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Abstract

The “design phase” refers to a stage in observational studies, during which a re-

searcher constructs a subsample that achieves a better balance in covariate distribu-

tions between the treated and untreated, in order to conduct more robust and credible

inference for the parameter of interest. This article studies the role of this preliminary

phase in the context of linear regression, and provides justification for its utility. To

this end, we first formalize the design phase as a process of selecting a subsample,

where a researcher adjusts the estimand of her regression. Then, we justify covariate

balance as a valid criterion for this selection process, in that it informs for a given sub-

sample the maximum degree of misspecification that can be allowed for the regression

model, when we aim to restrict the distance between our estimand and the parameter

of interest within a target level of precision. Consequently, the pursuit of a subsample

with improved covariate balance is interpreted as identifying an estimand that is less

susceptible to bias in the face of possible misspecification of her regression model.

Keywords: covariate balance, conditional estimand, design phase, linear regres-

sion

∗The author acknowledges the financial support from the College of Social Sciences of Seoul National
University. Earlier versions of this article were presented at the Applied Micro Brown Bag sessions (2022
Fall, 2023 Spring) in the Department of Economics at Seoul National University. This particular version was
presented at the 6th International Conference on Econometrics and Statistics. Special thanks are extended
to Seojeong Lee for his continuous and invaluable guidance throughout this project, and also to Ryo Okui,
Jungmin Lee, and Myung Hwan Seo, whose feedback contributed to the development of this article.

1



Contents

1 Introduction 4

1.1 Related literature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2 Framework 6

3 Representation of the bias of a linear regression 8

4 Role of covariate balance in a linear regression 10

4.1 Bounds for the bias of a linear regression . . . . . . . . . . . . . . . . . . . . 11

4.1.1 Total variation bound . . . . . . . . . . . . . . . . . . . . . . . . . . 12

4.1.2 Kolmogorov-Smirnov bound . . . . . . . . . . . . . . . . . . . . . . . 13

4.1.3 Density ratio bound . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

4.1.4 Comparison of the bounds . . . . . . . . . . . . . . . . . . . . . . . . 15

4.2 Robust inference to misspecification . . . . . . . . . . . . . . . . . . . . . . . 15

5 Role of the design phase in a linear regression 17

5.1 Estimand adjustment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

5.2 Estimand assessment via covariate balance . . . . . . . . . . . . . . . . . . . 19

5.3 Inference for the adjusted estimand . . . . . . . . . . . . . . . . . . . . . . . 22

6 Simulation 24

7 Conclusion 27

A Proofs 30

A.1 Proof of Proposition 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

A.2 Proof of Corollary 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

A.3 Proof of Corollary 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

A.4 Proof of Corollary 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

2



A.5 Proof of Corollary 4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

A.6 Proof of Proposition 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

A.7 Proof of Proposition 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

A.8 Proof of Proposition 4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

B Supplementary materials 47

B.1 Extension of Proposition 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

B.1.1 Proof of Proposition 5 . . . . . . . . . . . . . . . . . . . . . . . . . . 47

B.2 Proofs of selected equations . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

B.2.1 Proof of equation (5) . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

B.2.2 Proof of equation (22) . . . . . . . . . . . . . . . . . . . . . . . . . . 49

B.3 Omitted simulation results . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

3



1 Introduction

In their influential book, Imbens and Rubin (2015, Chapter 15) define the term “design

phase,” which refers to a process of constructing a subsample on which “the treatment and

control samples are more balanced (in their covariate distributions) than in the original full

sample” so that “within this selected subsample, inferences are most robust and credible.”

This article validates these authors’ claim about the design phase, specifically in the

context of linear regression with binary treatment. For that, the design phase is first concep-

tualized as a process of subsample selection, wherein a researcher fine-tunes her estimand.

Covariate balance is then established as a legitimate criterion for this selection process, in

that for a given subsample, it quantifies the maximum degree of misspecification that we

may allow for our regression model, when pursuing a target closeness between our estimand

and the parameter of interest. As such, constructing a subsample with improved balance in

covariate distributions can be understood as finding an estimand that is less prone to bias,

i.e., “credible,” despite possible misspecification of our regression model, i.e., “robust.”

To fix ideas, let S be a sample given to a researcher. Suppose that she uses least squares

estimator β̂S derived from the sample S to estimate the parameter of interest, which we

denote by τS . In general, because of misspecification of her regression model, the estimand

βS that β̂S identifies is different from τS . Thus, valid inference for τS based on β̂S is not

feasible. Nevertheless, there may exist a “subsample” of S, which we denote by S∗, on which

βS∗ and τS∗ are close to each other. If so, we may perform valid inference for τS∗ based on

the least squares estimator β̂S∗ derived from S∗.

This is our formalization of the design phase; it is a process of selecting the subsample

S∗ whose βS∗ and τS∗ are close enough that we can conduct inference for τS∗ using β̂S∗ . The

problem is, how one knows beforehand whether the two, which depend on the population, are

close enough based on a finite sample. In the design phase, a researcher explores subsamples,

compares their covariate balance, and selects the one that exhibits better covariate balance.

Given our formalization, this can be justified only if covariate balance of a subsample informs
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us of their closeness, i.e., βS∗ − τS∗ , which we refer to as the bias of a linear regression.

In this article, we formally show that this is indeed the case. That is, covariate balance

of a subsample does contain information on the closeness of the two population quantities.

For that, in Section 3, we first derive a general representation of their difference, i.e., β − τ ,

for arbitrary population. Specifically, we show that it is an inner product of two functions,

each of which results from model misspecification of a regression and covariate imbalance.

