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Abstract

This paper addresses the challenges of real-time bidding, where advertisers

bid in real-time to win an auction and maximize profit. We propose a novel algo-

rithm that jointly optimizes ad allocation and bidding policy in an online fash-

ion. While previous works have focused on learning either of these components

or learning in offline settings with pre-collected data, our algorithm is designed

for online advertising auctions. In online advertising auctions, the censored

feedback which is provided only when the advertiser wins the auction poses a

challenge. Therefore, a proper exploration strategy is essential for learning in

online advertising auction environments. Our algorithm integrates exploration

in ad allocation and exploration in bid price in an elegant way, using optimistic

estimation and count-based control terms. We employ neural networks to es-

timate the value of each ad and the probability of winning given contextual

information. By efficiently collecting data and exploring the dynamic auction

environment, our approach outperforms baseline algorithms that do not per-

form systematic exploration. Additionally, we extend the method to multiple

bidding scenarios where agents participate in different auctions. Overall, this

paper presents a novel learning algorithm for online advertising auctions which

jointly optimizes ad allocation and bidding. We highlight the importance of

proper exploration in online advertising auctions as well as the extension to

multiple bidding scenarios, by comprehensive experiments.

Keyword: Deep Reinforcement Learning, Real-time Bidding, Exploration

Student Number: 2021-21352
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Chapter 1

INTRODUCTION

Real-time bidding (RTB) [1] has become a prominent framework in the field of

online advertising, where ad impressions are sold and bought in real-time. Ad-

vertisers participating in auctions aim to maximize user response and profit by

strategically determining bid prices for ad impression opportunities. The valu-

ation of ad impressions depends on metrics like conversion rate (CVR), which

quantifies user response to ad impressions, such as clicks or sales. Accurate

estimation of these valuation parameters is essential for bid price optimization,

as over- or under-estimation can lead to suboptimal policies. While contextual

bandit algorithms have been widely used for CVR estimation in recommender

systems [2, 3], their application to the auction setting has been relatively lim-

ited. In contextual bandit algorithms, an agent selects the best possible action

based on contextual information, such as user features or auction details. This

allows for estimating CVR of ad given the context in auction setting as well.

On the other hand, existing studies on bid optimization primarily assume

accurate CVR estimation [4, 5, 6] and overlook the optimization of bidding

strategies in the presence of estimation uncertainty. The focus of bid opti-

mization has primarily been on determining optimal bid prices based on the

assumption that CVR is known precisely, meaning that we know the optimal
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ad and its valuation. It is important to note that bid optimization and CVR

estimation are interrelated components in the overall advertising process. If the

estimation of CVR is inaccurate, it can lead to suboptimal bidding decisions and

potentially lower performance. Some prior works have attempted to address the

combined optimization of CVR estimation and bid strategies [7, 8]. However,

these works have predominantly focused on offline settings where data is read-

ily available. [9] suggested the framework of learning CVR and optimizing bid

price while interacting with an auction environment. This paper follows their

problem setting. However, they updated the bidding policy every 2000 ∼ 10000

steps and discard all previous data after each update. This training protocol is

a limitation of their algorithms when applied to online setting.

We aim to optimize both ad allocation, which involves estimating the CVR

of a given ad, and bidding policy, which determines the bid price, in the on-

line setting of advertising auctions. We propose a novel approach that in-

tegrates contextual bandit-based exploration within the context of real-time

bidding. The challenge of optimizing both ad allocation and bidding policies

in an online setting lies in the difficulty of collecting experience and acquir-

ing information about auctions. Advertisers only receive feedback when they

win an auction while losing auctions provide no learning opportunities. This

scarcity of feedback makes it crucial to devise effective exploration strategies

to gather valuable information about the auction environment. We propose

Double-UCB, which incorporates optimistic estimation and count-based over-

bidding. By considering additional optimistic estimations and incorporating

count-based overbidding, our approach aims to strike a balance between explo-

ration and exploitation in bid optimization.

To evaluate the effectiveness of our exploration-incorporated bid optimiza-

tion methods, we conduct extensive experiments in an auction simulation en-

vironment. Our results demonstrate that our algorithm achieves smaller regret

2



compared to baseline methods that do not perform systematic exploration.

Furthermore, we extend our work to the multi-bidding setting where agents

are trained simultaneously to participate in multiple auctions. The exploration

from each agent facilitates coordinated exploration as a whole, leading to im-

proved overall performance and effective learning.

In summary, our work makes the following contributions:

• We present an efficient exploration approach for advertising auctions. To

our best knowledge, this is the first work to incorporate exploration in

bid optimization within both single-bidding and multi-bidding settings.

• We propose an integrated framework optimizing both ad allocation and

bidding strategies.

