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Abstract 

 
 The contrastive sentence embeddings apply contrastive learning 

framework to the sentence embedding field, which summarize 

natural language into fixed-size vectors. The most influential study 

in this field is SimCSE. It achieved significant performance 

improvements by simply using dropout and has subsequently 

inspired numerous follow-up studies. 

 In this thesis, we summarize the key existing studies in the field of 

sentence embedding leading up to SimCSE and investigate several 

methods to enhance SimCSE from three main perspectives. We 

experiment with different data augmentation techniques to generate 

positive pairs, apply stabilization techniques to reduce variability of 

SimCSE, and aim to increase performance by generating additional 

negative samples in addition to in-batch negatives. 

 As the result, we found that Gaussian noise injection to the input 

embedding, weight perturbation alone, FGSM(fast gradient sign 

method) combined weight perturbation, and Gaussian noise 

sampling as additional negative samples, can improve the 

performance of SimCSE. Data augmentations on encoder output 

turned out to be not helpful in our experiments and the gain of 

augmentation on input embedding and stabilization techniques also 

turned out to be not so significant. Gaussian noise sampling for 

negative sample generation, however, demonstrated that simple 

noise can enhance performance comparable to more actual 

sentences without increasing computational complexity. 

 

Keywords: Sentence embedding, Constrastive learning, SimCSE 

Student Number : 2021-25413 
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요약(국문 초록) 

 
 대조적 문장 임베딩(Contrastive sentence embeddings)은 자연어를 

고정된 크기의 벡터로 요약하는 문장 임베딩 분야에 자기 

지도학습(Self-Supervised Learning)의 대표적 학습방법인 대조적 

학습(Contrastive Learning)을 적용한 것이다. 이 분야에서 가장 

영향력 있는 연구로 SimCSE를 들 수 있다. 해당 연구는 단순한 

dropout 기법만을 사용하고도 상당한 성능 개선을 이루어 냈기 때문에 

수많은 후속 연구들을 이끌었다. 

이 연구를 통해, 우리는 이 분야에서 SimCSE에 이르기까지 주요한 

기존 연구들을 개괄하고 3가지 관점에서 SimCSE의 성능을 개선하기 

위한 여러 실험들을 진행하였다. positive pair를 만들기 위해 여러 

데이터 증강(data augmentation) 기법들을 적용했고, 변동성을 

감소시키기 위해 안정화 기법들을 도입했으며, 배치 내의 다른 문장들을 

negative sample로 사용하는 것 외에도 추가적인 negative sample을 

생성하여 함께 사용하였다. 

결과적으로, 우리는 입력 임베딩 단에 가우시안 노이즈를 주입하는 

데이터 증강 방법, FGSM(fast gradient sign method)와 Weight 

perturbation기법을 조합한 안정화 방법, 그리고 다른 배치 내 문장들과 

유사한 스케일의 가우시안 노이즈를 추가적인 negative sample로 

사용했을 때 성능 향상 효과가 있음을 발견하였다. 인코더 출력에 대한 

데이터 증강은 그다지 도움이 되지 않는 것으로 나타났으며, 입력 

임베딩 증강이나 안정화 기법들은 대체로 영향이 크지 않았다. 반면 

추가적인 negative sample 생성에서는 연산 복잡도 증가 없이 단순한 

노이즈만으로도 실제 자연어 문장을 추가로 negative sample로 사용할 

때만큼 성능 개선 효과가 큰 것을 보였다. 

 

주요어: 문장 임베딩, 대조적 학습, SimCSE 

학번: 2021-25412 
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1 Introduction

Sentence embedding is a fundamental task which organize natural language sen-

tence as variable-length sequences composed of discrete tokens into fixed-size

vectors. Various aspects of the natural language sentences, such as lexical, syntactic

structure, and semantics, are summarized to representation in the embedding space

that can be handled by neural networks. Since most neural networks utilize fixed-

size inputs and outputs, sentence embedding is the first step of natural language

processing with neural networks. Even in architectures that handle variable-length

inputs, it can be divided into two parts: the encoder for sentence embedding and a

simple multi-layer perceptron or linear layer part for particular task.

However, despite this significance, universal sentence embeddings remains

extremely challenging study. The vocabulary varies greatly depending on the

corpus and the domain. Sentence embeddings trained on a specific domain perform

poorly in other domains. Moreover, annotating natural language sentences is also

a difficult task. While anyone can read natural language sentences, there is no

consistent and universally agreed-upon criterion for labeling. Consequently, many

datasets are relatively small in size and very noisy.

As a result, there have been numerous attempts to learn universal sentence

embeddings through unsupervised learning without the need for labels. BERT[29]

significantly improved encoding performance solely through mask reconstruction

pretraining on large corpora. However, using only next sentence prediction pretrain-

ing for sentence embedding did not outperform the performance of traditional word

embeddings and mostly summarized sentences into similar vectors, which shown

in Figure 1. Because entire pretraining process is too laborious task, many efforts
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Figure 1: Cosine Similarity of BERT embeddings compared to golden score

reported at [53]

have focused on extending BERT[29] with additional pretraining specifically to

enhance sentence embedding performance.

Particularly, inspired by the success of the contrastive learning framework in

the computer vision domain, similar approaches have been attempted to improve

BERT[29]. However, unlike images where the entire content remains invariant with

slight continuous changes, natural language is composed of segmented tokens. Data

augmentation directly modifying tokens are less effective due to overly significant

changes that can be recognized by human. In contrast, continuous data augmen-

tation at the embedding level yielded better results. Notably, SimCSE[18] which

employing the default dropout from BERT[29] as data augmentation, demonstrated

a substantial performance improvement. Figure 2 from [18] show the simplicity of

implementation. Also its provision of a consistent criterion and frameworks led to

many subsequent studies.
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Figure 2: Unsupervised SimCSE[18]

In this study, we provided an overview of various research efforts in the field

of sentence embeddings. We summarized key methodologies that have had a

significant impact on the sentence embedding research, ranging from early word

embedding studies to BERT[29] and SimCSE[18]. Furthermore, we presented

a report on a comparison of diverse experimental ideas to explore potential im-

provements in SimCSE[18]. Our primary focus was divided into three aspects:

data augmentation methods to create positive pairs, techniques to generate better

negative samples, and approaches to reduce randomness in training.