Using this result, in Section 4, we bound the bias by the multiplication of two quantities,

which we denote by m and c, each of which captures the overall degree of misspecification

and covariate imbalance.

These results, which also apply to finite samples, are then employed in Section 5 when

formalizing the aim of assessing covariate balance of subsamples during the design phase.

Since the bias of a subsample S∗, i.e., βS∗ − τS∗ , is bounded by mS∗ times cS∗ , the balance

in covariate distributions, 1/cS∗ , which can directly be calculated from S∗, determines the

order of misspecification mS∗ that a researcher may compromise, when she aims to restrict

the bias within a desired range; for instance, below a pre-specified tolerance ε > 0. That is,

if she wants to be confident of τS∗ at the precision of ε, mS∗ can be allowed for up to ε/cS∗ .

In this regard, constructing a subsample with improved covariate balance is equivalent to

searching for an estimand, with which a researcher can be assured of less bias resulting from

misspecification of her regression model.

1.1 Related literature

This article is related to the conditional estimand literature, given that βS∗ is the conditional

linear projection of the outcome given the in-subsample empirical distribution of the treat-

ment and covariates. We extend the full-sample results of Abadie et al. (2014) to arbitrary

subsamples in Section 5, where we establish the asymptotic properties of β̂S∗ − βS∗ . In fact,

our formalization of the design phase can provide another motivation for conditional esti-

mands. They allow a researcher to assess their population properties based on finite sample
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statistics.

The importance of covariate balance has been extensively emphasized in the literature.

(Crump et al., 2009; Imbens, 2015; Imbens and Rubin, 2015; Abadie and Spiess, 2022, among

others.) The literature has proposed various schemes for improving covariate balance, that

is, systematic procedures for selecting S∗; for example, matching or trimming. In this article,

we do not restrict ourselves to a specific balancing method. Our results do not restrict the

functional form of S∗. The focus of this article is rather on formalizing and justifying the use

of a general balancing process in the design phase, especially when we use linear regression.

2 Framework

We observe a random sample S ≡ {1, . . . , N} consisting of N units. Each unit i is character-

ized by a scalar outcome Yi ∈ R, a binary treatment Di ∈ {0, 1}, and p-dimensional control

variables Xi ∈ Rp. The parameter of our interest is

τ ≡ E[Y |D = 1]− E[E[Y |X,D = 0]|D = 1], (1)

where we omit the subscript i in the variables for the sake of conciseness. τ simplifies into

the average treatment effect on the treated, once we assume the conditional independence

between Y (0) and D given X, where Y (0) denotes the potential outcome when untreated.

A popular estimation method for τ is matching (Abadie and Imbens, 2012), wherein the

outcome values of treated units are compared to the averaged ones of the untreated units

with similar values of control variables. In this article, however, our discussion is restricted

to linear regression. Our focus is on understanding the mechanism whereby the design phase

improves the ability of a linear regression to estimate τ .

Let X d ⊆ Rp denote the support of the conditional distribution LX|D=d of X given D = d,

which we denote by Gd. Assume that each Gd is dominated by a common measure µ, which
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can be either a counting measure or a Lebesgue measure. Then, we can rewrite τ as

∫
(E[Y |X = x,D = 1]− E[Y |X = x,D = 0])Pr[X = x|D = 1]µ(dx), (2)

where Pr[X = x|D = d] ≡ (dGd/dµ)(x) denotes the Radon-Nikodym derivative of Gd with

respect to µ. This representation is immediate but yields a pivotal observation. Note that, in

the current setting, (i) the joint distribution between X and D, which we denote by G, and

(ii) the conditional distribution LY |X,D of Y given (X,D), which we denote by F , provide

a complete description of the population. Thus, equation (2) reveals how each component

of the population (G,F ) interacts with τ . In this regard, henceforth, whenever there is a

need to explicitly indicate the dependence on G or F , we incorporate a relevant subscript to

signify that specific relationship; for example, τG,F , PrG, or EF .

Now, consider a linear regression model:

Yi = α + βDi + s(Xi)
′γ + Ei, (3)

where Ei denotes a regression error and s(·) is a function that maps Xi to a vector, resulting

in a vector s(Xi) of covariates.

The starting point of this article is to establish a general relationship between β and τ .

Specifically, we derive a useful representation of their difference, β− τ , whose absolute value

is called the “bias” of a linear regression. In the appendix, we explore an extended regression

model that incorporates interaction terms between Di and s(Xi).

Example 1 To provide a concrete illustration of our discussion, we consider a toy example

in which Yi is generated as

Yi = Di +DiXi +Xi + Ui, (4)
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where Di and Xi are binary variables such that Pr[Di = d,Xi = x] = (1/2 − p)1{d =

x} + p1{d 6= x} for some p ∈ (0, 1/2) and Ui is any random variable that has a finite first

moment and is independent from (Di, Xi). Since Xi is binary conditional on Di, µ = δ0 + δ1

is a counting measure, where δx denotes a Dirac measure defined by δx(B) ≡ 1{x ∈ B}

for any borel set B, and G1 and G0 are both Bernoulli distributions, where Pr[X = 1|D =

1] = (1/2− p)/(1/2) and Pr[X = 1|D = 0] = p/(1/2). p is a parameter that represents the

dependence between Di and Xi; the more it deviates from 1/4, the more dependent the two

variables become. Note also that, in this setting, τ = E[Y |D = 1] − E[E[Y |X,D = 0]|D =

1] = (1 + 2(1− 2p))− (1− 2p) = 2− 2p.

We assume that the two following specifications are considered for the regression model:

Specification A: Yi = αA + βADi + Ei and

Specification B: Yi = αB + βBDi + γBXi + Ei.

