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Abstract 

 
Transformers have demonstrated tremendous success not only 

in the natural language processing (NLP) domain but also the field of 

computer vision, igniting various creative approaches and 

applications. Yet, the superior performance and modeling flexibility 

of transformers came with a severe increase in computation costs, 

and hence several works have proposed methods to reduce this 

burden. Inspired by a cost-cutting method originally proposed for 

language models, Data Multiplexing (DataMUX), we propose a novel 

approach for efficient visual recognition that employs additional dim1 

batching (i.e., concatenation) that greatly improves the throughput 

with little compromise in the accuracy. We first introduce a naive 

adaptation of DataMux for vision models, Image Multiplexer, and 

devise novel components to overcome its weaknesses, rendering our 

final model, ConcatPlexer, at the sweet spot between inference 

speed and accuracy. The ConcatPlexer was trained on ImageNet1K 

and CIFAR100 dataset and it achieved 23.5% less GFLOPs than ViT-

B/16 with 69.5% and 83.4% validation accuracy, respectively. 

 

Keyword : Throughput, Vision Transformer, Neural Network, 

Efficient Modelling 
Student Number : 2021-23144 
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Chapter 1. Introduction 
 

 

Deep learning research community has experienced dazzling 

advances in model performance across a wide variety of domains and 

downstream tasks in the last decade [4, 5, 8, 9, 19, 20, 23]. These 

improvements, however, came at the cost of rapidly increasing 

computational burden, with the introduction of Transformer [4, 7, 20] 

marking a major milestone in this aspect. With the growing popularity 

of transformers, methods to reduce their computational costs have 

become a prominent research topic [1, 2, 10, 12, 17, 22].  

 

However, previous efforts to improve the computational 

efficiency of transformers have been mostly focused on the NLP 

domain. Data multiplexing (DataMUX) [14] pioneered this direction 

of research for language models by projecting multiple input tokens 

into a single compact representation space and thus enabling the 

neural network to process them simultaneously. Although DataMUX 

[14] has delivered promising preliminary results for the concept of 

data multiplexing, there is much room for research remaining 

unexplored especially in the vision domain. For instance, it has 

mainly trained the transformer on the GLUE benchmark and as a CV 

task, the authors have only experimented on the MNIST dataset with 

light Multi-Layer Perceptron (MLP) and Convolutional Neural 

Network (CNN). This experimental setting is at best a proof-of-

concept and thus insufficient to ensure its general applicability in the 

vision domain. 

 

In this study, we explore the potential of data multiplexing in 

larger scale general vision applications such as ImageNet1K [3] 

classification. To that end, we first show the limitations of naive 

adaptation of DataMUX by constructing a simple baseline named 

Image Multiplexer that employs DataMUX for visual recognition with 

minimal modifications. We then progressively transform this 
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architecture to reach a favorable trade-off between the accuracy and 

inference speed, presenting our final model, ConcatPlexer. 

ConcatPlexer, in short, is a method for efficiently extracting multiple 

images’ representation at once. ConcatPlexer extracts high-level 

feature tokens via Transformer encoder layers. Then instead of 

projecting multiple inputs to a compact representation space, our 

ConcatPlexer reduces the length of input tokens using a learned 

convolution and concatenates them for simultaneous processing. 

Comparison with the naive Image Multiplexer clearly demonstrates 

that DataMUX in its native form is ill-suited for vision models but can 

be made effective with our proposed modifications. 

 

The ConcatPlexer and its MultiPlexer baseline are pretrained 

and compared on ImageNet1K [3], making them generally applicable 

vision frameworks. We further finetune them on CIFAR100 [11] and 

evaluate the result. For evaluation of this new framework, we 

suggest a "multiplexed image classification task", whose goal is to 

classify multiple images multiplexed into a single representation. 

ConcatPlexer achieves consistent gains over its baselines in both 

ImageNet and CIFAR100, supporting its effectiveness in visual 

recognition tasks. 

 

The contribution of this study is as follows: 

1. To the best of our knowledge, this study is the first to define the 

"multiplexed image classification task" and deal with the concept of 

data multiplexing that projects multiple inputs into a single 

representation for efficient data processing in the vision domain. 

