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ABSTRACT 

Dysbiosis in the gut microbiota of 

patients with rheumatoid arthritis 

 

Eun Ha Lee 

Interdisciplinary Program in Agricultural Genomics  

The Graduate School 

Seoul National University 
 

The gut microbiota is a complex community of diverse microorganisms 

comprising bacteria, viruses, fungi, and other microbes in the human gastrointestinal 

tract. The gut microbiota plays a pivotal role in human health and disease through its 

close relationship with the gut environment. Dysbiosis, an imbalance in the gut 

microbiota, has been linked to various diseases. This thesis discusses the role of gut 

bacteria and fungi in metabolic disorders, neurological disorders, immune regulation, 

and drug metabolism. The gut microbiota is essential for nutrient absorption and 

energy metabolism; indeed, dysbiosis is a significant driver of the development of 

cardiovascular and metabolic disorders. In addition, it can induce inflammatory 

responses that may result in neuronal damage via the gut-brain axis and is associated 

with immune dysregulation. 
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The gut microbiota has a critical role in immune regulation, and there is a 

significant body of research on the interaction between gut microbiota and 

autoimmune diseases. Rheumatoid arthritis (RA) is a representative autoimmune 

disease closely associated with gut microbiota. Although the detailed mechanisms 

have not been fully established, studies indicate that fungal cell wall components 

may be critical to the pathogenesis of RA. Thus, the composition of the fecal 

microbiota in patients with RA and healthy subjects was examined to determine 

potential correlations between RA and changes in the gut microbiota. It was found 

that changes in the fungal community were more pronounced than those in the 

bacterial community in patients with RA. Specifically, in patients with RA, the 

proportion of Aspergillus was lower, and that of Candida was significantly higher 

than in healthy subjects. Moreover, the analysis of microbial community structure 

indicated that the fungal community had a more critical role than the bacterial 

community in patients with RA. These findings suggest that fungi play a crucial role 

in the gut microbiota and in the pathogenesis of RA. 

The gut microbiota can influence drug efficacy or lead to adverse drug effects. Gut 

bacteria are reported to impact drug metabolism, and research into personalized 

therapies to make use of this knowledge is ongoing. In recent studies, efforts have 

been made to resolve imbalances in the gut microbiota as a means of disease 

prevention and treatment. For example, in patients treated with prebiotics or 

probiotics, partial restoration of the gut microbiota was observed and resulted in 

improved immune regulation and symptom relief. 
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In this study, the impact of imbalances in the gut microbiota on the disease was 

explored, providing a basis for research into future treatments. The significant role 

of gut fungi in RA was confirmed. Therefore, the importance of research into the gut 

fungal community is proposed to support the development of new therapies for this 

disease. Multidisciplinary studies of the gut microbiota should afford novel insights 

into preventing and treating this disease. 
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ABSTRACT 

 

The human microbiome is closely related to one’s health, and the gut microbiota plays 

the most crucial role. This relationship significantly influences various aspects of human 

physiology, such as the immune system, nutritional status, and metabolic activities. While 

the ideal composition and function of gut microbiota contribute to a healthy life, dysbiosis 

(an imbalance in the microbial community) increases the risk of developing various 

diseases. This review discusses the roles of gut microbiota, both the bacterial and fungal 

communities, within the human body. The impact of gut dysbiosis on metabolic disorders, 

neurological diseases, and immune regulation is explored. Furthermore, the influence of 

gut bacterial communities on drug metabolism is investigated, with evidence indicating 

that the observed variability in drug responses among individuals is attributed to the gut 

microbiota. A multifaceted examination of gut microbiota may offer new insights for 

developing disease treatments.  
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INTRODUCTION 

 

Humans are exposed to numerous microorganisms that are both beneficial and harmful 

to our health. The human microbiota refers to both the microorganisms we come into 

contact with in the external environment and those that reside within our bodies. It 

comprises bacteria, viruses, and fungi, and their numbers were once believed to exceed 100 

trillion, far more than human cells (Bäckhed et al., 2005). However, this figure is now 

estimated at approximately 39 trillion microorganisms, slightly more than the 30 trillion 

human cells in our body (Sender et al., 2016). The microbiota exist in different 

microbiomes and perform various functions, including decomposing inorganic substances 

such as dietary fibers (Baky et al., 2022), regulating the immune system (Kamada et al., 

2013), and producing vitamins (LeBlanc et al., 2013). The composition of the human 

microbiome differs among individuals and is influenced by age, diet, health status, and 

the environment (Qin et al., 2010;Consortium, 2012;Yatsunenko et al., 2012). 

Consequently, the microorganisms comprising the human microbiota have a significant 

impact on each other’s survival and health beyond mere mutualism. 

There has been considerable research on the effects of human microbiota on health. The 

advent of next-generation sequencing technologies led to an explosion of studies yielding 

significant results. In particular, the Human Microbiome Project (HMP), led by the US 

National Institutes of Health, collected and analyzed microbial community samples from 

five sites (oral, skin, digestive, reproductive, and respiratory) in thousands of individuals 
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(Consortium, 2019). This project reported on the diversity and distribution of human 

microbial communities, their changes, and their associations with disease onset. The HMP 

also developed various technologies and methodologies for analyzing human microbial 

community data, contributing to the advancement of microbial community research by 

enhancing standardization and the comparability of analyses of microbial communities 

The gut is the organ with the highest concentration of microorganisms in the human body. 

These microorganisms are called gut microbiota, consisting of bacteria, viruses, fungi, and 

protozoa. Gut microbiota are crucial in maintaining barrier functions and promoting a 

healthy environment within the gastrointestinal tract (Alam and Neish, 2018). Recent 

studies have shown that gut microbiota are involved not only in preserving barrier functions 

and promoting a healthy environment within the gastrointestinal tract but also in a wide 

range of diseases, including autism spectrum disorder (ASD), depression, peripheral 

vascular disease, hypertension, obesity, metabolic syndrome, and inflammatory bowel 

disease (IBD), as well as drug metabolism (Lynch and Pedersen, 2016;Dhurjad et al., 2022). 

Dietary intake has been shown to significantly impact the composition and functionality of 

the gut microbiota in humans (Rinninella et al., 2023). In this review, we examine the roles 

of gut microbiota, classified into bacteria and fungi; the mechanisms underlying the 

interaction between gut microbiota and diseases; and the impact of gut dysbiosis on disease 

development and progression.  
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I. Functions and contributions of gut microbial community 

Bacterial communities constitute the majority of gut microbiota in the human body and 

play a crucial role in nutrient absorption and energy metabolism. Gut bacteria collaborate 

to digest beneficial components such as dietary fibers and complex carbohydrates, and 

decompose simple carbohydrates, proteins, and lipids into simple unsaturated fatty acids 

that serve as an energy source in the body (Rowland et al., 2018). Moreover, they synthesize 

vitamins, including the vitamin K and B groups (LeBlanc et al., 2013), and produce 

appetite-regulating hormones, such as leptin and ghrelin, which affect energy balance and 

body weight management (Han et al., 2021). Thus, gut bacterial dysbiosis may disrupt 

nutrient absorption and energy metabolism. For example, obese individuals harbor a lower 

number of microorganisms than healthy individuals, and their gut microbiota is 

characterized by a higher abundance of Firmicutes, which are involved in energy extraction 

(Kallus and Brandt, 2012). Several studies have demonstrated that providing prebiotics or 

probiotics to obese patients partially restores nutrient absorption and energy metabolism 

(Megur et al., 2022). To summarize, the gut bacterial community is crucial for nutrient 

absorption and energy metabolism in the human body. 

The gut bacterial community is pivotal in preserving intestinal microbial homeostasis 

and has three main functions. First, gut bacteria modulate the growth of beneficial 

microorganisms and curb that of pathogenic microorganisms. Beneficial microorganisms, 

such as Bifidobacterium and Lactobacillus, trigger the immune system and impede the 

proliferation of pathogenic microorganisms (Turroni et al., 2014;Nishida et al., 2018). In 

contrast, pathogenic microorganisms such as Clostridium difficile may disrupt the gut 
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microbial balance, leading to gastrointestinal disorders (Samarkos et al., 2018). Second, 

gut bacteria preserve the intestinal barrier’s function. The intestinal barrier protects against 

the infiltration of pathogenic microorganisms and regulates nutrient absorption, upholding 

the intestinal milieu. Gut bacteria produce essential nutrients to maintain this barrier 

function and activate the immune system to reinforce this role (Alam and Neish, 2018). 

Finally, by metabolizing dietary fibers and various ingested proteins, gut bacteria regulate 

and preserve intestinal pH, which is critical for managing the growth of beneficial and 

pathogenic microorganisms (Patterson et al., 2014). 

Since the gut bacterial community is crucial for maintaining homeostasis of the gut 

microbiota, dysbiosis is associated with various diseases. The preservation of an optimal 

gut bacterial community necessitates the adoption of suitable dietary and lifestyle habits. 

