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Abstract

Machine learning frequently suffers from the discrepancy in data distribution,

commonly known as domain shift. Single-source Domain Generalization (sDG) is a

task designed to simulate domain shift artificially, in order to train a model that can

generalize well to multiple unseen target domains from a single source domain. A

popular approach is to learn robustness via the alignment of samples generated by

data augmentation. However, prior works frequently overlooked what can be learned

through such alignment. In this paper, we study the effectiveness of augmentation-based

sDG methods by connecting recent identifiability results by Von Kügelgen et al. [89].

We highlight the overlooked issues in using augmentation for OOD generalization

and search ways to alleviate them. We introduce a novel sDG method that leverages

pretrained models to guide the learning process via a feature-level regularization of

mutual information, which we name PROF (Progressive mutual information Regular-

ization for Online distillation of Frozen oracles). PROF can be added to conventional

augmentation-based methods to dampen the fluctuation of the OOD performance. We

further introduce a data-effective alignment objective as well as a novel augmentation

method for fine-grained simulation of domain shift.

Keyword: Domain Generalization, Causal Representation Learning

Student Number: 2021-20711
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Chapter 1

Introduction

Distribution shift is prevalent in many machine learning settings. The term is often

referred to as domain shift, where a domain is understood as the joint probability

distribution from which samples are drawn. An important aspect of domain shift is

that it severely hinders the generalizability of trained models [45]. The issue is easily

observable when a model trained in a source domain suffers in a target domain that is

inconsistent with the source. Domain Generalization (DG) is a task designed to simulate

domain shift, where the model is given multiple labeled datasets at training time, where

the main objective is to accomplish out-of-distribution generalization across unseen

domains [3, 5, 19, 76].

Single-source Domain Generalization (sDG) is a variant of DG, where only a

single source domain is provided at train time. The shortage of data and the absence of

additional source domains make sDG challenging, mainly because conventional DG

methods that leverage multiple domains cannot be easily adopted. To overcome such

barriers, prior works on sDG often utilize data augmentation to generate unseen domains

[7, 48, 68, 88, 90, 93] and learn domain-invariant features through an alignment of the

generated domains using contrastive loss [37, 61].

However, there is a relative void in the discussion on what is learned through

the alignment of augmented samples. In this paper, we analyze the effectiveness of
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augmentation-based sDG approaches from a novel perspective of style-content disen-

tanglement. Style-Content (S-C) disentanglement aims to identify a partitioned latent

space, namely style and content [30, 31, 36, 71, 72]. While the definitions of style and

content vary across settings, here we define content as latent features that are invariant

across augmentations (i.e. augment-invariant), while style is the latent feature subpart

that changes with the augmentation. Recently, Von Kügelgen et al. [89] studied an inter-

esting connection between S-C disentanglement and data augmentation, demonstrating

that contrastive learning provably learns to retrieve the augment-invariant features

under some assumptions. We connect the discovery to the sDG literature to analyze

the effectiveness of retrieving domain-invariant information from augmented data. We

examine the problem from a causal standpoint by illustrating it via a causal graph [65].

We state our contributions as the following. (1) We analyze the single source domain

generalization task through the lens of S-C disentanglement and highlight the difficulties

of learning domain-invariant information from augmentation-based sDG methods. (2)

To mitigate the issues brought by the aforementioned obstacles, we introduce a novel

method PROF that functions as a regularizer for sDG. (3) We further devise a novel

alignment objective MDAR (Multi-Domain Alignment with Redundancy reduction) that

serves as a strong baseline for sDG.
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Chapter 2

Preliminaries

Learning domain agnostic models from limited source domains is a longstanding area

of investigation. In this section, we revisit related works on S-C disentanglement and

domain generalization.

Style-Content Disentanglement Style-Content disentanglement seeks to separate

the aggregated latent variable into two parts, denoted as style and content [71, 72].

While the term style and content originated from the style transfer literature [14, 55, 82],

recent works try to push the idea further using concepts of causal inference [64–66] and

Independent Component Analysis (ICA) [6, 18, 20, 53, 70, 89]. Inspired by previous

discoveries on nonlinear ICA [32], newly proposed techniques utilize auxiliary variables

to assure conditional independence between the entangled features (e.g., time stamp or

environment index, domain index [20, 30, 31, 36, 41]). The concept has been put into

use in a number of fields, namely adversarial learning [55], transfer learning [73], and

domain generalization [3, 35, 54, 92]. Notably, disentanglement is used to elucidate

the underlying mechanism of self-supervised learning [56, 77, 79, 85, 104] and data

augmentation [26, 33, 89].
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Domain Generalization In the multi-source domain generalization field, disentan-

glement of domain-invariant features have shown great success in training robust

domain-agnostic models [3, 9, 50, 74, 100] by leveraging shared information across do-

mains. To learn domain-invariant information, researchers commonly analyze the data

generating process (DGP) using structural causal models to design effective algorithms

[35, 54, 92]. On the contrary, disentanglement is rarely discussed in the sDG literature.

This is due to innate conditions of sDG, where only one domain is available for training.

This setting makes it hard to apply conventional disentanglement approaches developed

in the multi-DG literature. To tackle this, a line of work focuses on how to augment un-

seen domains effectively with generative models [13, 48, 68, 88, 90, 93]. However, there

is a lack of discussion on whether augmented samples can simulate unseen domains,

or whether it can be used to learn domain-invariance. Apart from augmentation-based

sDG methods, others approached the task from a meta-learning viewpoint [17], or

adopt concepts inspired by causal inference [51]. The task is often modified to solve

real-world problems (e.g., medical image processing [52, 62, 81]). A recent movement

in the multi-DG literature highlights the use of pretrained models for OOD generaliza-

tion, leveraging the knowledge of the pretrained models [5, 44, 49, 96]. Such works

closely resemble the methods introduced in the Knowledge Distillation (KD) literature

[1, 2, 24, 78, 84]. However, unlike most KD works that focus on transferring i.i.d

knowledge, our study focuses on using KD for OOD robustness [60, 91].
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Chapter 3

Limitations of Augmentation for sDG

In this section, we present an overlooked problem of augmentation-based sDG methods.

Specifically, we revisit recent works on S-C disentanglement to analyze the effectiveness

of utilizing augmentation for out-of-domain generalization.

A general view towards augmentation-based sDG methods We present a general

expression for augmentation-based sDG methods and discuss their effectiveness. Gener-

ally, augmentation-based methods can be expressed as augment and align, minimizing

the following objective (omitting some arguments for simplicity) denoting x and x̄ as

an original sample and its augmented view:

L := Lce + LMaxEnt(x, x̄; Φ). (3.1)

where Lce the cross-entropy loss Lce(y, ŷ) = −
∑

i yi log(ŷi) with y the ground

truth label vector, ŷ the softmax prediction of the model, yi and ŷi the i-th dimension

of y and ŷ, respectively, and LMaxEnt is an objective that simultaneously aligns the

mapped representations Φ(x) and Φ(x̄) under entropy regularisation, where Φ is a

feature extractor. Commonly, a self-supervised contrastive loss (hereinafter contrastive

loss) is used as LMaxEnt [61, 99]. Recently, Von Kügelgen et al. [89] showed that the

optimization of a contrastive loss provably minimizes LMaxEnt, learning Φ to extract

5



CS S̄

X X̄

D

Y

Figure 3.1: A causal diagram depicting DGP under data augmentation. The shaded

nodes are observable.

features that are augment-invariant, under a certain condition. In this perspective,

conventional augmentation-based sDG methods could be understood as retrieving

augment-invariant features.