Both of the models are “misspecified” in the sense that their functional forms are different

from that of the conditional expectation, which additionally includes the interaction term

between Di and Xi. We will utilize this setting to illustrate the implication of our results.

3 Representation of the bias of a linear regression

In this section, we provide a novel representation of the bias of a linear regression, which will

be used in formalizing the role of covariate balance in Section 4. Our result shows that the

bias of a linear regression is an inner product of two functions, each of which results from

the deviation from the ideal scenarios where the regression model is correctly specified or

the treatment is randomly assigned.

To begin, we anchor the interpretation of β by imposing a set of regularity conditions.

Assumption 1. Let Z ≡ (1, D, s(X)′)′ denote a vector of regressors in model (3). Then,

E[‖Z‖2] and E[‖ZE‖] are finite, E[ZZ ′] is positive definite, and E[ZE] = 0.

Let θ ≡ (α, β, γ) be a vector of the coefficients of regression model (3). Under Assumption
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1, θ is identified by (E[ZZ ′])−1E[ZY ], which is a vector of linear projection coefficients in

cases where the second moment of Y exists. In particular,

β =
E[D̃Y ]

E[D̃2]
, (5)

where D̃ denotes the population residual from a linear projection of D on (1, s(X)′)′.

We tighten our previous notations. Let Y = f(X,D)+U , where E[U |X,D] = 0. That is,

f(x, d) denotes the conditional expectation of Y given (X,D) = (x, d). Denote by gd(x) ≡

Pr[X = x|D = d] the conditional density of X given D = d. Let l(x, d) ≡ α + βd + s(x)′γ

be the population regression function.

We now state our result:

Proposition 1. Suppose that Assumption 1 holds. Then,

β − τ =

∫
(f(x, 0)− l(x, 0))︸ ︷︷ ︸
model misspecification

covariate imbalance︷ ︸︸ ︷
(g1(x)− g0(x))µ(dx). (6)

Proposition 1 shows that the bias of a linear regression is an inner product of two basic

functions. The first one is f(·, 0)− l(·, 0), which results from model (3) being misspecified. If

it were correctly specified, zero becomes a version of f(X,D)− l(X,D), and thus (6) implies

β = τ . The second one is g1(·) − g0(·) right next to it. Its value depends on the degree of

overlap in covariate distributions between the treated and untreated, i.e., G1 and G0. When

using observational data, this term will generally be non-zero. If D and X were independent,

g1 − g0 = 0 µ-almost surely, and thus β = τ .1

Example 1 (cont’) We illustrate how equation (6) operates in our toy example. Let lA

and lB denote the population regression functions for each specification. Then, it can be

shown that lA(x, d) = 2p + (3 − 6p)d and lB(x, d) = −p + (3/2)x + (3/2)d. Hence, for

1This particular result has been shown by Imbens and Rubin (2015, Chapter 7).
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Specification A, equation (6) holds in the form of

1− 4p = β − τ =
∑

x∈{0,1}

(f(x, 0)− lA(x, 0))(g
1(x)− g0(x))

= (1− 2p)((1− 2p)− 2p) + (0− 2p)(2p− (1− 2p)) = 1− 4p,

and for Specification B, it takes the form of

−1/2 + 2p = β − τ =
∑

x∈{0,1}

(f(x, 0)− lA(x, 0))(g
1(x)− g0(x))

= (1− (−p+ 3/2))((1− 2p)− 2p) + (0− (−p))(2p− (1− 2p)) = −1/2 + 2p.

Let F d denote the conditional distribution LY |X,D=d of Y given X and D = d. We refer

to the “support” of a conditional distribution as the support of the conditioning variable.

For instance, the support of F 0 is X 0.

Assumption 2. X 1 is contained in the support of F 0.

Assumption 2 is not strictly required for our discussion. However, it facilitates a natural

interpretation of τ .

4 Role of covariate balance in a linear regression

In this section, we formalize the role of covariate balance in regression, which serves as a

basis for the formalization of that of the design phase in Section 5. Before starting, we note

that the term “covariate balance” here denotes the population dependence between X and

D, which is not a common usage in the literature. Nevertheless, given that our results for

the population balance will be employed when justifying the use of the finite-sample balance

during the design phase, we abuse the language for a moment.

In the first subsection, we justify the conventional notion that better covariate balance
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makes regression more robust to model misspecification. For that, we show that the bias of

a regression is bounded by the product of model misspecification and covariate imbalance.

Suppose that a researcher aims to know τ by β within a desired tolerance. Then, this result

implies that the extent of misspecification to which she may compromise is proportional to

the inverse of imbalance, that is, the balance in covariate distributions, which accords with

our previous notion. In the second subsection, we use this bound analysis in demonstrating

how inference is robustified against misspecification with better covariate balance.

4.1 Bounds for the bias of a linear regression

Proposition 1 yields useful bounds for the bias of a linear regression, all of which possess the

structure of the multiplication between two quantities, m and c, which respectively capture

the degree of misspecification of the regression model and covariate imbalance, that is,

|β − τ | ≤ mc. (7)

This common structure of the bounds implies that misspecification of a regression model

can be allowed for on the order of 1/c; if a researcher wants to be confident of her β for τ at

the precision of ε, she may not worry much about misspecification of her regression model

up to ε/c. In the extreme case where c = 0, the specification of a regression model becomes

irrelevant to the identification of τ .2

Another crucial observation from equation (7) is that c depends solely on the joint dis-

tribution of X and D, i.e., G, which plays an important role in formalizing the role of the

design phase in Section 5.