• Through comprehensive experiments employing various methods, we vali-

date the effectiveness of exploration-incorporated bid optimization in im-

proving performance and CVR estimation.
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Chapter 2

RELATED WORK

2.1 Bid Optimization in RTB

Budget-constrained bidding is a common strategy in bid optimization. [10]

proposed non-linear and concave bidding functions and showed that it is more

effective than linear function in a budget-constrained setting. Non-linear func-

tions can encourage higher bids for impressions than their valuation to increase

the probability of winning. To address the bid optimization problem, various

reinforcement learning approaches have been suggested, such as those proposed

in [11, 12, 13]. [12] suggested a model-based reinforcement learning (RL) for

learning the optimal bidding policy, where the state is represented by auction-

related information including budget and action is the bid price. [13] suggested

model-free reinforcement learning, which is more computationally efficient and

scalable compared to the model-based method. Another line of research focuses

on RTB without budget constraints, specifically maximizing expected revenue.

[4, 5, 6] proposed bid shading algorithms to prevent overpayment in first-price

auctions. They model the win-rate estimator which estimates the probability of

winning as a function of bidding and approximates the optimal bid accordingly.

In an adversarial auction environment, [14] proved a regret bound with partial
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feedback of the dynamics. [9] formulates a bandit-based RTB framework. They

split the bid learning process into two steps: ad allocation and bidding. Ad allo-

cation determines which ad should be selected and the bidding part determines

the bid price. Previous works often utilize offline datasets and aim to maximize

final performance measures. In contrast, our focus is on maximizing online

performance during learning, performance measured by regret. We adopt the

framework introduced in [9] and simultaneously optimize both allocation and

bidding strategies in a coordinated manner. Moreover, our approach is the first

to incorporate exploration methods and investigate the impact of exploration

on bid optimization.

2.2 Exploration

The Upper Confidence Bound (UCB) algorithm is one of the main contextual

bandit algorithms [15, 2, 16, 17, 18] that effectively balances exploration and

exploitation. UCB tracks the uncertainty of value estimation of each action

and selects the action with the highest upper confidence bound. Bootstrapped

UCB [19] leverage bootstrap methods to estimate uncertainty. Contextual ban-

dit algorithms have been applied to recommender systems [2]where state space

is user information, action is item, and reward is user response. In environ-

ments like bidding, where feedback is often scarce for advertisers, we believe

that proper exploration is crucial to gather more information about the auc-

tion environment and find an optimal bid policy. We employ the Bootstrapped

UCB algorithm in our ad allocation model. This algorithm leverages bootstrap

methods to approximate the uncertainty of estimated conversion rates, allowing

us to effectively explore different ads based on context information.
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2.3 Multi-Agent and Concurrent RL

The field of RL with multiple agents focuses on effective cooperation between

agents. A prevalent approach in recent studies is centralized training and de-

centralized execution (CTDE). An example of this is MADDPG introduced by

[20],which demonstrated effective learning in both cooperative and competitive

multi-agent environments. Another method that falls within the CTDE frame-

work is COMA proposed by [21]. In the context of real-time bidding (RTB),

[8] suggested a multi-agent RL-based algorithm. They presented a coordinated

bidding model in which agents cooperate for a common objective. [22] sug-

gested concurrent reinforcement learning, where agents learn concurrently in

a common environment. They proposed a seed sampling method, where each

agent samples seed independently and maps MDP accordingly. In this paper,

we propose a multi-bidding setting where agents are trained simultaneously to

participate in multiple auctions. This differs from the conventional multi-agent

setting, where agents cooperate within a single environment. Agents share ex-

periences with each other and perform centralized learning. This way, agents

can benefit from sharing their experiences and collectively improve their bidding

strategies.
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Chapter 3

PRELIMINARIES

Optimizing ad allocation and bidding simultaneously in the presence of estima-

tion uncertainty poses significant challenges. Previous studies have typically

focused on addressing either ad allocation or bid optimization separately, rather

than tackling both together. Some attempts have been made to combine CVR

estimation and bid strategies, but these have mostly been confined to offline

settings with readily available data or extended learning horizons, which can be

considered almost offline. However, these offline approaches do not accurately

reflect the real-world scenario faced by new advertisers with limited prior knowl-

edge participating in live auctions. To address these limitations, we propose

an integrated ad allocation and bid optimization algorithm designed for online

auction environments. Our approach aims to efficiently gather data and gain

a better understanding of the dynamic auction environment through effective

exploration, ultimately leading to a small regret in bid optimization.