Throughout this investigation, we discovered the following observations. Data

augmentation to the output representation hindered the learning of sentence em-

beddings, while augmentation in the input embedding had limited improvement

effects. Additionally, stability techniques had minimal impact due to SimCSE[18]’s

training dynamics. However, it was found that additional negative samples using

Gaussian noise with similar scales led to performance improvement and a reduction

in variability.

3



2 Background

2.1 Sentence Embedding

Sentence embedding is fixed size vector, which summarized variable length natural

language sentence. It can be used for various NLP tasks like sentence classification

or information retrieval, as input of machine learning algorithm. Recently, in the

view of transfer learning, sentence embedding is considered as good initialization

point for fine-tuning.

For theses purpose, semantics, grammatical structure, and lexical information

should be comprehensively encoded into certain size of vector. Recurrent Neural

Network (RNN) and Self Attention Network (SAN) are generally used as encoder

due to their ability of processing variable length input. Unsupervised learning

framework, which can update model without label, are used to make universal

embedding, but there are several studies for supervised sentence embedding using

labels from more general downstream tasks.

Sentences are not only time-series data that can vary in length and contain order

information, but also have hierarchical structure and made of discrete character.

Extracting information from this complicate data for well-organized representation

is very interesting work. But there are several difficulties in collecting sentence

data. Annotation cost for sentence is usually higher than image. Also, it is difficult

to obtain qualified data because all annotators have own criteria to meaning of

sentence. A wide variety of labeling is possible according to task definition, but

there is no concrete consensus for universal downstream task that can evaluate

quality of learning sentence embedding.

4



2.1.1 Word2vec

In addition to traditional statistical methods such as TF-IDF, learning-based meth-

ods have been widely used. These methods learn embeddings, which are fixed-sized

vectors, for predefined tokens in a given dictionary. Word2vec[35] presents two

approaches: Continuous Bag of Words (CBOW) and skip-gram. CBOW learns

the embedding of a token by averaging the embeddings of the tokens appearing

within a certain window around it. On the other hand, skip-gram predicts the tokens

appearing within a fixed window around a given token. These methods are based on

co-occurrence, assuming that words with similar meanings will frequently appear

in close proximity in sentences and should be represented in similar positions in

the embedding space. Using this characteristic, the paper demonstrates the validity

of analogy tasks like "king-man+woman=queen" proposed in [36]. This implies

that the learned embedding space can sufficiently represent semantics.

However, this method has the drawback of indirectly modeling co-occurrences

outside the window to optimize computational efficiency. Furthermore, the embed-

dings generated by this method only represent the meaning of the word itself, so to

summarize a sentence, a method of averaging the embeddings of the tokens that

make up the sentence must be used. This approach results in static embeddings

that do not reflect the context well and tend to be biased towards dominant words.

2.1.2 Glove

The success of word2vec demonstrates its ability to capture semantics effectively.

However, it still has the drawback that co-occurrences outside the window need

to be learned through other words that appeared together. Among the methods

that reflect global co-occurrence, classical Latent Semantic Analysis (LSA) creates
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embeddings by reducing the dimensionality of a frequency matrix where words ap-

pear in specific documents using Singular Value Decomposition (SVD). Although

LSA can reflect overall statistics, it is considered less capable of learning the vector

space well for analogy tasks, which is a strength of word2vec.

GloVe[40], on the other hand, aims to combine the advantages of LSA and

word2vec by training embeddings in such a way that the dot product between

embeddings represents the probability of two words co-occurring in the same

document. However, this method still produces word-level embeddings, so there is

a need to aggregate the embeddings of all the words that make up a sentence.

2.1.3 Sent2vec

To learn embeddings at the sentence level rather than just at the word level, an

extension of word2vec called sent2vec[38] has been proposed. Sent2vec goes

beyond the fixed window of CBOW and learns token embeddings for the entire

sentence, making the window dynamic.

Furthermore, using not only unigrams but also n-grams has also contributed to

performance improvement. Although, like word2vec, the embeddings that make

up the sentence are averaged, the authors argue for the importance of the dynamic

window. Instead of always averaging with equal weights in a fixed local window,

they average the embeddings at the sentence level. Even though fewer weights are

allocated, the learning process can assign appropriate weights as it considers the

entire sentence.
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2.1.4 Infersent

Infersent[14] uses an SNLI(Stanford Natural Language Inference) dataset[6],

which consists of pairs of sentences classified into three categories: entailment, neu-

tral, and contradiction, to train sentence embeddings. This dataset is well-curated

and has been widely used in subsequent studies that train supervised sentence

embeddings.

Originally, this dataset was used for the Recognizing Textual Entailment (RTE)

task, which involves classifying the three relationships. However, the authors

believed that through these relationships, they could train a general sentence

encoder. To accomplish this, they compared various architectures such as RNN-

based networks like LSTM, GRU, and BLSTM, as well as self-attention and

CNN as encoders. They also compared different combination methods such as

subtracting or multiplying the two sentence embedding vectors and concatenation.

2.2 Transformer architecture

2.2.1 Self-attention mechanism

Recently, self-attention is widely used in the field of image as well as natural

language. But it is initially invented for encoder-decoder structure that encode

source language into fixed-size context vector and decode to target language. In

this time, RNN is used to encoder and decoder, which has strong dependency

at sequential order. This property led to degradation at long sentence, because

model forget the front part of sequence. self-attention is introduced to alleviate this

burden. It can assign more weight to more important feature for entire context.

Self-attention also has a lot of variations, but we described dot-product attention

7



Figure 3: Attention mechanism from [46]

which most widely used. It is similar with hash table that retrieve value by query-

key matching. The difference with hashing algorithm is that it return query-key

similarity based weight instead of exact match. This probability can be interpreted

as how much attention should be applied to certain part of sequence by neural

network itself, and this is why it called self attention. Layer input is linearly

transformed to yield query, key and value vectors. The similarity of query and key

is calculated by dot-product. For this reason, name of this attention algorithm is

dot product attention.

Softmax normalize dot-product based similarity so that the sum equals 1, and

it represent probability that indicate how important each unit of sequence. Value

vectors are summed up according to this attention weight.

In case of multi-head attention (MHA), several dot-product attention modules

are used to deal with various feature for problem solving. Each result from modules

are concatenated and transferred by linear transform to yield final output of MHA.