In this subsection, we provide three forms of equation (7) that differ in how we define

misspecification and covariate imbalance, i.e., m and c. They provide different descriptions

2We note that even when c = 0, the specification of a regression model can be important in terms of the
“estimation”. In some cases, we can attain higher efficiency. See Freedman (2008a,b), Lin (2013), and Negi
and Wooldridge (2021) for relevant discussion.
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on the robustness of a regression.

4.1.1 Total variation bound

The bound of the first form is called the “total variation bound,” since the total variance

distance is used as a measure of covariate imbalance. Define

mTV ≡ ‖f(x, 0)− l(x, 0)‖L∞(µ) and (8)

cTV ≡
∫

|g1(x)− g0(x)|µ(dx), (9)

where mTV is the essential supremum of f(·, 0) − l(·, 0) with respect to µ, and cTV is the

total variation distance between G1 and G0. mTV = 0 if and only if f(·, 0) = l(·, 0) µ-almost

surely, and cTV = 0 if and only if D and X are independent.

Corollary 1. Suppose that the conditions of Proposition 1 are satisfied. Then,

|β − τ | ≤ mTVcTV. (10)

Example 1 (Cont’) We illustrate the result of Corollary 1 using our toy example. Here, we

calculate mTV for each specification and show the specific form of equation (10) for each case.

First, note that cTV =
∫
X 0 |g1(x)− g0(x)|µ(dx) = |g1(1)− g0(1)|+ |g1(0)− g0(0)| = 2|1−4p|.

In terms of Specification A, mTV
A = ‖f(·, 0)− lA(·, 0)‖L∞(µ) = ‖ · −2p‖L∞(µ) = 2p ∨ (1− 2p),

and thus equation (10) holds in the form of

|1− 4p| = |βA − τ | ≤ mTV
A cTV = (2p ∨ (1− 2p))︸ ︷︷ ︸

≥1/2

×2|1− 4p|,
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where the bounds are tight at p = 1/4. For Specification B, mTV
B = ‖f(·, 0)− lB(·, 0)‖L∞(µ) =

‖ · −(−p+ (3/2)·)‖L∞(µ) = p ∨ (1/2− p), and thus equation (10) takes the form of

(1/2)|1− 4p| = |βB − τ | ≤ mTV
B cTV = (p ∨ (1/2− p))︸ ︷︷ ︸

≥1/4

×2|1− 4p|.

4.1.2 Kolmogorov-Smirnov bound

The bound of the second form is called the “Kolmogorov-Smirnov bound,” since it uses the

Kolmogorov-Smirnov distance to assess the degree of covariate imbalance. To streamline the

discussion, here we assume that X is one-dimensional, that is, p = 1.

Assumption 3. E[Y |X = x,D = 0] is continuous and bounded on the support of F 0.

Continuity and boundedness are required for our result. Let H be the class of all con-

tinuous and bounded extensions h on R such that h(·) = f(·, 0) − l(·, 0) on X 0, which is

non-empty by Assumption 3. Then, define

mKS ≡ inf
h∈H

V ∞
−∞(h) and (11)

cKS ≡ sup
x∈R

|G1(x)−G0(x)|, (12)

where V ∞
−∞(·) is the total variation of the argument on R. mKS captures the total variation

of f(·, 0)− l(·, 0) on X 0, and cKS is the Kolmogorov-Smirnov distance between G1 and G0.

Corollary 2. Suppose that the conditions of Proposition 1 are satisfied. Also, suppose that

Assumption 2–3 holds. Then,

|β − τ | ≤ mKScKS. (13)

Example 1 (Cont’) We show how equation (13) works in our toy example. Since X 0 =

{0, 1}, cKS = |G1(0) − G0(0)| = |1 − 4p|. For Specification A, mKS
A = |(f(1, 0) − lA(1, 0)) −

(f(0, 0) − lA(0, 0))| = |(1 − 2p) − (0 − 2p)| = 1, and similarly for Specification B, mKS
B =
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|(1− (−p+ 3/2))− (0− (−p))| = 1/2. Then, equation (13) becomes equality in the form of

|1− 4p| = |βA − τ | = mKS
A cKS = 1× |1− 4p| and

(1/2)|1− 4p| = |βB − τ | = mKS
B cKS = (1/2)× |1− 4p|.

We note that the equality is specific to this particular example.

4.1.3 Density ratio bound

mTV and mKS may be overly stringent measures for assessing misspecification, as they ba-

sically pick up only the most extreme discrepancy between f(·, 0) and l(·, 0) irrespective of

how likely it can occur. For instance, suppose that p is close to zero, and consider the case of

Specification A in our example. Then, since G0({0}) is close to one, it could be argued that

lA(x, 0) = 2p is close enough to f(x, 0) = x, that is, the regression model of Specification

A is “almost” correctly specified. Nevertheless, this aspect cannot be reflected in mTV
A , for

example, given that mTV
A ≥ 1/2. The bound now we provide uses an alternative measure for

misspecification, which circumvents this issue.

The bound of the third form is called the “density ratio bound,” as it uses the moments

of g1/g0 to assess the overlap in covariate distributions. Define

mDR ≡ ‖f(x, 0)− l(x, 0)‖L2(G0) and

cDR ≡ ‖g1(x)/g0(x)− 1‖L2(G0).