A causal interpretation of data augmentation In this section, following [89], we

illustrate the underlying data generating process (i.e., DGP) using a causal graph and

incorporate data augmentation into the causal graph under sDG setting.

An instance of a given labeled dataset is typically composed of an observation X

(i.e., image) and its label Y . Although supervised learning predicts Y directly from

X , this does not reflect the underlying causality. We can think of the existence of

hidden features (e.g., real-world attributes regarding the subject of the image and the

background), which we will refer W , that affect both the image and label. At this

moment, the causal graph for DGP can be simply represented as X ←W → Y where

W is unobserved. Now, we incorporate data augmentation into the picture. Given label-

preserving augmentation methods, we attain X̄ the augmented view of X . Such an

augmentation can be considered as manipulating only the style S (augment-variant) to

yield S̄ while retaining its content (augment-invariant) C where C and S partitions W ,

that is, W = (C, S) (see [89] for a detailed discussion). Yet, this does not imply that C

and S are independent. C causally affects S (also corroborated by experimental results

[39, 89]). A way to understand this separation is by viewing such an augmentation

as a soft intervention [11] on S, resulting in a modified style S̄. By definition, (C, S̄)

becomes the hidden features of X̄ . Furthermore, C consistently affects Y regardless of

6



the label-preserving augmentation. This understanding results in the graph in Fig. 3.1

(W is implicit) except D .

Von Kügelgen et al. [89] showed that under certain conditions, the above DGP is

sound, and augmentation separates C and S. However, this picture misses an important

variable: the domain D. By definition, observations are drawn from the distribution of

the domain, thus latent variables W are affected by the domain the data is generated

from. Therefore it is unavoidable to incorporate a variable indicating domain D in

the figure. In sDG, D is fixed in the sense that we are given just one domain. Due

to the single source setting, we cannot distinguish what information is shared across

different domains, leaving both C and S potentially affected by D. For that reason,

unless the domain shift between the source and target is moderate, optimizing solely

the augment-and-align objective Eq. (3.1) would be insufficient to address the issue

caused by a large domain gap.

Learning to ignore To address a large domain shift, we first begin with some obser-

vations. Conventional augment and align methods are vulnerable to domain shift in

the sense that its effectiveness is strongly affected by the augmentation’s proximity to

the domain shift. While advanced augmentation methods may simulate small shifts in

distribution (e.g., MNIST→ USPS in Digits Sec. 5.1), it is very hard to approximate

large domain shifts (e.g., Photo → Sketch in PACS Sec. 5.1). If the gap between

the source and target domain is large, failure in simulating domain shift would make

its augment-invariant features less relevant to domain-invariant features, leading to

overfitting to the source domain.

To avoid learning irrelevant features, we can think of a hypothetical regularizer

that encourages the model to learn information relevant to domain-invariance, while

discouraging domain-specific features. Certainly, this would require a condition that the

regularizer be an oracle that can distinguish domain-invariant information. Using this

oracle regularizer, we hope to solve the phenomena commonly associated with the large
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domain gap. Especially, the mid-training fluctuation of OOD performance [48, 68, 90,

93]. We view that the fluctuation is strongly correlated with the challenge in acquiring

domain-invariant features under a large domain gap. We empirically observe that the

level of domain gap between the source and target closely matches the magnitude of the

mid-train fluctuation, where the increase in domain gap is simultaneously observed with

the increase in fluctuation. Detailed information regarding the measure of domain gap

is included in Sec. 5.3.1. We view that mid-training fluctuation is a serious issue since

it manifests that the simulated domains do not properly reflect unseen domains and,

further, it harms the credibility of learned models due to uncertainty in its real-world

performance. In the following section, we search ways to implement the hypothetical

oracle regularizer, inspired by works in knowledge distillation.
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Chapter 4

Leveraging Pretrained Models for Domain Invariance

We present a novel single source domain generalization method for image data, where

the aim is to alleviate the issue of mid-train fluctuation. The overview of our architecture

is depicted in Fig. 4.1. At large, the architecture for our method involves three neural

networks, a domain generator G, task model classifier F , and an oracle O. We sequen-

tially learn multiple domain generators {Gk}Kk=1 and use the samples created by the

generators (i.e., augmented samples) to train the task model F . More specifically, the

generators provide the task model with challenging augmented samples, while the task

model guides the generator to create valid augmentations. We train the above process

using a combination of two losses: L = Lf + wg · Lg where Lf (4.9) and Lg (4.7) are

the loss used to train the task model and the generator, respectively. wg ∈ {0, 1} is a

switch used to control the training of G. The exact forms for Lf and Lg will become

clear at the end of this section.

We build our method upon the idea that learning domain-invariance solely from

augmented domains is vulnerable to overfitting to the source, especially when the

domain gap is too large to simulate via data augmentation. To alleviate this issue,

we propose an oracle regularizer: under the hypothesis that the oracle is capable

of generalizing well to unseen domains, we use the oracle to guide the task model

to become less domain dependent. Specifically, our oracle regularization objective
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Figure 4.1: The illustration of our method. We sequentially train multiple generators

G0...K . The Oracle Ho regulates the task model H’s learning process. During the

training, multiple modules (e.g., P,D,C,Co) are used for optimization.

regulates the sDG process via an alignment between hidden feature representation of

the task model and the oracle, which we name PROF. In the following section, we

elaborate our ideas in depth.

Notation We begin by introducing related notations regarding our method. To begin

with calligraphic letters are used to denote state space of a variable. For example, X ,

Y , and H respectively represent the space of the input image, intermediate feature

representation, and labels.

• Task model: The task model F = C ◦ H consists of a feature-extractor H :

X → H and a classification head C : H → Y .

• Generator: A trainable generator G : X → X consists of an encoder-decoder

architecture with a style-transfer module placed between the encoder and decoder.

• Oracle: The oracle model O = Co ◦Ho consists of a frozen feature-extractor

Ho : X → H and a trainable classification head Co : H → Y . Both F and O

use separate feature-extractors (H and Ho) to map the input data as intermediate

representation and pass the representation to the classification head (C and Co) for

the downstream classification task. Yet, we match the dimension of representation

for the oracle and task model.

10



• Distillation Head: The distillation head D : H → D is used to impose reg-

ularization for the task model via oracle’s representation. Instead of directly

comparing the intermediate representation inH, representations from Ho and H

are mapped through the shared distillation head.

• Projection Head: Similar to the distillation head, the task model uses a projection

head P : H → Z to project the intermediate representations into a different

dimension. The projection head is reserved for alignment of augmented views

with MDAR, and its associated adversarial loss Ladv, thus not for PROF.

4.1 Oracle Regularizer

We devise a novel learning method PROF (Progressive mutual information Regular-

ization for Online distillation of Frozen oracles) to guide the learning process. PROF

reformulates the sDG problem under the assumption that if there exists an oracle model

O that can generalize well to unseen domains, we can leverage the oracle to learn sDG.