Figure 3 show diagram for scaled dot-product attention and multi-head attention.
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Figure 4: NSP and mask LM task for BERT[29]

2.2.2 Transformer layer

Transformer[46] layer is consist of self attention layer and position-wise feedfor-

ward network (FFN) layer. Each sub layer are wrapped by layer normalization

and skip-connection. Several transformer layers are stacked to form body of trans-

former network. Input of entire network is embedding from loop-up table that

each element represents token which means unit of split sequence. On the other

hands, output of neural network is passed to mult-layer perceptron (MLP) for

classification.

This structure can used as encoder that transfer input sentence to latent vector

and decoder that interprets latent vector back to natural language. BERT[29] is

encoder, and well-known example of decoder is GPT[41].
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2.2.3 BERT

BERT[29] pretraining is comprised of masked language model (MLM) task and

next sentence prediction (NSP) task, as shown in Figure 4.

In case of MLM tasks, random token of input sentence is replaced with spe-

cial mask token then classifier reconstruct original token. Model should gather

information from context to decide which token is appropriate for masked position,

and self-attention mechanism is suitable for MLM. This pretraining task gain great

success at NLP. Discrete nature of language is well fit with mask reconstruction,

and unsupervised setting allow usage of a lot of unlabeled text.

On the other side, next sentence prediction is focused to relationship between

sentences. Two sentences are concatenated with special separation token, and

another special CLS token is placed in front of entire sequence. Model should

decide whether concatenated sentences are actual adjacent or randomly paired.

Binary classification is applied at position of CLS token of model output. It is

assumed that model should understand semantics of each sentence, and CLS output

is regarded as general sentence embedding.

2.2.4 Transformer based sentence embedding

However, it is not certain whether the NSP (Next Sentence Prediction) task is suit-

able for creating sentence embeddings, and in the case of models like RoBERTa[33],

the task of training the CLS token during pretraining has been completely removed.

For the NSP task, two sentences need to be concatenated as input, while sentence

embeddings should summarize only one sentence. Additionally, there have been

claims that using the CLS output of BERT as-is results in excessively high similar-

ity compared to human evaluations, and it is common for performance to degrade
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in downstream tasks when using a pretrained model while keeping it frozen. As

a result, for sentence embeddings, fine-tuning is required, which again poses the

problem of needing expensive labels.

Sentence-BERT[43] was developed by finetuning a pretrained BERT model

as a sentence encoder. Similar to InferSent[14], it uses SNLI datasets[6] and the

same architecture. To summarize the BERT output, they compared using CLS

and mean pooling, and also compared different objectives such as predicting the

cosine similarity of positive and negative pairs directly as a regression objective or

using a triplet objective function. Notably, averaging the entire output of the last

layer of BERT was more effective than using just the CLS output, and similar to

InferSent, they concatenated the summarized vector along with its difference and

element-wise multiplication. This indicates that the CLS output of BERT is still

not sufficient as a sentence embedding.

The Universal Sentence Encoder[9] used multi-task learning with three tasks

to train the Transformer architecture. In addition to the NLI training objective

mentioned earlier, they added a task of predicting matching pairs of inputs and

responses using a dataset collected for Gmail’s Smart Reply service[23]. They also

introduced the skip-thought[32] task, which involves decoding embeddings that

summarize the current sentence from a corpus consisting of consecutive paragraphs

and predicting the preceding and succeeding sentences.

2.3 Contrastive learning

The contrastive learning framework emerged as a crucial technique in recent

unsupervised learning, and achieved significant success in the field of computer

vision. The fundamental idea is that when augmentation is applied to an anchor, it

11



should still be perceived as the same object with different view. The agreement

between transformed positive samples and anchor should be maximized. After

passing through the encoder, ideally two representation should be mapped close

location in the latent space. Examples of such invariant transformations can be

seen in techniques like random cropping, color jittering and Gaussian blur used in

Simclr[10].

li = −log
expsim(zi,z

′
i)/τ)∑N

j=1 exp
sim(zi,z′j)/τ)

(1)

In Equation 1, the numerator encourages positive pairs to be closer, while the

denominator pushes negative pairs further apart. In practice, it is not feasible

to perform this calculation for every sample in the dataset due to computational

limitations. Instead, a random negative sampling approach is used, where only a

subset is sampled to be pushed further away. Also it is convenient to consider other

items within the batch as randomly extracted negative samples, which are referred

to as in-batch negatives.
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3 Related work

3.1 Discrete contrastive sentence embedding

Like pioneers in CV, these researches mainly focused to augmentation of original

sentence to produce different views. However, discrete nature of language prevents

effective augmentation. Image is consists of continuous float value and have

high correlation only between adjacent pixels. On the other side, simple token

replacement can lead to unnatural incorrect sentences or very different meaning like

’not’ of negative statements. For this reason, discrete data augmentation achieved

relatively poor result.

3.1.1 Back translation

Back translation is most widely used data augmentation method in NLP. With two

different translation model, original sentence is translated from source language

to target language, than translated back to source language. It is assumed that

semantic maintained same not only between two different languages, but also

paraphrase that result of back translation. CERT[15] augment original English

sentence to two paraphrase with German and Chinese translation model. Model

architecture is same with MoCo[22], which use momentum encoder and negative

sample queue.

The performance improvement is not that great because paraphrase should not

be mapped into exact same position in embedding space. Although semantic is

the most important factor for sentence embedding, there are still other information

should be encoded like lexicon. Also, this method highly depends on quality

13



of translation model. However, quality of paraphrase from back translation is

not always good, so it may be not safe for automatic data augmentation without

cleansing and refinement by human annotator.

3.1.2 Span in paragraph

It can be assumed that sentences in continuous text share the same context. Based

on this assumption, DeCLUTR[19] expand single sentence to span. Anchor which

indicates original view and positive span are sample from same paragraph. This

pair can overlap, have no intersection, or be inclusive, but length of anchor is

longer than positive span. This consists positive pair for contrastive framework,

and positive span of other anchor become negative pair. BERT output of each span

is averaged to yield same size embedding vector.

Although all training data are unlabeled, order preserved corpus is hard to gather

then data consisting of randomly collected sentences without such constraints. Also,

the context of the entire paragraph is not necessarily need to encode sentence.

3.1.3 Word replacement

BERT is not robust to certain adversarial samples. For example, single adverb

like ’lastly’ or ’satisfying’ can reverse meaning of original sentence. CLINE[47]

introduce semantic negative example for contrastive learning. Rule-based algorithm

replace representative word of sentence. If replaced word is synonym, entire

augmented sample is for positive pair. On contrast, sentence replaced by antonym

become negative pair.