3.1 Problem Setting

We formalize the online advertising auction problem as a contextual bandit

problem. At each time step, an advertiser receives a context vector x ∈ X,
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which encodes the information from the ad impression opportunity. The action

of the advertiser consists of two components. Firstly, the advertiser selects

one ad it from the inventory of ads [Ni]. Each ad is described by its feature

aj ∈ A(j ∈ [Ni]) and its private valuation vj ∈ R+. Secondly, the advertiser

bids bt ∈ R+ for the impression opportunity.

Multiple advertisers participate in the auction, and we assume the auction is

a first-price auction. Therefore the one with the highest bid takes the impression

opportunity and it is charged the price equivalent to its bid. For the advertiser

of our interest, we denote the random binary variable indicating a successful bid,

wt, and the binary random variable indicating the occurrence of a conversion

event, ot. Using these notations, the reward at time step t is rt = wt(ot − bt).

We assume that wt and ot are conditionally independent given (xt, it, bt), which

means the probability of winning the auction is independent of the probability

of conversion events. Finally, we assume that the environment is stationary.

3.2 Learning Objective

The goal of the advertiser is maximizing its expected reward, which is the

profit from advertising. This is equivalent to minimizing the (pseudo)regret∑
tEπ∗ [rt]−Eπ[rt] where π is the policy of the advertiser and π∗ is the optimal

policy. Here the policy determines which ad to place and how much to bid.

Following [9], we call the former the allocation problem and call the latter the

bidding problem.

Given a context x, a general stochastic policy π(b, i|x) can be factorized as

πb(b | i, x)πi(i | x). Then πi is the allocator and πb is the bidder. The expected

reward given the context x is

Eπ[r | x] = Eπ [E [w(o− b) | b, i, x] | x] = Eπ[E[w | b, x]E[o | i, x]− E[w | b, x]b | x]

(3.1)
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With the independence assumption from the problem setting. The conditional

expectations E[w | b, x] and E[o | i, x] are irrelevant to the policy, hence we

write Pw(b, x) = E[w | b, x] and Po(i, x) = E[o | i, x] to clarify that they are

functions of (bid, context) and (ad, context), respectively. Further simplifying

the expression, we get

Eπ[r | x] = Eπ[Pw(b, x)(Po(i, x)− b) | x] (3.2)

=
∑
i

πo(i | x)
∫

πb(b | i, x)Pw(b, x)(Po(i, x)− b) db (3.3)

Given an ad i, the inner integral of the last expression of (3.3) is maximized

when πb is the deterministic policy πb(i, x) = arg maxb Pw(b, x)(Po(i, x) − b).

Therefore the entire integral is maximized when πi is also deterministic, πi(x) =

arg maxi maxb Pw(b, x)(Po(i, x) − b). Note that for any context x and any two

ads j1, j2 ∈ [Ni], Po(j1, x) ≤ Po(j2, x) implies maxb Pw(b, x)(Po(j1, x) − b) ≤

maxb Pw(b, x)(Po(j2, x)−b). Hence we get this intuitive result on optimal policy,

i∗ ∈ arg max
i

Po(i, x) (3.4)

b∗ ∈ arg max
b

Pw(b, x)(Po(i
∗, x)− b) (3.5)

The equation (3.5) represents the general term used for estimating win rates in

advertising, as discussed in previous works [7, 4, 5]. The advertiser has to select

the ad with the highest chance of conversion events, then bid according to (3.5).

In other words, learning the optimal policy is optimizing two functions, Pw(·, ·)

and Po(·, ·).

3.3 Challenges in Advertising Auction Problem

We decompose the advertising auction problem into two parts: the ad-allocation

problem and the bidding problem. From the optimal policy (3.4) and (3.5), the

former is equivalent to learning a CVR estimator P̂o(·, ·; θo) and the latter can
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be solved by learning a win rate estimator P̂w(·, ·; θw). At time t, we train

function approximators with dataset {(xj , ij , bj , wj)}j=1,2,··· ,t gathered until t,

and approximate P̂o(·, ·; θo) and P̂w(·, ·; θw). The advertiser continues to bid

with the trained estimators.

Given a context x, a win rate estimator P̂w(·, ·; θw) and CVR estimation

P̂o(i, x; θo) of the selected ad i, the bidder can determine the bid price using

(3.5). For instance, a grid search over bidding value b to maximize P̂w(b, x; θw)

(P̂o(i, x; θo) − b) could be used. This approach, commonly referred to as bid

shading [18, 5] is widely employed in the field.

However, as we will demonstrate later, this strategy may yield subpar per-

formance due to its lack of exploration. In particular, This lack of exploration

becomes more critical in advertising auction scenarios, and there are two major

challenges.