 

II. Association between gut bacterial dysbiosis and diseases 

Investigation of the role of the gut bacterial community in the human body has revealed 

that dysbiosis could lead to the development of diseases. Numerous studies have 

demonstrated that intestinal dysbiosis is connected with or might be a consequence of the 

onset of several human disorders (Lozupone et al., 2012;Lynch and Pedersen, 2016). Table 

1 summarizes bacteria associated with specific diseases and categorizes the effect of gut 

bacterial community dysbiosis by disease. 
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Metabolic disorders 

The association between the gut bacterial community and metabolic disorders, such as 

diabetes, obesity, and hyperlipidemia have been demonstrated. Regarding metabolic 

disorders, gut bacteria are involved in inducing insulin resistance or promoting insulin 

sensitivity in metabolic disorders, such as diabetes, obesity, and hyperlipidemia (Caricilli 

and Saad, 2013;Khan et al., 2014). Maintaining an ideal composition of the bacterial 

community may increase microbial populations that promote insulin sensitivity, leading to 

the prevention and treatment of diabetes. Additionally, certain gut bacteria are associated 

with weight management by regulating genes involved in energy metabolism and 

modulating metabolic activity, thereby influencing changes in body weight (Donohoe et al., 

2011), as well as cholesterol metabolism, which could be a possible mode of prevention 

and treatment of hyperlipidemia (Vourakis et al., 2021). The gut bacterial community also 

affects liver metabolism and is associated with liver diseases, such as fatty liver and 

cirrhosis (Chassaing et al., 2014). Therefore, improving the composition of the gut 

microbiome may be a promising approach for preventing and treating liver diseases. 

Vegetarians with a high intake of dietary fiber have been reported to have more abundant 

gut bacteria and a lower risk of metabolic disorders (Tomova et al., 2019). Thus, detailed 

investigations are necessary to explore the interaction between metabolic disorders and the 

gut bacterial community. 
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Neurological disorders 

The gut microbiota synthesizes vitamins, neurotransmitters, and short-chain fatty acids 

(SCFAs), which regulate human metabolism and brain function (Cryan and Dinan, 

2012;Badawy, 2017). These signaling molecules are conveyed to the brain via the vagus 

nerve and other central nervous system pathways (Kennedy et al., 2017), modulating the 

interaction between the nervous system and the gut microbiota through the gut-brain axis. 

Such molecules include redox-active metabolites, SCFAs, and hormone-like molecules. 

Redox-active metabolites are signaling molecules produced by the catabolism of amino 

acids like tyrosine, phenylalanine, and tryptophan. They inhibit inflammatory responses in 

the gut–brain axis and affect mood and behavior (Wu et al., 2022). A variety of SCFAs are 

produced from the breakdown of dietary fiber by gut microbiota. These regulate appetite 

and metabolism via the gut–brain axis (Han et al., 2021). The structure of hormone-like 

molecules produced by the gut microbiota resembles various hormones, such as growth 

hormone and insulin, and they modulate hormone levels (Clarke et al., 2014). 

Gut-brain axis dysfunction can contribute to the development and progression of various 

brain disorders. This happens when gut bacterial dysbiosis induces inflammatory responses, 

leading to changes in hormone and signaling molecule levels and subsequent brain function, 

promoting the onset and progression of depression and anxiety disorders (Foster and 

Neufeld, 2013;Rogers et al., 2016). Furthermore, gut microbiota dysbiosis has been 

reported to alter the production of signaling molecules related to neurodevelopment and 

alterations in brain function in cases of ASD, a developmental disorder of the central 

nervous system (Fowlie et al., 2018). Children with ASD have been reported to show a 



9 

lower ratio of Akkermansia, Bacteroides, Bifidobacterium, and Parabacteroides and an 

increased ratio of Faecalibacterium compared with neurotypical children (Xu et al., 2019). 

However, the exact role of gut bacterial dysbiosis in ASD remains unclear. Two of the most 

common neurodegenerative diseases, Alzheimer and Parkinson disease, have also been 

linked to inflammatory responses induced by gut bacterial dysbiosis, which can damage 

neurons in the brain (Lin et al., 2019;Sochocka et al., 2019). Accordingly, therapeutic 

approaches that target the gut microbiota are currently under investigation. Notably, the 

consumption of prebiotics or probiotics has been reported to exert positive effects on 

emotional and cognitive functions that are closely linked to brain function (Liu et al., 

2015;Dahiya and Nigam, 2022). 

 

Immune regulation 

The immune system is modulated through a complex with the gut microbiota. First and 

foremost, gut bacteria activate immune-regulatory cells such as T-helper (Th) 17 cells, 

regulatory T-cells (Tregs), and Th1 cells, which are vital for maintaining and regulating an 

appropriate immune response (Stockinger and Veldhoen, 2007;Zhang et al., 2014;Omenetti 

and Pizarro, 2015;Plitas and Rudensky, 2016;Sun et al., 2018).  Additionally, gut bacteria 

produce immune-regulatory proteins. For example, Lactobacillus reuteri, induces toll-like 

receptor 2 protein in the gut, promoting the generation and activation of Th17 cells (Jia et 

al., 2020). Furthermore, Bacteroides fragilis produces polysaccharide A, an extracellular 

adhesion molecule that stimulates the generation and activation of Treg cells in the gut 

(Kayama and Takeda, 2014). Porphyromonas gingivalis and L. rhamnosus interact with 
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Treg cells in the gut, playing a significant role in gut immune regulation (Jia et al. 2020). 

Thus, the gut microbiota performs a crucial function in immune regulation, and the 

interplay between the gut bacterial community and the immune system provides valuable 

insights for developing prophylactic and therapeutic interventions for relevant diseases. 

 

Drug metabolism  

Emerging evidence suggests that not only individual biological characteristics but also 

interactions with the gut microbiota determine the effects and side effects of drugs. Thus, 

the gut bacterial community affects drug absorption, metabolism, and toxicity, and this has 

been newly proposed as evidence for explaining differences in an individual’s response to 

drugs (Zimmermann et al., 2019a). Gut bacteria can express drug-metabolizing enzymes 

affecting the activation or inactivation of drugs, which might increase or decrease their 

effects (Wilson and Nicholson, 2017). Moreover, gut bacteria may also biotransform 

phytochemicals such as ginsenosides, catechins, and quercetin, leading to differences in the 

efficacy of botanical drugs based on nationality or race (Santangelo et al., 2019). 

Additionally, some gut bacteria could facilitate or impede drug absorption, influencing 

bioavailability and duration of action (Tuteja and Ferguson, 2019). The types of gut bacteria 

that affect drug metabolism are highly diverse, and representative examples are 

summarized in Table 2. 

Thus far, we have explored the role of the gut bacterial community and how it impacts 

disease. It is critical in maintaining overall health and well-being. Understanding gut 
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bacteria interactions and regulating their composition may be helpful for disease prevention 

and improving health.
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Table 1. Alterations in gut bacterial abundance associated with human diseases 

Disease 
Significant shifts in bacterial community composition Reference 

Class Subtype 

Metabolic 

disorders 

Type 2 diabetes 

Actinobacteria, Bacteriodetes, Escherichia coli, L. acidophilus, 

L. gasseri, L. salivarius ↑ 

 Lactobacillus, L. amylovorus ↓ 

 Bondy, 2023 

Obesity 

Eubacterium rectale, Clostridium coccoides, Lactobacillus 

reuteri, Akkermansia muciniphila, Clostridium histolyticum, and 

Staphylococcus aureus ↑ 

 Gomes et al., 2018 

Firmicutes and Actinobacteria ↑ 

Bacteroidetes↓ 
 Tseng and Wu, 2019 

Hyperlipidemia 
E. coli and Enterobacter↑ 

Lactobacillus, Faecalibacterium and Roseburia↓ 

 Moreno-Indias et al., 

2016 

Neurological 

disorders 
Alzheimer's 

diseases 

Collisella, Alistipes, Barnesiella, Odoribacter, Bilophila, 

Escherichia, Shigella, Phascolarctobacterium, Gemella, Blautia, 

and Subdoligranulum↑ 

 Sochocka et al., 2019 

https://www.sciencedirect.com/topics/medicine-and-dentistry/actinobacteria
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Bifidobacterium, Adlercrutzia, Clostridium, SMB53, Cc115, 

Turicibacter, Eubacterium, Lachnoclostridium, and Roseburia↓ 

Parkinson's 

diseases 

Lactobacillaceae, Barnesiellaceae, Enterococcacea, 

Bifidobacteriaceae, Christensenellaceae, Tissierellaceae, 

Enterobacteriaceae, Lachnospiraceae, Pasteurellaceae, and 

Verrucomicrobiaceae↑ 

 Elfil et al., 2020 

Bacteroidetes, Prevotellaceae, Erysipelotrichaceae, Clostridium- 

coccoides, and Bacteroides fragilis↓ 
 

Autism spectrum 

disorder (ASD) 

B. fragilis, Porphyromonas, Clostridium perfringens, Roseburia, 

Dorea, S. thermophiles, Prevotella, and Enterobacteriaceae↑ 
 Ho et al., 2020 

Oscillospira, Subdoligranulum, Turicibacter, Dialister, 

Veillonella, and Bifidobacterium fragilis↓ 

Autoimmune 

disease 

Type 1 diabetes Bacteriodetes and E. coli↑  Bondy, 2023 

Inflammatory 

bowel disease 

(IBD) 

Ruminococcus gnavus, Enterobacteriaceae, E. coli, 

Proteobacteria, Fusobacterium, Streptococcus, Veillonella, 

Peptostreptococcus, Campylobacter, Klebsiella pneumonia, 

Candida glabrata, and Enterococcus↑  Upadhyay et al., 2023 

Faecalibacterium prausnitzii, Ruminococcus, Cyanobacteria, 

Flavobacterium, Oscillospira, Roseburia, Prevotella copri, 

Coprococcus, Dorea, Blautia, and Eubacterium↓ 
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Rheumatoid 

arthritis 

Bacteroides sp., Coprobacillus sp., Gardnerella spp., Prevotella 

spp., Lactobacillus sp., Clostridium asparagiforme, 

Holdemania- filiformis, Eggerthella lenta, Gordonibacter- 

pamelaeae, Ruminococcus lactaris, Bacteroides sartorii, and 

Porphyromonas somerae↑  Miyauchi et al., 2023 

Bacteroides, Haemophilus sp., Veillonella sp., Klebsiella 

pneumoniae, Coprococcus catus, Dialister invisus, Sutterella- 

wadsworthensis, Megamonas hypermegale, Lactobacillus- 

sanfranciscensis, and Bifidobacterium bifidum↓ 

Sjögren’s 

syndrome 

Proteobacteria, Actinobacteria, Bacteroidetes, Escherichia-

Shigella, Sardovia, Veillonella, Insteinimonas, Lactobacillales, 

E.- coli, Lactobacillus phage Sal3, Lactobacillus reuteri, 

Lactobacillus gasseri, Streptococcus lutetiensis, Streptococcus- 

mutans, Scardovia wiggsiae, and Fusobacterrium ulcerans↑ 

 Mendez et al., 

2020;Wang et al., 2023 

Firmicutes, Lactobacillales, and Lactobacillus gasseri↓ 
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Table 2. Biotransformation of pharmaceuticals by gut microbiota 

Biotransformation 

type 
Drug 

Therapeutic 

applications 
Implicated bacteria Reference 

Prodrug activation 

Sulfasalazine 
Crohn's disease and 

Rheumatoid arthritis 

Clostridium and Eubacterium 

spp. 