This study mainly focused on transfer learning rather than sentence similarity.

Also, word replacement highly depends on heuristics.
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3.1.4 Combination of discrete data augmentations

Like SimClr[10], ConSERT[53] tried to find maximum performance by combining

various types of discrete data augmentation techniques. In addition, these trans-

formations are applied at input embedding instead of natural language sentence as

previous studies.

4 augmentations are tested: Token shuffle is reordering vocabulary by mixing

position embedding order. Cutoff is removing one dimension at token axis or

feature axis, while dropout randomly delete cell of embedding without considering

the axis. Finally, adversarial attack adopts fast gradient value for supervised

learning scenario. Each technique is complementary. According to this research,

combination of token shuffling and feature cutoff performed best.

The difference from SimCSE, which will be described later, is that all augmen-

tations are applied at only input embedding, not intermediate representations. But

it is worth that location where the augmentation is applied is starting to deviate

from raw input sentence. All models can observe is limited to discrete sequence of

embedding. Even a small change to the human eye can make a big difference in

the model input. it can be additional burden for the model to learn which change is

meaningful.

3.2 Continuous contrastive sentence embedding

3.2.1 Summarization of local feature with 1D CNN

N gram means N subsequent words in sliding window. In classic NLP studies,

A set of N gram that increase in window size by 1 used to capture local pattern

frequently occurring. IS-BERT[54] utilize 1D convolution neural network (CNN)
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as N gram, and CNN filter size represent N. BERT output passed by 1D CNN

filter as localized representation and CLS output as global representation constitute

positive pair. localized features from other sentences used as negative sample.

When this study was conducted, there are still explanation of contrastive learn-

ing based on mutual information. So researchers also mentioned MI in paper, but

no clear connection was suggested. However, it is an earlier approach that apply

contrastive learning at latent space instead of raw input.

3.2.2 Output of the other layer

BERT is known to handle different aspects of a sentence based on its layers, where

the vocabulary is processed in the lower layers, grammar in the middle layers, and

semantics in the final layers[27]. As a result, depending on the task, it is sometimes

common to concatenate not only the output of the last layer but also the output of

the first layer of BERT and use them together.

SG-OPT[30] made use of this and assumed that the intermediate outputs of

each layer are also different views. They used two BERT models, one of which

used the CLS output to create sentence embeddings. The other encoder was kept

frozen, and the outputs of the 12 layers were randomly sampled, pooled to create a

fixed-size vector. These two vectors formed the positive pair, while the negative

pair used the CLS output or pooled intermediate output from another sentence in

the batch.

The drawback of this approach is that although mean pooling is commonly

used, it is difficult to argue that it is appropriate to make it exactly the same as the

CLS output. Furthermore, while there may be different perspectives of information

in the intermediate layers, they are merely partial perspectives, and trying to make
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them converge completely to the final output after passing through all layers can

be problematic.

3.2.3 Different batch

To address the problem of outputs from BERT being excessively similar for any

pair of sentences, it is necessary for the embeddings of different sentences to be

sufficiently distant from each other. However, simply pushing them apart can cause

the embeddings to lose their semantic coherence and scatter in the embedding

space. This is why an anchor point is needed, which serves as a point where the

embeddings can become closer while still moving away from each other.

CT-BERT[26] initializes two separate encoders with the same weights initially,

but they gradually diverge due to the different batches they receive. One encoder

only encodes the sentences designated as positive pairs, while the other encoder

takes in all the in-batch negative samples and the positive pair sentences together.

For these pairs, the loss is structured to increase the dot product for positive pairs

and decrease it for negative pairs. Since the embeddings of positive pairs should be

identical, tension is created to not only push them apart but also maintain proximity,

enabling them to function as soft anchors for each other.

The major challenge is the need for twice the memory resources due to using

two encoders. Furthermore, concentrating the negative samples in only one encoder

to forcefully create separation in the model is not efficient.

3.2.4 Dropout based augmentation

Among various data augmentation attempts, SimCSE[18] utilized dropout[44],

which was commonly used during pretraining BERT, to create positive pairs.
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Figure 5: Redrawn concept of SimCSE

Dropout in BERT is applied to input embeddings, the output layer of self-attention,

and skip connections. When different dropout masks with a default ratio of 0.1

are applied, the final outputs show cosine similarities of approximately 0.9 to 0.95.

In the supervised setting, SimCSE also used NLI task, commonly used in other

sentence embedding studies, considering entailment as positive pairs and neutral

and contradiction as negative pairs.

With this simple data augmentation, significant performance improvement was

observed, and SimCSE became easy to apply, leading to numerous subsequent

studies aiming to enhance it. Furthermore, prior to this, the training procedures

and evaluation methods varied across studies, but SimCSE provided a framework

for both training and evaluation, enabling researchers to compare their work under

the same protocol.
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SimCSE attributed its success to maintaining alignment with dropout noise

while improving uniformity in in-batch negative pairs[49]. However, subsequent

research has shown inconsistent results in this regard, and some argue that the

performance drop observed when directly using alignment and uniformity as loss

cannot be solely explained by this perspective[37].

We redraw concept of the SimCSE in figure 5 again for easy comparison with

our proposition.

3.3 Follow-up studies of SimCSE

3.3.1 Wrapping with prompt

In the pretraining phase, the mask token serves a distinct role from other input

tokens as it guides the model to focus on reconstructing the original values at

its corresponding positions. This concentration of information from the masked

positions enables the model, through a simple MLP head, to classify the original

words. From this perspective, it can be inferred that sufficient information for

summarizing the sentence accumulates at the masked locations.

At PromptBERT[28], the prompt is introduced in the sentence embedding task

as a replacement for the mask language model task. When denoting the original

sentence as X, prompts such as "[X] means [mask]" are used. To find the optimal

prompt, various methods were compared. This included comparing hand-crafted

templates in a greedy manner, selecting the sentence with the highest probability

when using T5 model[42] to replace the mask[17], and even exploring the ap-

proach of learning continuous vectors instead of actual tokens[55], concatenating

them with the original sentence’s embeddings for prompt usage. Among these
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methods, combining hand-crafted prompts and continuous prompts yielded the

best performance.

The focus on the mask token instead of the CLS token, considering the criticism

of NSP’s inadequacy for sentence embedding, is intriguing. However, it should

be noted that prompt search requires additional time and separate model training,

which can be considered as drawbacks.

