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Abstract

The contrastive sentence embeddings apply contrastive learning
framework to the sentence embedding field, which summarize
natural language into fixed—size vectors. The most influential study
in this field is SImCSE. It achieved significant performance
improvements by simply using dropout and has subsequently
inspired numerous follow—up studies.

In this thesis, we summarize the key existing studies in the field of
sentence embedding leading up to SImCSE and investigate several
methods to enhance SimCSE from three main perspectives. We
experiment with different data augmentation techniques to generate
positive pairs, apply stabilization techniques to reduce variability of
SimCSE, and aim to increase performance by generating additional
negative samples in addition to in—batch negatives.

As the result, we found that Gaussian noise injection to the input
embedding, weight perturbation alone, FGSM (fast gradient sign
method) combined weight perturbation, and Gaussian noise
sampling as additional negative samples, can improve the
performance of SimCSE. Data augmentations on encoder output
turned out to be not helpful in our experiments and the gain of
augmentation on input embedding and stabilization techniques also
turned out to be not so significant. Gaussian noise sampling for
negative sample generation, however, demonstrated that simple
noise can enhance performance comparable to more actual

sentences without increasing computational complexity.

Keywords: Sentence embedding, Constrastive learning, SImCSE
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1 Introduction

Sentence embedding is a fundamental task which organize natural language sen-
tence as variable-length sequences composed of discrete tokens into fixed-size
vectors. Various aspects of the natural language sentences, such as lexical, syntactic
structure, and semantics, are summarized to representation in the embedding space
that can be handled by neural networks. Since most neural networks utilize fixed-
size inputs and outputs, sentence embedding is the first step of natural language
processing with neural networks. Even in architectures that handle variable-length
inputs, it can be divided into two parts: the encoder for sentence embedding and a
simple multi-layer perceptron or linear layer part for particular task.

However, despite this significance, universal sentence embeddings remains
extremely challenging study. The vocabulary varies greatly depending on the
corpus and the domain. Sentence embeddings trained on a specific domain perform
poorly in other domains. Moreover, annotating natural language sentences is also
a difficult task. While anyone can read natural language sentences, there is no
consistent and universally agreed-upon criterion for labeling. Consequently, many
datasets are relatively small in size and very noisy.

As a result, there have been numerous attempts to learn universal sentence
embeddings through unsupervised learning without the need for labels. BERT[29]
significantly improved encoding performance solely through mask reconstruction
pretraining on large corpora. However, using only next sentence prediction pretrain-
ing for sentence embedding did not outperform the performance of traditional word
embeddings and mostly summarized sentences into similar vectors, which shown

in Figure 1. Because entire pretraining process is too laborious task, many efforts
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Figure 1: Cosine Similarity of BERT embeddings compared to golden score

reported at [53]

have focused on extending BERT[29] with additional pretraining specifically to
enhance sentence embedding performance.

Particularly, inspired by the success of the contrastive learning framework in
the computer vision domain, similar approaches have been attempted to improve
BERT([29]. However, unlike images where the entire content remains invariant with
slight continuous changes, natural language is composed of segmented tokens. Data
augmentation directly modifying tokens are less effective due to overly significant
changes that can be recognized by human. In contrast, continuous data augmen-
tation at the embedding level yielded better results. Notably, SimCSE[18] which
employing the default dropout from BERT[29] as data augmentation, demonstrated
a substantial performance improvement. Figure 2 from [18] show the simplicity of
implementation. Also its provision of a consistent criterion and frameworks led to

many subsequent studies.
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Figure 2: Unsupervised SimCSE[18]

In this study, we provided an overview of various research efforts in the field
of sentence embeddings. We summarized key methodologies that have had a
significant impact on the sentence embedding research, ranging from early word
embedding studies to BERT[29] and SimCSE[18]. Furthermore, we presented
a report on a comparison of diverse experimental ideas to explore potential im-
provements in SIMCSE[18]. Our primary focus was divided into three aspects:
data augmentation methods to create positive pairs, techniques to generate better
negative samples, and approaches to reduce randomness in training.

Throughout this investigation, we discovered the following observations. Data
augmentation to the output representation hindered the learning of sentence em-
beddings, while augmentation in the input embedding had limited improvement
effects. Additionally, stability techniques had minimal impact due to SImCSE[18]’s
training dynamics. However, it was found that additional negative samples using
Gaussian noise with similar scales led to performance improvement and a reduction

in variability.



2 Background

2.1 Sentence Embedding

Sentence embedding is fixed size vector, which summarized variable length natural
language sentence. It can be used for various NLP tasks like sentence classification
or information retrieval, as input of machine learning algorithm. Recently, in the
view of transfer learning, sentence embedding is considered as good initialization
point for fine-tuning.

For theses purpose, semantics, grammatical structure, and lexical information
should be comprehensively encoded into certain size of vector. Recurrent Neural
Network (RNN) and Self Attention Network (SAN) are generally used as encoder
due to their ability of processing variable length input. Unsupervised learning
framework, which can update model without label, are used to make universal
embedding, but there are several studies for supervised sentence embedding using
labels from more general downstream tasks.

Sentences are not only time-series data that can vary in length and contain order
information, but also have hierarchical structure and made of discrete character.
Extracting information from this complicate data for well-organized representation
is very interesting work. But there are several difficulties in collecting sentence
data. Annotation cost for sentence is usually higher than image. Also, it is difficult
to obtain qualified data because all annotators have own criteria to meaning of
sentence. A wide variety of labeling is possible according to task definition, but
there is no concrete consensus for universal downstream task that can evaluate

quality of learning sentence embedding.



2.1.1 Word2vec

In addition to traditional statistical methods such as TF-IDF, learning-based meth-
ods have been widely used. These methods learn embeddings, which are fixed-sized
vectors, for predefined tokens in a given dictionary. Word2vec[35] presents two
approaches: Continuous Bag of Words (CBOW) and skip-gram. CBOW learns
the embedding of a token by averaging the embeddings of the tokens appearing
within a certain window around it. On the other hand, skip-gram predicts the tokens
appearing within a fixed window around a given token. These methods are based on
co-occurrence, assuming that words with similar meanings will frequently appear
in close proximity in sentences and should be represented in similar positions in
the embedding space. Using this characteristic, the paper demonstrates the validity
of analogy tasks like "king-man+woman=queen" proposed in [36]. This implies
that the learned embedding space can sufficiently represent semantics.

