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Abstract

Computational models and methods for
solving slot coating flow problems

Hyungyeol Kwak

School of Chemical and Biological Engineering

The Graduate School

Seoul National University

Slot coating process is a high-precision method for depositing a thin layer of

liquid film onto a moving substrate. Owing to its versatility, slot coating process has

been employed by many industries for manufacturing a wide range of high-value

film products including optical films, solar cells, and battery electrodes. The process

consists of three main stages: solution preparation, application, and drying. In this

study, we focus mainly on the slot coating flow, or the coating flow that occurs during

the application step.

Slot coating flow is a two-dimensional flow with two liquid-gas interfaces that

bound the flow domain. There are many adjustable parameters associated with the

flow, and it is only through an adequate control over these parameters, that it is pos-

sible to maintain a stable coating flow and produce defect-free films. The answer to

choosing the right values for the parameters comes from solving slot coating flow

problems.

One goal of solving slot coating flow problems is to obtain the physical variables
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associated with the coating flow, such as the velocity and pressure fields, when given

the parameter values. Through this type of analysis, it is possible for one to assess the

quality of the coating flow that arises from the given set of parameters. On the other

hand, in other situations, some information or restriction on the coating flow is given,

and the goal is to find the specific set of parameters that results in the flow with given

characteristics. With the two-way problem solving, one can gain a comprehensive

understanding on the stable operation of slot coating process for producing high-

quality products.

The purpose of this study is to widen the perspective on problem solving in slot

coating flows by exploring previously unsolved problems and using previously un-

tried methods. In Chapter 2, we examine the effect of slot-die configuration on the

coating gap dependence of limiting wet thicknesses, using a simple analytical model

of the slot coating flow. Through the analysis, the reason behind a peculiar phe-

nomenon where the maximum wet thickness decreases with increasing coating gap

is revealed. In Chapter 3, we obtain the critical operating conditions for vortex to

form inside the slot coating flows. The study involves several types of flow models

and vortex formation conditions (both numerical and analytical) are obtained for the

coating flows of fluids with shear rate dependent viscosities. In Chapter 4, a machine

learning based method is used to model the slot coating flow. Exemplary problems

are solved with this method to demonstrate its flexibility in handling problems with

partially missing data.

keywords: Slot coating process, Generalized Newtonian fluids, Finite element

method, Couette-Poiseuille flow, Physics-informed neural networks

student number: 2018-28363
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Chapter 1

Introduction

1.1 Slot coating process and slot coating flow

Liquid film coating is a process by which a gas previously in contact with a substrate

is replaced by a thin film of liquid. It is used in many industrial processes to produce

thin films with wet thickness ranging from 1 to 100 microns (Kistler & Schweizer,

1997). One of such coating process is the slot coating process, whose schematic is

shown in Figure 1.1.

Slot coating process is a versatile method for producing thin film products with a

variety of functionalities. Many industries have successfully employed this process to

produce a wide range of high-value film products, including optical films, solar cells,

and battery electrodes (Patidar et al., 2020; Schmitt et al., 2014; Ding et al., 2016).

Some important and useful characteristics of the process are as follows:

1. It is a roll-to-roll continuous coating process and is thus suitable for mass pro-

duction.

2. Self-leveling of coated liquid allows uniform thickness to be achieved across a

large area.
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3. It is a pre-metered coating process that allows a precise control over the film

thickness; the wet thickness is pre-determined by the amount of coating fluid

provided to the process.

Drying

Solution 
preparation

Application

Figure 1.1: A schematic diagram of slot coating process.

As shown in Figure 1.1, the slot coating process typically consists of three main

unit operations: solution preparation, application, and drying.

In the solution preparation step, the coating solution is prepared by mixing dif-

ferent kinds of components that give the film its desired properties. Solvent is also

carefully selected such that the resulting mixture forms a stable coating solution with

a desired distribution of active components. When choosing different materials and

solvents that compose the coating solution, the processability of the fluid must also

be given consideration. Thus, it is not an uncommon practice to add materials that are

solely responsible for controlling the rheological properties of the coating solution.
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The prepared solution is delivered to the coating station where it goes through

the application stage of the coating process. The coating solution is first fed into the

slot-die and is distributed in the widthwise direction in a cavity within the die. The

distributed solution is then extruded out of the die through a thin slit and is deposited

onto the moving substrate. The flow that forms in this region is also known as the

coating bead flow and maintaining its stability is the key to the successful process

operation and production of high quality films.

In the drying stage, the coated substrate is transported to the drying chamber

where the excess solvent is removed through evaporation. When the coating solution

is a suspension that contains particles of varying sizes, particle migration can occur

during the drying phase, resulting an uneven distribution of particles along the thick-

ness direction of the film (Lim et al., 2013; Zang et al., 2010). A careful control over

the evaporation rate is required to minimize this kind of side effect. After being dried,

the film may also go through the calendaring step where the dried film is calendared

to achieve required thickness and properties.

Among the different phenomena that are found in the three main stages of the

slot coating process, we focus mainly on the coating bead flow that occurs during

the application stage. Typical dimensions of a coating bead flow are presented in

Figure 1.2. Because the width of the flow is typically far larger than the height or

the streamwise length, the two-dimensional (2-D) approximation on the flow is valid

under most situations. Another important characteristics of the flow is the existence

of the liquid-gas menisci in the upstream and downstream (relative to the substrate

motion) regions. The upstream meniscus connects two solid surfaces — the slot-die

lip and the moving substrate — and forms two separate contact lines. Also, due to

the small height which serves as the characteristic length of the flow, the Reynolds

number is typically within the order of 10, which makes the flow laminar.
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~𝑂(10−1𝑚𝑚)

Figure 1.2: Typical dimensions in slot coating flows.

1.2 Slot coating flow problems

q

h
H

U

Pv

Lf

Lu Ld

ρ, μ, σ

θs θd

Figure 1.3: Adjustable parameters associated with slot coating flows.

As illustrated in Figure 1.3, there are a number of adjustable parameters asso-
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ciated with the coating bead flow. Different sets of parameters can be thought as

separate points residing in the vast parameter space. They can be categorized into

three groups: operating parameters, geometric parameters, and material properties.

Operating parameters are the variables that can be readily and directly controlled

by the operator to result in a stable coating bead flow. For example, the coating gap,

Hu or Hd, can be changed by adjusting the relative position of slot-die with respect

to the moving substrate; the prescribed flow rate (per width), q, can be controlled by

adjusting the feed rate of the pump; and the substrate speed, U , can be adjusted by

controlling the rotation speed of the backup roll. Sometimes a slight vacuum, Pv, is

applied at the upstream meniscus to offset forces that pushes the meniscus towards

the feed slot and destroys the stable coating bead (Gates, 1999). The wet thickness

of the coated film, h, can also be considered as an operating parameter since it is

pre-metered by the amount of supplied coating solution and the substrate speed. The

three variables are related simply by h = q/U .

Geometric parameters are the design parameters of the slot-die. It is possible to

adjust the length of the die lip, Lu or Ld, to control the pressure distribution along

the coating bead. Apart from the flat design, the surface of the die lip can also take on

different shapes and structures (Sartor, 1990). In addition, the slot-die can be mounted

in various ways such that it has a non-zero angle of attack (Lee & Nam, 2015a),

as shown in Figure 1.4. The lip surfaces in the upstream and downstream regions

can also be placed in different planes in such a way that the gap difference ∆H =

Hd −Hu has a non-zero value.

Material properties are the variables that represent the physical and chemical

properties of the coating fluid, such as density (ρ), viscosity (µ), and surface tension

(σ). As shortly discussed in Section 1.1, these properties are readily determined by

different materials that are added to the coating solution. The viscosity of the fluid can

be modeled using different types of constitutive equation, and the parameter values
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Figure 1.4: Slot-dies with tilted configuration.

are determined by fitting the equation to the rheological measurement data. The static

contact angle, θs, can be regarded as a material property as it is related to the work of

adhesion, W , and the surface tension, σ, of the liquid via the Young–Dupré equation:

W = σ(1 + cos θs). (1.1)

The dynamic contact angle, θd, can be considered as both a material property and an

operating parameter, since it depends on both the choice of material as well as the

substrate speed (Cox, 1986).

Once a specific set of parameter values (or a point in the parameter space) are

fixed, the slot coating process can be operated under that specific set of parameters

to give rise to the actual slot coating flow, which can be described by the shape and

position (x and y) of menisci, the velocity field (u and v), and the pressure field (p).

The flow patterns exhibited by the coating flow and the shape of the coating bead both

have profound impact on the stable process operation and the quality of the final film

product. Therefore, understanding the interplay between the parameter space and the

physical variables (x, y, u, v, p) is crucial for the production of high quality product

through a well controlled process operation.

Two types of problems naturally arise when considering the mapping between

the parameter space and the physical variables. In the first type of problems, all the

necessary parameters are given such that the physical field variables associated with

the coating bead flow is obtained. This can be thought as a situation where the operat-
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ing parameters, choices of coating solution composition and slot-die design are fixed,

and one is interested in finding the resultant flow. On the other hand, in the second

type of problems, some information on the physical variables of the flow is given

and the goal is to find the specific parameters that resulted in the flow with the given

characteristics. In this situation, the data given can be the shape and position of the

interface, the velocity or pressure of the flow, or both. These may be actual measure-

ments from various sensors and imaging devices, or may even be hypothetical data

derived from calculation. The relationships between different groups of variables are

summarized in Figure 1.5.

Operating conditions

Slot−die geometry

Material properties

Flow/pressure field

Streamlines

Meniscus shape

Film thickness

Film quality

Stable operation

Parameter space
Physical space 

(x, y, u, v, p)

Figure 1.5: Relationships between different groups of variables associated with slot

coating flows.

1.3 Mathematical and computational models for modeling

slot coating flows

In this thesis, the previously unsolved problems of slot coating flows are addressed

using a variety of models and methods.

Chapter 2 focuses on on how the wet thickness limits are dependent on the

coating gap for various slot-die geometries. An analytical model derived from one-

dimensional (1-D) approximation of the coating bead flow is used to obtain analytical

expressions for the maximum and minimum wet thicknesses under different die lip

configurations. The derived expression is used to examine the dependence of the wet
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thicknesses on the coating gap. A two-dimensional (2-D) computational model is also

utilized simply for the verification of the 1-D results.

On the other hand, the 2-D computational flow model is introduced in Chapter 3

as a main tool for solving a slot coating flow problem to obtain operating parameters

that lead to vortex formation within the coating bead flow. Derivation of analytical

expressions for the vortex formation condition is made possible by further simplifica-

tion of the flow. The derived equations are applied to fluids modeled by more complex

constitutive equations, thereby introducing an approximation method for solving the

given problem. In addition, a semi-analytical method that solves the problem exactly

is also introduced for the given fluids.

In Chapter 4, a machine learning based approach is adopted to solve slot coating

flow problem when the given data is missing in parts. Unlike conventional methods

which require a complete set of unknowns and equations for the problem to be solved,

the machine learning based problem solving provides the flexibility to handle incom-

plete data. This is demonstrated by solving problems where a boundary condition is

deliberately neglected, and where only a part of the meniscus shape data is given.

8



Chapter 2

Effect of slot-die geometry on coating gap dependence

of wet thicknesses

2.1 Introduction

Figure 2.1 shows a schematic of the coating bead flow that occurs within the gap

between the slot-die and moving substrate. The feed slot segregates the bead into

upstream and downstream regions, and each region is bounded by a liquid–gas inter-

face. Adequate control over the shape and position of this interface is key to achieving

stable process operation and defect-free films.

Upstream

region
Downstream

region

F
eed

 slo
t

Moving direction of the substrate

Figure 2.1: Coating bead flow in slot coating process.
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Experimental and theoretical studies pertaining to operating limits associated

with coating bead menisci are abundant in the literature. For example, Higgins &

Scriven (1980) studied the allowable range of operating conditions by considering

the bounds for the position of the upstream meniscus. Carvalho & Kheshgi (2000)

studied the low-flow limit, which is the operating limit associated with highly curved

downstream meniscus.

Under various operating conditions, the coating bead adjusts its size accordingly

by allowing the upstream meniscus to slide along the upstream die lip. Increas-

ing/decreasing the flow rate or decreasing/increasing the substrate speed results in

the extension/shrinkage of the upstream coating bead. When the bead length reaches

its maximum, the meniscus is pinned at the upstream corner of the die lip, as depicted

in Figure 2.2A. This state is denoted by the weeping limit, beyond which may result

in loss of the liquid. On the opposite end is the bead-breakup limit, where the up-

stream meniscus is situated beneath the feed-side corner of the upstream die lip, as

depicted in Figure 2.2B. Further drawing of the meniscus toward the feed slot results

in coating defects (Lee et al., 1992; Yang et al., 2004).

A B

Figure 2.2: Operating limits associated with position of upstream meniscus: A. Weep-

ing limit and B. bead-breakup limit.

The aforementioned operating limits can be similarly described in terms of wet

thickness, which is obtained by dividing the flow rate per width by the substrate speed.

By considering the specific operating conditions that result in the two limits, we find

that the maximum and minimum attainable wet thicknesses are determined by the

weeping and bead-breakup limits, respectively.

10



When the coating liquid is confined by a stationary wall, the wet thickness scales

with the coating gap (Kim & Nam, 2017). In general, a wider coating gap allows

for more coating liquid to flow between the slot-die and substrate; hence, a larger

maximum wet thickness is expected. However, we demonstrate that a counterintuitive

result can be obtained under a certain slot-die configuration.

Previous studies on different types of slot-die configurations were conducted un-

der a fixed or oscillating coating gap. Koh et al. (2012) investigated the effect of

slot-die configuration on the operability window expressed in terms of the bead pres-

sure and the substrate speed. Romero & Carvalho (2008) and Lee & Nam (2015b)

conducted frequency response analyses to study the effect of gap disturbances under

different slot-die configurations. In this chapter, we take a closer look at the effect of

increasing or decreasing coating gap on the limiting wet thicknesses while varying

the slot-die configurations.

