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Abstract

Urban street trees constitute a considerable proportion of urban
trees, yet their individual carbon stocks remain under—explored.
Here, we map the carbon stock of individual street trees using
LiDAR—camera fusion—based Mobile Mapping System (MMS) which
enables extensive urban coverage, high spatial sampling, and
concurrent acquisition of species and structural parameters. We
implement a two—step approach to detect individual street tree,
initially applying a U—Net to images for semantic segmentation, and
subsequently applying a Random Forest classifier on point clouds,
informed by the image segmentation results. To measure the carbon
stock of street trees, we employed another Yolo—v3 to classify tree
species from images and calculated Diameter at Breast Height (DBH)
and height (H) from point clouds. Through experiment, we detected
35,247 street trees from scanned streets in the Suwon, Republic of
Korea, which had the carbon stock of 2.16 £ 0.03 GgC. City—wide
evaluations showed the average recall, precision, and F1—score of
the proposed street tree extraction method were 78.89, 85.65, and
81.79, respectively. In addition, estimated DBH and H revealed slight
overestimation by an average of 4.37 cm (15.13%) and 0.86 m
(8.57%) with RMSEs of 8.17 cm (28.27%) and 2.18 m (21.82%),
respectively. Our work contributes a practical framework for
estimating individual street trees' carbon stocks using the LiDAR—
camera fusion—based MMS, paving the way towards more accurate

urban carbon management and progress in urban carbon management.
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Chapter 1. Introduction

The rise in anthropogenic carbon emissions in urban regions,
coupled with rapid global urbanization, has highlighted the need to
comprehend the carbon stored in urban trees (Nowak et al., 2013;
Seto et al., 2014). Street trees, which constitute a considerable
proportion of urban trees, grow in isolation, unlike other urban trees
which are typically clustered together. This distinct spatial
distribution necessitates individual—level investigation of street
trees, a task that generally accompany with labor—intensive field
survey (Mcpherson, 1998; Nowak et al., 2013; Nowak & Crane, 2002;
Timilsina et al., 2014). Advances in remote sensing technologies
offer promising alternatives to traditional methods, but each remote
sensing technology comes with its own set of challenges and
limitations. Given these developments, the research questions arise:
How can we reliably measure the carbon stock of individual street
trees without resorting to labor—intensive field survey? Is that
method practical to apply at a city —scale?

Accurate quantification of the carbon stock in street trees
typically requires both structural parameters such as diameter at
breast height (DBH) or height (), and species information at an
individual level and on a city —wide scale. Light Detection and Ranging
(LiDAR) is a promising tool to measure trees' structural parameters.
However, it has inherent limitations depending on the platform to
which it is attached. Spaceborne LiDAR offers extensive coverage
but lacks the spatial sampling density needed for individual—level
analysis of street trees (Dubayah et al., 2020). In contrast, airborne
LiDAR provides better point density but is generally associated with
high costs. Terrestrial LiIDAR offers sufficiently dense spatial
sampling to identify the individual tree with species information, but
it lacks mobility (Zou et al., 2017). Thus, the motivation behind this
paper stems from the pursuit of a balanced method that can provide
a dense enough point cloud to capture individual street trees while
also offering a broad scope of coverage encompassing extensive

urban areas.



Recently, the Mobile Mapping System (MMS) has emerged as
a powerful means for surveying street environments (Pu et al., 2011;
W. Xiao et al., 2015). MMS captures two— or three—dimensional
geometric information of surrounding environments using LiDAR
and/or camera mounted on a vehicle (Puente et al., 2013). When
MMS employs LiDAR as a mapping sensor for surveying street trees,
it accurately captures structural parameters but falls short in
providing species information (Safaie et al., 2021; Zhao et al., 2018).
A few studies classified tree species using LiDAR—based MMS and
recorded lower performances on classifying species of trees with
similar geometric shapes than trees with distinct geometries (Chen
et al.,, 2019; Guan et al., 2015). Classifying street tree species is
more challenging when frequent management activities alter tree
shapes, obscuring intra— and inter—species differences of geometric
shapes. With camera—based MMS, deep learning (DL) has been
employed in the classification of street tree species, but estimating
structural parameters from images is less reliable than LiDAR—based
MMS (Choi et al., 2022). These recent studies inspires applying
LiDAR—camera fusion technique, which compensates each sensor’s
shortcomings, to enhance the accuracy of carbon stock estimation.
Though DL—based methods have significantly improved the
performance of the LIDAR —camera fusion technique (Cui et al., 2022;
Fu et al., 2018; L. Xiao et al., 2018), there remains a scarcity of
practical studies applying this fusion approach to map the carbon
stock of street trees at a city scale.

The key challenge in application of DL—based LiDAR—camera
fusion technique for map the carbon stock of street trees lies in
generating a point cloud training dataset. Detecting individual street
trees in the point cloud is essential, as their structural parameters
are vital for carbon stock estimation. Conventional methods for
extracting individual trees from point clouds remain indispensable
(Ning et al., 2019; Zhong et al., 2017), but recent DL—based methods
have exhibited remarkable performance in segmenting individual
trees from point clouds (Jiang et al., 2023; Luo et al., 2021). The

practical use of DL models necessitates the generation of a tralining
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dataset tailored to the target site, leading to an increase in the volume
of required training data across diverse urban scenarios on a city
scale. Given that annotating point clouds is considerably more
demanding than annotating images (Xie et al., 2020), finding a method
that alleviates these difficulties while maintaining the performance of
DL model is imperative.