However, this method has the drawback of indirectly modeling co-occurrences
outside the window to optimize computational efficiency. Furthermore, the embed-
dings generated by this method only represent the meaning of the word itself, so to
summarize a sentence, a method of averaging the embeddings of the tokens that
make up the sentence must be used. This approach results in static embeddings

that do not reflect the context well and tend to be biased towards dominant words.

2.1.2 Glove

The success of word2vec demonstrates its ability to capture semantics effectively.
However, it still has the drawback that co-occurrences outside the window need
to be learned through other words that appeared together. Among the methods

that reflect global co-occurrence, classical Latent Semantic Analysis (LSA) creates
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embeddings by reducing the dimensionality of a frequency matrix where words ap-
pear in specific documents using Singular Value Decomposition (SVD). Although
LSA can reflect overall statistics, it is considered less capable of learning the vector
space well for analogy tasks, which is a strength of word2vec.

GloVe[40], on the other hand, aims to combine the advantages of LSA and
word2vec by training embeddings in such a way that the dot product between
embeddings represents the probability of two words co-occurring in the same
document. However, this method still produces word-level embeddings, so there is

a need to aggregate the embeddings of all the words that make up a sentence.

2.1.3 Sent2vec

To learn embeddings at the sentence level rather than just at the word level, an
extension of word2vec called sent2vec[38] has been proposed. Sent2vec goes
beyond the fixed window of CBOW and learns token embeddings for the entire
sentence, making the window dynamic.

Furthermore, using not only unigrams but also n-grams has also contributed to
performance improvement. Although, like word2vec, the embeddings that make
up the sentence are averaged, the authors argue for the importance of the dynamic
window. Instead of always averaging with equal weights in a fixed local window,
they average the embeddings at the sentence level. Even though fewer weights are
allocated, the learning process can assign appropriate weights as it considers the

entire sentence.



2.1.4 Infersent

Infersent[14] uses an SNLI(Stanford Natural Language Inference) dataset[6],
which consists of pairs of sentences classified into three categories: entailment, neu-
tral, and contradiction, to train sentence embeddings. This dataset is well-curated
and has been widely used in subsequent studies that train supervised sentence
embeddings.

Originally, this dataset was used for the Recognizing Textual Entailment (RTE)
task, which involves classifying the three relationships. However, the authors
believed that through these relationships, they could train a general sentence
encoder. To accomplish this, they compared various architectures such as RNN-
based networks like LSTM, GRU, and BLSTM, as well as self-attention and
CNN as encoders. They also compared different combination methods such as

subtracting or multiplying the two sentence embedding vectors and concatenation.

2.2 Transformer architecture

2.2.1 Self-attention mechanism

Recently, self-attention is widely used in the field of image as well as natural
language. But it is initially invented for encoder-decoder structure that encode
source language into fixed-size context vector and decode to target language. In
this time, RNN is used to encoder and decoder, which has strong dependency
at sequential order. This property led to degradation at long sentence, because
model forget the front part of sequence. self-attention is introduced to alleviate this
burden. It can assign more weight to more important feature for entire context.

Self-attention also has a lot of variations, but we described dot-product attention

i
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Figure 3: Attention mechanism from [46]

which most widely used. It is similar with hash table that retrieve value by query-
key matching. The difference with hashing algorithm is that it return query-key
similarity based weight instead of exact match. This probability can be interpreted
as how much attention should be applied to certain part of sequence by neural
network itself, and this is why it called self attention. Layer input is linearly
transformed to yield query, key and value vectors. The similarity of query and key
is calculated by dot-product. For this reason, name of this attention algorithm is
dot product attention.

Softmax normalize dot-product based similarity so that the sum equals 1, and
it represent probability that indicate how important each unit of sequence. Value
vectors are summed up according to this attention weight.

In case of multi-head attention (MHA), several dot-product attention modules
are used to deal with various feature for problem solving. Each result from modules
are concatenated and transferred by linear transform to yield final output of MHA.

Figure 3 show diagram for scaled dot-product attention and multi-head attention.
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Figure 4: NSP and mask LM task for BERT[29]

2.2.2 Transformer layer

Transformer[46] layer is consist of self attention layer and position-wise feedfor-
ward network (FFN) layer. Each sub layer are wrapped by layer normalization
and skip-connection. Several transformer layers are stacked to form body of trans-
former network. Input of entire network is embedding from loop-up table that
each element represents token which means unit of split sequence. On the other
hands, output of neural network is passed to mult-layer perceptron (MLP) for
classification.

This structure can used as encoder that transfer input sentence to latent vector
and decoder that interprets latent vector back to natural language. BERT[29] is

encoder, and well-known example of decoder is GPT[41].
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2.2.3 BERT

BERT([29] pretraining is comprised of masked language model (MLM) task and
next sentence prediction (NSP) task, as shown in Figure 4.

In case of MLM tasks, random token of input sentence is replaced with spe-
cial mask token then classifier reconstruct original token. Model should gather
information from context to decide which token is appropriate for masked position,
and self-attention mechanism is suitable for MLM. This pretraining task gain great
success at NLP. Discrete nature of language is well fit with mask reconstruction,
and unsupervised setting allow usage of a lot of unlabeled text.

On the other side, next sentence prediction is focused to relationship between
sentences. Two sentences are concatenated with special separation token, and
another special CLS token is placed in front of entire sequence. Model should
decide whether concatenated sentences are actual adjacent or randomly paired.
Binary classification is applied at position of CLS token of model output. It is
assumed that model should understand semantics of each sentence, and CLS output

is regarded as general sentence embedding.

