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Abstract 

 
Urban street trees constitute a considerable proportion of urban 

trees, yet their individual carbon stocks remain under-explored. 

Here, we map the carbon stock of individual street trees using 

LiDAR-camera fusion-based Mobile Mapping System (MMS) which 

enables extensive urban coverage, high spatial sampling, and 

concurrent acquisition of species and structural parameters. We 

implement a two-step approach to detect individual street tree, 

initially applying a U-Net to images for semantic segmentation, and 

subsequently applying a Random Forest classifier on point clouds, 

informed by the image segmentation results. To measure the carbon 

stock of street trees, we employed another Yolo-v3 to classify tree 

species from images and calculated Diameter at Breast Height (DBH) 

and height (H) from point clouds. Through experiment, we detected 

35,247 street trees from scanned streets in the Suwon, Republic of 

Korea, which had the carbon stock of 2.16 ± 0.03 GgC. City-wide 

evaluations showed the average recall, precision, and F1-score of 

the proposed street tree extraction method were 78.89, 85.65, and 

81.79, respectively. In addition, estimated DBH and H revealed slight 

overestimation by an average of 4.37 cm (15.13%) and 0.86 m 

(8.57%) with RMSEs of 8.17 cm (28.27%) and 2.18 m (21.82%), 

respectively. Our work contributes a practical framework for 

estimating individual street trees' carbon stocks using the LiDAR-

camera fusion-based MMS, paving the way towards more accurate 

urban carbon management and progress in urban carbon management. 

 
Keyword : Urban street trees, Carbon stocks, LiDAR-camera fusion, 

Mobile Mapping system 

 

Student Number : 2021-27046 
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Chapter 1. Introduction 
 

The rise in anthropogenic carbon emissions in urban regions, 

coupled with rapid global urbanization, has highlighted the need to 

comprehend the carbon stored in urban trees (Nowak et al., 2013; 

Seto et al., 2014). Street trees, which constitute a considerable 

proportion of urban trees, grow in isolation, unlike other urban trees 

which are typically clustered together. This distinct spatial 

distribution necessitates individual-level investigation of street 

trees, a task that generally accompany with labor-intensive field 

survey (Mcpherson, 1998; Nowak et al., 2013; Nowak & Crane, 2002; 

Timilsina et al., 2014). Advances in remote sensing technologies 

offer promising alternatives to traditional methods, but each remote 

sensing technology comes with its own set of challenges and 

limitations. Given these developments, the research questions arise: 

How can we reliably measure the carbon stock of individual street 

trees without resorting to labor-intensive field survey? Is that 

method practical to apply at a city-scale? 

Accurate quantification of the carbon stock in street trees 

typically requires both structural parameters such as diameter at 

breast height (DBH) or height (H), and species information at an 

individual level and on a city-wide scale. Light Detection and Ranging 

(LiDAR) is a promising tool to measure trees' structural parameters. 

However, it has inherent limitations depending on the platform to 

which it is attached. Spaceborne LiDAR offers extensive coverage 

but lacks the spatial sampling density needed for individual-level 

analysis of street trees (Dubayah et al., 2020). In contrast, airborne 

LiDAR provides better point density but is generally associated with 

high costs. Terrestrial LiDAR offers sufficiently dense spatial 

sampling to identify the individual tree with species information, but 

it lacks mobility (Zou et al., 2017). Thus, the motivation behind this 

paper stems from the pursuit of a balanced method that can provide 

a dense enough point cloud to capture individual street trees while 

also offering a broad scope of coverage encompassing extensive 

urban areas. 
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Recently, the Mobile Mapping System (MMS) has emerged as 

a powerful means for surveying street environments (Pu et al., 2011; 

W. Xiao et al., 2015). MMS captures two- or three-dimensional 

geometric information of surrounding environments using LiDAR 

and/or camera mounted on a vehicle (Puente et al., 2013). When 

MMS employs LiDAR as a mapping sensor for surveying street trees, 

it accurately captures structural parameters but falls short in 

providing species information (Safaie et al., 2021; Zhao et al., 2018). 

A few studies classified tree species using LiDAR-based MMS and 

recorded lower performances on classifying species of trees with 

similar geometric shapes than trees with distinct geometries (Chen 

et al., 2019; Guan et al., 2015). Classifying street tree species is 

more challenging when frequent management activities alter tree 

shapes, obscuring intra- and inter-species differences of geometric 

shapes. With camera-based MMS, deep learning (DL) has been 

employed in the classification of street tree species, but estimating 

structural parameters from images is less reliable than LiDAR-based 

MMS (Choi et al., 2022). These recent studies inspires applying 

LiDAR-camera fusion technique, which compensates each sensor’s 

shortcomings, to enhance the accuracy of carbon stock estimation. 

Though DL-based methods have significantly improved the 

performance of the LiDAR-camera fusion technique (Cui et al., 2022; 

Fu et al., 2018; L. Xiao et al., 2018), there remains a scarcity of 

practical studies applying this fusion approach to map the carbon 

stock of street trees at a city scale. 

The key challenge in application of DL-based LiDAR-camera 

fusion technique for map the carbon stock of street trees lies in 

generating a point cloud training dataset. Detecting individual street 

trees in the point cloud is essential, as their structural parameters 

are vital for carbon stock estimation. Conventional methods for 

extracting individual trees from point clouds remain indispensable 

(Ning et al., 2019; Zhong et al., 2017), but recent DL-based methods 

have exhibited remarkable performance in segmenting individual 

trees from point clouds (Jiang et al., 2023; Luo et al., 2021). The 

practical use of DL models necessitates the generation of a training 
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dataset tailored to the target site, leading to an increase in the volume 

of required training data across diverse urban scenarios on a city 

scale. Given that annotating point clouds is considerably more 

demanding than annotating images (Xie et al., 2020), finding a method 

that alleviates these difficulties while maintaining the performance of 

DL model is imperative. 

