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Abstract

Computational models and methods for

solving slot coating flow problems

Hyungyeol Kwak
School of Chemical and Biological Engineering

The Graduate School

Seoul National University

Slot coating process is a high-precision method for depositing a thin layer of
liquid film onto a moving substrate. Owing to its versatility, slot coating process has
been employed by many industries for manufacturing a wide range of high-value
film products including optical films, solar cells, and battery electrodes. The process
consists of three main stages: solution preparation, application, and drying. In this
study, we focus mainly on the slot coating flow, or the coating flow that occurs during
the application step.

Slot coating flow is a two-dimensional flow with two liquid-gas interfaces that
bound the flow domain. There are many adjustable parameters associated with the
flow, and it is only through an adequate control over these parameters, that it is pos-
sible to maintain a stable coating flow and produce defect-free films. The answer to
choosing the right values for the parameters comes from solving slot coating flow
problems.

One goal of solving slot coating flow problems is to obtain the physical variables



associated with the coating flow, such as the velocity and pressure fields, when given
the parameter values. Through this type of analysis, it is possible for one to assess the
quality of the coating flow that arises from the given set of parameters. On the other
hand, in other situations, some information or restriction on the coating flow is given,
and the goal is to find the specific set of parameters that results in the flow with given
characteristics. With the two-way problem solving, one can gain a comprehensive
understanding on the stable operation of slot coating process for producing high-
quality products.

The purpose of this study is to widen the perspective on problem solving in slot
coating flows by exploring previously unsolved problems and using previously un-
tried methods. In Chapter 2, we examine the effect of slot-die configuration on the
coating gap dependence of limiting wet thicknesses, using a simple analytical model
of the slot coating flow. Through the analysis, the reason behind a peculiar phe-
nomenon where the maximum wet thickness decreases with increasing coating gap
is revealed. In Chapter 3, we obtain the critical operating conditions for vortex to
form inside the slot coating flows. The study involves several types of flow models
and vortex formation conditions (both numerical and analytical) are obtained for the
coating flows of fluids with shear rate dependent viscosities. In Chapter 4, a machine
learning based method is used to model the slot coating flow. Exemplary problems
are solved with this method to demonstrate its flexibility in handling problems with

partially missing data.

keywords: Slot coating process, Generalized Newtonian fluids, Finite element
method, Couette-Poiseuille flow, Physics-informed neural networks

student number: 2018-28363
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Chapter 1

Introduction

1.1 Slot coating process and slot coating flow

Liquid film coating is a process by which a gas previously in contact with a substrate
is replaced by a thin film of liquid. It is used in many industrial processes to produce
thin films with wet thickness ranging from 1 to 100 microns (Kistler & Schweizer,
1997). One of such coating process is the slot coating process, whose schematic is
shown in Figure 1.1.

Slot coating process is a versatile method for producing thin film products with a
variety of functionalities. Many industries have successfully employed this process to
produce a wide range of high-value film products, including optical films, solar cells,
and battery electrodes (Patidar et al., 2020; Schmitt et al., 2014; Ding et al., 2016).

Some important and useful characteristics of the process are as follows:

1. It is a roll-to-roll continuous coating process and is thus suitable for mass pro-

duction.

2. Self-leveling of coated liquid allows uniform thickness to be achieved across a

large area.



3. It is a pre-metered coating process that allows a precise control over the film
thickness; the wet thickness is pre-determined by the amount of coating fluid

provided to the process.

Application (OO0 OO0 T T <
/ LO O 0O

Drying

Solution
preparation

Figure 1.1: A schematic diagram of slot coating process.

As shown in Figure 1.1, the slot coating process typically consists of three main
unit operations: solution preparation, application, and drying.

In the solution preparation step, the coating solution is prepared by mixing dif-
ferent kinds of components that give the film its desired properties. Solvent is also
carefully selected such that the resulting mixture forms a stable coating solution with
a desired distribution of active components. When choosing different materials and
solvents that compose the coating solution, the processability of the fluid must also
be given consideration. Thus, it is not an uncommon practice to add materials that are

solely responsible for controlling the rheological properties of the coating solution.



The prepared solution is delivered to the coating station where it goes through
the application stage of the coating process. The coating solution is first fed into the
slot-die and is distributed in the widthwise direction in a cavity within the die. The
distributed solution is then extruded out of the die through a thin slit and is deposited
onto the moving substrate. The flow that forms in this region is also known as the
coating bead flow and maintaining its stability is the key to the successful process
operation and production of high quality films.

In the drying stage, the coated substrate is transported to the drying chamber
where the excess solvent is removed through evaporation. When the coating solution
is a suspension that contains particles of varying sizes, particle migration can occur
during the drying phase, resulting an uneven distribution of particles along the thick-
ness direction of the film (Lim ef al., 2013; Zang et al., 2010). A careful control over
the evaporation rate is required to minimize this kind of side effect. After being dried,
the film may also go through the calendaring step where the dried film is calendared
to achieve required thickness and properties.

Among the different phenomena that are found in the three main stages of the
slot coating process, we focus mainly on the coating bead flow that occurs during
the application stage. Typical dimensions of a coating bead flow are presented in
Figure 1.2. Because the width of the flow is typically far larger than the height or
the streamwise length, the two-dimensional (2-D) approximation on the flow is valid
under most situations. Another important characteristics of the flow is the existence
of the liquid-gas menisci in the upstream and downstream (relative to the substrate
motion) regions. The upstream meniscus connects two solid surfaces — the slot-die
lip and the moving substrate — and forms two separate contact lines. Also, due to
the small height which serves as the characteristic length of the flow, the Reynolds

number is typically within the order of 10, which makes the flow laminar.



Figure 1.2: Typical dimensions in slot coating flows.

1.2 Slot coating flow problems

Figure 1.3: Adjustable parameters associated with slot coating flows.

As illustrated in Figure 1.3, there are a number of adjustable parameters asso-



ciated with the coating bead flow. Different sets of parameters can be thought as
separate points residing in the vast parameter space. They can be categorized into
three groups: operating parameters, geometric parameters, and material properties.

Operating parameters are the variables that can be readily and directly controlled
by the operator to result in a stable coating bead flow. For example, the coating gap,
H, or Hy, can be changed by adjusting the relative position of slot-die with respect
to the moving substrate; the prescribed flow rate (per width), ¢, can be controlled by
adjusting the feed rate of the pump; and the substrate speed, U, can be adjusted by
controlling the rotation speed of the backup roll. Sometimes a slight vacuum, P, is
applied at the upstream meniscus to offset forces that pushes the meniscus towards
the feed slot and destroys the stable coating bead (Gates, 1999). The wet thickness
of the coated film, A, can also be considered as an operating parameter since it is
pre-metered by the amount of supplied coating solution and the substrate speed. The
three variables are related simply by h = ¢/U.

Geometric parameters are the design parameters of the slot-die. It is possible to
adjust the length of the die lip, L,, or Lg, to control the pressure distribution along
the coating bead. Apart from the flat design, the surface of the die lip can also take on
different shapes and structures (Sartor, 1990). In addition, the slot-die can be mounted
in various ways such that it has a non-zero angle of attack (Lee & Nam, 2015a),
as shown in Figure 1.4. The lip surfaces in the upstream and downstream regions
can also be placed in different planes in such a way that the gap difference AH =
H4 — H, has a non-zero value.

Material properties are the variables that represent the physical and chemical
properties of the coating fluid, such as density (p), viscosity (u), and surface tension
(o). As shortly discussed in Section 1.1, these properties are readily determined by
different materials that are added to the coating solution. The viscosity of the fluid can

be modeled using different types of constitutive equation, and the parameter values



Figure 1.4: Slot-dies with tilted configuration.

are determined by fitting the equation to the rheological measurement data. The static
contact angle, 5, can be regarded as a material property as it is related to the work of

adhesion, W, and the surface tension, o, of the liquid via the Young—Dupré equation:
W = o(1+ cosby). (1.1)

The dynamic contact angle, 84, can be considered as both a material property and an
operating parameter, since it depends on both the choice of material as well as the
substrate speed (Cox, 1986).

Once a specific set of parameter values (or a point in the parameter space) are
fixed, the slot coating process can be operated under that specific set of parameters
to give rise to the actual slot coating flow, which can be described by the shape and
position (x and y) of menisci, the velocity field (v and v), and the pressure field (p).
The flow patterns exhibited by the coating flow and the shape of the coating bead both
have profound impact on the stable process operation and the quality of the final film
product. Therefore, understanding the interplay between the parameter space and the
physical variables (x, y, u, v, p) is crucial for the production of high quality product
through a well controlled process operation.

Two types of problems naturally arise when considering the mapping between
the parameter space and the physical variables. In the first type of problems, all the
necessary parameters are given such that the physical field variables associated with

the coating bead flow is obtained. This can be thought as a situation where the operat-



ing parameters, choices of coating solution composition and slot-die design are fixed,
and one is interested in finding the resultant flow. On the other hand, in the second
type of problems, some information on the physical variables of the flow is given
and the goal is to find the specific parameters that resulted in the flow with the given
characteristics. In this situation, the data given can be the shape and position of the
interface, the velocity or pressure of the flow, or both. These may be actual measure-
ments from various sensors and imaging devices, or may even be hypothetical data
derived from calculation. The relationships between different groups of variables are

summarized in Figure 1.5.

Parameter space Physical space

(x,y,u,v, p)
Operating conditions Flow/pressure field Film thickness
Slot-die geometry Streamlines Film quality
Material properties Meniscus shape Stable operation

Figure 1.5: Relationships between different groups of variables associated with slot

coating flows.

1.3 Mathematical and computational models for modeling

slot coating flows

In this thesis, the previously unsolved problems of slot coating flows are addressed
using a variety of models and methods.

Chapter 2 focuses on on how the wet thickness limits are dependent on the
coating gap for various slot-die geometries. An analytical model derived from one-
dimensional (1-D) approximation of the coating bead flow is used to obtain analytical
expressions for the maximum and minimum wet thicknesses under different die lip

configurations. The derived expression is used to examine the dependence of the wet



thicknesses on the coating gap. A two-dimensional (2-D) computational model is also
utilized simply for the verification of the 1-D results.

On the other hand, the 2-D computational flow model is introduced in Chapter 3
as a main tool for solving a slot coating flow problem to obtain operating parameters
that lead to vortex formation within the coating bead flow. Derivation of analytical
expressions for the vortex formation condition is made possible by further simplifica-
tion of the flow. The derived equations are applied to fluids modeled by more complex
constitutive equations, thereby introducing an approximation method for solving the
given problem. In addition, a semi-analytical method that solves the problem exactly
is also introduced for the given fluids.

In Chapter 4, a machine learning based approach is adopted to solve slot coating
flow problem when the given data is missing in parts. Unlike conventional methods
which require a complete set of unknowns and equations for the problem to be solved,
the machine learning based problem solving provides the flexibility to handle incom-
plete data. This is demonstrated by solving problems where a boundary condition is

deliberately neglected, and where only a part of the meniscus shape data is given.



Chapter 2

Effect of slot-die geometry on coating gap dependence

of wet thicknesses

2.1 Introduction

Figure 2.1 shows a schematic of the coating bead flow that occurs within the gap
between the slot-die and moving substrate. The feed slot segregates the bead into
upstream and downstream regions, and each region is bounded by a liquid—gas inter-
face. Adequate control over the shape and position of this interface is key to achieving

stable process operation and defect-free films.

o]
Q
Upstream 2 | Downstream
region % region
____________ S |----l=lTio.

________________________

Moving direction of the substrate

Figure 2.1: Coating bead flow in slot coating process.



Experimental and theoretical studies pertaining to operating limits associated
with coating bead menisci are abundant in the literature. For example, Higgins &
Scriven (1980) studied the allowable range of operating conditions by considering
the bounds for the position of the upstream meniscus. Carvalho & Kheshgi (2000)
studied the low-flow limit, which is the operating limit associated with highly curved
downstream meniscus.

Under various operating conditions, the coating bead adjusts its size accordingly
by allowing the upstream meniscus to slide along the upstream die lip. Increas-
ing/decreasing the flow rate or decreasing/increasing the substrate speed results in
the extension/shrinkage of the upstream coating bead. When the bead length reaches
its maximum, the meniscus is pinned at the upstream corner of the die lip, as depicted
in Figure 2.2A. This state is denoted by the weeping limit, beyond which may result
in loss of the liquid. On the opposite end is the bead-breakup limit, where the up-
stream meniscus is situated beneath the feed-side corner of the upstream die lip, as
depicted in Figure 2.2B. Further drawing of the meniscus toward the feed slot results

in coating defects (Lee et al., 1992; Yang et al., 2004).

A AR I,

Figure 2.2: Operating limits associated with position of upstream meniscus: A. Weep-

ing limit and B. bead-breakup limit.

The aforementioned operating limits can be similarly described in terms of wet
thickness, which is obtained by dividing the flow rate per width by the substrate speed.
By considering the specific operating conditions that result in the two limits, we find
that the maximum and minimum attainable wet thicknesses are determined by the

weeping and bead-breakup limits, respectively.

10 x—g N :.-_ -:I



When the coating liquid is confined by a stationary wall, the wet thickness scales
with the coating gap (Kim & Nam, 2017). In general, a wider coating gap allows
for more coating liquid to flow between the slot-die and substrate; hence, a larger
maximum wet thickness is expected. However, we demonstrate that a counterintuitive
result can be obtained under a certain slot-die configuration.