The goal of this study is generating a carbon stock map of
individual street trees at a city—wide scale using LiDAR-—camera
fusion—based MMS. The overview of our result is visualized in Figure
1. To achieve this goal, we detected individual street trees and
estimated the carbon stock of each tree. In individual street tree
detection, we applied DL exclusively to images to minimize the effort
required to construct point cloud training data while maintaining the
performance of DL. To test the robustness of proposed method, we
used the dataset collected at a city —wide scale in Suwon, Korea.. The
scientific questions we address include: (1) How many street trees

are there in Suwon? (2) How much carbon are they storing?



Point cloud and image from MMS Extracted street tree point clouds

IR R RRE

s ee®e e e o

UTM 52N_x (m) |[320325.15
UTM 52N_y (m) |4127328.08

UTM 52N_x(m) |319915.23
UTM 52N_y (m) | 4127243.63

Altitude (m) 56.82 Altitude (m) 63.29
H (m) 6.56 H (m) 10.28
DBH (cm) 20.67 DBH (cm) 34.87
Species Zs Species Gb

Carbon Stock (kg) | 33.34 Carbon Stock (kg) | 148.01

Our street tree map

Figure 1. We processed data on individual street trees from point
cloud and image datasets, collected using a MMS. Our final results
are depicted in a comprehensive map that delineates the location,
species, H, DBH, and carbon stock of each street tree. The point
clouds of street trees are visualized in RGB color with red dots
marking the determined location of each tree. Additionally, the

distinct colors used in our street tree map correspond to different
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species

Chapter 2. Materials and Method

2.1. Study site and data acquisition

The study area encompassed the majority of vehicle—
accessible roads where street trees are planted in Suwon city,
Republic of Korea. The area of Suwon city is 121 km? and the center
of city is located in 37° 16 “50” N, 127° 00~ 27” E). In this study,
street trees are defined as the trees planted on the pedestrian strips
adjacent to the road and the median strips. The majority of street
trees in Suwon city comprise 12 species: Acer buergerianum (Ab),
Acer palmatum (Ap), and Aesculus turbinata (At), Chionanthus
retusus (Cr), Ginkgo biloba (Gb), Metasequoia glyptostroboides
(Mg), Pinus densiflora (Pd), Platanus occidentalis (Po), Prunus
yvedoensis (Py), Quercus palustris (Qp), Styphnolobium japonicum
(Sy), Zelkova serrata (Zs).

To test the robustness and practicality of the proposed street
tree detection method in various urban scenarios, we collected data
from across the entire streets of Suwon city. The trajectories of
collected datasets are depicted in Figure 2 (a). Data collection was
conducted from August 2021 to October 2021, during daytime hours
from 9 am to 5 pm. Then, we annotated 35,395 street trees from the
collected datasets to validate the result of street tree detection.
Annotated trees are randomly sampled from the entire datasets.
There were overlapped area in the datasets and some trees are
detected multiple times among datasets.

To test the accuracy of estimated structural parameters, we
sampled 287 street trees from randomly chosen streets. We
conducted a tape measurement at 1.3 m of the trunk for DBH
measurement and employed a terrestrial LiDAR (VZ—400i from
RIEGL Laser Measurement Systems Gmbh, Horn, Lower Austria,

Austria) to measure the H. These data was collected from May 2022
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to April 2023 during the day time.

We used an off—the—shelf product (Mobiltech, Seoul,
Republic of Korea) to collect point cloud and image data as shown in
Figure 2(b). The mapping sensors comprised a LiDAR sensor (VLP—
32C from Velodyne, San Jose, California, USA), an RGB camera
(FLIR Blackfly from Teledyne FLIR, Wilsonville, Oregan, USA), a
longwave infrared (LWIR) camera (FLIR A65 from Teledyne FLIR,
Wilsonville, Oregan, USA) and the positioning sensors (APX—15
UAV from Trimble Applanix, Richmond Hill, Ontario, Canada) that
included a Global Navigation Satellite System (GNSS) receiver and
an inertial measurement unit (IMU). It is worth noting that cameras
were oriented in the front direction of the vehicle. The LiDAR sensor
scans 360 ° in 0.1 seconds, operating at a frequency of 10 Hz. The
RGB camera operated at frequency of 10 Hz. The vehicle's six
degrees—of—freedom (DOF) was obtained from the trajectory,
processed using the commercial software (POSPac—UAV 8.4 from
Trimble Applanix, Richmond Hill, Ontario, Canada) with data from the

positioning sensors.
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Figure 2. Overview of materials related to the data acquisition (a)
Overview of data collection trajectory. We drove about 324 km to
collect datasets reflecting various urban scenarios. (b) The product
of MMS used in this study. (¢) Three—dimensional local coordinates

of each sensor
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2.2. Sensor Alignment

We matched the spatiotemporal coordinate of LiDAR and
camera to transfer information from images to the point cloud. Since
MMS records the exact data collection time from different sensors,
matching temporal coordinates of these sensors is achievable. First,
we matched the temporal coordinates of LiDAR and camera, then the
spatial coordinates. Temporal matching must be precedent to spatial
matching because each sensor’s spatial coordinate changes overtime
as the vehicle moves. The local coordinate of each sensor is
described in Figure 2 (c).