The objective for PROF can be formulated as:

LPROF(x, x̄) = BT(D(H(x)), D(Ho(x)), λPROF) + BT(D(H(x̄)), D(Ho(x̄)), λPROF),

(4.1)

where x denotes the original sample and x̄ the augmented view created by G, λPROF is a

user-set parameter, and Barlow Twins (BT) is defined as [99]:

BT(z, z+, λ) =
∑

i(1−Mii)
2 + λ

∑
i

∑
j ̸=iM

2
ij , (4.2)

where M refers to the cross-correlation matrix of the two positive-pair feature repre-

sentations z, z+, and λ a user-set parameter.1 BT (4.2) is a feature-decorrelation loss

originally introduced in [99] as a contrastive learning objective BT is a combination of

two terms balanced via a hyperparameter λ, where the first term
∑

i(1−Mii)
2 aligns

1The actual computation involves a batch of data to obtain an empirical cross-correlation matrix.
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two representations by spurring the diagonal values in the cross-correlation matrix M

of (z, z+) to be 1 while the second term
∑

i

∑
j ̸=iM

2
ij minimizes redundancy in the

representation by encouraging the off-diagonal values to be closer to 0.

Discussion The idea of PROF is that we can distill the oracle’s knowledge into the task

model by maximizing the shared information between the two models. PROF aims to

maximize the MI between the intermediate output features of the two feature-extractors

Ho(x) and H(x). PROF functions as a regularization term that guides the task model

from deviating too far from the oracle, encouraging the student task model to learn the

oracle’s behavior on data. From this perspective, an intended objective for PROF could

be formulated as

max
H

I(H(x);Ho(x))

where H , Ho is respectively the feature-extractor of the oracle O and the task model

F and I(X;Y ) = Ep(x,y)[log p(x | y)/p(x)] indicates the mutual information (MI).

However, directly estimating and optimizing MI are challenging, as exact estimation of

MI is intractable [63]. There exists InfoNCE loss [61] which adopts a lower bound of

MI [67] as a surrogate objective for MI optimization:

INCE(X;Y ) ≜ E
[
1

K

K∑
i=1

log
exp(f(xi, yi))

1
K

∑K
j=1 exp(f(xi, yi))

]
≤ I(X;Y ).

However, a problem of InfoNCE as a variational bound of MI is that InfoNCE requires

a large batch size for convergence [25, 78], making it doubtful for use in small datasets

(e.g., PACS [47]). Consequently, we indirectly approximate InfoNCE with a feature

decorrelation loss [99], based on empirical and theoretical results that show its func-

tional proximity [27, 83, 89]. Contrary to InfoNCE, the feature decorrelation converges

effectively with small batch sizes and large vector dimensions.

Now we discuss the availability of an oracle. In reality, oracles are not readily

available. However, previous studies [5, 44, 49] report that models that are pretrained

from a large domain (e.g., ImageNet [75]) or with deeper models (e.g. RegNet [69, 80],

12



ViT [10]) tend to generalize better at unseen domains. Hence we utilize a pretrained

model trained on a larger domain as an oracle. To preserve the knowledge of the oracle,

we freeze the feature-extractor Ho of the oracle.

4.2 Learnable Domain Shift Simulators

We sequentially train multiple (k = 1 . . .K) generators to obtain varying simulated

domains, adopting methods of Li et al. [48], Wang et al. [93]. The objective of the

generator is to generate a sufficient set of label-preserving augmentations that intervene

on the domain-specific features. To simulate domain shift, we must assure that the

augmented domain is label-preserved, while different from the source domain. The

objective for generator Lg is a weighted sum of following losses:

Lcls(x̄, y) = Lce(C(H(x̄)), y). (4.3)

Lcyc(x, x̄) = ∥x−Gcyc(x̄)∥2. (4.4)

Ldiv(x̄1, x̄2) = −∥x̄1 − x̄2∥2. (4.5)

Ladv(x, x̄) = −BT(P (H(x)), P (H(x̄)), λadv), (4.6)

Lcls is a cross-entropy loss that assures the validity of the generated samples x̄.2 Lcyc

ensures that the output of G, when passed through model Gcyc in the opposite direction

should be as similar (i.e., recoverable) as possible to the original input image [103]. The

two losses originate from existing works on sDG [48, 93] to assure the consistency of

the generated samples. Ldiv is a negated L2-norm between two augmented views x̄1 and

x̄2 of the same x created with the generator. Intuitively, optimizing with Ldiv encourages

the generator to augment diverse samples. Ladv is an adversarial loss function designed

to reverse the feature-decorrelation process in Eq. (4.8) by negating the loss used in

Eq. (4.2). We train the generator with the weighted sum Lg of the above four objectives

2When PROF is enabled, the classification loss of the oracle Lce(Co(Ho(x̄)), y) is added to Lcls.
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(wadv is set to 0 when PROF is used without MDAR):

Lg = Lcls + wcyc · Lcyc + wdiv · Ldiv + wadv · Ladv. (4.7)

Note that Lg is added to the total loss L with a weight wg ∈ {1, 0} that functions as

a gate in training the kth generator, set as wg = 1 during the first half of the training

epochs for Gk, then as wg = 0 to stop learning.

Inspired by fine-grained studies on domain shift [35, 94], we upgrade the domain

generator to intervene on a wider variety of attributes. Whilst previous augmentation

methods [48, 93] were limited to manipulating certain attributes (e.g., color, stroke),

our method further allows spatial manipulations (e.g., shape, location) using Spatial

Transformation Networks (STN) [34]. No additional requirements are needed for

training STN. We elaborate further on the generator architecture in Sec. 5.2.1.

4.3 Multi-Domain Alignment with Redundancy Reduction

We now introduce a novel alignment objective MDAR (Multi-Domain Alignment with

Redundancy reduction). MDAR aims to disentangle latent features that are invariant

across multiple augmented views. We design MDAR as a fair baseline of conventional

augment and align method.

In learning the kth generator Gk, we create an augmented view x̄ for a batch of

original samples x using the kth generator Gk. We then randomly load two previously

learned generators to construct another augmented views x̄′, x̄′′. With {x, x̄, x̄′, x̄′′}, we

use the projection head P ◦H to get their corresponding representations {z, z̄, z̄′, z̄′′}.

Using BT (4.2), we encourage a pair of non-identical representations (e.g., zi, zj , i ̸= j)

vary in a similar way, that is, their cross-correlation matrix M to be closer to an identity

matrix. We compute the BT (4.2) across all possible ordered pairs within the set of

{z, z̄, z̄′, z̄′′} (i.e., ζ := {(z, z̄), (z, z̄′), (z, z̄′′) . . . }) and use the average of all the
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pairwise losses as our alignment loss LMDAR (4.8) written as:

LMDAR(x, x̄, x̄
′, x̄′′, λMDAR) =

1

nζ

∑
{a,b}∈ζ

LBT(a, b, λMDAR), (4.8)

where nζ denotes the length of ζ and λMDAR a user-set parameter.3 Intuitively, via

optimizing LMDAR, we can train the generator in a way that multiple views {z, z̄, z̄′, z̄′′}

are aligned. In terms of S-C disentanglement, MDAR retrieves the augment-invariant

features. Different from the commonly used InfoNCE loss [61], our self-supervised

objective (4.8) does not require any negative pairs, thus works well on small batch sizes

[27, 86, 99], suitable for benchmarks like PACS.