Previous studies on different types of slot-die configurations were conducted un-
der a fixed or oscillating coating gap. Koh et al. (2012) investigated the effect of
slot-die configuration on the operability window expressed in terms of the bead pres-
sure and the substrate speed. Romero & Carvalho (2008) and Lee & Nam (2015b)
conducted frequency response analyses to study the effect of gap disturbances under
different slot-die configurations. In this chapter, we take a closer look at the effect of
increasing or decreasing coating gap on the limiting wet thicknesses while varying
the slot-die configurations.

In the following sections, a simple model for the coating bead flow is introduced,
and expressions for the limiting wet thicknesses at the weeping and bead-breakup
limits are derived from the model. The dependency of the wet thicknesses on the
coating gap is then derived to demonstrate how it differs under varying slot-die con-
figurations. According to the definition in Section 1.2, the problem covered in this
chapter can be categorized as the second type, since the goal of the given problem
is to find the expression for the limiting wet thicknesses, given the length of the up-
stream bead at the operating limits. A two-dimensional (2-D) numerical analysis of
the same system using the finite element method (FEM) is also presented to validate

the conclusions generated from the simple model.
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2.2 Mathematical formulation

The viscocapillary model (Ruschak, 1976; Higgins & Scriven, 1980) is a practical
and simple analytical model for analyzing coating bead flow. The model expresses
the overall pressure difference across the coating bead as a combination of pressure
differences at two liquid—gas interfaces and pressure gradients associated with the
lubrication flow.

Typically, the pressure jump across the downstream meniscus is modeled using
the following equation, which is derived from the Landau-Levich (Landau & Levich,

1942) film coating theory:

2/3
AP =134 <“U> 7 .1

o hw'
where u, o, U, and hy, denote liquid viscosity, surface tension, substrate speed, and
wet thickness, respectively. The pressure difference across the upstream meniscus is
modeled using the Young-Laplace equation, which can be expressed as follows:

AP = —Hi(cos 04 + cosby), 2.2)

u
where H, denotes the upstream coating gap and 64 and 05 represent the dynamic and
static contact angles, respectively.

We assume that the capillary number of the system is sufficiently large such that
the contribution of the pressure differences across the menisci is negligible compared
with that of the viscous effects. This assumption is valid under sufficiently large vis-
cosity or high substrate speed. Furthermore, we assume that the die lip surface is
parallel to the moving substrate, such that the flow in between is strictly rectilin-
ear. Under these assumptions, the viscocapillary model for steady Newtonian coating

bead flow can be expressed as follows:

w\ L
6uU<1_2h> a  6uU z

- P, - P, 2.3)

Hy H,) Hy = H, Hy,

1 ™
12 *" == L]



Here, H and L denote the coating gap and die lip length, respectively; subscripts d
and u represent the downstream and upstream regions of the coating bead, respec-
tively; x denotes the length of the upstream coating bead, which can adjust itself to
match the operating conditions; P, denotes the ambient pressure outside the down-
stream meniscus; P, denotes the vacuum pressure, if any, applied to the upstream

meniscus. Refer to Figure 2.3 for details.

Vacuum
Lu
chamber < <
i x A
v
Hu hW

\4
—>1

U

Figure 2.3: Parameters associated with coating bead flow.

When no vacuum is applied, P, equals P,, and rearranging Equation (2.3) yields

the following expression for the wet thickness, hy,:

H 2
14 (4] =
H,) La

In general, the coating gaps in the upstream and downstream regions are set equal,

H,
hy = =2

: . 2.4)

i.e., H, = H4. However, the two gaps can also be set differently to exploit differ-
ent slot-die configurations (Romero & Carvalho, 2008; Chin et al., 2010; Lee et al.,
2011; Lee & Nam, 2015a). The case in which Hy > H,, is known as the underbite
configuration, whereas the opposite case is referred to as the overbite configuration.

The three configurations are illustrated in Figure 2.4.

1 ™
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Figure 2.4: Slot-die configurations considered in this chapter: A. Uniform, B. under-

bite, and C. overbite.

By introducing the gap difference AH = Hyq — H,,, Equation (2.4) becomes

Hd Hd 2.7}
hy = -3 |14+ (—"9 ) =
2 +<Hd—AH> Ly
H,+ AH AH\? 2z
=T e (1 = 1. 2.
() Ld] 22

Under a fixed configuration, the derivatives of h, with respect to Hq and H, are

14



the same because A H remains constant. Therefore, we examine the sensitivity of Ay,

with respect to Hy alone.

Ohy 1 xHZ(Ha—3AH)
OHy 2 2Lq(Hq—AH)3"

(2.6)

It is noteworthy that the value of this derivative depends not only on the operating

limit (associated with x), but also on the slot-die configuration (associated with AH).

2.3 Numerical validation

The conclusions derived from the simplified version of the viscocapillary model are
also validated by numerical method, which involves fewer assumptions on the system
and is considered more accurate.

The governing equations of the system of interest are the 2-D steady momentum
conservation equation (with the body force neglected) and the continuity equation,

which can be expressed as follows:

pu-Vu=V. T, (2.7)

V-u=0, (2.8)

where p, 1, u, and p represent density, viscosity, velocity field, and pressure field,
respectively. T denotes the total stress tensor which is given by T = —plI +
p[Vu + (Vu)T] for the incompressible Newtonian fluid, where I denotes the identity
tensor. The associated boundary conditions are illustrated in Figure 2.5.

The operating parameters used in numerical validation are listed in Table 2.1.
Note that the flow rate per width is not provided as an input to the system but is in-
stead obtained as an outcome of the computation, such that the corresponding coating
bead flow is either in the bead-breakup or weeping limit. The resulting wet thickness
is in the order of several hundred micrometers (um), which is observed in thick-

film-coating applications, such as the production of thick battery electrodes (Diechm
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et al., 2020; Li et al., 2021). Viscosity is chosen to have a value that a shear-thinning
polymer solution would exhibit when exposed to a high-shear flow.

The governing equations, together with the boundary conditions are discretized
and solved using the Galerkin finite element method (G/FEM). The detailed descrip-
tion on the solution method is deferred to Chapter 3, where the 2-D computational

flow model is used as the main method for solving the given problem.

Table 2.1: Operating conditions and geometric parameters used in numerical valida-

tion.
Operating parameters Unit  Value or Range
Density (p) g/cm? 1
Viscosity (1) Pa-s 1
Surface tension (o) mN/m 70
Substrate speed (U) mm/s 75
Flow rate per width (¢) mm?/s  8.736 - 36.85
Static contact angle (6s) ° 50
Dynamic contact angle (63) ° 160
Geometric parameters Unit  Value or Range
Downstream die lip length (Lq) min 1.0
Upstream die lip length (L) mm 1.0
Feed slot height (L¢) mm 1.0
Downstream coating gap (Hg) mm 0.2-0.5
Gap difference (AH) min —0.2,0.0,0.1

16 A =1
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2.4 Results and discussion

As discussed earlier, the two operating limits considered in this chapter are character-
ized by the size of the upstream coating bead. More specifically, the upstream region
of the coating bead is devoid of liquid flow at the bead-breakup limit, whereas the
coating liquid occupies the entire upstream region of the coating bead at the weeping
limit.

The simple model represents the two limiting states by setting the upstream bead
length, z, to be either zero or the upstream die lip length, L,,. As with the 2-D compu-
tational model, the system of governing equations is first augmented with equations
that describe the position of the static and dynamic contact lines at the onset of the
operating limits. Subsequently, the operating conditions that lead to the two states,
including the wet thickness, are obtained directly by solving the augmented system
of equations. The details of the method are elaborated in Chapter 3.

The dependencies of the limiting wet thicknesses on the coating gap, obtained

both analytically and numerically, are presented in the following subsections.

2.4.1 Minimum wet thickness (Bead-breakup limit)

Substituting z = 0 into Equation (2.6) yields the following expression for the deriva-

Ohy\ 1

Subscript B denotes the bead-breakup limit. We find that the wet thickness at the

tive:

bead-breakup limit depends linearly on the coating gap with a proportionality con-
stant of 0.5, as depicted in Figure 2.6.

Figure 2.7 depicts the streamlines of the coating bead flow at the bead-breakup
limit under a uniform configuration, obtained using the numerical methods described

earlier. The dynamic contact line of the upstream meniscus is immediately beneath

1 ™
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Figure 2.6: Dependence of the wet thickness, hy, on coating gap, Hq, at bead-
breakup limit derived by the simple model. Parameters used were Ly = L, =

1.0mm and AH = 0.

the feed slot corner, indicating that the bead-breakup limit has been reached.

The numerically obtained dependences of the minimum attainable wet thick-
nesses on the downstream coating gap are shown in Figure 2.8. The observed trend
coincides with that obtained from the simple model; the wet thicknesses exhibit a
nearly linear dependence on the coating gap for all three die lip configurations con-
sidered.

It is worth noting that both hy, and Ohy,/OH4 derived from the simple model

(Equation (2.5) and Equation (2.6)) are independent of AH when z = 0, whereas



e

Figure 2.7: Streamline plot of coating bead flow at bead-breakup limit under the

uniform configuration (AH = 0). Coating gap of Hq = 0.35 mm is used.

those computed numerically differ for each slot-die configuration. It is most likely
that the difference originates from the upstream meniscus present in the computa-
tional model, whose shape changes with varying die configurations, and is completely

neglected in the simple model.

2.4.2 Maximum wet thickness (Weeping limit)

By substituting x = L, into Equation (2.6), we obtain

OHq)w 2 2Lq(Hq—AH)3 — 2Lq(Hq — AH)?’ '

f(Ha) = (La + Lu)[Hi — 3(AH)HF] + 3La(AH)*Hg — La(AH)*,  (2.11)
where subscript W denotes the weeping limit. Unlike the bead-breakup limit, the
derivative is dependent on the slot-die configuration. In the following, we present a
detailed discussion on how the sensitivity differs in each configuration.

Uniform configuration (AH = 0)

First, we consider the uniform configuration, where AH = 0. Subsequently, Equa-

tion (2.10) reduces to the following expression:

Ohy, 1 Ly
— =—(1+—]. 2.12
<8Hd>w,uniform 2 < * Ld> ( )

1 [, 1
20 N =4



A
-
0.35F
0.30F
£
é 0.25F
3
il
0.20
0.15- -~ Uniform, AH=0.0
: - Underbite, AH=0.1mm
& - Qverbite, AH= -0.2mm
020 025 030 035 040 045 0.50

Hy (mm)

Figure 2.8: Dependence of wet thickness, hy,, on coating gap, Hg, at bead-breakup
limit under three different slot-die configurations: uniform (solid line with triangle
marker, AH = 0), underbite (dashed line with square marker, AH = 0.1 mm), and
overbite (dotted line with diamond marker, AH = —0.2 mm), computed using the

2-D computational model. Parameters used are summarized in Table 2.1.

Because the die lip lengths, L,, and L4, are constants, hy, in this case is directly
proportional to Hy, which is similar to the bead-breakup limit case, as shown in
Figure 2.9. However, the proportionality constant in Equation (2.12) is greater than
that of the bead-breakup limit case, as L,;/Lq is always nonnegative. In addition,
under the uniform configuration, the wet thickness at the weeping limit (maximum

obtainable wet thickness) increases with the coating gap, as expected.
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Figure 2.9: Dependence of wet thickness, hy,, on coating gap, Hg, at weeping limit
under the uniform (AH = 0) configuration, derived from the simple model. Other

parameters were Lqg = L, = 1.0 mm.

Underbite configuration (AH > 0)

However, this trend differs significantly in the underbite configuration, where AH >
0. In the following, we establish the existence of a local minimum for h,.

In the underbite configuration, the downstream coating gap, Hg, must satisfy the
constraint Hq > AH for the upstream coating gap, H,,, to remain positive. Because
Ly is positive, the denominator of Equation (2.10) takes on a positive value for all the

possible values of Hy. In addition, because Lq, Ly, and AH are positive, the numer-
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ator of Equation (2.10), f(Hy), has two limits of different signs as Hy approaches

the limiting values, as follows:

li Hy) = —2L,(AH)? 2.1
Hd—l>ng+f( a) ( )" <0, (2.13)
lim f(Hg) = oo. (2.14)

Hd—>OO

According to the intermediate value theorem, a zero of Equation (2.10) exists in the
open interval (AH, c0). Hence, in the underbite configuration, the wet thickness at
the weeping limit experiences a local minimum, as depicted in Figure 2.10. This
result is counterintuitive in that it suggests the existence of an interval where the wet
thickness decreases, even with an increasing coating gap. This property differentiates

the underbite configuration from other configurations.

Overbite configuration (AH < 0)

Finally, we consider the overbite configuration in which AH < 0. Similar to the
underbite case, the denominator of Equation (2.10) is positive, and hence nonzero for
all Hq > 0. It can be shown that the numerator f(Hq) is nonzero for all Hy based on

the following argument: First, the derivative of f with respect to Hy is expressed as
f/(Ha) = 3(La + Ly)(Ha — AH)? — 3Ly(AH)?, (2.15)

which is positive at Hy > 0 because AH < 0 in the overbite configuration. There-
fore, we find that f( Hg) increases monotonically in the same half-interval. Moreover,
because f(Hyq = 0) = —Lq(AH)3 > 0, we conclude that f(Hy) > 0 and has no
zeros when Hy > 0. Therefore, under the overbite configuration, the derivative in
Equation (2.10) is always positive; hence, as shown in Figure 2.11 h,, at the weeping
limit increases monotonically, but not linearly, with Hg.