The goal of this study is generating a carbon stock map of 

individual street trees at a city-wide scale using LiDAR-camera 

fusion-based MMS. The overview of our result is visualized in Figure 

1. To achieve this goal, we detected individual street trees and 

estimated the carbon stock of each tree. In individual street tree 

detection, we applied DL exclusively to images to minimize the effort 

required to construct point cloud training data while maintaining the 

performance of DL. To test the robustness of proposed method, we 

used the dataset collected at a city-wide scale in Suwon, Korea.. The 

scientific questions we address include: (1) How many street trees 

are there in Suwon? (2) How much carbon are they storing?  
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Figure 1. We processed data on individual street trees from point 

cloud and image datasets, collected using a MMS. Our final results 

are depicted in a comprehensive map that delineates the location, 

species, H, DBH, and carbon stock of each street tree. The point 

clouds of street trees are visualized in RGB color with red dots 

marking the determined location of each tree. Additionally, the 

distinct colors used in our street tree map correspond to different 
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species 

 

Chapter 2. Materials and Method 
 

 

2.1. Study site and data acquisition 
 

 The study area encompassed the majority of vehicle-

accessible roads where street trees are planted in Suwon city, 

Republic of Korea. The area of Suwon city is 121 km2 and the center 

of city is located in 37°16´50″N, 127°00´27″E). In this study, 

street trees are defined as the trees planted on the pedestrian strips 

adjacent to the road and the median strips. The majority of street 

trees in Suwon city comprise 12 species: Acer buergerianum (Ab), 

Acer palmatum (Ap), and Aesculus turbinata (At), Chionanthus 

retusus (Cr), Ginkgo biloba (Gb), Metasequoia glyptostroboides 

(Mg), Pinus densiflora (Pd), Platanus occidentalis (Po), Prunus 

yedoensis (Py), Quercus palustris (Qp), Styphnolobium japonicum 

(Sj), Zelkova serrata (Zs). 

To test the robustness and practicality of the proposed street 

tree detection method in various urban scenarios, we collected data 

from across the entire streets of Suwon city. The trajectories of 

collected datasets are depicted in Figure 2 (a). Data collection was 

conducted from August 2021 to October 2021, during daytime hours 

from 9 am to 5 pm. Then, we annotated 35,395 street trees from the 

collected datasets to validate the result of street tree detection. 

Annotated trees are randomly sampled from the entire datasets. 

There were overlapped area in the datasets and some trees are 

detected multiple times among datasets. 

To test the accuracy of estimated structural parameters, we 

sampled 287 street trees from randomly chosen streets. We 

conducted a tape measurement at 1.3 m of the trunk for DBH 

measurement and employed a terrestrial LiDAR (VZ-400i from 

RIEGL Laser Measurement Systems Gmbh, Horn, Lower Austria, 

Austria) to measure the H. These data was collected from May 2022 
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to April 2023 during the day time.   

We used an off-the-shelf product (Mobiltech, Seoul, 

Republic of Korea) to collect point cloud and image data as shown in 

Figure 2(b). The mapping sensors comprised a LiDAR sensor (VLP-

32C from Velodyne, San Jose, California, USA), an RGB camera 

(FLIR Blackfly from Teledyne FLIR, Wilsonville, Oregan, USA), a 

longwave infrared (LWIR) camera (FLIR A65 from Teledyne FLIR, 

Wilsonville, Oregan, USA) and the positioning sensors (APX-15 

UAV from Trimble Applanix, Richmond Hill, Ontario, Canada) that 

included a Global Navigation Satellite System (GNSS) receiver and 

an inertial measurement unit (IMU). It is worth noting that cameras 

were oriented in the front direction of the vehicle. The LiDAR sensor 

scans 360 ° in 0.1 seconds, operating at a frequency of 10 Hz. The 

RGB camera operated at frequency of 10 Hz. The vehicle's six 

degrees-of-freedom (DOF) was obtained from the trajectory, 

processed using the commercial software (POSPac-UAV 8.4 from 

Trimble Applanix, Richmond Hill, Ontario, Canada) with data from the 

positioning sensors. 

 

 

Figure 2. Overview of materials related to the data acquisition (a) 

Overview of data collection trajectory. We drove about 324 km to 

collect datasets reflecting various urban scenarios. (b) The product 

of MMS used in this study. (c) Three-dimensional local coordinates 

of each sensor 
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2.2. Sensor Alignment 
 

We matched the spatiotemporal coordinate of LiDAR and 

camera to transfer information from images to the point cloud. Since 

MMS records the exact data collection time from different sensors, 

matching temporal coordinates of these sensors is achievable. First, 

we matched the temporal coordinates of LiDAR and camera, then the 

spatial coordinates. Temporal matching must be precedent to spatial 

matching because each sensor’s spatial coordinate changes overtime 

as the vehicle moves. The local coordinate of each sensor is 

described in Figure 2 (c).  

To match the temporal coordinate of LiDAR and camera, we 

transformed the LiDAR’s local coordinate to that at the time when 

images are collected. For instance, transforming the local coordinate 

of the MMS point cloud collected at time frame 𝑡𝑛 to the LiDAR’s 

local coordinate at 𝑡𝑛−1 is required when the point cloud is collected 

at 𝑡𝑛  and the image is collected at 𝑡𝑛−1 . This transformation 

necessitates the relative position between the LiDAR sensor origin 

at 𝑡𝑛  and 𝑡𝑛−1 . The relative position can be obtained from 

transforming the both point cloud collected at different time to the 

geographic coordinate, which exploits the six DOF information of 

vehicle position measured by positioning sensors. Since the vehicle 

position is recorded with respect to the local coordinates of the IMU, 

the point cloud is first transformed to the local coordinate of the IMU 

using Equation (1). Inversely, Equation (2) shows transformation 

from IMU local coordinate to LIDAR coordinate using the same 

rotation and translation matrix. Equation (3) demonstrates 

transforming the point cloud in IMU local coordinate at 𝑡𝑛  to the 

geographic coordinate and transforming it again to IMU local 

coordinate at 𝑡𝑛−1.  

