 -.0786*** -.0707*** 

    (.0191) (.0189) (.0188) 
 COG_alt *KC  .582*** .5127*** .5062*** 

    (.1636) (.1469) (.1459) 

 COG_alt ^2 * KC  -.0919*** -.0746*** -.0728*** 
    (.0261) (.0236) (.0235) 

 KC  -.9896*** -1.0196*** -1.0179*** 

    (.2454) (.2187) (.2173) 
 SOC -.1193***  .0709** .0952*** 

   (.0241)  (.0307) (.0309) 

 GEO -1.2473***   -1.2826*** 
   (.1633)   (.1685) 

 INST -.3753**   -.4405** 

   (.1741)   (.1809) 
 EXPR -.4571***  -.4681*** -.4788*** 

   (.0082)  (.0084) (.0086) 

 SIZE .0195   -.0039 
   (.0649)   (.068) 

 Const 
   

3.7221*** 
(.6053) 

-.2668* 
(.157) 

2.3285*** 
(.1545) 

3.3051*** 
(.6446) 

Obs. 21,758 21,758 21,758 21,758 

Net effect na .2524 .1426 .1375 

Log likelihood -8311.75 -10632.86 -8256.72 -8214.56 

Standard errors are in parentheses 
*** p<.01, ** p<.05, * p<.1  
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[2.2] Panel logit model, random effects, binary dependent variables 

 (1) (2) (3) (4) 
 COG  .2198*** .6397*** .6488*** 

    (.0395) (.0448) (.0445) 
 COG ^2  -.1289*** -.3021*** -.2442*** 

    (.0244) (.0272) (.0273) 

 COG*KC  .1787*** .2097*** .2431*** 
    (.0387) (.0409) (.041) 

 COG ^2 * KC  -.0519*** -.0561*** -.0736*** 

    (.0188) (.0201) (.0203) 
 KC  -.7423*** -.571*** -.5807*** 

    (.0302) (.0333) (.0333) 

 SOC -1.979***  -1.5719*** -1.5427*** 
   (.0631)  (.067) (.0668) 

 GEO .9449***   1.0356*** 

   (.204)   (.1991) 
 INST .1682   .0967 

   (.1768)   (.1725) 

 EXPR -.9588***  -.7593*** -1.0297*** 
   (.0305)  (.0272) (.0309) 

 SIZE .9666***   .9578*** 

   (.0445)   (.0444) 
 Const -1.5536*** -2.5378*** 3.8113*** -1.106*** 

   (.3594) (.0711) (.2084) (.3592) 

Time dummies yes yes yes yes 

Obs. 22,071 22,071 22,071 22,071 

Net effect na .2196 .624 .6414 

Log likelihood -10065.52 -10981.46 -10107.74 -9810.80 

Standard errors are in parentheses 
*** p<.01, ** p<.05, * p<.1  
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Abstract (Korean) 

 

본 연구는 협력적 혁신의 맥락에서 인지적 근접성의 양면적 효과를 조사하고, 

지식 복잡도의 조절 효과에 초점을 맞추었습니다. 미국 바이오 공학기술 분야의 

USPTO 특허 데이터를 활용하여, 이 연구는 인지적 근접성이 협력적 혁신에 역 

U 자형 효과를 가지는 것을 확인하였습니다. 더하여, 지식 복잡도가 증가함에 따라 

최적의 인지적 근접성 수준도 증가하며, 복잡한 지식의 확산되기 어렵다는 

특성으로 인해 발생함을 실증적으로 확인했습니다. 인지적 근접성의 한계효과 또한 

지식 복잡도와 함께 증가했는데, 이는 복잡한 지식 분야는 전문적인 특성으로 인해 

좁기 때문에, 작은 인지적 거리의 변화에도 민감하게 반응하기 때문입니다. 이는 

인지적 근접성이 지식 흡수를 촉진하는 한편, 지식 그 자체의 복잡한 속성으로 

인해 지식 확산과 학습이 방해된다는 의미입니다. 따라서 보다 복잡한 지식을 

협력하고자 하는 조직은 인지적으로 가까운 파트너와 협력함으로써 최적의 협력 

성과를 달성할 수 있습니다. 그러나, 조직이 최적의 인지적 거리를 달성하더라도, 

낮은 복잡도 분야의 최적점보다 협력 성과는 낮게 나타납니다. 이러한 통찰은 

조직의 협업 전략에 유용한 시사점을 제공하며, 정책 입안자와 이해관계자가 혁신 

네트워크를 육성하고 지원 생태계를 조성하는 데 있어 지침을 제공합니다. 

 

주요어 : 조직 간 협력 네트워크, 근접성 이론, 지식 복잡도, 지식 공간 

학  번 : 2021-29400 
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