 

2. We propose the ConcatPlexer, a novel framework for multiplexing 

images, and test its performance on ImageNet1K and CIFAR100 

benchmark. The ConcatPlexer extracts high-level featured tokens 

using the transformer encoder patchifier and concatenates multiple 

images to process them at once. 

 

3. We demonstrate that data multiplexing can obtain a favorable 
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trade-off between throughput and accuracy. Our model can save up 

to 66.9% of FLOPs compared to ViT-B/16 with mild drop in 

accuracy. 
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Chapter 2. Related Works 
 

 

2.1. Transformer 
 

The Transformer [20] was first suggested as a natural language 

processing model. The key component of Transformer is self-

attention mechanism. Transformer takes multiple tokens embedding 

as an input. Embedding tokens are projected to three different 

projection layers and works as key (K), query (Q), and value (V) 

itself. With the Q, K, and V self-attention module look at itself to 

determine which part of the data is most significant during training.  

 

 
Attention(Q, K, V) = 	𝑆𝑜𝑓𝑡𝑚𝑎𝑥(

𝑄𝐾!

8𝑑"
)𝑉.  

(1) 
 

 

This mechanism played key role in understanding the syntax of 

natural language and stood as a de-facto standard nowadays in place 

of recurrent neural network regime. Transformer has layers of 

encoders and layers of decoders. Each layer of transformer encoder 

has self-attention layer and feed-forward layer. Each layer of 

decoder has masked self-attention layer, attention layer that takes 

encoder output as key and value and feed-forward layer.  

 

However, transformer architecture has a critical structural limit. 

Computational cost of self-attention increases quadratically as input 

length linearly increases. This quadratic computational cost is even 

more critical as recent pre-training regime requires longer input 

sequence. 
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2.2. Vision Transformer 
 

The transformer structure has also successfully settled in vision 

domain. Vision Transformer (ViT) [4] is well recognized as vision 

encoder. Vision Transformer patchfies an image into multiple smaller 

patches. Smaller patches are treated as tokens fed to ViT backbone 

which only uses transformer encoder layers.   

 

However, at image domain as image resolution increases, 

number of image patches increases quadratically. These exceedingly 

increases the computational cost in self-attention mechanism. Also, 

as transformer-based models in vision domain uses 2D-positional 

encoding, transformer models in vision domain are forced to input 

fixed size resolution images. 

 
 
 
2.3. Data Multiplexing 
 

The concept of data multiplexing was first suggested by 

DataMUX [14]. The DataMUX processes multiple inputs by 

projecting multiple texts into a single compact representation space. 

This enables models to process much larger batch with a same GPU 

resource. DataMUX and its latter version MUX-PLM [15] 

demonstrate their performance on GLUE Benchmark [21]. This study 

aims to take over the spirit of multiplexing in natural language 

processing domain and challenge on even more demanding vision 

task. In this work, our proposed ConcatPlexer gains model efficiency 

by transplanting the data multiplexing method into the vision domain 

successfully.  
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2.4. Token Reduction 
 

Though we are the first to apply the concept of data multiplexing 

to vision domain to the best of our knowledge, there are studies that 

try to cut the computational cost of transformer-based models by 

reducing the number of input tokens. ToMe [2] merges similar 

tokens to reduce the length of the input sequence. The other 

approaches [10, 12] prune tokens into a single token to reduce the 

length of an input sequence. However, our method processes 

multiple inputs at the same time, naturally reducing the computational 

cost. 
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Chapter 3. Method 
 

 

3.1. Preliminary: DataMUX 
 

Multiplexing: To project multiple inputs into a single compact 

representation space, a multiplexing module is used. Consider 

(𝑥#, ⋯ , 𝑥$) with 𝑥%𝜖𝑅& being a tuple of N inputs within a batch. 

Multiplexing transforms each input by Φ%: 𝑅& ⟼ 𝑅& and averages at 

the end. A backbone takes a batch (𝑥#, ⋯ , 𝑥$) as an input and outputs 

the multiplexed hidden representation output ℎ#:$ . 

 

 
ℎ#:$ = Φ(𝑥#, ⋯ , 𝑥$) =

1
𝑁
E𝜙%(𝑥%)
$

()#

. (2) 

 
 

Considering the case for a sequenced token input with length 𝐿, the 

aforementioned multiplexing process is done in a token-wise order. 