As shown in Figure 2.12, the results obtained from the 2-D computational model
also agree well with the above trends. The maximum attainable wet thickness in-

creases monotonically when the coating gap increases under the uniform and overbite
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Figure 2.10: Dependence of wet thickness, h,, on coating gap, Hg, at weeping limit
under the underbite (AH = 0.1 mm) configuration, derived from the simple model.

Other parameters were Ly = Ly, = 1.0 mm.

configurations, whereas it initially decreases when the coating gap increases before
reaching a local minimum value under the underbite configuration.

The mean absolute relative errors of hy, at the weeping limit predicted by the
simple model are 15.61%, 26.00%, and 4.965% for the uniform, underbite, and over-
bite configurations, respectively, under the given range of Hy. However, it should
be noted that for all die configurations, the dependence of hy, on Hy is accurately
captured by the simple model. For example, Hy at which the h, experiences a local

minimum under the overbite configuration is predicted as 0.2476 mm for the given
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Figure 2.11: Dependence of wet thickness, h,, on coating gap, Hg, at weeping limit
under the overbite (AH = —0.2 mm), derived from the simple model. Other param-

eters were Ly = L, = 1.0 mm.

set of operating parameters, which is sufficiently close to the numerically computed

value (Hgq = 0.2450 mm).
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Figure 2.12: Dependence of wet thickness, hy,, on coating gap, Hq, at weeping limit
under three different slot-die configurations: uniform (solid line with triangle marker,
AH = 0), underbite (dashed line with square marker, AH = 0.1 mm), and overbite
(dotted line with diamond marker, AH = —0.2 mm), computed using the 2-D com-

putational model. Parameters used are summarized in Table 2.1.
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2.5 Conclusions

In this chapter, the coating gap dependencies of the maximum and minimum attain-
able wet thicknesses in the slot coating process under different slot-die configurations
are studied and derived analytically. A simplified version of the viscocapillary model
was used to derive an expression for the limiting wet thicknesses and their derivatives
with respect to the coating gap.

It was revealed that the minimum wet thickness increases linearly with the coat-
ing gap, irrespective of the type of die configuration used. However, the dependence
of the maximum wet thickness on the coating gap differed significantly for each con-

figuration:

1. Uniform (AH = 0): The wet thickness increases linearly with the coating
gap, but with a different proportionality constant as compared with that in the

minimum wet thickness case.

2. Underbite (AH > 0): The wet thickness initially decreases as the coating gap
increases. Eventually, it reaches a local minimum and then increases with the

coating gap.

3. Overbite (AH < 0): The wet thickness increases monotonically with the coat-

ing gap, but not linearly as it does in the uniform configuration case.

Since a wider coating gap allows a larger space between the slot-die and substrate,
it is intuitive to expect a larger wet thickness with a wider coating gap. The signif-
icance of analysis presented in this chapter is that it demonstrates a case (underbite
configuration) that contradicts this intuition.

Moreover, the 2-D governing equations were solved numerically for the wet
thicknesses at the operating limits to verify the conclusions drawn from the sim-

ple model. The numerically computed dependence of the limiting wet thicknesses
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coincided with the trends observed in the analytically derived equations, proving the

validity of the simple model.
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Chapter 3

Conditions for vortex formation in slot coating flows

3.1 Introduction

As shown in Figure 3.1, vortices can form within the coating bead flow when certain
operating conditions are met. Once formed, they can cause numerous problems such
as particle aggregation, desorption of dissolved gas, and destruction of widthwise
flow uniformity (Nam et al., 2009), all of which severely interfere with the process
operation and degrade the quality of final coated product. Vortices are also known to
cause unwanted mixing of two layers in the two-layer slot coating process through
a phenomenon known as the mid-gap invasion. (Nam & Carvalho, 2009) Thus it is
important to figure out the range of operating conditions that lead to the formation of
vortices in advance and avoid operating within that range.

Previous studies on the vortex formation condition in slot coating flows mostly
focused on the flow of Newtonian fluids. For example, Sartor (1990) reported the
evolution of vortices found in the coating bead flow as the flow rate, substrate speed,
and coating gap are varied. Nam & Carvalho (2009) reported vortex formation near
the interlayer of the two distinct coating fluids in the two-layer slot coating process as

the flow rate of the bottom coating layer is changed. The two studies refer to a simple
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Micro-vortices

Figure 3.1: Microvortices found in the coating bead flow.

analytical criterion for the vortex formation, the so-called one-third rule. This rule
indicates that, for the Newtonian coating fluids, vortices are found under the die-lip
when the wet thickness is smaller than one-third of the coating gap.

The rheological properties of coating fluids used nowadays are becoming more
and more complex with the growing demands on the higher performance of the film
products. Thus, the Newtonian viscosity model alone is not enough to describe the
complex behavior exhibited by the coating fluids exposed to high shear. For example,
the lithium-ion battery electrode slurries are designed to exhibit different levels of
viscosity under different range of shear rate (Li ef al., 2021). At low shear rates, high
levels of viscosity slow down the rate of sedimentation and allow sharper edge to be
formed in the wet film. At high shear rates, low viscosity is preferred to facilitate
application of slurry to the substrate. To model this kind of fluid, a non-Newtonian
constitutive equation has to be used to take account of the shear rate dependent vis-

cosity.
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In this chapter, we explore the vortex formation conditions for the slot coating
flows of non-Newtonian fluids by using computational and analytical flow models.
In the following sections, a two-dimensional (2-D) flow model is first introduced to
compute the vortex formation conditions for the power-law fluids. One-dimensional
(1-D) approximation of the coating flow is then applied to derive an analytical expres-
sion for the vortex formation in the downstream coating bead. Based on the derived
expressions, an approximation method is developed and presented for the more gen-
eral cases of generalized Newtonian fluids (GNFs). Finally, a semi-analytical method
is introduced to compute the exact conditions for the GNFs. The problem of finding
vortex formation condition is, under the definition from Section 1.2, of the second
type, since specific conditions the flow has to follow are given and the goal is to find

the operating parameters that induce those conditions.

3.2 Vortex formation condition in coating bead flow of

power-law fluids

One of the simplest models that relates the shear rate and the viscosity is the power-
law constitutive equation. It is used in this section to model the shear rate dependent
viscosity of the given coating fluid. The viscosity, n, under power-law constitutive

equation, can be expressed mathematically as follows:
n=KR"", 3.1)

where K and n are the flow consistency index and the power-law index, respectively.
7| is the magnitude of the rate-of-strain tensor & = Vu + (Vu)', given by |§| =

111, where IL; is the second invariant of ¥, i.e., Il = (¥ : %) = >, > VijVji-
In the following, we develop a two-dimensional flow model to track the vortex

formation conditions in slot coating flows of power-law fluids.

3
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3.2.1 Two-dimensional (2-D) computational flow model
Governing equations and boundary conditions

The steady flow of an incompressible fluid under negligible body forces is governed

by the following mass and momentum balances:

V-u=0, (3.2)
pu-Vu=V. T, 3.3)
T = —pL+n(19)%, (3.4)

where u, p, p, I, and T are velocity, pressure, density, identity tensor, and total stress
tensor, respectively.

Unlike the fixed die-lip surfaces or the moving substrate, the position of two
menisci of the coating bead is not determined a priori. To pose the problem in a
known domain so that standard measures for solving boundary value problems can be
applied, the unknown physical domain, x = (z, y), is mapped into a fixed reference
domain, & = (&, 7), via a transformation x = x(&§). The inverse transformation is
defined by the following system of elliptic partial differential equations as described

by de Santos (1991)
VDe(€,mVE=0, V-Dy&n)Vn=0, (3.5)

where D¢ and D), are mesh diffusivities that control the distribution of nodes along
the curves of constant £ and 7. These curves define the boundaries of elements that
comprise the domain while the points where they intersect defines the position of
the nodes. An instance of generated mesh determined by conducting a mesh conver-
gence test, together with the number of elements, the number of nodes, and degree of
freedom, is illustrated in Figure 3.2.

Geometrical parameters and boundary conditions associated with the governing

equations are summarized in Figure 3.3. Note that a Dirichlet-type boundary con-

1 ™
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Number of elements 880

Number of nodes 3717

Degree of freedom 17508
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Figure 3.2: Computational mesh used for 2-D flow model.

dition is applied at the inflow boundary by specifying the velocity profile. We used
the Newtonian velocity profile obtained by prescribing the flow rate and imposing
no-slip conditions on each side of the feed slot wall, instead of obtaining the fully
developed velocity profile for each value of power-law index n. This choice ensures
that an exact value of flow rate is specified at the inlet boundary. To guarantee that the
parabolic profile reaches the fully-developed state before exiting the feed slot, we set
the feed slot length Lg to be five times that of the feed slot height Lg,, and verified
the length to be sufficiently larger than the entrance length.

The operating conditions are summarized in Table 3.1. Base case parameters
are used in the computations unless otherwise stated. Under these settings, with
K (Uy/Hg)" ! as the characteristic viscosity and H, as the characteristic length, the
Reynolds number of the system is calculated as 9.85. Therefore, the flow is deemed

to be laminar and no eddies associated with turbulence is expected to be found.
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Mathematical expressions for vortex birth

To solve the given problem, we additionally require the mathematical expressions
that describe the vortices. According to Nam et al. (2009) with an appropriate choice
of reference frame, the axis of rotation, or the vortex center, is at rest relative to the
observer. For one to identify vortices in flows, it is required to examine the flow field
in the vicinity of the stagnation points. Steady fluid parcel motion near the stagnation

point xg can be expressed using Taylor expansion as

D 1

Di)t( =u(x) = u(xp) + éx - Vu(xo) + §5x5x : VVu(xg) + 0(6x%),  (3.6)
where 0x = x — x¢ and u(xg) = 0. If xq is a saddle point from which liquids flow
in and out, the determinant of the velocity gradient is negative, i.e., det Vu(xg) < 0.
On the contrary, if X is a vortex center, det Vu(xg) > 0. Therefore, the vortex birth

conditions are

u(xg) =0 and det Vu(xp) = 0. (3.7)

However, u(xg) = 0 holds by default for every point on an impermeable stationary
wall, requiring one to examine the second-order term in Equation (3.6) when identi-
fying the vortices born along the wall. With a proper choice of time unit, the singular
character at the wall can be eliminated from the equation, allowing conditions for

vortex generation along the wall to be derived as

1 2
=10 g 2, (3.8)

_587811_ 8st_

where the relative position and velocity are expressed in terms of the local orthogonal

coordinate system, i.e., x = ts; + ns, and u = tu; + nu,, where t and n are unit

tangent and normal vector to the solid wall surface.

3.2.2 Solution methods

The Galerkin finite element method (G/FEM) is used to discretize and solve for Equa-

tions (3.2)-(3.4) coupled with (3.5), which serves as a mesh generation equation upon
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discretization. The field variables (velocity, pressure, and nodal position) are repre-

sented as finite linear combinations of known basis functions

u=> we;&n), (3.9)
J

p=>Y_ Pui(&m), (3.10)
k

X =) %6;(6,7)- (3.11)
J

Lagrangian biquadratic basis functions ¢; are used to express velocity and nodal
position, and linear discontinuous basis functions ), to express the pressure. The
unknown basis function coefficients u;, P, and x; comprises the solution vector z,
and is obtained by solving the discretized governing equations.

Equations (3.2), (3.3), and (3.5) are multiplied with weighting functions and in-

tegrated over the flow domain, to obtain the following weighted residuals

RC:/qka-udQ, (3.12)
Q
Ro, :/(¢jpu.Vu+v¢j-T) dQ—/gbjn-TdF, (3.13)
Q T
RX:—/ngj-D-V{dQ—i—/qﬁjn-D-VﬁdF. (3.14)
Q T

Here, D = (D¢, D)) and £ = (&, 7). Weighting functions are the same as basis
functions in Galerkin’s method. The divergence theorem was applied where possible,
and 2 and I" represent the flow domain and the domain boundary. The subscripts m,
¢, and x represent momentum, continuity, and mesh residuals, respectively.

The constructed weighted residuals can be viewed as a discretized and reduced
version of the original partial differential equations governing the system. They form
a system of nonlinear algebraic equations, in terms of the unknown basis function

coefficients z and known system parameters A, as

R(z,A) = 0. (3.15)
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This system of equations is solved iteratively by linearizing the equations at each
step (i.e., by Newton’s method). In this analysis, the iteration is considered to have

converged when the Lo-norm of the residual vector, |R(z, A)||,, falls below 10~7.

Direct tracking of vortex birth conditions

The procedure described above are applicable in cases where the values for all the
system parameters, A, are specified, and the goal is to obtain the solution vector z;
i.e. when the problem is of the first type, as described in Section 1.2. However, the
problem covered in this chapter is of the second type, which requires a somewhat
different approach.

We use the direct tracking algorithm, as described by Nam et al. (2009), to track
the vortex birth condition under different system parameters (e.g., the prescribed flow
rate or the vacuum pressure). In the following, the procedures involved in the algo-
rithm is briefly outlined.