In the following sections, a simple model for the coating bead flow is introduced,

and expressions for the limiting wet thicknesses at the weeping and bead-breakup

limits are derived from the model. The dependency of the wet thicknesses on the

coating gap is then derived to demonstrate how it differs under varying slot-die con-

figurations. According to the definition in Section 1.2, the problem covered in this

chapter can be categorized as the second type, since the goal of the given problem

is to find the expression for the limiting wet thicknesses, given the length of the up-

stream bead at the operating limits. A two-dimensional (2-D) numerical analysis of

the same system using the finite element method (FEM) is also presented to validate

the conclusions generated from the simple model.

11



2.2 Mathematical formulation

The viscocapillary model (Ruschak, 1976; Higgins & Scriven, 1980) is a practical

and simple analytical model for analyzing coating bead flow. The model expresses

the overall pressure difference across the coating bead as a combination of pressure

differences at two liquid–gas interfaces and pressure gradients associated with the

lubrication flow.

Typically, the pressure jump across the downstream meniscus is modeled using

the following equation, which is derived from the Landau-Levich (Landau & Levich,

1942) film coating theory:

∆P = 1.34

(
µU

σ

)2/3 σ

hw
, (2.1)

where µ, σ, U , and hw denote liquid viscosity, surface tension, substrate speed, and

wet thickness, respectively. The pressure difference across the upstream meniscus is

modeled using the Young-Laplace equation, which can be expressed as follows:

∆P = − σ

Hu
(cos θd + cos θs), (2.2)

where Hu denotes the upstream coating gap and θd and θs represent the dynamic and

static contact angles, respectively.

We assume that the capillary number of the system is sufficiently large such that

the contribution of the pressure differences across the menisci is negligible compared

with that of the viscous effects. This assumption is valid under sufficiently large vis-

cosity or high substrate speed. Furthermore, we assume that the die lip surface is

parallel to the moving substrate, such that the flow in between is strictly rectilin-

ear. Under these assumptions, the viscocapillary model for steady Newtonian coating

bead flow can be expressed as follows:

6µU

Hd

(
1− 2

hw
Hd

)
Ld

Hd
+

6µU

Hu

x

Hu
= Pa − Pv. (2.3)
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Here, H and L denote the coating gap and die lip length, respectively; subscripts d

and u represent the downstream and upstream regions of the coating bead, respec-

tively; x denotes the length of the upstream coating bead, which can adjust itself to

match the operating conditions; Pa denotes the ambient pressure outside the down-

stream meniscus; Pv denotes the vacuum pressure, if any, applied to the upstream

meniscus. Refer to Figure 2.3 for details.

H
u H

d

L
dL

u

U

x

h
w

P
a

P
v

Vacuum 

chamber

Figure 2.3: Parameters associated with coating bead flow.

When no vacuum is applied, Pv equals Pa, and rearranging Equation (2.3) yields

the following expression for the wet thickness, hw:

hw =
Hd

2

[
1 +

(
Hd

Hu

)2 x

Ld

]
. (2.4)

In general, the coating gaps in the upstream and downstream regions are set equal,

i.e., Hu = Hd. However, the two gaps can also be set differently to exploit differ-

ent slot-die configurations (Romero & Carvalho, 2008; Chin et al., 2010; Lee et al.,

2011; Lee & Nam, 2015a). The case in which Hd > Hu is known as the underbite

configuration, whereas the opposite case is referred to as the overbite configuration.

The three configurations are illustrated in Figure 2.4.

13



A

B

C

ΔH = H
d

– H
u

= 0

ΔH > 0

ΔH < 0

Figure 2.4: Slot-die configurations considered in this chapter: A. Uniform, B. under-

bite, and C. overbite.

By introducing the gap difference ∆H = Hd −Hu, Equation (2.4) becomes

hw =
Hd

2

[
1 +

(
Hd

Hd −∆H

)2 x

Ld

]

=
Hu +∆H

2

[
1 +

(
1 +

∆H

Hu

)2 x

Ld

]
. (2.5)

Under a fixed configuration, the derivatives of hw with respect to Hd and Hu are

14



the same because ∆H remains constant. Therefore, we examine the sensitivity of hw

with respect to Hd alone.

∂hw
∂Hd

=
1

2
+
xH2

d(Hd − 3∆H)

2Ld(Hd −∆H)3
. (2.6)

It is noteworthy that the value of this derivative depends not only on the operating

limit (associated with x), but also on the slot-die configuration (associated with ∆H).

2.3 Numerical validation

The conclusions derived from the simplified version of the viscocapillary model are

also validated by numerical method, which involves fewer assumptions on the system

and is considered more accurate.

The governing equations of the system of interest are the 2-D steady momentum

conservation equation (with the body force neglected) and the continuity equation,

which can be expressed as follows:

ρu · ∇u = ∇ ·T, (2.7)

∇ · u = 0, (2.8)

where ρ, µ, u, and p represent density, viscosity, velocity field, and pressure field,

respectively. T denotes the total stress tensor which is given by T = −pI +

µ [∇u+ (∇u)⊺] for the incompressible Newtonian fluid, where I denotes the identity

tensor. The associated boundary conditions are illustrated in Figure 2.5.

The operating parameters used in numerical validation are listed in Table 2.1.

Note that the flow rate per width is not provided as an input to the system but is in-

stead obtained as an outcome of the computation, such that the corresponding coating

bead flow is either in the bead-breakup or weeping limit. The resulting wet thickness

is in the order of several hundred micrometers (µm), which is observed in thick-

film-coating applications, such as the production of thick battery electrodes (Diehm

15



et al., 2020; Li et al., 2021). Viscosity is chosen to have a value that a shear-thinning

polymer solution would exhibit when exposed to a high-shear flow.

The governing equations, together with the boundary conditions are discretized

and solved using the Galerkin finite element method (G/FEM). The detailed descrip-

tion on the solution method is deferred to Chapter 3, where the 2-D computational

flow model is used as the main method for solving the given problem.

Table 2.1: Operating conditions and geometric parameters used in numerical valida-

tion.

Operating parameters Unit Value or Range

Density (ρ) g/cm3 1

Viscosity (µ) Pa · s 1

Surface tension (σ) mN/m 70

Substrate speed (U ) mm/s 75

Flow rate per width (q) mm2/s 8.736 - 36.85

Static contact angle (θs) ◦ 50

Dynamic contact angle (θd) ◦ 160

Geometric parameters Unit Value or Range

Downstream die lip length (Ld) mm 1.0

Upstream die lip length (Lu) mm 1.0

Feed slot height (Lf ) mm 1.0

Downstream coating gap (Hd) mm 0.2 - 0.5

Gap difference (∆H) mm −0.2, 0.0, 0.1
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2.4 Results and discussion

As discussed earlier, the two operating limits considered in this chapter are character-

ized by the size of the upstream coating bead. More specifically, the upstream region

of the coating bead is devoid of liquid flow at the bead-breakup limit, whereas the

coating liquid occupies the entire upstream region of the coating bead at the weeping

limit.

The simple model represents the two limiting states by setting the upstream bead

length, x, to be either zero or the upstream die lip length, Lu. As with the 2-D compu-

tational model, the system of governing equations is first augmented with equations

that describe the position of the static and dynamic contact lines at the onset of the

operating limits. Subsequently, the operating conditions that lead to the two states,

including the wet thickness, are obtained directly by solving the augmented system

of equations. The details of the method are elaborated in Chapter 3.

The dependencies of the limiting wet thicknesses on the coating gap, obtained

both analytically and numerically, are presented in the following subsections.

2.4.1 Minimum wet thickness (Bead-breakup limit)

Substituting x = 0 into Equation (2.6) yields the following expression for the deriva-

tive: (
∂hw
∂Hd

)
B

=
1

2
. (2.9)

Subscript B denotes the bead-breakup limit. We find that the wet thickness at the

bead-breakup limit depends linearly on the coating gap with a proportionality con-

stant of 0.5, as depicted in Figure 2.6.

Figure 2.7 depicts the streamlines of the coating bead flow at the bead-breakup

limit under a uniform configuration, obtained using the numerical methods described

earlier. The dynamic contact line of the upstream meniscus is immediately beneath
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Figure 2.6: Dependence of the wet thickness, hw, on coating gap, Hd, at bead-

breakup limit derived by the simple model. Parameters used were Ld = Lu =

1.0mm and ∆H = 0.

the feed slot corner, indicating that the bead-breakup limit has been reached.

The numerically obtained dependences of the minimum attainable wet thick-

nesses on the downstream coating gap are shown in Figure 2.8. The observed trend

coincides with that obtained from the simple model; the wet thicknesses exhibit a

nearly linear dependence on the coating gap for all three die lip configurations con-

sidered.

It is worth noting that both hw and ∂hw/∂Hd derived from the simple model

(Equation (2.5) and Equation (2.6)) are independent of ∆H when x = 0, whereas

19



Figure 2.7: Streamline plot of coating bead flow at bead-breakup limit under the

uniform configuration (∆H = 0). Coating gap of Hd = 0.35mm is used.

those computed numerically differ for each slot-die configuration. It is most likely

that the difference originates from the upstream meniscus present in the computa-

tional model, whose shape changes with varying die configurations, and is completely

neglected in the simple model.

2.4.2 Maximum wet thickness (Weeping limit)

By substituting x = Lu into Equation (2.6), we obtain(
∂hw
∂Hd

)
W

=
1

2
+
LuH

2
d(Hd − 3∆H)

2Ld(Hd −∆H)3
=

f(Hd)

2Ld(Hd −∆H)3
, (2.10)

f(Hd) = (Ld + Lu)[H
3
d − 3(∆H)H2

d ] + 3Ld(∆H)2Hd − Ld(∆H)3, (2.11)

where subscript W denotes the weeping limit. Unlike the bead-breakup limit, the

derivative is dependent on the slot-die configuration. In the following, we present a

detailed discussion on how the sensitivity differs in each configuration.

Uniform configuration (∆H = 0)

First, we consider the uniform configuration, where ∆H = 0. Subsequently, Equa-

tion (2.10) reduces to the following expression:(
∂hw
∂Hd

)
W,uniform

=
1

2

(
1 +

Lu

Ld

)
. (2.12)
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Figure 2.8: Dependence of wet thickness, hw, on coating gap, Hd, at bead-breakup

limit under three different slot-die configurations: uniform (solid line with triangle

marker, ∆H = 0), underbite (dashed line with square marker, ∆H = 0.1mm), and

overbite (dotted line with diamond marker, ∆H = −0.2mm), computed using the

2-D computational model. Parameters used are summarized in Table 2.1.

Because the die lip lengths, Lu and Ld, are constants, hw in this case is directly

proportional to Hd, which is similar to the bead-breakup limit case, as shown in

Figure 2.9. However, the proportionality constant in Equation (2.12) is greater than

that of the bead-breakup limit case, as Lu/Ld is always nonnegative. In addition,

under the uniform configuration, the wet thickness at the weeping limit (maximum

obtainable wet thickness) increases with the coating gap, as expected.
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Figure 2.9: Dependence of wet thickness, hw, on coating gap, Hd, at weeping limit

under the uniform (∆H = 0) configuration, derived from the simple model. Other

parameters were Ld = Lu = 1.0mm.

Underbite configuration (∆H > 0)

However, this trend differs significantly in the underbite configuration, where ∆H >

0. In the following, we establish the existence of a local minimum for hw.

In the underbite configuration, the downstream coating gap, Hd, must satisfy the

constraint Hd > ∆H for the upstream coating gap, Hu, to remain positive. Because

Ld is positive, the denominator of Equation (2.10) takes on a positive value for all the

possible values of Hd. In addition, because Ld, Lu, and ∆H are positive, the numer-
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ator of Equation (2.10), f(Hd), has two limits of different signs as Hd approaches

the limiting values, as follows:

lim
Hd→∆H+

f(Hd) = −2Lu(∆H)3 < 0, (2.13)

lim
Hd→∞

f(Hd) = ∞. (2.14)

According to the intermediate value theorem, a zero of Equation (2.10) exists in the

open interval (∆H,∞). Hence, in the underbite configuration, the wet thickness at

the weeping limit experiences a local minimum, as depicted in Figure 2.10. This

result is counterintuitive in that it suggests the existence of an interval where the wet

thickness decreases, even with an increasing coating gap. This property differentiates

the underbite configuration from other configurations.

Overbite configuration (∆H < 0)

Finally, we consider the overbite configuration in which ∆H < 0. Similar to the

underbite case, the denominator of Equation (2.10) is positive, and hence nonzero for

all Hd > 0. It can be shown that the numerator f(Hd) is nonzero for all Hd based on

the following argument: First, the derivative of f with respect to Hd is expressed as

f ′(Hd) = 3(Ld + Lu)(Hd −∆H)2 − 3Lu(∆H)2, (2.15)

which is positive at Hd > 0 because ∆H < 0 in the overbite configuration. There-

fore, we find that f(Hd) increases monotonically in the same half-interval. Moreover,

because f(Hd = 0) = −Ld(∆H)3 > 0, we conclude that f(Hd) > 0 and has no

zeros when Hd > 0. Therefore, under the overbite configuration, the derivative in

Equation (2.10) is always positive; hence, as shown in Figure 2.11 hw at the weeping

limit increases monotonically, but not linearly, with Hd.

As shown in Figure 2.12, the results obtained from the 2-D computational model

also agree well with the above trends. The maximum attainable wet thickness in-

creases monotonically when the coating gap increases under the uniform and overbite
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Figure 2.10: Dependence of wet thickness, hw, on coating gap, Hd, at weeping limit

under the underbite (∆H = 0.1mm) configuration, derived from the simple model.

Other parameters were Ld = Lu = 1.0mm.

configurations, whereas it initially decreases when the coating gap increases before

reaching a local minimum value under the underbite configuration.