For an input sequence 𝑥% = {𝑤*%}*+[-], each token 𝑤* can be processed 

as 

 

 ℎ*#:$ = ΦK𝑤*#, ⋯ ,𝑤*$L. (3) 
 

 

In DataMUX, either (2) a random fixed orthogonal matrix or (3) a 

fixed Gaussian random matrix is used for the linear projector 𝜙%. In 

our naively implemented Image Multiplexer, a fixed orthogonal 

matrix is used. 

 

Demultiplexing: To disentangle the multiplexed hidden representation 

output ℎ#:$ into 𝑁 independent representation, demuxing module is 

used. Demultiplexing function Θ% extracts 𝑖/0 representation from a 

multiplexed hidden representation as 
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 𝑦% = Θ%(ℎ#:$), ∀𝑖 ∈ [𝑁]	. (4) 
 

 

For demultiplexing function, there are two choices: (1) MLP 

Demuxing: using 𝑁 MLPs to extract 𝑁 representation from ℎ#:$ and 

(2) Index Embedding. An MLP Demuxing is used for our naively 

implemented Image Multiplexer. 

 

Theoretical claim of DataMUX: The major factor that Transformer 

based models can handle the multiplexed task is Transformer’s 

multi-head attention mechanism. Each multi-head attention can 

extract features of different inputs within the multiplexed 

representation. Kindly refer to DataMUX [14] for more detailed 

theoretical claim. 

 

 
Figure 1. Overall architecture of (a) Image Multiplexer and (b) 

ConcatPlexer. The Image Multiplexer multiplexes 𝑵𝑴𝑼𝑿 images 

using MLP and fixed orthogonal matrices. The ConcatPlexer uses a 

conv layer to reduce the length of each image token and 

concatenates them. 𝑵𝑴𝑼𝑿	is abbreviated as 𝑵 in this figure. 
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3.2. ConcatPlexer 
 

We propose the ConcatPlexer (Figure. 1-b), a model that 

successfully adapts the concept of DataMUX to the vision domain by 

addressing the structural differences between the two modalities. As 

explained in [6], the most decisive difference between visual signal 

and natural language lies in data redundancy. A pixel that constitutes 

an image rarely carries significant information by itself while a word 

token more likely carries important semantic information. In order to 

compensate for this difference and suit DataMUX for vision tasks, we 

compose our ConcatPlexer with the following architectural 

components: Transformer patchifier, ConcatMultiplexer, 

Demultiplexer, and the Backbone.  

 

Transformer Encoder Patchifier: To address the redundancy 

issue of pixel-based data, we extract high-level features before 

feeding to the multiplexing backbone. High-level featured tokens will 

reduce redundancy. This will make the backbone process and 

distinguish the multiple inputs parallelly. Transformer Encoder(TrE) 

Patchifier is a stacked transformer encoder layer with CNN layer at 

the front. Suppose that the dimension of input images is (𝑏𝑠, 3,𝑊,𝐻) 
where bs is the batch size, 3 is a color channel, 𝑊 is the width of an 

image, and 𝐻 is the height of an image. First, the CNN layer 

patchifies the image into a grid patch turning the input dimension into 

(𝑏𝑠, 𝐿, 𝑑𝑖𝑚) where bs is the batch size, 𝐿 is the token length of each 

image, and dim is the dimension of each token. Then rear TrE will 

turn the (𝑏𝑠, 𝐿, 𝑑𝑖𝑚) tokens into a high-level featured token while 

retaining the size of input the same. 

 

C-Multiplexer: While training the Image Multiplexer, we 

observed that the existing multiplexing method’s performance 

degradation outweighs the efficiency gain for the tasks that have low 

expectations on random chance. We optimize the trade-off between 

computational benefit and performance degradation by preventing 

severe performance degradation while retaining computational 
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efficiency to a certain degree. Instead of projecting multiple (𝑁456) 

image tokens into a single compact representation space, we tried to 

extract the essence of each image and combine them in a different 

manner. In the Figure. 2-b, to extract the essence of each image, 

conv computation was used on high-level featured tokens. Using the 

conv1d layer with the output channel dim, the dimension of 

(𝑏𝑠, 𝐿, 𝑑𝑖𝑚) tokens from TrE tokenizer becomes (𝑏𝑠, 𝐿/𝑁456 , 𝑑𝑖𝑚) 
where 𝑁456 is number of sample to multiplex. From this, each image 