If the obtained solution is to meet specific, sought-after conditions (vortex birth
for example), the solution must satisfy extra equations describing such conditions in
addition to the original governing equations. These newly introduced equations are
called the augmented equations. Some formerly fixed parameters must be “set free”
so that the field variables can shift to meet the new requirements. These parame-
ters serve as the new unknowns for the augmented equations. For the present study,
Equations (3.7) and (3.8) are used as the augmented equation to seek vortex birth
conditions. The extra unknowns are the position of the vortex center (or the stagna-
tion point) and the operating parameter to adjust. The augmented equations, together

with the weighted residuals of the governing equations, Equation (3.15), form an

38 N = L



augmented system of equations:

R(z, A, p) =0,
(3.16)

A(z,\,p) =0,
where A and p denote augmented equations and the set of auxiliary parameters for
the system to satisfy given conditions. Once again, this system of nonlinear equations
is solved iteratively by Newton’s method for the basis function coefficients z and the
extra auxiliary parameters p.

After obtaining the solution with a fixed set of parameters A\, the algorithm moves
on to the next stage to seek solutions under other sets of parameters. This multipa-
rameter continuation stage consists of three smaller steps. First, the parameter, whose
effect we are interested in, is changed, i.e., B(;41) = B(;) + 3, where /3 is the in-
crement or the decrement made on the parameter and the index ¢ indicates the i-th
continuation step. Next, in the predictor step, the sensitivities of z and p to the pa-
rameter [3 are computed and a “good” initial guess is obtained by a tangent predictor
as A1) = Ag) + 0B(0A;)/9pB), where A stands for either z or p. Lastly, in
the corrector step, Equation (3.16), now with changed 3, is solved using Newton’s
method with the initial guess obtained from the previous step. For this analysis, the
tolerance on the Ly-norm of the augmented residual vector is set as 10~7. We relaxed
the tolerance up to 10~% for low values of n near 0.5. With the multiparameter con-
tinuation performed over the entire range of 3 that we are interested in, we obtain the

complete set of solutions that satisfy the given conditions with different values of .

3.2.3 Results and discussion

Vortices found in the coating bead flow are classified into two categories according
to the location of their births: (i) on the stationary wall and (ii) within the flow, as

illustrated in Figure 3.4. The former is observed in the downstream region of the
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coating bead with non-zero flow rate (Sartor, 1990; Nam et al., 2009), while the latter
is usually encountered in the upstream region where the net flow rate is zero (Nam
et al., 2009). In the following, we present the results of applying the direct tracking
algorithm to both regions and discuss the effect of shear dependent viscosity on the

vortex formation conditions.

Figure 3.4: Two different types of vortices found in the slot coating flow: (i) within

the flow and (ii) on the die-lip surface.

Vortex birth in upstream region

It is a common practice to apply vacuum pressure to the liquid-gas interface in the up-
stream region to stabilize the coating bead flow by pulling the interface away from the
feed slot (Sartor, 1990; Carvalho & Kheshgi, 2000). Increasing the flow rate shows
a similar effect, by pushing the interface toward the upstream direction. Higher vac-
uum and flow rate both results in a larger pressure difference between the interface
and the exit of the feed slot. Thus, an increase in both parameters lead to an increased
length of the upstream coating bead. It is reported that a vortex in the upstream bead
is born from the cusp point within the flow when the bead length grows sufficiently
long (Nam et al., 2009).

Vortices formed in the upstream region are born within the flow. Consequently,

we choose Equation (3.7) to be the augmented equation. Since both vacuum pressure
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and prescribed flow rate can lead to the birth of vortex in the upstream region, either
of the two operating conditions can serve as one of the auxiliary parameters. In this
section, we choose vacuum pressure to be the auxiliary parameter, i.e., its magnitude
is automatically determined through the direct tracking algorithm. Therefore, the set
of auxiliary parameters p in Equation (3.16) is comprised of the vacuum pressure
and the coordinates of the stagnation point xg, which coincide with the location of
vortex birth. The continuation was performed on the power-law index n and the di-
mensionless flow rate to examine their effects on the vortex birth in the upstream
region.

Figure 3.5(a) illustrates the result of the parameter continuation on the dimension-
less flow rate. Under a fixed value of power-law index n, the dimensionless flow rate
decreases as the dimensionless vacuum pressure increases, as both conditions have a
similar effect on the length of the upstream coating bead. From an engineering point
of view, this means that the use of vacuum pressure restricts the maximum thickness
of the film produced, if the vortices are to be avoided in the upstream coating bead
flow.

Under a fixed value of the flow rate, the vacuum pressure required for vortex
birth generally increases with the increasing power-law index n, as depicted in Fig-
ure 3.5(b). However, as the dimensionless flow rate approaches the critical value of
approximately 0.62, the vacuum pressure at the moment of vortex birth vanishes re-
gardless of the power-law index n, as shown in curve (iii) of Figure 3.5(b). This
observation implies that the vortices are likely to be found in coating flows with a
flow rate above this critical value, even in the absence of vacuum pressure. Note that
Figures 3.5(a) and (b) both represent hyperplanes of the same surface residing in
the three-dimensional parametric space consisted of dimensionless vacuum pressure,

flow rate, and power-law index n.
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Vortex birth in downstream region

In the downstream region, the net flow rate is equal to the predetermined flow rate
per unit width, ¢ = hy, Uy, assuming that no coating liquid is lost through evap-
oration or leakage during the process. Since vortices are formed on the stationary
downstream die lip, Equation (3.8) is used as the augmented equation appearing in
Equation (3.16). Since the vacuum pressure plays no role in determining the onset
of vortex formation in this region, we choose only the prescribed flow rate ¢ and the
location of the vortex birth to be the extra auxiliary parameters p in Equation (3.16).
To examine the effect of shear-rate dependent viscosity on the vortex birth condition,
n is used as the continuation parameter, i.e., § = n.

Figure 3.6 illustrates the dimensionless flow rate h,, / H, at the moment of vortex
birth, as predicted by the direct tracking algorithm when the power-law index n is
varied from 0.5 to 1.5. It is evident from the plot that there is a clear relationship
between the vortex formation condition, expressed in terms of the dimensionless flow
rate, and the power-law index n. Also, it should be noted that the one-third rule
discussed in Section 3.1 is verified by the numerical results when n = 1, as marked
in Figure 3.6.

These observations motivated us to search for an analytical expression that can
predict the vortex formation conditions in the downstream region for the slot coating
flows of the power-law fluids, just like what one-third rule does for the Newtonian

fluids. The derivation and findings are presented in the following section.

43 x—g N :.-_ -:I



0.37

0.25

Figure 3.6: Dimensionless flow rate hy,/H, at the moment of vortex birth (from 2-D
FEM computations) plotted against the power-law index n. Note that the one-third

rule is recovered when n = 1.

3.3 Flow reversal condition in one-dimensional flow model

The flow in the downstream region is highly rectilinear in nature, which allows it
to be approximated as a fully-developed one-dimensional (1-D) rectilinear flow be-
tween a pair of moving and stationary walls. This type of flow is often referred to as
Couette—Poiseuille flow (C-P), owing to the two distinct driving forces for the fluid
motion: the viscous force due to the shearing motion between the moving and sta-

tionary plate and the pressure gradient imposed along the streamwise direction. With

[, -1l = -
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these assumptions, the approximated 1-D C-P flow becomes tractable for analysis in

a coordinate system as depicted in Figure 3.7.

« dp/dx .

X u(0) = U,

Figure 3.7: Configuration of the planar Couette—Poiseuille (C-P) flow considered in

1-D flow analysis.

Vortices, in a 1-D flow domain, are characterized by the presence of flow reversal.
The description of motion in such a space is limited due to the lack of cross-flow
component, and a flow reversal is indistinguishable from a vortex in the flow domain.
Therefore, in this section, the goal is to search for the onset condition of flow reversal
in 1-D C-P flow which, hopefully, provides an useful prediction of the actual vortex

birth conditions in the 2-D flow.

3.3.1 Mathematical formulation

Since the flow is fully-developed, the fluid velocity u is independent of the flow
direction and only dependent on y. The pressure gradient dp/dzx, as a result, is also
constant along the flow direction. The plate located at y = 0 is moving in the z-
direction with a constant velocity Uy, while the plate at y = H, remains still. Here,

Hy is the channel height.
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We introduce the following dimensionless variables,

4 dp H
= — g:Hi, p=P_°P g (3.17)

; Az~ dz K(U/Hg)™

With these variables substituted and tilde sign omitted, Equations (3.2)-(3.4), and

d
dy

which is subject to the following no-slip boundary conditions

(3.1) are reduced to
d7u
dy

n—1
du
— | =P 3.18
dy) ) (3.18)

u=1 at y=0,
(3.19)
u=0 at y=1.
Note that the scaling factor K (Uy,/Hg)™ in Equation (3.17) is the characteristic stress

under a simple shearing motion. The unknown pressure gradient P is determined by

the following mass conservation equation:

1
q
dy = =Q. 3.20
/OqungQ (3.20)

Here, q is the prescribed flow rate per unit width and () is the dimensionless flow rate.
By integrating Equation (3.18) we obtain

dy

du

ay (y —c1)P, (3.21)

where c; is the constant of integration and also the vertical position where the flow
exhibits a zero shear-rate.

As mentioned by Ross er al. (1999), differential equations involving absolute
values should be dealt with carefully, as different signs may yield distinct solutions.
Therefore, two remarks must be considered to solve Equation (3.21). A close inspec-
tion of the equation reveals that the sign of shear rate du/dy coincides with that of
(y —c1)P. Moreover, du/dy is an odd function with respect to y = ¢1, which implies

that u(y) is an even function (as shown in Figure 3.8).
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To make use of this property, in this analysis, we assume du/dy > 0 and solve for
Equation (3.21) in a single side of the symmetry plane, ¥ > ¢; or y < c1, depending
on the sign of P. Since u(y) is symmetric with respect to y = ¢, the other half (where
du/dy < 0) is obtained effortlessly by reflection. The boundary conditions are then
applied to restrict the flow to the appropriate domain. Note that in the absence of the
pressure gradient, i.e., P = 0, the solution is a pure Couette type flow u(y) = 1 — v,
with a dimensionless flow rate of Q = 1/2.

Previous studies, e.g., Flumerfelt e al. (1969), adopted two different approaches
to derive the velocity profile depending on the existence of a maximum or minimum
of the velocity profile within the flow domain. Our approach differs in that a single
expression is derived for the velocity profile, regardless of the position of ¢;.

When the prescribed dimensionless flow rate is less than 1/2, there exists an ad-
verse pressure gradient (P > 0) along the channel, and Equation (3.21) is rearranged
as

du

1 1
— Pn(y — n. 3.22
ay (y —c1) (3.22)

Upon integration and application of the symmetry condition, the velocity profile is

obtained as
1 n

— Pn
u(y) n—+1

1
ly —c1|m + ca, (3.23)

where cy is another constant of integration. Note that with the symmetry condition
applied, this profile is valid throughout the entire domain. Two unknowns, P and ca,

are eliminated from the equation by applying boundary conditions, Equation (3.19):

|1—01\nT+1—\y—01’"II
u(y) = T S (3.24)
[T—ci| » —lea| »

The dimensionless pressure gradient P is also expressed in terms of ¢y,

(n+1)/n
ntl ntl *
leaf = [L=cr] m

1
Pr =

(3.25)



The velocity profile and the pressure gradient are expressed in terms of an undeter-
mined constant c;. It is finally determined through Equation (3.20) numerically, with
a given dimensionless flow rate Q.

A same mathematical formulation for the case of forward pressure gradient, i.e.,
P < 0, leads to the velocity profile identical to Equation (3.24) and the pressure

gradient expressed in terms of c; as

(n+1)/n
ntl ntl *
leaf " ==l

—(=P)n = (3.26)

With the velocity profile and pressure gradient obtained, it is possible to classify
the flow into four states, as depicted in Figure 3.8. The sign of P separates flow
states into two groups, I-II (P > 0) and III-IV (P < 0). The value of c; is used to
distinguish different states within each group. Consequently, ¢y, the location of zero
shear rate, uniquely determines flow states.

In this analysis, explicit expressions for the limiting flow rate conditions are es-
tablished and used as the criteria for distinguishing different flow states. Flumerfelt
et al. (1969) and Malik & Shenoy (1991) classified the C-P flow into different states
in a similar manner, but only in terms of the dimensionless pressure gradients. Since
P is uniquely determined by () through Equations (3.20) and (3.24)-(3.26), the same
criteria that distinguish between different flow states can be expressed in terms of @)
as well.