Censored Feedback. The allocation problem shares a similar objective to

contextual bandits, aiming to find an optimal ad given a context such as auction

information. However, unlike standard contextual bandit settings, the feedback

for action in the allocation problem is censored when the advertiser loses the

auction. Whether feedback is received or not depends on the bid and the dy-

namics of the auction environment. In the presence of censored feedback, the

advertiser faces the challenge of balancing the level of overbidding. Overbid-

ding leads to an immediate loss in terms of monetary expenditure, but it also

contributes to improving CVR estimations by accelerating data aggregation.

This situation presents the bidder with an exploration-exploitation dilemma.

Underbidding. During the early stage of training, when the advertiser has

yet to identify the optimal ad, a suboptimal ad may be selected. The estimated

CVR of the chosen ad is likely to be lower than that of the optimal ad. As in

(3.5), bidding with this estimation leads to underbidding compared to the opti-
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mal bidding strategy. Consequently, the advertiser consistently loses auctions,

impeding the learning process. We observed this failure mode, where the agent

loses almost every auction, even with the perfect win rate estimator.
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Chapter 4

PROPOSED METHODS

We propose an integrated algorithm that is capable of learning both the CVR

estimator and win rate estimator in an online setting.

4.1 Ad Allocation

The goal of the ad allocation problem is to find the optimal ad given a con-

text. Although it suffers from censored feedback, the training procedure of the

allocator does not change; it should learn which ad has the highest CVR given

past, uncensored feedback. Therefore we interpret the allocation problem as a

contextual bandit and employ the epsilon-greedy algorithm and the UCB algo-

rithm in conjunction with neural network CVR estimators. Also, we introduce

a count-based bonus to encourage exploration in the early stage.

Upper Confidence Bound. Upper confidence bound (UCB) [15, 2, 17] al-

gorithms take into account the uncertainty of estimation. The UCB algorithm

selects the action with the highest upper confidence bound, which is the sum of

the estimation and uncertainty. To estimate the uncertainty of the conversion

rate, we employed a bootstrap [23, 19] approach using K estimators. We train

12



neural networks with K heads. The uncertainty is approximated by calculating

the standard deviation across the K estimates.

Count-Based Bonus. As we utilize neural networks as function approxima-

tors, we have observed that even with the allocation strategies based on UCB,

there can be instances where exploration of all available actions is insufficient.

To mitigate this initial bias, we introduce a count-based bonus. Count-based

bonus is added to the estimated CVR in order to encourage further exploration

of different actions. Subsequently, the ad with the highest sum of the original

CVR estimate and the count-based bonus is selected. To calculate the count for

each ad, we maintain a Gram matrix of the context vectors from which the ad

is selected. Specifically, given a context vector x, the count of ad i is computed

as ||x||
xTGi

alcx
multiplied by a tunable parameter. Here, Gi

alc represents the Gram

matrix of ad i.

4.2 Bidding

In Section 3.3, we highlighted the significance of overbidding to mitigate bid

failure. To address this challenge, we suggest an enhanced bidding strategy that

integrates uncertainty estimation techniques to effectively induce overbidding.

The advertiser should overbid to collect data to train CVR estimator. Hence,

it is desirable for the degree of overbidding to reflect the uncertainty in CVR

estimation. To achieve this, we replace the CVR estimation P̂o(i, x; θo) in 3.5

with optimistic estimation. This replacement implicitly encourages overbidding

by shifting the location of the maximum to the right. The extent of overbidding

can be controlled by adjusting the scale of the uncertainty term. Additionally,

we augment the exploration strategy with count-based overbidding. Similar

to the count-based bonus employed by the allocator, the bidder maintains a

Gram matrix of context vectors from previous steps when the advertiser won

13



the auction.

Double-UCB. We propose a bidding algorithm called Double-UCB, which

incorporates optimistic bidding based on the estimated CVR. In our approach,

we employ the UCB algorithm to estimate the CVR and scale the overbidding

based on the uncertainty associated with the selected ad. The name Double-

UCB reflects the optimistic values employed in both the allocation and bidding

policies. In Double-UCB, we bid with optimism by taking into account the

uncertainty in the CVR estimation. Additionally, we incorporate count-based

overbidding, which explicitly promotes exploration in bid prices. As time pro-

gresses, the uncertainty in our estimation and the count-based overbidding term

both decrease. Consequently, the degree of overbidding gradually decreases

over time. There are 4 tunable parameters: the allocation bonus parameter

calc scales the allocation bonus term, thus large calc generates strong pressure

of selecting all ads evenly. The optimism parameter copt determines the scale

of optimistic estimation used in both UCB allocation and bidding. Finally, the

overbidding parameter cover determines the degree of count-based overbidding.

Algorithm 1 describes the pseudocode for the Double-UCB algorithm. Note

that we clip the bid price not to exceed the valuation of the selected ad multi-

plied by a constant k. In our experiment, k is set to 1.5. Also, we implement

the algorithm to update Gbid every Tu step.