(14)

mDR = 0 if the regression model is correctly specified, but the reverse is not necessarily true.

mDR is a more flexible measure of misspecification compared to mTV. In the previous setting

where p is close to zero, it can be shown that mDR
A = E[(X−2p)2|D = 0]1/2 = (2p(1−2p))1/2

is close to zero, according with our intuition that lA(x, 0) = 2p and f(x, 0) = x are virtually

the same. cDR = 0 if and only if X and D are independent. mDR and cDR are finite in cases

where Y has a second moment and the propensity scores are bounded away from one.
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Corollary 3. Suppose that the conditions of Proposition 1 are satisfied. Then,

|β − τ | ≤ mDRcDR. (15)

Example 1 (Cont’) We revisit the previous example to illustrate the result of Corollary

3. First, note that cDR = |1− 4p|/(2p(1− 2p))1/2, which equals zero if and only if p = 1/4.

For Specification A and B, equation (15) holds as an equality in the form of

|1− 4p| = |βA − τ | = mDR
A cDR = (2p(1− 2p))1/2 × |1− 4p|/(2p(1− 2p))1/2 and

(1/2)|1− 4p| = |βB − τ | = mDR
B cDR = (p(1/2− p))1/2 × |1− 4p|/(2p(1− 2p))1/2.

The equality here is also specific to our example setup.

4.1.4 Comparison of the bounds

The three forms of bound do not subsume one another in the sense that the orders of m’s and

c’s can be reversed, that is, mDR < mTV < mKS and cKS < cTV < cDR. There is no general

order among the products of m’s and c’s. In our example, mKS
A cKS = |1 − 4p| = mDRcDR,

while mTV
A cTV ≥ |1− 4p|.

4.2 Robust inference to misspecification

The bound analyses in the previous subsection can be used for defining the role of covariate

balance when conducting inference with regression. We show that covariate balance extends

the range of possible misspecification under which a researcher can maintain her statistical

decision. Here, we focus on the t-test.

Suppose that we perform inference for τ using a t-statistic

t ≡ β̂ − τ0

seβ(β̂)
, (16)

15



where β̂ is an estimator for β, seβ(β̂) denotes the standard error of β̂, and τ0 is the value of

τ set at the null. The subscript β on se indicates that the formula for the standard error of

β̂ can vary depending on the estimand, i.e., β.

In general, β is different from τ due to misspecification, and thus the size of the t-test

converges to one as the sample size increases. Hence, to have a more meaningful discussion

about the size distortion of a t-test, we employ local asymptotics.

Assumption 4. mc = v/
√
N for some v > 0.

The constant v captures the overall deviation from the ideal scenario that is free of either

model misspecification or covariate imbalance.

The assumption below is a high-level condition, which ensures the existence of the limiting

distribution of β̂.

Assumption 5. (β̂−β)/seβ(β̂) converges in distribution to the standard normal. Also, the

probability limit σβ of
√
Nseβ(β̂) exists.

We then have the following result:

Corollary 4. Suppose that the conditions of either Corollary 1, 2, or 3 are satisfied. Also,

suppose that Assumptions 4–5 hold. Then, under the null H0 : τ = τ0,

Φ(z − v/σβ) ≤ lim inf
N→∞

Pr[t ≤ z] ≤ lim sup
N→∞

Pr[t ≤ z] ≤ Φ(z + v/σβ), (17)

where Φ(·) denotes the cumulative distribution function of the standard normal and z ∈ R.

The asymptotic size distortion of a t-test is a decreasing function of v, and thus mc. This

implies that to make a valid inference for τ , it is not necessary for both m and c to be small.

For instance, when analyzing experimental data, misspecification could be allowed for to a

great extent, considering that c would likely be very small.
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5 Role of the design phase in a linear regression

The role of covariate balance studied in the previous section has been based on the “popula-

tion.” In practice, however, it is infeasible to select or manipulate the population to possess

better covariate balance. Instead, researchers typically construct a subsample whose empir-

ical distribution mimics the ideal situation where X and D are independent; they select the

one with better overlap in covariate distributions between the treated and untreated units.

Imbens and Rubin (2015, Section 12.5) specifically refer to this prior stage as the “design

phase,” a concept encompassing any groundwork to construct a subsample that is “more

suitable for estimating causal estimands, in the sense of being better balanced in terms of

covariate distributions.”

In this section, we provide a formal justification for this viewpoint, using our results in

Section 4. Our justification unfolds in two steps, each corresponding to a separate subsection.

In the first subsection, we characterize the design phase as a process of subsample selection,

through which a researcher adjusts the estimand of her regression. In the second subsection,

we then establish the validity of covariate balance as a criterion for the selection process.

Specifically, we show that for a given sample, covariate balance informs the upper bound of

misspecification that a researcher using the subsample can compromise, when she wants her

estimand β to be close to τ within a target tolerance. In the last subsection, we address how

we conduct inference for the adjusted estimand.

5.1 Estimand adjustment

In this subsection, we demonstrate that the design phase is basically a process of adjusting the

estimand of a regression, i.e., β, via selecting a subsample. Our result applies to any methods

for constructing subsamples, such as matching or trimming, as long as they implement a pre-

specified rule where the units are selected based on X ≡ (Xi)
N
i=1 and D ≡ (Di)

N
i=1.

Let S∗ ⊆ S be a constructed subsample in the design phase. Let θ̂∗ ≡ (α̂∗, β̂∗, γ̂∗) be the
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least squares estimator

θ̂∗ ≡
(

1

|S∗|
∑
i∈S∗

ZiZ
′
i

)−1(
1

|S∗|
∑
i∈S∗

ZiYi

)
(18)

obtained by regressing Yi on Zi in the subsample S∗, where |S∗| denotes its cardinality.