To obtain the conditions for limiting cases, c1, the location of zero shear rate, in
Equation (3.24) is set to the boundary of the domain, i.e., ¢c; = 0 and ¢; = 1. The
velocity profile is then substituted into Equation (3.20) to obtain the dimensionless

flow rate in each case. The resultant limiting flow rate and pressure gradient pairs are
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1/2S01S1 C1>1 C1<O OSC1S1/2
P>0 P>0 P<O P<O

Figure 3.8: Four distinguishing flow states, dependent on operating conditions. Here,
y = c1, shown as the dashed line, is the position of zero shear rate, and P is the

dimensionless pressure gradient.

expressed as

n+1
n

n
and P = ( ) (Adverse pressure gradient), (3.27)

T oam+1

n+1 n+1\" )
= and P=— (Forward pressure gradient).  (3.28)
2n+1 n

Note that the pressure gradient condition is identical to that derived in the previous
study (Flumerfelt et al., 1969). Following these criteria, the conditions for each flow
state are developed and are listed in Table 3.2, and are depicted in Figure 3.9.
Equation (3.27) sets the boundary between flow states I and II, and is the most
important to the present analysis as it marks the onset of the flow reversal. As previ-
ously mentioned, this may imply the generation of vortices in the downstream region
of the slot coating flow. It is also clear from Equations (3.27) and (3.28) that the
critical conditions are dependent solely on the power-law index n, as illustrated in

Figure 3.9.

3.3.2 Comparison with 2-D model

In the downstream region of the coating bead flow, ¢ = h U, holds by mass con-

servation, where hy, stands for the wet thickness of the coated film and ¢ is the
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Table 3.2: Dimensionless velocity profile, pressure gradient, and flow rate conditions

for different flow states in 1-D C-P flow of power-law fluids.

Flow state I 11
(—e) " —ly—c1| " (=) —(ci—y)
Velocity profile A e
(I—c1) n =y ™ (c1=1)"n —c; ™
1 1 1 1 1
Flowrate Q<§—m 5—2(2n+1)<Q<§
. 1\ 1\n
Pressure gradient P> (%) 0<P< (”T)
Flow state 11T v
(—e) " —(y—e) 5 (l—c1) o —Jy—cr|
Velocity profile —L LA —a e
(I—Cl)T—(—Cl)T (lfcl)chlT
1 1 1 1 1
Flow rate 3<Q<s5+ 5EnTT) 2t oy < Q
. L1\" +1\7
Pressure gradient — — ("T) <P<0 P<— ("T)
@) (b)
3 o
1.0 I
. L
0.8
1 II
06F III
Iy b o
® 0.4 I
1 1II
I —2F
1A%
0.0 | | Sl . .
0.0 0.5 1.0 1.5 0.0 0.5 1.0 L5
power-law index n power-law index n

Figure 3.9: (a) Dimensionless flow rate and (b) dimensionless pressure gradient that
divides the flow states in the C-P flow of power-law fluids, plotted against the power-

law index n.

prescribed flow rate per unit width through the downstream channel (as defined in
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Equation (3.20)). Substituting the relation into the Equation (3.20), we obtain

Q=

UsH, Hg

q hw

(3.29)

This implies that for slot coating flows, the dimensionless wet thickness coincides

with the dimensionless prescribed flow rate. Based on this fact, we use Equa-

tion (3.27), the flow reversal condition, to predict the vortex formation conditions

computed by 2-D flow model.

0.37}

u

«

—

0.33

S
=

Ny

0.29}

0.25¢

Vortex-free

downstream die li

Vortex formed along the
downstream die lip

— 1-D criterion
—-— 2-D FEM

1.5
n

Figure 3.10: Dimensionless flow rate hy, / H, ¢ at the moment of vortex birth (2-D FEM

computations) and flow reversal (1-D model prediction) plotted together against the

power-law index n.

Figure 3.10 shows the dimensionless flow rate at the onset of flow reversal (Equa-

tion (3.27)) derived from the 1-D rectilinear flow model, plotted as a function of n,
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along with the vortex formation conditions computed using 2-D model (previously
presented in Figure 3.6). The two results shows reasonable agreement, with the maxi-
mum relative error being less than 4% under the range of n considered in this analysis.
This shows that the analytical flow reversal condition derived from the simple recti-
linear flow model is fairly accurate at predicting the birth of vortex in the downstream
slot coating flow of the power-law fluid.

What is also worth noting is that the dimensionless flow rate at the onset of both
conditions decreases as n decreases, which means that the shear-thinning property
helps suppress the vortex birth under the downstream slot-die lip. From an engi-
neering point of view, this implies that a wider range of operating conditions can be
exploited while preventing downstream vortex formation, by using coating liquids
with a higher degree of shear-thinning behavior. In other words, it is possible to coat
a thinner film at a fixed coating gap H, or coat at a larger coating gap with a fixed
flow rate in a vortex-free environment.

A qualitative explanation regarding this trend can be explored by examining the
kinematics along the stationary wall. For a vortex bubble to occur, the flow must
detach from the wall, which can be identified by a change in the sign of the shear rate
Ouy/0sy along the wall. Figure 3.11 illustrates the velocity profile obtained from the
1-D model at different values of n (varied from 0.5 to 1.5) and dimensionless flow rate
hyw/Hg (varied from 3/8 to 1/4). At a fixed h., / Hg, the flow with the lowest value of
n exhibits the most negative shear rate at the upper wall. As the dimensionless flow
rate decreases, the magnitude of the adverse pressure gradient across the channel
grows, causing the shear rate to increase toward a positive value. At some point, the
sign of the shear rate is changed and flow reversal is observed. This point of transition
occurs at the lowest dimensionless flow rate for the shear-thinning fluid (n < 1) and
at the highest for the shear-thickening fluids (n > 1). This suggests that the shear-

thinning property of the fluid makes it less vulnerable to the adverse pressure gradient

1 ¢
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generated under the reduced flow rate. Thus, the onset of flow reversal and the birth

of vortex on the wall are delayed by this fluid property.

10 n=0.5 Lo n=10
du du
dul  _ _g134 duj  _ _gn
vl 0.3486 dvl,, 0.25

~0.5

=~0.5H

1.0

1.0

0.5 [

dul  —03667
y y=1

Figure 3.11: Velocity profiles under the downstream die lip, as predicted by the 1-D

rectilinear flow model with dimensionless flow rate of h,/Hy = 3/8, 1/3, and 1/4;

and power-law index taking values of n = 0.5 (shear-thinning), n = 1.0 (Newto-

nian), and n = 1.5 (shear-thickening).
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3.4 Local power-law approximation method

By rearranging the flow reversal conditions (Equation (3.27)) into their dimensional
forms, we obtain following critical conditions in terms of the pressure gradient py .

and flow rate per width ¢, as:

n+1\" K(Usg/H,)"
DPx,c = ( ) (U /Hy) ; (3.30)
n H,
- " uU.H (3.31)
dc = o+ 1 wilg. .

A closer inspection of Equations. (3.30) and (3.31) reveals that the critical condi-
tions for power—law fluids are explicitly expressed in terms of the system parameters
(Uy and Hg) and fluid properties (K and n). Hence, in this section, we propose
the local power—law approximation (LPLA) method, which approximates a fluid as a
power—law fluid locally around a representative shear rate -, as shown in Figure 3.12.
With this method, it is possible to extend the results obtained in Section 3.3 for power-
law fluids to the more general cases of generalized Newtonian fluids (GNFs), whose
viscosities depend on the shear rate arbitrarily.

Cruz et al. (2012) adopted the same methodology to estimate the Nusselt number
and friction factor of a fully developed laminar flow in circular pipes with a constant
wall heat flux. They used the Newtonian wall shear rate as the representative shear
rate of the system and reported maximum estimation errors of 6% and 8% for the fric-
tion factor and Nusselt number, respectively. In the analysis covered in this section,
we applied the method to a different system (parallel channel flow between stationary
and moving walls) using a different representative shear rate to estimate the critical
flow reversal conditions.

For the flow curve in the log—log scale, a tangent line parameterized by two vari-

ables, K and 71, can be constructed at +y. From the slope of the curve and the viscosity
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Figure 3.12: Flow curve plotted in log—log scale. Fluid is approximated as power—law

fluid, parameterized by K and f, ata representative shear rate ;.

evaluated at +,, K and 7 are obtained as follows:

K =n(3)5% " (3.32)
dl oo d
N = Noc(Fr) = dlog7.7 1=_r d—7.7 +1. (3.33)
087 4=, () dlss,
Here, njoc (%) = g%ggz + 1 is the local power—law index of the viscosity curve, 7,

obtained by constructing a tangent line at <. Upon replacing n in Equation (3.31) by

7, the approximate value of the critical flow rate per width §. is obtained as follows:

R n
qc = 2% + 1Ung- (3.34)

Meanwhile, two approaches can be used to the approximate the critical pressure gra-
dient. In one approach, we first obtain the approximate wall shear rate 4, by replacing
n in the expression derived for the wall shear rate of power-law fluid by 7.

z n+1Uy

Tw = —= .
n  Hg




Also, by the macroscopic force balance on the 1-D C-P flow at the onset of the flow
reversal, the wall shear stress, 7, can be related to the critical pressure gradient, py c,

as:

Tw 7(y) dr
Tw_TW _dr_ (3.36)
Hy Yy dy

By substituting Equation (3.35) into the derived expression, the approximate value

for the critical pressure gradient is computed as follows:

" Tw n(%W)SYW
(px,c)l Hg Hg ( )
In the other approach, we replace K and n in Equation (3.30) by K and f, respec-

tively, to obtain the following expression:

(oo)s = (P L)' EWu/H" _ (+1Us/Hg " nCic)is
*e/2 ; H, P A Hy

n
This approach can be considered as the approximation of the wall shear stress instead

(3.38)

of the wall shear rate.
The accuracy of Equations (3.34), (3.37), and (3.38) in predicting the actual crit-
ical conditions depend significantly on the choice of ;. In this study, we select the

apparent shear rate

Uy
H,’
to represent a specific system. At the onset of the flow reversal, ¥, coincides with the

Yy = (3.39)
average of the magnitude of shear rate, and is thus an appropriate representative of
the system considered in this study. Note that this is not the case for general plane
C-P flows, where the sign of the shear rate may change depending on the operat-
ing conditions. Furthermore, , can be easily computed from the system parameters

without any numerical procedure, allowing the method to be fully analytical.

3.4.1 Results and discussion

In the following, we present the approximate values of the critical conditions for flow

reversal obtained using the LPLA method. The Carreau—Yasuda (C-Y) and Bing-
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ham—Carreau—Yasuda (B—C-Y) models (Kistler & Schweizer, 1997) were selected
as viscosity models for the fluids involved in the computations. The constitutive equa-

tions are as follows:

C-Y: 0(4) = oo + (00 — 100) [1 + (M) "5, (3.40)
1 — e FIAl
9]

Here, 10, 1m0, A, N, a, Ty, and F' are the model parameters determined by fitting the

n—1

) [L+ AADT e

B-C-Y: n(¥) = Moo + (770 — Moo + Ty (3.41)

experimental data. To analyze the accuracy of the LPLA method, we adjusted the
values of the parameters such that the resulting flow curves exhibited different values
of N over the shear rate range of interest. The parameter values are summarized in

Table 3.3, and the corresponding flow curves are shown in Figure 3.13.

A B
10 F 1027

-
o

viscosity (Pa-s)
) )
viscosity (Pa-s)

10 107 10° 100 10 10 107% 10 100 10
shear rate (1/s) shear rate (1/s)

Figure 3.13: Flow curves of A. Carreau—Yasuda (C-Y) fluid and B. Bing-
ham-Carreau—Yasuda (B—C-Y) fluid.

The LPLA method was used to predict the critical flow rate per width, ¢., and
critical pressure gradient, py .. The approximate values were computed for the C-P
flows of both the C—Y and B—C-Y fluids. In addition, two different approaches were
used to approximate py , either by approximating the wall shear rate ((pxc)1) or

by approximating the wall shear stress ((px)2) as that of the power-law fluid. The
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Table 3.3: Values of model parameters.

Model 7. /Pa-s mnp/Pa-s AX/s n a 7Ty/Pa F/s

C-Y 0.01 100 500 0.2 038 - -
B-C-Y 0.01 10 0.01 02 038 0.1 1000

different cases of approximation considered in this section and the corresponding

figure numbers are summarized in Figure 3.14.

|

| :
2.

C-Y B-C-Y B-C-Y
(Fig. 3.16) (Fig. 3.17)

‘ (Bro): ‘ (B> H (B0 ‘ ‘ (o2 ‘

(Fig. 3.18) (Fig. 3.19) (Fig. 3.20) (Fig. 3.21)

Figure 3.14: Tree diagram showing cases where LPLA method is applied to approx-
imate critical flow reversal conditions. Figure number corresponding to each case is

also presented.

Uy and H, are two controllable operating parameters of the system presented
herein. The critical conditions, in their dimensionless form, remain constant as the
two variables are increased or decreased by the same factor. Therefore, the critical
conditions were computed under different ratios of the two variables, Uy, / H,, rang-

ing from 10~° to 10°s~!

, instead of changing the value of each variable indepen-
dently.