 Peppercorn and 

Goldman, 1972;Sousa 

et al., 2014 

Olsalazine Ulcerative colitis 
Clostridium and Eubacterium 

spp. 

 Wadworth and Fitton, 

1991 

Balsalazide IBD 
Clostridium and Eubacterium 

spp. 
 Chan et al., 1983 

Lovastatin 

Cardiovascular 

disease and 

Hyperlipidemia 

Not Applicable  Yoo et al., 2014 

Loperamide oxide Chronic diarrhea Not Applicable  Lavrijsen et al., 1995 

Inactivation 

Digoxin 
Cardiovascular 

disease 
Eggerthella lenta 

 Haiser and 

Turnbaugh, 2013 

Deleobuvir 
Hepatitis C virus 

infection 
Not Applicable  McCabe et al., 2015 



16 

Metronidazloe 
Antibiotic and 

Antiprotozoal 
Clostridium perfringens  Koch et al., 1979 

Epacadostat Cancer Not Applicable  Boer et al., 2016 

Enhanced toxicity 

Brivudine Antiviral drug B. thetaiotaomicron 
 Zimmermann et al., 

2019b 

Diclofenac NSAID* 
Bacteroides, Clostridium, and 

Bifidobacterium spp. 
 Saitta et al., 2014 

Indomethacin NSAID 
Bacteroides, Clostridium, and 

Bifidobacterium spp. 
 Saitta et al., 2014 

Irinotecan Cancer E. coli  Wallace et al., 2010 

Ketoprofen NSAID 
Bacteroides, Clostridium, and 

Bifidobacterium spp. 
 Saitta et al., 2014 

Nitrazepam Anxiety and Insomnia Clostridium leptum  Rafii et al., 1997 

Sorivudine Antiviral drug Not Applicable  Okuda et al., 1998 
*: Non-steroidal anti-inflammatory drugs 
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III. Human diseases influenced by the gut mycobiota 

In recent years, the importance of studying the various fungi that inhabit the human gut 

has started to receive attention, as research in this area was primarily focused on studying 

gut bacteria. These fungi, collectively called the gut mycobiome, have been found to exist 

in more significant quantities within the gut than previously recognized (Hallen-Adams 

and Suhr, 2017). The interaction between gut fungi and bacteria plays a critical role in 

maintaining the homeostasis of gut microbiota. After exposure to antibiotics or other drugs, 

some fungal species can inhibit bacterial growth by blocking the secretion of growth factors 

or consuming nutrients that bacteria need to thrive (Chin et al., 2020). 

Dysbiosis of the gut microbiota may lead to excessive fungal growth and the 

development of inflammatory diseases. For example, gut fungi dysbiosis has been 

associated with IBD. Although the exact cause of IBD remains unclear, extensive research 

has documented the role of dysbiosis in the gut (Sokol et al., 2017;Beheshti‐Maal et al., 

2021). Excessive proliferation of certain fungal species, such as Candida albicans, has been 

closely linked to the development of IBD. Additionally, C. albicans plays a role in 

promoting the growth and survival of colon cancer cells (Zhu et al., 2021), and its toxin, 

candidalysin, induces neutrophil and interleukin 17 responses, which may affect various 

inflammatory diseases (Ho et al., 2021). Furthermore, gut fungal dysbiosis with an increase 

in the Candida genus has also been associated with neurological disorders, such as Rett 

syndrome, ASD, schizophrenia, and bipolar disorder (Chin et al., 2020). Similar to gut 

bacteria, gut fungi are also associated with dietary and lifestyle changes. Excessive sugar 
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intake, low dietary fiber intake, antibiotic use, and stress may lead to gut fungal dysbiosis 

(Hallen-Adams and Suhr, 2017;Markey et al., 2020;Seelbinder et al., 2020), which has been 

linked to obesity and metabolic disorders (Mar Rodríguez et al., 2015). However, research 

on the role of gut fungi and gut fungi dysbiosis in disease is still in its early stages, so the 

exact mechanisms are not yet well understood. Since the relationship between human gut 

fungi and disease is complex, specific research on the association of each fungal species 

and disease is necessary.



19 

PERSPECTIVE 

 

Gut microbiota are crucial in maintaining the balance of intestinal microorganisms 

and are closely related to health, including nutrient absorption and energy 

metabolism. Findings from the HMP have provided a basis for understanding the 

diversity and function of gut microbiota and uncovered the association between gut 

dysbiosis and several diseases, including metabolic syndrome, neurological 

disorders, digestive diseases, and immune diseases. Current studies have focused on 

restoring gut dysbiosis to prevent or treat diseases. Furthermore, the use of prebiotics 

or probiotics enhances nutrient supply and immune regulation and alleviates various 

diseases, such as IBD, diabetes, obesity, and neurodegenerative diseases. 

Collectively, these findings indicate that gut dysbiosis is an attractive target for 

developing disease therapies. However, studying the gut microbiota has limitations. 

Most rely on bioinformatics to predict the composition of the gut microbiota, and 

research on how gut microbiota causes specific diseases needs detailed 

investigations. Although various mechanistic studies are underway, they are 

predominantly conducted on animal models and may not be directly applicable to 

humans. The study of the gut mycobiome may be the solution, as it represents a 

missing link in the correlation between gut microbiota and human diseases. Thus, it 

is essential to recognize the importance of the mycobiome in microbiota research 

and to adopt a multidisciplinary approach in future studies. 
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ABSTRACT 

 
Rheumatoid arthritis (RA) is closely associated with the oral and gut microbiomes. 

Fungal cell wall components initiate inflammatory arthritis in mouse models. 

However, little is known regarding the role of the fungal community in the 

pathogenesis of RA. To evaluate the association between RA and the gut microbiome, 

investigations of bacterial and fungal communities in patients with RA are necessary. 

Therefore, we investigated the compositions and associations of fecal bacterial and 

fungal communities in 30 healthy controls and 99 patients with RA. The relative 

abundances of Bifidobacterium and Blautia decreased, whereas the relative 

abundance of Streptococcus increased, in patients with RA. The relative abundance 

of Candida in the fecal fungal community was higher in patients with RA than in 

healthy controls, while the relative abundance of Aspergillus was higher in healthy 

controls than in patients with RA. Candida species-specific gene amplification 

showed that C. albicans was the most abundant species of Candida. Ordination 

analysis and random forest classification models supported the findings of structural 

changes in bacterial and fungal communities. Aspergillus was the core fecal fungal 

genus in healthy controls, although Saccharomyces spp. are typically predominant 

in Western cohorts. In addition, bacterial–fungal association analyses showed that 

the hub node had shifted from fungi to bacteria in patients with RA. The finding of 

fungal dysbiosis in patients with RA suggests that fungi play critical roles in the fecal 

microbial communities and pathogenesis of RA. 
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INTRODUCTION 

 

Rheumatoid arthritis (RA) is an autoimmune disease that mainly affects the 

synovium in joints. Synovial thickening leads to the destruction of joint cartilage and 

bone (Harris Jr, 1990;Klareskog et al., 2009;Smolen et al., 2018). Subsequently, RA 

can worsen and affect other joints, thereby increasing the risks of osteoporosis, 

Sjögren syndrome, heart diseases, and lung diseases (Haugeberg et al., 

2000;Solomon et al., 2006;Tsuchiya et al., 2011;He et al., 2013). Although the 

pathogenesis of RA is incompletely understood, interactions among genetic, 

environmental, and lifestyle factors have been proposed. A significant genetic risk 

factor for RA is HLA-DRB1 (McInnes and Schett, 2011). Genome-wide association 

studies have shown that PTN22, PADI4, STAT4, and TRAF1-C5 are associated with 

the onset of RA (Stahl et al., 2010). Notably, the HLA-DRB1*0405 allele is closely 

associated with RA severity and susceptibility in Koreans (Bae, 2010;Okada et al., 

2014). Clinical and experimental animal studies have shown that infection with 

Porphyromonas gingivalis, Proteus mirabilis, Epstein–Barr virus, or mycoplasma 

contributes to RA pathogenesis (Li et al., 2013). The involvement of microbes in the 

etiopathogenesis of RA has prompted the investigation of relationships between RA 

and changes in human-associated microbial communities. 