We train the task model F using a weighted combination of multiple losses, the

baseline cross-entropy loss Lce of both x and x̄, with LPROF written as:

Lf = Lce(C(H(x)), y) + Lcls + wPROF · LPROF (4.9)

where wPROF is a user-set parameter. In Chapter 5, we further use a variant Lf =

Lce(C(H(x)), y) + Lcls + wMDAR · LMDAR for baseline experiments.

3nζ can be switched with nα
2 in Eq. (4.8), where nα is the length of {z, z̄, z̄′, z̄′′}.
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Chapter 5

Experiment

We present our experimental settings including datasets and model architectures. Then,

we report our experimental results using the accuracy for each target domain, as well as

the mean accuracy over all target domains. For reproducibility, all experiments were

conducted using a fixed random seed.

5.1 Experimental Settings

Datasets Following the experimental settings in prior sDG works [48, 68, 93], we

adopted three broadly used benchmarks for our sDG problem. (PACS) PACS [47]

is widely used to test the generalizability of trained models against domain shift. It

consists of 4 domains of differing style (Photo, Art, Cartoon, and Sketch) with 7 classes.

We follow the setting of Wang et al. [93], train our model with the Photo domain, and

evaluate on the remaining target domains (Art, Cartoon, and Sketch). Among the three

benchmarks, PACS is the main target of PROF due to its large gap between domains.

(Corrupted CIFAR-10) Corrupted CIFAR-10 (i.e. CIFAR-10-C) is a benchmark to

test the image classifier robustness under distortion [22]. We train our model with the

train split of the CIFAR-10 [42] dataset and test the model accuracy in CIFAR-10-C.

We evaluate the robustness of the model with 19 types and 5 levels of corruption.
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This benchmark shows small distributional divergence between datasets since each

target domain is created via augmentation of the source domain (CIFAR-10). Hence we

expect that the task is sufficient with conventional augment and align methods. (Digits)

The Digits dataset is a popular benchmark for sDG, comprised of 5 different Digit

classification datasets (e.g., MNIST [8], SVHN [59], MNIST-M [16], SYNDIGIT [15],

USPS [46]). In our Digits experiment, we train our model with the first 10,000 samples

of the MNIST dataset and assess its generalization accuracy across the remaining four

domains.

Implementation Summary In all experiments, we utilized, for the task model, the

identical architectures used in previous sDG works, where we use additional heads D

and P [48, 68, 90, 93]. For PACS, we adopted AlexNet [43] pretrained on Imagenet [75],

finetuned on the photo domain. We followed the original split of the PACS dataset [47]

for fair comparison. For corrupted CIFAR-10, we used a Wide Residual Network [98]

of depth 16, and width 4, pretrained on the CIFAR-10 dataset. For Digits, we used the

identical network architecture (i.e. conv-pool-conv-pool-fc-fc-softmax)

used in previous works, pretrained on MNIST. For the oracle, we selected pretrained

models appropriate for each experiment. For PACS, we chose a RegNetY-16GF [69]

pretrained on the Instagram dataset with SWAG (Supervised Weakly through hashtAGs)

[80] following experimental reports of Cha et al. [5], Li et al. [49]. For Corrupted

CIFAR-10, we select a ResNet50 [21] pretrained on the ImageNet-1K dataset [75]. The

oracle is finetuned on the source domain (e.g. Photo, CIFAR-10) and frozen. We test

the sensitivity of the hyperparameters using the validation split of the source dataset.

Information of each hyperparameter is included in Sec. 5.2.4.

Before training, we pretrained the models with the train split of the source domains.

Details on the pretraining are provided in Sec. 5.2.3. For PACS, we sequentially train

20 generators and 30 epochs for each generator with a batch size of 64. For Corrupted

CIFAR-10, we sequentially train 20 generators and 30 epochs for each generator
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with a batch size of 256. For Digits, we trained 100 generators with 10 epochs for

each generator with a batch size of 128. For all experiments, we employed Adam

[38] optimizer with a learning rate of 1e-4. Detailed information about the training

hyperparameters is included in Sec. 5.2.2. All experiments were executed using random

seed control for reproducibility.

5.2 Implementation Detail

In this section, we report the implementation details of our method.

5.2.1 Model Architecture

We report the details of model architectures used in our experiments. All models were

built to match the architecture used in previous studies.

Task Model The task model architecture varies in each experiment. For each experi-

ment, we report the feature extractor H , including an additional layer (i.e. buffer) used

to match the feature extractor’s output dimension to the oracle’s.

The model used in the PACS experiment is AlexNet [43]. The model consists of

5 convolutional layers with channels of {96, 256, 384, 384, 256}, followed by two

fully-connected layers of size 4096 units. The buffer is a 2-layered MLP that maps the

output dimension 4096 to that of the oracle (RegNetY-16GF), which is 3024. Hence,

the final output dimension of the feature extractor is 3024.

The model used in the Corrupted CIFAR-10 experiment is a Wide Residual Network

(i.e. WRN) of width w = 4 and depth 16 [98]. WRN is a model that boosts its

performance by widening the network by a certain factor w. The model consists of

4 network blocks with channels incrementally increasing as {16, 16w, 32w, 64w}.

Specifically, the 4 blocks refer to an initial convolutional layer, followed by three

additional network blocks. We further follow the original WRN design and set the

dropout rate as 0.3. The buffer is a 2-layered MLP that maps the output dimension 256
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to that of the oracle (ResNet50), which is 2048. Hence, the final output dimension of

the feature extractor is 2048.

For the model used in the Digits experiment, please refer to Sec. 5.1. The architec-

ture consists of two 5 × 5 convolutional layers, with 64 and 128 channels respectively.

Each convolutional layer is followed by a MaxPooling layer (2 × 2). The network

also includes two fully-connected layers with sizes of 1024, 1024 being the final out-

put dimension of the feature extractor. Since we do not employ oracle for the Digits

experiment, a buffer was not added.

Generator In this section, we describe the generator in detail. While the design of

the generator slightly varies in each experiment, the basic architecture is the same. The

generator consists of an encoder and a decoder, with a spatial transformer network

(STN) and a style-transfer module in between the encoder and the decoder. The four

components are placed in the order of Encoder - STN - Style-Transfer -

Decoder.

We begin by illustrating the overall process of how an image is augmented by

the generator. First, the input image is passed through the encoder to get a feature

representation vector. The feature vector is then passed through the STN and the

style-transfer module for modification. The modified vector is then reconstructed via a

decoder, returning an augmented image. The mentioned process is illustrated in Fig. 5.1.

In the figure, we depict how each module modifies the input image.

STN is a module that learns to perform spatial transformations on the input [34].