gets shorter in length while retaining necessary information as much 

as possible. Then we concatenated the tokens of 𝑁456 images to 

train the backbone to process 𝑁456 images at the same time and 

store 𝑁456	 representation in a single CLS token. From this 

operation, the input of dimension (𝑏𝑠, 𝐿/𝑁456 , 𝑑𝑖𝑚) becomes 

(𝑏𝑠/𝑁456 , 𝐿, 𝑑𝑖𝑚) thereby enables the model to process 𝑁456 times 

larger batch. As C-Multiplexer is very simple, the computational 

overhead is negligible. 

 
Demultiplexer and backbone: For the Demultiplexer and 

backbone, the ConcatPlexer uses the same Demultiplexer and 

backbone as the Image Multiplexer. The backbone is a ViT-like 

architecture that stacks the transformer encoder layers. The 

backbone takes (𝑏𝑠/𝑁456 , 𝐿, 𝑑𝑖𝑚) dimension tokens as an input and 

outputs (𝑏𝑠/𝑁456 , 𝐿 + 1, 𝑑𝑖𝑚) tokens including the CLS token. 𝑁456	of 

MLPs were initialized to separate the representation of each image 

from a single CLS token of the backbone. For more detail, refer to 

Sec. 4.1. 
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Figure 2. The architecture of (a) Multiplexer and (b) C-Multiplexer. 

Both inputs 𝑵𝑴𝑼𝑿 of inputs and combine them into a single input. 	
𝑵𝑴𝑼𝑿 is 𝑵 for this figure. 

 

3.3. Training 
 

To train ConcatPlexer, three loss terms were used. Firstly, 

classification loss using ground truth class label was used. To boost 

the performance of ConcatPlexer, CLIP loss and Label smoothing 

loss were used. 

 

CLIP Loss: The CLIP loss is intended to train the ConcatPlexer’s 

demultiplexed CLS output to resemble the representation of CLIP 

vision encoder. By encouraging the model to learn the general 

representation space of the CLIP encoder, CLIP loss can prevent the 

model from overfitting and blindly memorizing the ground truth (GT) 

label. The 𝐶𝐿𝑆7 in Eq. 4 is demultiplexed CLS token of an image 𝑥. 
𝐶𝐿𝐼𝑃(·) is a CLIP vision encoder that outputs feature token of image 

𝑥. The similarity between the two features is calculated by the 

contrastive loss. 

 

 𝐿8-9: = 𝐶𝑡𝑟𝑠(𝐶𝐿𝐼𝑃(𝑥), 𝐶𝐿𝑆7). (5) 
  

 

Label Smoothing Loss: In order to take advantage of the 

ConcatPlexer’s multiplexed input, we augmented the image by mixing 

other high-level image tokens within the multiplexed sample at C-

Multiplexer. Tokens of 𝑁456	 images are averaged as follows: 
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𝑀% = E 𝑓(𝑇(),			𝑓(𝑇() = c

𝛼 ∗ 𝑇(,
(1 − 𝛼)
𝑁456 − 1

∗ 𝑇(,

$!"#

()#

	
𝑖𝑓	𝑛 = 𝑖
𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 

𝑀%
;! = E 𝑔(𝑌(),			𝑔(𝑌() = c

𝛼 ∗ 𝑌(,
(1 − 𝛼)
𝑁456 − 1

∗ 𝑌(,

$!"#

()#

	
𝑖𝑓	𝑛 = 𝑖
𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 

𝐿<=>>/0 = 𝐶𝐸K𝑀% , 𝑀%
;!L, 

(6) 

 

 

where Tn and Yn are a nth high-level featured tokens among 

𝑁456 images after TrE tokenizer and ground truth class label of a 

imagen in one-hot vector format, respectively. As a result, MGT i is 

a smoothed one-hot vector label, whose i-th component is set to α, 

and (1 − α) is distributed to other components corresponding to the 

labels of other images. This prevents the model from overfitting the 

training dataset and shows a slight performance gain. 
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Chapter 4. Experiment 
 

4.1. Baseline: Image Multiplexer 
 

Along with ConcatPlexer, we introduce Image Multiplexer 

(Figure. 1-a), a naively implemented version of DataMUX in the 

vision domain, as a baseline. Unlike DataMUX in NLP, the Image 

Multiplexer has a long way to go due to several structural 

differences in vision. For the training, classification loss and token 

retrieval loss were used. For the token retrieval loss, the model is 

trained to restore the original discrete input tokens. This helped 

boost the performance of the original DataMUX. Implementation 

detail is described in the following section.  