3.3.2 Negation as soft negative sample

The anchor sentences were transformed into negated sentences using rule-based

discrete transformations. By using the spacy tool[24] to separate and analyze

dependency syntax trees, it was possible to reverse the meaning of the sentences

without grammatical errors. Additionally, the technique of PromptBERT[28] was

adopted, using the representation of the mask token’s position instead of the CLS

token.

Furthermore, the negated sentences created in this way were used with bidirec-

tional margin loss (BML), unlike regular negative samples. In SNCSE[48], these

soft negative samples should be kept at a certain margin of closeness compared

to the cosine similarity between the anchor and positive samples. This is done to

express sentences that are almost similar to the original text but have significantly

different meanings.

Similar to PromptBERT[28], there is a heavy dependence on prompt engineer-

ing. Additionally, a drawback of the proposed BML is that tuning is required for

the margin between the anchor and soft negative samples.
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3.3.3 Replaced token detection

Among various pretraining methods, the most widely known approach is the mask

language model (MLM) task, where a portion of the original sentence is replaced

with mask tokens and fed into the encoder. The task involves reconstructing

the masked values. However, besides this method, other pretraining approaches

have been proposed, and this paper draws inspiration from one of them, namely

ELECTRA[12].

ELECTRA employs a replacement token detection task instead of mask recon-

struction. It involves using a separate BERT model to restore the masked sentence

and then performing binary classification to determine whether the tokens at the

respective positions are unchanged or replaced. However, there was a problem

with ELECTRA when the BERT model used for sentence restoration performed

too well. In such cases, it became challenging to detect the fact that the tokens

were replaced since the restoration appeared highly convincing.

In DiffCSE[11], when performing replacement detection, the authors intro-

duced the use of SimCSE to provide summarized sentence embeddings as refer-

ences. Conditioned ELECTRA then detects whether the original sentence has been

modified based on the provided sentence embeddings.

The formulation of finding differences between the original and edited sen-

tences is a good idea. However, the addition of a generator and discriminator makes

the architecture more complex.
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4 Methods

While studying related works, there are three major areas for improvement in

SimCSE. We conducted studies to improve performance at each of these perspec-

tives: Data augmentation for positive pair, stability, and additional negative sample

generation.

4.1 Data augmentation

Compared to computer vision tasks, SimCSE lacks diverse data augmentation

methods for generating positive samples. While various data augmentation tech-

niques are commonly used in image-related tasks, SimCSE relies on the simplest

form of dropout.

It was believed that token-level discrete augmentation, which is generally

understandable to humans, would bring about too drastic changes and may not be

suitable for generating positive samples. Instead, continuous data augmentation

was considered to be effective.

4.1.1 Data augmentation at encoder output

Before SimCSE, there have been reports of the effectiveness of adversarial attacks

as a form of data augmentation. Adversarial training typically involves gradient

descent up to the input level. However, while exploring relevant studies, we drew

inspiration from intermediate level attacks[25] that apply adversarial perturbations

only up to intermediate layers, as well as feature space attacks[52] that target the

latent representations of auto-encoders.
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Figure 6: Data augmentation at encoder output

The positive pairs of SimCSE are created by passing the same sentence through

the encoder twice, with different dropout masks applied to each pass. However,

in this study, the goal was to manipulate the representation obtained by passing

a single sentence through the encoder to create embeddings that can be used as

positive pairs as illustrated in Figure 6. The goal was performance improvement

without increasing the computational load on the encoder.

GNI (Gaussian Noise Injection) For each dimension of the feature representation

obtained by passing the sentences within a batch through the encoder, we calculated

the standard deviation. We sampled Gaussian noise using a mean of 0 and the

standard deviation based on the batch-level standard deviation. This noise was then

added to the output of the anchor.

Bernoulli dropout Similar to dropout[44], we also generate a binary mask by
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sampling from a Bernoulli distribution. We apply this mask by multiplying it with

the output of the anchor when calculating the cosine similarity. This has a similar

effect to applying dropout. To obtain cosine similarities in the range of 0.9 to 0.95

for positive pairs, we used a dropout ratio of 0.1.

Mask on trivial features Magnitude-based pruning[21] is widely used technique

for neural network compression. Weights with small absolute values are considered

to have little impact on overall computations and are therefore excluded by setting

them to 0. Inspired by this, instead of using a Bernoulli mask, we set to 0 the

dimensions with small absolute values that contribute trivially to computing cosine

similarity of vectors. Similarly, we performed this operation only on the bottom

10% of dimensions.

Mask on significant features In contrast to the above approach, top 10% of

dimensions to 0 based on absolute values.

FGSM (Fast Gradient Sign Method) [20] is a very simple adversarial attack

that computes the sign of the gradient in the direction that maximizes the loss, and

then multiplies it by a very small value and adds it to the input. We added FGSM

noise on encoder output instead of random noise in GNI.

4.1.2 Data augmentation at encoder input embedding

The proposed methods are shown in Figure 7. Some of these methods have been

introduced in various combinations of data augmentation in ConSERT[53]. But

it was paper before SimCSE, there has been no comparison of their effectiveness

when used in conjunction with dropout.

GNI Adding noise to the input as a data augmentation technique is a widely used
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Figure 7: Data augmentation at encoder input embedding

practice in various domains. When obtaining input embeddings from tokenized

sentence, Gaussian noise with a mean of 0 and a standard deviation of 0.001 is

sampled and add to the embeddings.

Gaussian dropout dropout[44] also proposed Gaussian dropout, which multiplies

the input embedding with Gaussian noise. We also introduce Gaussian dropout

in addition to Bernoulli dropout. Gaussian noise with a mean of 1 and a standard

deviation of 0.001 was sampled and multiplied with the input embedding.

Bernoulli dropout 0.1 ratio Bernoulli mask is applied to input embedding

similarly to conventional dropout. This method was proposed in ConSERT[53],

but it was only applied at the input level and dropout was not used across all layers

as SimCSE.

Bernoulli dropout to feature dimension This approach is similar to cut-off

method in ConSERT[53], which drop certain feature dimension. A similar tech-

nique can be found in research on speech recognition. SpecAugment[39]) zeroed

out random frequency dimensions as a form of data augmentation.
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FGSM In ConSERT[53], FGSM method was compared only in the supervised

setting, as it requires labels. However, in the unsupervised setting, it can still be

applied by computing the gradient in the direction that deteriorates the contrastive

loss.