Dysbiosis has been identified in the fecal bacterial communities of patients with 

RA. Generally, gut microbial diversity is lower in patients with RA than in healthy 

individuals (Zhang et al., 2015). Differences in the bacterial abundance were also 

observed. Specifically, the abundances of Prevotella copri, Collinsella, Eggerthella, 
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and Lactobacillus increased in patients with RA, while the abundances of 

Bacteroides, Faecalibacterium, Veillonella, and Haemophilus decreased in those 

patients (Wu et al., 2010;Maeda and Takeda, 2019). Among the bacteria affected by 

RA, P. copri is predominantly present in the feces of patients with early RA; this 

species has been implicated in RA pathogenesis (Maeda et al., 2016). Treatment for 

RA also affects the composition of the gut bacterial community. For example, 

etanercept increased the abundances of the Cyanobacteria and Nostocophycideae 

classes and the Nostocales order; it decreased the abundances of the 

Deltaproteobacteria class and the Clostridiaceae family (Picchianti-Diamanti et al., 

2018). Patients who received methotrexate (MTX) showed a reduced abundance of 

Enterobacteriales and partial community restoration, compared with the typical 

dysbiotic community in patients with RA (Zhang et al., 2015;Chen et al., 

2016;Picchianti-Diamanti et al., 2018). Additionally, the bacterial community is 

affected by the presence of rheumatoid factor or anti-citrullinated protein antibody 

(ACPA), which are markers used to classify RA. Moreover, the C-reactive protein 

level and erythrocyte sedimentation rate are associated with gut microbiome 

dysbiosis in patients with RA (Picchianti-Diamanti et al., 2018;Chiang et al., 

2019;Rooney et al., 2021). 

Similar to studies of bacteria, an association between fungi and RA pathogenesis 

has been reported. Intraperitoneal injections of a fungal cell wall component 

(zymosan or fungal β-glucan) into SKG mice in a specific pathogen-free laboratory 

resulted in the induction of autoimmune arthritis, whereas injections of an antifungal 

agent and antifungal cell wall component did not (Yoshitomi et al., 2005). Therefore, 
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fungi are essential for the initiation of autoimmune arthritis. In a previous study that 

investigated the gut fungal community of patients with RA in China, the abundance 

of Pholiota, Scedosporium, and Trichosporon were lower than in healthy controls. 

Suhomyces and Trebouxia, two fungal genera abundant in patients with RA, were 

positively correlated with RA biomarkers (Sun et al., 2022). However, the effects of 

the fecal fungal community on RA have been less extensively investigated than the 

effects of the bacterial community. 

Here, we investigated the fecal bacterial and fungal communities of patients with 

RA. We aimed to i) evaluate the fecal bacterial and fungal compositions and their 

interkingdom associations, ii) identify key taxa or operational taxonomic units 

(OTUs) associated with compositional shifts in the fecal bacterial and fungal 

communities, and iii) examine the effects of medications on the fecal fungal 

community. The abundance of Candida was increased, while the abundance of 

Aspergillus was decreased, in the feces of patients with RA. The abundances of 

Candida and Aspergillus showed contrasting correlations with clinical factors used 

for RA diagnosis. In addition, the hub node, which plays a central role in bacterial–

fungal associations, shifted from fungi to bacteria in patients with RA. Finally, the 

abundance of Candida albicans was affected by treatment for RA. Our study 

provides insight into the crucial roles of the fungal community in pathogenesis of 

RA. 
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MATERIALS AND METHODS 

 

I. Sample collection 

Healthy controls (HC) (n = 30) were recruited from the Wonju Severance 

Christian Hospital. HC who had a chronic, systemic autoimmune disease and 

pregnant or lactating women were excluded. RA (n = 99), who fulfilled the 2010 

ACR/EULAR classification criteria (Aletaha et al., 2010), were recruited from the 

Catholic University of Korea Seoul St. Mary’s Hospital. Each individual had been 

prescribed medication, including non-steroidal anti-inflammatory drugs, 

corticosteroids, csDMARDs, and biologics. All clinical data were obtained 

according to established methods, and the DAS28 was used to quantify dis-ease 

activity. 

The Ethics Committees of the Wonju Severance Christian Hospital Ethics 

Committee (IRB Approval Number: 19–008) and the Catholic University of Korea 

(IRB Approval Number: KC14TIMI0248) approved this study. Fecal samples were 

collected from March 2017 to November 2018 and promptly frozen at −20°C. 

Sequentially collected samples were transported to the laboratory and stored at 

−80°C before DNA extraction. 

 

II. DNA extraction from feces 

DNA extraction was performed using the QIAamp PowerFecal Pro DNA Kit 
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(Qiagen, Germany), in accordance with the manufacturer’s instructions. DNA 

concentration and purity were determined with a Nanodrop 1000 (Thermo Fisher 

Scientific, USA). The collected DNA was stored at −20°C before amplification by 

polymerase chain reaction (PCR). 

 

III. PCR amplification and sequencing 

The V3–V4 regions of 16S ribosomal RNA (rRNA) genes were amplified using 

the Illumina-adapted universal primers 314F/805R. Each PCR reaction contained 

12.5 ng of genomic DNA, 2.5 µL of Ex Taq 10× PCR buffer (Takara, Japan), 2.5 µL 

of dNTP mixture (Takara), 0.125 µL of Takara Ex Taq (Takara), 5 µL of each primer 

(200 nM final concentration), and distilled water to a total volume of 25 µL. The 

following thermocycler protocol was used: initial denaturing at 95°C for 3 min; 25 

cycles of denaturing at 95°C for 30 s, primer annealing at 55°C for 30 s, and 

extension at 72°C for 30 s; and final extension at 72°C for 5 min. PCR products were 

purified using AMPure XP beads (Beckman Coulter, USA), then quantified using a 

KAPA Library Quantification kit (KAPA Biosystems, USA). Sequencing was 

conducted on the MiSeq platform using a paired-end 2×300 base pairs reagent kit 

(Illumina, USA). 

Subsequently, the fungal internal transcribed spacer 2 (ITS2) region of the 18S 

ribosomal RNA genes was amplified using the ITS3F/ITS4R primers and i-Starmax 

II polymerase (Intron Biotechnology, Korea). Each PCR reaction (final volume, 25 

µL) contained 2.5 µL of 10× PCR buffer, 2.5 µL of dNTP mixture, 0.31 µL of i-

Starmax II polymerase (Intron Biotechnology), 1.25 µL of each primer (500 nM final 
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concentration), and 50–120 ng of genomic DNA. The following thermocycler 

protocol was used: initial denaturing at 94°C for 4 min; 35 cycles of denaturing at 

94°C for 1 min, primer annealing at 60°C for 1 min, and extension at 72°C for 1 min; 

and final extension at 72°C for 10 min. PCR products were purified using AMPure 

XP beads (Beckman Coulter). DNA quality and quantity were measured using an 

Infinite 200 pro (Tecan, Switzerland). All samples were diluted to the same 

concentration, pooled into a single library, and concentrated using AMPure beads 

(Beckman Coulter); the pooled library was subjected to gel purification to remove 

any residual unwanted PCR products. Finally, the pooled library was sequenced on 

the Illumina MiSeq platform with a read length of 2 × 300 base pairs at the National 

Environmental Management Center of Seoul National University. 

 

IV. Sequence processing and filtering 

After demultiplexing, overlapping sequences were merged with PEAR, then 

filtered with the DADA2 plugin (Callahan et al., 2016) using the “denoise-single” 

command in QIIME2. Subsequently, high-quality sequences were clustered into 

OTUs using the open reference vsearch algorithm (vsearch cluster-features-

openreference) (Rognes et al., 2016) against the Silva 99% OTU representative 

sequence database (version 132, April 2018) (Quast et al., 2012), then assembled 

into an OTU table. Bacterial OTUs were clustered into OTUs using the UCHIME-

de novo algorithm (Edgar et al., 2011), fungal sequences were checked for 

chimerism with UCHIME using the June 2017 chimera detection ITS2 database 

(Nilsson et al., 2015). Next, the taxonomies of nonchimeric OTUs were assigned 
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using the naïve Bayes algorithm implemented in the q2-feature-classifier, based on 

the Silva database for the V3–V4 region of the 16S rRNA sequences (Bokulich et al., 

2018). Alternatively, eukaryotes were classified using the UNITE database (UNITE 

version 7 dynamic of January 2017) for the ITS2 region (Abarenkov et al., 2010). 

Short bacterial (400 base pairs) and fungal (100–500 base pairs) sequences were 

used for in-depth analyses. First, OTU tables were imported into R using the 

readRPM component of the phyloseq package (McMurdie and Holmes, 2013). Next, 

sequence data were removed for organisms that had been assigned to non-kingdom-

level groups (bacterial OTUs: orders “Chloroplast” and “Rickettsiales;” fungal 

OTUs: kingdoms “Unassigned,” “Rhizaria,” and “Metazoa”). Subsequently, false 

positive OTUs were removed from stool samples, while singleton OTUs were 

eliminated from all samples. This process reduced the total bacterial OTU count from 

1346 to 1338 and total fungal OTU count from 1641 to 1595. The remaining 1338 

bacterial OTUs and 1595 fungal OTUs were used for further analysis. 