The mean absolute relative errors of hw at the weeping limit predicted by the

simple model are 15.61%, 26.00%, and 4.965% for the uniform, underbite, and over-

bite configurations, respectively, under the given range of Hd. However, it should

be noted that for all die configurations, the dependence of hw on Hd is accurately

captured by the simple model. For example, Hd at which the hw experiences a local

minimum under the overbite configuration is predicted as 0.2476mm for the given
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Figure 2.11: Dependence of wet thickness, hw, on coating gap, Hd, at weeping limit

under the overbite (∆H = −0.2mm), derived from the simple model. Other param-

eters were Ld = Lu = 1.0mm.

set of operating parameters, which is sufficiently close to the numerically computed

value (Hd = 0.2450mm).
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Figure 2.12: Dependence of wet thickness, hw, on coating gap, Hd, at weeping limit

under three different slot-die configurations: uniform (solid line with triangle marker,

∆H = 0), underbite (dashed line with square marker, ∆H = 0.1mm), and overbite

(dotted line with diamond marker, ∆H = −0.2mm), computed using the 2-D com-

putational model. Parameters used are summarized in Table 2.1.
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2.5 Conclusions

In this chapter, the coating gap dependencies of the maximum and minimum attain-

able wet thicknesses in the slot coating process under different slot-die configurations

are studied and derived analytically. A simplified version of the viscocapillary model

was used to derive an expression for the limiting wet thicknesses and their derivatives

with respect to the coating gap.

It was revealed that the minimum wet thickness increases linearly with the coat-

ing gap, irrespective of the type of die configuration used. However, the dependence

of the maximum wet thickness on the coating gap differed significantly for each con-

figuration:

1. Uniform (∆H = 0): The wet thickness increases linearly with the coating

gap, but with a different proportionality constant as compared with that in the

minimum wet thickness case.

2. Underbite (∆H > 0): The wet thickness initially decreases as the coating gap

increases. Eventually, it reaches a local minimum and then increases with the

coating gap.

3. Overbite (∆H < 0): The wet thickness increases monotonically with the coat-

ing gap, but not linearly as it does in the uniform configuration case.

Since a wider coating gap allows a larger space between the slot-die and substrate,

it is intuitive to expect a larger wet thickness with a wider coating gap. The signif-

icance of analysis presented in this chapter is that it demonstrates a case (underbite

configuration) that contradicts this intuition.

Moreover, the 2-D governing equations were solved numerically for the wet

thicknesses at the operating limits to verify the conclusions drawn from the sim-

ple model. The numerically computed dependence of the limiting wet thicknesses
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coincided with the trends observed in the analytically derived equations, proving the

validity of the simple model.
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Chapter 3

Conditions for vortex formation in slot coating flows

3.1 Introduction

As shown in Figure 3.1, vortices can form within the coating bead flow when certain

operating conditions are met. Once formed, they can cause numerous problems such

as particle aggregation, desorption of dissolved gas, and destruction of widthwise

flow uniformity (Nam et al., 2009), all of which severely interfere with the process

operation and degrade the quality of final coated product. Vortices are also known to

cause unwanted mixing of two layers in the two-layer slot coating process through

a phenomenon known as the mid-gap invasion. (Nam & Carvalho, 2009) Thus it is

important to figure out the range of operating conditions that lead to the formation of

vortices in advance and avoid operating within that range.

Previous studies on the vortex formation condition in slot coating flows mostly

focused on the flow of Newtonian fluids. For example, Sartor (1990) reported the

evolution of vortices found in the coating bead flow as the flow rate, substrate speed,

and coating gap are varied. Nam & Carvalho (2009) reported vortex formation near

the interlayer of the two distinct coating fluids in the two-layer slot coating process as

the flow rate of the bottom coating layer is changed. The two studies refer to a simple
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Micro-vortices

Figure 3.1: Microvortices found in the coating bead flow.

analytical criterion for the vortex formation, the so-called one-third rule. This rule

indicates that, for the Newtonian coating fluids, vortices are found under the die-lip

when the wet thickness is smaller than one-third of the coating gap.

The rheological properties of coating fluids used nowadays are becoming more

and more complex with the growing demands on the higher performance of the film

products. Thus, the Newtonian viscosity model alone is not enough to describe the

complex behavior exhibited by the coating fluids exposed to high shear. For example,

the lithium-ion battery electrode slurries are designed to exhibit different levels of

viscosity under different range of shear rate (Li et al., 2021). At low shear rates, high

levels of viscosity slow down the rate of sedimentation and allow sharper edge to be

formed in the wet film. At high shear rates, low viscosity is preferred to facilitate

application of slurry to the substrate. To model this kind of fluid, a non-Newtonian

constitutive equation has to be used to take account of the shear rate dependent vis-

cosity.
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In this chapter, we explore the vortex formation conditions for the slot coating

flows of non-Newtonian fluids by using computational and analytical flow models.

In the following sections, a two-dimensional (2-D) flow model is first introduced to

compute the vortex formation conditions for the power-law fluids. One-dimensional

(1-D) approximation of the coating flow is then applied to derive an analytical expres-

sion for the vortex formation in the downstream coating bead. Based on the derived

expressions, an approximation method is developed and presented for the more gen-

eral cases of generalized Newtonian fluids (GNFs). Finally, a semi-analytical method

is introduced to compute the exact conditions for the GNFs. The problem of finding

vortex formation condition is, under the definition from Section 1.2, of the second

type, since specific conditions the flow has to follow are given and the goal is to find

the operating parameters that induce those conditions.

3.2 Vortex formation condition in coating bead flow of

power-law fluids

One of the simplest models that relates the shear rate and the viscosity is the power-

law constitutive equation. It is used in this section to model the shear rate dependent

viscosity of the given coating fluid. The viscosity, η, under power-law constitutive

equation, can be expressed mathematically as follows:

η = K |γ̇|n−1 , (3.1)

where K and n are the flow consistency index and the power-law index, respectively.

|γ̇| is the magnitude of the rate-of-strain tensor γ̇ = ∇u + (∇u)⊤, given by |γ̇| =√
1
2 IIγ̇ , where IIγ̇ is the second invariant of γ̇, i.e., IIγ̇ = (γ̇ : γ̇) =

∑
i

∑
j γ̇ij γ̇ji.

In the following, we develop a two-dimensional flow model to track the vortex

formation conditions in slot coating flows of power-law fluids.
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3.2.1 Two-dimensional (2-D) computational flow model

Governing equations and boundary conditions

The steady flow of an incompressible fluid under negligible body forces is governed

by the following mass and momentum balances:

∇ · u = 0, (3.2)

ρu · ∇u = ∇ ·T, (3.3)

T = −pI+ η(|γ̇|)γ̇, (3.4)

where u, p, ρ, I, and T are velocity, pressure, density, identity tensor, and total stress

tensor, respectively.

Unlike the fixed die-lip surfaces or the moving substrate, the position of two

menisci of the coating bead is not determined a priori. To pose the problem in a

known domain so that standard measures for solving boundary value problems can be

applied, the unknown physical domain, x = (x, y), is mapped into a fixed reference

domain, ξ = (ξ, η), via a transformation x = x(ξ). The inverse transformation is

defined by the following system of elliptic partial differential equations as described

by de Santos (1991)

∇ ·Dξ(ξ, η)∇ξ = 0, ∇ ·Dη(ξ, η)∇η = 0, (3.5)

where Dξ and Dη are mesh diffusivities that control the distribution of nodes along

the curves of constant ξ and η. These curves define the boundaries of elements that

comprise the domain while the points where they intersect defines the position of

the nodes. An instance of generated mesh determined by conducting a mesh conver-

gence test, together with the number of elements, the number of nodes, and degree of

freedom, is illustrated in Figure 3.2.

Geometrical parameters and boundary conditions associated with the governing

equations are summarized in Figure 3.3. Note that a Dirichlet-type boundary con-
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Number of elements 880

Number of nodes 3717

Degree of freedom 17508

Figure 3.2: Computational mesh used for 2-D flow model.

dition is applied at the inflow boundary by specifying the velocity profile. We used

the Newtonian velocity profile obtained by prescribing the flow rate and imposing

no-slip conditions on each side of the feed slot wall, instead of obtaining the fully

developed velocity profile for each value of power-law index n. This choice ensures

that an exact value of flow rate is specified at the inlet boundary. To guarantee that the

parabolic profile reaches the fully-developed state before exiting the feed slot, we set

the feed slot length Lfl to be five times that of the feed slot height Lfh, and verified

the length to be sufficiently larger than the entrance length.

The operating conditions are summarized in Table 3.1. Base case parameters

are used in the computations unless otherwise stated. Under these settings, with

K(Uw/Hg)
n−1 as the characteristic viscosity andHg as the characteristic length, the

Reynolds number of the system is calculated as 9.85. Therefore, the flow is deemed

to be laminar and no eddies associated with turbulence is expected to be found.
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Mathematical expressions for vortex birth

To solve the given problem, we additionally require the mathematical expressions

that describe the vortices. According to Nam et al. (2009) with an appropriate choice

of reference frame, the axis of rotation, or the vortex center, is at rest relative to the

observer. For one to identify vortices in flows, it is required to examine the flow field

in the vicinity of the stagnation points. Steady fluid parcel motion near the stagnation

point x0 can be expressed using Taylor expansion as

Dx

Dt
= u(x) = u(x0) + δx · ∇u(x0) +

1

2
δxδx : ∇∇u(x0) +O(δx3), (3.6)

where δx = x − x0 and u(x0) = 0. If x0 is a saddle point from which liquids flow

in and out, the determinant of the velocity gradient is negative, i.e., det∇u(x0) < 0.

On the contrary, if x0 is a vortex center, det∇u(x0) > 0. Therefore, the vortex birth

conditions are

u(x0) = 0 and det∇u(x0) = 0. (3.7)

However, u(x0) = 0 holds by default for every point on an impermeable stationary

wall, requiring one to examine the second-order term in Equation (3.6) when identi-

fying the vortices born along the wall. With a proper choice of time unit, the singular

character at the wall can be eliminated from the equation, allowing conditions for

vortex generation along the wall to be derived as

γ̇s =
1

2

∂ut
∂sn

= 0 and
∂γ̇s
∂st

= 0, (3.8)

where the relative position and velocity are expressed in terms of the local orthogonal

coordinate system, i.e., x = tst + nsn and u = tut + nun, where t and n are unit

tangent and normal vector to the solid wall surface.

3.2.2 Solution methods

The Galerkin finite element method (G/FEM) is used to discretize and solve for Equa-

tions (3.2)-(3.4) coupled with (3.5), which serves as a mesh generation equation upon
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discretization. The field variables (velocity, pressure, and nodal position) are repre-

sented as finite linear combinations of known basis functions

u =
∑
j

ujϕj(ξ, η), (3.9)

p =
∑
k

Pkψk(ξ, η), (3.10)

x =
∑
j

xjϕj(ξ, η). (3.11)

Lagrangian biquadratic basis functions ϕj are used to express velocity and nodal

position, and linear discontinuous basis functions ψk to express the pressure. The

unknown basis function coefficients uj , Pk, and xj comprises the solution vector z,

and is obtained by solving the discretized governing equations.

Equations (3.2), (3.3), and (3.5) are multiplied with weighting functions and in-

tegrated over the flow domain, to obtain the following weighted residuals

Rc =

∫
Ω
ψk∇ · udΩ, (3.12)

Rm =

∫
Ω
(ϕjρu · ∇u+∇ϕj ·T) dΩ−

∫
Γ
ϕjn ·TdΓ, (3.13)

Rx = −
∫
Ω
∇ϕj ·D · ∇ξ dΩ +

∫
Γ
ϕjn ·D · ∇ξ dΓ. (3.14)

Here, D = (Dξ, Dη) and ξ = (ξ, η). Weighting functions are the same as basis

functions in Galerkin’s method. The divergence theorem was applied where possible,

and Ω and Γ represent the flow domain and the domain boundary. The subscripts m,

c, and x represent momentum, continuity, and mesh residuals, respectively.

The constructed weighted residuals can be viewed as a discretized and reduced

version of the original partial differential equations governing the system. They form

a system of nonlinear algebraic equations, in terms of the unknown basis function

coefficients z and known system parameters λ, as

R(z,λ) = 0. (3.15)
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This system of equations is solved iteratively by linearizing the equations at each

step (i.e., by Newton’s method). In this analysis, the iteration is considered to have

converged when the L2-norm of the residual vector, ∥R(z,λ)∥2, falls below 10−7.

Direct tracking of vortex birth conditions

The procedure described above are applicable in cases where the values for all the

system parameters, λ, are specified, and the goal is to obtain the solution vector z;

i.e. when the problem is of the first type, as described in Section 1.2. However, the

problem covered in this chapter is of the second type, which requires a somewhat

different approach.

We use the direct tracking algorithm, as described by Nam et al. (2009), to track

the vortex birth condition under different system parameters (e.g., the prescribed flow

rate or the vacuum pressure). In the following, the procedures involved in the algo-

rithm is briefly outlined.

If the obtained solution is to meet specific, sought-after conditions (vortex birth

for example), the solution must satisfy extra equations describing such conditions in

addition to the original governing equations. These newly introduced equations are

called the augmented equations. Some formerly fixed parameters must be “set free”

so that the field variables can shift to meet the new requirements. These parame-

ters serve as the new unknowns for the augmented equations. For the present study,

Equations (3.7) and (3.8) are used as the augmented equation to seek vortex birth

conditions. The extra unknowns are the position of the vortex center (or the stagna-

tion point) and the operating parameter to adjust. The augmented equations, together

with the weighted residuals of the governing equations, Equation (3.15), form an
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augmented system of equations:
R(z,λ,p) = 0,

A(z,λ,p) = 0,

(3.16)

where A and p denote augmented equations and the set of auxiliary parameters for

the system to satisfy given conditions. Once again, this system of nonlinear equations

is solved iteratively by Newton’s method for the basis function coefficients z and the

extra auxiliary parameters p.

After obtaining the solution with a fixed set of parameters λ, the algorithm moves

on to the next stage to seek solutions under other sets of parameters. This multipa-

rameter continuation stage consists of three smaller steps. First, the parameter, whose

effect we are interested in, is changed, i.e., β(i+1) = β(i) + δβ, where δβ is the in-

crement or the decrement made on the parameter and the index i indicates the i-th

continuation step. Next, in the predictor step, the sensitivities of z and p to the pa-

rameter β are computed and a “good” initial guess is obtained by a tangent predictor

as A(i+1) = A(i) + δβ(∂A(i)/∂β), where A stands for either z or p. Lastly, in

the corrector step, Equation (3.16), now with changed β, is solved using Newton’s

method with the initial guess obtained from the previous step. For this analysis, the

tolerance on the L2-norm of the augmented residual vector is set as 10−7. We relaxed

the tolerance up to 10−6 for low values of n near 0.5. With the multiparameter con-

tinuation performed over the entire range of β that we are interested in, we obtain the

complete set of solutions that satisfy the given conditions with different values of β.

