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Abstract 

 
 

Item response theory (IRT) depicts the general tendency of 

interactions between items and examinees. IRT is applied in various 

areas, such as the item bank. In addition, diverse academic fields, such 

as psychology, adopt IRT as a methodology. Therefore, IRT holds both 

academic and practical significance. 

IRT outperforms classical test theory (CTT) in terms of 

practicality and flexibility. However, due to the complex nature of an 

examinee's ability, existing models, especially unidimensional IRT 

(UIRT), excessively simplify the interaction between the examinees 

and items. This characteristic contributes to limitations in accuracy of 

diagnosing examinees' abilities and imputing missing data. 

Consequently, this limitation restricts the connection between 

evaluation and feedback. 

To reinforce connectivity, a new IRT model is required to enhance 

its performance with respect to level diagnosis and imputation. To 

achieve this purpose, we have adopted interactions between two item 

pairs. Existing IRT models reflect these interactions indirectly, while 

the new IRT model does so directly. These interactions are 

conceptualized as response consistency. 

In order to strengthen and verify the performance, methodologies 

relevant to machine learning were introduced. As a result, a more 

generalized level diagnosis of examinees has been accomplished. The 
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advanced diagnosis results served as the basis for further enhancing 

the imputation performance. 

Response consistency is deemed to improve the performance of 

IRT by incorporating interactions between item pairs, which further 

segregate innocent responses from wild guessing. Meanwhile, it was 

confirmed that item categories sorted out by the response consistency 

coincided with item group classification in PISA 2018. This 

serendipitous finding is expected to open the window of opportunity 

for a data-driven approach in educational evaluation. In future studies, 

the interaction between two items is expected to be expanded into the 

interaction among multiple items for exploration towards the general 

response consistency. 
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Chapter 1.  Introduction 
 

 

1.1. Purpose of Research 

 

According to Douglas Stone and Sheila Heen, "there are three 

types of feedback: evaluation, coaching, and appreciation." Evaluation 

simply rates points, whereas coaching provides information for 

further learning. In addition, appreciation offers sincere reactions 

from instructors. In other words, ultimately, feedback requires not 

only quantitative information but also qualitative information and 

emotional depth. Item Response Theory (IRT) may cover the varied 

aspect of feedback. 

IRT depicts the general tendency of interactions between items 

and examinees. It is applicable in various areas such as achievement 

tests, the item bank, and computerized adaptive tests (CATs). 

Additionally, IRT is adopted in diverse academic fields such as 

psychology and medical science. Therefore, IRT holds both academic 

and practical significance. 

Regarding IRT, it does not depend on the characteristics of 

examinees, unlike classical test theory (CTT). As a result, IRT is 

appraised as outperforming CTT in terms of practicality and 
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flexibility. Nevertheless, due to the complex nature of the interaction 

between items and examinees, existing models, especially 

unidimensional IRT (UIRT), excessively simplify this interaction. 

Only few IRT variables attempt to reenact the complexity of the 

interaction. As a result, these circumstances limit the performance of 

IRT, consequently restricting the connection between evaluation and 

feedback. 

Before delving into a detailed discussion, there are two points to 

consider. First, the diversity of IRT variables for a more precise level 

of diagnosis is important. This point is expected to cover more 

aspects of the complex nature of the interaction. Second, the 

accuracy of imputation is significant for item banks as well. Item 

banks often encounter missing data due to nonresponse. The 

incompleteness of the item banks leads to the incompleteness of a 

customized test and further feedback. If unresponsive items are 

properly imputed, the quality of the customized test and feedback will 

be improved. 

In this study, a new model called Ising Multidimensional Item 

Response Theory (IMIRT) is introduced. IMIRT incorporates a new 

exponential term derived from the Hamiltonian of the Ising model. 

The Hamiltonian of the Ising model is known for representing the 

interaction between adjacent two spins of a material. Similarly, the 

new exponential term in IMIRT reflects the interactions between two 

items of a test set. This introduced exponential term is expected to 

assist in more precise diagnosis of examinees' abilities. Furthermore, 

this term is expected to enhance the performance of imputation. 
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Regarding the verification process, multiple machine learning 

methods, such as gradient descent and train/test splitting, will be 

applied. Gradient descent is an algorithm used for exploring 

optimization through numerical analysis and is applicable to complex 

models. On the other hand, train/test splitting is a methodology used 

to verify the explanatory power of a model. Both methods are suitable 

for the verification process of complex data and models. Therefore, 

they are expected to accomplish the verification process of the new 

model, IMIRT. 

 

1.2. Research Goals 

In the process of the verification of IMIRT, two goals need to be 

accomplished. 

 

[Goal 1] Is IMIRT model capable of superior performance in terms 

of the accurate imputation and the precise level diagnosis? 

 

[Goal 2] What is the meaning of the parameters and variables in 

IMIRT model? In other words, what is the role of each parameter or 

variable in improving the performance of the IRT model? 
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Chapter 2.  Theoretical Background 
 

 

2.1. Item Response Theory 

 

2.1.1 General Description, Assumptions and Types 

IRT quantitatively evaluates the interaction between examinees 

and items. In comparison with CTT, IRT offers more flexibility in 

estimating item difficulty and item discrimination. In CTT, item 

difficulty and discrimination are estimated solely based on answer 

rates, while IRT takes into account the characteristics of both 

examinee groups and test items, along with answer rates, to calculate 

these two parameters. For example, if a group of examinees 

demonstrates a low level of achievement, IRT estimates the difficulty 

of items to be higher and the ability of examinees to be more 

generously assessed. In summary, the flexible nature of IRT ensures 

higher reliability in evaluation compared to CTT. 

There are five basic assumptions in IRT. First, the location of 

examinees remains constant during the test. Second, the 

characteristics of test items remain static throughout the test. The 

first two assumptions exclude the possibility of interaction with the 

environment. Third, the response to one test item by an examinee 
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does not influence the response to other test items. This assumption 

is referred to as the assumption of independence. Fourth, the 

relationship between the ability level and the probability of answering 

correctly can be described as a continuous function. Fifth, as the 

probability of answering correctly increases, the ability level of the 

corresponding examinee monotonically increases. The final 

assumption represents the consistency of the model. 

The number of variables and parameters determines the type of 

IRT model. If the location of ability is determined by a single indicator, 

the model is referred to as UIRT. If there are multiple indicators to 

determine the location of ability, the model is referred to as MIRT. 

2.1.2 UIRT Models 

Regarding the binary case, UIRT encompasses various models, 

including the Rasch model, the two-parameter logistic model (2PL 

model), and the three-parameter logistic model (3PL model). 

First, the Rasch model, a one-parameter logistic model (1PL 

model), displays a probability distribution as follows: 

where βi is the difficulty parameter of the ith item, and θμ shows 

the location of ability of the μth examinee. Yi
μ

= 1 indicates that the 

μth examinee answered the ith item correctly. The 1PL model is 

fitted to the reference data with only one extrinsic parameter: βi. In  

 P(Yi
μ

= 1 | βi, θμ) =
eθμ−βi

1 + eθμ−βi
 , (2. 1) 
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Figure 2-1. Three item characteristic curves (ICCs) of 1PL model. The 

left ICC curve represents a difficulty of -1, the middle ICC curve 

represents a difficulty of 0.2, and the right ICC curve represents a 

difficulty of 1.7. (Reckase 2009) 

 

Figure 2-2. An item characteristic curve (ICC) of 3PL model. The 

asymptotic line, with a probability of 0.16, represents the likelihood of 

correctly answering the item through guessing. (Reckase 2009) 
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addition, the 1PL model exhibits high level of flexibility. However, 

the 1PL model lacks an important parameter for items, which is 

discrimination. 

Second, the 3PL model has an expanded logistic form of the 

probability distribution as follows: 

where αi is the discrimination parameter of the ith item, γi is the 

asymptotic parameter relevant to guessing. 

The 3PL model includes two additional extrinsic parameters: αi 

and γi . As a result, the 3PL model can exhibit a high level of 

explanatory power. However, the formula of the 3PL model is 

excessively complex for application. 

Finally, 2PL model has a logistic form of probability distribution 

as follows: 

The 2PL model introduces an additional extrinsic parameter: αi. 

When αi increases, the item characteristic curve (ICC) exhibits a 

steep rise near the probability point of 0.5, as shown in Figure 2-3. 

Conversely, when αi decreases, the ICC rises relatively gradually 

near the same point, as depicted in Figure 2-3. In summary, αi is 

referred to as the discrimination parameter.  

 

 P(Yi
μ

= 1|αi, βi, γi, θμ) = (1 − γi)
eαi(θμ−βi)

1 + eαi(θμ−βi)
+ γi , (2. 2) 

 P(Yi
μ

= 1 | αi, βi, θμ) =
eαi(θμ−βi)

1 + eαi(θμ−βi)
 . (2. 3) 
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Figure 2-3. Three item characteristic curves (ICCs) of 2PL model. The 

ICC of item 1 shows middle-level discrimination and a difficulty of 0.5. 