The normalized velocity profiles of C-Y and B-C-Y at the onset of flow rever-
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sal are presented in Figure 3.15. It is clear from the figure that the profile depends
strongly on the operating conditions. Note that the velocity profile closely resem-
bles that of the Newtonian fluid when the flow curve (refer to Figure 3.13) around
Uy /H,g is in the Newtonian plateau region. On the other hand, when it resides in the
power-law region, the corresponding velocity profile exhibits typical traits of a shear-

thinning power law fluid flow, such as the “flat” profile observable near the stationary

wall.
A B
1.0F — Newtonian 1.0F — Newtonian
-1 -1
— U, Hy=1s A — U, Hy=1s
0.8F | _4nd T 0.8 i¥ -10%s”"
U,/Hg=10"s U,/Hg=10"s
5 -1 4 -1
05l — U,Hy=10"s 05l — U,Hy=10"s
o o
S S
> >
0.4r 0.4r
0.2F 0.2
0-07 L L L L L L 007 L
0.0 0.2 0.4 0.6 0.8 1.0 0.0

u/U

Figure 3.15: Normalized velocity profiles of Couette—Poiseuille (C—P) flow of A. Car-
reau—Yasuda (C-Y) fluid and B. Bingham—Carreau—Yasuda (B—C-Y) fluid at the on-
set of flow reversal, under different values of operating conditions. Newtonian coun-

terpart (red solid line) is presented together as a reference.

Lastly, the values predicted by the LPLA method are compared against the exact
values computed using the semi-analytical method, which will be discussed in de-
tail in Section 3.5. The relative errors are computed using the following formula to

evaluate the prediction accuracy of the approximation method:

Acxact — A
erel(%0) = ‘W x 100 (%), (3.42)

Aexact

where Aexact is the exact value of the critical condition and Aapprox 1S the approximate

value predicted by the LPLA method.
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Because the LPLA method approximates a given fluid as a power—law fluid lo-
cally around +,, the error is likely to be small when +; lies in the log-linear region
of the flow curve. We define the curvature x of the log-log flow curve using the

following equation and used it to quantify the log—linearity of the curve:

’ d? logn

og )2
PR U — (3.43)

2] 2
dl
{1+ (g’

Critical flow rate

Figure 3.16A presents the critical flow rate per width g. scaled by Uy H, computed
under varying operating conditions, Uy, / Hg, for the C-Y fluid. Despite the variation
in the error with changing operating conditions, the magnitude of the error, computed
using Equation (3.42), remained reasonably low throughout the entire operating con-
dition (U /Hg) range, with the maximum being 3.98%. What is also noteworthy is
that no numerical method was involved when using the LPLA method with 4, = 7,
to obtain the approximate value of the critical flow rate per width §., making it a
fully-analytical method. By examining the curvature of the viscosity curve and the
relative error depicted in Figure 3.16B, we find that the error trend does not follow
that of the curvature. The reason for this will be discussed in detail in Section 3.5.1.

The critical flow rates per width computed for the B-C-Y fluid are shown in
Figure 3.17A. Similar to the case of the C-Y fluid, the LPLA methods satisfactorily
predicted the critical condition under most of the interesed Uy, / H, ranges. However,
large level of relative error (13.49%) was observed when the curvature of the viscosity
curve is large around the given operating conditions. The mismatch between the error
and curvature trends was also observable in this case (refer to Figure 3.17B).

It is also interesting to notice for both C-Y and B-C-Y cases that the critical
dimensionless flow rate approaches one-third when the operating condition corre-

sponds to the Newtonian plateau of the viscosity curve, whereas the flow rate falls
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Figure 3.16: A. Dimensionless critical flow rate per width for C-Y fluid predicted
using LPLA method (solid black line) along with exact values computed by using
semi-analytical method (solid red line), B. Relative error of the LPLA method. Solid

blue line represents curvature of corresponding log—log flow curve.
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Figure 3.17: A. Dimensionless critical flow rate per width for B-C-Y fluid predicted
using LPLA method (solid black line) along with exact values computed by using
semi-analytical method (solid red line), B. Relative error of the LPLA method. Solid

blue line represents curvature of corresponding log—log flow curve.

below one-third when the operating condition moves on to the power-law (shear-
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thinning) region of the viscosity curve. This trend agrees with the observation we
have made in Section 3.3.2, where it was observed that the flow reversal occurs at a

smaller flow rate when the fluid becomes more shear-thinning.
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Critical pressure gradient

As described above, the approximate values of the critical pressure gradient, denoted
by (Px.c)1 and (Pxc)2, were obtained using two different approaches for applying
the LPLA method. (px )1 and (Pxc)2 of the C-Y fluid, as well as the exact values
obtained using the semi-analytical method, are presented in Figures 3.18A and 3.19A.
The pressure gradient was scaled by 7)(¥a)%a/H,, Which is the apparent shear stress
divided by the channel height. It is evident from the figures that both approaches of
the LPLA method approximate the exact value as accurately as the LPLA method did
in predicting ¢c.

The relative errors of (px )1 and (Px,c)2 of the C=Y fluid are shown in Figs. 3.18B
and 3.19B. The maximum relative error of (px )1 in predicting the critical pressure
gradient was 6.59%, whereas the corresponding values of (px )2 was 4.76%. The
error magnitudes were comparable, rendering both LPLA methods feasible for ap-
proximating py . of C-Y fluids analytically. Unlike the error of g, those of (pxc)1
and (P )2 resembled the curvature variation of the flow curve.

(Px,c)1 and (P )2 of the B-C-Y fluid, along with their relative errors, are shown
in Figures 3.20 and 3.21, respectively. The approximate values were reasonably close
to the actual py . under most operating condition ranges, with the exception of (P )1
near the operating condition where the viscosity curve exhibited a large curvature.
The relative error as high as 14.82% was observed for (px)1. That of the (P )2
remained relatively low throughout the entire operating condition ranges, with the
maximum being 8.00%. The reason behind the high error of (py )1 is suspected to
be the discrepancy between the wall shear rate ~,, which is approximated as a power-
law fluid, and the viscosity curve 7, which belongs to the original GNF. Once again,
the error trends of both (P )1 and (px )2 resembled that of the curvature, unlike that

of qc.
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Figure 3.18: A. Dimensionless critical pressure gradient of C-Y fluid and its approxi-

mate value, (P )1, computed using LPLA method (solid black line) along with exact

values computed by using semi-analytical method (solid red line), B. Relative error

of the LPLA method. Solid blue line represents curvature of corresponding log—log

flow curve.
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Figure 3.19: A. Dimensionless critical pressure gradient of C-Y fluid and its approxi-

mate value, (py )2, computed using LPLA method (solid black line) along with exact

values computed by using semi-analytical method (solid red line), B. Relative error

of the LPLA method. Solid blue line represents curvature of corresponding log—log

flow curve.
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Figure 3.20: A. Dimensionless critical pressure gradient of B-C-Y fluid and its ap-
proximate value, (px )1, computed using LPLA method (solid black line) along with
exact values computed by using semi-analytical method (solid red line), B. Rela-
tive error of the LPLA method. Solid blue line represents curvature of corresponding

log-log flow curve.
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Figure 3.21: A. Dimensionless critical pressure gradient of B-C-Y fluid and its ap-
proximate value, (P )2, computed using LPLA method (solid black line) along with
exact values computed by using semi-analytical method (solid red line), B. Rela-
tive error of the LPLA method. Solid blue line represents curvature of corresponding

log—log flow curve.
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3.5 Semi-analytical method

In this section, we present a systematic procedure for computing the exact values of
the critical conditions at the onset of flow reversal, whose approximate values were
predicted using the LPLA method in the previous section.

The system of interest is a one-dimensional fully-developed laminar C-P flow
of an incompressible generalized Newtonian fluid between two parallel plates, with
one moving at velocity Uy, and the other stationary at distance H, from the moving
plate. At the onset of flow reversal, the flow is under an additional constraint, i.e., the
shear rate is zero on the stationary wall. The detailed flow configuration is shown in
Figure 3.22. The configuration is basically the same as that depicted in Figure 3.7,

but the direction of increasing y is inverted for the sake of simplicity during the

derivation.
- dp/dx >
y=H, >
: —— uHy - U,
y=0

Figure 3.22: Configuration of flow considered in the derivation of semi-analytical

method.

When the system parameters (Uy, and Hy) and fluid properties are specified, the
abovementioned flow state can be fully determined based on a pair of critical flow
rate and pressure gradient conditions. We propose a method to obtain the two critical

conditions directly using Uy, and H, as well as the flow curve, instead of obtain-

S— ]
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ing the velocity profile as an intermediate, which would otherwise require solving a
(non)linear differential equation. This method is named as the semi-analytical method
because it may or may not require the use of numerical methods depending on the
type of constitutive equation involved. However, the only numerical procedures in-
volved in this method are a convergence-guaranteed root-finding algorithm and a nu-
merical integration scheme, which are generally more computationally efficient than
solving differential equations.

We referred to the derivation of the Weissenberg—Rabinowitsch equation (Ma-
cosko, 1994; Sochi, 2015), which is used extensively in the field of capillary rheom-
etry, to obtain an expression that relates the flow rate to the pressure gradient.

The flow rate per width up to a height of y can be expressed as

Y
o) = /O w(y®) dy”, (3.44)

where w is the velocity in x—direction, and y* is a dummy variable for integration.
Such variables are denoted with asterisks hereinafter.

By integrating Equation (3.44) by parts, changing the integration variable using
the relation given in Equation (3.36), and applying the zero shear stress condition on

the stationary wall (at y = 0), we obtain the following expression for g(y):

q(y) = u(y)y — I(y), (3.45)
2 r(y)
I(y) = <Hg> / ’ A7 dr, (3.46)
Tw 0

where ¥ = du/dy is the shear rate. The expression for the critical flow rate per width
¢ can be obtained as:

¢c = Uy Hy — I(Hy), (3.47)

by substituting H, into Equation (3.45).
Because the distance between the walls (H) and the wall velocity (Uy,) are spec-

ified, the only unknowns are the wall shear stress 7y, and critical flow rate ¢.. The
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additional equation to render the problem fully determined is the no-slip condition at
the stationary wall, which is the only unused condition thus far.

For the additional equation, we use the integral equation for the velocity,

u(y)
u(y) — u(0) —/0 ’ du*. (3.48)

By the change of variable and applying zero shear rate condition on the stationary

wall (at y = 0), we obtain the following expression for u(y).

u(y) —u(0) = I (y), (3.49)
H., W)

L(y) = =& Adr*. (3.50)
Tw Jo

By substituting H, into Equation (3.49) and applying the unused no-slip condi-
tion, u(0) = 0, we obtain the second equation to make the problem fully determined
as follows:

Uy = Ip(Hy). (3.51)

By solving Equations (3.47) and (3.51), one can obtain the exact value of the
wall shear stress 7, (which is directly related to the critical pressure gradient py . by
Equation (3.36)) and the critical flow rate per width g, at the onset of flow reversal.

The detailed procedure is as follows:

1. Using the wall velocity Uy, channel height H,, and flow curve (n = (%)),
Equation (3.51) is solved for the wall shear rate ,,. Numerical methods are

used for integration and root-finding, where necessary.

2. The wall shear stress is calculated from 7, = 7(%w)?w and substituted into
Equations (3.36) and (3.47) to obtain the critical pressure gradient py . and the

flow rate per width gc.

When computing the exact values presented in Section 3.4.1, we used the QAGS
routine of the QUADPACK library for numerical integration, as well as the bisection

method with increasing interval for root-finding.
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3.5.1 Source of error in local power-law approximation method revis-

ited

In Section 3.4.1, we have observed the discrepancy between the error and the cur-
vature of the viscosity curve when LPLA method is applied to predict the critical
flow rate, g.. An equation derived for the semi-analytical method provides possible
reasons behind this observation.

By nondimensionalizing Equation (3.47), we can obtain an expression for the

dimensionless critical flow rate as follows:

qdc 1 i Yw T("}/*) 2 . y
Ung =1 <fya>/(; { Tw } nloc(’}/ )d’)/ (352)

Here, njoc is the local power—law index as defined in Equation (3.33). Because

the integrand, (7 /7w )?*n1oc, is a continuous function of 4, according to the mean value

theorem, 0 < 4y, < 4w exists such that the following relation holds:

dc ;YW T(’ym) 2 . ;YW Tm 2
=1—-— —_— oc(Ym) =1—{( — - oc,m- .
UwHg ("Ya ) { Tw } e () <7a ) (TW> e 3-53)

For power—law fluids, analytical expressions can be obtained for each term in

Equation (3.53) in terms of the power—law index n.

) 1
Jw _nt2 (3.54)
Ya n
Tm 1
— =) — 3.55
Tw Von+1’ ( )
Njoc,m = M. (3.56)

Applying the LPLA method to obtain the approximate value of the critical flow
rate per width, §., is equivalent to replacing n in the equations above with 7, as
defined in Equation (3.33). This can be verified by substituting Equations (3.54)
through (3.56), where n is replaced by 7, into Equation (3.53) and comparing the

resulting expression with Equation (3.34).
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The errors generated in the approximation of each term add up to the final error of
dc in approximating q.. Therefore, their contribution to the final error can be analyzed
by comparing the exact and approximate values term by term.