3.2.3 Results and discussion

Vortices found in the coating bead flow are classified into two categories according

to the location of their births: (i) on the stationary wall and (ii) within the flow, as

illustrated in Figure 3.4. The former is observed in the downstream region of the
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coating bead with non-zero flow rate (Sartor, 1990; Nam et al., 2009), while the latter

is usually encountered in the upstream region where the net flow rate is zero (Nam

et al., 2009). In the following, we present the results of applying the direct tracking

algorithm to both regions and discuss the effect of shear dependent viscosity on the

vortex formation conditions.

(i) (ii)

Figure 3.4: Two different types of vortices found in the slot coating flow: (i) within

the flow and (ii) on the die-lip surface.

Vortex birth in upstream region

It is a common practice to apply vacuum pressure to the liquid-gas interface in the up-

stream region to stabilize the coating bead flow by pulling the interface away from the

feed slot (Sartor, 1990; Carvalho & Kheshgi, 2000). Increasing the flow rate shows

a similar effect, by pushing the interface toward the upstream direction. Higher vac-

uum and flow rate both results in a larger pressure difference between the interface

and the exit of the feed slot. Thus, an increase in both parameters lead to an increased

length of the upstream coating bead. It is reported that a vortex in the upstream bead

is born from the cusp point within the flow when the bead length grows sufficiently

long (Nam et al., 2009).

Vortices formed in the upstream region are born within the flow. Consequently,

we choose Equation (3.7) to be the augmented equation. Since both vacuum pressure
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and prescribed flow rate can lead to the birth of vortex in the upstream region, either

of the two operating conditions can serve as one of the auxiliary parameters. In this

section, we choose vacuum pressure to be the auxiliary parameter, i.e., its magnitude

is automatically determined through the direct tracking algorithm. Therefore, the set

of auxiliary parameters p in Equation (3.16) is comprised of the vacuum pressure

and the coordinates of the stagnation point x0, which coincide with the location of

vortex birth. The continuation was performed on the power-law index n and the di-

mensionless flow rate to examine their effects on the vortex birth in the upstream

region.

Figure 3.5(a) illustrates the result of the parameter continuation on the dimension-

less flow rate. Under a fixed value of power-law index n, the dimensionless flow rate

decreases as the dimensionless vacuum pressure increases, as both conditions have a

similar effect on the length of the upstream coating bead. From an engineering point

of view, this means that the use of vacuum pressure restricts the maximum thickness

of the film produced, if the vortices are to be avoided in the upstream coating bead

flow.

Under a fixed value of the flow rate, the vacuum pressure required for vortex

birth generally increases with the increasing power-law index n, as depicted in Fig-

ure 3.5(b). However, as the dimensionless flow rate approaches the critical value of

approximately 0.62, the vacuum pressure at the moment of vortex birth vanishes re-

gardless of the power-law index n, as shown in curve (iii) of Figure 3.5(b). This

observation implies that the vortices are likely to be found in coating flows with a

flow rate above this critical value, even in the absence of vacuum pressure. Note that

Figures 3.5(a) and (b) both represent hyperplanes of the same surface residing in

the three-dimensional parametric space consisted of dimensionless vacuum pressure,

flow rate, and power-law index n.
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Vortex birth in downstream region

In the downstream region, the net flow rate is equal to the predetermined flow rate

per unit width, q = hwUw, assuming that no coating liquid is lost through evap-

oration or leakage during the process. Since vortices are formed on the stationary

downstream die lip, Equation (3.8) is used as the augmented equation appearing in

Equation (3.16). Since the vacuum pressure plays no role in determining the onset

of vortex formation in this region, we choose only the prescribed flow rate q and the

location of the vortex birth to be the extra auxiliary parameters p in Equation (3.16).

To examine the effect of shear-rate dependent viscosity on the vortex birth condition,

n is used as the continuation parameter, i.e., β = n.

Figure 3.6 illustrates the dimensionless flow rate hw/Hg at the moment of vortex

birth, as predicted by the direct tracking algorithm when the power-law index n is

varied from 0.5 to 1.5. It is evident from the plot that there is a clear relationship

between the vortex formation condition, expressed in terms of the dimensionless flow

rate, and the power-law index n. Also, it should be noted that the one-third rule

discussed in Section 3.1 is verified by the numerical results when n = 1, as marked

in Figure 3.6.

These observations motivated us to search for an analytical expression that can

predict the vortex formation conditions in the downstream region for the slot coating

flows of the power-law fluids, just like what one-third rule does for the Newtonian

fluids. The derivation and findings are presented in the following section.
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vortex

Newtonian

Figure 3.6: Dimensionless flow rate hw/Hg at the moment of vortex birth (from 2-D

FEM computations) plotted against the power-law index n. Note that the one-third

rule is recovered when n = 1.

3.3 Flow reversal condition in one-dimensional flow model

The flow in the downstream region is highly rectilinear in nature, which allows it

to be approximated as a fully-developed one-dimensional (1-D) rectilinear flow be-

tween a pair of moving and stationary walls. This type of flow is often referred to as

Couette–Poiseuille flow (C-P), owing to the two distinct driving forces for the fluid

motion: the viscous force due to the shearing motion between the moving and sta-

tionary plate and the pressure gradient imposed along the streamwise direction. With
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these assumptions, the approximated 1-D C-P flow becomes tractable for analysis in

a coordinate system as depicted in Figure 3.7.

x

y

y = 0

y = Hg

u(0) = Uw

u = u(y)

dp/dx

u(Hg) = 0

Figure 3.7: Configuration of the planar Couette–Poiseuille (C-P) flow considered in

1-D flow analysis.

Vortices, in a 1-D flow domain, are characterized by the presence of flow reversal.

The description of motion in such a space is limited due to the lack of cross-flow

component, and a flow reversal is indistinguishable from a vortex in the flow domain.

Therefore, in this section, the goal is to search for the onset condition of flow reversal

in 1-D C-P flow which, hopefully, provides an useful prediction of the actual vortex

birth conditions in the 2-D flow.

3.3.1 Mathematical formulation

Since the flow is fully-developed, the fluid velocity u is independent of the flow

direction and only dependent on y. The pressure gradient dp/dx, as a result, is also

constant along the flow direction. The plate located at y = 0 is moving in the x-

direction with a constant velocity Uw, while the plate at y = Hg remains still. Here,

Hg is the channel height.
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We introduce the following dimensionless variables,

ũ =
u

Uw
, ỹ =

y

Hg
, P =

dp̃

dx̃
=

dp

dx

Hg

K(U/Hg)n
. (3.17)

With these variables substituted and tilde sign omitted, Equations (3.2)-(3.4), and

(3.1) are reduced to
d

dy

(∣∣∣∣dudy
∣∣∣∣n−1 du

dy

)
= P, (3.18)

which is subject to the following no-slip boundary conditions

u = 1 at y = 0,

u = 0 at y = 1.
(3.19)

Note that the scaling factorK(Uw/Hg)
n in Equation (3.17) is the characteristic stress

under a simple shearing motion. The unknown pressure gradient P is determined by

the following mass conservation equation:∫ 1

0
u dy =

q

UwHg
= Q. (3.20)

Here, q is the prescribed flow rate per unit width andQ is the dimensionless flow rate.

By integrating Equation (3.18) we obtain∣∣∣∣dudy
∣∣∣∣n−1 du

dy
= (y − c1)P, (3.21)

where c1 is the constant of integration and also the vertical position where the flow

exhibits a zero shear-rate.

As mentioned by Ross et al. (1999), differential equations involving absolute

values should be dealt with carefully, as different signs may yield distinct solutions.

Therefore, two remarks must be considered to solve Equation (3.21). A close inspec-

tion of the equation reveals that the sign of shear rate du/dy coincides with that of

(y−c1)P . Moreover, du/dy is an odd function with respect to y = c1, which implies

that u(y) is an even function (as shown in Figure 3.8).

46



To make use of this property, in this analysis, we assume du/dy ≥ 0 and solve for

Equation (3.21) in a single side of the symmetry plane, y > c1 or y < c1, depending

on the sign ofP . Since u(y) is symmetric with respect to y = c1, the other half (where

du/dy < 0) is obtained effortlessly by reflection. The boundary conditions are then

applied to restrict the flow to the appropriate domain. Note that in the absence of the

pressure gradient, i.e., P = 0, the solution is a pure Couette type flow u(y) = 1− y,

with a dimensionless flow rate of Q = 1/2.

Previous studies, e.g., Flumerfelt et al. (1969), adopted two different approaches

to derive the velocity profile depending on the existence of a maximum or minimum

of the velocity profile within the flow domain. Our approach differs in that a single

expression is derived for the velocity profile, regardless of the position of c1.

When the prescribed dimensionless flow rate is less than 1/2, there exists an ad-

verse pressure gradient (P > 0) along the channel, and Equation (3.21) is rearranged

as
du

dy
= P

1
n (y − c1)

1
n . (3.22)

Upon integration and application of the symmetry condition, the velocity profile is

obtained as

u(y) = P
1
n

n

n+ 1
|y − c1|

1
n + c2, (3.23)

where c2 is another constant of integration. Note that with the symmetry condition

applied, this profile is valid throughout the entire domain. Two unknowns, P and c2,

are eliminated from the equation by applying boundary conditions, Equation (3.19):

u(y) =
|1− c1|

n+1
n − |y − c1|

n+1
n

|1− c1|
n+1
n − |c1|

n+1
n

. (3.24)

The dimensionless pressure gradient P is also expressed in terms of c1,

P
1
n =

(n+ 1)/n

|c1|
n+1
n − |1− c1|

n+1
n

. (3.25)
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The velocity profile and the pressure gradient are expressed in terms of an undeter-

mined constant c1. It is finally determined through Equation (3.20) numerically, with

a given dimensionless flow rate Q.

A same mathematical formulation for the case of forward pressure gradient, i.e.,

P < 0, leads to the velocity profile identical to Equation (3.24) and the pressure

gradient expressed in terms of c1 as

−(−P )
1
n =

(n+ 1)/n

|c1|
n+1
n − |1− c1|

n+1
n

. (3.26)

With the velocity profile and pressure gradient obtained, it is possible to classify

the flow into four states, as depicted in Figure 3.8. The sign of P separates flow

states into two groups, I-II (P > 0) and III-IV (P < 0). The value of c1 is used to

distinguish different states within each group. Consequently, c1, the location of zero

shear rate, uniquely determines flow states.

In this analysis, explicit expressions for the limiting flow rate conditions are es-

tablished and used as the criteria for distinguishing different flow states. Flumerfelt

et al. (1969) and Malik & Shenoy (1991) classified the C-P flow into different states

in a similar manner, but only in terms of the dimensionless pressure gradients. Since

P is uniquely determined by Q through Equations (3.20) and (3.24)-(3.26), the same

criteria that distinguish between different flow states can be expressed in terms of Q

as well.

To obtain the conditions for limiting cases, c1, the location of zero shear rate, in

Equation (3.24) is set to the boundary of the domain, i.e., c1 = 0 and c1 = 1. The

velocity profile is then substituted into Equation (3.20) to obtain the dimensionless

flow rate in each case. The resultant limiting flow rate and pressure gradient pairs are
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Ⅰ Ⅱ Ⅲ Ⅳ

1/2 ≤ c1 ≤ 1

P > 0
c1< 0

P < 0
c1 > 1

P > 0
0 ≤ c1 ≤ 1/2

P < 0

y = c1

Figure 3.8: Four distinguishing flow states, dependent on operating conditions. Here,

y = c1, shown as the dashed line, is the position of zero shear rate, and P is the

dimensionless pressure gradient.

expressed as

Q =
n

2n+ 1
and P =

(
n+ 1

n

)n

(Adverse pressure gradient), (3.27)

Q =
n+ 1

2n+ 1
and P = −

(
n+ 1

n

)n

(Forward pressure gradient). (3.28)

Note that the pressure gradient condition is identical to that derived in the previous

study (Flumerfelt et al., 1969). Following these criteria, the conditions for each flow

state are developed and are listed in Table 3.2, and are depicted in Figure 3.9.

Equation (3.27) sets the boundary between flow states I and II, and is the most

important to the present analysis as it marks the onset of the flow reversal. As previ-

ously mentioned, this may imply the generation of vortices in the downstream region

of the slot coating flow. It is also clear from Equations (3.27) and (3.28) that the

critical conditions are dependent solely on the power-law index n, as illustrated in

Figure 3.9.

3.3.2 Comparison with 2-D model

In the downstream region of the coating bead flow, q = hwUw holds by mass con-

servation, where hw stands for the wet thickness of the coated film and q is the
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Table 3.2: Dimensionless velocity profile, pressure gradient, and flow rate conditions

for different flow states in 1-D C-P flow of power-law fluids.

Flow state I II

Velocity profile (1−c1)
n+1
n −|y−c1|

n+1
n

(1−c1)
n+1
n −c

n+1
n

1

(c1−1)
n+1
n −(c1−y)

n+1
n

(c1−1)
n+1
n −c

n+1
n

1

Flow rate Q < 1
2 − 1

2(2n+1)
1
2 − 1

2(2n+1) < Q < 1
2

Pressure gradient P >
(
n+1
n

)n
0 < P <

(
n+1
n

)n
Flow state III IV

Velocity profile (1−c1)
n+1
n −(y−c1)

n+1
n

(1−c1)
n+1
n −(−c1)

n+1
n

(1−c1)
n+1
n −|y−c1|

n+1
n

(1−c1)
n+1
n −c

n+1
n

1

Flow rate 1
2 < Q < 1

2 + 1
2(2n+1)

1
2 + 1

2(2n+1) < Q

Pressure gradient −
(
n+1
n

)n
< P < 0 P < −

(
n+1
n

)n

Ⅰ

Ⅳ

Ⅲ

Ⅱ

Ⅰ

Ⅳ

Ⅲ

Ⅱ

(a) (b)

Figure 3.9: (a) Dimensionless flow rate and (b) dimensionless pressure gradient that

divides the flow states in the C-P flow of power-law fluids, plotted against the power-

law index n.

prescribed flow rate per unit width through the downstream channel (as defined in
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Equation (3.20)). Substituting the relation into the Equation (3.20), we obtain

Q =
q

UwHg
=
hw
Hg

. (3.29)

This implies that for slot coating flows, the dimensionless wet thickness coincides

with the dimensionless prescribed flow rate. Based on this fact, we use Equa-

tion (3.27), the flow reversal condition, to predict the vortex formation conditions

computed by 2-D flow model.