The methods that apply transformations to the input embeddings in addition to

SimCSE, show some improvement in performance compared to manipulating the

encoder outputs. However, considering the significant variability of SimCSE, it is

difficult to claim a significant improvement.

4.2 Stability

During reproducibility experiments, it was discovered that SimCSE itself exhibited

significant instability. The performance varied considerably depending on the ran-

dom seed, to the extent that a substantial portion of the performance improvement

observed in subsequent studies could be attributed to randomness. To address this

issue, techniques to enhance the model’s stability were applied.

During various tests, it was discovered that SimCSE itself can exhibit signifi-

cantly different performance depending on the random seed. Many seeds yielded

lower performance than the reported performance of SimCSE (76.25). When using

different machines or libraries, which inherently use different random seeds, it

becomes difficult to compare subsequent studies.

To address this issue and stabilize the results, commonly used regularization

techniques were introduced to SimCSE. In situations with high variability, these

techniques were expected to stabilize the training dynamics and improve the aver-

age performance.

26



Label smoothing One-hot encoding which the target is set to 1 and the rest to 0

can lead to over confident predictions with cross entropy loss. Label smoothing[45]

replace hard target with soft target and transform label distribution uniform. It

prevents the largest logit from becoming excessively large. In this experiment, a

label smoothing parameter is 0.1.

Sharpness-Aware Minimization (SAM) If the loss landscape is sharp, a slight

change in the input can result in a significant change in the output. During the

training of model parameters, Sharpness-Aware Minimization [16] find parameters

that points around the parameters have uniformly low loss. This helps to flatten the

entire loss landscape and can contribute to generalization. 0.05 was used for the

parameter related to the detection range of sharpness.

Adversarial Weight Perturbation (AWP) From the perspective of adversarial

training, a flatter loss landscape for weights also contributes to robust generalization.

Adverserial Weight Perturbation[51] flatten the loss landscape by applying worst-

case perturbations to the weights.

AWP + GNI AWP is combined with adding Gaussian noise injection at input

embedding to transform optimization problem into input-weight perturbation.

AWP + FGSM Instead of simple Gaussian noise, FGSM[20] make worst-case

scenarios for both the input and weight aspects. The direction for optimization at

the worst case is used to update the original weights.

4.3 Additional negative sample generation

While data augmentation was applied to the anchor to generate positive sam-

ples, negative samples were simply obtained from other batch items without any
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Figure 8: Additional negative sample generation

modification. We attempt to introduce better negative samples.

We mainly explored method to model and sample from the distribution of en-

coder outputs for the anchor rather than using actual sentences to avoid increasing

the computation of the encoder. These generated negative samples are used in

conjunction with the in-batch negative pairs, following the same approach as the

original SimCSE as visual representation of Figure 8.

Larger batch The batch size used in SimCSE was 64, which is not very large.

Generally there is a tendency to use larger batch sizes in contrastive learning. To

examine the impact of batch size, the original size 64 is doubled to 128.

Memory bank Large batch size have limitation of computation and memory. The

memory bank is commonly used approach to overcome constraint of resources.

In sentence embedding task, MoCoSe[7] used memory bank technique with mo-

mentum encoder like MoCo[22], but we evaluated memory bank only to show the

impact of representation of the past. Encoder outputs from the previous steps are
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stored in a queue and used as additional negative pairs in the next step. The number

of additional samples from memory bank same as batch size.

GNI to anchor encoder output Similarly to the positive augmentation at the

encoder output experiment, we generated additional negative samples by sampling

Gaussian noise with a mean of 0 and the standard deviation of feature dimensions

across the entire batch. This noise was added to the encoder output of the anchor.

Gaussian noise sampling We calculated the mean and standard deviation from

the anchors within the batch and sampled Gaussian noise accordingly. These

generated negative samples were then used alongside the anchor samples.

Gaussian noise sampling filtered with covariance matrix The aforementioned

method models each feature dimension distribution independently, neglecting the

relationships between features. To incorporate this information, covariance matrix

is calculated from from the anchors in the batch and perform inner product with

sampled noise.

Variational auto-encoder sampling A variational auto-encoder (VAE) [31]

approximates the function that samples the latent space by passing the input

through an encoder. Sampled latents are passed through a decoder to generate data

points similar to the original input distribution. In this approach, we trained a VAE

from the stored encoder outputs from previous 8 steps. This model was used to

yield additional negative sample similar to the anchor’s encoder output.

Gaussian Mixture Model sampling Gaussian Mixture Model (GMM) is a

method of modeling distributions by linearly combining Gaussian distributions.

Similar to the above method, GMM was updated at each step using the encoder

outputs from the previous steps. Then samples from the this GMM are used as

additional negative samples.
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5 Experiments

5.1 Training procedure

Like other studies, we utilized the framework provided by SimCSE for our experi-

ments.

Model training employed the transformers library distributed by HuggingFace

[50], and we utilized 1 million wikipedia data shared by subsequent SimCSE

research for training. The model utilized the bert-base-uncased model available in

the transformers library. To ensure a fair comparison, we maintained a learning

rate of 3e-5 and a batch size of 64, without tuning other hyperparameters. During

training, the entire dataset was trained for 1 epoch, and the best model was selected

based on the STS-B[8] development set.

Similar to SimCSE, during training, we employed an additional MLP head on

top of the CLS output, but during testing, this head was removed, and the CLS

output was used directly.

5.2 Evaluation method
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For evaluation, we utilized the SentEval toolkit[13]. Within this toolkit, it is

possible to download data for seven sentence textual similarity (STS) tasks, includ-

ing STS 2012-2017[4, 5, 2, 1, 3], STS Benchmark[8], and SICK-Relatedness[34].

Examples for STS task were shown in Table 1.

cos(θ) =
A ·B

∥A∥ ∥B∥
=

∑n
i=1AiBi√∑n

i=1A
2
i

√∑n
i=1B

2
i

(2)

r =
cov(rank(X), rank(Y ))

σrank(X)σrank(Y )

(3)

These datasets consist of pairs of sentences that have been human-rated for

their similarity on a scale of 0 to 5. Since multiple evaluators provided scores,

the ratings are represented as real-valued scores. For these labels, we used cosine

similarity of Equation 2 and Spearman’s correlation of Equation 3 between the

sentence embeddings generated by the model as evaluation metrics. In Equation 3,

cov denotes for covariance, and rank for the rank of score list.