 

Image Multiplexer: To bring the DataMUX into a vision regime, 

Image Multiplexer can be broken down into four parts: (1) Discrete 

patchifier, (2) Multiplexer, (3) Backbone, and (4) Demultiplexer.  

 

Discrete Patchifier: NLP inputs are tokenized into discrete 

tokens. Original DataMUX exploits this nature with token retrieval 

task. The discrete patchifier is used to make pixel patched into 

discrete tokens. Specifically, DALL-E’s pretrained discrete 

variational autoencoder (dVAE) [18] was used. DALL-E’s dVAE 

patchifies 8x8 pixels into a single discrete 13-bit code (total 8192 

codes). This enables the model to be trained with token retrieval 

loss. 

 

Multiplexer and Demultiplexer: The Multiplexer multiplexed 

(Figure. 2-a) 𝑁456 of discretized images into a single muxed input. 

For the Multiplexing module, 𝑁456 of shallow MLPs and random 

fixed orthogonal matrices were used. Each discretized image is 

projected with a shallow MLP and an orthogonal matrix. Then 𝑁456 

of projected representations are averaged to be multiplexed into a 

single compact representation space. For the Demultiplexing module, 

𝑁456 of shallow MLPs were used. Each MLP is trained to extract the 
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representation of each image from muxed representation output of 

the backbone. The structure of the Multiplexer is the major 

difference between Image Multiplexer and the ConcatPlexer. Image 

Multiplexer projects and combines via linear projection and fixed 

orthogonal matrices while C-Multiplexer uses conv computation to 

reduce tokens of 𝑁456 images and concatenates them in a single 

sequence.  

 

Backbone: The ViT-like architecture was used for the Image 

Multiplexer backbone. The backbone shares the same configuration 

as the ViT-base model [4]. 12 transformer encoder layers were 

stacked and the representation dimension was 768. 

 

4.2. Experimental Detail 
 

For a multiplexed image classification task, Image Multiplexer 

and ConcatPlexer are trained on ImageNet1K and CIFAR100 

datasets. Both models were trained using an AdamW optimizer with a 

learning rate of 1e-4 and weight decay of 0.03 for ImageNet1K 

dataset. Each model was trained around 50 epochs until it converged 

on the training set. As shown in table 1 and mentioned before, Image 

Multiplexer uses DALL-E [18] tokenizer or CNN patchifier, and 

ConcatPlexer uses a transformer encoder (TrE) as a high-level 

featured tokenizer. The 𝑁456 on table 1 means the number of 

samples multiplexed in a single sequence. Each model multiplexed 

from two samples up to four samples at a single sequence. The 

‘Concat Point’ means at which layer the TrE tokenizer is 

concatenated. In other words, before concat point each sample is 

processed independently and after the concat point 𝑁456 samples 

are concatenated and processed at once. We call layers before and 

after the concat point as projection layers and backbone layers, 

respectively. The total number of layers, including both the 

projection layers and the backbone layers, was set to 12. The batch 

size of the Image Multiplexer and the ConcatPlexer is 512-1024 to 

fit the size of GPU memory. The Image Multiplexer was trained on 8 
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A100 GPUs and ConcatPlexer was trained on 4 A100 GPUs, 

respectively. 

 

Table 1. Performance of the Multiplexed Models on ImageNet1K. 

 
 

4.3. Experimental on ImageNet1K 
 

The aforementioned models are pretrained with ImageNet1K and 

results are reported in Table 1. As shown in Table 1, performance 

tends to drop as 𝑁456 parameter increases in both Image 

Multiplexer and ConcatPlexer. This is natural because 𝑁456 being 

four means that twice more information should be crammed in the 

same space as 𝑁456 being two. Also, although the total number of 

projection layers and backbone layers is kept to 12 in total, the 

thicker projection layer tends to show better performance in the cost 

of computational efficiency. This is because the projection layer is a 

layer that comes before muxing and the backbone is a layer that 

comes after muxing.  