 

 

𝑃𝐼 = (
𝑅𝐿𝐼 𝑇𝐿𝐼

0 0 0 1

) ∙ 𝑃𝐿 (1) 
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𝑃𝐿 = (
𝑅𝐿𝐼
𝑇 −R𝐿𝐼

T ∙ 𝑇𝐿𝐼

0 0 0 1

) ∙ 𝑃𝐼 (2) 

 

 

Here, P, R, and T are point cloud of 4 x 1 matrix with the 

dummy value of 1 at the last row, 3 x 3 rotation matrix, and 3 x 1 

translation matrix, respectively. For subscripts, L, I, C, and G denote 

LiDAR, IMU, camera local coordinate, and geographic coordinate, 

respectively, and t is used when a specific time frame is relevant. In 

P, subscripts refer the coordinate where the point cloud is located in. 

In R and T, two sensor subscripts are used together to indicate the 

transformation from one coordinate to another. For example, 𝑅𝐼𝐺𝑡𝑛 is 

rotation matrix from IMU local coordinate to geographic coordinate 

at 𝑡𝑛. Time notation is not included in Equation (1) and (2), as the 

transformation matrix between sensors’ local coordinates remains 

constant regardless of time. In summary, transforming the point 

cloud’s local coordinate at time 𝑡𝑛 to 𝑡𝑛−1 can be achieved in four 

steps: 𝑃𝐿𝑡𝑛 to 𝑃𝐼𝑡𝑛,  𝑃𝐼𝑡𝑛 to 𝑃𝐺, 𝑃𝐺 to 𝑃𝐼𝑡𝑛−1, and 𝑃𝐼𝑡𝑛−1 to 𝑃𝐿𝑡𝑛−1 . 

Once the temporal alignment between LiDAR and camera is 

completed, we conducted the spatial alignment and projected point 

cloud to the images to transfer information from images to point 

clouds. We transformed the LiDAR’s spatial coordinate to the 

camera’s one using the Equation (1) with 𝑅𝐿𝐶  and 𝑇𝐿𝐶 , which are 

rotation matrix and translation matrix calculated from extrinsic 

parameters between LiDAR and camera. In this study, the extrinsic 

parameters between different sensors are provided by the MMS 

manufacturer. After the transformation, the projection of point clouds 

 

𝑃𝐼𝑡𝑛−1 = (
𝑅𝐼𝐺𝑡𝑛−1
𝑇 −𝑅𝐼𝐺𝑡𝑛−1

𝑇 ∙ 𝑇𝐼𝐺𝑡𝑛−1

0 0 0 1

)

∙ (
𝑅𝐼𝐺𝑡𝑛 𝑇𝐼𝐺𝑡𝑛

0 0 0 1

) ∙ 𝑃𝐼𝑡𝑛 

(3) 
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in the camera's local coordinate onto the image plane is feasible by 

using the camera's geometry and intrinsic parameters. Equation (4) 

represents the projection of point clouds in the camera's local 

coordinate to the normalized image plane. Equation (5) is calculation 

of radial distance, which is used in Equation (6) to correct the 

distortion of image. Equation (7) projects from the normalized image 

plane to the pixel plane. Point cloud retrieves two-dimensional 

information of the pixels where the points are projected. At this stage, 

color and temperature information are extracted from the RGB image 

and LWIR image, respectively, to the point cloud.  

 

 (
𝑋𝑁𝑢
𝑌𝑁𝑣

) =  (
𝑋𝑐/𝑍𝑐
𝑌𝑐/𝑍𝑐

) (4) 

 

 𝑟𝑢
2 = 𝑋𝑁𝑢

2  +  𝑌𝑁𝑣
2  (5) 

 

 (
𝑋𝐷𝑢
𝑌𝐷𝑣

) =  (1 + 𝑘1𝑟𝑢
2 + 𝑘2𝑟𝑢

4) (
𝑋𝑁𝑢
𝑌𝑁𝑣

)

+ (
2𝑝1𝑋𝑁𝑢𝑌𝑁𝑣  +  𝑝2(𝑟𝑢

2  +  2𝑋𝑁𝑢
2 )

𝑝1(𝑟𝑢
2  +  2𝑌𝑁𝑣

2 ) +  2𝑝2𝑋𝑁𝑢𝑌𝑁𝑣
) 

(6) 

 

 
(
𝑋𝑢
𝑋𝑣
1
) = (

𝑓𝑥 0 𝑐𝑥
0 𝑓𝑦 𝑐𝑦
0 0 0

) ∙ (
𝑋𝐷𝑢
𝑌𝐷𝑣
1
) (7) 

 

Here, 𝑓𝑥, 𝑓𝑦, 𝑐𝑥, and 𝑐𝑦 are camera’s focal length and optical 

center. 𝑘1 , 𝑘2 , 𝑝1 , and 𝑝2  are radial and tangential distortion 

coefficients. 𝑋𝑁𝑢  and 𝑌𝑁𝑣  are pixel coordinates on the normalized 

image plane, 𝑋𝐷𝑢 and 𝑌𝐷𝑣 are distortion-corrected pixel coordinate 

on the normalized image plane, and 𝑋𝑢 and 𝑌𝑣 are pixel coordinate 

on the pixel plane. 

 

2.3. Preprocessing 
 

We removed the ground points from the point clouds to reduce 

data volume, which consequently decreases the computational 



 

 10 

resources needed for processing point clouds in subsequent stages 

of the method. During the preprocessing phase, point clouds are 

divided into horizontal tiles before ground removal takes place. We 

assigned each tile a height value which is calculated by subtracting 

the minimum z-value from the maximum z-value of points within 

each tile. Tiles made entirely of ground points, referred to as ground 

tiles, have low height values and can therefore be discarded using a 

threshold value. This threshold is set at 0.25 m, a value derived 

considering the curb height at the study site. 