To match the temporal coordinate of LIDAR and camera, we
transformed the LiDAR’s local coordinate to that at the time when
images are collected. For instance, transforming the local coordinate
of the MMS point cloud collected at time frame t, to the LiDAR’s
local coordinate at t,_; is required when the point cloud is collected
at t, and the image is collected at t,_;. This transformation
necessitates the relative position between the LiDAR sensor origin
at t, and t,_, . The relative position can be obtained from
transforming the both point cloud collected at different time to the
geographic coordinate, which exploits the six DOF information of
vehicle position measured by positioning sensors. Since the vehicle
position is recorded with respect to the local coordinates of the IMU,
the point cloud is first transformed to the local coordinate of the IMU
using Equation (1). Inversely, Equation (2) shows transformation
from IMU local coordinate to LIDAR coordinate using the same
rotation and translation matrix. Equation (3) demonstrates
transforming the point cloud in IMU local coordinate at t, to the
geographic coordinate and transforming it again to IMU local

coordinate at t,_;.



PL = ) PI (2)
0 0 0 1
RT _RT .
Pltn_l — IGty—1 IGtp—1 TIth_1
0 0 0 1 (3)
RIth TIth . PIt
n

0 0 0 1

Here, P, R, and T are point cloud of 4 x 1 matrix with the
dummy value of 1 at the last row, 3 x 3 rotation matrix, and 3 x 1
translation matrix, respectively. For subscripts, L, I, C, and G denote
LiDAR, IMU, camera local coordinate, and geographic coordinate,
respectively, and t is used when a specific time frame is relevant. In
P, subscripts refer the coordinate where the point cloud is located in.
In R and T, two sensor subscripts are used together to indicate the
transformation from one coordinate to another. For example, Rjg, is
rotation matrix from IMU local coordinate to geographic coordinate
at t,. Time notation is not included in Equation (1) and (2), as the
transformation matrix between sensors’ local coordinates remains
constant regardless of time. In summary, transforming the point
cloud’s local coordinate at time t, to t,_; can be achieved in four
steps: Py, to Py, Py, to Pg, Pg to P, and P to Py .

Once the temporal alignment between LIDAR and camera is
completed, we conducted the spatial alignment and projected point
cloud to the images to transfer information from images to point
clouds. We transformed the LiDAR’s spatial coordinate to the
camera’s one using the Equation (1) with R, and T,c, which are
rotation matrix and translation matrix calculated from extrinsic
parameters between LIDAR and camera. In this study, the extrinsic

parameters between different sensors are provided by the MMS

manufacturer. After the transformation, the projection of poirllt clguds ,
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in the camera's local coordinate onto the image plane is feasible by
using the camera's geometry and intrinsic parameters. Equation (4)
represents the projection of point clouds in the camera's local
coordinate to the normalized image plane. Equation (5) is calculation
of radial distance, which is used in Equation (6) to correct the
distortion of image. Equation (7) projects from the normalized image
plane to the pixel plane. Point cloud retrieves two—dimensional
information of the pixels where the points are projected. At this stage,
color and temperature information are extracted from the RGB image

and LWIR image, respectively, to the point cloud.

()= () @
2= X, + Y&, (5)

(XDu) = (14 krZ2+ kb (XNu)
YDV YNU

(6)
<2p1XNuYNV + po(iF + 2X1%u))
pi(rZ + 2Y§)+ 2p:XnuYaw

Xu fx 0 Cx XDu
(x)=(5 5 o)) @
1 0 0 O 1

Here, fy, fy, cx, and ¢, are camera’s focal length and optical
center. k;, k,, p;, and p, are radial and tangential distortion
coefficients. Xy, and Yy, are pixel coordinates on the normalized
image plane, Xp, and Yp, are distortion—corrected pixel coordinate
on the normalized image plane, and X, and Y, are pixel coordinate

on the pixel plane.

2.3. Preprocessing

We removed the ground points from the point clouds to reduce

data volume, which consequently decreases the computational
§
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resources needed for processing point clouds in subsequent stages
of the method. During the preprocessing phase, point clouds are
divided into horizontal tiles before ground removal takes place. We
assigned each tile a height value which is calculated by subtracting
the minimum z—value from the maximum z—value of points within
each tile. Tiles made entirely of ground points, referred to as ground
tiles, have low height values and can therefore be discarded using a
threshold value. This threshold is set at 0.25 m, a value derived
considering the curb height at the study site.

To remove ground points in non—ground tiles, which we call
carpet—like ground points, we calculated the average of ground tiles’
height values and filtered out the points in non—ground tiles which
have z—values within the threshold of this average height. This
threshold is also set at 0.25 m, split into an upper and lower bound of
0.125 m each. This split accounts for the height variance of ground
tiles due to the differential height of pedestrian strips and roads. The
tile size is set at 0.5 m x 0.5 m, which is empirically decided with
respect to the point cloud resolution. The smaller tile size results in
better ground removal, but increase in processing time. The entire

ground removal process is depicted in Figure 3.
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Figure 3. Ground removal process from point clouds. (a) Division of
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point clouds into tiles and elimination of ground tiles. The subsequent
step removes carpet—like ground points from non—ground tiles. (b)
Visualization of point clouds after the completion of the ground

removal process.