During the process, the STN module learns transformation parameters, where the

parameters each define the magnitude of spatial transformations (e.g., rotation, scaling,

translation). The STN module can be inserted at any point in the generator, allowing the

generator to selectively transform the data up to a degree that is label-preserving. We

place the STN right after the Encoder, following the experimental results of the original

paper [34]. In Fig. 5.1, we can see that the STN performs spatial transformations,
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STN Style-
TransferEncoder Decoder

Figure 5.1: The illustration of the Generator.

creating the modified image at the middle.

The style-transfer module modifies the features of the input image by adjusting

the mean and standard deviation of the image features. This is performed using a

normalization technique called Batch-Instance Normalization (i.e. BIN) [58]. BIN

selectively normalizes the features of the input image that are of less significance, while

preserving features that are important. Note that this module is a modified version of

the AdaIN method introduced in [28], where we switched the normalization method

from Instance Normalization [87] to BIN for effective style transfer.

We share the results of applying these modifications in Fig. 5.2. When compared

to conventional style-transfer methods [28], our generator modifies a wider range of

attributes. For instance, in the right image of Fig. 5.2, we can observe that the images

generated using our method displayed a large variance in shape, position, and color.

However, an observable limitation is that the STN cannot transform complex images as

in PACS, as small spatial modifications vastly change the semantics of the image. As

depicted in Fig. 5.3, the effect of the spatial modification is limited on PACS images.

Oracle Here, we report the architecture of the oracle. The oracle varies on the type of

the experiment, (1) a RegNetY-16GF for the PACS experiment, (2) a ResNet50 for the

corrupted CIFAR-10 experiment.

The RegNetY-16GF is a variant of the RegNet family, a line of models introduced

in [69] for image classification. The name of the model indicates its configurations,

where the "Y" indicates the convolution method, and the "16GF" represents the model’s
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(a) Conventional Style-transfer (b) STN + Style-transfer

Figure 5.2: The illustrated comparison of the generators.

Figure 5.3: The illustration of generated images (PACS).

capacity or complexity. We implement the model, and its model weights using the

torchvision [12] library. We used the weights pretrained via end-to-end fine-tuning of

the original SWAG [80] weights on the ImageNet-1K data [75]. We then fine-tuned

the pretrained model again with the Photo domain of PACS for 200 epochs, with a

learning rate of 1e − 4 using the SDG optimizer and the Cosine Annealing learning

rate scheduler, a batch size of 64. The same configuration was used for the additional

experiments where the source domain was switched to the Art, Cartoon, Sketch domain

in PACS.

The ResNet50 is a variant of the ResNet family, a series of image classification

models introduced in He et al. [21]. The name of the model indicates its depth, where

21



"50" marks the number of layers. We implemented the model and its model weights

using the torchvision library. For ResNet50, we used the weights pretrained with the

ImageNet-1K dataset. We finetuned the pretrained ResNet50 with the CIFAR-10 dataset,

the source domain of the corrupted CIFAR-10 experiment. In detail, we trained for

100 fine-tuning epochs, with a learning rate of 1e− 4 with the SDG optimizer and the

Cosine Annealing learning rate scheduler, a batch size of 64.

5.2.2 Model Training

In this section, we elaborate on the details of the training process. We explicitly state

the training hyperparameters (e.g., number of simulated domains (K), number of inner

training loops for each generator, learning rate, the type of the optimizer, learning rate

scheduler, and batch size). We further state the configurations of the projection heads

(e.g., projection dimension (Z) of the projection head P , projection dimension (D) of

the distillation head D).

PACS For the PACS experiment, we set K as 20, training each generator with 30

inner loops. During the first 15 inner loops we train the generator, and stop the training

during the last 15 loops. We manually set the number of epochs by analyzing the

training behavior of the generators. We set the learning rate as 1e− 4, using the Adam

optimizer [38]. The batch size was set as 64. Regarding the model architecture, both

the projection dimension (Z) and the distillation head projection dimension (D) were

set as 1024.

Corrupted CIFAR-10 For the Corrupted CIFAR-10 experiment, we set K as 20, and

20 inner loops. During half (10) of the inner loops, we trained the generator and stopped

the training during the remaining 10 inner loops. We set the learning rate as 1e − 4,

with the Adam optimizer. The batch size was set as 256. The projection dimension (Z)

and the distillation head projection dimension (D) were both set as 512.
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Digits For the Digits experiment, we set K as 100, with 10 inner loops. Similar to the

above two experiments, we trained the generator for 5 epochs and stopped the training

for the other 5. Furthermore, the learning rate was tuned as 1e − 4, using the Adam

optimizer. The batch size was set as 128. Finally, the projection dimension (Z) was set

as 128.

5.2.3 Model Pretraining

In this section, we report the information regarding the pretraining process. As men-

tioned above, we pretrained our task model with the source domain prior to the main

training procedure. We announce the number of pretraining epochs, the learning rate,

the optimizer, the learning rate scheduler, and the batch size.

PACS We pretrained the AlexNet with the train data of the Photo domain, using

the train split introduced in the original paper [47]. We pretrained the model for 60

epochs, with a learning rate of 5e− 3 using the SGD optimizer. We further used the

Step learning rate scheduler with a gamma rate (i.e. the strength of the learning rate

decay) of 0.5. The batch size was set as 32. The same pretraining method was used for

additional experiments on PACS where the source domain was changed to Art, Cartoon,

Sketch.

Corrupted CIFAR-10 For the corrupted CIFAR-10 experiment, we pretrained the

WRN with the train split of CIFAR-10. The pretraining epochs was set as 200, with a

learning rate of 1e− 1 using the SGD optimizer. We used the Multi-Step LR scheduler,

setting the gamma rate as 2e− 1, with milestones set as {60, 120, 160}. Hence, every

time the training epoch reaches the milestone, the learning rate was reduced to one-fifth

of the previous rate. The batch size was set as 128.

Digits Lastly, for the Digits experiment, we set the number of pretraining epochs as

100, with a learning rate of 1e− 4 using the Adam optimizer. The batch size was set as
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256.

5.2.4 Hyperparameters

In this part, we state the hyperparameters used in our experiments.

λPROF λPROF is a balancing coefficient for LPROF, an objective adopting the feature-

decorrelation loss introduced in Zbontar et al. [99]. We tuned λPROF using experimental

results of the original paper and [86]. In the original paper, the author reported the

optimal value of the balancing term as 0.005, which remains consistent under varying

projection dimensions. We set this as a starting point for hyperparameter tuning. We

find that if λPROF balances the off-diagonal term (i.e. redundancy reduction term) and

the diagonal term (i.e. alignment term) to a similar degree, no significant differences are

observed. Furthermore, switching λPROF to 1
d ≈ 0.0001 showed no significant changes

to the learning process. Here, d denotes the projection dimension of the distillation

head. While we cannot guarantee an optimal value for λPROF, we set λPROF = 0.005 for

our two experiments using PROF.

λMDAR, λadv The hyperparameters λMDAR and λadv is used together for adversarial

learning, hence we report the two together. λMDAR was set in a similar way as λPROF.

For our experiments, λadv was set as 0.005. λadv was searched under a fixed value

of λMDAR = 0.005. We experimented with varying values of λadv: {0.005, 0.05, 0.5},

which showed no significant difference to the training process, while 0.05 showed

slightly better results in the validation set of the source domain. Hence, in our experi-

ments, λadv was set to 0.05. To explicate, generally, Ladv displayed a value approxi-

mately 10 times larger than LMDAR. We believe that this behavior is correlated to 0.05

being a good value for λadv under a fixed value of λMDAR = 0.005.