To remove ground points in non-ground tiles, which we call 

carpet-like ground points, we calculated the average of ground tiles’ 

height values and filtered out the points in non-ground tiles which 

have z-values within the threshold of this average height. This 

threshold is also set at 0.25 m, split into an upper and lower bound of 

0.125 m each. This split accounts for the height variance of ground 

tiles due to the differential height of pedestrian strips and roads. The 

tile size is set at 0.5 m x 0.5 m, which is empirically decided with 

respect to the point cloud resolution. The smaller tile size results in 

better ground removal, but increase in processing time. The entire 

ground removal process is depicted in Figure 3. 

 

 

Figure 3. Ground removal process from point clouds. (a) Division of 
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point clouds into tiles and elimination of ground tiles. The subsequent 

step removes carpet-like ground points from non-ground tiles. (b) 

Visualization of point clouds after the completion of the ground 

removal process. 

 

We applied the ground removal process to the single frame of 

point cloud to mitigate the effect of dynamic topography. The 

proposed ground removal method is susceptible to the topography 

with varying elevation since it uses the average height value of 

ground tiles. For example, the average height value of ground tiles 

increases when a street has a slope. This results in the removal of 

non-ground points during the removal step of the carpet-like ground 

points. Thus, the smaller scanned area is included in point cloud, 

there is the less possibility of dynamic topography being involved in 

the point cloud in that urban topography is generally flat. We selected 

the single frame of point cloud (a 360 ° scan in 0.1 seconds) as the 

processing unit for ground removal regarding that all the subsequent 

processes are based on single frame. 

In addition, we created the digital surface model (DSM) and 

digital elevation model (DEM) to calculate the H of individual street 

trees. When two dimensional tiles are generated during ground 

removal process, we use the maximum z-values of points within the 

tiles to create DSM and the minimum z-values of to create DEM. We 

employ DSM and DEM to overcome the constraint in H calculation, 

which we discuss in detail in Section 2.5. 

 

2.4. Individual street tree detection 
 

We propose a two-step approach to detect individual street 

trees that includes: (1) semantic segmentation on images using DL, 



 

 12 

and (2) instance segmentation on point clouds using clustering and 

cluster refinement. We developed a filter using pseudo-plane and 

applied machine learning (ML) classifier to refine the clusters.  The 

overview of framework appears in Figure 4. The motivation behind 

this bifurcation is to decrease the need for extensive point cloud 

training data for DL models and prioritize information from images 

which is denser than the point cloud. Images typically produce a 

higher resolution representation of trees, whereas point clouds 

generated by MMS often have a sparser sampling density. 

 

 

Figure 4. The flowchart of the proposed framework. Green boxes 

represent the flow of individual street tree detection, and blue boxes 

represent species detection and structural parameters calculation 

 

To achieve semantic segmentation of street trees, we employ 

the U-Net convolutional neural network (CNN), known for its 

proficiency in segmenting biomedical images (Weng & Zhu, 2021). 

This CNN performs pixel-level binary classification, discerning tree 
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and non-tree areas in images. Subsequently, point clouds are 

projected onto these images according to the methodology outlined 

in Section 2.2, yielding the semantic segmentation result depicted in 

Figure 5. Extracted point clouds corresponding to the segmented 

pixels are identified as potential street trees. These candidates may 

include occluded or background objects when lifting two-dimensional 

information to a three-dimensional space (Gong et al., 2020). We 

aim to increase the likelihood of street tree detection by applying the 

aforementioned task to a single point cloud frame. Given the 10 Hz 

frequency of LiDAR and image collection, the same street tree is 

captured multiple times across frames. Therefore, processing single 

frames allows the U-Net model to detect the same tree multiple 

times. Despite the trade-off of decreased point cloud density, this 

issue can be resolved by merging frames later in the process. Images 

are unaffected by single frame processing due to their constant 

resolution. 

 

 

Figure 5. The result of street tree semantic segmentation on 

collected image and projected point cloud. Point cloud is visualized 

with the distance from the LiDAR. 

 

Next, we used The Density-Based Spatial Clustering of 

Applications with Noise (DBSCAN) to group the points belonging to 

the same object. DBSCAN is a density-based clustering algorithm 



 

 14 

capable of identifying clusters of varied shapes and sizes based on 

the density of points (Ester et al., 1996). DBSCAN parameters, 

including an epsilon of 1.9 and a minimum point count of 10, should 

be empirically decided given that each LiDAR point cloud has a 

different point density. Due to the imperfectness of DBSCAN, the 

resulting clusters are categorized into single street tree cluster, 

multiple street tree cluster, or non-tree cluster, and each cluster 

requiring subsequent refinement procedures. 

To decide whether the cluster contains multiple street trees, 

we developed a pseudo-plane filter which identifies a trunk of each 

tree. First, each cluster is sectioned into 0.3 m x 0.3 m horizontal 

tiles, as mentioned in ground removal in Section 2.3, and we assigned 

each tile the value of minimum z-value of points in the tile. Only the 

points having z-values less than 2 m is used to calculate the tile value 

to avoid bottom of crown engaging to the identification of trunk. Then, 

we made the pseudo-plane using the values of tiles and rasterized 

the pseudo-plane. The purpose of generating the pseudo-plane lies 

in smoothing the gradient of tile values. A 3 x 3 window search is 

conducted to identify pixels with minimum value which are centrally 

located within the window – these pixels are designated as trunk tiles. 

Direct application of window search to horizontal tiles without making 

the pseudo-plane often leads to the detection of false trunk tiles by 

extra local minima. . Furthermore, the tile size must be chosen large 

enough to avoid a single tree having multiple trunk tiles. Finally, the 

point with the minimum z-value in a trunk tile is deemed the center 

of a cluster. The clusters having multiple trunk tiles require the 

refinement step to break down clusters to contain only single street 

tree.  

To separate multiple street tree clusters into single tree 
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clusters, we apply K-means clustering with the k-value equal to the 

number of identified trunk tiles. Since the centers have already been 

determined, the K-means clustering process can be conducted 

without iteration, by simply calculating the distance between points 

and centers, and grouping points closer to the same center. Clusters 

that do not include any trunk tiles are filtered out at this stage. The 

refined clusters consist of individual street tree clusters and non-

tree clusters that include false trunk tiles. Overall process of refining 

the clusters is illustrated in Figure 6. 