We applied the ground removal process to the single frame of
point cloud to mitigate the effect of dynamic topography. The
proposed ground removal method 1s susceptible to the topography
with varying elevation since it uses the average height value of
ground tiles. For example, the average height value of ground tiles
increases when a street has a slope. This results in the removal of
non—ground points during the removal step of the carpet—like ground
points. Thus, the smaller scanned area is included in point cloud,
there is the less possibility of dynamic topography being involved in
the point cloud in that urban topography is generally flat. We selected
the single frame of point cloud (a 360 © scan in 0.1 seconds) as the
processing unit for ground removal regarding that all the subsequent
processes are based on single frame.

In addition, we created the digital surface model (DSM) and
digital elevation model (DEM) to calculate the H of individual street
trees. When two dimensional tiles are generated during ground
removal process, we use the maximum z—values of points within the
tiles to create DSM and the minimum z—values of to create DEM. We
employ DSM and DEM to overcome the constraint in H calculation,

which we discuss in detail in Section 2.5.

2.4. Individual street tree detection

We propose a two—step approach to detect individual street

trees that includes: (1) semantic segmentation on images u§ing DL,&
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and (2) instance segmentation on point clouds using clustering and
cluster refinement. We developed a filter using pseudo—plane and
applied machine learning (ML) classifier to refine the clusters. The
overview of framework appears in Figure 4. The motivation behind
this bifurcation is to decrease the need for extensive point cloud
training data for DL models and prioritize information from images
which 1s denser than the point cloud. Images typically produce a
higher resolution representation of trees, whereas point clouds

generated by MMS often have a sparser sampling density.

Im_age-based ) @ YOLOV3 - Image
semantic segmentation e —— (single frame)

Image to Image to
point cloud point cloud
| DBSCAN
i Point cloud
(single frame)
‘ Pseudo-plane filter

Point cloud-based

instance segmentation Merge point

cloud frames

Point cloud
(multiple frames)

Random Forest classifier |

I Structural parameters calculation ‘

Figure 4. The flowchart of the proposed framework. Green boxes
represent the flow of individual street tree detection, and blue boxes

represent species detection and structural parameters calculation

To achieve semantic segmentation of street trees, we employ
the U—Net convolutional neural network (CNN), known for its
proficiency in segmenting biomedical images (Weng & Zhu, 2021).

This CNN performs pixel—level binary classification, discerning tree

12 2 A 2] 8

e

|

I

U



and non—tree areas in images. Subsequently, point clouds are
projected onto these images according to the methodology outlined
in Section 2.2, yielding the semantic segmentation result depicted in
Figure 5. Extracted point clouds corresponding to the segmented
pixels are identified as potential street trees. These candidates may
include occluded or background objects when lifting two—dimensional
information to a three—dimensional space (Gong et al., 2020). We
aim to increase the likelihood of street tree detection by applying the
aforementioned task to a single point cloud frame. Given the 10 Hz
frequency of LiDAR and image collection, the same street tree is
captured multiple times across frames. Therefore, processing single
frames allows the U—Net model to detect the same tree multiple
times. Despite the trade—off of decreased point cloud density, this
issue can be resolved by merging frames later in the process. Images

are unaffected by single frame processing due to their constant

resolution.

Semantic segmentation result Semantic segmentation result Projected point cloud
(mask)

Figure 5. The result of street tree semantic segmentation on
collected image and projected point cloud. Point cloud is visualized

with the distance from the LiDAR.

Next, we used The Density—Based Spatial Clustering of
Applications with Noise (DBSCAN) to group the points belonging to
the same object. DBSCAN is a density—based clustering algorithm

13 A £
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capable of identifying clusters of varied shapes and sizes based on
the density of points (Ester et al., 1996). DBSCAN parameters,
including an epsilon of 1.9 and a minimum point count of 10, should
be empirically decided given that each LiDAR point cloud has a
different point density. Due to the imperfectness of DBSCAN, the
resulting clusters are categorized into single street tree cluster,
multiple street tree cluster, or non—tree cluster, and each cluster
requiring subsequent refinement procedures.

To decide whether the cluster contains multiple street trees,
we developed a pseudo—plane filter which identifies a trunk of each
tree. First, each cluster is sectioned into 0.3 m x 0.3 m horizontal
tiles, as mentioned in ground removal in Section 2.3, and we assigned
each tile the value of minimum z—value of points in the tile. Only the
points having z—values less than 2 m is used to calculate the tile value
to avoid bottom of crown engaging to the identification of trunk. Then,
we made the pseudo—plane using the values of tiles and rasterized
the pseudo—plane. The purpose of generating the pseudo—plane lies
in smoothing the gradient of tile values. A 3 x 3 window search is
conducted to identify pixels with minimum value which are centrally
located within the window — these pixels are designated as trunk tiles.
Direct application of window search to horizontal tiles without making
the pseudo—plane often leads to the detection of false trunk tiles by
extra local minima. . Furthermore, the tile size must be chosen large
enough to avoid a single tree having multiple trunk tiles. Finally, the
point with the minimum z—value in a trunk tile is deemed the center
of a cluster. The clusters having multiple trunk tiles require the
refinement step to break down clusters to contain only single street
tree.