2.2.4 Transformer based sentence embedding

Howeyver, it is not certain whether the NSP (Next Sentence Prediction) task is suit-
able for creating sentence embeddings, and in the case of models like RoOBERTa[33],
the task of training the CLS token during pretraining has been completely removed.
For the NSP task, two sentences need to be concatenated as input, while sentence
embeddings should summarize only one sentence. Additionally, there have been
claims that using the CLS output of BERT as-is results in excessively high similar-

ity compared to human evaluations, and it is common for performance to degrade
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in downstream tasks when using a pretrained model while keeping it frozen. As
a result, for sentence embeddings, fine-tuning is required, which again poses the
problem of needing expensive labels.

Sentence-BERT([43] was developed by finetuning a pretrained BERT model
as a sentence encoder. Similar to InferSent[14], it uses SNLI datasets[6] and the
same architecture. To summarize the BERT output, they compared using CLS
and mean pooling, and also compared different objectives such as predicting the
cosine similarity of positive and negative pairs directly as a regression objective or
using a triplet objective function. Notably, averaging the entire output of the last
layer of BERT was more effective than using just the CLS output, and similar to
InferSent, they concatenated the summarized vector along with its difference and
element-wise multiplication. This indicates that the CLS output of BERT is still
not sufficient as a sentence embedding.

The Universal Sentence Encoder[9] used multi-task learning with three tasks
to train the Transformer architecture. In addition to the NLI training objective
mentioned earlier, they added a task of predicting matching pairs of inputs and
responses using a dataset collected for Gmail’s Smart Reply service[23]. They also
introduced the skip-thought[32] task, which involves decoding embeddings that
summarize the current sentence from a corpus consisting of consecutive paragraphs

and predicting the preceding and succeeding sentences.

2.3 Contrastive learning

The contrastive learning framework emerged as a crucial technique in recent
unsupervised learning, and achieved significant success in the field of computer

vision. The fundamental idea is that when augmentation is applied to an anchor, it

11



should still be perceived as the same object with different view. The agreement
between transformed positive samples and anchor should be maximized. After
passing through the encoder, ideally two representation should be mapped close
location in the latent space. Examples of such invariant transformations can be
seen in techniques like random cropping, color jittering and Gaussian blur used in
Simclr[10].

€$p5im(zi ,20)/T)

o))

l; = —log sim(zi,2,)/7)

Sl eap

In Equation 1, the numerator encourages positive pairs to be closer, while the
denominator pushes negative pairs further apart. In practice, it is not feasible
to perform this calculation for every sample in the dataset due to computational
limitations. Instead, a random negative sampling approach is used, where only a
subset is sampled to be pushed further away. Also it is convenient to consider other
items within the batch as randomly extracted negative samples, which are referred

to as in-batch negatives.
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3 Related work

3.1 Discrete contrastive sentence embedding

Like pioneers in CV, these researches mainly focused to augmentation of original
sentence to produce different views. However, discrete nature of language prevents
effective augmentation. Image is consists of continuous float value and have
high correlation only between adjacent pixels. On the other side, simple token
replacement can lead to unnatural incorrect sentences or very different meaning like
‘not” of negative statements. For this reason, discrete data augmentation achieved

relatively poor result.

3.1.1 Back translation

Back translation is most widely used data augmentation method in NLP. With two
different translation model, original sentence is translated from source language
to target language, than translated back to source language. It is assumed that
semantic maintained same not only between two different languages, but also
paraphrase that result of back translation. CERT[15] augment original English
sentence to two paraphrase with German and Chinese translation model. Model
architecture is same with MoCo[22], which use momentum encoder and negative
sample queue.

The performance improvement is not that great because paraphrase should not
be mapped into exact same position in embedding space. Although semantic is
the most important factor for sentence embedding, there are still other information

should be encoded like lexicon. Also, this method highly depends on quality

13
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of translation model. However, quality of paraphrase from back translation is
not always good, so it may be not safe for automatic data augmentation without

cleansing and refinement by human annotator.

3.1.2 Span in paragraph

It can be assumed that sentences in continuous text share the same context. Based
on this assumption, DeCLUTR[19] expand single sentence to span. Anchor which
indicates original view and positive span are sample from same paragraph. This
pair can overlap, have no intersection, or be inclusive, but length of anchor is
longer than positive span. This consists positive pair for contrastive framework,
and positive span of other anchor become negative pair. BERT output of each span
is averaged to yield same size embedding vector.

Although all training data are unlabeled, order preserved corpus is hard to gather
then data consisting of randomly collected sentences without such constraints. Also,

the context of the entire paragraph is not necessarily need to encode sentence.

3.1.3 Word replacement

BERT is not robust to certain adversarial samples. For example, single adverb
like "lastly’ or ’satisfying’ can reverse meaning of original sentence. CLINE[47]
introduce semantic negative example for contrastive learning. Rule-based algorithm
replace representative word of sentence. If replaced word is synonym, entire
augmented sample is for positive pair. On contrast, sentence replaced by antonym
become negative pair.

This study mainly focused on transfer learning rather than sentence similarity.

Also, word replacement highly depends on heuristics.

14



3.1.4 Combination of discrete data augmentations

Like SimClr[10], ConSERT([53] tried to find maximum performance by combining
various types of discrete data augmentation techniques. In addition, these trans-
formations are applied at input embedding instead of natural language sentence as
previous studies.

4 augmentations are tested: Token shuffle is reordering vocabulary by mixing
position embedding order. Cutoff is removing one dimension at token axis or
feature axis, while dropout randomly delete cell of embedding without considering
the axis. Finally, adversarial attack adopts fast gradient value for supervised
learning scenario. Each technique is complementary. According to this research,
combination of token shuffling and feature cutoff performed best.

The difference from SimCSE, which will be described later, is that all augmen-
tations are applied at only input embedding, not intermediate representations. But
it is worth that location where the augmentation is applied is starting to deviate
from raw input sentence. All models can observe is limited to discrete sequence of
embedding. Even a small change to the human eye can make a big difference in
the model input. it can be additional burden for the model to learn which change is

meaningful.