 

Referring to Table 1, Image Multiplexer using CNN tokenizer 

saturated at validation accuracy of 26%. Replacing the tokenizer with 

DALL-E has boosted validation performance up to 48%, muxing 4 

image inputs. The DALL-E tokenizer enables image patches to be 

discrete, but its token length prohibitively increases the computation 

cost, which makes the purpose of multiplexed image classification 

task pointless. On the contrary, the ConcatPlexer shows validation 

accuracy of 56% with muxing four images at the same time using a 

single layer TrE tokenizer. The ConcatPlexer with 𝑁456 	= 	2 shows 
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validation accuracy of 62% - 69%. Performance gets better as 

projection Layers increase in the cost of computational efficiency. 

The ConcatPlexer is compared with conventional ViT[4] most similar 

backbone but trained with a non-multiplexed image classification 

task at section 4.5. 
 
Table 2. Performance of the Multiplexed Models on CIFAR100. 

 
 

 
4.4. Experimental on CIFAR100 
 

The pretrained models from Table 1 were finetuned on the 

CIFAR100 dataset. Similar to Table 1, the ConcatPlexer with smaller 

Num Muxed and larger projection Layers performs better in the cost 

of computational cost. Referring to the Table 2, the performance of 

the ConcatPlexers outperforms the Image Multiplexers with less 

computational cost. As the model is trained on easier task (smaller 

number of classes), the degradation gap between ConcatPlexer and 

ViT reduces. According to Table 2 and Table 3, ConcatPlexer(3)’s 

validation accuracy is 83.4% and ViT-B/16’s validation accuracy is 

87.13%. 

 

4.5. Ablation 
 

Comparison with non-multiplexing method: The ConcatPlexer 

uses TrE patchifier to get high-level patch tokens. Then token length 

is reduced by the conv layer and multiple inputs are concatenated. 

Instead of concatenating and just stacking the reduced length inputs 



 

 １７ 

after conv computation may look like a good option. Table 5 indicates 

that ConcatPlexer performs better than Without MUX model.  

 

Comparing with conventional ViT: Table 4 indicates that 

ConcatPlexer lacks performance in ImageNet1K compared to ViT 

B/16. This is because the ConcatPlexer is tackling a harder task: 

multiplexed image classification. However, the performance gap 

narrows if the model is trained on an easier dataset: CIFAR100. 

Considering that we are the first to propose the multiplexed image 

classification task, there is more room for improvement. Therefore, 

we believe that the current aspect seems encouraging. The 

computational cost of the Image Multiplexer using CNN patchifier 

was not calculated as its performance was not comparable with other 

models. The computational cost of the Image Multiplexer using  

DALL-E dVAE was also not calculated as its computational cost 

was prohibitively large due to the long sequence length. As the main 

purpose of the ConcatPlexer is to attain increased computation 

efficiency and throughput, we also compared the FLOPs of the 

ConcatPlexers and ViT-B/16. Table 3 indicates that the 

ConcatPlexers require less FLOPs compared to ViT. The FLOPs 

were counted using fvcore library of Meta Research. 

 

Comparison with original DataMUX: Original DataMUX and its 

descendent [14, 15] demonstrated its effectiveness on GLUE 

benchmark [21]. However, an expectation of random chance of 

CIFAR100 and ImageNet1K is much lower, considering that tasks in 

the GLUE benchmark usually have two to three classes to predict. Of 

course, DataMUX shows an impressive performance in the aspect 

that it can multiplex extremely many inputs (up to 10 for MUX-PLM). 

The ConcatPlexer multiplexes fewer inputs and the performance gap 

may be seen as quite large. However, the ConcatPlexer deals with 

the trickier task in the sense of expectation of random chance. 