To separate multiple street tree clusters into single tree

14 P
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clusters, we apply K—means clustering with the k—value equal to the
number of identified trunk tiles. Since the centers have already been
determined, the K-—means clustering process can be conducted
without iteration, by simply calculating the distance between points
and centers, and grouping points closer to the same center. Clusters
that do not include any trunk tiles are filtered out at this stage. The
refined clusters consist of individual street tree clusters and non—
tree clusters that include false trunk tiles. Overall process of refining

the clusters is illustrated in Figure 6.

(a) (b)

(d) ()

Figure 6. Process of dividing clusters with multiple objects into
clusters with single object. (a) (b) (¢) Example of processing cluster
containing a single tree and noise. (d) (e) (f) Example of processing
cluster containing five trees. (a) (d) Overview of given clusters. (b) (e)
Overview of pseudo—plane. The plane is convex downward at the
position where the trunk or noise are located.. (c)(f) Detected
individual trees and noise within the clusters on rasterized pseudo—
plane. Yellow circles represent the centers of detected objects.

Example of window is depicted with red color in (b) and (c).
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To increase point density for accurate calculation of structural
parameters, we merged the point clouds across multiple frames. This
is achieved by transforming the first frame of the point cloud into
geographic coordinates (as explained in Section 2.2), and then
sequentially transforming subsequent frames. Each time a frame is
transformed into geographic coordinates; the center of each cluster
1s matched with the centers of neighboring clusters from previously
transformed frames, considering a neighbor search threshold of 0.6
m in light of the typical street tree's DBH. During the merging stage,
the threshold often results in the unintended merging of apart objects.
To separate them again, the filtering step outlined in Figure 6 is
reapplied. We also apply DBSCAN with a smaller epsilon parameter
of 1 to remove noise. If multiple clusters are detected, we only retain
the cluster with the most points, assuming that the rest are noise
clusters. These noise clusters are filtered out at the later stage
because the point cloud of a single frame does not always have
sufficient point density to define the cluster as noise. At this stage,
we assume that each cluster contains only a single object and that
these clusters consist of either trees or non—tree objects.

Lastly, we apply a Random Forest (RF) classifier (Breiman,
2001) to the merged multiple point cloud frames to filter out non—
tree clusters. The primary challenge with learning—based
approaches for point clouds is the need for detailed annotations that
require per—point labels. Our method circumvents this issue by
generating training data for the RF classifier from the street tree
point cloud candidates identified in the preceding steps. This greatly
simplifies the training data creation process, requiring only the
classification of non—tree clusters from the candidates, thus

16 ;ﬁ'! X
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eliminating the need for per—point labeling. The features used for the
RF classifier include general statistical features like the median,
mean, and standard deviation of RGB, thermal, and intensity values
of clusters, linearity, planarity, and sphericity derived from the
principal components of clusters, the angle between the first principal
component and the z—axis, height and related statistical features, and
the number of points. The selection of general statistical features

avoids the need for traditional feature design processes

2.5. Carbon stock estimation

To estimate the carbon stock of each street tree non—
destructively, we obtained species information and structural
parameters of street trees and applied the allometric equations. To
classify street tree species, we applied DL model to replace expert’s
role in tree species classification. For the estimation of H, we
employed DSM and DEM to overcome the limitation caused by
sensors’ FOV. In addition, we developed the H—based allometric
equation to set the boundary for estimated DBH which often reveals
high uncertainty because only the half of trunk is scanned with MMS .
Lastly, we estimated volume (V) or dry biomass of tree from DBH
using allometric equations that are developed for street trees species
in Korea. Detailed explanation of each step is followed in this section.

We utilized the You Only Look Once v3 (YOLOv3) system
(Redmon & Farhadi, 2018), a CNN—based object detection system,
to classify the species of street trees. The twelve street tree species
are targeted (see Section 2.1). We applied the same model trained
from the previous study (Kwon et al., 2023), which includes thirteen
labels, one of which is assigned to species not included among the

identified twelve. The species detection results are then projected
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onto the point cloud, similar to the projection of semantic
segmentation result described in Section 2.4. . Majority voting takes
place for each cluster's species information when single frames
merge into multiple frames. In this way, the credibility of species
information increases because the same tree is classified multiple
times throughout the frames.

To calculate tree H, we used the difference between DSM and
DEM generated in Section 2.2. When LiDAR's vertical field—of—view
(FOV) is restricted, the emitted laser can reach the tree top only if
the tree is sufficiently distant from the vehicle. However, our method
tends to detect trees when they are closer because of the pixel
resolution of images, which often results in losing the treetop points.
Hence, we calculate the height by subtracting the DEM from the DSM
at the location of the street trees detected in Section 2.4, rather than
calculating it within the extracted tree clusters.

To estimate DBH, we used a circle—fitting method and
developed allometric equation between H and DBH to filter outliers
from the fitted circles. Accurate DBH estimation is challenging as
MMS typically scans only the single side of street trees, thus fitted
circles often significantly deviates from the truth value. One strategy
to increase the accuracy of DBH estimation is fitting circles to
multiple transections of the trunk point cloud. The previous study
showed quantifying a tree's DBH based on the average diameter of
the multi—height diameters can increase the accuracy of DBH
estimation (Liu et al., 2021). We generated transections at 2 cm
intervals from 20 cm above the starting point of each tree trunk to
150 cm of each tree trunk. Furthermore, we set the 95 % confidence
interval (CI) of estimated DBH using the developed allometric

equation in Table 1, which is developed in this study using TLS
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measured H and tape measured DBH. We developed general
allometric equation because we could not sample the entire species
targeted in this study. In case of all estimated diameters from
transections fall outside the confidence interval, we derived the

tree’s DBH from H using allometric equation instead of circle —fitting.