Vortex-free 

downstream die lip

Vortex formed along the 

downstream die lip

Vortex

Figure 3.10: Dimensionless flow rate hw/Hg at the moment of vortex birth (2-D FEM

computations) and flow reversal (1-D model prediction) plotted together against the

power-law index n.

Figure 3.10 shows the dimensionless flow rate at the onset of flow reversal (Equa-

tion (3.27)) derived from the 1-D rectilinear flow model, plotted as a function of n,
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along with the vortex formation conditions computed using 2-D model (previously

presented in Figure 3.6). The two results shows reasonable agreement, with the maxi-

mum relative error being less than 4% under the range of n considered in this analysis.

This shows that the analytical flow reversal condition derived from the simple recti-

linear flow model is fairly accurate at predicting the birth of vortex in the downstream

slot coating flow of the power-law fluid.

What is also worth noting is that the dimensionless flow rate at the onset of both

conditions decreases as n decreases, which means that the shear-thinning property

helps suppress the vortex birth under the downstream slot-die lip. From an engi-

neering point of view, this implies that a wider range of operating conditions can be

exploited while preventing downstream vortex formation, by using coating liquids

with a higher degree of shear-thinning behavior. In other words, it is possible to coat

a thinner film at a fixed coating gap Hg or coat at a larger coating gap with a fixed

flow rate in a vortex-free environment.

A qualitative explanation regarding this trend can be explored by examining the

kinematics along the stationary wall. For a vortex bubble to occur, the flow must

detach from the wall, which can be identified by a change in the sign of the shear rate

∂ut/∂sn along the wall. Figure 3.11 illustrates the velocity profile obtained from the

1-D model at different values of n (varied from 0.5 to 1.5) and dimensionless flow rate

hw/Hg (varied from 3/8 to 1/4). At a fixed hw/Hg, the flow with the lowest value of

n exhibits the most negative shear rate at the upper wall. As the dimensionless flow

rate decreases, the magnitude of the adverse pressure gradient across the channel

grows, causing the shear rate to increase toward a positive value. At some point, the

sign of the shear rate is changed and flow reversal is observed. This point of transition

occurs at the lowest dimensionless flow rate for the shear-thinning fluid (n < 1) and

at the highest for the shear-thickening fluids (n > 1). This suggests that the shear-

thinning property of the fluid makes it less vulnerable to the adverse pressure gradient
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generated under the reduced flow rate. Thus, the onset of flow reversal and the birth

of vortex on the wall are delayed by this fluid property.

n = 0.5

h
w

Hg

=
1

3

n = 1.0 n = 1.5

h
w

Hg

=
3

8

h
w

Hg

=
1

4

Figure 3.11: Velocity profiles under the downstream die lip, as predicted by the 1-D

rectilinear flow model with dimensionless flow rate of hw/Hg = 3/8, 1/3, and 1/4;

and power-law index taking values of n = 0.5 (shear-thinning), n = 1.0 (Newto-

nian), and n = 1.5 (shear-thickening).
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3.4 Local power-law approximation method

By rearranging the flow reversal conditions (Equation (3.27)) into their dimensional

forms, we obtain following critical conditions in terms of the pressure gradient px,c

and flow rate per width qc as:

px,c =

(
n+ 1

n

)n K(Uw/Hg)
n

Hg
, (3.30)

qc =
n

2n+ 1
UwHg. (3.31)

A closer inspection of Equations. (3.30) and (3.31) reveals that the critical condi-

tions for power–law fluids are explicitly expressed in terms of the system parameters

(Uw and Hg) and fluid properties (K and n). Hence, in this section, we propose

the local power–law approximation (LPLA) method, which approximates a fluid as a

power–law fluid locally around a representative shear rate γ̇r, as shown in Figure 3.12.

With this method, it is possible to extend the results obtained in Section 3.3 for power-

law fluids to the more general cases of generalized Newtonian fluids (GNFs), whose

viscosities depend on the shear rate arbitrarily.

Cruz et al. (2012) adopted the same methodology to estimate the Nusselt number

and friction factor of a fully developed laminar flow in circular pipes with a constant

wall heat flux. They used the Newtonian wall shear rate as the representative shear

rate of the system and reported maximum estimation errors of 6% and 8% for the fric-

tion factor and Nusselt number, respectively. In the analysis covered in this section,

we applied the method to a different system (parallel channel flow between stationary

and moving walls) using a different representative shear rate to estimate the critical

flow reversal conditions.

For the flow curve in the log–log scale, a tangent line parameterized by two vari-

ables, K̂ and n̂, can be constructed at γ̇r. From the slope of the curve and the viscosity
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Figure 3.12: Flow curve plotted in log–log scale. Fluid is approximated as power–law

fluid, parameterized by K̂ and n̂, at a representative shear rate γ̇r.

evaluated at γ̇r, K̂ and n̂ are obtained as follows:

K̂ = η(γ̇r)γ̇
1−n̂
r , (3.32)

n̂ = nloc(γ̇r) =
d log η

d log γ̇

∣∣∣∣
γ̇=γ̇r

+ 1 =
γ̇r

η(γ̇r)

dη

dγ̇

∣∣∣∣
γ̇=γ̇r

+ 1. (3.33)

Here, nloc(γ̇) = d log η
d log γ̇ + 1 is the local power–law index of the viscosity curve, η,

obtained by constructing a tangent line at γ̇. Upon replacing n in Equation (3.31) by

n̂, the approximate value of the critical flow rate per width q̂c is obtained as follows:

q̂c =
n̂

2n̂+ 1
UwHg. (3.34)

Meanwhile, two approaches can be used to the approximate the critical pressure gra-

dient. In one approach, we first obtain the approximate wall shear rate ˆ̇γw by replacing

n in the expression derived for the wall shear rate of power-law fluid by n̂.

ˆ̇γw =
n̂+ 1

n̂

Uw

Hg
. (3.35)
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Also, by the macroscopic force balance on the 1-D C-P flow at the onset of the flow

reversal, the wall shear stress, τw, can be related to the critical pressure gradient, px,c,

as:
τw
Hg

=
τ(y)

y
=

dτ

dy
= px,c. (3.36)

By substituting Equation (3.35) into the derived expression, the approximate value

for the critical pressure gradient is computed as follows:

(p̂x,c)1 =
τ̂w
Hg

=
η(ˆ̇γw)ˆ̇γw
Hg

. (3.37)

In the other approach, we replace K and n in Equation (3.30) by K̂ and n̂, respec-

tively, to obtain the following expression:

(p̂x,c)2 =

(
n̂+ 1

n̂

)n̂ K̂(Uw/Hg)
n̂

Hg
=

(
n̂+ 1

n̂

Uw/Hg

γ̇r

)n̂ η(γ̇r)γ̇r
Hg

. (3.38)

This approach can be considered as the approximation of the wall shear stress instead

of the wall shear rate.

The accuracy of Equations (3.34), (3.37), and (3.38) in predicting the actual crit-

ical conditions depend significantly on the choice of γ̇r. In this study, we select the

apparent shear rate

γ̇a =
Uw

Hg
, (3.39)

to represent a specific system. At the onset of the flow reversal, γ̇a coincides with the

average of the magnitude of shear rate, and is thus an appropriate representative of

the system considered in this study. Note that this is not the case for general plane

C–P flows, where the sign of the shear rate may change depending on the operat-

ing conditions. Furthermore, γ̇a can be easily computed from the system parameters

without any numerical procedure, allowing the method to be fully analytical.

3.4.1 Results and discussion

In the following, we present the approximate values of the critical conditions for flow

reversal obtained using the LPLA method. The Carreau–Yasuda (C–Y) and Bing-
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ham–Carreau–Yasuda (B–C–Y) models (Kistler & Schweizer, 1997) were selected

as viscosity models for the fluids involved in the computations. The constitutive equa-

tions are as follows:

C–Y: η(γ̇) = η∞ + (η0 − η∞) [1 + (λ|γ̇|)a]
n−1
a , (3.40)

B–C–Y: η(γ̇) = η∞ +

(
η0 − η∞ + τY

1− e−F |γ̇|

|γ̇|

)
[1 + (λ|γ̇|)a]

n−1
a . (3.41)

Here, η∞, η0, λ, n, a, τY , and F are the model parameters determined by fitting the

experimental data. To analyze the accuracy of the LPLA method, we adjusted the

values of the parameters such that the resulting flow curves exhibited different values

of n̂ over the shear rate range of interest. The parameter values are summarized in

Table 3.3, and the corresponding flow curves are shown in Figure 3.13.
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Figure 3.13: Flow curves of A. Carreau–Yasuda (C–Y) fluid and B. Bing-

ham–Carreau–Yasuda (B–C–Y) fluid.

The LPLA method was used to predict the critical flow rate per width, qc, and

critical pressure gradient, px,c. The approximate values were computed for the C–P

flows of both the C–Y and B–C–Y fluids. In addition, two different approaches were

used to approximate px,c, either by approximating the wall shear rate ((p̂x,c)1) or

by approximating the wall shear stress ((p̂x,c)2) as that of the power-law fluid. The
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Table 3.3: Values of model parameters.

Model η∞ / Pa · s η0 / Pa · s λ / s n a τY / Pa F / s

C–Y 0.01 100 500 0.2 0.8 - -

B–C–Y 0.01 10 0.01 0.2 0.8 0.1 1000

different cases of approximation considered in this section and the corresponding

figure numbers are summarized in Figure 3.14.

LPLA

ොqc ොpx,c

C-Y
(Fig. 3.16)

B-C-Y
(Fig. 3.17)

C-Y

(ොpx,c)1
(Fig. 3.18)

(ොpx,c)2
(Fig. 3.19)

(ොpx,c)1
(Fig. 3.20)

(ොpx,c)2
(Fig. 3.21)

B-C-Y

Figure 3.14: Tree diagram showing cases where LPLA method is applied to approx-

imate critical flow reversal conditions. Figure number corresponding to each case is

also presented.

Uw and Hg are two controllable operating parameters of the system presented

herein. The critical conditions, in their dimensionless form, remain constant as the

two variables are increased or decreased by the same factor. Therefore, the critical

conditions were computed under different ratios of the two variables, Uw/Hg, rang-

ing from 10−5 to 105 s−1, instead of changing the value of each variable indepen-

dently.

The normalized velocity profiles of C-Y and B-C-Y at the onset of flow rever-
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sal are presented in Figure 3.15. It is clear from the figure that the profile depends

strongly on the operating conditions. Note that the velocity profile closely resem-

bles that of the Newtonian fluid when the flow curve (refer to Figure 3.13) around

Uw/Hg is in the Newtonian plateau region. On the other hand, when it resides in the

power-law region, the corresponding velocity profile exhibits typical traits of a shear-

thinning power law fluid flow, such as the “flat” profile observable near the stationary

wall.
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Figure 3.15: Normalized velocity profiles of Couette–Poiseuille (C–P) flow of A. Car-

reau–Yasuda (C–Y) fluid and B. Bingham–Carreau–Yasuda (B–C–Y) fluid at the on-

set of flow reversal, under different values of operating conditions. Newtonian coun-

terpart (red solid line) is presented together as a reference.

Lastly, the values predicted by the LPLA method are compared against the exact

values computed using the semi-analytical method, which will be discussed in de-

tail in Section 3.5. The relative errors are computed using the following formula to

evaluate the prediction accuracy of the approximation method:

εrel(%) =

∣∣∣∣Aexact −Aapprox

Aexact

∣∣∣∣× 100 (%), (3.42)

whereAexact is the exact value of the critical condition andAapprox is the approximate

value predicted by the LPLA method.
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Because the LPLA method approximates a given fluid as a power–law fluid lo-

cally around γ̇r, the error is likely to be small when γ̇r lies in the log–linear region

of the flow curve. We define the curvature κ of the log–log flow curve using the

following equation and used it to quantify the log–linearity of the curve:

κ =

∣∣∣ d2 log η
d (log γ̇)2

∣∣∣{
1 +

(
d log η
d log γ̇

)2} 3
2

. (3.43)

Critical flow rate

Figure 3.16A presents the critical flow rate per width qc scaled by UwHg computed

under varying operating conditions, Uw/Hg, for the C–Y fluid. Despite the variation

in the error with changing operating conditions, the magnitude of the error, computed

using Equation (3.42), remained reasonably low throughout the entire operating con-

dition (Uw/Hg) range, with the maximum being 3.98%. What is also noteworthy is

that no numerical method was involved when using the LPLA method with γ̇r = γ̇a

to obtain the approximate value of the critical flow rate per width q̂c, making it a

fully-analytical method. By examining the curvature of the viscosity curve and the

relative error depicted in Figure 3.16B, we find that the error trend does not follow

that of the curvature. The reason for this will be discussed in detail in Section 3.5.1.

The critical flow rates per width computed for the B–C–Y fluid are shown in

Figure 3.17A. Similar to the case of the C–Y fluid, the LPLA methods satisfactorily

predicted the critical condition under most of the interesed Uw/Hg ranges. However,

large level of relative error (13.49%) was observed when the curvature of the viscosity

curve is large around the given operating conditions. The mismatch between the error

and curvature trends was also observable in this case (refer to Figure 3.17B).