 

V. Statistical analyses and visualization 

Statistical analysis was performed using R statistical software, version 3.5.2 (R-

Core-Team). After multiple hypothesis tests had been corrected using the false 

discovery rate method, significant results were determined using a p-value threshold 

of 0.05. First, OTU tables were scaled by cumulative-sum scaling (CSS) and log-

transformed (for normalization) using the cumNum and MRcounts functions in the 

metagenomeSeq package in R (Paulson et al., 2013). Next, rarefication of bacterial 
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(5425 reads) and fungal (4256 reads) reads was conducted using the 

rarefy_even_depth function in the Phyloseq package in R; this was followed by 

calculation of the Shannon and Simpson indices using the diversity function in the 

Vegan (version 2.5–3) package in R. The Wilcoxon rank-sum test and one-way 

analysis of variance were also used. A Bray–Curtis dissimilarity matrix was 

produced for use in two separate principal coordinates analyses; canonical analysis 

of principal coordinates (CAP) was then performed using RA and HC constraints, 

respectively, with the capscale and ordinate functions from the Vegan and Phyloseq 

packages. Permutational analysis of variance (PERMANOVA) using the adonis 

function in the Vegan package (version 2.5–3) was also used for analysis (Oksanen 

et al.). Subsequently, the core OTUs of RA and HC groups were identified using a 

prevalence threshold of 85% for bacteria and 70% for fungi. Differentially abundant 

OTUs between the RA and HC groups were identified using linear discriminant 

analysis effect size (LEfSe) (https://huttenhower.sph.harvard.edu/galaxy/) (Segata et 

al., 2011). Differences in OTU abundance were considered significant when p-values 

were < 0.05. 

 

VI. Microbial correlation networks 

Bacterial–fungal networks were constructed to infer hub and complex OTU 

associations for RA and HC groups. Because the number of participants differed 

between the RA (n = 99) and HC (n = 30) groups, 30 samples from the RA group 

were randomly subsampled using the sample function in R software to avoid 

differences in network properties based on differences in sample size. Thus, we 

https://huttenhower.sph.harvard.edu/galaxy/
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obtained 1302 OTUs for the HC group and 1428 OTUs for the RA group; these 

OTUs were used to construct interkingdom co-occurrence networks. In contrast, 

CSS-normalized OTU abundance tables that included bacteria and fungi were used 

as an input for SparCC (Friedman and Alm, 2012); significant associations between 

OTUs were restricted to OTUs with correlations of > 0.3 and < −0.3 (P < 0.05) (Kurtz 

et al., 2015). Co-occurrence networks were visualized with Gephi (version 0.9.2) 

(Bastian et al., 2009) using the ForceAtlas2 layout. Within the networks, the 

proportions of inter-kingdom (associations between bacteria and fungi) and intra-

kingdom (associations within the same kingdom) links were quantified and 

displayed in bar graph format (Durán et al., 2018). Specifically, HC and RA networks 

were compared in terms of degree, betweenness centrality, closeness centrality, and 

eigenvector centrality; these values were computed using igraph (version 1.2.1) 

(Csardi and Nepusz, 2006). The hub OTUs of each network were defined as the top 

1% of OTUs in terms of degree, betweenness centrality, and closeness centrality. For 

the RA group, OTUs of degree > 20, betweenness centrality > 0.05343148, and 

closeness centrality > 0.01229823 were defined as hub OTUs. For the HC group, 

OTUs of degree > 19.7, betweenness centrality > 0.06493721, and closeness 

centrality > 0.02258181 were identified as hub OTUs.  

 

VII. Fungal strain cultivation 

C. albicans (KCCM 11282) was obtained from the Korean Culture Center of 

Microorganisms (Korea). C. albicans was cultivated and maintained in yeast extract 

peptone dextrose (YPD) agar plates or YPD broth at 25°C. Viable cell numbers were 
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determined by spreading serially diluted culture medium on YPD agar plates. 

Absorbance at 550 nm was measured using a microplate reader (Tecan). 

 

VIII. DNA extraction and qualitative PCR (gel blotting of 

samples) 

Single C. albicans colonies were inoculated and cultivated in YPD broth for 24 h. 

Broth cultures were centrifuged at 12,000 g for 5 min; DNA was then extracted from 

cell pellets using the QIAamp PowerFecal Pro DNA Kit (Qiagen). Next, genomic 

DNA was amplified using i-Starmax II polymerase (Intron Biotechnology). Each 

PCR reaction (final volume, 25 µL) contained 2.5 µL of 10× PCR buffer, 2.5 µL of 

dNTP mixture, 0.31 µL of i-Starmax II polymerase (Intron Biotechnology), 1.25 µL 

of each primer (500 nM final concentration), and 50–120 ng of genomic DNA. The 

following thermocycler protocol was used: initial denaturation at 94°C for 4 min; 35 

cycles of denaturation at 94°C for 1 min, primer annealing at 60°C for 1 min, and 

extension at 72°C for 1 min; and final extension at 72°C for 10 min. The following 

primers were used: forward, 5′-TTTATCAACTTGTCACACCAGA-3′; reverse, 5′-

ATCCCGCCTTACCACTACCG-3′ (Frykman et al., 2015). PCR products were 

separated by electrophoresis on a 1.5% agarose gel containing SYBR DNA SafeStain 

(Thermo Scientific Pierce, USA). Bands were visualized using a ChemiDoc device 

(Thermo Scientific Pierce). 
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Ⅸ. Real-time quantitative PCR to quantify C. albicans 

abundance 

Real-time quantitative PCR was conducted with a QuantStudio 6 Flex Real-Time 

PCR system (Applied Biosystems, USA) using PowerUp™ SYBR® Green Master 

Mix (Thermo Fisher Scientific). The primers used for qualitative PCR of C. albicans 

were used for real-time quantitative PCR. Each PCR reaction (final volume, 20 μL) 

contained 10 μL of SYBR Green Master Mix, 0.8 μL of each primer, and 2 μL of 

genomic DNA. The following thermocycler protocol was used: denaturation at 95°C 

for 2 min, followed by 40 cycles of 95°C for 15s and annealing at 60°C for 60s. 

Amplification specificity was evaluated by melt curve analysis. 

  



44 

RESULTS 

 

I. Descriptive statistics 

The demographic and clinical features of patients with RA and HC are shown in 

Table 1. The study included 99 RA and 30 HC. Ninety-one samples (91.9%) in the 

RA group were from women, while 100% of samples in the HC group were from 

women. The mean participant ages were 57.8 ± 10.1 years in the RA group and 46.9 

± 3.5 years in the HC group. RF and ACPA positivity were detected in 77 (77/93, 

82.8%) and 75 (75/98, 76.5%) patients, respectively. Of the RA patients, 87 (87.9%) 

were prescribed conventional synthetic disease-modifying antirheumatic drugs 

(csDMARDs), while 40 (40.4%) were prescribed biologics (including 32 patients 

who were prescribed both biologics and csDMARDs). Medications used by patients 

with RA are listed in Table 2. 
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Table 1. Characteristics of study participants. 

Characteristics 
Healthy controls 

(n = 30) 

Patients with RA  

(n = 99) 

Demographics   

Mean age (year) 46.9 ± 3.5 57.8 ± 10.1 

Female proportion 30 (100%) 91 (91.9%) 

BMI 23.9 ± 3.0 22.8 ± 2.7 

Disease characteristics   

RF positivity at entry of study 2 (6.7%) 77 (n = 93, 82.8%) 

Anti-CCP positivity at entry of stu

dy 
NA 

 75 (n = 98, 76.

5%) 

Disease duration, median (IQR), y

ear 
NA 

8.9  

(0.1-40) 

CRP, median (IQR), mg/dL NA 
0.5 

(0.0-5.1) 

ESR, median (IQR), mm/hr NA 
13.3 

(2.0-70.0) 

BMI, body mass index; NA, not applicable; CRP, C-reaction protein; ESR, 

erythrocyte sedimentation rate 
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Table 2. The medication for patients with RA. 

Medication, n (%) 
Healthy controls 

(n = 30) 

Patients with RA 

(n = 99) 

csDMARDs   

MTX - 56 (56.6 %) 

Leflunomide - 42 (42.4 %) 

Hydroxychloroquine - 40 (40.4 %) 

Sulfasalazine - 15 (15.2 %) 

Biologics   

Eetanercept - 3 (3.0 %) 

Adalimumab -  3 (3.0 %) 

Abatacept - 17 (17.2 %) 

Tocilizumab - 17 (17.2 %) 

Others   

Tofacitinib - 1 (1.0 %) 

Tacrolimus - 13 (13.1 %) 

Glucocorticoids - 69 (69.7 %) 

NSAIDs - 54 (54.5 %) 
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II. Fecal microbial community composition 

Distinct compositional differences between HC and RA were observed in the fecal 

bacterial community (Figure 1). Bifidobacterium, Streptococcus, Blautia, 

Lachnospiraceae, and an unidentified species were abundant in both the RA and HC 

groups (Figure 2a). However, genera with relative abundances < 0.3% constituted 

89.4% of genera in the RA group and 54.2% of genera in the HC group (Figure 2a). 

Furthermore, the abundances of Bifidobacterium and Blautia were higher in the HC 

group than in the RA group; the abundance of Streptococcus was higher in the RA 

group than in the HC group. These differences were statistically significant 

(Bifidobacterium, P = 0.0299; Blautia, P = 0.0024; Streptococcus, P = 0.0195) 

(Figure 2b). 

The most abundant fungal phyla were Ascomycota, Basidiomycota, and 

Mucoromycota (Figure 3). The ratio of Basidiomycota to Ascomycota was greater in 

the HC group than in the RA group (5.28%:65.7% in the HC group; 4.55%:75.42% 

in the RA group), while the proportion of Mucoromycota was greater in the HC group 

than in the RA group (mean relative abundances: 4.35% in the HC group and 1.74% 

in the RA group). The abundance of Saccharomycetes was greater in the RA group 

(HC, 35.2%; RA, 59.9%), while the abundance of Aspergillaceae was greater in the 

HC group (HC, 23.9%; RA, 10.0%) (Figure 3). 