Initialization of Win Rate Estimator. During our investigations, we ob-

served that the win rate network tends to have a flat shape immediately after

initialization. In other words, it initially behaves as a nearly constant function

with respect to the bidding value. However, such a flat win rate estimator

can impede the learning process, as it exacerbates underbidding by shifting

the location of the maximum towards the left. To overcome this challenge, we

introduced dummy samples during the initialization of the win rate networks.

14



Algorithm 1 Double-UCB
1: Input: The number of ads Ni, Ad features {aj}j∈[Ni], Private valuations

{vj}j∈[Ni], An auction environment Auction(·, ·), update interval Tu, pa-

rameters calc, copt, cover, k

2: Initialize: CVR estimator using UCB P̂o(·, ·; θo), Win rate estimator

P̂w(·, ·; θw), Gj
alc = 0 for all j ∈ [Ni], Gbid = I, Memory ← ∅

3: for step t = 1, 2, · · · do

4: Observe xt ∈ RNc

5: V̂j , Uj ← P̂o(j, xt; θo)

6: it = arg maxj V̂j + coptUj + calc
||xt||√

xT
t Gj

alcxt

7: b′ ← arg maxb P̂w(b, xt; θw)(V̂it + coptUit − bt)

8: b ← min{b′ + covervit
||xt||√

xT
t Gbidxt

, kvit}

9: wt, ot ←Auction(bt, xt)

10: Append (xt, it, bt, wt, ot) to Memory

11: Git
alc ← Git

alc +
xtxT

t
||xt||2

12: Gbid ← Gbid + wt
xtxT

t
||xt||2

13: if t ≡ 0 mod Tu then

14: Update θi and θw with Memory

15: end if

16: end for

This adjustment facilitates a more effective exploration of bidding strategies

and contributes to a more stable learning process for the win rate network.

4.3 Multi-Bidding

Often, advertisers simultaneously participate in multiple auctions. We extend

our method to a multi-bidding setting, where multiple agents participate in

different auctions and jointly learn the dynamics of CVR and win rate. In this
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Figure 1: Comparison between Greedy, ϵ-Greedy, and Double-UCB. (a) Regret.

(b) Probability of selecting optimal ad. (c) Probability of winning (averaged over 5

runs). The result with the best parameter set (calc, copt, cover) is reported.

Regret DM IPS DR Greedy ϵ-Greedy Double-UCB (Ours)

Nc = 5, Nf = 5, Ni = 10 3175.6± 485.9 3834.4± 535.6 4760.4± 2585.1 941.5± 107.1 1049.1± 93.6 592.9± 134.4

Nc = 5, Nf = 5, Ni = 20 2778.7± 196.2 4879.6± 4053.4 5953.7± 2110.6 1121.4± 170.2 1445.4± 240.1 930.0± 60.2

Nc = 10, Nf = 10, Ni = 10 2741.5± 117.9 3110.5± 268.5 5271.6± 1552.3 1478.7± 129.1 1990.5± 141.8 1216.8± 131.3

Table 1: Regret over 30K steps (averaged over 5 runs).

setting, each agent interacts with its respective auction environment and collects

data, which is stored in a shared replay buffer. We introduce coordinated

exploration by assigning different exploration scales to each agent, promoting

diverse levels of exploration across multiple auctions. Agents choose actions

based on their respective parameters, and all agents share data and undergo

centralized training of the allocation and bidding policy.
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Chapter 5

EXPERIMENTS AND DISCUSSION

Our experiments are based on AuctionGym [9], a simulation environment for

real-time bidding. We modified the training protocol of AuctionGym [9] to

enable continuous online learning, by updating the allocator and the bidder

every 100 steps and using all data collected until the time step. The context

vectors are sampled from Nc dimensional standard Gaussian. Unless otherwise

mentioned, Nc = 5, Nf = 5, and Ni = 10 are used. Given a context vector

x and an ad feature vector a, the CVR is modeled as σ( x
||x||

TMa) where σ(·)

is a sigmoid function and M ∈ RNc×Nf . A total of 3 advertisers, including

the one being optimized, participate in the auction at each step. We assume

that the competing advertisers have the capability to allocate their best ad

from their inventory. The bidding behavior of the advertisers is sampled from

a normal distribution with a mean of 0.8vmax and a standard deviation of

(0.1vmax)
2, where vmax represents the valuation of the best ad. The specific

policies adopted by the competing agents, as well as the number of agents, can

vary, given that the auction environment remains sufficiently consistent to train

the win rate estimator and accumulate winning experience.
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Evaluation Metrics. Evaluation of each strategy is based on regret. The

regret on each step is computed by the difference between the expected re-

ward (profit) of the optimal policy and the expected reward (profit) of the ad-

vertiser’s action.