It is also interesting to notice for both C-Y and B-C-Y cases that the critical

dimensionless flow rate approaches one-third when the operating condition corre-

sponds to the Newtonian plateau of the viscosity curve, whereas the flow rate falls
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Figure 3.16: A. Dimensionless critical flow rate per width for C–Y fluid predicted

using LPLA method (solid black line) along with exact values computed by using

semi-analytical method (solid red line), B. Relative error of the LPLA method. Solid

blue line represents curvature of corresponding log–log flow curve.
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Figure 3.17: A. Dimensionless critical flow rate per width for B-C–Y fluid predicted

using LPLA method (solid black line) along with exact values computed by using

semi-analytical method (solid red line), B. Relative error of the LPLA method. Solid

blue line represents curvature of corresponding log–log flow curve.

below one-third when the operating condition moves on to the power-law (shear-
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thinning) region of the viscosity curve. This trend agrees with the observation we

have made in Section 3.3.2, where it was observed that the flow reversal occurs at a

smaller flow rate when the fluid becomes more shear-thinning.
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Critical pressure gradient

As described above, the approximate values of the critical pressure gradient, denoted

by (p̂x,c)1 and (p̂x,c)2, were obtained using two different approaches for applying

the LPLA method. (p̂x,c)1 and (p̂x,c)2 of the C–Y fluid, as well as the exact values

obtained using the semi-analytical method, are presented in Figures 3.18A and 3.19A.

The pressure gradient was scaled by η(γ̇a)γ̇a/Hg, which is the apparent shear stress

divided by the channel height. It is evident from the figures that both approaches of

the LPLA method approximate the exact value as accurately as the LPLA method did

in predicting qc.

The relative errors of (p̂x,c)1 and (p̂x,c)2 of the C–Y fluid are shown in Figs. 3.18B

and 3.19B. The maximum relative error of (p̂x,c)1 in predicting the critical pressure

gradient was 6.59%, whereas the corresponding values of (p̂x,c)2 was 4.76%. The

error magnitudes were comparable, rendering both LPLA methods feasible for ap-

proximating px,c of C-Y fluids analytically. Unlike the error of q̂c, those of (p̂x,c)1

and (p̂x,c)2 resembled the curvature variation of the flow curve.

(p̂x,c)1 and (p̂x,c)2 of the B–C–Y fluid, along with their relative errors, are shown

in Figures 3.20 and 3.21, respectively. The approximate values were reasonably close

to the actual px,c under most operating condition ranges, with the exception of (p̂x,c)1

near the operating condition where the viscosity curve exhibited a large curvature.

The relative error as high as 14.82% was observed for (p̂x,c)1. That of the (p̂x,c)2

remained relatively low throughout the entire operating condition ranges, with the

maximum being 8.00%. The reason behind the high error of (p̂x,c)1 is suspected to

be the discrepancy between the wall shear rate γ̇w, which is approximated as a power-

law fluid, and the viscosity curve η, which belongs to the original GNF. Once again,

the error trends of both (p̂x,c)1 and (p̂x,c)2 resembled that of the curvature, unlike that

of q̂c.
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Figure 3.18: A. Dimensionless critical pressure gradient of C–Y fluid and its approxi-

mate value, (p̂x,c)1, computed using LPLA method (solid black line) along with exact

values computed by using semi-analytical method (solid red line), B. Relative error

of the LPLA method. Solid blue line represents curvature of corresponding log–log

flow curve.
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Figure 3.19: A. Dimensionless critical pressure gradient of C–Y fluid and its approxi-

mate value, (p̂x,c)2, computed using LPLA method (solid black line) along with exact

values computed by using semi-analytical method (solid red line), B. Relative error

of the LPLA method. Solid blue line represents curvature of corresponding log–log

flow curve.
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Figure 3.20: A. Dimensionless critical pressure gradient of B-C–Y fluid and its ap-

proximate value, (p̂x,c)1, computed using LPLA method (solid black line) along with

exact values computed by using semi-analytical method (solid red line), B. Rela-

tive error of the LPLA method. Solid blue line represents curvature of corresponding

log–log flow curve.

��
��

��
�	

��
�

��
	

��
�

�����������

���

��

���

���

���

	��

� �
��
��
�� �
��
��

��

�

���������������
������ �
� � �
��

��
��

��
�	

��
�

��
	

��
�

�����������

�

	

�



�

	 �
��
���

�

�
�
� � �
�

����

����

����

����

��	�




Figure 3.21: A. Dimensionless critical pressure gradient of B-C–Y fluid and its ap-

proximate value, (p̂x,c)2, computed using LPLA method (solid black line) along with

exact values computed by using semi-analytical method (solid red line), B. Rela-

tive error of the LPLA method. Solid blue line represents curvature of corresponding

log–log flow curve.
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3.5 Semi-analytical method

In this section, we present a systematic procedure for computing the exact values of

the critical conditions at the onset of flow reversal, whose approximate values were

predicted using the LPLA method in the previous section.

The system of interest is a one-dimensional fully-developed laminar C–P flow

of an incompressible generalized Newtonian fluid between two parallel plates, with

one moving at velocity Uw and the other stationary at distance Hg from the moving

plate. At the onset of flow reversal, the flow is under an additional constraint, i.e., the

shear rate is zero on the stationary wall. The detailed flow configuration is shown in

Figure 3.22. The configuration is basically the same as that depicted in Figure 3.7,

but the direction of increasing y is inverted for the sake of simplicity during the

derivation.

Figure 3.22: Configuration of flow considered in the derivation of semi-analytical

method.

When the system parameters (Uw and Hg) and fluid properties are specified, the

abovementioned flow state can be fully determined based on a pair of critical flow

rate and pressure gradient conditions. We propose a method to obtain the two critical

conditions directly using Uw and Hg as well as the flow curve, instead of obtain-
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ing the velocity profile as an intermediate, which would otherwise require solving a

(non)linear differential equation. This method is named as the semi-analytical method

because it may or may not require the use of numerical methods depending on the

type of constitutive equation involved. However, the only numerical procedures in-

volved in this method are a convergence-guaranteed root-finding algorithm and a nu-

merical integration scheme, which are generally more computationally efficient than

solving differential equations.

We referred to the derivation of the Weissenberg–Rabinowitsch equation (Ma-

cosko, 1994; Sochi, 2015), which is used extensively in the field of capillary rheom-

etry, to obtain an expression that relates the flow rate to the pressure gradient.

The flow rate per width up to a height of y can be expressed as

q(y) =

∫ y

0
u(y∗) dy∗, (3.44)

where u is the velocity in x–direction, and y∗ is a dummy variable for integration.

Such variables are denoted with asterisks hereinafter.

By integrating Equation (3.44) by parts, changing the integration variable using

the relation given in Equation (3.36), and applying the zero shear stress condition on

the stationary wall (at y = 0), we obtain the following expression for q(y):

q(y) = u(y)y − I(y), (3.45)

I(y) =

(
Hg

τw

)2 ∫ τ(y)

0
γ̇τ∗ dτ∗, (3.46)

where γ̇ = du/dy is the shear rate. The expression for the critical flow rate per width

qc can be obtained as:

qc = UwHg − I(Hg), (3.47)

by substituting Hg into Equation (3.45).

Because the distance between the walls (Hg) and the wall velocity (Uw) are spec-

ified, the only unknowns are the wall shear stress τw and critical flow rate qc. The
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additional equation to render the problem fully determined is the no-slip condition at

the stationary wall, which is the only unused condition thus far.

For the additional equation, we use the integral equation for the velocity,

u(y)− u(0) =

∫ u(y)

0
du∗. (3.48)

By the change of variable and applying zero shear rate condition on the stationary

wall (at y = 0), we obtain the following expression for u(y).

u(y)− u(0) = I2(y), (3.49)

I2(y) =
Hg

τw

∫ τ(y)

0
γ̇dτ∗. (3.50)

By substituting Hg into Equation (3.49) and applying the unused no-slip condi-

tion, u(0) = 0, we obtain the second equation to make the problem fully determined

as follows:

Uw = I2(Hg). (3.51)

By solving Equations (3.47) and (3.51), one can obtain the exact value of the

wall shear stress τw (which is directly related to the critical pressure gradient px,c by

Equation (3.36)) and the critical flow rate per width qc at the onset of flow reversal.

The detailed procedure is as follows:

1. Using the wall velocity Uw, channel height Hg, and flow curve (η = η(γ̇)),

Equation (3.51) is solved for the wall shear rate γ̇w. Numerical methods are

used for integration and root-finding, where necessary.

2. The wall shear stress is calculated from τw = η(γ̇w)γ̇w and substituted into

Equations (3.36) and (3.47) to obtain the critical pressure gradient px,c and the

flow rate per width qc.

When computing the exact values presented in Section 3.4.1, we used the QAGS

routine of the QUADPACK library for numerical integration, as well as the bisection

method with increasing interval for root-finding.
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3.5.1 Source of error in local power-law approximation method revis-

ited

In Section 3.4.1, we have observed the discrepancy between the error and the cur-

vature of the viscosity curve when LPLA method is applied to predict the critical

flow rate, qc. An equation derived for the semi-analytical method provides possible

reasons behind this observation.

By nondimensionalizing Equation (3.47), we can obtain an expression for the

dimensionless critical flow rate as follows:

qc
UwHg

= 1−
(

1

γ̇a

)∫ γ̇w

0

{
τ(γ̇∗)

τw

}2

nloc(γ̇
∗) dγ̇∗. (3.52)

Here, nloc is the local power–law index as defined in Equation (3.33). Because

the integrand, (τ/τw)2nloc, is a continuous function of γ̇, according to the mean value

theorem, 0 < γ̇m < γ̇w exists such that the following relation holds:

qc
UwHg

= 1−
(
γ̇w
γ̇a

){
τ(γ̇m)

τw

}2

nloc(γ̇m) = 1−
(
γ̇w
γ̇a

)(
τm

τw

)2

nloc,m. (3.53)

For power–law fluids, analytical expressions can be obtained for each term in

Equation (3.53) in terms of the power–law index n.

γ̇w
γ̇a

=
n+ 1

n
, (3.54)

τm

τw
=

√
1

2n+ 1
, (3.55)

nloc,m = n. (3.56)

Applying the LPLA method to obtain the approximate value of the critical flow

rate per width, q̂c, is equivalent to replacing n in the equations above with n̂, as

defined in Equation (3.33). This can be verified by substituting Equations (3.54)

through (3.56), where n is replaced by n̂, into Equation (3.53) and comparing the

resulting expression with Equation (3.34).
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The errors generated in the approximation of each term add up to the final error of

q̂c in approximating qc. Therefore, their contribution to the final error can be analyzed

by comparing the exact and approximate values term by term.

Figure 3.23 presents the ratios of the approximate to exact values of γ̇w/γ̇a,

τm/τw, and nloc,m for the C–Y fluid. A ratio larger than unity indicates an overestima-

tion of the approximate values, whereas a ratio less than unity corresponds to under-

estimation. The semi-analytical method was used to obtain the exact value of γ̇w/γ̇a,

whereas those of the remaining terms were evaluated numerically using the secant

method. The approximate values were obtained by replacing n in Equations (3.54)

through (3.56) with the local power–law index, n̂, evaluated at γ̇r = γ̇a. The ap-

proximate values of τm/τw indicated the least deviation from the exact values, with

ratios ranging from 0.980 to 1.028. The deviation of the approximate values of the

remaining terms was relatively large, with the ratio of γ̇w/γ̇a ranging from 0.891 to

1.145 and that of nloc,m ranging from 0.839 to 1.154. However, their deviations were

opposite; when the ratio of γ̇w/γ̇a was larger than unity (overestimation), the ratio

of nloc,m tended to be smaller than unity (underestimation), and vice versa. Because

each term was multiplied together to obtain the final q̂c, as shown in Equation (3.53),

individual errors were canceled and a low overall estimation error was obtained, as

depicted in Figure 3.16. Moreover, it was observed that the estimation error was small

(ratios tend to unity) near the operating conditions where the flow curve was highly

log–linear (see Figure 3.16B). However, the exact value of the operating condition,

Uw/Hg, at which the ratio equals unity, differed for each term. This may have con-

tributed to the deviation of the relative error of the LPLA method with γ̇r = γ̇a from

the curvature trend, as observed from Figure 3.16.

The ratios for the B–C–Y fluid are shown in Fig. 3.24 and a similar trend to that

of the C–Y fluid case was observed. The ratio of the approximate to exact value of

τm/τw remained close to unity, whereas those of the other terms deviated significantly
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Figure 3.23: (C–Y fluid) Ratio of approximate to exact value of terms constituting

qc/(UwHg): solid line, γ̇w/γ̇a; dashed line, τm/τw; dotted line, nloc,m.

at the operating conditions where the flow curve exhibited a large curvature. The

deviation from unity was relatively larger than that observed in the C–Y fluid case,

thereby resulting in the larger relative error of the LPLA method in approximating qc

for the B–C–Y fluid when compared with the C–Y fluid.
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Figure 3.24: (B–C–Y fluid) Ratio of approximate to exact value of terms constituting

qc/(UwHg): solid line, γ̇w/γ̇a; dashed line, τm/τw; dotted line, nloc,m.
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3.6 Conclusions

In this chapter, the problem of obtaining vortex formation conditions in the slot coat-

ing flows was solved by using different types of computational and analytical mod-

els. The previously unknown behaviors of fluids with shear rate dependent viscosi-

ties were explored by using two-dimensional (2-D) computational flow model, to-

gether with an automated algorithm for finding the vortex formation conditions. The

power-law fluids were the first to be examined, and analytical criteria for vortex birth

in the downstream region could be developed through the use of an analytical one-

dimensional (1-D) flow model. By using the 1-D model, it was possible to change the

original problem of finding the vortex formation condition to a simpler problem of

finding the onset condition for the flow reversal in a 1-D Couette-Poiseuille flow. The

derived expressions for the power-law fluid were extended to the generalized New-

tonian fluids (GNFs) by using the local power-law approximation (LPLA) method.

The LPLA method requires no numerical evaluation, thereby providing a quick and

fairly accurate prediction of the vortex formation conditions for the given GNF, just

as the one-third rule does for the Newtonian fluids. Also, a systematical procedure for

obtaining the exact values for the GNFs was presented as well, and the results were

used to evaluate the accuracy of the LPLA method.