Figure 3.23 presents the ratios of the approximate to exact values of Ay, /Ya,
T/ Tw» and nyjee m for the C=Y fluid. A ratio larger than unity indicates an overestima-
tion of the approximate values, whereas a ratio less than unity corresponds to under-
estimation. The semi-analytical method was used to obtain the exact value of 4y, /Ya,
whereas those of the remaining terms were evaluated numerically using the secant
method. The approximate values were obtained by replacing n in Equations (3.54)
through (3.56) with the local power—law index, n, evaluated at . = ~,. The ap-
proximate values of 7, /7y, indicated the least deviation from the exact values, with
ratios ranging from 0.980 to 1.028. The deviation of the approximate values of the
remaining terms was relatively large, with the ratio of 4y /%, ranging from 0.891 to
1.145 and that of njoc m ranging from 0.839 to 1.154. However, their deviations were
opposite; when the ratio of 4y, /7, was larger than unity (overestimation), the ratio
of njocm tended to be smaller than unity (underestimation), and vice versa. Because
each term was multiplied together to obtain the final ¢., as shown in Equation (3.53),
individual errors were canceled and a low overall estimation error was obtained, as
depicted in Figure 3.16. Moreover, it was observed that the estimation error was small
(ratios tend to unity) near the operating conditions where the flow curve was highly
log-linear (see Figure 3.16B). However, the exact value of the operating condition,
Uy /Hg, at which the ratio equals unity, differed for each term. This may have con-
tributed to the deviation of the relative error of the LPLA method with 4, = *, from
the curvature trend, as observed from Figure 3.16.

The ratios for the B-C-Y fluid are shown in Fig. 3.24 and a similar trend to that
of the C-Y fluid case was observed. The ratio of the approximate to exact value of

Tm/ Tw remained close to unity, whereas those of the other terms deviated significantly
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Figure 3.23: (C-Y fluid) Ratio of approximate to exact value of terms constituting

¢c/(UwHg): solid line, 4y /¥a; dashed line, 7, /7y ; dotted line, nigem.

at the operating conditions where the flow curve exhibited a large curvature. The
deviation from unity was relatively larger than that observed in the C-Y fluid case,
thereby resulting in the larger relative error of the LPLA method in approximating q.

for the B-C-Y fluid when compared with the C-Y fluid.
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Figure 3.24: (B—C-Y fluid) Ratio of approximate to exact value of terms constituting

¢c/(Uy Hg): solid line, 4y /¥,; dashed line, 7y, /7y ; dotted line, njoe,m.
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3.6 Conclusions

In this chapter, the problem of obtaining vortex formation conditions in the slot coat-
ing flows was solved by using different types of computational and analytical mod-
els. The previously unknown behaviors of fluids with shear rate dependent viscosi-
ties were explored by using two-dimensional (2-D) computational flow model, to-
gether with an automated algorithm for finding the vortex formation conditions. The
power-law fluids were the first to be examined, and analytical criteria for vortex birth
in the downstream region could be developed through the use of an analytical one-
dimensional (1-D) flow model. By using the 1-D model, it was possible to change the
original problem of finding the vortex formation condition to a simpler problem of
finding the onset condition for the flow reversal in a 1-D Couette-Poiseuille flow. The
derived expressions for the power-law fluid were extended to the generalized New-
tonian fluids (GNFs) by using the local power-law approximation (LPLA) method.
The LPLA method requires no numerical evaluation, thereby providing a quick and
fairly accurate prediction of the vortex formation conditions for the given GNF, just
as the one-third rule does for the Newtonian fluids. Also, a systematical procedure for
obtaining the exact values for the GNFs was presented as well, and the results were
used to evaluate the accuracy of the LPLA method.

The results of the analysis show that there exists a significant difference between
the flow reversal condition for different types of fluids. The critical flow rate condi-
tion for the Newtonian fluids, in its dimensionless form, is a constant regardless of the
fluid viscosity and the operating conditions. The same condition for the power-law
fluids, however, is a function of power-law index n, which is the material property.
Lastly, for GNFs, the dimensionless critical condition is a function of both fluid prop-
erties and the operating conditions (e.g. H, and Uy,). This implies that as the viscosity
of the coating fluid exhibits more “complex” behavior, there is a wider choice avail-

able for maintaining a vortex-free flow during the process operation.
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Chapter 4

Physics-informed machine learning of slot coating

flows

4.1 Introduction

With the advancement in the measurement technology, computing powers, and data
storage capabilities, the accessability and availability of big data have never been
greater. Many industries have been utilizing the big data acquired from the production
line for fault detection, quality control, and process optimization (Yin & Kaynak,
2015; Wamba et al., 2015).

Slot coating process is not an exception, and different sources of data exists in
the slot coating flow. For example, position of contact lines relative to that of the feed
slot can be detected and obtained under varying operating conditions by visualizing
the coating bead flow from under a transparent substrate (Hong & Nam, 2017). A
side-view visualization of the coating bead flow is also possible through the experi-
mental setup described by Yoon et al. (2022), from which the shape and position of
the meniscus can be obtained. Pressure transducers can also be mounted to the slot-

die, such that the data on the pressure drop can be readily collected (Schmitt et al.,
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2015). It is also possible to obtain the topology of the wet film through the use of
a laser displacement sensor (Schmitt et al., 2014). It provides valuable information
on the thickness variation along the film width, making it possible to quantify the
widthwise uniformity of the film. Furthermore, simple imaging of the coated film
can also provide data on different types of film defects that occur when the operating
conditions are not optimized (Schoo et al., 2023).

In contrast to the data described above, which are physically observed or mea-
sured, coating flow data can also be collected virtually through the use of high fidelity
computational models. Slot coating flows have been modeled by using the finite ele-
ment method (Gates, 1999) or the finite volume method (Ji et al., 2016) to accurately
predict the velocity and pressure fields and the meniscus shapes of the flow. Pro-
vided that all the necessary physics for describing the flow accurately are taken into
account, computational models are capable of producing large amount of useful coat-
ing flow data that are difficult to obtain experimentally (such as the velocity field), at
a considerably lower cost.

In this context, the governing equations and boundary conditions used in model-
ing the slot coating flow can also be treated as, in a broad sense, data, since they pro-
vide the information on the physics that governs the flow. For example, as described in
Section 2.2, Landau-Levich film coating theory is applied at the downstream menis-
cus of the slot coating flow to model the pressure jump. Also, the Navier-slip bound-
ary condition is typically applied to the dynamic contact line of the upstream menis-
cus such that a physical solution can be obtained (Gates, 1999).

However, in many occasions these data may not exist in their complete form. Due
to the lack of time and resources, limitation of measurement technologies, and exis-
tence of unknown physics, the data may be available only partially. In this chapter,
a new machine learning based approach, named physics-informed machine learning,

is applied to the modeling of slot coating flow for the first time to solve to solve
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flow problems when the given data is missing in parts. The method uses a network
named physics-informed neural network (PINN) to accurately predict the domain and
flow field of the slot coating flow. As the name suggests, during the training process,
the network not only incorporates the field variable data, but also the knowledge of
the governing equations. Since its first appearance in Raissi et al. (2019) for solv-
ing different kinds of nonlinear partial differential equations (PDEs), PINNs have
been applied to solve problems in numerous scientific and engineering fields, such
as fluid dynamics (Jin et al., 2021), heat transfer (Cai et al., 2021), solid mechanics
(Haghighat et al., 2021), and electrophysiology (Sahli Costabal et al., 2020), to name
a few.

In the sections that follow, we first compare the physics-informed machine learn-
ing with conventional machine learning techniques to show how it differs from solv-
ing regression problems. Next, the network architecture used in this study, which is
specialized for modeling free surface flows, is presented. After a brief overview on
how the loss functions are constructed, the method for choosing the right weights for
the terms constituting the loss function is presented. Finally, two illustrative prob-
lems are solved using the proposed method to demonstrate its flexibility in dealing

with problems with partly missing data.

4.2 Comparison with regression problems

Figure 4.1 depicts a conventional machine learning approach of solving a regression
problem, using a neural network (NN) to model the function under interest. The pa-
rameters of the NN are tuned through an optimization process called the training.
The goal of the training is to find the optimal parameters which, if they exist, will

result in the NN model that best “explains” the given data.
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Figure 4.1: Schematic diagram of solving a regression problem using a neural net-

work.

The training is driven by minimizing the following loss function:

N

1
L(0) = N Z\ul — unn (2 0)|2. 4.1
i=1

Here, {(z;,u;)} are the given N data points, and unxy and 6 are the output of NN
and the parameters of NN, respectively. As can be seen from the loss function, the
training is solely guided by the given data points. The trained NN, despite its ability
to “mimic” the trend of the data, is ignorant of the physics that governs the data.
Physics-informed machine learning and physics-informed neural networks
(PINN) can be thought as a method which embeds the physics behind the provided
data into the network itself during the training process. Figure 4.2 shows the physics-
informed machine learning approach for solving an engineering problem expressed
in terms of a differential equation, F (u,u’,u”,x) = 0. The data are now given only
at the boundary or initial points, and the intermediate values are determined such that

the NN satisfies the given governing equation.
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Figure 4.2: Schematic diagram of solving a differential equation using physics-

informed machine learning technique.

The loss function is expressed as:

L£(8) = MSE,, + MSE;

Ny Ny
1 1
- N, Z‘ul — unn (2}, 8 0)|2 + 7Nf ZLF[UNN('fo’tzf; 0)”2_ 4.2)
=1 i=1

Here, {(z},t}, u;)} are the N,, points specifying boundary or initial conditions and
{(:U{ , tlf )} are the Ny sampling points within the domain of interest where the gov-
erning equation residuals are evaluated. The difference with the loss function of the
regression problem case, Equation (4.1), is the regularization term, MSE ¢. This term
serves as a guide for the NN to follow the governing equations of the given system.
Thus through a successful optimization, it is possible to embed the knowledge of the
physics of the given system into the NN.

By examining Equation (4.2), we find that in order to evaluate the value of
F [UNN(.T{ , tzf ;0)], one need to compute the derivative of the NN output uny with
respect to the NN input x or ¢. This can be done with ease by using the aut ograd

functionality of the existing libraries for machine learning such as T'ensorFlow or

PyTorch.
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4.3 Network architecture

In this section, we discuss the network architecture adopted in this chapter to model
the slot coating flow. As discussed in previous sections and depicted in several fig-
ures, the slot coating flow is bounded by two liquid-gas interfaces in the upstream
and downstream regions, respectively (refer to Sections 1.1, 2.1, and 3.2.1 and Fig-
ures 1.3, 2.1, and 3.3).

In terms of process operation, these menisci may pose a threat to stable operation
if they become unstable and undermine the widthwise uniformity of the film, when
the operating parameters are not carefully chosen. Computationally, the existence of
menisci cause difficulty when modeling the flow because the flow domain and its
boundary are not determined a priori.

To handle this difficulty we use two separate NNs to model the coating flow.
The first NN, named net _xy is responsible for mapping a known reference domain
(&, n) to the unknown physical domain (z, y). The other NN, named net_uvp, maps
the physical domain (z,y) to the field variables (u, v, p) of the flow. The points in
the reference domain can be thought as a label for each points in the actual flow
domain. When successfully trained, it is possible to determine the shape and position
of the liquid-gas interfaces by calling net _xy on the corresponding reference domain

points. The schematic diagram of the two NNs is shown in Figure 4.3.

a1

Figure 4.3: Schematic diagram of two separate neural networks for modeling the

net_uvp

n Eﬂn

3

flows with liquid-gas interfaces.

The mapping from the reference to physical domain for the entire slot coating
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flow is not trivial due to the existence of several sharp corners. To make it more
tractable for the NNs to learn the mapping, we decompose the given domain into sev-
eral subdomains as shown in Figure 4.4. According to Jagtap & Karniadakis (2021),
it is possible to assign NNs to each domain separately, with each NN responsible for
modeling the system restricted to each subdomain only. We adopt the same method-
ology, but with two NNs, net _xy and net _uvp, responsible for modeling each sub-
domain. The connectivity between the subdomains is taken care of by adding terms
responsible for the continuity of field variables and the governing equation residuals

into the loss function. This will be discuss in more detail in Section 4.4.

N —

Figure 4.4: Domain decomposition applied to the reference domain (shaded in or-

ange) and the physical domain (shaded in blue).

Different types of neural networks can be used in physics-informed machine
learning, depending on the nature of the problem and the system of interest. For
example, various types of existing NNs such as the feedforward neural networks
(FNNs), convolutional neural networks (CNNSs), autoencoders, recurrent neural net-
works (RNNs), and generative adversarial networks (GANs) have been employed in
PINN-related research (Cuomo et al., 2022).

In this chapter, we use one of the simplest NNs, the feedforward NNs, to model
the given system, because the purpose of the analysis is to demonstrate the possibility
of applying machine learning framework to the problem solving associated with slot
coating flows. We leave the study of the best choice of NN design for slot coating

flows to future work.
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Each networks were designed to have two hidden layers with 64 and 128 nodes
each depending on the type of problem solved. Note that these hyperparameters were
chosen from a limited number of case studies, and thus are also subject to an extended
study for finding optimal values. Swish function f(z) = z sigmoid(8z) = z/(1 +
exp(—px)), as shown in Figure 4.5, is used as the activation function instead of the
ReLU function which is widely used in machine learning frameworks. This choice
guarantees the regularity of the NN output, unn, which is an important characteristic
in the physics-informed machine learning as the derivatives of unn are required for

the evaluation of the governing equation (most likely PDE) residuals.

10 A

Swish(x)

-10 -5 0 5 10

Figure 4.5: Swish activation function (with 5 = 1).

4.4 Loss function

To determine the values of the parameters that parameterize the NNs proposed in the
previous section, a loss function is required to serve as a guide during the optimization
process. As can be seen from Equation (4.2), the terms consistuting the PINN loss
function can be categorized into two main groups: those associated with the boundary
and initial conditions, and those derived from the governing equations.