 

 

Figure 6. Process of dividing clusters with multiple objects into 

clusters with single object. (a)(b)(c) Example of processing cluster 

containing a single tree and noise. (d)(e)(f) Example of processing 

cluster containing five trees. (a)(d) Overview of given clusters. (b)(e) 

Overview of pseudo-plane. The plane is convex downward at the 

position where the trunk or noise are located.. (c)(f) Detected 

individual trees and noise within the clusters on rasterized pseudo-

plane. Yellow circles represent the centers of detected objects. 

Example of window is depicted with red color in (b) and (c). 
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To increase point density for accurate calculation of structural 

parameters, we merged the point clouds across multiple frames. This 

is achieved by transforming the first frame of the point cloud into 

geographic coordinates (as explained in Section 2.2), and then 

sequentially transforming subsequent frames. Each time a frame is 

transformed into geographic coordinates; the center of each cluster 

is matched with the centers of neighboring clusters from previously 

transformed frames, considering a neighbor search threshold of 0.6 

m in light of the typical street tree's DBH. During the merging stage, 

the threshold often results in the unintended merging of apart objects. 

To separate them again, the filtering step outlined in Figure 6 is 

reapplied. We also apply DBSCAN with a smaller epsilon parameter 

of 1 to remove noise. If multiple clusters are detected, we only retain 

the cluster with the most points, assuming that the rest are noise 

clusters. These noise clusters are filtered out at the later stage 

because the point cloud of a single frame does not always have 

sufficient point density to define the cluster as noise. At this stage, 

we assume that each cluster contains only a single object and that 

these clusters consist of either trees or non-tree objects. 

Lastly, we apply a Random Forest (RF) classifier (Breiman, 

2001) to the merged multiple point cloud frames to filter out non-

tree clusters. The primary challenge with learning-based 

approaches for point clouds is the need for detailed annotations that 

require per-point labels. Our method circumvents this issue by 

generating training data for the RF classifier from the street tree 

point cloud candidates identified in the preceding steps. This greatly 

simplifies the training data creation process, requiring only the 

classification of non-tree clusters from the candidates, thus 
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eliminating the need for per-point labeling. The features used for the 

RF classifier include general statistical features like the median, 

mean, and standard deviation of RGB, thermal, and intensity values 

of clusters, linearity, planarity, and sphericity derived from the 

principal components of clusters, the angle between the first principal 

component and the z-axis, height and related statistical features, and 

the number of points. The selection of general statistical features 

avoids the need for traditional feature design processes 

 

2.5. Carbon stock estimation 
 

To estimate the carbon stock of each street tree non-

destructively, we obtained species information and structural 

parameters of street trees and applied the allometric equations. To 

classify street tree species, we applied DL model to replace expert’s 

role in tree species classification. For the estimation of H, we 

employed DSM and DEM to overcome the limitation caused by 

sensors’ FOV. In addition, we developed the H-based allometric 

equation to set the boundary for estimated DBH which often reveals 

high uncertainty because only the half of trunk is scanned with MMS . 

Lastly, we estimated volume (V) or dry biomass of tree from DBH 

using allometric equations that are developed for street trees species 

in Korea. Detailed explanation of each step is followed in this section.   

We utilized the You Only Look Once v3 (YOLOv3) system 

(Redmon & Farhadi, 2018), a CNN-based object detection system, 

to classify the species of street trees. The twelve street tree species 

are targeted (see Section 2.1). We applied the same model trained 

from the previous study (Kwon et al., 2023), which includes thirteen 

labels, one of which is assigned to species not included among the 

identified twelve. The species detection results are then projected 
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onto the point cloud, similar to the projection of semantic 

segmentation result described in Section 2.4. . Majority voting takes 

place for each cluster's species information when single frames 

merge into multiple frames. In this way, the credibility of species 

information increases because the same tree is classified multiple 

times throughout the frames. 

To calculate tree H, we used the difference between DSM and 

DEM generated in Section 2.2. When LiDAR's vertical field-of-view 

(FOV) is restricted, the emitted laser can reach the tree top only if 

the tree is sufficiently distant from the vehicle. However, our method 

tends to detect trees when they are closer because of the pixel 

resolution of images, which often results in losing the treetop points. 

Hence, we calculate the height by subtracting the DEM from the DSM 

at the location of the street trees detected in Section 2.4, rather than 

calculating it within the extracted tree clusters. 

To estimate DBH, we used a circle-fitting method and 

developed allometric equation between H and DBH to filter outliers 

from the fitted circles. Accurate DBH estimation is challenging as 

MMS typically scans only the single side of street trees, thus fitted 

circles often significantly deviates from the truth value. One strategy 

to increase the accuracy of DBH estimation is fitting circles to 

multiple transections of the trunk point cloud. The previous study 

showed quantifying a tree's DBH based on the average diameter of 

the multi-height diameters can increase the accuracy of DBH 

estimation (Liu et al., 2021). We generated transections at 2 cm 

intervals from 20 cm above the starting point of each tree trunk to 

150 cm of each tree trunk. Furthermore, we set the 95 % confidence 

interval (CI) of estimated DBH using the developed allometric 

equation in Table 1, which is developed in this study using TLS 
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measured H and tape measured DBH. We developed general 

allometric equation because we could not sample the entire species 

targeted in this study. In case of all estimated diameters from 

transections fall outside the confidence interval, we derived the 

tree’s DBH from H using allometric equation instead of circle-fitting. 

 

Table 1. The allometric equation having DBH as a dependent variable 

and H as an independent variable. Generic allometric equation is 

developed due to the lack of sufficient samples for each species.  