At the genus level, Candida, Saccharomyces, and Aspergillus were the most 

abundant fungi (Figure 2c, d). The relative abundance of Candida (P = 0.00013) was 

significantly greater in the RA group than in the HC group, while the relative 

abundance of Aspergillus (P = 0.00092) was significantly greater in the HC group 
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than in the RA group (Figure 2d). Furthermore, the abundances of the genera 

Kazachctania, Issatchenkia, Penicillium, and Mucor tended to be greater in the RA 

group, although these findings were not statistically significant (Figure 2c, d). In 

contrast to the findings in a Western cohort, the abundance of Saccharomyces did not 

differ between the two groups (Figure 2d; mean relative abundances: HC, 12.9%; 

RA, 14.2%; P = 0.6204). Therefore, RA may be associated with compositional shifts 

in the fecal bacterial and fungal communities. 
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Figure 1. Comparisons of the fecal bacterial community composition between 

HC and RA. Community composition was compared at the phylum, class, order, 

family, and genus levels, respectively. The columns of different colors represent 

different taxa, and the height of the bars represents the proportions of each taxon. 

Genera with abundance <0.3% are grouped as "Low abundance." HC, healthy 

controls; RA, patients with RA. 
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Figure 2. Fecal microbial community composition in healthy controls and 

patients with RA. (a) Bacterial community composition at the genus level. (b) 

Pairwise comparison of abundant bacterial genera. (c) Fungal community 

composition at the genus level. (d) Pairwise comparison of abundant fungal genera. 

In panels b and d, boxes and lines represent the interquartile ranges (Q3-Q1) and 

medians of relative abundances, respectively. Black dots indicate potential outliers. 

Lower and upper whiskers show minimum and maximum relative abundances of 

genera. Statistical significance was estimated by two-sided Mann–Whitney U test. 

***, P < 0.001; **, P < 0.01; *, P < 0.05; ns, P > 0.05 (not significant). HC, healthy 

controls; RA, patients with RA. 
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Figure 3. Comparisons of the fecal fungal community composition between HC 

and RA. Community composition was compared at the phylum, class, order, family, 

and genus levels, respectively. The columns of different colors represent different 

taxa, and the height of the bars represents the proportions of each taxon. Genera with 

abundance <0.3% are grouped as "Low abundance." HC, healthy controls; RA, 

patients with RA. 
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III. Fecal microbial diversity 

We next investigated the effects of RA on microbial community diversity. The 

alpha diversity indices, including OTUs, Shannon, and Simpson indices, of bacteria 

and fungi did not significantly differ between groups (all P > 0.05) (Figure 4). In 

CAP, the constrained ordination analysis showed that bacterial and fungal 

communities were clearly separated into HC and RA groups (Figure 5a), although 

the unconstrained principal coordinates analysis did not show clear clustering of 

microbial communities according to RA status (Figure 6). PERMANOVA indicated 

significant compositional differences in the bacterial (R2 = 0.01746, P = 0.0002) and 

fungal communities (R2 = 0.0216, P = 0.0001) of the RA group (Table 3). The 

relative abundances of Bifidobacterium, Streptococcus, Aspergillus, and Candida 

differed between the two groups (Figure 5b). Although RA did not affect the richness 

or diversity of fecal microbial communities, it significantly affected beta diversity 

by shifting the taxonomic compositions of the fecal bacterial and fungal communities. 
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Figure 4. Differences in alpha diversity between HC and RA. (a) Alpha diversity 

metrics for the fecal bacterial community. (b) Alpha diversity metrics for the fecal 

fungal community. Boxes and lines in the boxes represent the inter-quantile range 

(Q3–Q1) and median of diversity values, respectively. Black-filled dots indicate 

potential outliers. Lower and upper whiskers show minimum and maximum alpha 

diversity values in each group. The gray dots correspond to the exact values of the 

diversity indices of each sample. Statistical significance was estimated using a two-

sided Mann–Whitney test. HC, healthy controls; RA, patients with RA. 
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Figure 5. Ordination analysis of fecal bacterial and fungal communities in 

healthy controls and patients with RA. Compositional variations among samples 

were estimated by canonical analysis of principal coordinates (CAP), based on the 

Bray–Curtis distance metric. (a) Changes in composition of fecal bacterial and 

fungal communities. Healthy control (HC) samples are shown in blue; RA samples 

are shown in dark yellow. (b) Ordination analysis according to the relative 

abundances of abundant genera. Greater intensity denotes higher relative abundance. 

Left and right sides of panels a and b are bacterial and fungal communities, 

respectively. 
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Figure 6. Unconstrained principal coordinate analysis (PCoA) of bacterial and 

fungal communities between HC and RA. (a) The data ordination from the beta 

diversity metrics for human fecal microbial community structure. (b) Ordination 

analysis indexed based on abundant genera of bacterial (left) and fungal (right) 

communities. HC, healthy controls; RA, patients with RA. 
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Table 3. Results on permutational analysis of variance (PERMANOVA) 

Bacteria Df SumsOfSqs MeanSqs F.Model R2 Pr(>F)  

Diagnosis 1 0.568 0.56787 2.2563 0.01746 2.00E-04 *** 
Residuals 127 31.963 0.25168  0.98254   

Total 128 32.531   1   

 Df SumsOfSqs MeanSqs F.Model R2 Pr(>F)  

Age 1 0.466 0.46553 1.86272 0.01431 0.002 ** 
BMI 1 0.343 0.34328 1.37359 0.01055 0.0493 * 
Total_cholesterol 1 0.333 0.33307 1.33274 0.01024 0.0705 . 
Duration 2 0.574 0.28697 1.14825 0.01764 0.1493  

HDL 1 0.203 0.20323 0.81318 0.00625 0.8217  

Triglyceride 1 0.353 0.35321 1.41331 0.01086 0.0412 * 
RA_factor 1 0.167 0.16688 0.66775 0.00513 0.9732  

anti_CCP 1 0.269 0.26944 1.07813 0.00828 0.3117  

CRP 1 0.35 0.35031 1.40172 0.01077 0.0454 * 
ESR 1 0.232 0.23171 0.92715 0.00712 0.5988  

Residuals 117 29.24 0.24992  0.89885   

Total 128 32.531   1   

---        
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Fungi Df SumsOfSqs MeanSqs F.Model R2 Pr(>F)  

Diagnosis 1 0.885 0.88533 2.8042 0.0216 1.00E-04 *** 
Residuals 127 40.096 0.31572  0.9784   

Total 128 40.981   1   

 Df SumsOfSqs MeanSqs F.Model R2 Pr(>F)  

Age 1 0.583 0.58312 1.84445 0.01423 0.0002 *** 

BMI 1 0.26 0.26037 0.82356 0.00635 0.8672  

Total_cholesterol 1 0.504 0.50378 1.5935 0.01229 0.0032 ** 
Duration 2 0.758 0.37907 1.19903 0.0185 0.0546 . 
HDL 1 0.319 0.31886 1.00858 0.00778 0.4489  

Triglyceride 1 0.272 0.2715 0.85879 0.00663 0.8059  

RA_factor 1 0.383 0.38336 1.21261 0.00935 0.1014  

anti_CCP 1 0.304 0.30386 0.96113 0.00741 0.56  

CRP 1 0.338 0.33806 1.06932 0.00825 0.3041  

ESR 1 0.271 0.27083 0.85665 0.00661 0.8056  

Residuals 117 36.989 0.31615  0.90259   

Total 128 40.981   1   

Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 
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IV. RA patient-associated bacterial and fungal OTUs 

We investigated the relative abundances of OTUs in the HC and RA groups by 

LEfSe analysis. Among 1338 bacterial OTUs and 1595 fungal OTUs, 57 bacterial 

OTUs and 45 fungal OTUs were differentially abundant (Figures 7a, 8a). In total, 14 

bacterial OTUs and 10 fungal OTUs were more abundant in the RA group than in 

the HC group. The RA-enriched OTUs belonged to the fungal genera Candida, 

Meyerozyma, Penicillium, Aurobasidium, Xeromyces, Coprinopsis, and Wallemia. 

Furthermore, 43 bacterial OTUs and 35 fungal OTUs were more abundant in the HC 

group than in the RA group. The HC-enriched OTUs belonged to the fungal genera 

Aspergillus, Conocybe, Monascus, and Schizosaccharomyces. 

We investigated RA-associated OTUs via machine learning-based classification. 

For this analysis, we constructed random forest classification models for bacterial 

and fungal communities. The random forest models revealed that 70 bacterial OTUs 

and 70 fungal OTUs were needed to classify HC and RA samples (Figures 7b, 8b). 

Among these OTUs, 27 bacterial OTUs and 25 fungal OTUs were also identified by 

LEfSe (7a, 8a, 9). Two bacterial OTUs and four fungal OTUs were more abundant 

in the RA group, while the remaining OTUs were more abundant in the HC group 

(Figure 9). These findings imply that decreased abundances of bacterial and fungal 

OTUs contributed to compositional differences between the HC and RA groups. 
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Figure 7. Fecal bacterial OTUs affected by the dysbiosis of rheumatoid arthritis. 

(a) Differentially abundant bacterial OTUs estimated from the LEfse analysis 

between HC and RA. Blue and yellow bars indicate enrichment of OTUs in HC and 

RA, respectively. The size of the bars corresponds to the logarithmic discriminant 

analysis (LDA) score. The threshold of LDA score is 2. (b) Bacterial OTUs 

discriminating between the compositional differences in HC and RA using a random 

forest classification model. OTUs are colored based on their categorization as “HC-

enriched” and “RA-enriched” groups based on their differential abundance test 

results. Each tick on the x-axis indicates an individual control HC and RA sample. 

HC, healthy controls; RA, patients with RA. 
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Figure 8. Fecal fungal OTUs affected by the dysbiosis of rheumatoid arthritis. 