Table 1. The allometric equation having DBH as a dependent variable
and H as an independent variable. Generic allometric equation is

developed due to the lack of sufficient samples for each species.

H In(DBH) =a+b X In(H)

Range n 95% 95% RMSE
a b R?

(m) CI CI (%)

[0.776 [1.010

5.46 ~ 34 2, 3, 0.15
0.9086 1.0653 0.81

20.72 4 1.0412 1.1203 (4.42)

] ]

In the calculation of carbon stock, we used allometric
equations that estimating V or dry biomass from DBH developed from
street tree samples in Korea to decrease the uncertainty lies in the
allometric equation itself. It is because allometric equations vary by
location and climate, even within the same species. Therefore, we
utilized allometric equations of seven street tree species in Korean
cities, which are denoted in Table 2 (Kim & Lee, 2016; Park et al.,
2018; Yoon et al., 2013). The estimated V was then multiplied by the
wood basic density to calculate each tree's dry biomass. We used
allometric equations estimating V because we could not find species—
specific allometric equation estimating dry biomass developed for
street trees in Korea. For the remaining species which we could not
find any allometric equations related to the V or biomass, we

calculated the dry biomass directly using the generic allometric
3 by
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equation developed for street trees (Yoon et al., 2013).

Table 2. Species—specific allometric equations of street trees having

V as a dependent variable and DBH as an independent variable. In

addition, wood basic density of each species is demonstrated.

\% a X DBHP Woo
DB
d
H .
. basic
Speci ran Refere . Refere
rRM densi
es ge a b R? nce nce
SE ty
(cm
) ( kg/
m3)
12. ICARA
(Yoon
8 ~ 0.0000 25 0.9 F
Ab 850 et al, 620
41. 709 11 7 databa
2013)
0 se
5.4
(Park (Chave
~ 0.0001 2.1 0.9
Cr 2.52 et al., 705% et al,
29. 08 99 3
9 2018) 2009)
10.
(Yoon (Kang
5 ~ 0.0000 26 0.9
Gb 2.70 et al., 523 et al.,
34. 453 56 9
. 2013) 2011)
12. ) ICARA
(Kim &
0 ~ 0.00056 2.0 0.8 F
Mg 4.76 Lee, 284
61. 27 29 7 databa
2016)
4 se
17. ICARA
(Park
1 ~ 0.0002 2.1 0.6 35.7 F
Po et al., 448
55. 07 58 7 0 databa
2018)
0 se
12. 0.0006 1.8 0.9 (Yoon (Chave
Py 8.30 582
3 ~ 664 19 7 et al., et al.,
20 '



48. 2013) 2009)

2
11.
(Yoon (Kang
8 ~ 0.0000 3.0 0.9
Zs 5.80 et al, 751 et al.,
38. 078 84 6
1 2013) 2011)

* Average wood basic density of the same genus substitutes the

species specific value

Chapter 3. Result

We performed a quantitative analysis to assess the accuracy
of street tree detection. There are three types of street tree
detection results: true positive (TP) represents the detected tree
located within 2 m boundary of truth tree location; false negative (FN)
represents the truth tree which does not have detected tree within 2
m boundary; false positive (FP) represents the detected tree located
outside of 2 m boundary of truth tree location. We utilized three
evaluation metrics which are recall, precision, and F1-—score as

shown in Equation (8).

ST —_ (8)

precision X recall
Fl-score =2 X

precision + recall

Recall and precision represent completeness and correctness
of street tree detection result, and F1 —score 1s the harmonic mean

of recall and precision.
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The results of quantitative analysis are shown in Table 3. The
averages for recall, precision, and F1—score were 78.89%, 85.65%,
and 81.79% respectively. The highest recorded recall, precision, and
Fl—score were 93.41%, 93.26%, and 90.24% respectively. As
depicted in Figure 7, precision demonstrated better consistency and
performance than recall. Although our street tree detection method
showed proficiency in avoiding FPs, recall exhibited more variability,
indicating fluctuations in the model's ability to correctly identify all

actual positives, 1.e., all street trees present.

100

p-value < 0.05
95 -
90 4
85
80 4
75
70 2
65
60 ®
55 . .
Recall Precision

Figure 7. Statistical comparison of recall and precision. The p—value

of recall and precision are 0.04.

Table 3. Evaluation of proposed individual street tree detection

method.