All other hyperparameters (e.g., wcyc, wdiv, wadv, wPROF ) are searched with a

similar method to Li et al. [48]. For all experiments, we set wcyc as 20.0, wcyc as 2.0,

and wadv as 0.1 in Digits, and 0.02 in PACS and Corrupted CIFAR-10. Finally, wPROF
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Table 5.1: sDG accuracy on PACS.

Method A C S Avg.

ERM [40] 54.43 42.74 42.02 46.39

JiGen [4] 54.98 42.62 40.62 46.07

RSC [29] 56.26 39.59 47.13 47.66

ADA [13] 58.72 45.58 48.26 50.85

ME-ADA [101] 58.96 51.05 58.42 51.00

L2D (AN) [93] 56.26 51.04 58.42 55.24

MetaCNN [90] 54.05 53.58 63.88 57.17

Ours (AN+P) 52.46 50.29 66.79 56.52

Ours (AN+M) 57.54 46.89 64.93 56.45

Ours (AN+MP) 58.96 45.86 64.57 56.46

L2D (RN) 68.41 43.56 48.84 53.60

L2D (RN+M) 57.57 50.09 65.51 57.72

Ours (RN+M) 58.25 47.35 67.81 57.80

Ours (RN+P) 58.42 48.29 66.68 57.80

Ours (RN+MP) 64.06 42.06 73.98 60.03

was set as 0.1. The values were tuned such that the weighted losses (i.e wL) are situated

in a similar range.

5.3 Experimental Results and Analysis

Here we present experimental results over the three benchmark datasets and examination

of domain gaps and the effect of PROF.

5.3.1 Experimental Results

Image experiment with PACS The aim of the PACS experiment is to show that PROF

functions as a stable regularizer for sDG, reducing the mid-train OOD fluctuation re-

ported in conventional augment and align methods. The results of the PACS experiment
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Table 5.2: sDG accuracy on Corrupted CIFAR-10.

Method W B N D Avg.

ERM [40] 67.28 56.73 30.02 62.30 54.08

CCSA [57] 67.66 57.81 28.73 61.96 54.04

d-SNE [97] 67.90 56.59 33.97 61.83 55.07

M-ADA [68] 75.54 63.76 54.21 65.10 64.65

L2D [93] 75.98 69.16 73.29 72.02 72.61

MetaCNN [90] 77.44 76.80 78.23 81.26 78.45

Ours M 77.10 76.35 67.94 76.57 74.49

Ours P 72.61 70.30 54.26 71.97 67.28

are reported in Table 5.1 where AN, RN, M, and P stands for AlexNet, ResNet, MDAR,

and PROF, respectively.

First, we compare the downstream task accuracy. Training Alexnet with PROF

(4.9) showed results close to the current SOTA [90] without the use of alignment.

Furthermore, we showed state-of-the-art performance in Sketch domain, where domain

gap is considered to be the largest.

Our augment and align baseline using MDAR also showed an accuracy close to

SOTA. However, we observe that the method using MDAR displays a fluctuation of

OOD performance after a certain point (i.e. K > 5). The behavior worsened as training

continues. More importantly, training with PROF resulted in stabilization of the OOD

performance, mitigating fluctuations, quantified as the reduction in variance across

the target domain accuracy in K > 5 (Art: 3.39→1.27, Cartoon: 5.22→2.49, Sketch:

7.23→5.30). The display of mid-train OOD stabilization is depicted in Fig. 5.4. The

phenomenon of OOD performance fluctuation was discussed earlier [48, 68, 93] but

only using the Digits dataset. Finally, we show the competitiveness of our baseline with

MDAR. We applied MDAR to an existing sDG method [93] by replacing InfoNCE loss

[61] with MDAR. We observe a wide improvement over the conventional methods under

certain conditions, as recorded in the last rows of Table 5.1.
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Table 5.3: sDG accuracy on Digits.

Method SVHN M-M S-D USPS Avg.

ERM [40] 27.83 52.72 39.65 76.94 49.29

d-SNE [97] 26.22 50.98 37.83 93.16 52.05

JiGen [4] 33.80 57.80 43.79 77.15 53.14

M-ADA [68] 42.55 67.94 48.95 78.53 59.49

ME-ADA [102] 42.56 63.27 50.39 81.04 59.32

L2D [93] 62.86 87.30 63.72 83.97 74.46

PDEN [48] 62.21 82.20 69.39 85.26 74.77

MetaCNN [90] 66.50 88.27 70.66 89.64 78.76

Ours M 68.29 81.88 76.24 88.79 78.80

Image experiment with Corrupted CIFAR-10 We present results over CIFAR-10-C

(Table 5.2) where we compare the effectiveness of (1) conventional augment and align

method (PROF) and (2) PROF under small domain shifts. We report the average accuracy

(%) of each corruption category (Weather, Blur, Noise, Digits) [23], and the average

accuracy of all categories.

Our method using MDAR marked scores close to the current SOTA [90] in two

categories W (Weather) and B (Blur) while falling behind in others N (Noise) and

D (Digital). We report that the OOD performance of the CIFAR-10-C is greatly af-

fected by the design of the domain simulator G. The generator architecture will be On

the contrary, our method using PROF marked results lower than our baseline MDAR.

This is anticipated as we view the domain gap to be small between different datasets

in the corrupted CIFAR-10, whereas PROF is designed for use under large domain

discrepancies.

Digits experiment with MNIST The aim of the Digits experiment is too show that

our new alignment objective is a strong baseline to compare with PROF. We share

our results on the digit experiment on Table 5.3. Our method using MDAR and our

updated domain simulation method outcompeted state-of-the-art records. In SVHN and

SYNDIGIT (S-D), we show impressive improvement, while results in MNIST-M (M-
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M) show slight deficiency. For effective comparison with existing methods, we refrain

from using any form of manual data augmentation. We find that in Digits, increasing

the number of simulated domains (K) helps OOD generalization. Our method with

MDAR benefited from long training (K > 100).

Experiment on domain gaps We show results that display a strong correlation

between the level of domain gap and the magnitude of mid-train fluctuation. In

the Digits benchmark Sec. 5.1, it is commonly viewed that the gap between the

source (MNIST) and the target is greater in certain datasets (e.g., SVHN and SYN-

DIGIT) over others (e.g., MNIST-M and USPS). For instance, the baseline OOD

accuracy is much higher in some target domains as opposed to others, in the order of:

USPS(76.94%) > MNIST-M(52.72%) > SYNDIGIT(39.65%) > SVHN(27.83%),

as recorded in (Table 5.3) We elaborate the domain gap further in Sec. 5.3.2. In-

terestingly, in our baseline experiment using the conventional augment and align

method, we find that the mid-train fluctuation follows the same order: USPS(1.211) <

MNIST-M(1.1795) < SYNDIGIT(4.938) < SVHN(5.106), measured with the vari-

ance of the OOD accuracy after K > 5. The phenomenon occurs similarly on PACS

(Table 5.1), where the baseline OOD accuracy order Art (54.43%), Cartoon (42.74%),

and Sketch (42.02%) matches the order of the mid-train fluctuation: Art (3.39) Cartoon

(5.22), and Sketch (7.23). We view that these results empirically support that domain

gap is correlated with mid-train fluctuation.