The ICC of item 2 exhibits high-level discrimination and a difficulty of 

0. The ICC of item 3 displays low-level discrimination and a difficulty 

of -1.2. (Reckase 2009) 

2.1.3 MIRT Models 

Regarding the binary case, MIRT includes two prominent models: 

the compensatory model and the partial-compensatory model. First, 

the compensatory model has a general form of the probability 

distribution as follows: 

where 𝛂𝐢 ⋅ 𝛉𝛍 = αi1θ1
μ

+ αi2θ2
μ

+ ⋯ =  ∑ αiνθν
μ

ν=1 , ν  represents the 

number of ability variables and di  is an intercept parameter. αi1 

 P(Yi
μ

= 1|𝛂𝐢, di, 𝛉𝛍) =
e𝛂𝐢⋅𝛉

𝛍−di

1 + e𝛂𝐢⋅𝛉
𝛍−di

 , (2. 4) 
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represents discrimination parameter of the ith item corresponding 

the first variable of ability θ1
μ
. 

    In the compensatory model, the exponential term of the logistic 

model's probability distribution function contains a linear combination 

of multiple abilities. This allows the compensatory model to replenish 

a vacancy due to lack of a specific ability with other abilities. 

Furthermore, the intercept parameter di in MIRT differs from the 

difficulty parameter βi  in UIRT. While βi  interacts with a single 

ability, di  needs to interact with a linear combination of multiple 

abilities. 

Second, the partial-compensatory model has a probability 

distribution function in the following form: 

The formula of the partial-compensatory model consists of 

simple multiplications of a series of UIRT models. In the case of the 

partial-compensatory model, if an examinee experiences a 

significant loss in a specific ability, it becomes difficult to restore the 

damage with other abilities of high skill. Therefore, this model is 

referred to as a partial-compensatory model. 

 

  

 P(Yi
μ

= 1|𝛂𝐢, di, 𝛉𝛍) = ∏
eαiν(θν

μ
−βiν)

1 + eαiν(θν
μ

−βiν)
ν

 . (2. 5) 
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2.2. Ising Model 

 

The Ising model is a theoretical model in statistical physics used 

primarily to describe sudden changes, such as phase transitions and 

the Curie temperature. In statistical physics, natural phenomena are 

studied using many-body systems through the use of Hamiltonian. 

In the case of the Ising model, when there is no external magnetic 

field, the Hamiltonian consists of the interaction between two 

neighboring spins. A detailed description of the Hamiltonian is 

provided below: 

In the description of Hamiltonian, Jij represents the interaction 

between two neighboring spins s⃗i and s⃗j. If Jij is positive(Jij > 0), the 

interaction is referred to as ferromagnetic. Conversely, if Jij  is 

negative(Jij < 0), the interaction is referred to as anti-ferromagnetic.  

 

 

Figure 2-4 Spin configurations and spin interactions. (a) Two up-spins 

(yellow arrows) with a positive interaction (𝐉 > 𝟎). (b) Two up-spins and 

a negative interaction (𝐉 < 𝟎). (c) One up-spin and one down-spin (a 

dark blue arrow) with a positive interaction. 

 Ĥ(s⃗1, s⃗2, … , s⃗N) = − ∑ Jij s⃗i ⋅ s⃗j
i≠j

 . (2. 6) 
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In the diagram (a) of Figure 2-4, interaction between two up-

spins with a positive J decreases the Hamiltonian. On the other hand, 

for the diagram (b) of Figure 2-4, two up-spins with a negative J 

increase the Hamiltonian despite the same spin configuration of (a). 

Meanwhile, for the diagram (c) of Figure 2-4, the configuration of 

two inverse spins with a positive J increases the Hamiltonian. In 

summary, both the shape of spin configurations and the interaction J 

determine the change direction of the Hamiltonian in the Ising model.  

 

 

 

  



 

 １２ 

 

 

 

Chapter 3.  Research Procedure and Methods 
 

 

3.1. Overview 

 

The study followed a series of processes. First, we consider 

various models. The UIRT 2PL model was chosen as a control group. 

As an experimental group, IMIRT was selected. To establish IMIRT, 

the compensatory model of MIRT was selected as a framework, and 

the Hamiltonian of the Ising model was embedded into the exponential 

term of the compensatory MIRT. Second, the Program for 

International Student Assessment 2018 (PISA 2018) was selected 

as the reference data. Among the chosen data, only Computer-Based 

Test (CBT) items responded to by examinees from the Republic of 

Korea (ROK) were filtered for this study in order to maintain 

uniformity of the sample. Finally, we optimized the models by using 

gradient descent that is an optimization algorithm for finding a local 

extremum of differentiable objective functions. After completing the 

optimization, a verification process was conducted to determine the 

superiority of the new model. 
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3.2. Model Establishment Process 

 

Among the UIRT models, the 2PL model is suitable for the 

control group. As mentioned in Chapter 2, the 1PL model is 

insufficient as it only includes the difficulty parameter. Additionally, 

the 3PL model is prone to overfitting, which can harm the predictive 

capability of the model. 

For MIRT models, the compensatory model is adequate to serve 

as the framework for the new model. The compensatory model has 

the advantage of compatibility and simplicity. Unlike the partial-

compensatory model, which experiences a steady decrease in the 

probability distribution as the model dimension increases, the 

compensatory model avoids this drawback. This characteristic 

facilitates the comparison of performance between the compensatory 

MIRT model and UIRT. Furthermore, the simplicity of the 

compensatory model allows for easy adoption of new parameters and 

variables. 

Next, the Hamiltonian of the Ising model is converted into the 

new variable θ2 , establishing the new model ultimately. The 

conversion process consists of two steps. First, the Hamiltonian is 

normalized to form a pseudo-probability P̂ as shown below: 

where P̂μ is a pseudo probability of the μth examinee, and k and l 

are index of items except missing data. In addition, if μth examinee 

 P̂μ =
1

2
∑

Qkl Y′k
μ

Y′l
μ

Σ𝑘′≠l′Q𝑘′𝑙′𝑘≠l
+

1

2
 , (3. 1) 
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answers correctly the k′th item, then Y′k
μ

= 1. If not, then Y′𝑘
μ

= −1. 

Then the pseudo probability ranges from 0 to 1. A pseudo probability 

is derived from the Hamiltonian of the Ising model to be inserted into 

the log odds, which requires a variable ranging from 0 to 1. 

In the conversion process, the scale of Q is adjusted by dividing 

it with Σ𝑘′≠l′Qk′l′ in order to normalize the Hamiltonian of the Ising 

model. Since Y′𝑘
μ

Y′l
μ
 ranges from -1 to 1, an additional step of scale 

adjustment is required. For this purpose, the normalized Hamiltonian 

is halved and 0.5 is added. 

Second, the pseudo probability is transformed into log odds to 

complete the process as shown below: 

In this manner, the new variable θ2 has been established, leading 

to the suggestion of the new model named IMIRT. 

 

3.3. Data Selection and Preprocessing 

 

3.3.1 Data Selection and Criteria 

The PISA 2018 Student questionnaire data file in SPSS (TM) 

Data Files format was selected. As the data did not require additional 

human-targeted investigations and did not pose a risk of personal 

information leakage, it was evident that the data did not violate the 

Institutional Review Board (IRB). 

 

 θ2
μ

= ln (
P̂μ

1 − P̂μ
) . (3. 2) 
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Figure 3-1.  A part of data from PISA 2018 under preprocessing by 

IBM SPSS Statistics Data Editor software. The items responded to by 

ROK (Republic of Korea) students were exclusively sampled. Student 

data from other nations were excluded to maintain the uniformity of the 

sample. The entire dataset was anonymized from the beginning. 

Among the data, only responses from ROK students were 

sampled exclusively to maintain sample uniformity. Additionally, 

items that had never been responded to by Korean students were 

removed. All the procedures thus far were conducted using IBM 

SPSS Statistics Data Editor version 26. 

3.3.2 Procedure of Data Preprocessing 

After the data selection, additional preprocessing was necessary 

to remove items with partial scores, which do not conform to the 

binary case. Additionally, data from examinees with no response 

were eliminated. As a result, the initial dataset of 52 items and 6650 

examinees were refined to a dataset of 51 items and 2727 examinees. 
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The preprocessing was performed using Anaconda Jupyter Notebook 

version 3.6. 

 

3.4. Model Optimization Algorithm 

 

After inputting the preprocessed data, the model optimization 

algorithm for both UIRT and IMIRT follows four major steps in common 

(Figure 3-2): initialization, updating variables, judging of newD𝐾𝐿 's 

acceptance, and refining final variables. First, in the initialization step, 

β and θ of UIRT and d and θ1 for IMIRT were set in a special manner. 