H 

Range 

(m) 

n 

𝐥𝐧(𝑫𝑩𝑯) = 𝒂 + 𝒃 × 𝒍𝒏(𝑯)  

𝒂  
95% 

CI 
𝒃  

95% 

CI 
𝑹𝟐  

RMSE 

(%) 

5.46 ~ 

20.72 

34

4 
0.9086 

[0.776

2, 

1.0412

] 

1.0653 

[1.010

3, 

1.1203

] 

0.81 
0.15 

(4.42) 

 

In the calculation of carbon stock, we used allometric 

equations that estimating V or dry biomass from DBH developed from 

street tree samples in Korea to decrease the uncertainty lies in the 

allometric equation itself. It is because allometric equations vary by 

location and climate, even within the same species. Therefore, we 

utilized allometric equations of seven street tree species in Korean 

cities, which are denoted in Table 2 (Kim & Lee, 2016; Park et al., 

2018; Yoon et al., 2013). The estimated V was then multiplied by the 

wood basic density to calculate each tree's dry biomass. We used 

allometric equations estimating V because we could not find species-

specific allometric equation estimating dry biomass developed for 

street trees in Korea. For the remaining species which we could not 

find any allometric equations related to the V or biomass, we 

calculated the dry biomass directly using the generic allometric 
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equation developed for street trees (Yoon et al., 2013). 

 

Table 2. Species-specific allometric equations of street trees having 

V as a dependent variable and DBH as an independent variable. In 

addition, wood basic density of each species is demonstrated.  

Speci

es 

DB

H 

ran

ge 

(cm

) 

𝐕 =  𝒂 × 𝑫𝑩𝑯𝒃 

Refere

nce 

Woo

d 

basic 

densi

ty 

( 𝐤𝐠/

𝒎𝟑) 

Refere

nce 𝒂 𝒃 𝑹𝟐 
rRM

SE 

Ab 

12.

8 ~ 

41.

0 

0.0000

709 

2.5

11 

0.9

7 
8.50 

(Yoon 

et al., 

2013) 

620 

ICARA

F 

databa

se 

Cr 

5.4 

~ 

29.

9 

0.0001

08 

2.1

99 

0.9

3 
2.52 

(Park 

et al., 

2018) 

705* 

(Chave 

et al., 

2009) 

Gb 

10.

5 ~ 

34.

5 

0.0000

453 

2.6

56 

0.9

9 
2.70 

(Yoon 

et al., 

2013) 

523 

(Kang 

et al., 

2011) 

Mg 

12.

0 ~ 

61.

4 

0.0005

27 

2.0

29 

0.8

7 
4.76 

(Kim & 

Lee, 

2016) 

284 

ICARA

F 

databa

se 

Po 

17.

1 ~ 

55.

0 

0.0002

07 

2.1

58 

0.6

7 

35.7

0 

(Park 

et al., 

2018) 

448 

ICARA

F 

databa

se 

Py 
12.

3 ~ 

0.0006

664 

1.8

19 

0.9

7 
8.30 

(Yoon 

et al., 
582* 

(Chave 

et al., 
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48.

2 

2013) 2009) 

Zs 

11.

8 ~ 

38.

4 

0.0000

078 

3.0

84 

0.9

6 
5.80 

(Yoon 

et al., 

2013) 

751 

(Kang 

et al., 

2011) 

* Average wood basic density of the same genus substitutes the 

species specific value 

 

 

Chapter 3. Result 
 

We performed a quantitative analysis to assess the accuracy 

of street tree detection. There are three types of street tree 

detection results: true positive (TP) represents the detected tree 

located within 2 m boundary of truth tree location; false negative (FN) 

represents the truth tree which does not have detected tree within 2 

m boundary; false positive (FP) represents the detected tree located 

outside of 2 m boundary of truth tree location. We utilized three 

evaluation metrics which are recall, precision, and F1-score as 

shown in Equation (8).  

 

 

Recall and precision represent completeness and correctness 

of street tree detection result, and F1-score is the harmonic mean 

of recall and precision. 

 

{
 
 

 
 𝑟𝑒𝑐𝑎𝑙𝑙 =  

𝑇𝑃

𝑇𝑃 + 𝐹𝑁

𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =  
𝑇𝑃

𝑇𝑃 + 𝐹𝑃

𝐹1– 𝑠𝑐𝑜𝑟𝑒 = 2 × 
𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ×  𝑟𝑒𝑐𝑎𝑙𝑙

𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑟𝑒𝑐𝑎𝑙𝑙

 (8) 
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The results of quantitative analysis are shown in Table 3. The 

averages for recall, precision, and F1-score were 78.89%, 85.65%, 

and 81.79% respectively. The highest recorded recall, precision, and 

F1-score were 93.41%, 93.26%, and 90.24% respectively. As 

depicted in Figure 7, precision demonstrated better consistency and 

performance than recall. Although our street tree detection method 

showed proficiency in avoiding FPs, recall exhibited more variability, 

indicating fluctuations in the model's ability to correctly identify all 

actual positives, i.e., all street trees present. 

 

 

Figure 7. Statistical comparison of recall and precision. The p-value 

of recall and precision are 0.04. 

 

Table 3. Evaluation of proposed individual street tree detection 

method. 

Datasets TP FN FP Recall Precision F1 
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score 

Dataset 1 1570 573 168 73.26 90.33 80.91 

Dataset 2 922 72 188 92.76 83.06 87.64 

Dataset 3 949 67 213 93.41 81.67 87.14 

Dataset 4 943 82 122 92.00 88.54 90.24 

Dataset 5 2009 665 372 75.13 84.38 79.49 

Dataset 6 850 163 115 83.91 88.08 85.95 

Dataset 7 1362 203 216 87.03 86.31 86.67 

Dataset 8 682 153 66 81.68 91.18 86.17 

Dataset 9 941 238 151 79.81 86.17 82.87 

Dataset 10 1128 335 115 77.10 90.75 83.37 

Dataset 11 401 61 29 86.80 93.26 89.91 

Dataset 12 692 226 54 75.38 92.76 83.17 

Dataset 13 1082 250 144 81.23 88.25 84.60 

Dataset 14 950 329 233 74.28 80.30 77.17 

Dataset 15 297 155 57 65.71 83.90 73.70 

Dataset 16 731 229 153 76.15 82.69 79.28 

Dataset 17 644 349 94 64.85 87.26 74.41 

Dataset 18 558 111 84 83.41 86.92 85.13 

Dataset 19 310 63 49 83.11 86.35 84.70 

Dataset 20 512 205 227 71.41 69.28 70.33 

Dataset 21 256 66 29 79.50 89.82 84.35 

Dataset 22 2254 692 357 76.51 86.33 81.12 

Dataset 23 2425 638 321 79.17 88.31 83.49 

Dataset 24 1640 353 364 82.29 81.84 82.06 

Dataset 25 1055 698 212 60.18 83.27 69.87 
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Dataset 26 987 532 95 64.98 91.22 75.89 

Dataset 27 1546 191 652 89.00 70.34 78.58 

       

   Min 60.18 69.28 69.87 

   Max 93.41 93.26 90.24 

   Average 78.89 85.65 81.79 

 

Figure 8 shows the accuracy of estimated DBH and H. 