We adopt a more compact notation. Let (G̃, F̃ ) be a population, and define

θG̃,F̃ ≡ (EG̃[ZZ
′])−1EG̃[Z EF̃ [Y |X,D]], (19)

where θG̃,F̃ ≡ (α̃, β̃, γ̃) equals the linear projection coefficient obtained by regressing Y on

Z in that population. Let G∗ and F∗ denote the empirical joint distribution of (X,D) and

the empirical conditional distribution of Y given (X,D), respectively, in the subsample S∗.

Then, for instance, we can replace θ̂∗ with θG∗,F∗ , where the dependence on each component

of the relevant population becomes more apparent.

Now we make the following assumptions.

Assumption 6. S∗ is a function of X and D.

Assumption 7. Let λmin(M) denote the smallest eigenvalue of a square matrix M . There

exists a random variable λ∗ such that

λmin(EG∗ [ZZ ′]) = λmin

(
1

|S∗|
∑
i∈S∗

ZiZ
′
i

)
≥ λ∗, (20)

where λ∗ →p λ for some positive constant λ > 0 as |S∗| tends to infinity.

Assumption 8. For d ∈ {0, 1}, EF [‖ZU‖2|X = x,D = d] is uniformly bounded on X d.

Proposition 2. Under Assumptions 6–8, as |S∗| tends to infinity3,

θ̂∗ − θG∗,F →p 0. (21)

3Formally, this can be stated as “if plimN→∞ |S∗(X,D)| = ∞, as N tends to infinity.”
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Proposition 2 is related to Theorem 1 of Abadie et al. (2014), where the authors show

equation (21) in the case where S∗ = S.4 It extends their full-sample result to arbitrary

subsamples, which provides us with a useful interpretation of subsample construction. Based

on this result, selecting another subsample with different G∗ can be considered as adjusting

the estimand, i.e., βG∗,F , of a regression, possibly expecting the adjusted one to be much

closer to the parameter of our interest, i.e., τG∗,F , which may be given a causal interpretation.

5.2 Estimand assessment via covariate balance

In the design phase, researchers compare subsamples based on their balances in covariate

distributions. That is, covariate balance is utilized as a criterion for selecting the subsample

on which they run regressions. Given our previous formalization of the design phase, this use

of covariate balance is justifiable if it reveals desirable attributes of the adjusted estimand. In

this subsection, we demonstrate that covariate balance informs the robustness of an estimand

to possible misspecification of the regression model.

Suppose that |S∗|−1
∑

i∈S∗ ZiZi is positive definite. Then, if the conditions of Corollary

1–3 are satisfied for the population (G,F ), they are satisfied almost surely for the population

(G∗, F ) as well, and thus

|βG∗,F − τG∗,F | ≤ mG∗,F cG∗ holds almost surely, (22)

where the right-hand side could be either the Kolmogorov-Smirnov bound, total variation

bound, or density ratio bound. The crucial part of equation (22) is that cG∗ depends solely

on G∗ and can be directly calculated from a subsample. In other words, covariate balance is a

feasible criterion a researcher can employ when assessing the estimand βG∗,F of a subsample.

Indeed, 1/cG∗ is the order of the maximum misspecification up to which a researcher can

compromise when aiming to control the bias within a pre-specified tolerance.

4However, it should be noted that their result was not confined to linear regression.
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Example 2 We illustrate our point using a simple setup. Let Yi = Xi + Ui, where Xi

is conditionally normal given D such that LX|D=0 = N (0, 1) and LX|D=1 = N (1, 1), and

Ui is any random variable that has a finite first moment and is independent of Di and Xi.

Suppose that we are given a sample S with 24 observations, where the half of them, T1, . . . ,

T12, are treated and the other half, U1, . . . , U12, are not. Let the empirical conditional

distribution, Gd, of X given D = d be given as in Table 1.

U1 U2 T1 T2 T3 T4 U3 U4 U5 U6 U7 U8

G1 -0.95 -0.90 -0.29 -0.23
G0 -1.26 -1.00 -0.07 0.21 0.31 0.35 0.39 0.39

T5 T6 U9 U10 T7 T8 U11 T9 T10 T11 T12 U12

G1 0.48 0.59 0.87 1.46 1.78 2.03 2.07 2.31
G0 0.60 0.79 1.48 2.89

Table 1: Empirical conditional distributions, LX|D=d.

Suppose that we run the regression Yi = α+βDi+Ei, where the least squares estimator

is then the difference in means of Yi between the treated and untreated.

Suppose that we use the full sample to estimate τ , which in this setting is zero. Since

E[Yi|Xi, Di] = Xi, we can calculate from the table that the full sample estimand is βG,F =

0.34 and thus the bias is |βG,F −τG,F | = 0.34. The Kolmogorov-Smirnov distance between G1

and G0 is cKS
G = 0.3, which shows that if we want to be confident of τG,F at the precision of

0.5, for example, the degree of misspecification, i.e., mKS
G∗,F , should be less than 5/3,5 which

may be too stringent considering the variation of Xi in this sample.

Now, suppose we construct a subsample S∗ consisting of U2 and T1, T4 and U3, T6 and

U9, U10 and T7, and T8 and U11. Then, βG∗,F = −0.01, and the bias is |βG∗,F−τG∗,F | = 0.01.

Since cKS
G∗ = 0.2, for the same precision, the upper limit of misspecification, i.e., mKS

G∗ , now

becomes 5/2, which is larger than 5/3 before.

5Indeed, in this case, since fF (x, 0)− lG,F (x, 0) = x−αG,F = x−0.676, mKS = |−4.51−0.676|+ |3.98−
0.676|, which is definitely bigger than 2.
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In practice, however, researchers usually use summary statistics when assessing balance

of subsamples; for instance, the difference in the covariates means (Imbens and Rubin, 2015,

Chapter 14). In our framework, for the formal justification of this convention, those statistics

should has to do with cG∗ of the subsample. We provide the assumption for this requirement.