The percentages of correct answers for examinees and for items were 

collected separately. Then the initial β and d were generated from 

the log odds of the correct answer rates for items, while the initial θ 

and θ1  were from the log odds of the correct answer rates for 

examinees. 

Additionally, for the optimization of the IMIRT model, extra steps 

were required involving reprocessing of reference data Y𝑖
𝜇
 and the 

variables Q and θ2. First, in the reprocessing from Y𝑖
𝜇
 to Y𝑖

𝜇′
, set 1 

for correct responses, -1 for incorrect responses, and 0 for non-

responses. Then, the combination, namely the interaction, of two 

correct responses or two incorrect responses yields 1, whereas the 

interaction of one correct response and another incorrect response 

yields -1. Second, in the initialization of the symmetric hollow matrix 

Q , all the off-diagonal elements were set to 0.5 to avoid double 

counting. Then, the initial Q does not differ the weight of interactions, 
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Figure 3-2. Model optimization flow charts for UIRT (Unidimensional Item Response Theory) and IMIRT (Ising 

Multidimensional Item Response Theory). Each flow chart consists of four major steps: initializing variables, updating 

variables, iteration, and finalizing variables. 𝐃𝑲𝑳 determines the continuation of the flow chart. 
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Figure 3-3. Conversion from Hamiltonian of Ising model into 𝛉𝟐  of 

IMIRT (Ising Multidimensional Item Response Theory). 

Y𝑖
𝜇

𝑌𝑗
𝜇
. Next, concerning the initialization of θ2, the pseudo-probability, 

namely �̂�𝜇 , is converted into θ2  by a log-odds as equation (3.2). 

Before the conversion, the pseudo-probability is assembled with the 

weighted interaction, ∑ 𝑄𝑘𝑙𝑌𝑘
𝜇′

𝑌𝑙
𝜇′

𝑘≠𝑙 . Then, the weighted interaction 

undergoes normalization in order to set 0 ≤ �̂�𝜇 ≤ 1 as equation (3.1). 

The whole process of initializations is illustrated in Figure 3-3. 

Second, the variables were updated using gradient descent, as 

shown below①: 

Third, the iteration of the second process continued until the local 

                                            
① Detailed calculation of variables by means of gradient descent is shown in 

Appendix A. 

α, α1, α1: αNew = αOld − A
∂DKL

∂α
 , (3. 3) 

β: βNew = βOld − A
∂DKL

∂β
 , (3. 4) 

d: dNew = dOld − A
∂DKL

∂d
 , (3. 5) 

θ, θ1: θNew = θOld − A
∂DKL

∂θ
 , (3. 6) 

Q: Q𝑁𝑒𝑤 = 𝑄𝑂𝑙𝑑 − 𝐴
𝜕𝐷𝐾𝐿

𝜕𝑄
 . (3. 7) 
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minimum was identified. If the newly calculated Kullback-Leibler 

divergence (DKL
New) was larger than existing one(DKL

Old), the last DKL
New 

was rejected and the iteration stopped. Then the process proceeded 

to the next step. 

Finally, the final variables were standardized to treat θ as a Z-

score. The detailed formulas for standardization are as follows: 

 

3.5. Algorithm with Train/Test Splitting for 

Performance Verification 

 

At this stage, two additional steps were introduced: sampling 

without replacement for the test set and calculating the Kullback-

Leibler divergence of the train set and test set separately. Regarding 

the sampling, the number of items to which each examinee responded 

was taken into account. From the reference data, 758 examinees 

1st θ, θ1, θ2: θstd =
θ − E[θ]

Std[θ]
 , (3. 8) 

2nd set(UIRT): αstd(θstd − βstd) = α(θ − β), (3. 9) 

2nd set(IMIRT): α1
stdθ1

std + α2
stdθ2

std − dstd = α1θ1 + α2θ2 − d , (3. 10) 

3rd α, α1, α2: αstd = Std[θ] α , (3. 11) 

4th β: βstd =
β − E[θ]

Std[θ]
 , (3. 12) 

4th d: dstd = d − E[θ1] α1 − E[θ2] α2 . (3. 13) 
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responded to 18 items, 617 examinees to 16 items, 447 examinees to 

17 items, 227 examinees to 15 items, and so on. The total number of 

combinations of responded items and corresponding examinees was 

40,586. 3953 combinations, approximately 10% of the total 

combinations, were then sampled without replacement to generate the 

test set, while the remaining combinations formed the train set. The 

entire sampling process was initially conducted for UIRT, and the 

results of the sampling were subsequently shared with IMIRT. 

Next, in terms of calculating DKL, both the train set and the test 

set were utilized. Nonetheless, only the DKL  of the train set was 

considered to determine the continuation of training iteration. The DKL 

of the test set would be collected to assess the explanatory power of 

the models. 

Finally, in regard to the imputation performance comparison, the 

agreement ratio for each model was calculated. To perform the 

calculation, if the probability of an item being correct exceeded 0.5, 

the item was converted to a correct response value of 1. Additionally, 

a stricter agreement ratio was calculated for each model. Specifically, 

only when the difference between the probability and the reference 

data was within 0.3, the item was considered correct with a value of 

1. The converted data and the reference data were collected and then 

compared. 
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3.6. Data Analysis Procedure 

 

A series of collected data was exploited to verify the superiority 

of the suggested model, IMIRT. First, upon completing the optimization, 

the DKL values of both the existing UIRT and the new IMIRT would be 

compared. Second, after the train/test splitting process, a comparison 

of the imputation performance and the train-test graph of both models 

would be conducted. Finally, the meaning of variables suggested with 

IMIRT would be investigated to infer the reasons why the new IMIRT 

model outperformed the existing UIRT, along with their implications in 

psychometric and evaluation theory. 
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Figure 3-4. Train/test splitting flow charts for UIRT (Unidimensional Item Response Theory) and IMIRT (Ising 

Multidimensional Item Response Theory). In the flow chart, sampling for test set is inserted. Only 𝑫𝑲𝑳
𝑻𝒓  determines the 

continuation of the iteration.
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Chapter 4.  Result and Discussion 
 

 

4.1. Improvement by IMIRT Model 

 

4.1.1 Precise Level Diagnosis by IMIRT 

 

 

Figure 4-1. Quantitative comparison of model fitting between UIRT 

(Unidimensional Item Response Theory) and IMIRT (Ising 

Multidimensional Item Response Theory) with regard to 𝐃𝑲𝑳 

Regarding the degree of model fitting, Kullback-Leibler 

divergence( D𝐾𝐿 ) was selected as the criterion ② . After the 

optimization algorithm, the D𝐾𝐿  values of IMIRT and UIRT were 

                                            
② As a model reaches the reference data closer, Kullback-Leibler 

divergence decreases. 
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compared in Figure 4-1. To explain in detail, the D𝐾𝐿 was calculated 

by averaging all the individual D𝐾𝐿s of corresponding combinations 

consisting of an item and an examinee. At first, the UIRT model, with 

the initial D𝐾𝐿 value 0.419, appeared to be more efficient, compared 

to IMIRT model, with the initial D𝐾𝐿  value 0.433. However, as 

expected, the IMIRT model surpassed the UIRT model during the 

optimization process. As a result, the final D𝐾𝐿  of IMIRT reached 

0.371, while the D𝐾𝐿 of UIRT 0.399. The quantitative result indicated 

the merit of IMIRT over UIRT in terms of model fitting. 

4.1.2 Accuracy of Imputation by IMIRT 

 

Figure 4-2.  The illustration of imputation performance by means of 

accordance ratio (right table), and the criteria for accordance ratio (left 

graphs). The first criterion (upper graphs) sorted correct responses for 

an expectation value over 0.5. The second criterion (lower graphs) 

sorted correct responses for an expectation value over 0.7 and a bias 

less than 0.3. For the second criterion, expectations between 0.3 and 

0.7 were considered undecided and excluded from the accordance ratio 

calculation. 
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The results shown in Figure 4-2 once again indicate the 

superiority of IMIRT. The agreement ratio of IMIRT, 76.65%, 

outperformed that of UIRT, which was 74.62%. This represents an 

improvement of 2.03%. 

Furthermore, for the stricter criterion with a bias of less than 0.3, 

the improvement was more significant. IMIRT achieved an agreement 

ratio of 60.36%, while UIRT of 55.22%. In this case, the improvement 

was enlarged to 5.14%. Given that the second criterion, a bias of less 

than 0.3, is stricter, the higher agreement ratio under the second 

criterion may reveal the higher quality of imputation accuracy. Then, 

IMIRT was suggested to own higher quality of imputation accuracy 

than UIRT. 

Therefore, these results suggest that IMIRT not only improves 

the quantity of imputation but also the quality of imputation compared 

to UIRT. 