3.2 Continuous contrastive sentence embedding

3.2.1 Summarization of local feature with 1D CNN

N gram means N subsequent words in sliding window. In classic NLP studies,
A set of N gram that increase in window size by 1 used to capture local pattern

frequently occurring. IS-BERT[54] utilize 1D convolution neural network (CNN)
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as N gram, and CNN filter size represent N. BERT output passed by 1D CNN
filter as localized representation and CLS output as global representation constitute
positive pair. localized features from other sentences used as negative sample.
When this study was conducted, there are still explanation of contrastive learn-
ing based on mutual information. So researchers also mentioned MI in paper, but
no clear connection was suggested. However, it is an earlier approach that apply

contrastive learning at latent space instead of raw input.

3.2.2 Output of the other layer

BERT is known to handle different aspects of a sentence based on its layers, where
the vocabulary is processed in the lower layers, grammar in the middle layers, and
semantics in the final layers[27]. As a result, depending on the task, it is sometimes
common to concatenate not only the output of the last layer but also the output of
the first layer of BERT and use them together.

SG-OPT[30] made use of this and assumed that the intermediate outputs of
each layer are also different views. They used two BERT models, one of which
used the CLS output to create sentence embeddings. The other encoder was kept
frozen, and the outputs of the 12 layers were randomly sampled, pooled to create a
fixed-size vector. These two vectors formed the positive pair, while the negative
pair used the CLS output or pooled intermediate output from another sentence in
the batch.

The drawback of this approach is that although mean pooling is commonly
used, it is difficult to argue that it is appropriate to make it exactly the same as the
CLS output. Furthermore, while there may be different perspectives of information

in the intermediate layers, they are merely partial perspectives, and trying to make
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them converge completely to the final output after passing through all layers can

be problematic.

3.2.3 Different batch

To address the problem of outputs from BERT being excessively similar for any
pair of sentences, it is necessary for the embeddings of different sentences to be
sufficiently distant from each other. However, simply pushing them apart can cause
the embeddings to lose their semantic coherence and scatter in the embedding
space. This is why an anchor point is needed, which serves as a point where the
embeddings can become closer while still moving away from each other.

CT-BERT]([26] initializes two separate encoders with the same weights initially,
but they gradually diverge due to the different batches they receive. One encoder
only encodes the sentences designated as positive pairs, while the other encoder
takes in all the in-batch negative samples and the positive pair sentences together.
For these pairs, the loss is structured to increase the dot product for positive pairs
and decrease it for negative pairs. Since the embeddings of positive pairs should be
identical, tension is created to not only push them apart but also maintain proximity,
enabling them to function as soft anchors for each other.

The major challenge is the need for twice the memory resources due to using
two encoders. Furthermore, concentrating the negative samples in only one encoder

to forcefully create separation in the model is not efficient.

3.2.4 Dropout based augmentation

Among various data augmentation attempts, SInCSE[18] utilized dropout[44],

which was commonly used during pretraining BERT, to create positive pairs.
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Figure 5: Redrawn concept of SImCSE

Dropout in BERT is applied to input embeddings, the output layer of self-attention,
and skip connections. When different dropout masks with a default ratio of 0.1
are applied, the final outputs show cosine similarities of approximately 0.9 to 0.95.
In the supervised setting, SImCSE also used NLI task, commonly used in other
sentence embedding studies, considering entailment as positive pairs and neutral
and contradiction as negative pairs.

With this simple data augmentation, significant performance improvement was
observed, and SImCSE became easy to apply, leading to numerous subsequent
studies aiming to enhance it. Furthermore, prior to this, the training procedures
and evaluation methods varied across studies, but SimCSE provided a framework
for both training and evaluation, enabling researchers to compare their work under

the same protocol.
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SimCSE attributed its success to maintaining alignment with dropout noise
while improving uniformity in in-batch negative pairs[49]. However, subsequent
research has shown inconsistent results in this regard, and some argue that the
performance drop observed when directly using alignment and uniformity as loss
cannot be solely explained by this perspective[37].

We redraw concept of the SimCSE in figure 5 again for easy comparison with

our proposition.

3.3 Follow-up studies of SimCSE
3.3.1 Wrapping with prompt

In the pretraining phase, the mask token serves a distinct role from other input
tokens as it guides the model to focus on reconstructing the original values at
its corresponding positions. This concentration of information from the masked
positions enables the model, through a simple MLP head, to classify the original
words. From this perspective, it can be inferred that sufficient information for
summarizing the sentence accumulates at the masked locations.

At PromptBERT][28], the prompt is introduced in the sentence embedding task
as a replacement for the mask language model task. When denoting the original
sentence as X, prompts such as "[X] means [mask]" are used. To find the optimal
prompt, various methods were compared. This included comparing hand-crafted
templates in a greedy manner, selecting the sentence with the highest probability
when using T5 model[42] to replace the mask[17], and even exploring the ap-
proach of learning continuous vectors instead of actual tokens[55], concatenating

them with the original sentence’s embeddings for prompt usage. Among these
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methods, combining hand-crafted prompts and continuous prompts yielded the
best performance.

The focus on the mask token instead of the CLS token, considering the criticism
of NSP’s inadequacy for sentence embedding, is intriguing. However, it should
be noted that prompt search requires additional time and separate model training,

which can be considered as drawbacks.

3.3.2 Negation as soft negative sample

The anchor sentences were transformed into negated sentences using rule-based
discrete transformations. By using the spacy tool[24] to separate and analyze
dependency syntax trees, it was possible to reverse the meaning of the sentences
without grammatical errors. Additionally, the technique of PromptBERT[28] was
adopted, using the representation of the mask token’s position instead of the CLS
token.

Furthermore, the negated sentences created in this way were used with bidirec-
tional margin loss (BML), unlike regular negative samples. In SNCSE[48], these
soft negative samples should be kept at a certain margin of closeness compared
to the cosine similarity between the anchor and positive samples. This is done to
express sentences that are almost similar to the original text but have significantly
different meanings.

Similar to PromptBERT][28], there is a heavy dependence on prompt engineer-
ing. Additionally, a drawback of the proposed BML is that tuning is required for

the margin between the anchor and soft negative samples.
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3.3.3 Replaced token detection

Among various pretraining methods, the most widely known approach is the mask
language model (MLM) task, where a portion of the original sentence is replaced
with mask tokens and fed into the encoder. The task involves reconstructing
the masked values. However, besides this method, other pretraining approaches
have been proposed, and this paper draws inspiration from one of them, namely
ELECTRA[12].