Datasets TP FN FP Recall Precision F1

. s X &t 8t



score

Dataset 1
Dataset 2
Dataset 3
Dataset 4
Dataset 5
Dataset 6
Dataset 7
Dataset 8
Dataset 9
Dataset 10
Dataset 11
Dataset 12
Dataset 13
Dataset 14
Dataset 15
Dataset 16
Dataset 17
Dataset 18
Dataset 19
Dataset 20
Dataset 21
Dataset 22
Dataset 23
Dataset 24

Dataset 25

1570
922
949
943
2009
850
1362
682
941
1128
401
692
1082
950
297
731
644
558
310
512
256
2254
2425
1640
1055

573
72

67

382

665
163
203
153
238
335
61

226
250
329
155
229
349
111
63

205
66

692
638
393
698

168
188
213
122
372
115
216
66
151
115
29
54
144
233
o7
153
94
84
49
227
29
357
321
364
212

23

73.26
92.76
93.41
92.00
75.13
83.91
87.03
81.68
79.81
77.10
86.80
75.38
81.23
74.28
65.71
76.15
64.85
83.41
83.11
71.41
79.50
76.51
79.17
82.29
60.18

90.33
83.06
81.67
88.54
84.38
88.08
86.31
91.18
86.17
90.75
93.26
92.76
88.25
80.30
83.90
82.69
87.26
86.92
86.35
69.28
89.82
86.33
88.31
381.84
83.27

80.91
87.64
87.14
90.24
79.49
85.95
86.67
86.17
82.87
83.37
89.91
83.17
84.60
77.17
73.70
79.28
74.41
85.13
84.70
70.33
84.35
81.12
83.49
82.06
69.87



Dataset 26 987 532 95 64.98 91.22 75.89
Dataset 27 1546 191 652 89.00 70.34 78.58
Min 60.18 69.28 69.87
Max 93.41 93.26 90.24
Average 78.89 85.65 81.79

Figure 8 shows the accuracy of estimated DBH and H.
Estimated DBH and H revealed slight overestimation by an average
of 4.37 cm (15.13%) and 0.86 m (8.57%), respectively. This
deviation is highlighted by the RMSE wvalues, with DBH and H
exhibiting RMSEs of 8.17 cm (28.27%) and 2.18 m (21.82%),

respectively.
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Figure 8. Comparison of estimated structural parameters to observed

structural parameters.

We detected 35,247 street trees after omitting the street
trees detected multiple times throughout the dataset. Gb (20.95 %),
Py (21.63 %), and Zs (22.46 %) occupied more than the half

24 2 A 2] 8

|

I

U



population of street trees in the study site. Figure 9 shows the
distribution of H, DBH, and carbon stock of detected street trees. The
median value of H of the entire detected street trees was 8.68 m,
with a first quantile of 6.85 and a third quantile of 11.02 m. The
median value of DBH of the entire detected street trees was 25.02
cm, with a first quantile of 19.40 cm and a third quantile of 32.17 cm.
The median value of carbon stock of the entire detected street trees
was 60.90 kg, with a first quantile of 35.48 kg and a third quantile of
113.39 kg.
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Figure 9. Distribution of structural parameters and carbon stock of
detected street trees per species. (a) Distribution of H per species.
(b) Distribution of DBH per species. (¢) Distribution of carbon stock
per species. The numbers below species names are the number of

detected street trees.

The carbon stock of detected street trees amounted to 2.16
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+ 0.03 GgC. Figure 10 shows the spatial distribution of carbon stock
in street trees. Without the use of species—specific allometric
equations, the carbon stock was estimated at 2.34 + 0.03 GgC. The
bias of DBH in Figure 8 is fixed before the calculation of carbon stock.
To quantify this uncertainty, we assumed a normal distribution of
errors from DBH estimation. We then conducted a Monte Carlo
simulation with 10,000 iterations, using the 95% CI of the error
distribution. The lower and upper bounds of the 95% CI of the

simulation results were reported.

37°21'

137°18'

37°18’

Carbon stock (kg)
3.20 -28.90
28.90 -42.42
42.42 - 60.90

© 6090 -90.33
© 9033 -151.16
+ 151.16 - 7211.09

126°57" 127°0° 127y
Figure 10. Carbon stock map of individual street trees in the study

site.

Chapter 4. Discussion

To gain a deeper understanding of the factors causing this

variability in recall, we undertook a qualitative analysis. We found
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that low recall tends to occur when street trees are undetected in
sequence, as illustrated in Figure 11. There is a low probability of
sequential street trees being missed in the point cloud processing, as
these processes incorporate a refinement step from the image's
semantic segmentation result — a characteristic of our proposed
method. Through a comprehensive qualitative analysis of image
processing step, as depicted in Figure 12, we determined that the
majority of FNs originate from the camera’s vulnerability to varying

environmental conditions (Cui et al., 2022).

Figure 11. Tree detection result from Dataset 25. Most of the missed

street trees were in sequence rather than distributed randomly.
Yellow boxes represent the sequences of missed trees. Red dots
represent ground truths, and blue dots represent detected street

trees.
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Figure 12. (a) Example of trees obscured by a bus, thus the semantic
segmentation result does not include these trees. (b) Example of a
green background hindering the accurate segmentation of trees. (c)
Example where the tree trunk is not visible because the area beneath

the tree 1s dark.

Furthermore, we identified two factors that might decrease
the performance of our proposed method during the qualitative
analysis of the point cloud. Firstly, a considerable number of detected
trees were counted as FPs because they did not fit the definition of
a street tree as defined in Section 2.1, as shown in Figure 13. This

suggests our method may extend its applicability to trees other than
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street trees. Secondly, the MMS used in this study could not capture
street trees located at a higher elevation than the vehicle. For
instance, the trees in Figure 14 are located outside the LiIDAR FOV
and categorized as FNs, although they were detected in the semantic

segmentation step.