To take care a more general case of solving a slot coating flow problem, we
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modify Equation (4.2) as follows:

E(G) = MSE; + MSEf

Mb o NP M7 f N/

ZNbZ {UNN@’H ” +Z

i[uNNE )AHQ-

4.3)

Here, B; and F; represent the individual boundary (or initial) condition and governing
equation terms, and superscripts b and f denote the terms related to boundary (or ini-
tial) and governing equation terms, respectively. M and N are the number of separate
terms and sampled points, respectively, and A denotes the system parameters.

The governing equations of the slot coating flow are listed in Equa-
tions (3.2), (3.3), and (3.4). The fluid under consideration in this chapter is a New-
tonian fluid, and therefore 7(|%|) in Equation (3.4) is simply a constant. Following
equations, which resemble mesh generation equations (Equations (3.5)), are added to
the loss function as governing equation residual terms to guarantee a smooth mapping

from the reference domain to the physical domain.
V=0, V=0 (4.4)

The same boundary conditions as illustrated in Figure 3.3(b) are used to evaluate the
values of B; in Equation (4.3).

For the domain decomposition technique to work, boundary conditions defined
on the subdomain boundaries have to be included in the total loss function as well.
Following terms were evaluated at the points sampled on subdomain boundaries that

connect two subdomains and added to the loss function to ensure the connectivity
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between the two subdomains, (k) and (k + 1).

ZwlZ’}- [ (k+1 (€0 k+1)),)\]_ [UNN(&’ ) ”27 @5)

w 2
kZ‘ (k1) (¢ gU+1)y _ gc&(gj;g(k))‘, (4.6)

Equation (4.5) evaluates the governing equation loss terms at the same points on the
boundary of the neighboring subdomains and ensures the two values to equal each
other. The continuity of the field variables are guaranteed by Equation (4.6), which
computes the mean squared errors of the difference between the field variable values.

Additional terms to ensure the prescribed flow rate are also added to the total
loss function. Several cross sections are first sampled in the reference domain, (£, 7),
which are mapped to the cross sections in the actual flow domain, (x,y), via net _xy,
as shown in Figure 4.6. Following residual is evaluated along the cross section in the

flow domain, and their mean squared error terms are added to the loss function.

Bluxn] = q — /UNN -nds 4.7)

N HGED e
T_>§ [> T—> ,:': q—ju nds

(C1,11) ’
(x1,¥1)

Figure 4.6: Application of flow rate conditions.

The loss function described in Equation (4.3) is for solving problems of the first

type as defined in Section 1.2, when all the values consisting A are known. To estab-
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lish a loss function for the problems of the second type, only a small modification is
required.

The modified loss function can be expressed as follows:

L£(8,\) =MSE; + MSE; + MSEa

%sz o o0+ 30

fo

7 [ute]:0), ]|

de

+ Na Z fun(e:0) i 4.8)

where the terms with superscript d represent those associated with the given observed
data {4, }.

The only difference between Equations (4.3) and (4.8) is the inclusion of the data
loss term. Also, part of the system parameters, A are now freed as trainable variables
such that the resulting model output describes the observed data {@;} well. This
ease of switching between the two types of problems by simply modifying the loss
function is another advantage of using the PINN framework.

The number of sampled points per domain varied from 250 to 1250 for those
sampled along the boundary, and from 500 to 1500 for those sampled within the

domain.

4.5 Optimization method

The parameters that minimize the loss functions defined in Section 4.4 are found by
using the Adam optimizer (Kingma & Ba, 2014). However, a closer examination of
the loss functions reveals a serious problem that complicates the optimization process
— the problem of choosing the right weights.

The loss functions, Equations (4.3) and (4.8), are constructed as the weighted sum

of various terms coming from different boundary (or initial) conditions, governing
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equations, and observed data. The weight of each term can be thought as deciding
the priority during the optimization process. A term with relatively small weight may
be sacrificed in favor of other terms with relatively large weights. This is because in
the gradient-based optimization algorithm, the weight serves as a sort of individual
learning rate for each of the terms that make up the overall loss function. Therefore,
the choice of weight values is critical to successful optimization. Since there are tens
to hundreds of different weight terms, it is almost impossible to find the optimal set
of weights by trial and error.

To solve this problem, we used an adaptive weighting scheme based on the neural
tangent kernels (NTKs), as suggested by Wang et al. (2021). The essence of the
method is in the NTKs’ ability to capture the training dynamics of NNs. According
to the authors, the eigenvalues of NTKSs are directly related to the convergence rate of
each component in the loss function. By using those values to determine the weight
for each term, it is possible to obtain a similar convergence rate for all of the terms,
leading to a successful optimization.

Figure 4.7 shows the y-component of the velocity as predicted by the trained
PINNs. It is evident from the figure that when fixed weight values are used, the
trained PINN fails to satisfy the given boundary conditions. When adaptive weighting

scheme is applied, the boundary conditions are satisfied more strictly.

4.6 Results and discussion

To demonstrate the effectiveness of the method developed in this chapter, we solve

two illustrative problems with partially missing data.
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Figure 4.7: y-component of the velocity predicted by the trained PINN after the same
number of iterations (a) with a fixed weights, (b) with an adaptive weight based on

NTKs.

4.6.1 Problem 1: missing physics

As shown in Figures 2.5 and 3.3(b), a Navier-slip boundary condition is applied at

the dynamic contact line, which is expressed as follows:
1
Etw c(u—=Uty) =ty - (ny - T), (4.9)

where ty, and ny, are the local unit basis vectors parallel and normal to the moving
substrate.

Without this boundary condition, a contradiction occurs because the upstream
meniscus has to be stationary with respect to the slot-die, while being attached to
the moving substrate on the dynamic contact line. This makes the slot coating flow
problem impossible to solve using conventional methods without the slip condition.

In this section, we assume that we are unaware of the physics that occurs in this
region. To model this situation, the Navier-slip condition is deliberately neglected
while solving the given problem. We use physics-informed machine learning frame-

work to train a PINN to model the given flow, since the framework can still be applied
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even when some boundary terms are missing from the total loss function. Rest of the
boundary conditions, together with the governing equations are correctly included
into the corresponding loss function, Equation (4.3). The parameters used in this

analysis are summarized in Table 4.1.

Table 4.1: Operating parameters considered in the analysis.

Operating parameters Unit  Value
Density (p) g/mm?3  0.001
Surface tension (o) mN/m 70
Substrate speed (Uy) mm/s 10
Static contact angle (6s) © 30
Dynamic contact angle (64) © 120
Wet thickness(h) mm 0.125
Viscosity (1) Pa-s 0.1
Geometric parameters Unit  Value
Upstream die lip length (L) mm 1.0
Downstream die lip length (Lg) mm 1.0
Feed slot height (Lg,) mm 1.0
Feed slot length (Lg) mm 1.0
Coating gap (Hy) mm 0.2

To assess the accuracy of the PINN prediction, we solved the problem with the
Navier-slip condition included, by using 2-D finite element method (FEM) based
computational model. The result of two models are compared along the horizontal
cross-section of y = hy, /2, as shown in Figure 4.8.

The prediction of field variables made by PINN, along with the reference from

2-D FEM computation are shown in Figure 4.9. The PINNS are trained for 25,000 it-
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Figure 4.8: Cross-section for assessing the accuracy of predicted field variables.

erations, and the results were averaged from the networks trained with 5 independent
parameter initialization using a Glorot normal initializer (Glorot & Bengio, 2010).
Despite a slight deviation observed near the upstream meniscus region, the results
generally show a good agreement between the two models, despite the absence of
Navier-slip condition during the training of PINNs. This observation demonstrates
the potential of PINN framework in solving slot coating flow problems, even when
the physics governing the flow is not fully understood. However, caution should still
be exercised when applying this method to other cases of missing physics, as the
result may vary depending on the significance of the missing term in the system of

interest.
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4.6.2 Problem 2: missing data

In this section, we turn our attention to solving the problem with partially missing
data. Figure 4.10(a) shows a schematic of visualizing the coating bead flow from the
side-view. A clear image of the side-view of a coating bead flow obtained experimen-
tally can provide many valuable information on the flow, such as the contact angle
values and the curvature of liquid-gas interfaces. However, due to the fluctuation in
the coating gap and flow rate as well as the variation in the widthwise direction, it is
often hard to determine the values of interests out of the obtained image, as shown in

Figure 4.10(b).

(@)

Figure 4.10: (a) Flow visualization setup for obtaining side-view images of coating
bead flows. (b) Side-view of coating bead flow showing the upstream region of the

flow (Photo courtesy of Jihwan Yoon).

In this section, we apply physics-informed machine learning to solve a slot coat-
ing flow problem when given the observed data. The goal is to obtain the dynamic
contact angle from the given image data on the meniscus shape and position. The
experimental image data is replaced by the artificial data of upstream meniscus shape
and position, computed by solving a slot coating flow with all the parameters val-

ues given. The uncertainty in the experimental image data is modeled by deliberately

¥ [,
00 ] 8-



omitting the given data in parts, as depicted in Figure 4.11. We varied the amount of
data that is omitted during the training, in order to examine the effect of uncertainty
in the data on the performance of PINNS.

Associated boundary conditions and governing equations, as described in Sec-
tion 4.4 are substituted into Equation (4.8) to form the loss function. The given data
on the shape and position of the meniscus is substituted into the data loss term of the
same equation. In this case, the system parameter, A, subject to optimization is the

dynamic contact angle, which is initialized as 90°.

(a) (b)

Figure 4.11: Uncertainty in the image data is modeled by deliberately omitting (a)

25% and (b) 50% of the given data on meniscus shape and position.

The prediction of the dynamic contact angle as optimization proceeds is shown
in Figure 4.12. As with the problem considered in the previous section, the result is
obtained as an average of 5 PINNS initialized independently. When 25% of the given
data was missing, the relative errors of the prediction at the end of the iterations
was 7.8%, showing that the PINN solved the given problem satisfactorily, even with
the given data partially missing. Moreover, as can be seen from the shaded area in
Figure 4.12, the predictions made by the PINNs with different initializations of the
network parameters all converge to a single value, demonstrating the robustness of
the method. The relative error for the 50% of data missing case was 17.2% at the
end of the training. This can be viewed as a large error, but considering that half

of the data needed to solve the problem is missing, this magnitude of error may be
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acceptable in certain cases where obtaining high quality data is challenging.

1401
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Figure 4.12: Dynamic contact angle predicted by PINN when only a part of the data
is given. The solid line represents the average of results from 5 independent initializa-
tions of network parameters, and the shaded area represents one standard deviation

away from the mean.

4.7 Conclusions

In this chapter, the slot coating flow problems posed under situations where the given
data is missing, were solved by using physics-informed machine learning. To model
the slot coating flow, which is a free-surface flow, a specialized neural network archi-
tecture, comprised of two separate networks was used. The domain was also decom-
posed into several subdomains modeled by individual neural networks. The values of
the weights for individual terms comprising the total loss function were determined

automatically through a neural tangent kernel based adaptive weighting scheme, such
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that the rate of convergence of each terms were maintained at a similar level through-
out the optimization.

The method was first applied to solving a problem when the physics governing
the slot coating flow is partially missing. To model such a situation, the Navier-slip
condition at the dynamic contact line was deliberately omitted from the loss function.
The results showed that the trained networks were able to capture the dynamics of
the flow even with the absence of the boundary condition.

The method was then applied to solving a problem of obtaining the dynamic
contact angle from the given data on the meniscus. Part of the data was intentionally
excluded to model the obscurity often observed in the image data. The results showed
that the networks were able to predict the dynamic contact angle to a satisfactory
degree even with the partially missing data.

Despite the success in solving the two illustrative problems, caution should be
exercised when applying the proposed method in other cases, as the performance
may vary depending on the significance of the missing parts of the data. In addition,
optimization of hyperparameters such as the network width and depth, initialization
scheme, and activation functions, needs to be performed in future works, in order to

explore the room for improvement in the performance of the proposed method.
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Chapter 5

Concluding remarks

In this thesis, a number of slot coating flow problems are solved by using various
methods and flow models. The main objective of the thesis was to broaden the scope
of the techniques available for solving problems in slot coating flows by tackling
previously unsolved problems and applying previously unexplored methods. The new
findings and novelties in each of the chapters can be summarized as follows.

In Chapter 2, we explored the effect of varying the coating gap on the maximum
and minimum wet thicknesses under three different slot-die configurations. A previ-
ously unobserved trend was highlighted during the analysis, and the reason behind it
was explained analytically through the use of a simple one-dimensional flow model.

In Chapter 3, an analytical criterion for the vortex formation in slot coating flows
previously only known for the Newtonian fluids was extend to the power-law fluids
through a one-dimensional flow analysis. The derived expression could successfully
explain the trend observed in the two-dimensional finite element method based com-
putation results. The method was further generalized to the cases of generalized New-
tonian fluids, and a systematic procedure for obtaining the exact values of the criteria
was also developed and presented.

In Chapter 4, a machine learning method was applied to the analysis of slot coat-
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ing flow for the first time, and its potential for solving various problems with missing
data was explored through illustrative examples. A specialized network architecture
was applied to take care of the liquid-gas interfaces of the coating bead flow. The
results showed that the proposed novel method was capable of solving the problems
to a satisfactory degree even when the physics governing the problem or the given

data for solving the problem is partially missing.
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