The final performance evaluation criterion is the average performance across

the 7 tasks. All results are reported based on the average and standard deviation

across five random seeds (19984, 5838, 16822, 19294, 17173). These seeds are

also randomly generated to avoid human biases.
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6 Result

6.1 Data augmentation

6.1.1 Data augmentation at encoder output

The results with augmentation on output embeddings were not good, as shown in

Table 2. The performance of pretrained BERT was very low, at 31.40, so there is

some improvement compared to that. However, the baseline SimCSE performs

around 75, while most of the results fall within the range of 40 to 50.

Pretrained BERT’s sentence embeddings were trained for the next sentence

prediction task. Therefore, two sentences should be given to output the scores range

from 0 to 1 for meaningful result. Unlike SimCSE’s evaluation method, which

measures cosine similarity between individual sentences separately, pretrained

BERT’s encoding ability was not specifically trained for this purpose. Nevertheless

cosine similarity quickly increases with just a little training. This indicates that the

encoding ability was sufficiently learned during the pretraining process, albeit with

a different representation.

This method is expected to make the output embeddings more noisy. Rather

than the common Gaussian Noise injection, which maps noisy inputs to the same

positions, this approach maps the same inputs to noisy positions. Considering

cosine similarity as the decoder, we believed that these noisy representations

would directly affect the results, making it difficult to achieve effects similar to

intermediate level attack or feature space attack.

As a result, we went back to building upon SimCSE and conducted further

research by incorporating additional data augmentation techniques.
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6.1.2 Data augmentation at encoder input embedding

According to Table 3, there are some experiments that finally show improved

performance compared to the baseline. When GNI and Gaussian dropout were

applied to input embeddings, the performance increased to over 75. However,

Bernoulli dropout, on the other hand, slightly decreased the performance, and ap-

plying dropout along the feature dimension for more meaningful augmentation did

not lead to any significant improvement. Additionally, contrary to the expectation

that continuous data augmentation would have a beneficial effect, performance of

FGSM is similar to the baseline.

Nevertheless, it is challenging to claim that both cases showed significant

performance improvements. This is because SimCSE itself has high variability,

making improvement fall within one standard deviation range. Moreover, these

methods themselves did not reduce the variation compared to the baseline.

Considering these results, it appears that the input embedding augmentation

techniques with SimCSE do not show significant performance improvements.

6.2 Stabilization
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These experiments aimed not only to improve the average performance but also

to reduce the standard deviation which indicating variability. Furthermore, most

of the methods used in these experiments involved evaluating the update direction

by performing a forward pass before real back propagation step. As a result, they

exhibit much slower learning speed compared to conventional training methods.

In Table 4, the widely used technique SAM showed a significant performance

decline with a score of 73.71 and even did not improve variability. On the other

hand, weight perturbation alone and with FGSM achieved a performance of over

75 and reduced the standard deviation to less than 1.

However, the variability is still too high to consider these techniques significant.

Especially when considering the losses due to the slow learning speed, the benefits

obtained from these methods may be further diminished.

6.3 Additional negative sample generation

The results of additional negative samples are shown in Table 5. The most effective

approach was Gaussian noise generated based on the statistics of anchors within

the batch, combined with in-batch negatives.

Comparing the representations of the previous and current steps, it can be

observed that the cosine similarity between the anchor and each representations

are almost same scale. This suggests that the encoder changes very small during

training, and the past encoder outputs stored in the memory bank are similar to the

current in-batch negatives.

It is noteworthy that simple noise yields a greater improvement in performance

compared to larger batches or past encoder outputs, which is the actual sentence

embeddings summarizing meaningful sentences.
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DCLR[56] proposed a method of applying FGSM[20] to Gaussian noise and

using it as an additional negative sample. However, since they did not report the

average value, it is difficult to determine if it resulted in a significant improvement.

Based on the results of this study, it is presumed that the scale could be a much

more critical factor.
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7 Discussion

7.1 Data augmentation

Attempts to perform data augmentation on the encoder output generally did not

yield good performance. These methods make the representation noisy. When per-

turbations are applied at intermediate layers, such as in intermediate-level attacks,

the subsequent layers can handle noisy representation like this. Different view of

the same instances can be mapped to similar positions in the final embedding space.

However, there are no layers after the encoder output in SimCSE. Noise directly

affects the scores, so cosine similarity as a decoder is not invariant. Therefore,

experiments on the encoder output showed lower performance.

On the other hand, methods that applied data augmentation to the input em-

bedding showed slight performance improvements. Gaussian noise injection or

Gaussian dropout demonstrated increased performance compared to the baseline.

However the magnitude of improvement was relatively small and it is difficult

to claim significant performance enhancement considering the high variability of

SimCSE. Augmenting only the input embedding has a limited effect because there

are many layers following it in the network. However, the dropout used in SimCSE

is distributed throughout the entire network, not just at the beginning of layers.

Therefore, we can conclude that the input embedding augmentation is a relatively

small change and may have limited effectiveness.

Furthermore, the original BERT’s dropout is applied after the summation

of input embeddings, position embeddings, and token type embeddings. This

duplicated dropout may have reduced effectiveness. The case of FGSM could
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Figure 9: Cosine similarity during SimCSE training

also be attributed to the trade-off between adversarial robustness and original

performance in adversarial training.

7.2 Stability

The weight perturbation alone, and the weight perturbation combinated with FGSM

show a slight performance improvement. However, this improvement is also small

in magnitude, and the variability did not improve significantly as expected. This

issue can be attributed to the charicteristic training dynamics of SimCSE.

Figure 9 depicts the cosine similarity of positive pairs and negative pairs during

the training of SimCSE. The positive pairs already exceed 0.9 in the early stages of

training, while the negative pairs approach 0. In other words, the loss composed of

cosine similarity already approaches 0 from the beginning of training. The gradients

hardly descend and weight parameters are barely updated. This phenomenon is

referred to as gradient dissipation in [37].

The stabilization techniques tested in this study include an additional term in

optimization that evaluates the direction of update with preliminary forward path.
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Since learning occurs only in very few initial steps, stabilization techniques that

continuously influence throughout the training process may not function properly.

Instead, it is possible that data order has a greater impact considering the

fluctuations in the similarity of negative pairs observed in Figure 9. The similarity

increases if there are coincidentally similar sentences within a batch as in-batch

negatives. Since a shared framework is used, it is difficult to separate the effects of

data order and augmentation, as the data loader and dropout mask utilize the same

random number generator. In future research, it will be possible to fix one side and

compare the influence of the other side separately.