Estimated DBH and H revealed slight overestimation by an average 

of 4.37 cm (15.13%) and 0.86 m (8.57%), respectively. This 

deviation is highlighted by the RMSE values, with DBH and H 

exhibiting RMSEs of 8.17 cm (28.27%) and 2.18 m (21.82%), 

respectively.  

 

 
 

Figure 8. Comparison of estimated structural parameters to observed 

structural parameters. 

 

We detected 35,247 street trees after omitting the street 

trees detected multiple times throughout the dataset. Gb (20.95 %), 

Py (21.63 %), and Zs (22.46 %) occupied more than the half 



 

 25 

population of street trees in the study site. Figure 9 shows the 

distribution of H, DBH, and carbon stock of detected street trees. The 

median value of H of the entire detected street trees was 8.68 m, 

with a first quantile of 6.85 and a third quantile of 11.02 m. The 

median value of DBH of the entire detected street trees was 25.02 

cm, with a first quantile of 19.40 cm and a third quantile of 32.17 cm. 

The median value of carbon stock of the entire detected street trees 

was 60.90 kg, with a first quantile of 35.48 kg and a third quantile of 

113.39 kg.  
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Figure 9. Distribution of structural parameters and carbon stock of 

detected street trees per species. (a) Distribution of H per species. 

(b) Distribution of DBH per species. (c) Distribution of carbon stock 

per species. The numbers below species names are the number of 

detected street trees.  

 

The carbon stock of detected street trees amounted to 2.16 
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± 0.03 GgC. Figure 10 shows the spatial distribution of carbon stock 

in street trees. Without the use of species-specific allometric 

equations, the carbon stock was estimated at 2.34 ± 0.03 GgC. The 

bias of DBH in Figure 8 is fixed before the calculation of carbon stock. 

To quantify this uncertainty, we assumed a normal distribution of 

errors from DBH estimation. We then conducted a Monte Carlo 

simulation with 10,000 iterations, using the 95% CI of the error 

distribution. The lower and upper bounds of the 95% CI of the 

simulation results were reported. 

 

 
Figure 10. Carbon stock map of individual street trees in the study 

site.  

 

Chapter 4. Discussion 
 

To gain a deeper understanding of the factors causing this 

variability in recall, we undertook a qualitative analysis. We found 
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that low recall tends to occur when street trees are undetected in 

sequence, as illustrated in Figure 11. There is a low probability of 

sequential street trees being missed in the point cloud processing, as 

these processes incorporate a refinement step from the image's 

semantic segmentation result - a characteristic of our proposed 

method. Through a comprehensive qualitative analysis of image 

processing step, as depicted in Figure 12, we determined that the 

majority of FNs originate from the camera’s vulnerability to varying 

environmental conditions (Cui et al., 2022). 

 

 

Figure 11. Tree detection result from Dataset 25. Most of the missed 

street trees were in sequence rather than distributed randomly. 

Yellow boxes represent the sequences of missed trees. Red dots 

represent ground truths, and blue dots represent detected street 

trees. 
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Figure 12. (a) Example of trees obscured by a bus, thus the semantic 

segmentation result does not include these trees. (b) Example of a 

green background hindering the accurate segmentation of trees. (c) 

Example where the tree trunk is not visible because the area beneath 

the tree is dark. 

 

Furthermore, we identified two factors that might decrease 

the performance of our proposed method during the qualitative 

analysis of the point cloud. Firstly, a considerable number of detected 

trees were counted as FPs because they did not fit the definition of 

a street tree as defined in Section 2.1, as shown in Figure 13. This 

suggests our method may extend its applicability to trees other than 
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street trees. Secondly, the MMS used in this study could not capture 

street trees located at a higher elevation than the vehicle. For 

instance, the trees in Figure 14 are located outside the LiDAR FOV 

and categorized as FNs, although they were detected in the semantic 

segmentation step. 

  

 

Figure 13. Example of detected trees that do not fit the definition of 

a street tree. Dashed line arrows denote trees that are not located on 

the pedestrian strip, while solid line arrows point to street trees 

located on the pedestrian strip. The yellow dashed line demarcates 

the border of the pedestrian strip. Segmented trees are visualized in 

RGB color. 
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Figure 14. Example of FNs that are detected in the semantic 

segmentation step, but missed in subsequent steps. The yellow 

dashed-line circle and solid-line arrow refer to the corresponding 

region between the image and point cloud. 

 

To evaluate the robustness of our method to various urban 

scenarios, we present examples of segmentation results for different 

street tree planting scenarios and challenging situations. Besides the 

regularly planted street trees in rows adjacent to the road, street tree 

planting scenarios in the study site can be categorized into three 

types: densely planted in planters, planted in multiple rows, and 

planted in median strips. As shown in Figure 15, our proposed method 

performed robustly in all planting scenarios. The most challenging 

situation to segment street trees in urban streets is the case when 

urban furniture near street trees or pole-like objects exist. As 
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shown in Figure 16, our method succeeded in segmenting the tree 

point cloud in challenging situations. 
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Figure 15. Examples of individual street tree detection results for 

each planting scenario, excluding the regular type. In our collected 

dataset, the maximum number of rows for the planting scenario of 

street trees planted in multiple rows was two. The colors of the point 

cloud represent each detected tree, and white squares indicate their 

locations. 