Network Architecture. For our CVR estimator, we employ a network with

Nc+Nf input units (concatenation of context and ad features) and 128 hidden

units. The Bootstrap-UCB network consists of K = 5 heads. As for the win

rate estimator, it comprises Nc + 1 input units (concatenation of context and

bid price) and 15 hidden units, with the bid price input unit skip-connected to

the output layer. To ensure stable training, we initialize the win rate networks

with dummy samples, as discussed in Section 4.2.

Baseline Methods. As a baseline method, we include Greedy and ϵ-Greedy

allocators without an optimistic bidding policy. These methods do not consider

uncertainty when estimating bid prices, but they incorporate allocation bonuses

and count-based overbidding to collect initial data for training initiation. For

ϵ-Greedy, we use ϵ = 0.1. In addition to Greedy and ϵ-Greedy, we compare

our Double-UCB algorithm with the bidding algorithm suggested from [9]: Di-

rect Method (DM), Inverse Propensity Score (IPS), and Doubly Robust (DR).

DM is a value-based method, and IPS and DR are off-policy policy-gradient

methods. We implement these bidding policies in conjunction with our UCB

allocator. To align with their methodology, we search over an update inter-

val Tu ∈ [2000, 5000] for these methods, and vary the entropy regularization

coefficient within the range of [−0.05, 0, 0.05] for IPS and DR.

More details on the simulation environment and the training protocol are

described in the supplementary material.
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Figure 2: Effect of parameters, (a) calc (b) copt (c) cover. Each curve represents the best-

performing model with the specified parameter value (averaged over 5 runs).

Parameter Inclusion / Exclusion

calc × × × # × # # #
copt × × # × # × # #
cover × # × × # # × #

Regret 1906.6 1011.7 1906.6 1905.8 717.0 682.1 1905.8 592.9

Table 2: Ablation study of Double-UCB. The # mark means the component is used,

and the × mark means the component is omitted. For each column, the regret of

the best model (over 30K steps, averaged over 5 runs) using # marked components is

reported.

5.1 Performance Analysis

Table 1 compares the performance of the Double-UCB algorithm with baseline

methods. We searched over parameters calc ∈ [0.0, 0.5, 2.0], copt ∈ [0.0, 0.5, 1.0, 2.0],

and cover ∈ [0.0, 0.5, 1.0, 2.0] for Double-UCB, Greedy, and ϵ-Greedy, then re-

ported the best result. Note that copt does not apply to Greedy and ϵ-Greedy

methods. As expected, Double-UCB outperforms the baselines.

Figure 1 presents the learning curves of Double-UCB, Greedy, and ϵ-Greedy.

Both Greedy algorithms initially exhibit smaller regret, indicating rapid ex-

ploitation in the early stages. However, their regret steadily increases over time.

On the other hand, Double-UCB initially has higher regret due to overbidding,
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but quickly demonstrates improved performance. This highlights the effective-

ness of overbidding in learning ad allocation. For the probability of selecting the

optimal ad, Double-UCB consistently outperforms the other methods, while the

alternative approaches converge to suboptimal selections. This suggests that

Double-UCB provides better estimations of CVR. Comparatively, ϵ-Greedy

performs poorly compared to the Greedy method. This indicates that a naive

exploration approach is not effective in inducing exploration within the com-

plex and limited-feedback advertising auction environment. It is worth noting

that even Greedy and ϵ-Greedy methods outperform DM, IPS, and DR. The

incorporation of count-based bonus in Greedy and ϵ-Greedy methods plays a

crucial role in initiating learning. This highlights the importance of proper

overbidding for successful learning.

5.2 Effect of Parameters

In Figure 2, we analyzed the impact of each parameter, and the results indicate

that count-based overbidding has the most significant influence among the three

parameters. Insufficient cover can result in learning failure. While allocation

bonus and optimistic estimation are not as critical as count-based overbidding,

they still enhance performance by promoting exploration in different ways.

Table 2 presents the ablation study, which examines the contribution of

each component in our algorithm. The results confirm the previous observation

that all three parameters contribute to performance improvement. Specifically,

the absence of count-based overbidding leads to failure, further emphasizing its

importance in the learning process. It is worth noting that optimistic estimation

and count-based overbidding can complement each other, as both encourage

overbidding. Optimistic estimation takes into account the uncertainty of CVR

estimation, while count-based overbidding provides a more explicit mechanism

for overbidding. When count-based overbidding is absent, copt can play a similar
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Figure 3: (a)Regret (b)Probability of selecting optimal ad of multi-bidding and single-

bidding (averaged over 5 runs). The horizontal axis represents the total number of bid-

ding. Exploration parameters are calc = 0.0, cover = 1.0, copt ∈ [0.5, 0.75, 1.0, 1.25, 1.5]

(uniformly sampled) for each agent.