(a) Differentially abundant fungal OTUs estimated from the LEfse analysis between 

HC and RA. Blue and yellow bars indicate the enrichment of OTUs in HC and RA, 

respectively. The size of the bars corresponds to the logarithmic discriminant 

analysis (LDA) score. The threshold of LDA score is 2. (b) Fungal OTUs 

discriminating between the compositional differences in HC and RA using a random 

forest classification model. OTUs are colored based on their categorization as “HC-

enriched” and “RA-enriched” groups according to the results of the differential 

abundance test. Each tick on the x-axis indicates an individual control HC and RA 

sample. HC, healthy controls; RA, patients with RA. 
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Figure 9. Microbial signatures associated with RA. A random forest model was 

used to identify OTUs that explain the gut bacterial (a) and fungal (b) communities. 

OTUs are colored based on their classification as “HC-enriched” and “RA-enriched,” 

based on the results of differential abundance analysis (Figures S5a, S6a). Random 

forest models were constructed using a 10-fold cross-validation method. OTUs are 

arranged along the y-axis according to total abundance. Each mark on the x-axis 

indicates an individual HC or RA sample. HC, healthy controls; RA, patients with 

RA. 
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V. Fecal bacterial–fungal associations 

We constructed a correlation-based microbial network to investigate microbial 

associations. The fecal microbial network of the HC group comprised 701 nodes and 

1419 edges (Figure 10a), whereas the fecal microbial network of the RA group 

comprised 801 nodes and 1679 edges (Figure 10b). Degree and betweenness 

centrality did not significantly differ between the HC and RA groups (Figure 11). 

There were more fungal nodes in the HC group than in the RA group, and hub 

composition differed between groups. Hub nodes were defined as nodes in which 

degree, betweenness centrality, and closeness centrality were in the top 1%. Based 

on this criterion, the hub of the bacterial–fungal interkingdom network of the HC 

group was the fungal OTU F87_Penicillium (Figure 10c). In the RA group, the hub 

node was the bacterial OTU B3_f_Lachnospiraceae in the Lachnospiraceae family 

(Figure 10d). These data suggest that fungi influence the microbial community 

composition in HC, while bacteria associated with dysbiosis influence the microbial 

community in patients with RA. 
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Figure 10. Interkingdom co-occurrence networks and hub nodes of fecal 

microbiota. (a) Interkingdom HC networks. (b) Interkingdom RA networks. In 

panels a and b, each node corresponds to an out; edges between nodes correspond to 

positive (black) or negative (red) correlations inferred from OTU abundance profiles 

using the SparCC method (P < 0.05, correlation values of < −0.3 or > 0.3). OTUs 

that belong to different microbial kingdoms are indicated by colors (bacteria, ivory; 

fungi, green), and node size reflects degree of centrality. (c) Hub nodes of microbial 

HC networks. (d) Hub nodes of microbial RA networks. In panels c and d, the hub 

was defined as a node in which degree, betweenness centrality, and closeness 

centrality were in the top 1%. Dashed lines indicate threshold values of degree, 

betweenness centrality, and closeness centrality. HC, healthy controls; RA, patients 

with RA. 
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Figure 11. A comparison of the topological properties between microbial HC 

and RA networks. (a) The proportion of edges (associations) comprising microbial 

Healthy (upper panel) and RA (bottom panel) networks. The proportion of positive 

and negative associations is indicated as black- and red-colored bars, respectively. B, 

bacterial–bacterial association; BF, bacterial–fungal association, F, fungal–fungal 

association. (b) Comparison of the topological properties of microbial control and 

RA networks. Pairwise comparison of the topological properties of bacterial nodes 

is indicated on the upper panel, whereas that of fungal nodes is displayed on the 

bottom panel. HC, healthy controls; RA, patients with RA. 
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VI. Changes in the fecal fungal community in response to 

medication 

The use of antirheumatic drugs alters the microbial community. For example, 

etanercept partially alleviated bacterial dysbiosis in patients with RA (Picchianti-

Diamanti et al., 2018). The gut bacterial community can also determine the responses 

of RA patients to MTX (Artacho et al., 2021). We examined the effects of RA 

therapeutics on the fungal community. We stratified the patients into three groups: 

csDMARDs (patients treated with csDMARDs; n = 55), csDMARDs + biologics 

(patients treated with csDMARDs and biologics; n = 32), and biologics (patients 

treated with biologics; n = 8). Because few patients were treated with biologics, the 

biologics group was excluded from further analysis. The genus Candida was more 

abundant in the csDMARDs and csDMARDs + biologics groups than in the HC 

group (Figure 12a, b). However, among patients with RA, the relative abundance of 

Candida was lower in the csDMARDs group than in the csDMARDs + biologics 

group (Figure 12a). Differences in Candida abundance within the RA groups were 

not statistically significant (Figure 12b). Compared with the csDMARDs + biologics 

group, the relative abundance of Aspergillus was decreased in the csDMARDs group, 

while the relative abundance of Penicillium was increased (Figure 12a). 

PCR using Candida-specific primers was performed on fecal samples randomly 

selected from the HC and RA groups. C. albicans was a fungal species with 

significantly greater abundance in RA samples. In the RA group, bands of 200 to 300 

bp were observed; such bands were absent in the HC group (Figure 13). The amount 

of C. albicans DNA was significantly greater in the RA group than in the HC group 
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(HC, Ct = 30.4 ± 1.33; RA, Ct = 23.9 ± 3.08). The amount of C. albicans DNA was 

slightly greater in the csDMARDs + biologics group than in the csDMARDs group 

(csDMARDs, Ct = 24.0 ± 3.02; csDMARDs + biologics, Ct = 23.7 ± 3.19) (Figure 

12c).  

In terms of clinical factors, the relative abundance of Candida was significantly 

positively correlated with age (Spearman r = 0.29153, P = 0.000802), rheumatoid 

factor (RF) level (Spearman r = 0.20217, P = 0.021579), C-reactive protein (CRP) 

level (Spearman r = 0.2927, P = 0.000762), erythrocyte sedimentation rate (ESR) 

(Spearman r = 0.27676, P = 0.000136), MTX dose (Spearman r = 0.18648, P = 

0.034349), and total cholesterol level (Spearman r = 0.24822, P = 0.004563) (Figure 

12d). The relative abundance of Aspergillus was significantly negatively correlated 

with those factors (RF level: Spearman r = −0.24993, P = 0.004283; ESR: Spearman 

r = −0.20742, P = 0.018344; MTX dose: Spearman r = −0.22778, P = 0.00943; and 

total cholesterol level: Spearman r = −0.238, P = 0.006607). 

  



78 

 

  



79 

Figure 12. Effects of medication on Candida abundance. (a) Fecal mycobiota 

composition according to medication. (b) Relative abundance of Candida. Letters 

indicate statistical significance, as determined by Kruskal–Wallis test followed by 

Dunn’s test. (c) Results of quantitative PCR analysis of C. albicans. Letters indicate 

statistical significance, as determined by analysis of variance followed by Tukey’s 

honestly significant difference test. (d) Correlations between relative abundances of 

fungal OTUs and quantitative variables. Correlation coefficients were estimated 

using Spearman’s rank correlation. Asterisks indicate statistical significance (***, P 

< 0.001; **, P < 0.01; *, P < 0.05). Red and blue boxes indicate positive and negative 

correlations, respectively. 
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Figure 13. Agarose gel electrophoresis image of the C. albicans specific PCR 

products. Control and HC exhibit weak primer bands at the bottom. RA confirmed 

the presence of C. albicans by observing significant bands at 273 bp. Blank, water; 

HC, healthy controls; RA, patients with RA. 
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VII. Fungal dysbiosis can be used for characterization of RA 

We identified core OTUs (or prevalent OTUs) in fecal samples: core bacterial 

OTUs were detected in 85% of the 129 fecal samples, while core fungal OTUs were 

detected in 70% of the fecal samples. Five core bacterial OTUs belonged to 

Lachnospiraceae, whereas five core fungal OTUs belonged to Candida, Aspergillus, 

Issatchenkia, Cladosporium, and an unidentified fungal genus (Figure 14a). 

Subsequently, three overlapping core fungal OTUs were discovered, but no 

overlapping core bacterial OTU was identified (Figure 14b, c). Among the bacterial 

core OTUs, B3_f_Lachnospiraceae, B8_f_Lachnospiraceae, and 

B9_f_Lachnospiraceae could distinguish between HC and RA groups using a 

random forest model. However, LEfSe revealed that differences in the relative 

abundances of these OTUs were not statistically significant (Figures 9, 7). Among 

the fungal core OTUs, F1_Candida, F4_Aspergillus, and F22_Cladosporium could 

distinguish between HC and RA groups using both LEfSe and a random forest model 

(Figures 8, 9, 14c). The association between ACPA and RF, which are serological 

markers of RA, and the fecal fungal community were investigated. Aspergillus and 

Candida, which differed in abundance between the HC and RA groups, were not 

associated with ACPA. Aspergillus was significantly associated negatively with RF, 

whereas Candida was correlated positively (Figure 12d). Therefore, changes in the 

fungal microbial community, particularly involving Candida and Aspergillus, could 

be a feature of RA. 
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Figure 14. Analysis of core OTUs in fecal microbiota. (a) Core OTUs were 

identified based on 85% prevalence for bacteria (dark blue) and 70% prevalence for 

fungi (dark green). Box colors indicate relative abundances of OTUs. Greater color 

intensity indicates higher relative abundance. Each mark on the y-axis indicates an 

individual sample. Venn diagrams of the numbers of (b) bacterial and (c) fungal 

OTUs identified by LEfSe, the random forest model, and core out analysis. 
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DISCUSSION 

The gut or fecal microbiome plays an important role in several human diseases. 