ELECTRA employs a replacement token detection task instead of mask recon-
struction. It involves using a separate BERT model to restore the masked sentence
and then performing binary classification to determine whether the tokens at the
respective positions are unchanged or replaced. However, there was a problem
with ELECTRA when the BERT model used for sentence restoration performed
too well. In such cases, it became challenging to detect the fact that the tokens
were replaced since the restoration appeared highly convincing.

In DiffCSE[11], when performing replacement detection, the authors intro-
duced the use of SimCSE to provide summarized sentence embeddings as refer-
ences. Conditioned ELECTRA then detects whether the original sentence has been
modified based on the provided sentence embeddings.

The formulation of finding differences between the original and edited sen-
tences is a good idea. However, the addition of a generator and discriminator makes

the architecture more complex.
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4 Methods

While studying related works, there are three major areas for improvement in
SimCSE. We conducted studies to improve performance at each of these perspec-
tives: Data augmentation for positive pair, stability, and additional negative sample

generation.

4.1 Data augmentation

Compared to computer vision tasks, SImCSE lacks diverse data augmentation
methods for generating positive samples. While various data augmentation tech-
niques are commonly used in image-related tasks, SImCSE relies on the simplest
form of dropout.

It was believed that token-level discrete augmentation, which is generally
understandable to humans, would bring about too drastic changes and may not be
suitable for generating positive samples. Instead, continuous data augmentation

was considered to be effective.

4.1.1 Data augmentation at encoder output

Before SimCSE, there have been reports of the effectiveness of adversarial attacks
as a form of data augmentation. Adversarial training typically involves gradient
descent up to the input level. However, while exploring relevant studies, we drew
inspiration from intermediate level attacks[25] that apply adversarial perturbations
only up to intermediate layers, as well as feature space attacks[52] that target the

latent representations of auto-encoders.
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Figure 6: Data augmentation at encoder output

The positive pairs of SImCSE are created by passing the same sentence through
the encoder twice, with different dropout masks applied to each pass. However,
in this study, the goal was to manipulate the representation obtained by passing
a single sentence through the encoder to create embeddings that can be used as
positive pairs as illustrated in Figure 6. The goal was performance improvement

without increasing the computational load on the encoder.

GNI (Gaussian Noise Injection) For each dimension of the feature representation
obtained by passing the sentences within a batch through the encoder, we calculated
the standard deviation. We sampled Gaussian noise using a mean of 0 and the
standard deviation based on the batch-level standard deviation. This noise was then
added to the output of the anchor.

Bernoulli dropout Similar to dropout[44], we also generate a binary mask by
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sampling from a Bernoulli distribution. We apply this mask by multiplying it with
the output of the anchor when calculating the cosine similarity. This has a similar
effect to applying dropout. To obtain cosine similarities in the range of 0.9 to 0.95
for positive pairs, we used a dropout ratio of 0.1.

Mask on trivial features Magnitude-based pruning[21] is widely used technique
for neural network compression. Weights with small absolute values are considered
to have little impact on overall computations and are therefore excluded by setting
them to 0. Inspired by this, instead of using a Bernoulli mask, we set to O the
dimensions with small absolute values that contribute trivially to computing cosine
similarity of vectors. Similarly, we performed this operation only on the bottom
10% of dimensions.

Mask on significant features In contrast to the above approach, top 10% of
dimensions to 0 based on absolute values.

FGSM (Fast Gradient Sign Method) [20] is a very simple adversarial attack
that computes the sign of the gradient in the direction that maximizes the loss, and
then multiplies it by a very small value and adds it to the input. We added FGSM

noise on encoder output instead of random noise in GNI.

4.1.2 Data augmentation at encoder input embedding

The proposed methods are shown in Figure 7. Some of these methods have been
introduced in various combinations of data augmentation in ConSERT[53]. But
it was paper before SImCSE, there has been no comparison of their effectiveness

when used in conjunction with dropout.

GNI Adding noise to the input as a data augmentation technique is a widely used
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Figure 7: Data augmentation at encoder input embedding

practice in various domains. When obtaining input embeddings from tokenized
sentence, Gaussian noise with a mean of 0 and a standard deviation of 0.001 is
sampled and add to the embeddings.

Gaussian dropout dropout[44] also proposed Gaussian dropout, which multiplies
the input embedding with Gaussian noise. We also introduce Gaussian dropout
in addition to Bernoulli dropout. Gaussian noise with a mean of 1 and a standard
deviation of 0.001 was sampled and multiplied with the input embedding.
Bernoulli dropout 0.1 ratio Bernoulli mask is applied to input embedding
similarly to conventional dropout. This method was proposed in ConSERT[53],
but it was only applied at the input level and dropout was not used across all layers
as SimCSE.

Bernoulli dropout to feature dimension This approach is similar to cut-off
method in ConSERT[53], which drop certain feature dimension. A similar tech-
nique can be found in research on speech recognition. SpecAugment[39]) zeroed

out random frequency dimensions as a form of data augmentation.
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FGSM In ConSERT][53], FGSM method was compared only in the supervised
setting, as it requires labels. However, in the unsupervised setting, it can still be
applied by computing the gradient in the direction that deteriorates the contrastive

loss.

The methods that apply transformations to the input embeddings in addition to
SimCSE, show some improvement in performance compared to manipulating the
encoder outputs. However, considering the significant variability of SImCSE, it is

difficult to claim a significant improvement.

4.2 Stability

During reproducibility experiments, it was discovered that SimCSE itself exhibited
significant instability. The performance varied considerably depending on the ran-
dom seed, to the extent that a substantial portion of the performance improvement
observed in subsequent studies could be attributed to randomness. To address this
issue, techniques to enhance the model’s stability were applied.

During various tests, it was discovered that SimCSE itself can exhibit signifi-
cantly different performance depending on the random seed. Many seeds yielded
lower performance than the reported performance of SimCSE (76.25). When using
different machines or libraries, which inherently use different random seeds, it
becomes difficult to compare subsequent studies.