Greedy ϵ-Greedy Double-UCB (Ours)

Regret 925.4± 136.2 1058.9± 109.6 537.9± 30.7

Table 3: Regret over 30K steps of Multi-bidding (averaged over 5 runs). The best

results for ϵ-Greedy and Greedy are achieved with a constant value of cover = 1.0,

while the best value for Double-UCB is obtained when copt is uniformly sampled from

the range [0.5, 0.75, 1.0, 1.25, 1.5].

role to cover, but the combination of both parameters yields better performance

improvement, as evidenced in Table 2.

5.3 Coordinated Exploration in Multi-Bidding

In a multi-bidding scenario, agents can leverage coordinated exploration by

employing diverse exploration scales. Here, each agent possesses a different

inventory of ads and participates in different auctions. Through centralized

training on allocation and bid policies, agents can share their experiences and

collectively improve their performance. In Figure 3, we compare the regret of

multi-bidding with 100 agents to single-bidding. The results demonstrate that
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multi-bidding exhibits smaller regret-per-step and a higher probability of select-

ing the optimal ad. To further evaluate the performance of different algorithms

in the multi-bidding setting, we provide regret values for ϵ-Greedy, Greedy, and

Double-UCB in Table 3. Similar to the single-bidding scenario, our proposed

method outperforms the baseline. This advantage can be attributed to the two

factors. Firstly, the diverse range of ad feature vectors allows for better cover-

age of the feature space, leading to robust CVR estimation and consequently

better selection of the optimal ad. This also results in more consistent behavior

across multiple runs, as the experiment demonstrates a smaller variance. Sec-

ondly, the accumulation of experiences from multiple agents provides a richer

dataset, which enhances the overall learning process. Each agent incorporates

a distinct level of optimistic estimation, promoting exploration across different

actions based on their respective exploration parameters. For example, agents

select one of the parameters from the pool copt ∈ [0.5, 0.75, 1.0, 1.25, 1.5], and

commit actions with that parameter. This diversity in exploration encour-

ages a broader exploration of the action space and helps discover more optimal

strategies. With the centralized training framework, our approach facilitates

coordinated exploration and enhances the efficiency of the learning process.
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Chapter 6

CONCLUSION

In this paper, we investigate the efficient exploration strategies in the con-

text of online advertising auctions. Our method, Double-UCB, leverages an

optimistic estimation of CVR to diversify ad selection and encourage overbid-

ding. Furthermore, Double-UCB employs additional mechanisms: the count-

based allocation bonus that prioritizes less selected ads given context, and the

count-based overbidding for more robust exploration. We demonstrate that

Double-UCB significantly enhances data collection and diversifies the learning

experience, resulting in lower regret. Numerical results verify the advantages of

Double-UCB over naive exploration methods and other existing bandit-based

algorithms, showing reduced regret and improved estimation of CVR. Addition-

ally, our approach proves effective in multi-bidding settings, facilitating robust

and efficient learning.
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Chapter A

APPENDIX

A.1 Details on Experiments

A.1.1 Training Details

We provide hyperparameters in A.1.1

A.1.2 Implementation Details on Baseline

The original implementation of DM, IPS, and DR from [9] takes a partially

offline-fashioned approach. They set large update interval Tu = [2000, 5000, 10000]

and data are discarded after each update. To aggregate enough data and ini-

tialize the bidding policy, bid prices before the first update are sampled from

N(v, 0.02v), where v is the private valuation of the selected ad. This train-

ing protocol is to support the importance sampling used in training loss. IPS

and DR employ stochastic bidding policies π(·, ·;ϕ) that take contexts and es-

timated CVR of the selected ads as inputs. For our implementation, we use

Bootstrap-UCB as CVR estimators of DM and DR. Following the training

protocol of [9], we search over Tu = [2000, 10000] and add entropy regulariza-

tion with coefficients [−0.05, 0, 0.05]. CVR estimators and bidding policy are

trained using full batch, 2000 epochs per update. Since this protocol makes
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Hyperparameter Value

Allocation

Learning rate 1e-3

Batch size 512

Update interval 100

Linear layers 2

Latent dimension 128

Bootstrap head 5

Bidding

Learning rate 1e-3

Batch size full

Update interval 100

Linear layers 2

Latent dimension 16 (with a skip connection)

Exploration

calc 0.0, 0.5, 2.0

copt 0.0, 0.5, 1.0, 2.0

cover 0.0, 0.5, 1.0, 2.0

Table A.1.1: Hyperparameters of Double-UCB

CVR estimator unstable to train, we train CVR estimators of DM and DR

using the full history, without discarding data.