4.1.3 Power of Explanation of IRT Improvement by IMIRT 

Regarding the train sets of both models in Figure 4-3, D𝐾𝐿 

gradually decreased as the iterations progressed. However, there was 

a difference in the trend of D𝐾𝐿 progression for the test sets. The 

UIRT train result indicated overfitting as the D𝐾𝐿 of the UIRT test set 

retrogressed against the D𝐾𝐿 of the UIRT train set. Meanwhile, the 

D𝐾𝐿 progression for the IMIRT test set gradually followed the trend of 

the D𝐾𝐿 of the IMIRT train set, with a slight rebound.  

The fact that overfitting diminishes the power of explanation of a 

model suggests that the power of explanation of the UIRT model has 
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been compromised. Conversely, the absence of this phenomenon in 

the IMIRT model indicates its relatively superior power of explanation. 

 

Figure 4-3. Progress of 𝐃𝑲𝑳  of train sets (blue line) and test sets 

(green dotted line) of UIRT (Unidimensional Item Response Theory) and 

IMIRT (Ising Multidimensional Item Response Theory). The 𝐃𝑲𝑳  of 

UIRT test set retrogressed then sidle along (left), whereas the 𝐃𝑲𝑳 of 

IMIRT softly landed first along with the train set and then rebounded 

slightly (right). 

    In summary, all the aspects of model fitting result, imputation 

performance and power of explanation reinforce the superiority of 

IMIRT. 

 

4.2. Meaning of Parameters 

 

4.2.1 Meaning of the New 𝛉 

Regarding the θ of IMIRT, there are two components: θ1 and 

θ2. To understand the meaning of this new θ, it is necessary to 

compare it with the θ of UIRT. 
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Figure 4-4. Correlation between 𝛉  of UIRT (Unidimensional Item 

Response Theory) and 𝛉𝟏  of IMIRT (Ising Multidimensional Item 

Response Theory). The graph consists of the 2727 examinees (blue 

dots) and a trend line (red dotted line). The slope of the trend line is 

0.989. The 𝐑𝟐 value of the correlation is 0.978. 

First, in regard to IMIRT θ1, a significant correlation with UIRT θ 

was observed. As an example, the R2 value of 0.978 indicates that θ1 

and θ are practically identical. Therefore, it can be concluded that 

IMIRT θ1  is well-qualified to be regarded as the index of ability 

location as UIRT θ. 

Second, regarding the parameter IMIRT θ2, an intriguing pattern 

was observed in Figure 4-5 to a certain extent. For the initial case, 

namely before model fitting, the graph of θ1  and θ2  shows a 

parabolic pattern. Meanwhile, after model fitting, the graph of θ1 and 

θ2 exhibits a boomerang-shaped pattern. Fortunately, those patterns 

are reasonable as two graphs shows that low-level examinees tend  
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Figure 4-5. Distributions of examinees with respect to 𝛉𝟏 (Ability) and 

𝛉𝟐  (Consistency) of IMIRT (Ising Multidimensional Item Response 

Theory) before model fitting (left) and after model fitting (right). The 

distribution of initial θs forms a parabolic shape (left), whereas the 

distribution of θs after model fitting appears as a dispersed boomerang 

shape (right). 

to exhibit high-level consistency, similar to high-level examinees. 

The distinctive point is that θ2  of post model fitting appears to 

scatter the examinees in the middle-level and upper-middle-level 

range from the initial pattern the most. Comparing the two graphs in 

Figure 4-5, it is certain to recognize the distinctive point. 

As a result, it is possible to tentatively conclude that θ2  has 

potential to differentiate the distribution of combinations (θ1 , θ2) 

among similar abilities. Therefore, θ2  can be denominated as the 

response consistency. 

The principle underlying the segregation by θ2 is proposed as a 

qualitative explanation with the aid of the diagrams shown in Figure 

4-6 and Figure 4-7. Based on the chart presented above, when there  
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Figure 4-6. 2D the graphs (left) for the transition of position of reference data (yellow dots) and the data from corresponding 

expectation values (blue dots) and 3D graphs of IMIRT (Ising Multidimensional Item Response Theory) before transition. In 

the middle 2D graph, the positions of reference data of examinees who missed the item are shown as indicated by the red 

arrows. For the lower case (item code: CM919Q02S), the positions of reference data of examinees who missed the item 

progressed. On the right side, the transition from the 3D graph to the 2D graph is depicted, as indicated by the blue arrows. 

The transition follows the relation: 𝛉𝒆𝒒 =  𝜽𝟏 +
𝜶𝟐

𝜶𝟏
𝜽𝟐 
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Figure 4-7. 2D the graphs (left) for the transition of position of reference data (red dots) and the data from corresponding 

expectation values (blurred blue dots) and 3D graphs of IMIRT (Ising Multidimensional Item Response Theory) before 

transition. The position of reference data of examinees who missed or correct items unexpectedly was adjusted as red 

arrows indicated. The clearance of orange dots represents the density of reference data distribution.
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is a scenario of one correct response to one item and one incorrect 

response to another item, there is a deduction of points by '-1'. This 

trend suggests that θ2 imposes a penalty for answer inconsistency. 

Furthermore, it is expected that θ2 would aid in distinguishing 

sincere responses from wild guessing. Since wild guessing often 

leads to inconsistent answers, namely low consistency, θ2  is 

anticipated to highlight this characteristic.  

Before conducting the actual analysis of Figure 4-6 and Figure 

4-7, the concept of the converted ability, θ𝑒𝑞, was introduced. θ𝑒𝑞 is 

defined as below: 

 θ𝑒𝑞 =  𝜃1 +
𝛼2

𝛼1
𝜃2 . (4. 14) 

    After introducing of θ𝑒𝑞 , it is indeed possible to conduct a 

qualitative analysis through a direct comparison with UIRT. The 

yellow dots and black arrows in Figure 4-6, and red dots and red 

arrows in Figure 4-7 illustrate cases where θ2 becomes relevant. In 

both example items, θ2 is assumed to suppress incorrect responses 

and push them towards the left. Additionally, for the item 

“CM919Q02S”, it was observed that correct responses tend to shift 

towards the right.  

In summary, IMIRT θ1 , one of the new variables, is virtually 

identical to the existing variable UIRT θ . Whereas the response 

consistency, θ2 , serves various roles: segregating ties and 

discerning wild guessing among answers. 
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Figure 4-8. Diagram of the distribution of 𝐐 depicted by 51 X 51 matrix (left) and the contrast table of PISA 2018 reference 

data and data-driven block tendency (right). The scale of 𝐐 ranges from -1.62 to 12.47. The six black squares indicate the 

block tendency of the interaction among items. The item groups categorized by blocks are identical to the item groups 

categorized in the reference research report.  
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4.2.3 Meaning of the Parameter Q 

Considering the effect of the new interaction term originated 

from the Hamiltonian of the Ising model, it is significant to analyze 

the identity of Q, a weight parameter. 

In Figure 4-8, a series of block tendencies is observed, forming 

six minor off-diagonal square matrices. This block tendency implies 

that items may interact exclusively with adjacent items within the 

same block. 

In reality, according to PISA 2018 research report, mathematics 

proficiency is categorized into 6 levels: M1, M2, M3, M4, M5, M6A③. 

It has been observed that the range of each proficiency level aligns 

closely with the block tendency identified. However, there is one 

exception, Q42,48, which deviates from the overall block tendency. 

Despite this exception, Q can still be used to track the items that 

each examinee personally responded to, with only minor 

discrepancies. 

Meanwhile, it should be noted that the Hamiltonian of the Ising 

model and the interaction term in the IMIRT model (4.4) are not 

strictly identical. In the context of the Ising model, the spins of a 

material flip due to interactions with adjacent spins. However, in the 

context of the IMIRT model, the responses of the reference data 

                                            
③ Some parts of the categorization are shown in the Figure 4-8. The whole 

categorization and the check list are enumerated in Appendix C. 

Interaction term: ∑ 𝑄𝑘𝑙  𝑌′𝑘
𝜇

𝑌′𝑙
𝜇

𝑘≠𝑙
 . (4. 15) 
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never flip by interactions with adjacent responses. 

On the other hand, both the Ising model and the IMIRT model 

allow for the alteration of the interaction parameter, such as Q in the 

IMIRT model. When the magnitude of Q is changed, it also affects 

the impact of interactions between adjacent items. For example, if Q 

is positive, analogous to a ferromagnetic interaction, it strengthens 

the effect of interactions. Conversely, if Q is negative, analogous to 

an anti-ferromagnetic interaction, it reverses the effect of 

interactions. Consequently, the scale of the interaction between two 

adjacent items, expressed as E[Y𝑖Y𝑗], is amplified to E[Y𝑗𝑄𝑖𝑗Y𝑖] by Q 

as illustrated in Figure 4-9. 