To address this issue and stabilize the results, commonly used regularization
techniques were introduced to SimCSE. In situations with high variability, these
techniques were expected to stabilize the training dynamics and improve the aver-

age performance.
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Label smoothing One-hot encoding which the target is set to 1 and the rest to 0
can lead to over confident predictions with cross entropy loss. Label smoothing[45]
replace hard target with soft target and transform label distribution uniform. It
prevents the largest logit from becoming excessively large. In this experiment, a
label smoothing parameter is 0.1.

Sharpness-Aware Minimization (SAM) If the loss landscape is sharp, a slight
change in the input can result in a significant change in the output. During the
training of model parameters, Sharpness-Aware Minimization [16] find parameters
that points around the parameters have uniformly low loss. This helps to flatten the
entire loss landscape and can contribute to generalization. 0.05 was used for the
parameter related to the detection range of sharpness.

Adversarial Weight Perturbation (AWP) From the perspective of adversarial
training, a flatter loss landscape for weights also contributes to robust generalization.
Adverserial Weight Perturbation[51] flatten the loss landscape by applying worst-
case perturbations to the weights.

AWP + GNI AWP is combined with adding Gaussian noise injection at input
embedding to transform optimization problem into input-weight perturbation.
AWP + FGSM Instead of simple Gaussian noise, FGSM[20] make worst-case
scenarios for both the input and weight aspects. The direction for optimization at

the worst case is used to update the original weights.

4.3 Additional negative sample generation

While data augmentation was applied to the anchor to generate positive sam-

ples, negative samples were simply obtained from other batch items without any
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Figure 8: Additional negative sample generation

modification. We attempt to introduce better negative samples.

We mainly explored method to model and sample from the distribution of en-
coder outputs for the anchor rather than using actual sentences to avoid increasing
the computation of the encoder. These generated negative samples are used in
conjunction with the in-batch negative pairs, following the same approach as the

original SimCSE as visual representation of Figure 8.

Larger batch The batch size used in SImCSE was 64, which is not very large.
Generally there is a tendency to use larger batch sizes in contrastive learning. To
examine the impact of batch size, the original size 64 is doubled to 128.

Memory bank Large batch size have limitation of computation and memory. The
memory bank is commonly used approach to overcome constraint of resources.
In sentence embedding task, MoCoSe[7] used memory bank technique with mo-
mentum encoder like MoCo[22], but we evaluated memory bank only to show the

impact of representation of the past. Encoder outputs from the previous steps are
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stored in a queue and used as additional negative pairs in the next step. The number
of additional samples from memory bank same as batch size.

GNI to anchor encoder output Similarly to the positive augmentation at the
encoder output experiment, we generated additional negative samples by sampling
Gaussian noise with a mean of 0 and the standard deviation of feature dimensions
across the entire batch. This noise was added to the encoder output of the anchor.
Gaussian noise sampling We calculated the mean and standard deviation from
the anchors within the batch and sampled Gaussian noise accordingly. These
generated negative samples were then used alongside the anchor samples.
Gaussian noise sampling filtered with covariance matrix The aforementioned
method models each feature dimension distribution independently, neglecting the
relationships between features. To incorporate this information, covariance matrix
is calculated from from the anchors in the batch and perform inner product with
sampled noise.

Variational auto-encoder sampling A variational auto-encoder (VAE) [31]
approximates the function that samples the latent space by passing the input
through an encoder. Sampled latents are passed through a decoder to generate data
points similar to the original input distribution. In this approach, we trained a VAE
from the stored encoder outputs from previous 8 steps. This model was used to
yield additional negative sample similar to the anchor’s encoder output.
Gaussian Mixture Model sampling Gaussian Mixture Model (GMM) is a
method of modeling distributions by linearly combining Gaussian distributions.
Similar to the above method, GMM was updated at each step using the encoder
outputs from the previous steps. Then samples from the this GMM are used as

additional negative samples.
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S Experiments

5.1 Training procedure

Like other studies, we utilized the framework provided by SimCSE for our experi-
ments.

Model training employed the transformers library distributed by HuggingFace
[50], and we utilized 1 million wikipedia data shared by subsequent SimCSE
research for training. The model utilized the bert-base-uncased model available in
the transformers library. To ensure a fair comparison, we maintained a learning
rate of 3e-5 and a batch size of 64, without tuning other hyperparameters. During
training, the entire dataset was trained for 1 epoch, and the best model was selected
based on the STS-B[8] development set.

Similar to SImCSE, during training, we employed an additional MLP head on
top of the CLS output, but during testing, this head was removed, and the CLS

output was used directly.

5.2 Evaluation method
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For evaluation, we utilized the SentEval toolkit[13]. Within this toolkit, it is
possible to download data for seven sentence textual similarity (STS) tasks, includ-
ing STS 2012-2017[4, 5, 2, 1, 3], STS Benchmark([8], and SICK-Relatedness[34].

Examples for STS task were shown in Table 1.

B A-B B o AB;
IAIIBI - /son, A2/, B?

. cov(rank(X), rank(Y"))

Orank(X)Orank(Y)

2)

cos ()

3)

These datasets consist of pairs of sentences that have been human-rated for
their similarity on a scale of 0 to 5. Since multiple evaluators provided scores,
the ratings are represented as real-valued scores. For these labels, we used cosine
similarity of Equation 2 and Spearman’s correlation of Equation 3 between the
sentence embeddings generated by the model as evaluation metrics. In Equation 3,
cov denotes for covariance, and rank for the rank of score list.

The final performance evaluation criterion is the average performance across
the 7 tasks. All results are reported based on the average and standard deviation
across five random seeds (19984, 5838, 16822, 19294, 17173). These seeds are

also randomly generated to avoid human biases.
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6 Result

6.1 Data augmentation

6.1.1 Data augmentation at encoder output

The results with augmentation on output embeddings were not good, as shown in
Table 2. The performance of pretrained BERT was very low, at 31.40, so there is
some improvement compared to that. However, the baseline SimCSE performs
around 75, while most of the results fall within the range of 40 to 50.