The results of the analysis show that there exists a significant difference between

the flow reversal condition for different types of fluids. The critical flow rate condi-

tion for the Newtonian fluids, in its dimensionless form, is a constant regardless of the

fluid viscosity and the operating conditions. The same condition for the power-law

fluids, however, is a function of power-law index n, which is the material property.

Lastly, for GNFs, the dimensionless critical condition is a function of both fluid prop-

erties and the operating conditions (e.g.Hg andUw). This implies that as the viscosity

of the coating fluid exhibits more “complex” behavior, there is a wider choice avail-

able for maintaining a vortex-free flow during the process operation.
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Chapter 4

Physics-informed machine learning of slot coating

flows

4.1 Introduction

With the advancement in the measurement technology, computing powers, and data

storage capabilities, the accessability and availability of big data have never been

greater. Many industries have been utilizing the big data acquired from the production

line for fault detection, quality control, and process optimization (Yin & Kaynak,

2015; Wamba et al., 2015).

Slot coating process is not an exception, and different sources of data exists in

the slot coating flow. For example, position of contact lines relative to that of the feed

slot can be detected and obtained under varying operating conditions by visualizing

the coating bead flow from under a transparent substrate (Hong & Nam, 2017). A

side-view visualization of the coating bead flow is also possible through the experi-

mental setup described by Yoon et al. (2022), from which the shape and position of

the meniscus can be obtained. Pressure transducers can also be mounted to the slot-

die, such that the data on the pressure drop can be readily collected (Schmitt et al.,
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2015). It is also possible to obtain the topology of the wet film through the use of

a laser displacement sensor (Schmitt et al., 2014). It provides valuable information

on the thickness variation along the film width, making it possible to quantify the

widthwise uniformity of the film. Furthermore, simple imaging of the coated film

can also provide data on different types of film defects that occur when the operating

conditions are not optimized (Schoo et al., 2023).

In contrast to the data described above, which are physically observed or mea-

sured, coating flow data can also be collected virtually through the use of high fidelity

computational models. Slot coating flows have been modeled by using the finite ele-

ment method (Gates, 1999) or the finite volume method (Ji et al., 2016) to accurately

predict the velocity and pressure fields and the meniscus shapes of the flow. Pro-

vided that all the necessary physics for describing the flow accurately are taken into

account, computational models are capable of producing large amount of useful coat-

ing flow data that are difficult to obtain experimentally (such as the velocity field), at

a considerably lower cost.

In this context, the governing equations and boundary conditions used in model-

ing the slot coating flow can also be treated as, in a broad sense, data, since they pro-

vide the information on the physics that governs the flow. For example, as described in

Section 2.2, Landau-Levich film coating theory is applied at the downstream menis-

cus of the slot coating flow to model the pressure jump. Also, the Navier-slip bound-

ary condition is typically applied to the dynamic contact line of the upstream menis-

cus such that a physical solution can be obtained (Gates, 1999).

However, in many occasions these data may not exist in their complete form. Due

to the lack of time and resources, limitation of measurement technologies, and exis-

tence of unknown physics, the data may be available only partially. In this chapter,

a new machine learning based approach, named physics-informed machine learning,

is applied to the modeling of slot coating flow for the first time to solve to solve
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flow problems when the given data is missing in parts. The method uses a network

named physics-informed neural network (PINN) to accurately predict the domain and

flow field of the slot coating flow. As the name suggests, during the training process,

the network not only incorporates the field variable data, but also the knowledge of

the governing equations. Since its first appearance in Raissi et al. (2019) for solv-

ing different kinds of nonlinear partial differential equations (PDEs), PINNs have

been applied to solve problems in numerous scientific and engineering fields, such

as fluid dynamics (Jin et al., 2021), heat transfer (Cai et al., 2021), solid mechanics

(Haghighat et al., 2021), and electrophysiology (Sahli Costabal et al., 2020), to name

a few.

In the sections that follow, we first compare the physics-informed machine learn-

ing with conventional machine learning techniques to show how it differs from solv-

ing regression problems. Next, the network architecture used in this study, which is

specialized for modeling free surface flows, is presented. After a brief overview on

how the loss functions are constructed, the method for choosing the right weights for

the terms constituting the loss function is presented. Finally, two illustrative prob-

lems are solved using the proposed method to demonstrate its flexibility in dealing

with problems with partly missing data.

4.2 Comparison with regression problems

Figure 4.1 depicts a conventional machine learning approach of solving a regression

problem, using a neural network (NN) to model the function under interest. The pa-

rameters of the NN are tuned through an optimization process called the training.

The goal of the training is to find the optimal parameters which, if they exist, will

result in the NN model that best “explains” the given data.
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x

u
(xn, un)

(x1, u1)
(x2, u2)

…
(xn-1, un-1)
(xn, un)

Dataset Neural network (model)

uNN(x; θ)

Figure 4.1: Schematic diagram of solving a regression problem using a neural net-

work.

The training is driven by minimizing the following loss function:

L(θ) = 1

N

N∑
i=1

|ui − uNN(xi;θ)|2. (4.1)

Here, {(xi, ui)} are the given N data points, and uNN and θ are the output of NN

and the parameters of NN, respectively. As can be seen from the loss function, the

training is solely guided by the given data points. The trained NN, despite its ability

to “mimic” the trend of the data, is ignorant of the physics that governs the data.

Physics-informed machine learning and physics-informed neural networks

(PINN) can be thought as a method which embeds the physics behind the provided

data into the network itself during the training process. Figure 4.2 shows the physics-

informed machine learning approach for solving an engineering problem expressed

in terms of a differential equation, F(u, u′, u′′, x) = 0. The data are now given only

at the boundary or initial points, and the intermediate values are determined such that

the NN satisfies the given governing equation.
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u
(xb, ub)

(xa, ua)

BCs
ICs

Gov. Eqns

Dataset Neural network (model)

uNN(x; θ)

Figure 4.2: Schematic diagram of solving a differential equation using physics-

informed machine learning technique.

The loss function is expressed as:

L(θ) = MSEu + MSEf

=
1

Nu

Nu∑
i=1

|ui − uNN(x
u
i , t

u
i ;θ)|2 +

1

Nf

Nf∑
i=1

|F [uNN(x
f
i , t

f
i ;θ)]|

2. (4.2)

Here, {(xui , tui , ui)} are the Nu points specifying boundary or initial conditions and

{(xfi , t
f
i )} are the Nf sampling points within the domain of interest where the gov-

erning equation residuals are evaluated. The difference with the loss function of the

regression problem case, Equation (4.1), is the regularization term, MSEf . This term

serves as a guide for the NN to follow the governing equations of the given system.

Thus through a successful optimization, it is possible to embed the knowledge of the

physics of the given system into the NN.

By examining Equation (4.2), we find that in order to evaluate the value of

F [uNN(x
f
i , t

f
i ;θ)], one need to compute the derivative of the NN output uNN with

respect to the NN input x or t. This can be done with ease by using the autograd

functionality of the existing libraries for machine learning such as TensorF low or

PyTorch.
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4.3 Network architecture

In this section, we discuss the network architecture adopted in this chapter to model

the slot coating flow. As discussed in previous sections and depicted in several fig-

ures, the slot coating flow is bounded by two liquid-gas interfaces in the upstream

and downstream regions, respectively (refer to Sections 1.1, 2.1, and 3.2.1 and Fig-

ures 1.3, 2.1, and 3.3).

In terms of process operation, these menisci may pose a threat to stable operation

if they become unstable and undermine the widthwise uniformity of the film, when

the operating parameters are not carefully chosen. Computationally, the existence of

menisci cause difficulty when modeling the flow because the flow domain and its

boundary are not determined a priori.

To handle this difficulty we use two separate NNs to model the coating flow.

The first NN, named net xy is responsible for mapping a known reference domain

(ξ, η) to the unknown physical domain (x, y). The other NN, named net uvp, maps

the physical domain (x, y) to the field variables (u, v, p) of the flow. The points in

the reference domain can be thought as a label for each points in the actual flow

domain. When successfully trained, it is possible to determine the shape and position

of the liquid-gas interfaces by calling net xy on the corresponding reference domain

points. The schematic diagram of the two NNs is shown in Figure 4.3.

ξ

η

x

y

net_uvp

x, y

u v pnet_xy

ξ, η

Figure 4.3: Schematic diagram of two separate neural networks for modeling the

flows with liquid-gas interfaces.

The mapping from the reference to physical domain for the entire slot coating
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flow is not trivial due to the existence of several sharp corners. To make it more

tractable for the NNs to learn the mapping, we decompose the given domain into sev-

eral subdomains as shown in Figure 4.4. According to Jagtap & Karniadakis (2021),

it is possible to assign NNs to each domain separately, with each NN responsible for

modeling the system restricted to each subdomain only. We adopt the same method-

ology, but with two NNs, net xy and net uvp, responsible for modeling each sub-

domain. The connectivity between the subdomains is taken care of by adding terms

responsible for the continuity of field variables and the governing equation residuals

into the loss function. This will be discuss in more detail in Section 4.4.

Figure 4.4: Domain decomposition applied to the reference domain (shaded in or-

ange) and the physical domain (shaded in blue).

Different types of neural networks can be used in physics-informed machine

learning, depending on the nature of the problem and the system of interest. For

example, various types of existing NNs such as the feedforward neural networks

(FNNs), convolutional neural networks (CNNs), autoencoders, recurrent neural net-

works (RNNs), and generative adversarial networks (GANs) have been employed in

PINN-related research (Cuomo et al., 2022).

In this chapter, we use one of the simplest NNs, the feedforward NNs, to model

the given system, because the purpose of the analysis is to demonstrate the possibility

of applying machine learning framework to the problem solving associated with slot

coating flows. We leave the study of the best choice of NN design for slot coating

flows to future work.
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Each networks were designed to have two hidden layers with 64 and 128 nodes

each depending on the type of problem solved. Note that these hyperparameters were

chosen from a limited number of case studies, and thus are also subject to an extended

study for finding optimal values. Swish function f(x) = x sigmoid(βx) = x/(1 +

exp(−βx)), as shown in Figure 4.5, is used as the activation function instead of the

ReLU function which is widely used in machine learning frameworks. This choice

guarantees the regularity of the NN output, uNN, which is an important characteristic

in the physics-informed machine learning as the derivatives of uNN are required for

the evaluation of the governing equation (most likely PDE) residuals.

−10 −5 0 5 10
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Figure 4.5: Swish activation function (with β = 1).

4.4 Loss function

To determine the values of the parameters that parameterize the NNs proposed in the

previous section, a loss function is required to serve as a guide during the optimization

process. As can be seen from Equation (4.2), the terms consistuting the PINN loss

function can be categorized into two main groups: those associated with the boundary

and initial conditions, and those derived from the governing equations.

To take care a more general case of solving a slot coating flow problem, we
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modify Equation (4.2) as follows:

L(θ) = MSEb + MSEf

=

Mb∑
i

wb
i

N b
i

Nb
i∑
j

∣∣∣Bi

[
uNN(ξ

b
j ;θ),λ

]∣∣∣2 + Mf∑
i

wf
i

Nf
i

Nf
i∑
j

∣∣∣Fi

[
uNN(ξ

f
j ;θ),λ

]∣∣∣2 .
(4.3)

Here, Bi and Fi represent the individual boundary (or initial) condition and governing

equation terms, and superscripts b and f denote the terms related to boundary (or ini-

tial) and governing equation terms, respectively.M andN are the number of separate

terms and sampled points, respectively, and λ denotes the system parameters.

The governing equations of the slot coating flow are listed in Equa-

tions (3.2), (3.3), and (3.4). The fluid under consideration in this chapter is a New-

tonian fluid, and therefore η(|γ̇|) in Equation (3.4) is simply a constant. Following

equations, which resemble mesh generation equations (Equations (3.5)), are added to

the loss function as governing equation residual terms to guarantee a smooth mapping

from the reference domain to the physical domain.

∇2ξ = 0, ∇2η = 0. (4.4)

The same boundary conditions as illustrated in Figure 3.3(b) are used to evaluate the

values of Bi in Equation (4.3).

For the domain decomposition technique to work, boundary conditions defined

on the subdomain boundaries have to be included in the total loss function as well.

Following terms were evaluated at the points sampled on subdomain boundaries that

connect two subdomains and added to the loss function to ensure the connectivity
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between the two subdomains, (k) and (k + 1).

M∑
i

wi

Ni

Ni∑
j

∣∣∣Fi

[
u
(k+1)
NN (ξj ;θ

(k+1)),λ
]
−Fi

[
u
(k)
NN(ξj ;θ

(k)),λ
]∣∣∣2 , (4.5)

wk

Nk

Nk∑
j

∣∣∣u(k+1)
NN (ξj ;θ

(k+1))− u
(k)
NN(ξj ;θ

(k))
∣∣∣2 . (4.6)

Equation (4.5) evaluates the governing equation loss terms at the same points on the

boundary of the neighboring subdomains and ensures the two values to equal each

other. The continuity of the field variables are guaranteed by Equation (4.6), which

computes the mean squared errors of the difference between the field variable values.

Additional terms to ensure the prescribed flow rate are also added to the total

loss function. Several cross sections are first sampled in the reference domain, (ξ, η),

which are mapped to the cross sections in the actual flow domain, (x, y), via net xy,

as shown in Figure 4.6. Following residual is evaluated along the cross section in the

flow domain, and their mean squared error terms are added to the loss function.

B[uNN] = q −
∫
uNN · n ds (4.7)

ξ

η

x

y(𝜉0, 𝜂0)

(𝜉1, 𝜂1)

(𝑥0, 𝑦0)

(𝑥1, 𝑦1)

𝑞 = න𝑢 ⋅ 𝑛 𝑑𝑠

Figure 4.6: Application of flow rate conditions.

The loss function described in Equation (4.3) is for solving problems of the first

type as defined in Section 1.2, when all the values consisting λ are known. To estab-
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lish a loss function for the problems of the second type, only a small modification is

required.