 

 

Figure 16. Examples of instance segmentation results. Top images 

represent the segmentation result without surrounding objects and 

bottom images represent the segmentation result with surrounding 

objects. (a) Instance segmentation result of street trees surrounded 

by tree stakes. (b) Instance segmentation result of street trees near 

road signs. Colors of point cloud represent each detected tree, and 

white squares indicate their locations. 

 

The reliability of estimated carbon stock for each street tree 

is influenced by the accuracy of species classification and estimated 

DBH. The difference in carbon stock estimation, when using species-
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specific allometric equations versus general allometric equations, 

was found to be 0.18 GgC at the city scale. This value provides a 

rough benchmark to determine the need for species classification, 

though the difference may vary depending on the species composition 

within the city. The uncertainty in DBH estimation primarily arises 

from the quality of segmentation and the characteristic of MMS 

scanning only half of the trunk. Our qualitative analysis demonstrates 

that our method accurately captures the location of street trees, even 

when the segmentation quality is imperfect. This contributes to the 

reduction in the uncertainty of DBH estimation by setting the 

boundary of estimated DBH from the H, which is calculated using the 

tree location. 

The specifications of sensors implemented in MMS 

significantly influence the results. Regarding LiDAR FOV, its limited 

vertical range could potentially cause errors in H estimation and 

result in low recall. Meanwhile, the camera’s FOV was limited to the 

front of the vehicle, so that only a partial scan of the point cloud is 

used within our proposed framework to synergize with the images. 

Modifying the camera to capture side and rear views can help mitigate 

the occlusion problem caused by moving objects. We anticipate that 

enabling the MMS to capture the entire surroundings of the vehicle 

could greatly enhance the performance of our method. 

 

 

Chapter 5. Conclusion 
 

 

Our study presents a novel framework for mapping the carbon 

stock of individual street trees using a LiDAR-camera fusion-based 

MMS. This shows its potential as a means to measure the carbon 
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stock of street trees without the need for labor-intensive field 

surveys. Our framework demonstrated commendable performance in 

detecting street trees and accurately estimating their DBH and H, 

which are critical parameters for reliable carbon stock estimation. 

Furthermore, our framework can be employed more practically in 

various urban environments without the need for parameter tuning, 

as most empirical parameters are designed to be sensor-specific 

rather than site-specific. We validated the reliability and practicality 

of our method by reporting the number and carbon stock of street 

trees through extensive experiments in Suwon, Republic of Korea. 

Future research could focus on refining our current 

framework and measuring the carbon stock of all vegetation in urban 

areas. Improving the sensors in MMS, employing better fusion 

techniques, and implementing more sophisticated learning-based 

models could be considered to advance our current framework. Since 

the vehicle has limitations as it cannot access the entirety of urban 

vegetation, developing means to create tree inventories in those 

areas at an individual level, without labor-intensive field surveys, is 

essential for thorough coverage of urban vegetation. Such insights 

hold promising implications for urban planning and climate change 

mitigation strategies, as more accurate and detailed carbon stock 

information can guide the placement and care of urban trees for 

maximum carbon sequestration. 

The importance of accurate carbon stock estimations is 

becoming more apparent, and our study sets a significant precedent 

in urban carbon management. We are optimistic that our work will 

inspire further research, leading to more effective, reliable, and 

sophisticated systems for estimating the carbon stock of urban trees, 

thus enabling more sustainable and resilient cities. 
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Overall, this research marks a significant step towards 

creating a sustainable urban future. By leveraging cutting-edge 

technologies like LiDAR-camera fusion and a learning-based 

approach, we can gain a deeper understanding of our urban 

environments and make more informed decisions about their 

management. This ultimately contributes to the global fight against 

climate change. 
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Abstract 

 

도시의 가로수들은 도시 나무의 상당 부분을 차지하고 있음에도 불구하

고, 그들의 개별 탄소 저장량에 대한 연구는 아직 미흡하다. 본 연구에

서는 광범위한 도시 지역을 커버하고, 고정밀 공간 샘플링을 가능케 하

며, 종과 구조적 파라미터들의 동시 취득을 가능케 하는 LiDAR-카메라 

퓨전 기반의 모바일 매핑 시스템(MMS)을 사용하여 개별 가로수들의 탄

소 저장량을 매핑하였다. 우리는 개별 가로수를 탐지하기 위한 두 단계 

접근법을 구현하였는데, 이는 이미지에 U-Net을 적용하여 의미론적인 

분할을 수행하고, 이미지의 분할 결과에 근거하여 포인트 클라우드에 랜

덤 포레스트 분류기를 적용하는 것이다. 가로수의 탄소 저장량을 측정하

기 위해, 우리는 이미지로부터 나무 종을 분류하기 위해 YOLOv3를 사

용하였고, 포인트 클라우드로부터 흉고직경(DBH)과 수고(H)를 계산하

였다. 실험을 통해, 우리는 한국 수원시에 스캔된 거리에서 35,247그루

의 가로수를 식별하였고, 이들의 탄소 저장량이 2.16 ± 0.03 GgC 이었

다. 도시 규모의 검증을 통해 제안된 개별 가로수 탐지법의 평균 재현율, 

정밀도, F1 점수는 각각 78.89, 85.65, 81.79로 나타났다. 또한, 예측된 

DBH와 H는 각각 평균 4.37 cm (15.13%)과 0.86 m (8.57%)으로 약간 

과대평가되는 경향을 보였으며, 이에 대한 RMSE는 각각 8.17 cm 

(28.27%)과 2.18 m (21.82%)였다. 이 연구는 LiDAR-카메라 퓨전 기

반의 MMS를 사용하여 개별 가로수의 탄소 저장량을 추정하기 위한 실

용적인 프레임워크를 제공하며, 더욱 정확한 도시 탄소 관리와 도시 탄

소 관리의 발전을 위한 길을 여는데 기여한다. 
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