Pretrained BERT’s sentence embeddings were trained for the next sentence
prediction task. Therefore, two sentences should be given to output the scores range
from O to 1 for meaningful result. Unlike SimCSE’s evaluation method, which
measures cosine similarity between individual sentences separately, pretrained
BERT’s encoding ability was not specifically trained for this purpose. Nevertheless
cosine similarity quickly increases with just a little training. This indicates that the
encoding ability was sufficiently learned during the pretraining process, albeit with
a different representation.

This method is expected to make the output embeddings more noisy. Rather
than the common Gaussian Noise injection, which maps noisy inputs to the same
positions, this approach maps the same inputs to noisy positions. Considering
cosine similarity as the decoder, we believed that these noisy representations
would directly affect the results, making it difficult to achieve effects similar to
intermediate level attack or feature space attack.

As a result, we went back to building upon SimCSE and conducted further

research by incorporating additional data augmentation techniques.
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6.1.2 Data augmentation at encoder input embedding

According to Table 3, there are some experiments that finally show improved
performance compared to the baseline. When GNI and Gaussian dropout were
applied to input embeddings, the performance increased to over 75. However,
Bernoulli dropout, on the other hand, slightly decreased the performance, and ap-
plying dropout along the feature dimension for more meaningful augmentation did
not lead to any significant improvement. Additionally, contrary to the expectation
that continuous data augmentation would have a beneficial effect, performance of
FGSM is similar to the baseline.

Nevertheless, it is challenging to claim that both cases showed significant
performance improvements. This is because SIimCSE itself has high variability,
making improvement fall within one standard deviation range. Moreover, these
methods themselves did not reduce the variation compared to the baseline.

Considering these results, it appears that the input embedding augmentation

techniques with SImCSE do not show significant performance improvements.

6.2 Stabilization
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These experiments aimed not only to improve the average performance but also
to reduce the standard deviation which indicating variability. Furthermore, most
of the methods used in these experiments involved evaluating the update direction
by performing a forward pass before real back propagation step. As a result, they
exhibit much slower learning speed compared to conventional training methods.

In Table 4, the widely used technique SAM showed a significant performance
decline with a score of 73.71 and even did not improve variability. On the other
hand, weight perturbation alone and with FGSM achieved a performance of over
75 and reduced the standard deviation to less than 1.

However, the variability is still too high to consider these techniques significant.
Especially when considering the losses due to the slow learning speed, the benefits

obtained from these methods may be further diminished.

6.3 Additional negative sample generation

The results of additional negative samples are shown in Table 5. The most effective
approach was Gaussian noise generated based on the statistics of anchors within
the batch, combined with in-batch negatives.

Comparing the representations of the previous and current steps, it can be
observed that the cosine similarity between the anchor and each representations
are almost same scale. This suggests that the encoder changes very small during
training, and the past encoder outputs stored in the memory bank are similar to the
current in-batch negatives.

It is noteworthy that simple noise yields a greater improvement in performance
compared to larger batches or past encoder outputs, which is the actual sentence

embeddings summarizing meaningful sentences.
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DCLR[56] proposed a method of applying FGSM[20] to Gaussian noise and
using it as an additional negative sample. However, since they did not report the
average value, it is difficult to determine if it resulted in a significant improvement.
Based on the results of this study, it is presumed that the scale could be a much

more critical factor.
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7 Discussion

7.1 Data augmentation

Attempts to perform data augmentation on the encoder output generally did not
yield good performance. These methods make the representation noisy. When per-
turbations are applied at intermediate layers, such as in intermediate-level attacks,
the subsequent layers can handle noisy representation like this. Different view of
the same instances can be mapped to similar positions in the final embedding space.
However, there are no layers after the encoder output in SimCSE. Noise directly
affects the scores, so cosine similarity as a decoder is not invariant. Therefore,
experiments on the encoder output showed lower performance.

On the other hand, methods that applied data augmentation to the input em-
bedding showed slight performance improvements. Gaussian noise injection or
Gaussian dropout demonstrated increased performance compared to the baseline.
However the magnitude of improvement was relatively small and it is difficult
to claim significant performance enhancement considering the high variability of
SimCSE. Augmenting only the input embedding has a limited effect because there
are many layers following it in the network. However, the dropout used in SimCSE
is distributed throughout the entire network, not just at the beginning of layers.
Therefore, we can conclude that the input embedding augmentation is a relatively
small change and may have limited effectiveness.

Furthermore, the original BERT’s dropout is applied after the summation
of input embeddings, position embeddings, and token type embeddings. This

duplicated dropout may have reduced effectiveness. The case of FGSM could
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Figure 9: Cosine similarity during SimCSE training

also be attributed to the trade-off between adversarial robustness and original

performance in adversarial training.

7.2 Stability

The weight perturbation alone, and the weight perturbation combinated with FGSM
show a slight performance improvement. However, this improvement is also small
in magnitude, and the variability did not improve significantly as expected. This
issue can be attributed to the charicteristic training dynamics of SimCSE.

Figure 9 depicts the cosine similarity of positive pairs and negative pairs during
the training of SimCSE. The positive pairs already exceed 0.9 in the early stages of
training, while the negative pairs approach 0. In other words, the loss composed of
cosine similarity already approaches O from the beginning of training. The gradients
hardly descend and weight parameters are barely updated. This phenomenon is
referred to as gradient dissipation in [37].

The stabilization techniques tested in this study include an additional term in

optimization that evaluates the direction of update with preliminary forward path.
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Since learning occurs only in very few initial steps, stabilization techniques that
continuously influence throughout the training process may not function properly.

Instead, it is possible that data order has a greater impact considering the
fluctuations in the similarity of negative pairs observed in Figure 9. The similarity
increases if there are coincidentally similar sentences within a batch as in-batch
negatives. Since a shared framework is used, it is difficult to separate the effects of
data order and augmentation, as the data loader and dropout mask utilize the same
random number generator. In future research, it will be possible to fix one side and

compare the influence of the other side separately.