The modified loss function can be expressed as follows:

L(θ,λ) =MSEb + MSEf + MSEdata

=
Mb∑
i

wb
i

N b
i

Nb
i∑
j

∣∣∣Bi

[
uNN(ξ

b
j ;θ),λ

]∣∣∣2 + Mf∑
i

wf
i

Nf
i

Nf
i∑
j

∣∣∣Fi

[
uNN(ξ

f
j ;θ),λ

]∣∣∣2
+
wd

Nd

Nd∑
j

∣∣∣uNN (ξdj ;θ)− ûj

∣∣∣2 , (4.8)

where the terms with superscript d represent those associated with the given observed

data {ûj}.

The only difference between Equations (4.3) and (4.8) is the inclusion of the data

loss term. Also, part of the system parameters, λ are now freed as trainable variables

such that the resulting model output describes the observed data {ûj} well. This

ease of switching between the two types of problems by simply modifying the loss

function is another advantage of using the PINN framework.

The number of sampled points per domain varied from 250 to 1250 for those

sampled along the boundary, and from 500 to 1500 for those sampled within the

domain.

4.5 Optimization method

The parameters that minimize the loss functions defined in Section 4.4 are found by

using the Adam optimizer (Kingma & Ba, 2014). However, a closer examination of

the loss functions reveals a serious problem that complicates the optimization process

– the problem of choosing the right weights.

The loss functions, Equations (4.3) and (4.8), are constructed as the weighted sum

of various terms coming from different boundary (or initial) conditions, governing
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equations, and observed data. The weight of each term can be thought as deciding

the priority during the optimization process. A term with relatively small weight may

be sacrificed in favor of other terms with relatively large weights. This is because in

the gradient-based optimization algorithm, the weight serves as a sort of individual

learning rate for each of the terms that make up the overall loss function. Therefore,

the choice of weight values is critical to successful optimization. Since there are tens

to hundreds of different weight terms, it is almost impossible to find the optimal set

of weights by trial and error.

To solve this problem, we used an adaptive weighting scheme based on the neural

tangent kernels (NTKs), as suggested by Wang et al. (2021). The essence of the

method is in the NTKs’ ability to capture the training dynamics of NNs. According

to the authors, the eigenvalues of NTKs are directly related to the convergence rate of

each component in the loss function. By using those values to determine the weight

for each term, it is possible to obtain a similar convergence rate for all of the terms,

leading to a successful optimization.

Figure 4.7 shows the y-component of the velocity as predicted by the trained

PINNs. It is evident from the figure that when fixed weight values are used, the

trained PINN fails to satisfy the given boundary conditions. When adaptive weighting

scheme is applied, the boundary conditions are satisfied more strictly.

4.6 Results and discussion

To demonstrate the effectiveness of the method developed in this chapter, we solve

two illustrative problems with partially missing data.
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(a) (b)

Figure 4.7: y-component of the velocity predicted by the trained PINN after the same

number of iterations (a) with a fixed weights, (b) with an adaptive weight based on

NTKs.

4.6.1 Problem 1: missing physics

As shown in Figures 2.5 and 3.3(b), a Navier-slip boundary condition is applied at

the dynamic contact line, which is expressed as follows:

1

β
tw · (u− Utw) = tw · (nw ·T), (4.9)

where tw and nw are the local unit basis vectors parallel and normal to the moving

substrate.

Without this boundary condition, a contradiction occurs because the upstream

meniscus has to be stationary with respect to the slot-die, while being attached to

the moving substrate on the dynamic contact line. This makes the slot coating flow

problem impossible to solve using conventional methods without the slip condition.

In this section, we assume that we are unaware of the physics that occurs in this

region. To model this situation, the Navier-slip condition is deliberately neglected

while solving the given problem. We use physics-informed machine learning frame-

work to train a PINN to model the given flow, since the framework can still be applied
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even when some boundary terms are missing from the total loss function. Rest of the

boundary conditions, together with the governing equations are correctly included

into the corresponding loss function, Equation (4.3). The parameters used in this

analysis are summarized in Table 4.1.

Table 4.1: Operating parameters considered in the analysis.

Operating parameters Unit Value

Density (ρ) g/mm3 0.001

Surface tension (σ) mN/m 70

Substrate speed (Uw) mm/s 10

Static contact angle (θs) ◦ 30

Dynamic contact angle (θd) ◦ 120

Wet thickness(h) mm 0.125

Viscosity (µ) Pa · s 0.1

Geometric parameters Unit Value

Upstream die lip length (Lu) mm 1.0

Downstream die lip length (Ld) mm 1.0

Feed slot height (Lfh) mm 1.0

Feed slot length (Lfl) mm 1.0

Coating gap (Hg) mm 0.2

To assess the accuracy of the PINN prediction, we solved the problem with the

Navier-slip condition included, by using 2-D finite element method (FEM) based

computational model. The result of two models are compared along the horizontal

cross-section of y = hw/2, as shown in Figure 4.8.

The prediction of field variables made by PINN, along with the reference from

2-D FEM computation are shown in Figure 4.9. The PINNs are trained for 25,000 it-
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x

y
y=hw/2hw

Figure 4.8: Cross-section for assessing the accuracy of predicted field variables.

erations, and the results were averaged from the networks trained with 5 independent

parameter initialization using a Glorot normal initializer (Glorot & Bengio, 2010).

Despite a slight deviation observed near the upstream meniscus region, the results

generally show a good agreement between the two models, despite the absence of

Navier-slip condition during the training of PINNs. This observation demonstrates

the potential of PINN framework in solving slot coating flow problems, even when

the physics governing the flow is not fully understood. However, caution should still

be exercised when applying this method to other cases of missing physics, as the

result may vary depending on the significance of the missing term in the system of

interest.
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4.6.2 Problem 2: missing data

In this section, we turn our attention to solving the problem with partially missing

data. Figure 4.10(a) shows a schematic of visualizing the coating bead flow from the

side-view. A clear image of the side-view of a coating bead flow obtained experimen-

tally can provide many valuable information on the flow, such as the contact angle

values and the curvature of liquid-gas interfaces. However, due to the fluctuation in

the coating gap and flow rate as well as the variation in the widthwise direction, it is

often hard to determine the values of interests out of the obtained image, as shown in

Figure 4.10(b).

Side view
𝑉

(a) (b)

Figure 4.10: (a) Flow visualization setup for obtaining side-view images of coating

bead flows. (b) Side-view of coating bead flow showing the upstream region of the

flow (Photo courtesy of Jihwan Yoon).

In this section, we apply physics-informed machine learning to solve a slot coat-

ing flow problem when given the observed data. The goal is to obtain the dynamic

contact angle from the given image data on the meniscus shape and position. The

experimental image data is replaced by the artificial data of upstream meniscus shape

and position, computed by solving a slot coating flow with all the parameters val-

ues given. The uncertainty in the experimental image data is modeled by deliberately

90



omitting the given data in parts, as depicted in Figure 4.11. We varied the amount of

data that is omitted during the training, in order to examine the effect of uncertainty

in the data on the performance of PINNs.

Associated boundary conditions and governing equations, as described in Sec-

tion 4.4 are substituted into Equation (4.8) to form the loss function. The given data

on the shape and position of the meniscus is substituted into the data loss term of the

same equation. In this case, the system parameter, λ, subject to optimization is the

dynamic contact angle, which is initialized as 90◦.

(a) (b)

Figure 4.11: Uncertainty in the image data is modeled by deliberately omitting (a)

25% and (b) 50% of the given data on meniscus shape and position.

The prediction of the dynamic contact angle as optimization proceeds is shown

in Figure 4.12. As with the problem considered in the previous section, the result is

obtained as an average of 5 PINNs initialized independently. When 25% of the given

data was missing, the relative errors of the prediction at the end of the iterations

was 7.8%, showing that the PINN solved the given problem satisfactorily, even with

the given data partially missing. Moreover, as can be seen from the shaded area in

Figure 4.12, the predictions made by the PINNs with different initializations of the

network parameters all converge to a single value, demonstrating the robustness of

the method. The relative error for the 50% of data missing case was 17.2% at the

end of the training. This can be viewed as a large error, but considering that half

of the data needed to solve the problem is missing, this magnitude of error may be
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acceptable in certain cases where obtaining high quality data is challenging.
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Figure 4.12: Dynamic contact angle predicted by PINN when only a part of the data

is given. The solid line represents the average of results from 5 independent initializa-

tions of network parameters, and the shaded area represents one standard deviation

away from the mean.

4.7 Conclusions

In this chapter, the slot coating flow problems posed under situations where the given

data is missing, were solved by using physics-informed machine learning. To model

the slot coating flow, which is a free-surface flow, a specialized neural network archi-

tecture, comprised of two separate networks was used. The domain was also decom-

posed into several subdomains modeled by individual neural networks. The values of

the weights for individual terms comprising the total loss function were determined

automatically through a neural tangent kernel based adaptive weighting scheme, such
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that the rate of convergence of each terms were maintained at a similar level through-

out the optimization.

The method was first applied to solving a problem when the physics governing

the slot coating flow is partially missing. To model such a situation, the Navier-slip

condition at the dynamic contact line was deliberately omitted from the loss function.

The results showed that the trained networks were able to capture the dynamics of

the flow even with the absence of the boundary condition.

The method was then applied to solving a problem of obtaining the dynamic

contact angle from the given data on the meniscus. Part of the data was intentionally

excluded to model the obscurity often observed in the image data. The results showed

that the networks were able to predict the dynamic contact angle to a satisfactory

degree even with the partially missing data.

Despite the success in solving the two illustrative problems, caution should be

exercised when applying the proposed method in other cases, as the performance

may vary depending on the significance of the missing parts of the data. In addition,

optimization of hyperparameters such as the network width and depth, initialization

scheme, and activation functions, needs to be performed in future works, in order to

explore the room for improvement in the performance of the proposed method.
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Chapter 5

Concluding remarks

In this thesis, a number of slot coating flow problems are solved by using various

methods and flow models. The main objective of the thesis was to broaden the scope

of the techniques available for solving problems in slot coating flows by tackling

previously unsolved problems and applying previously unexplored methods. The new

findings and novelties in each of the chapters can be summarized as follows.

In Chapter 2, we explored the effect of varying the coating gap on the maximum

and minimum wet thicknesses under three different slot-die configurations. A previ-

ously unobserved trend was highlighted during the analysis, and the reason behind it

was explained analytically through the use of a simple one-dimensional flow model.

In Chapter 3, an analytical criterion for the vortex formation in slot coating flows

previously only known for the Newtonian fluids was extend to the power-law fluids

through a one-dimensional flow analysis. The derived expression could successfully

explain the trend observed in the two-dimensional finite element method based com-

putation results. The method was further generalized to the cases of generalized New-

tonian fluids, and a systematic procedure for obtaining the exact values of the criteria

was also developed and presented.

In Chapter 4, a machine learning method was applied to the analysis of slot coat-
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ing flow for the first time, and its potential for solving various problems with missing

data was explored through illustrative examples. A specialized network architecture

was applied to take care of the liquid-gas interfaces of the coating bead flow. The

results showed that the proposed novel method was capable of solving the problems

to a satisfactory degree even when the physics governing the problem or the given

data for solving the problem is partially missing.
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국문초록

슬롯코팅공정은움직이는기판위에얇은액체필름층을높은정밀도로코팅

하기위한대표적인방법으로,그다재다능함덕분에광학필름,태양전지,배터리

전극 등 다양한 고부가가치 필름 제품을 제조하기 위한 많은 산업에서 이용되고

있다.슬롯코팅공정은크게용액준비,도포,그리고건조의세가지주요단계로

이루어져있으며,본논문에서는이중도포단계에서발생하는코팅유동에초점을

맞추어진행한연구들을다루고자한다.

슬롯 코팅 유동은 2차원으로 근사가능한 유동으로 두개의 기-액 계면으로 둘

러쌓여있는형태를띤다.해당유동은다양한조절가능한인자를가지고있는데,

이러한인자들에대해적절한제어가이루어져야공정을안정적으로운용하여불

량 없이 높은 품질의 필름 제품을 생산할 수 있다. 공정 관련 인자들의 최적값을

알아내는과정은슬롯코팅유동과관련된다양한설계문제를해결하는것으로부

터시작된다.

슬롯 코팅 공정의 유동 문제를 푸는 첫번째 목적은 공정 관련 인자값들이 주

어졌을 때 해당 인자들로 인하여 발생하는 유동의 양상이 어떠한지를 파악하는

것이다.이를통해특정공정인자값하에서발생하는유동의유불리를판단할수

있게된다.이와반대로유동양상과관련된정보나제약조건이미리주어져있는

상황에서해당유동양상을보이도록하는공정인자값을찾는것을목표로할수도

있다.이렇듯다양한설계문제해결을통해슬롯코팅공정에대한높은이해를얻

을수있고,이를바탕으로높은품질의필름제품을생산하기위한공정을설계할

수있게된다.

본 논문에서는 기존에 다루지 않았던 문제들과 사용되지 않았던 분석 방법들

을제시함으로써슬롯코팅공정의다양한설계문제해결을위한시각을넓히고자

한다. 본 논문의 2장에서는 슬롯 다이의 형상에 따라 최대 최소 젖음두께가 코팅

갭에 의존하는 양상이 어떻게 달라지는지를 단순 유동 모델을 통해 분석하고자
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한다.이러한분석을통해코팅갭이증가함에도최대코팅가능두께가오히려감

소하는 특수한 현상이 일어나는 이유에 대해서 파악해본다. 본 논문의 3장에서는

슬롯코팅유동내부에발생하는와류의생성조건을얻고자한다.해당연구에서는

다양한유동모델을사용하여전단율에비례하는점도를가진코팅액이사용되었

을 때 와류 발생 조건이 어떻게 되는지를 수치적 그리고 해석적으로 분석해본다.

마지막으로 4장에서는 슬롯 코팅 유동을 모델링하기 위한 물리 정보 신경망 기반

기계학습 방법에 대하여 다루고자 한다. 해당 방법을 이용하여 몇가지 대표적인

예시 문제들을 해결함으로써 주어진 데이터가 일부 누락된 상황에서도 유연하게

잘작동하는분석방법에대해알아본다.

주요어:슬롯코팅공정,일반뉴턴유체,유한요소법, Couette-Poiseuille유동,물리

정보신경망

학번: 2018-28363
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