Searching for the identity of Q, a hint can be suggested from the 

Riemannian geometry. In the Riemannian geometry, which is applied 

in General Relativity, it is possible for the Riemannian metric to 

distort vectors of Euclidean space. Similarly, it is feasible for Q to 

Figure 4-9. Correlation triangle scheme between item responses (𝐘𝐢, 

𝐘𝐣 ) and 𝐐 . 𝐄[𝐘𝒊𝐘𝒋]  ranges -0.35~0.37, 𝐄[𝐘𝒋𝑸𝒊𝒋𝐘𝒊]  -0.96~1.95, 𝐐  -

1.62~12.47 
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distort the connection between two responses Y. 

In summary, several aspects of the complex nature of Q have 

been discovered. First, Q represents the interaction between two 

adjacent items, analogous to the interaction in the Ising model. 

Second, the block tendency of Q can be excavated by data-driven 

approach. Finally, Q plays a role in distorting the correlation between 

two items. Then, Q has the potential to both intensify and diminish 

the correlation between two interacting items. 
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Chapter 5.  Conclusion 
 

 

To summarize, this study aimed to investigate whether the 

IMIRT model, which applies the Hamiltonian of the Ising model, can 

enhance the performance of IRT. In particular, the introduction of 

interaction among item responses implied the potential of merit. 

Specifically, the IMIRT model outperformed the existing UIRT model 

in terms of model fitting, imputation, and explanatory power. 

Additionally, this study examined the significance of the newly 

suggested variables and parameters, namely θ1 , θ2  and Q , to 

understand the underlying reasons for the performance improvement 

of the IMIRT model. The findings suggest that θ2 is proposed to 

represent the response consistency of examinees. That θ2 

segregated innocent responses from wild guessing is assumed to 

contribute to the advance. Finally, Q is identified as a factor that 

distorts the correlation between two items and it exhibited a block 

tendency with minor exceptions. 

Afterwards, we propose two follow-up subjects for further 

exploration of general consistency factors. First, it is possible to 

expand the category of interactions among item responses. In this 

study, we only introduced the interactions between two item 
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responses for the IMIRT model. Then, the influence by interactions 

among three or more item responses is required to be explored. 

Second, we will explore general consistency factors on the scope of 

data-driven approaches as well as model-driven approaches. The 

block tendency of Q  had confirmed the potential of data-driven 

approaches. Then, application of data-driven approaches is expected 

to contribute to discover new aspects of general consistency factors. 

Thus, these subjects are worth of exploring in future studies. 
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Appendix A.  Detailed Derivations of Formula 
 

 

A.1. Basic Information of Kullback-Leibler 

Divergence 

 

Kullback-Leibler divergence(DKL(Y||P)), also known as relative 

entropy, quantifies the disparity between the probability distribution 

of the model (P) and the reference probability distribution (Y). In the 

binary case, Kullback-Leibler divergence, serving as an objective 

function, is defined as follows: 

Kullback-Leibler divergence is always non-negative. This 

property is also called Gibb’s inequality: 

Kullback-Leibler divergence equals zero if and only if Y = P, 

indicating that Y  is identical to P . The inequality implies that 

minimizing Kullback-Leibler divergence allows the model to 

approach the real data more closely. 

 

 DKL(Y||P) ≡ Yln
Y

P
+ (1 − Y)ln

(1 − Y)

(1 − p)
 . (A. 16) 

 DKL(Y||P) ≥ 0 . (A. 17) 
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A.2. Probability Distribution and Variables 

 

The probability distribution of the Multi-dimensional item 

response model takes the form of a sigmoid function as shown below: 

where 𝛂𝐢 ⋅ 𝛉μ = αi,1θ1
μ

+ αi,2θ2
μ

. And ‘ Yi
μ

= 1’’ means that the μ th 

examinee corrected the ith item. Meanwhile, θ2 has the two step 

route for assembly as below: 

where P̂μ is a pseudo probability with 0 ≤ P̂μ ≤ 1, and k′ and l′ are 

index of items without missing data. In addition, if μth examinee 

corrects the kth item, then Y′k
μ

= 1. If not, then Y′𝑘
μ

= −1. 

 

A.3. Detailed Procedures of Calculations for Model 

Optimization 

 

To minimize the objective function, appropriate variables such as 

𝛂, d, 𝛉 , are required for P  to fit Y . By calculating the argument 

minimum of the objective function, it will be possible to determine the 

variables as follows: 

 P(Yi
μ

= 1|𝛂𝐢, di, 𝛉μ) = [1 + exp(−𝛂𝐢 ⋅ 𝛉μ + di)]−1 . (A. 18) 

1st step P̂μ =
1

2
∑

Qkl Y′k
μ

Y′l
μ

Σ𝑘′≠l′Qk′l′k≠l
+

1

2
 , (A. 19) 

2nd step θ2 = ln (
P̂μ

1 − P̂μ
) . (A. 20) 
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However, finding the argument minimum of the objective function 

analytically is convoluted. Therefore, it is plausible to suggest a 

numerical method such as Gradient Descent. Using Gradient Descent, 

the optimized variables of 𝛂, d, 𝛉 are explored step by step. 

First, in order to search the optimized α, the derivative should be 

calculated as follows: 

where A is the learning rate. 

To perform the calculation, complex calculations of the partial 

derivative term should be conducted as follows: 

Then, the partial derivatives of the objective function of the 

whole data with respect to both α1 and α2 are given as follows: 

where αi,1 and αi,2 are the α1 and the α2 of the ith item respectively, 

 argmin
𝛂,d,𝛉

DKL(Y||P) . (A. 21) 

 αnew = αold − A
∂DKL

∂α
 , (A. 22) 

 
∂DKL

∂α
=

∂DKL

∂P

∂P

∂α
 , (A. 23) 

where  
∂DKL

∂P
=

P − Y

P(1 − P)
 , (A. 24) 

and  
∂P

∂α
= θP(1 − P) . (A. 25) 

 
∂DKL

∂αi,1
= ∑ θ1(Pi

μ
− Yi

μ
) 

μ
, (A. 26) 

 
∂DKL

∂αi,2
= ∑ θ2(Pi

μ
− Yi

μ
)

μ
 , (A. 27) 
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θ1
μ
 and θ2

μ
 are the θ1 and the θ2 of the μth examinee respectively. 

Second, in order to search for the optimized d, the derivative 

should be calculated as follows: 

where A is the learning rate. 

Then, the partial derivatives of the objective function of the 

whole data with respect to d is given as follows: 

Then, the partial derivative of the objective function of the whole 

data by d is given as follows: 

Third, in order to search for the optimized θ1 , the derivative 

should be calculated as follows: 

where, A is the learning rate. 

Then, the partial derivatives of the objective function of the 

whole data with respect to θ1 is given as follows: 

 dnew = dold − A
∂DKL

∂d
 , (A. 28) 

 
∂DKL

∂d
=

∂DKL

∂P

∂P

∂d
 , (A. 29) 

where,  
∂DKL

∂P
=

P − Y

P(1 − P)
 , (A. 30) 

and  
∂P

∂d
= −P(1 − P) . (A. 31) 

 
∂DKL

∂d
= ∑ −(Pi

μ
− Yi

μ
)

μ
 . (A. 32) 

 θ1
new = θ1

old − A
∂DKL

∂θ1
 , (A. 33) 
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Then, the partial derivatives of the objective function of the 

whole data by θ1 is given as follows: 

where θ1
μ
 is the θ1 of the μth examinee, αi,1 and αi,2 are the α1 and 

the α2 of the ith item respectively. 

Finally, in order to search for the optimized θ2, the derivative of 

Q should be conducted as follows: 

where A is the learning rate. 

To perform the calculation, complex calculations of the partial 

derivative term need to be conducted as shown below: 

 
∂DKL

∂θ1
=

∂DKL

∂P

∂P

∂θ1
 , (A. 34) 

where,  
∂DKL

∂P
=

P − Y

P(1 − P)
 , (A. 35) 

and  
∂P

∂θ1
= αP(1 − P) . (A. 36) 

 
∂DKL

∂θ1
μ = ∑ αi,1(Pi

μ
− Yi

μ
)

i
 , (A. 37) 

 Qnew = Qold − A
∂DKL

∂Q
 , (A. 38) 

 
∂DKL

∂Q
=

∂DKL

∂P

∂P

∂θ

∂θ

∂P̂

∂P̂

∂Q
 , (A. 39) 

where  
∂DKL

∂P
=

P − Y

P(1 − P)
 , (A. 40) 

  
∂P

∂θ
= α2P(1 − P) , (A. 41) 
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Then, the partial derivative of the objective function with respect 

to Q for the entire dataset is given as follows: 

where P̂μ is a pseudo probability with 0 ≤ P̂μ ≤ 1, and k and l are 

index of items without missing data. In addition, if μth examinee 

corrects the kth item, then Y′𝑘
μ

= 1. If not, then Y′𝑘
μ

= −1. αi,2 is the 

α2 of the ith item. 