7.3 Additional negative sample generation

GMM sampling and Gaussian noise sampling showed performance improvement

in additional negative sample generation. GMM sampling had a slower learning

speed, but the improvement in performance was not substantial. On the other

hand, Gaussian noise sampling was more noteworthy because it exhibited a perfor-

mance improvement of more than 1 standard deviation of SimCSE. It reached a

performance level close to when doubling the batch size to 128 or using a memory

bank. Gaussian noise sampling achieved comparable improvements with simple

noise injection whereas memory bank utilize encoder outputs of actual meaningful

sentences.

When negative pairs are pushed away from the anchor, the direction can become

erratic if the batch size is small. Random noise mitigates this scattering effect to

yield improved performance. We conducted additional experiments by increasing

the number of additional negative samples more than batch size. It can be observed

that the performance improves linearly as the sample count increases in Figure 10.
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Figure 10: The impact of number of generated negatives

SimCSE(baseline) Gaussian noise sampling

Seed Alignment Uniformity STSB test Alignment Uniformity STSB test

19984 0.48 -2.47 77.04 0.46 -2.35 77.75

5838 0.47 -2.42 76.47 0.49 -2.53 77.74

16822 0.48 -2.44 75.27 0.45 -2.42 77.88

19294 0.45 -2.38 73.85 0.41 -2.11 77.78

17173 0.51 -2.56 77.46 0.47 -2.40 78.43

Mean 0.48 -2.45 76.02 0.46 -2.36 77.92

Std. 0.02 0.07 1.47 0.03 0.16 0.29

Table 6: Alignment and uniformity
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Furthermore, SimCSE and subsequent studies explain the performance im-

provement within the contrastive learning framework by enhanced alignment and

uniformity. Alignment indicates how closely positive pairs are positioned to each

other, while uniformity reflects how uniformly they are distributed on the unit

hypersphere, in relation to negative pairs. We compared the results of five random

seeds for the STSB test, and as shown in Table 6, we can observe that in most

cases, alignment and uniformity both have improved.

Recently, DCLR [56] proposed converting random noise into additional nega-

tive samples through FGSM. However, since reported results is only from a single

random seed, it is difficult to make direct comparisons. Also, the performance

improvement in [56] is around 1% point, similar to our research. The noise sampled

from a mean of 0 and standard deviation of 1 and FGSM enhanced negative sample

are compared, and latter achieved better performance improvement in [56].
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However, it appears that scale is more crucial. In Table 7, we compared

significantly different values, such as 0 and 1, instead of the mean or standard

deviation of the encoder outputs within a batch. The performance improvement

becomes minimal when scale is differed.

As a follow-up study, hard negative mining can be introduced by incorporating

a hardness measure. Hard negative samples, which are similar to the anchor but

noticeably different, provides more informative training signal, whereas an easy

negative pairs have little impact. Hardness measure can explain the performance

improvement effect of generated negative samples. Also, selective hard negative

samples from large generated pool are expected to further enhance performance.

7.4 Performance comparison with other pretrained model

Additionally, we verified whether the Sampling from Normal Distribution, which

had the most significant performance improvement, had similar effects on other

pretrained models with SimCSE. The results are summarized in Table 8.

For BERT large, a similar trend to BERT base was observed. But in case

of RoBERTa, proposed method actually hindered performance. In particular,

with RoBERTa large, we even observed cases where performance completely

deteriorated depending on the seed. However, when comparing SimCSE alone,

there was not a significant performance gap between BERT and RoBERTa. This

suggests that SimCSE may be a more specialized algorithm for BERT, and it could

be challenging to apply the techniques that improve SimCSE’s performance to

RoBERTa without any modification. Unlike BERT, RoBERTa does not have a

specific task focused on the CLS token during the pretraining stage, and this could

be a factor that lead to difference in result.
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8 Conclusion

Sentence embedding summarizes a sentence of variable length sequence consist-

ing of discrete tokens into fixed size vectors. Pretrained BERT has to be found

to struggle in generating effective sentence embeddings, despite the significant

impact in the field of natural language processing. Various methods have been

proposed to enhance performance of BERT sentence embedding, including studies

utilizing unsupervised learning with the contrastive learning framework. Espe-

cially, SimCSE shows significant performance improvements with simple dropout

augmentation and led many follow up studies. We first provided an overview of

the key researches in the field of sentence embeddings in this study.

Next, we conducted several experiments that could be categorized into three ar-

eas to enhance the performance of SimCSE. First of all, various data augmentation

methods were compared to yield positive samples in addition to dropout. Secondly,

stabilization techniques were introduced to reduce excessive variability caused by

randomness during training. At last, we generated additional negative samples to

aid training instead of solely using other sentences within the batch as negative

samples.

The main findings can be summarized as follows: Data augmentation at the

output representation was counterproductive, because the cosine similarity used in

SimCSE is not invariant to the transformation. Applying data augmentation to the

input embedding also had limited improvement due to minor changes compared to

dropout in SimCSE. Stability techniques did not significantly improve variability,

because their update are mainly constrained in the early stages of SimCSE training.

Finally, the additional negative samples showed significant improvement effects.
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Among the specific experimental ideas, we confirmed that Gaussian noise

injection in input embeddings, a combination of FGSM and weight perturbation,

and additional negative samples generated by Gaussian noise sampling with the

mean and standard deviation of anchor samples within the batch, can improve the

performance of SimCSE.

Particularly, the last method which sampling Gaussian noise showed compara-

ble performance to the widely used memory bank technique. It is more important

that simple noise has a performance improvement effect similar to meaningful

sentences embeddings without increasing computational complexity. Consistent

enhancements in alignment and uniformity were also observed across various ran-

dom seeds. This can be attributed to the small batch size which tends to scatter the

negative samples while modifying pretrained BERT’s sentence embeddings with

contrastive learning. The noise added as negative sample can alleviate degradation.

The fact that generated negatives should be similar in scale with the actual sentence

embeddings supports our hypothesis and explains the performance improvement

effect.

The limitation of proposed method is that this is specifically designed for

application when pretraining BERT into SimCSE. Therefore it may not generalize

to improving sentence embeddings of other pretrained models such as RoBERTa.

As an future research topic, hardness measure in hard negative sampling could

explain how generated samples can be beneficial during training. Also, there can

be further performance improvement by generating pool with a large number of

additional negative samples and selecting only informative ones.
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