 

Possibility toward multimodal multiplexing: As a proof of concept, we 

adapt data multiplexing in the Vision&Language(VL) domain: 
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Multimodal Multiplexer (MMP). It is a single ViT-architectured model 

that represents images and texts in a modality-agnostic manner, with 

no modality-specific transformer blocks or projection layers. As 

shown in Table 6, the model achieves 32.84%, 59.62%, and 71.42% 

accuracy at recall@1, recall@5, and recall@10 on Flickr30K [16] 

with zero-shot image retrieval task. Despite its modality-agnostic 

information processing mechanism and parameter efficiency 

(compared to typical VL models that employ separate transformer 

towers for each modality), MMP achieves promising preliminary 

results on challenging multimodal retrieval task, which we believe 

indicates great potential for future follow-up works. 

 

 

 

Table 3 FLOPs Count Per Image. 

 
 

 

 

Table 4. Comparison with ViT. 
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Table 5. Thicker Batch vs. Multiplexing 

 
 

 

 

Table 6. Flickr Zero-shot Image Retrieval. 
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Chapter 5. Limitations and Future works 
 

We propose a new vision classification called multiplexed image 

classification task to multiply the throughput of the neural network. 

Though this approach can drastically drag up the computational 

efficiency and throughput by increasing 𝑁456, the concept of 

calculating multiple data at the same time makes the previous task 

much harder, which causes a clear trade-off between 𝑁456 and 

performance. The performance of transformer-based models in 

vision tends to be heavily affected by hyperparameter tuning. With 

more delicate tuning, the ConcatPlexer may have more performance 

gain. As our Conv-based multiplexing method is somewhat heuristic, 

we believe that there is more room for improvement if other token 

length reduction methods are used together. Also, there is room for 

computation efficiency gain of the ConcatPlexer if we use a method 

similar to Swin Transformer [13], which separates images from the 

entire sequence and divides them into partitions, applies local self-

attention, and combines information from the CLS token. 
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Chapter 6. Conclusion 
 

From this study, we would like to bring constructive discussion 

for the computational efficiency of transformer-based models. The 

Transformer [20] has settled down as a de-facto standard backbone 

in NLP, vision, and other domains. Transformer shows state-of-the-

art performance across nearly all tasks approaching toward Artificial 

General Intelligence (AGI). However due to its self-attention 

mechanism, transformer-based models require expoenetially large 

computational resources as inputting data increases. This hinders 

many institutes from actively engaging in this research field thereby 

breaching the gap between the few and the smaller rest. 

 

Not only boosting the performance for neural backbone but also 

enhancing the efficiency of the model is important. Aligned with this 

necessity, our study tries to transplant the idea of DataMUX [14] of 

NLP into the vision field. We propose the multiplexed image 

classification task and its baseline ConcatPlexer and Image 

Multiplexer. The proposed model shows the feasibility that idea of 

DataMUX can be applied in the vision field. 
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Abstract 

 트랜스포머는 자연어 처리(NLP) 영역 뿐만 아니라 컴퓨터 비전 

분야에서도 성공적인 모습을 보여주고있으며, 다양한 창의적인 접근과 

응용을 일으키고 있습니다. 그러나 트랜스포머의 우수한 성능과 모델링 

유연성은 연산 비용의 심한 증가를 동반하기 때문에, 최근 연구들에서는 

이 부담을 줄이는 것이 주요 관심사 중 하나입니다. 언어 모델에 원래 

제안된 비용 절감 방법인 데이터 멀티플렉싱(Data Multiplexing, 

DataMUX)에서 영감을 받아, 해당 연구는 효율적인 시각 인식을 위한 

접근 방식을 제안합니다. 이 방식은 추가적인 1 째 차원의 배치(즉, 

연결)를 사용하여 처리량을 크게 향상시키면서도 정확도를 희생을 

최소화 하였습니다. 우리는 먼저 DataMUX 기술을 비전 모델에 단순 

적용하 Image Multiplexer 를 소개하고, 이를 극복하기 위한 새로운 

구성 요소를 고안하여 최종 모델인 ConcatPlexer 를 제안했습니다. 

ConcatPlexer 는 ImageNet1K와 CIFAR100 데이터셋에서 

학습되었으며, ViT-B/16 보다 23.5% 적은 GFLOP 을 달성하면서 각각 

69.5%와 83.4%의 검증 정확도를 얻었습니다. 

 

주요어: 연산처리량, 비전 트렌스포머, 신결망, 효율적 모델링 

학번: 2021-23144 
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