    θ2 can be updated with the newly learned Q using equation (A. 

5). 

  

 
∂θ

∂P̂
=

1

P̂(1 − P̂)
 , (A. 42) 

And 
∂P̂

∂Q
=

Y′𝑘
μ

Y′l
μ

− 2P̂ + 1

2 Σk′≠l′Qk′l′
 . (A. 43) 

 
∂DKL

∂Q
= ∑

αi,2(Pi
μ

− Yi
μ

)

P̂μ(1 − P̂μ)i,μ
(

Y′𝑘
μ

Y′l
μ

− 2P̂μ + 1

2 Σk′≠l′Qk′l′
) , (A. 44) 
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Appendix B.  Detailed Algorithms for Sampling, 

Variable 𝛉𝟐 Fitting of Ising MIRT 

embodied by Python 
 

 

B.1. Sampling without Replacement to Generate Train 

Set and Test Set 

 

def simple_random(num_residues, num_division):       # Number 

Distribution in Random 

     

    result = [] 

    count = 0 

     

    for i in range(num_division): 

        if count < num_residues: 

            result.append(1) 

        else: 

            result.append(0) 

        count += 1 

         

    random.shuffle(result) 

    result_np = np.array(result) 

         

    return result_np        # return is yielded in numpy form 

 

def random_colrow_extractor(df_bf_gagong, df_pray_gagong, rate_sam):      

# df_pray_gagong is of pandas, list_cols is of list. 

     

    cols_num_samp = []       # the number of samples for each item 

    coord_list = [] 

    ind_n = 0 

     

    df_decay_train = df_bf_gagong.drop(['NS'], axis=1) 

    df_decay = df_pray_gagong.drop(['NS'], axis=1) 

    list_cols = basket_column.copy() 
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    row_min = df_decay.shape[0] 

    col_min = df_decay.shape[1] 

     

    num_sam = math.trunc(tot_num_ref * rate_sam)     # tot_num_ref is 

universal variable. 

     

    # To distribute samples for each item 

    how_quotient = num_sam // col_min 

    how_residue = num_sam % col_min 

     

    num_dist_col = simple_random(how_residue, col_min) + how_quotient 

    num_dist_rsh = num_dist_col.reshape(1,col_min) 

    num_dist_col_pd = pd.DataFrame(num_dist_rsh) 

    num_dist_col_pd.columns = list_cols[:51] 

     

    # To distribute samples for each examinee 

    how_quotient_mu = num_sam // row_min 

    how_residue_mu = num_sam % row_min 

     

    num_dist_row = simple_random(how_residue_mu, row_min) + 

how_quotient_mu 

    num_dist_rshr = num_dist_row.reshape(row_min,1) 

    num_dist_row_pd = pd.DataFrame(num_dist_rshr, 

index=df_decay.index.tolist()) 

     

    # data for test set 

    data_collect = [] 

    coord_col = [] 

    coord_row = [] 

    row_col_val = [] 

     

    # result for test set 

    basket_trial_np = np.zeros((rows,columns)) 

    basket_trial_nan = np.where(basket_trial_np == np.nan, 

basket_trial_np, np.nan) 

    basket_test = pd.DataFrame(basket_trial_nan) 

    basket_test.columns = list_cols[:51] 

 

    # shuffle examinee's index 

    shf_index = df_decay.index.tolist().copy() 

    random.shuffle(shf_index) 

     

    for mu in shf_index: 

 

        col_decay = list_cols[:51].copy() 

         

        for j in list_cols[:51]: 

            if np.isnan(df_decay.loc[mu][j]): 

                col_decay.remove(j) 

            elif num_dist_col_pd.loc[0][j] == 0: 

                col_decay.remove(j) 



 

 ４６ 

         

        col_decay_len = len(col_decay) 

        num_col_pick = num_dist_row_pd.loc[mu][0] 

        picked = simple_random(num_col_pick, col_decay_len) 

        picked_np = np.array(picked) 

        loc_picked = np.where(picked_np == 1)[0] 

         

        for nm in loc_picked: 

            col_picked = col_decay[nm] 

            coord_col.append(col_picked) 

            coord_row.append(mu) 

            row_col_val.append(df_decay.loc[mu][col_picked]) 

            num_dist_col_pd.loc[0][col_picked] -= 1 

            df_decay_train.loc[mu][col_picked] = np.nan 

             

            basket_test.loc[mu][col_picked] = 

df_decay.loc[mu][col_picked] 

             

    data_collect.append(coord_row) 

    data_collect.append(coord_col) 

    data_collect.append(row_col_val) 

    data_collect_np = np.array(data_collect) 

     

    return df_decay_train, basket_test, data_collect_np      # processed 

train set, test set and the set of coordinates of test set 

 

# sampling responses to test set 

 

basket_ini = pd.concat([num_dfdf, p_solves], axis=1)   # nametagging of 

num_dfdf 

 

num_dfdf_stunt = num_dfdf.copy()    # num_dfdf's understudent 

num_dfdf_stunt.columns = fil4.columns.to_list() 

 

basket_column = fil4.columns.to_list() 

basket_column.append('NS')     # NS stands for 'N'umber of the 'S'olved 

problems 

 

basket_ini.columns = basket_column 

 

gagong_univ1 = basket_ini.copy() 

#gagong_univ21 = gagong_univ1[gagong_univ1['NS'] >= 3] 

#gagong_univ31 = gagong_univ21.notnull().sum() 

 

less_2 = [] 

 

for i in range(rows): 

    if basket_ini['NS'][i] <= 15: 

        less_2.append(i) 

 

print(less_2) 
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basket_sel = basket_ini.copy() 

basket_sel.drop(less_2, axis=0, inplace=True) 

 

tot_num_ref = int(gagong_univ1.sum()[-1]) 

 

train_gagongs = [] 

test_gagongs = [] 

num_iter = 10 

 

for i in range(num_iter): 

 

    num_df_gagong, test_set_gagong, test_set_coord = 

random_colrow_extractor(basket_ini, basket_sel, 0.1) 

    # 'Gumeong' mean 'a hole' in Korean. 

         

    train_gagongs.append(num_df_gagong) 

    test_gagongs.append(test_set_gagong) 
 

 

B.2. List of Functions for Updating 𝛉𝟐 Only 

 

# Both samjin_data and Q_let are of numpy.    'samjin' means 'trinary' 

in Korean. 

def Shell_gagong(samjin_data, Q_let): 

     

    num_gagong = samjin_data.copy() 

    rows_let = num_gagong.shape[0] 

    columns_let = num_gagong.shape[1] 

 

    shell_list = [] 

 

    for i in range(rows_let): 

        garo_pre = num_gagong[i, :]  # response vector(Y) of 1D. 'garo' 

means 'horizon' in Korean. 

        garo_T = np.reshape(garo_pre, (columns_let, 1))  # vertical form 

        sero = garo_T.copy()    # 'sero' means 'the vertical' in Korean. 

        garo = np.transpose(garo_T) 

        shell_rough = sero * garo  # 2D matrix of all the combination of 

Y_i Y_j (symmetric) 

 

        carrier = Q_let * shell_rough    # 2D matrix with intensity Q 

        np.fill_diagonal(carrier, 0)     # off-diagonal 

        shell_list.append(carrier) 

 

    shell_result = np.array(shell_list)  # The result is yielded in 3-

Rank Tensor 

     

    return shell_result 
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# The function to generate ingredient for pseudo-probability from Ising 

Hamiltonian 

# Gagong_data is of pandas and Q_let is of numpy. 

def answer_covari_bfsum(gagong_data, Q_let): 

 

    num_gagong_bf = gagong_data.to_numpy() 

    rows_let = num_gagong_bf.shape[0] 

    columns_let = num_gagong_bf.shape[1] 

    Yij_shell_let = Yij_shell.copy() 

 

    Q_np = Q_let.copy() 

     

    # Conversion of (1,0) binary data into (1,-1) binary data (NaN is 

transformed to zero) 

    # Refinement for avoiding 'divided by zero' error 

    num_gagonged_bf = np.where(num_gagong_bf == 0.01, -0.99, 

num_gagong_bf) 

    num_gag_pd = pd.DataFrame(num_gagonged_bf) 

    num_gag_fna = num_gag_pd.fillna(0) 

    num_gagonged_np = num_gag_fna.to_numpy() 

     

    p_bfsum = Shell_gagong(num_gagonged_np, Q_np)       # the numberator 

before sum of the formula above 

 

#--------simple sum up ------- Normalization down ----------------- 

    # generation of denominator of the formula above 

     

    denomin = [] 

    for i in range(rows): 

        bf_Qsam = Yij_shell[i] * Q_let 

        af_Qsam = bf_Qsam.sum() 

        denomin.append(af_Qsam) 