We found a distinct fecal microbial composition in patients with RA. Although the 

relative bacterial abundance differed between the RA and HC groups, alpha diversity 

did not differ (Figures 1, 2, 4a). CAP and random forest analysis revealed that 

Bifidobacterium and Streptococcus were representative of the HC and RA groups, 

respectively (Figures 5, 7). Similar distributions of bacterial genera in fecal samples 

have been identified in Asian cohorts (Zhang et al., 2015;Chiang et al., 2019;Jeong 

et al., 2019;Liu et al., 2020). 

Fungi affect the composition of the bacterial community (Sam et al., 2017;Deveau 

et al., 2018;van Tilburg Bernardes et al., 2020). A bacterial–fungal interkingdom 

network analysis showed that F87_Penicillium was the hub OTU in the HC group, 

while B3_f_Lachnospiraceae was the hub OTU in the RA group (Figure 10). The 

Penicillium subgenus produces numerous beneficial secondary metabolites, which 

have antibiotic, antifungal, immunosuppressive, and cholesterol-lowering properties 

(Kumar et al., 2018). The altered relative abundance of Penicillium was restored in 

RA patients via treatment with csDMARDs alone (Figure 12a). Lachnospiraceae are 

reportedly abundant in ACPA-positive patients (Mangalea et al., 2021;Rooney et al., 

2021). Because 75 (76.5%) of our RA patients were ACPA-positive, we 

hypothesized that the hub OTU shifted from F87_Penicillium to 

B3_f_Lachnospiraceae in patients with RA. The difference between RA and HC 

groups was clearer in the fungal community than in the bacterial community. 

F1_Candida and F4_Aspergillus were the most differentially abundant fungal genera 
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(Figure 14). 

Aspergillus caused substantial changes in the fungal community. An OTU that 

belonged to Aspergillus (F4_Aspergillus) was a core fungal OTU (Figure 14a); it 

was more abundant in the HC group than in the RA group (Figure 9). Saccharomyces 

cerevisiae has a beneficial effect on human health (Nash et al., 2017;Wu et al., 2021). 

Alterations in fecal fungal communities have mostly been studied in Western cohorts. 

We found a significant difference in Aspergillus abundance, rather than 

Saccharomyces abundance, between the HC and RA groups. Saccharomyces is 

reportedly more common among individuals who consume a Western diet (e.g., 

bread, beer, and dairy products), while Aspergillus is more common among 

individuals with a vegetarian diet (Suhr et al., 2016;Hallen-Adams and Suhr, 2017). 

In Japan and China, where the diets are similar to the diet consumed in South Korea, 

Aspergillus was more abundant than Saccharomyces in the fecal fungal community 

of healthy adults (Motooka et al., 2017;Qiu et al., 2020). Therefore, based on the 

dietary proportions of vegetables and fermented soybean foods, Aspergillus is an 

essential member of the fecal fungal community in Koreans (Suhr et al., 

2016;Hallen-Adams and Suhr, 2017). 

Fungi had a substantial effect on fecal microbial community composition in 

patients with RA; Candida was the most abundant fecal genus (Figure 2b, d). 

Candida spp. are frequently detected in the human gastrointestinal tract (Hallen-

Adams and Suhr, 2017) and feces (Gurleen and Savio, 2016); their abundance is 

increased in patients with inflammatory bowel disease, cystic fibrosis, and vaginal 

candidiasis (Limon et al., 2017).  We found that medications for RA affected the 
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fungal community composition, such that the abundance of C. albicans was 

enhanced by csDMARDs and biologics (Figure 12c). This is consistent with 

previous reports of increased C. albicans abundance in patients with inflammatory 

bowel disease (IBD) who were treated with immunosuppressants (Li et al., 

2014;Sokol et al., 2017;Imai et al., 2019). During treatment with disease-modifying 

antirheumatic drugs and tumor necrosis factor-α inhibitors, patients with RA showed 

an impaired C. albicans-specific Th17 response, which led to an increased 

abundance of C. albicans. Although the increased abundances of C. albicans in 

patients with RA and patients with IBD do not exclude the possibility that dysbiosis 

is caused by disease, they suggest that the dysbiosis is caused by medication. 

Moreover, although an increased abundance of C. albicans may result in 

opportunistic infections, the risk of candidiasis is low in patients with RA because 

they retain an effective immune response to C. albicans (Bishu et al., 2014). 

The decreased abundance of Aspergillus and increased abundance of Candida in 

the feces of patients in our study suggest that such changes are specific to RA. 

Further studies regarding Aspergillus will provide insight into its role in the healthy 

fecal fungal community and its effect on human health. Our findings suggest that 

changes in the fungal community could be used as an indicator of fecal dysbiosis in 

patients with RA. 

In conclusion, we investigated dysbiosis and fungal–bacterial interactions in the 

fecal microbial communities of patients with RA. Changes in fungal communities 

indicated significant dysbiosis between HC and patients with RA, whereas changes 

in bacterial communities did not. Future research should examine whether the 
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increased abundance of C. albicans is caused by immunosuppressive or 

immunomodulatory medications. Our results were limited in that they comprised 

bioinformatics-based predictions of the effects of RA-related changes on fecal 

microbial communities. In vivo experiments are required to confirm that RA alters 

the fungal community. Therefore, an experimental validation studies concerning the 

effects of C. albicans and Aspergillus on RA-related immune pathways are needed. 

Aspergillus was more abundant in the fecal fungal community of healthy Koreans, 

whereas Saccharomyces was comparable to patients with RA. Further research is 

necessary to clarify precisely our findings differ from the Western cohort. 
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류마티스관절염 환자의 장내 미생물 

군집 불균형 
 

이 은 하 

 

초 록 

 

장내 미생물 군집 (Gut microbiota)은 장내에 살고 있는 다양한 

박테리아, 바이러스, 곰팡이 및 기타 미생물들의 집합체를 의미한다. 

인간의 경우 다른 신체 부위에 비해 장내에 가장 많은 미생물 군집을 

가지고 있는데, 이들은 장내 환경과 상호작용을 통해 인간의 건강과 

질병에 깊은 연관이 있다고 알려져 있다. 미생물 불균형(dysbiosis)은 

장내 미생물 군집의 균형이 깨짐으로써 발생하며, 이는 다양한 질병과 

관련이 있다고 보고되었다. 따라서 이 논문에서는 장내 박테리아와 

곰팡이의 역할을 포함하여 대사성 질환, 신경성 질환, 면역조절 그리고 

약물 대사에 미치는 영향에 대해 논의하였다. 장내 미생물 군집은 

영양소 흡수 및 에너지 대사에 중요한 역할을 담당하고 있어서 미생물 

군집의 불균형이 발생할 경우 심혈관 및 대사성 질환의 발생에 영향을 

준다. 미생물 군집의 불균형은 염증성 반응을 유발하여 뇌-장간 축을 

통해 뉴런의 손상을 유발하거나 면역조절에 문제를 일으키기도 한다. 

장내 미생물 군집은 인체에서 면역 조절에 중요한 역할을 한다. 면역 

조절에 문제가 발생하여 생기는 자가면역질환들은 장내 미생물 군집과의 

상호작용 연구가 많이 이루어졌다. 이러한 연구들 중 대표적인 질환으로 

류마티스관절염(RA)이 있으며, RA는 장내 미생물 군집과 밀접한 

관련이 있다. 특히 곰팡이 세포벽이 병의 발생에 중요한 역할을 한다고 

보고되었으나 이에 대한 자세한 정보는 부족하다. 따라서 본 연구에서는 
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RA 환자와 건강한 대조군으로부터 대변 미생물군집의 조성과 

상관관계를 조사하였다. 결과적으로 RA 환자군에서는 박테리아보다 

곰팡이 군집에서의 변화가 더 뚜렷하게 확인되었다. 정상인에 비해 

Aspergillus는 감소하고, Candida가 크게 증가하는 특징을 보였으며, 

미생물 군집 구조변화 분석 결과에서도 곰팡이가 핵심적인 역할을 하는 

것으로 확인되었다. 이러한 결과는 곰팡이가 장내 미생물군집의 핵심 

역할을 하며, RA의 발병 과정에 중요한 역할을 한다는 것을 시사한다. 

장내 미생물 군집은 약물의 효과를 증가시키거나 반대로 부작용을 

유발하기도 한다. 장내 박테리아가 약물 대사에 작용하는 것이 

알려졌으며, 이를 활용한 개인 맞춤형 치료제 연구도 수행되고 있다. 

최근에는 미생물 군집의 불균형을 회복시켜 질병을 예방하거나 치료에 

적용하려는 연구가 진행되고 있다. 예를 들면 프리 또는 

프로바이오틱스를 사용한 환자의 경우 장내 미생물군집의 불균형이 일부 

회복되었고, 그 결과 면역조절 능력의 향상과 증상 완화의 효과를 

보였다. 

본 논문에서는 장내 미생물 군집의 불균형이 질병에 미치는 영향을 

탐색하였고, 이를 활용한 질병 치료 연구에 단서를 제공하였다. 특히 

류마티스관절염 질환에서 장내 곰팡이가 중요한 역할을 하는 것을 

확인하였다. 이를 통해 장내 곰팡이 군집 연구의 중요성을 제안하였다. 

이러한 장내 미생물군집체에 대한 다각적 검토는 질병의 치료 및 예방을 

위한 연구에 새로운 접근법을 제시할 수 있다. 

 

주요어: 장내 미생물 군집, Candida, Aspergillus, 미생물 군집 불균형, 

류마티스관절염 

학번: 2017-37642 
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