Effect of PROF We study further the effect of PROF on OOD performance. Exper-

imental results are illustrated in Fig. 5.4 (A, C, and S are from PACS and M and P

from MDAR and PROF.) As reported in Sec. 5.3.1, we observe that PROF functions as an

effective regularizer for sDG. On the other hand, using PROF showed a limited effect in

boosting of OOD performance. In experiments performed with AlexNet, the increase

in OOD performance was not significant. However, using the ResNet18 architecture,

OOD performance on both Art and Sketch domains benefited from using PROF. Our
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Figure 5.4: OOD accuracy (%) on PACS
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Figure 5.5: OOD accuracy (%) on PACS (MDAR + PROF)

hypothesis is that the model-parameter size and the depth of the task model affect the

knowledge transfer capability, although further research is required.

A synergistic method: Combined use of MDAR and PROF In this section, we report

the effect of using MDAR and PROF simultaneously. While PROF was designed for use

without an alignment term (e.g., MDAR), we tested the effect of combining the two

terms together. We observe that the synergistic method of PROF and MDAR triggered

some differences in the training process.

Regarding the OOD accuracy, the synergistic method marked Art: 58.96%, Cartoon:

45.86%, Sketch: 64.57%, an average of 56.46% with AlexNet, as seen in Table 5.1.
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While the accuracy is slightly higher than using MDAR alone (56.45%), we view that

the synergistic method does not significantly benefit the OOD performance. In contrast,

applying the synergistic method with a ResNet18 backbone showed a rise in OOD

accuracy by a large gap 5.1. Further research is necessary to provide an understanding

of this behavior as no definitive explanation currently exists, while our hypothesis is

that the model architecture may have caused the phenomenon.

Regarding the mid-train OOD fluctuation, the synergistic method was not able to

reduce fluctuations across Art and Cartoon, while reducing the fluctuation in Sketch.

(Art: 3.39→4.50, Cartoon: 5.22→5.86, Sketch: 7.23→3.52) Similar to previous experi-

ments, the mid-train OOD fluctuation was quantified with the variance across the target

domain accuracy in K > 5. The mid-train OOD fluctuation of the synergistic method

is depicted in Fig. 5.5. Our hypothesis is that the two terms may have disrupted each

other, while a clear explanation for this phenomenon remains elusive. We believe that

additional research is needed to produce an effective synergy of both methods.

Additional Experiments on PACS Here we present the results of additional experi-

ments with the PACS benchmark.

Previous experiments on the PACS benchmark only used the Photo dataset as the

source domain. In the following section, we report other cases where the source domain

is changed (e.g., Art, Cartoon, Sketch). Here, we will denote each experiment as Art as

source, Cartoon as source and Sketch as source, respectively. The results of the PACS

experiment are reported in Table 5.4 where AN, M, and P stands for AlexNet, MDAR,

and PROF, respectively. Each row in the table displays the source domain, backbone

type, and the training method (M/P).

In Table 5.4, we report the sDG accuracy of our two methods, MDAR and PROF,

on varying source domains. In cases where Art or Cartoon is used as source domain,

training with our oracle regularization PROF marked higher OOD accuracy then its

counterpart. On the other hand, PROF suffered when Sketch was set as the source
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Table 5.4: sDG accuracy on PACS (Additional).

Method P A C S Avg.

Source: Art

Ours (Art+AN+P) 78.07 66.04 63.15 69.09

Ours (Art+AN+M) 77.53 59.39 60.04 65.65

Source: Cartoon

Ours (Cartoon+AN+P) 64.57 50.02 69.00 62.04

Ours (Cartoon+AN+M) 65.20 47.10 65.81 59.37

Source: Sketch

Ours (Sketch+AN+P) 46.25 44.31 61.60 50.72

Ours (Sketch+AN+M) 48.03 47.83 60.32 52.06

domain, falling behind the baseline MDAR. Our hypothesis is that this behavior is

triggered by the inferior performance of the oracle. To elaborate, the oracle used on

the Sketch as source experiment displayed low OOD accuracy on the target domains,

unsuitable for effective oracle regularization (Photo: 51.61%, Art: 39.39%, Cartoon:

56.85%).

Next, we present the analysis on mid-train OOD fluctuation in each experimental

configuration. When the source domain is set as Art, employing PROF resulted in

yielded a stabilization of the OOD performance, effectively mitigating fluctuations. The

fluctuation was quantified as the reduction in variance across the target domain accuracy

in K > 5. When compared with the conventional augment & align method MDAR, our

regularization method PROF displayed large reductions in variance (Photo: 1.71→1.17,

Cartoon: 3.13→2.97, Sketch: 21.50→11.22). The mid-train OOD fluctuation when

source is set as Art, is depicted in Fig. 5.6.

Similarly, when the source domain is configured as Cartoon, PROF displays similar

stabilization of the mid-train OOD performance. Using PROF allows a reduction in

fluctuation, measured as variance (Photo: 5.15→ 3.06 , Art: 5.00→ 3.07, Sketch: 0.70

→ 3.91). We note that the stabilization effect in Sketch is relatively lower than that

of other target domains, even lower than our augment & align baseline MDAR. The

mid-train fluctuation is demonstrated in Fig. 5.7.

31



0 5 10 15 20
Number of Simulated Domains

30

40

50

60

70

80

OO
D 

Ac
cu

ra
cy

 (%
)

P-M
C-M
S-M

P-P
C-P
S-P

Figure 5.6: OOD accuracy (%) on PACS (Source: Art)
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Figure 5.7: OOD accuracy (%) on PACS (Source: Cartoon)
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Figure 5.8: OOD accuracy (%) on PACS (Source: Sketch)
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Lastly, we report the experimental results where the source was set as Sketch. In

the Sketch as source experiment, we observe that PROF not only suffers in terms of

performance, but also exhibits instability. PROF displayed high variance in mid-train

performance when compared to the baseline (Photo: 2.46 → 10.41 , Art: 2.33 →

7.99, Cartoon: 1.01→ 1.04). The fluctuation is illustrated in Fig. 5.8. While a clear

explanation is absent, we view that this phenomenon is caused by the under-performance

of the oracle in the Sketch as source experiment. This result, displays a clear example

of the problems associated with the obstacles regarding the oracle, where obtaining an

oracle may not be readily available. We further discuss the issue with oracles in the

following section, Sec. 5.3.2

Study of Hyperparameters We explore our method’s sensitivity to hyperparameters.

(λPROF): λPROF is the hyperparameter used for PROF that functions as the balancing

weight of the two functions in Eq. (4.2). We begin with the value introduced in the

original paper of [99] with λPROF = 0.005, and an alternate value 1
d introduced in Tsai

et al. [86] where d is the length of a vector in D (distillation head output space). We

observe that our method is not sensitive to the switch between two candidate values

of λPROF although we cannot guarantee they are optimal. (λMDAR and λadv): The study

on λMDAR and λadv is processed similar to λPROF. We find that switching between

λ = 0.005 and 1
p has no significant impact on the learning process, where is p the

length of a vector in P (projection head output space). While we cannot guarantee an

optimal value. (wadv, wcyc, wdiv): We optimize the hyperparameters wadv, wcyc, wdiv

using grid search. We find that as long as the weight-multiplied loss (wL) is situated on

(0, 1) range, there is no significant impact on performance.