 

    P2_carrier = p_bfsum.copy()          # 3-Rank Tensor 

     

    # Ingredient of pseudo-probability 

    for i in range(rows_let): 

        if denomin[i] == 0: 

            P2_carrier[i] = 0 * P2_carrier[i] # Get rid of the 

information of examinees who solved only one item. 

        else: 

            P2_carrier[i] = P2_carrier[i] / denomin[i] 

     

    return P2_carrier 

 

         

# Generation of pseudo-probability is accomplished in the end. 

# Gagong_data is of pandas and Q_let is of numpy. 

def answer_covari_afsum(gagong_data, Q_let): 

     

    # collection of the whole ingredient 
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    p_bfsum = answer_covari_bfsum(gagong_data, Q_let) 

    gagong_np = gagong_data.to_numpy() 

    rows_let = gagong_np.shape[0] 

    columns_let = gagong_np.shape[1] 

     

    covari_ini = p_bfsum.sum(axis=2) 

    covari_mid = covari_ini.sum(axis=1) 

    covari_carry = np.reshape(covari_mid, (rows_let, 1))  # keep the 

vertical shape 

    # pseudo-probability of range between 0 and 1 

 

    mid_result = (49/98.01) * (covari_carry) + 0.5  # refinement 

avoding 'divided by zero' error 

     

    # refinement avoding 'divided by zero' error 

    scarub = np.where(mid_result > 0.99, 0.99, mid_result) 

    scourge = np.where(scarub < 0.01, 0.01, scarub) 

    P2_result = scourge 

         

    return P2_result       # pseudo-probability of numpy form 

 

# The function to calculate the derivative of KLD by Q 

# Gagong_data is of pandas the others are of numpy. 

def Q_deriv(alp1, alp2, d_let, tht1, tht2, Q_let, gagong_data): 

 

    num_gagong_bf = gagong_data.to_numpy() 

    rows_let = num_gagong_bf.shape[0] 

    columns_let = num_gagong_bf.shape[1] 

    Yij_shell_let = Yij_shell.copy() 

 

    Q_np = Q_let.copy()              

    Q_nuul = Q_halves.copy() # The initialized Q matrix of Universality 

     

    # Conversion of (1,0) binary data into (1,-1) binary data (NaN is 

transformed to zero) 

    # Refinement for avoiding 'divided by zero' error 

    num_gagonged_bf = np.where(num_gagong_bf == 0.01, -0.99, 

num_gagong_bf) 

    num_gag_pd = pd.DataFrame(num_gagonged_bf) 

    num_gag_fna = num_gag_pd.fillna(0) 

    num_gagonged_np = num_gag_fna.to_numpy() 

     

    p_bfsum_nossi = Shell_gagong(num_gagonged_np, Q_nuul) 

    p_bfsum = Shell_gagong(num_gagonged_np, Q_np) # Before calculation 

 

#----------------------------division line----------------------------# 

    # generation of denominator of the formula above 

    denomin = [] 

    for i in range(rows): 

        bf_Qsam = Yij_shell[i] * Q_let 

        af_Qsam = bf_Qsam.sum() 
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        denomin.append(af_Qsam) 

 

    P2_carrier1 = p_bfsum_nossi.copy() 

    P2_carrier20 = p_bfsum.copy()          # 3-Rank Tensor 

 

    # The 1st term of the numerator 

    for i in range(rows_let): 

        if denomin[i] == 0: 

            P2_carrier1[i] = 0 * P2_carrier1[i] 

        else: 

            P2_carrier1[i] = P2_carrier1[i] / denomin[i] 

 

    # The 2nd term of the numerator 

    for i in range(rows_let): 

        if denomin[i] == 0: 

            P2_carrier20[i] = 0 * P2_carrier20[i] 

        else: 

            P2_carrier20[i] = P2_carrier20[i] / (denomin[i] * 

denomin[i]) 

             

    covari2_ini = P2_carrier20.sum(axis=2) 

    covari2_mid = covari2_ini.sum(axis=1) 

    P22_part = np.reshape(covari2_mid, (rows_let, 1))   # keep the 

vertical shape 

     

    P2_list = [] 

    for i in range(rows_let): 

        carrier = Yij_shell_let[i] * P22_part[i] 

        P2_list.append(carrier) 

     

    P2_carrier2 = np.array(P2_list) 

     

    return P2_carrier1, P2_carrier2 # former: the 1st term, latter: the 

2nd term of the numerator 

 

         

# The function to sum all the ingredient of the formula above in the 

end 

# Gagong_data is of pandas the others are of numpy. 

def Q_learn(alp1, alp2, d_let, tht1, tht2, Q_let, gagong_data): 

     

    Q_np_test = Q_let.copy()               # Matrix to be learned 

    gagonged_data = gagong_data.to_numpy() 

    rows_let = gagonged_data.shape[0] 

    columns_let = gagonged_data.shape[1] 

 

    # the chain of the derivative: 3-Rank Tensor form 

    P2_mu = answer_covari_afsum(gagong_data, Q_np_test) 

    Normed_Y = (49/98.01) * (Q_deriv(alp1, alp2, d_let, tht1, tht2, 

Q_let, gagong_data)[0] - Q_deriv(alp1, alp2, d_let, tht1, tht2, Q_let, 

gagong_data)[1]) 



 

 ５１ 

 

#-----------------------------division line---------------------------# 

    # common part 

    com_pt = preprocess_diff(alp1, alp2, d_let, tht1, tht2, 

gagong_data) 

 

    # calculation start 

    common_unit_np = com_pt * alp1     # 2-dimensional Matrix 

         

    common_unit_T = np.transpose(common_unit_np)  # mu for axis=1; in 

order to link mu with 3-Rank Tensor 

    decoy_1st = pd.DataFrame(common_unit_T) 

    decoy_2nd = decoy_1st.fillna(0) 

    common_unit = decoy_2nd.to_numpy()                            

 

#-----------------Now, it's time to build a 4-Rank tensor ------------# 

     

    P_hat_list = []    # Initialize the list to store a 4-Rank Tensor 

    P_hat_3D = []      # Initialize the list to store a 3-Rank Tensor 

    carrier_2D = [] 

 

    for i in range(columns_let): 

        for j in range(columns_let): 

            for mu in range(rows_let): 

                carrier = common_unit[:, mu] * Normed_Y[mu, i, j] / 

(P2_mu[mu, 0] * (1 - P2_mu[mu, 0])) 

                carrier_2D.append(carrier) 

            P_hat_3D.append(carrier_2D) # combination of mu and k 

components is added. 

            carrier_2D = []              # Reset the 2D matrix 

        P_hat_list.append(P_hat_3D)     # complete the ith component 

        P_hat_3D = []                    # Reset the 3-Rank Tensor 

         

    P_hat_np = np.array(P_hat_list)     # complete the 4-Rank Tensor 

     

    #Then, sum it up in terms of k and mu axes. 

    # KLD Gradient Discent 

    Q_pre = P_hat_np.sum(axis=3)        # sum it up in mu axis 

    Q_presum = Q_pre.sum(axis=2)        # sum it up in k axis 

     

    # Final Gradient Descendent: update 

    Q_med = Q_np_test - A * Q_presum 

    np.fill_diagonal(Q_med, 0) 

    Q_result = Q_med/(2 * Q_med.mean()) # Normalization: the average of 

all the component should be 0.5. 

 

    return Q_result # The result is yielded in 2D matrix of numpy form. 

 

# the function to update theta_2 

# Only the gagong_data is given in pandas. 

# Theta_2 is updated via the imaged process above. 
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def set_theta_Q(gagong_data, Q_let): 

     

    rate_result = answer_covari_afsum(gagong_data, Q_let) 

    theta_result = np.log((rate_result)/(1 - rate_result)) 

     

    return theta_result       # The result is yielded in numpy form. 