7.3 Additional negative sample generation

GMM sampling and Gaussian noise sampling showed performance improvement
in additional negative sample generation. GMM sampling had a slower learning
speed, but the improvement in performance was not substantial. On the other
hand, Gaussian noise sampling was more noteworthy because it exhibited a perfor-
mance improvement of more than 1 standard deviation of SImCSE. It reached a
performance level close to when doubling the batch size to 128 or using a memory
bank. Gaussian noise sampling achieved comparable improvements with simple
noise injection whereas memory bank utilize encoder outputs of actual meaningful
sentences.

When negative pairs are pushed away from the anchor, the direction can become
erratic if the batch size is small. Random noise mitigates this scattering effect to
yield improved performance. We conducted additional experiments by increasing
the number of additional negative samples more than batch size. It can be observed

that the performance improves linearly as the sample count increases in Figure 10.
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Figure 10: The impact of number of generated negatives

SimCSE(baseline) Gaussian noise sampling
Seed Alignment  Uniformity =~ STSBtest  Alignment  Uniformity = STSB test
19984 0.48 -2.47 77.04 0.46 -2.35 71.75
5838 0.47 -2.42 76.47 0.49 -2.53 77.74
16822 0.48 -2.44 75.27 0.45 -2.42 77.88
19294 0.45 -2.38 73.85 0.41 -2.11 77.78
17173 0.51 -2.56 77.46 0.47 -2.40 78.43
Mean 0.48 -245 76.02 0.46 -2.36 77.92
Std. 0.02 0.07 1.47 0.03 0.16 0.29

Table 6: Alignment and uniformity
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Furthermore, SImCSE and subsequent studies explain the performance im-
provement within the contrastive learning framework by enhanced alignment and
uniformity. Alignment indicates how closely positive pairs are positioned to each
other, while uniformity reflects how uniformly they are distributed on the unit
hypersphere, in relation to negative pairs. We compared the results of five random
seeds for the STSB test, and as shown in Table 6, we can observe that in most
cases, alignment and uniformity both have improved.

Recently, DCLR [56] proposed converting random noise into additional nega-
tive samples through FGSM. However, since reported results is only from a single
random seed, it is difficult to make direct comparisons. Also, the performance
improvement in [56] is around 1% point, similar to our research. The noise sampled
from a mean of 0 and standard deviation of 1 and FGSM enhanced negative sample

are compared, and latter achieved better performance improvement in [56].
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However, it appears that scale is more crucial. In Table 7, we compared
significantly different values, such as 0 and 1, instead of the mean or standard
deviation of the encoder outputs within a batch. The performance improvement
becomes minimal when scale is differed.

As a follow-up study, hard negative mining can be introduced by incorporating
a hardness measure. Hard negative samples, which are similar to the anchor but
noticeably different, provides more informative training signal, whereas an easy
negative pairs have little impact. Hardness measure can explain the performance
improvement effect of generated negative samples. Also, selective hard negative

samples from large generated pool are expected to further enhance performance.

7.4 Performance comparison with other pretrained model

Additionally, we verified whether the Sampling from Normal Distribution, which
had the most significant performance improvement, had similar effects on other
pretrained models with SImCSE. The results are summarized in Table 8.

For BERT large, a similar trend to BERT base was observed. But in case
of RoBERTa, proposed method actually hindered performance. In particular,
with RoBERTa large, we even observed cases where performance completely
deteriorated depending on the seed. However, when comparing SimCSE alone,
there was not a significant performance gap between BERT and RoBERTa. This
suggests that SImCSE may be a more specialized algorithm for BERT, and it could
be challenging to apply the techniques that improve SimCSE’s performance to
RoBERTa without any modification. Unlike BERT, RoBERTa does not have a
specific task focused on the CLS token during the pretraining stage, and this could

be a factor that lead to difference in result.
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8 Conclusion

Sentence embedding summarizes a sentence of variable length sequence consist-
ing of discrete tokens into fixed size vectors. Pretrained BERT has to be found
to struggle in generating effective sentence embeddings, despite the significant
impact in the field of natural language processing. Various methods have been
proposed to enhance performance of BERT sentence embedding, including studies
utilizing unsupervised learning with the contrastive learning framework. Espe-
cially, SImCSE shows significant performance improvements with simple dropout
augmentation and led many follow up studies. We first provided an overview of
the key researches in the field of sentence embeddings in this study.

Next, we conducted several experiments that could be categorized into three ar-
eas to enhance the performance of SImCSE. First of all, various data augmentation
methods were compared to yield positive samples in addition to dropout. Secondly,
stabilization techniques were introduced to reduce excessive variability caused by
randomness during training. At last, we generated additional negative samples to
aid training instead of solely using other sentences within the batch as negative
samples.

The main findings can be summarized as follows: Data augmentation at the
output representation was counterproductive, because the cosine similarity used in
SimCSE is not invariant to the transformation. Applying data augmentation to the
input embedding also had limited improvement due to minor changes compared to
dropout in SImCSE. Stability techniques did not significantly improve variability,
because their update are mainly constrained in the early stages of SimCSE training.

Finally, the additional negative samples showed significant improvement effects.
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Among the specific experimental ideas, we confirmed that Gaussian noise
injection in input embeddings, a combination of FGSM and weight perturbation,
and additional negative samples generated by Gaussian noise sampling with the
mean and standard deviation of anchor samples within the batch, can improve the
performance of SimCSE.

Particularly, the last method which sampling Gaussian noise showed compara-
ble performance to the widely used memory bank technique. It is more important
that simple noise has a performance improvement effect similar to meaningful
sentences embeddings without increasing computational complexity. Consistent
enhancements in alignment and uniformity were also observed across various ran-
dom seeds. This can be attributed to the small batch size which tends to scatter the
negative samples while modifying pretrained BERT’s sentence embeddings with
contrastive learning. The noise added as negative sample can alleviate degradation.
The fact that generated negatives should be similar in scale with the actual sentence
embeddings supports our hypothesis and explains the performance improvement
effect.

The limitation of proposed method is that this is specifically designed for
application when pretraining BERT into SimCSE. Therefore it may not generalize
to improving sentence embeddings of other pretrained models such as ROBERTa.
As an future research topic, hardness measure in hard negative sampling could
explain how generated samples can be beneficial during training. Also, there can
be further performance improvement by generating pool with a large number of

additional negative samples and selecting only informative ones.
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