Assumption 9. There exists a signed measure J∗ on Rp that depends on ι(G∗1,G∗0), where

ι is a functional that maps (G∗1,G∗0), a pair of the empirical conditional distributions in a

subsample S∗, to a vector, such that as |S∗| tends to infinity,

∫
(f(x, 0)− lG∗,F (x, 0))(G∗1−G∗0)(dx)−

∫
(f(x, 0)− lG∗,F (x, 0))J

∗(dx) →p 0. (23)

Example 2 (Cont’) The averages of Xi among the treated and untreated units in the sub-

sample S∗ are 0.35 and 0.36, respectively. We may consider J∗(dx) = (δ0.35(dx)− δ0.36(dx)),

which is a signed measure that depends on the first moments of G∗1 and G∗0. Then, since

f(x, 0) = x and lG∗,F (x, 0) = αG∗,F , for each d ∈ {0, 1},
∫
(f(x, 0)−lG∗,F (x, 0))G∗d(dx) equals

EG∗d [X]− αG∗,F = f(EG∗d [X], 0)− lG∗,F (EG∗d [X], 0) =

∫
(f(x, 0)− lG∗,F (x, 0))δEG∗d [X](dx).

Thus, the left-hand side of equation (23) is zero, and

βG∗,F − τG∗,F =

∫
(f(x, 0)− lG∗,F (x, 0))(δEG∗1 [X] − δEG∗0 [X])(dx) holds.

cKS
G∗,F based on δEG∗1 [X] − δEG∗0 [X] is |0.35− 0.36| = 0.01. This is smaller than that based on

G∗1−G∗0, which was 0.2. Thus, for the precision of 0.5, the degree of misspecification, i.e.,

mKS
G,F , could have been in fact up to 0.5/0.01, which is the case where we may not be much

concerned about the specification of our regression model.

This example demonstrates the case in which using summary statistics, here, the means,

is not only valid, but also improves the maximum misspecification that we can allow for our

model. In fact, summary statistics can be useful especially when covariates are continuous.
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Since the supports of G1∗ and G0∗ do not intersect with each other in a finite sample, cTV
G∗ and

cDR
G∗ almost surely equals one, which is uninformative. Here, as alternatives, we may use cKS

G∗

or coarsen X to make cTV
G∗ and cDR

G∗ usable. However, mKS
G∗,F could overstate misspecification,

and coarsening could affect the interpretation of τ . If a researcher is concerned about these

issues while dealing with continuous X, comparing summary statistics between the treated

and untreated could be better.

One problem of using them could be that we in general do not know the form of J∗ and

thus it is difficult to quantify the exact maximum misspecification allowed for us.

5.3 Inference for the adjusted estimand

In the previous subsections, the construction of a subsample in the design phase is charac-

terized as an estimand adjustment through subsample selection. We further justified the use

of covariate balance during this selection process, demonstrating that it gauges the robust-

ness of an estimand to possible misspecification. However, an estimand is still a population

quantity that is observed with sampling error. Hence, to make use of the adjusted estimand,

we need to quantify the associated uncertainty as well.

In this subsection, we establish the asymptotic normality of θ̂∗ − θG∗,F , and propose an

estimator for its asymptotic variance.

We make the following assumptions.

Assumption 10. EG∗ [ZZ ′] = |S∗|−1
∑

i∈S∗ ZiZ
′
i →p Γ

∗, as |S∗| tends to infinity, where Γ∗

is a positive definite matrix.

Assumption 11. For d ∈ {0, 1}, EF [‖ZU‖2+δ|X = x,D = d] is uniformly bounded on X d,

where δ > 0.

Assumption 12. EG∗,F [ZZ
′U2] = |S∗|−1

∑
i∈S∗ ZiZ

′
i E[U

2
i |Xi, Di] →p ∆

∗, as |S∗| tends to

infinity, where ∆∗ is a positive semi-definite matrix.
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Proposition 3. Under Assumptions 6 and 10–12, as |S∗| tends to infinity,

√
|S∗|(θ̂∗ − θG∗,F ) →d N (0, (Γ∗)−1∆∗(Γ∗)−1), (24)

where N (µ,Σ) denotes a multivariate normal distribution with mean µ and covariance Σ.

Proposition 3 extends the previous full-sample result by Abadie et al. (2014, Theorem 2)

to arbitrary subsamples.

As is addressed in Abadie et al. (2014), the conditional variance of U , i.e., E[U2|X,D]

complicates the estimation of the asymptotic variance, especially in case where X is con-

tinuous. Hence, they propose alternative estimators, which do not involve the estimation of

the conditional variance. Here, we show that one of their estimators is also valid when using

subsamples.

Assumption 13. For some constant θ∗, as |S∗| tends to infinity, θG∗,F →p θ
∗.

Assumption 14. For d ∈ {0, 1}, X d is compact with respect to a metric ρ.

Assumption 15. For d ∈ {0, 1}, E[Zrj
j,iZ

rk
k,i(Y − Z ′θ∗)rj+rk |X = x,D = d] is Lipschitz on

X d with respect to the metric ρ, where Zj,i and Zk,i denote the jth and kth components of Zi,

respectively, and rj and rk are non-negative integers that are no larger than 2.

Assumption 13 does not require θG∗,F to converge to θG∗,F for some G∗ under which X

and D are independent, which is the case explored in Abadie and Spiess (2022).