Detected street trees
ithout the background point cloud

A
I
I
I
I
I
I
- o4
I
I

Detected street trees
with the background point cloud

Figure 13. Example of detected trees that do not fit the definition of
a street tree. Dashed line arrows denote trees that are not located on
the pedestrian strip, while solid line arrows point to street trees
located on the pedestrian strip. The yellow dashed line demarcates

the border of the pedestrian strip. Segmented trees are visualized in

RGB color.
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Figure 14. Example of FNs that are detected in the semantic

segmentation step, but missed in subsequent steps. The yellow
dashed—line circle and solid—line arrow refer to the corresponding

region between the image and point cloud.

To evaluate the robustness of our method to various urban
scenarios, we present examples of segmentation results for different
street tree planting scenarios and challenging situations. Besides the
regularly planted street trees in rows adjacent to the road, street tree
planting scenarios in the study site can be categorized into three
types: densely planted in planters, planted in multiple rows, and
planted in median strips. As shown in Figure 15, our proposed method
performed robustly in all planting scenarios. The most challenging
situation to segment street trees in urban streets is the case when

urban furniture near street trees or pole—like objects exist. As
31 '



shown in Figure 16, our method succeeded in segmenting the tree

point cloud in challenging situations.

Two rows

Street trees planted in two rows

Street trees planted in the median strip
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Figure 15. Examples of individual street tree detection results for
each planting scenario, excluding the regular type. In our collected
dataset, the maximum number of rows for the planting scenario of
street trees planted in multiple rows was two. The colors of the point
cloud represent each detected tree, and white squares indicate their

locations.

Segmentation result
without the surrounding objects

Segmentation result
without the surrounding objects

1 Road signs

H
Segmentation result with the surrounding objects Segmentation result with the surrounding objects

Figure 16. Examples of instance segmentation results. Top images
represent the segmentation result without surrounding objects and
bottom images represent the segmentation result with surrounding
objects. (a) Instance segmentation result of street trees surrounded
by tree stakes. (b) Instance segmentation result of street trees near
road signs. Colors of point cloud represent each detected tree, and

white squares indicate their locations.

The reliability of estimated carbon stock for each street tree
1s influenced by the accuracy of species classification and estimated

DBH. The difference in carbon stock estimation, when using species—
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specific allometric equations versus general allometric equations,
was found to be 0.18 GgC at the city scale. This value provides a
rough benchmark to determine the need for species classification,
though the difference may vary depending on the species composition
within the city. The uncertainty in DBH estimation primarily arises
from the quality of segmentation and the characteristic of MMS
scanning only half of the trunk. Our qualitative analysis demonstrates
that our method accurately captures the location of street trees, even
when the segmentation quality is imperfect. This contributes to the
reduction in the uncertainty of DBH estimation by setting the
boundary of estimated DBH from the H, which is calculated using the
tree location.

The specifications of sensors implemented in MMS
significantly influence the results. Regarding LiDAR FOV, its limited
vertical range could potentially cause errors in H estimation and
result in low recall. Meanwhile, the camera’s FOV was limited to the
front of the vehicle, so that only a partial scan of the point cloud is
used within our proposed framework to synergize with the images.
Modifying the camera to capture side and rear views can help mitigate
the occlusion problem caused by moving objects. We anticipate that
enabling the MMS to capture the entire surroundings of the vehicle

could greatly enhance the performance of our method.

Chapter 5. Conclusion

Our study presents a novel framework for mapping the carbon
stock of individual street trees using a LiDAR—camera fusion—based

MMS. This shows its potential as a means to measure the carbon
§
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stock of street trees without the need for labor—intensive field
surveys. Our framework demonstrated commendable performance in
detecting street trees and accurately estimating their DBH and H,
which are critical parameters for reliable carbon stock estimation.
Furthermore, our framework can be employed more practically in
various urban environments without the need for parameter tuning,
as most empirical parameters are designed to be sensor—specific
rather than site—specific. We validated the reliability and practicality
of our method by reporting the number and carbon stock of street
trees through extensive experiments in Suwon, Republic of Korea.

Future research could focus on refining our current
framework and measuring the carbon stock of all vegetation in urban
areas. Improving the sensors in MMS, employing better fusion
techniques, and implementing more sophisticated learning—based
models could be considered to advance our current framework. Since
the vehicle has limitations as it cannot access the entirety of urban
vegetation, developing means to create tree inventories in those
areas at an individual level, without labor—intensive field surveys, is
essential for thorough coverage of urban vegetation. Such insights
hold promising implications for urban planning and climate change
mitigation strategies, as more accurate and detailed carbon stock
information can guide the placement and care of urban trees for
maximum carbon sequestration.

The importance of accurate carbon stock estimations is
becoming more apparent, and our study sets a significant precedent
in urban carbon management. We are optimistic that our work will
inspire further research, leading to more effective, reliable, and
sophisticated systems for estimating the carbon stock of urban trees,

thus enabling more sustainable and resilient cities.
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Overall, this research marks a significant step towards
creating a sustainable urban future. By leveraging cutting—edge
technologies like LiDAR-—camera fusion and a learning—based
approach, we can gain a deeper understanding of our urban
environments and make more informed decisions about their
management. This ultimately contributes to the global fight against

climate change.
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