 

 

B.3. Iteration Process for 𝐃𝑲𝑳 Calculation of Train and 

Test Set 

 

albetheQKLD = [] 
num_iter = 0 
#train_trial = [] 
#train_trial.append(train_gagongs[0]) 
 
#for gagong_carrier in train_trial: 
for gagong_carrier in train_gagongs: 
    carrier_shell = [] 
 
    num_dfdf = gagong_carrier.copy() 
    p_df = num_dfdf.copy() 
    num_np = num_dfdf.to_numpy() 
 
    # theta_1 initialization 
    row_pre = p_df.mean(axis=1) 
    row_prob_1 = row_pre.to_numpy() 
    row_prob = np.reshape(row_prob_1, (rows,1)) 
 
    theta_1 = np.log(row_prob/(1-row_prob)) 
 
    # d initialization 
    col_pre = p_df.mean(axis=0) 
    col_prob_1 = col_pre.to_numpy() 
    col_prob = np.array([col_prob_1]) 
    d0 = np.log(col_prob/(1-col_prob)) 
    d = np.mean(d0) - d0 
 
    # alpha_1 and alpha_2 initialization 
    alpha = np.ones((1,columns)) 
     
    A = 0.005            # learning rate 
 
    # transformation of (1,0) binary responses into (1,-1) 
binary responses 
    num_exp1 = num_np.copy() 
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    num_exp2 = np.where(num_exp1 == 0.01, -0.99, num_exp1) # 
transformation 
 
    num_exp_df = pd.DataFrame(num_exp2) 
    num_exp_af = num_exp_df.fillna(0)       # get rid of NaN 
    num_exp_np = num_exp_af.to_numpy() 
 
    # Q initialization 
    Q_np_ini = np.ones((columns, columns)) 
    np.fill_diagonal(Q_np_ini, 0) 
    Q_halves = Q_np_ini / 2 
 
    # theta_2 initialization 
    shell_list = [] 
 
    for i in range(rows): 
        garo_pre = num_exp_np[i, :] 
        garo_T = np.reshape(garo_pre, (columns, 1))   # vertial 
vector form 
        sero = garo_T.copy() 
        garo = np.transpose(garo_T) 
        carrier = sero * garo                    
        np.fill_diagonal(carrier, 0) # off-diagonal 
 
        shell_list.append(carrier) 
 
    shell_ini = np.array(shell_list) # initial combination of 
Y_iY_j 
 
    # the reference to indicate the location of solved items 
    Y_solved0 = num_np.copy() 
    Y_solved1 = np.where(Y_solved0 == 0.01, 1, Y_solved0) 
    Y_solved2 = np.where(Y_solved1 == 0.99, 1, Y_solved1) 
    Y_pd = pd.DataFrame(Y_solved2) 
    Y_fna = Y_pd.fillna(0)         # set NaN as zero 
    Y_solved = Y_fna.to_numpy() 
 
    Yij_solved = [] 
 
    for i in range(rows): 
        garo_pre = Y_solved[i, :] 
        garo_T = np.reshape(garo_pre, (columns, 1)) 
        sero = garo_T.copy() 
        garo = np.transpose(garo_T) 
        carrier = sero * garo                    
        np.fill_diagonal(carrier, 0)             
 
        Yij_solved.append(carrier) 
 
    Yij_shell = np.array(Yij_solved) 
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    denominator = [] 
    for i in range(rows): 
        bf_Qsum = Yij_shell[i] * Q_halves 
        af_Qsum = bf_Qsum.sum() 
        denominator.append(af_Qsum)  # generation of the 
denominator 
 
    P_carrier = []     # basket for initial pseudo-probability 
    for i in range(rows): 
        garo_pre = num_exp_np[i, :] 
        garo = np.reshape(garo_pre, (1, columns)) 
        sero_T = np.copy(garo) 
        sero = np.transpose(sero_T) 
 
        vectorman1 = sero * garo 
        vectorman11 = Q_halves * vectorman1 
        vectorman111 = vectorman11.sum(axis=1) 
        vectorman2 = vectorman111.sum(axis=0) 
 
        if denominator[i] == 0: 
            P_mu = 0 
        else: 
            P_mu = vectorman2 / denominator[i] 
 
        P_carrier.append(P_mu) 
 
    P_norm = np.array(P_carrier) 
 
    theta_pre = (49/98.01) * (P_norm) + 0.5    # final form of 
pseudo-probability initialization 
 
    # final initialization of theta_2 
    theta1_bfT = np.log(theta_pre / (1 - theta_pre)) 
    theta_2 = np.reshape(theta1_bfT, (rows,1)) 
 
    # initialization of the probability distribution of the 
model 
    exp1 = alpha * theta_1 
    exp2 = alpha * theta_2 
    ex_prob = np.exp(exp1 + exp2 - d)/(1+np.exp(exp1 + exp2 - 
d)) 
 
    ex_prob_real = ex_prob.copy() 
 
    for n in range(ex_prob.shape[0]): # reflect the distribution 
of NaN 
        for m in range(ex_prob.shape[1]): 
            if np.isnan(num_np[n][m]): 
                ex_prob_real[n][m] = np.nan 
 
    # KLD of each response 
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    KLD_indiv = num_np * np.log(num_np / ex_prob_real) + (1 - 
num_np) * np.log((1 - num_np) / (1 - ex_prob_real)) 
 
    # get rid of missing values 
    KLD_indiv_df = pd.DataFrame(KLD_indiv) 
    KLD_NaNga_df = KLD_indiv_df.fillna(0) 
    KLD_NaNga_np = KLD_NaNga_df.to_numpy() 
 
    # KLD initialization 
    KLD_RowSum = np.sum(KLD_NaNga_np, axis=1) 
    KLD_TotalSum_np = np.sum(KLD_RowSum, axis=0) 
 
    # Model Optimization Start 
    alpha1_mod, alpha2_mod, d_mod, theta1_mod, theta2_mod, 
Q_mod, KLDs_mod, KLDs_test_mod = opt_model(alpha, d, theta_1, 
theta_2, Q_halves, p_df, test_gagongs[num_iter], 20) 
 
    # save for further analysis 
    carrier_shell.append(alpha1_mod)       # 0 
    carrier_shell.append(alpha2_mod)       # 1 
    carrier_shell.append(d_mod)            # 2 
    carrier_shell.append(theta1_mod)       # 3 
    carrier_shell.append(theta2_mod)       # 4 
    carrier_shell.append(Q_mod)            # 5 
    carrier_shell.append(KLDs_mod)         # 6 
    carrier_shell.append(KLDs_test_mod)    # 7 
 
    albetheQKLD.append(carrier_shell) 
    num_iter += 1 
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     문항반응이론(Item Response Theory, IRT)은 문항과 사람 간 상

호작용에 대한 일반적인 양상에 관한 이론이다. 문항반응이론은 문제은

행 등 다양한 상황에서 활용된다. 뿐만 아니라 심리학 등 다양한 학문 

영역에서 문항반응이론을 연구 방법론으로 채택하고 있다. 이처럼 문항

반응이론은 학문적, 실용적 중요성을 지닌 것으로 평가할 수 있다. 

     문항반응이론은 실용성과 유연성의 측면에서 고전 시험 이론

(Classical Test Theory, CTT)을 능가하는 것으로 평가할 수 있다. 다

만, 문항반응이론은 문항과 사람 간 상호작용을 지나치게 단순화하였다

는 점을 문제점으로 지적할 수 있다. 기존 문항반응이론은 시험 결과를 

통한 학생의 수준 진단 신뢰도 및 추가 문제 추천 정확도 등에 한계를 

가지고 있다. 이러한 한계로 인해 기존 문항반응이론이 평가-학생지도 

간 연계성을 약화시킬 수 있다. 

문항반응이론이 평가-학생지도 간 연계성을 강화시키기 위하여, 

새로운 문항반응이론은 학생 수준 진단의 신뢰성 확보 및 결측치 예측

(imputation) 성능 향상이 필요하다. 이를 위하여 본 연구는 문항-문항 

간 상호작용에 주목하여 문항반응이론의 성능 향상을 도모하였다. 기존 

문항반응이론은 문항-문항 간 상호작용을 간접적으로 반영하였으나, 새

로운 문항반응이론은 문항-문항 간 상호작용을 직접 반영하였다. 이러

한 상호작용을 본 연구에서 '응답정합성(response consistency)'으로 명
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명하였다. 

새로운 문항반응이론의 성능 향상 및 성능 검증을 위하여 기계학습

(machine learning) 방식을 도입하였다. 그 결과 새로운 문항반응이론은 

응답정합성 도입을 통하여 더욱 일반화된 학생 수준 진단이 가능해졌다. 

그리고 개선된 진단 결과를 바탕으로 더 높은 결측치 예측 성능을 보였

다. 

응답정합성은 문항-문항 간 상호작용을 통하여 정답을 아는 응답과 

정답을 모르고 추측한 응답 간 변별력을 강화시킴으로써 문항반응이론의 

성능을 향상시킨 것으로 평가할 수 있다. 한편, 응답정합성이 범주화 한 

문제 묶음이 실제로 PISA 2018의 수준 체계 분류와 일치함을 확인할 

수 있었다. 이로써 본 연구는 교육평가 영역에서도 데이터 기반 접근법

(data-driven approach) 도입의 가능성을 연 것으로 평가할 수 있다. 

한편, 문항-문항 간 상호작용의 연구성과를 다문항 (multiple items) 간 

상호작용으로 확대한다면, 응답정합성 개념 일반화에 한걸음 다가갈 수 

있을 것으로 전망한다. 

 

 

 

 

 

 

 

주요어: 응답정합성, 다차원 문항반응이론, 문제은행, 결측치 예측, 기계
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