A.1.3 Training Loss

We describe the training losses of models, given a mini-batch {(xj , ij , bj , wj , oj)}

of size B. For completeness, we include the training losses of DM, IPS, and

DR.
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CVR Estimator. CVR estimators P̂o(·, ·; θo) only use samples of wj = 1.

Then they are trained using binary cross entropy loss:

B−1
∑
j

oj log(P̂o(ij , xj ; θo)) + (1− oj) log(1− P̂o(ij , xj ; θo))

Win Rate Estimator. Win rate estimators P̂w(·, ·; θw) are also trained using

binary cross entropy loss:

B−1
∑
j

wj log(P̂w(bj , xj ; θw)) + (1− wj) log(1− P̂w(bj , xj ; θw))

DM. DM uses the same loss as Double-UCB. DM employs CVR and win rate

estimators as in Double-UCB, but it does not conduct systematic exploration,

and uses different training protocol.

IPS. The IPS bidding policy records the probability of the bidding under the

current policy at every step. Since they represent the probability of each action

under the behavior policy, we compute the importance sampled return:

B−1
∑
j

π(P̂o(ij , xj ; θo), xj ;ϕ)

π(P̂o(ij , xj ; θo), xj ; ϕ̃)
wj(oj − bj)

Here gradients do not flow through CVR estimators, and π(·, ·; ϕ̃) is the behavior

policy.

DR. DR training loss has additional terms to reduce the variance of the im-

portance sampling term. The term P̂o(ij , xj ; θo) is a Monte-Carlo approxima-

tion of
∑

i π(P̂o(i, xj ; θo), xj ; ϕ̃)P̂o(i, xj ; θo).

B−1
∑
j

P̂o(ij , xj ; θo) +
π(P̂o(ij , xj ; θo), xj ;ϕ)

π(P̂o(ij , xj ; θo), xj ; ϕ̃)
[wj(oj − bj)− P̂o(ij , xj ; θo)]
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A.2 Additional Experimental Results

We present additional experimental results in Figure A.2.1. It shows the per-

formance under various exploration parameters in the single-bidding setting.

Figure A.2.2 shows the results of multi-bidding with different exploration hy-

perparameters.

A.3 Limitations

Our research demonstrates the importance of exploration in learning the policy

for advertising auctions in an online setting. The Double-UCB method has

proven effective in achieving efficient exploration and maximizing profit in this

context. However, our current work does not address budget-constrained auc-

tions, and we leave it to future work to expand our method in a reinforcement

learning framework that incorporates the budget as part of the state represen-

tation. We expect to develop strategies that we can effectively allocate the

budget and maximize overall profit. Additionally, it is desirable to validate

our findings by conducting experiments and evaluations in real-world auction

settings, thereby assessing the practical applicability and performance of our

proposed method.
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Figure A.2.1: Exploration parameter impact on regret. The result is averaged over five

runs.
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Figure A.2.2: Exploration parameter impact on regret in multi-bidding (100 agents).

The result is averaged over five runs. In these experiments, calc is fixed at 0.0, while

copt and cover are varied within the range of 0.5 to 2.5.
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초록

강화학습기반의온라인광고옥션학습에대한논문입니다. 이논문에서는광고

할당과입찰정책을공동으로최적화하는새로운알고리즘을제안합니다. 이전

연구들은이러한구성요소중하나를학습하거나사전수집한데이터와오프라

인환경에서학습하는데초점을맞추었으나, 우리의알고리즘은온라인광고

경매를위해설계되었습니다. 온라인광고경매에서는학습에대한피드백이경

매에서이길때에만제공되기때문에학습에필요한데이터를수집하는것이어

렵습니다. 따라서온라인광고경매환경에서적절한탐험을통해학습에필요한

데이터를효율적으로수집하는것이중요합니다. 우리의알고리즘은Optimistic

추정과카운트기반보너스사용하여광고할당과입찰가격에대한효율적인

탐험방식을제안합니다. 우리는각광고의가치와정보가주어졌을때경매에서

이길확률을추정하기위해딥러닝기반의모델을사용합니다. 우리의알고리즘

은기존의단순한탐험방식과비교하여Regret기준더높은성능을보였습니다.

또한우리는에이전트가서로다른경매에참여하는멀티비딩환경으로실험을

확장하여멀티비딩에서도높은성능을확인하였습니다. 요약하자면,이논문은

광고할당과입찰을공동으로최적화하는온라인광고경매를위한새로운학습

알고리즘을제시하고,온라인광고경매에서적절한탐험의중요성을보여줍니다.

주요어: 강화학습,온라인광고경매,탐색

학번: 2021-21352
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