Computing Resource We conducted experiments using NVIDIA RTX A6000 GPU

devices for our experiments. For the Digits experiment, we trained approximately 4

hours using 1 GPU. For the CIFAR-10-C, we trained about 2,000 minutes using 2 GPUs.

For the PACS experiment with PROF, we trained with 4 GPUs for about 43 hours. To
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reproduce all the experiments, we expect 2–3 weeks.

5.3.2 Analysis

Here, we provide further analysis regarding the domain gap and the oracle.

On Domain Gaps In previous works, there exist different mentions regarding the

domain gap within the experimental datasets. Here, we analyze such views.

There are contradicting views on the domain gap within the PACS dataset, the

authors of Wan et al. [90] view that the domain gap is significant between the Art

domain and the source domain (Photo), while relatively smaller with the Sketch and

Cartoon domain. In contrast, Wang et al. [93] viewed that the domain gap is the largest

between the source and the Sketch domain, due to its vastly abstracted shapes. On the

contrary, there exists a shared consensus regarding the domain gap within corrupted

CIFAR-10 dataset, where researchers view that the domain gap between the source

(CIFAR-10) and the target (corruption datasets) is defined by the severity level of

the corruption [48, 68, 90, 93]. Concerning the Digits dataset, the authors of Li et al.

[48], Qiao et al. [68], Wang et al. [93] view that USPS displays the smallest domain

gap with the source (MNIST). This is very similar to the view of Wan et al. [90] that

USPS and SYNDIGIT datasets are closer to the source, while there is a large domain

gap between the MNIST-M and the source domain.

In our paper, we used a different measure to observe the domain gap between

datasets: the OOD classification accuracy on unseen domains. Our view on domain

discrepancy is that it can be indirectly observed through the downstream task perfor-

mance. This is closely tied to realistic settings, where task performance is the leading

motive behind the study of sDG. The method is simple: using a fixed model, we train

the model with the train split of the source domain. Then, using the trained model, we

test the classification accuracy on unseen domains. We reported the results in Sec. 5.3.1.

Using the baseline OOD accuracy as a measure for domain gap matches the view of
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many existing works, while differences exist. For instance, USPS displays the highest

OOD accuracy, matching the view of previous works that USPS shows the smallest

discrepancy with the source [48, 68, 90, 93]. In PACS, the Sketch domain displays the

lowest baseline OOD accuracy, which is in line with the view of some previous works

[93], while different from others Wan et al. [90].

On Oracles In this section, we discuss the implementation of the oracle using pre-

trained models. Using pretrained models for OOD generalization is not an entirely

novel idea [5, 49], but first for the task of sDG.

We selected the pretrained RegNetY-16GF as an oracle for PACS. In Cha et al. [5],

a pretrained RegNetY-16GF model displayed high MI with the true oracle, a model that

is trained on all source and target domains). The authors reported that the true oracle

displayed an average validation accuracy of 98.4% on all PACS domains.

Similar to this, our implementation of the oracle with a pretrained RegNetY-16GF

finetuned on the source domain (i.e. Photo) displayed high validation accuracies across

all target domains. The finetuned RegNetY-16GF marked 75.16%, 75.30%, 69.00% on

Art, Cartoon, Sketch, and an average validation accuracy of 73.15. While the average

accuracy is lower than the true oracle in Cha et al. [5], this is an expected behavior

as our oracle only uses the Photo domain, while the true oracle in [5] utilized all four

domains.

However, using the RegNetY-16GF to implement the oracle for the Corrupted

CIFAR-10 experiment was not satisfactory. When finetuned with the source domain (i.e.

CIFAR-10), RegNetY-16GF marked low validation accuracy in the target domain with

an average of 60.65%. This is similar for the implementation with ResNet50, which

marked an average accuracy of 61.25% on the target domains, performing worse than

the task model. We view that this phenomenon is derived from the difference between

the two datasets. To elaborate, PACS is a collection of non-corrupted images, while

Corrupted CIFAR-10 is a dataset generated by distorting CIFAR-10. As the RegNetY-
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16GF is not specifically trained to withstand distortions, its performance decrease in

Corrupted CIFAR-10 is understandable.
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Chapter 6

Conclusion

This paper presents PROF (Progressive mutual information Regularization for Online

distillation of Frozen oracles), a novel regularizer to address single source domain

generalization under large domain discrepancy. Throughout the paper, we underscore

the vulnerability of learning robustness via augmentation, which is observed as large

fluctuations in the OOD performance during the training process. To mitigate this issue,

PROF leverages pretrained oracles to guide the model to learn features that are less

domain-specific, via maximization of the feature-level mutual information between

the learning model and the oracle. Experiments on the PACS dataset demonstrate that

PROF can stabilize the fluctuations associated with large domain gaps. We further

introduce a strong baseline method with MDAR for a fair comparison with PROF.

Training with MDAR showed State of the Art performance in Digits, and displayed a

boost in performance when applied to existing methods.

Limitations PROF leverages pretrained models under the hypothesis that it can ap-

proximate an oracle that can generalize to all domains. As displayed in previous studies

[5, 49], RegNetY-16GF sufficiently works as an oracle for the PACS benchmark. How-

ever, the same model does not fit well to the Digits benchmark. Due to the large gap

between the pretrained dataset of the RegNetY-16GF and the Digit classification dataset.
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This issue can be explained with the work of Wolpert and Macready [95], where the

authors demonstrate that there exists a trade-off between a model’s performance on a

certain task and the performance on all remaining tasks. We believe further research is

necessary.
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초록

일반적으로, 머신러닝 모델은 데이터 분포 상의 변화에 취약한 경향을 보인다.

단일 소스 도메인 일반화(sDG)는 이러한 문제를 해결하기 위해 고안된 연구 태스

크로, 인공적으로 설정된 분포 변화에도 강건한 모델을 만드는 것을 목표로 한다.

기존의 sDG 연구는 다양한 데이터 증강 기법을 통해 모델의 일반화 성능을 향상

시키는 데 집중하였으나, 이와 같은 증강 기반 접근법의 유효성은 깊이 논의되지

않았다.본논문은최근 Von Kügelgen et al. [89]의연구결과를이용하여기존에간

과된증강기반접근법의문제들을인과적관점에서조명하고,그에대한해결책을

탐구한다.본연구진은증강기반 sDG방식의불안정성을해소하기위한 "PROF:상

호정보정규화를통한지식증류기반단일소스도메인일반화"기법을제시한다.

PROF는선학습된모델의지식을이용한증류기반의정규화기법을통해모델의훈

련과정을지도한다. PROF는증강기반 sDG방식에추가되어,모델의일반화성능이

안정적으로 증가할 수 있도록 한다. 나아가, 본 논문은 기존 방식에 비해 경제적인

정렬함수와개선된데이터증강방식을제안하였다.

주요어:인과적표상학습,도메인정규화

학번: 2021-20711
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