Now, for each i ∈ S∗, define

lX,D(i) ≡ argmin
j∈S∗

‖(Xi, Di)− (Xj, Dj)‖ (25)

to be the index of the closest unit in S∗ to i, where ‖(xi, di)−(xj, dj)‖ ≡ ρ(xi, xj)+ω|di−dj|

for some ω > 0. Let Ê∗
i ≡ Yi − Z ′

iθ̂
∗. Then, our proposed estimator for ∆∗ is

∆̂∗ ≡ 1

|S∗|
∑
i∈S∗

(ZiÊ
∗
i − ZlX,D(i)Ê

∗
lX,D(i))(ZiÊ

∗
i − ZlX,D(i)Ê

∗
lX,D(i))

′.
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Proposition 4. Under Assumptions 10, 12, and 13–15, as |S∗| tends to infinity,

(Γ̂∗)−1∆̂∗(Γ̂∗)−1 →p (Γ
∗)−1∆∗(Γ∗)−1. (26)

6 Simulation

In this section, we conduct a simulation exercise that concretizes our discussion thus far; we

demonstrate that the design phase adjusts the estimand of a regression, making it more ro-

bust to possible misspecification of the regression model, which ultimately leads to a reduced

bias.

We adopt the simulation setup of Abadie and Imbens (2012, Section 6.1), who use the

Boston U.S. Home Mortgage Disclosure Act (HMDA) dataset. This expanded version of the

1990 HMDA dataset, enriched by the Federal Reserve Bank of Boston, includes an additional

38 variables tied to minority status and critical to the mortgage lending decision, such as

credit histories. It has been utilized in the literature to investigate racial discrimination in

the mortgage market (Munnell et al., 1996).

Following the authors, the sample is restricted to male applicants purchasing single-family

residences, who are either black or white, not self-employed, and were approved for private

mortgage insurance. Furthermore, they must have no public record of default. This results

in a sample of 148 black and 1336 white applicants.

For each unit i in this sample, let Yi be the indicator that takes value 1 if i’s mortgage

application is denied, and 0 if approved. In addition, let Di be the indicator that takes value

1 if i is black, and 0 if white. For simplicity, we use consumer credit history as a sole control

variable, denoted as Xi, which takes on 6 values; each value indicates the frequency of prior

delinquencies.

Our simulations proceed as follows. First, we run the logistic regression of Yi on (Xi, Di)

and use the estimated model as the population conditional distribution of Y given (X,D),

24



which we denote by F . Second, we construct a simulation sample consisting of N1 blacks,

i.e., D = 1, for whom the X values are generated from the empirical conditional distribution

of Xi given Di = 1, and N0(≥ N1) whites, i.e., D = 0, for whom the X values are generated

from that given Di = 0. For reference, we denote by G the empirical joint distribution of X

and D in this simulation sample. Then, third, based on G and F , we compute the full-sample

quantities, i.e., βG,F , τG,F , mG,F , and cG. Fourth, we apply nearest-neighbor matching to

the constructed simulation sample, where each of the N1 black applicants is matched to a

single white applicant with similar X; the remaining N0 − N1 whites are discarded. This

step corresponds to the design phase in observational studies, though in practice researchers

can employ alternative balancing techniques such as propensity score matching or trimming.

We denote by G∗ the empirical joint distribution of X and D in this matched subsample.

Fifth, based on G∗ and F , we compute the subsample quantities, i.e., βG∗,F , τG∗,F , mG∗,F ,

and cG∗ . Finally, we repeat steps 2 to 5 for R times.

We consider the following three regression models:

Specification A: Yi = αA + βADi + Ei,

Specification B: Yi = αB + βBDi + γB1{Xi ≥ 4}+ Ei, and

Specification C: Yi = αC + βCDi + γCXi + Ei.

To underscore the utility of the design phase, even in cases where there are relatively few

untreated units, we examine three scenarios (N1, N0) ∈ {(50, 75), (50, 100), (50, 125)}. How-

ever, only the second scenario is presented in the main text for conciseness. We set R = 500.

Figure 1 displays the pairs of the pre- and post-matching estimands, i.e., βG,F and βG∗,F ,

showing how nearest-neighbor matching adjusts the estimands of the regressions. It decreases

the estimands for Specification A, while it generally results in an increase for Specifications

B and C.

Figure 2 plots the pairs of the absolute sizes of the pre- and post-matching biases, i.e.,

|βG,F − τG,F | and |βG∗,F − τG∗,F |. It illustrates that the estimand adjustment overall reduces

the biases of the regressions. In light of our justification of the design phase, this reduction
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Figure 1: Pre- and Post-estimands (N1 = 50, N0 = 100)

should be driven by the extended range of the degree of misspecification that is allowed for

the regression models. The next figures confirm that this is indeed the case.
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Figure 2: Pre- and Post-biases (N1 = 50, N0 = 100)

The points in Figure 3–5 denote the pairs of the values of model misspecification and

covariate imbalance for the bounds provided in Section 4. The green ones are based on full

samples, while the red ones are based on the subsamples constructed by nearest-neighbor

matching. The curves denote the target levels of precision; if a point is situated within the

curve labeled 0.005, it indicates that the multiplication of m and c, and therefore the bias,

is of less than 0.005.

An immediate observation we can make is that the design phase generates subsamples

that demonstrate better covariate balance when compared to the full sample; the distribution

of the red points are shifted towards the left in comparison to the green points. This results
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in more red points being located inside each curve, which explains the overall reduction in

bias after the design phase.

7 Conclusion

In this article, we investigate the role of the design phase in the context of running linear

regression, offering a formal justification for its implementation. Our justification is twofold.

First, we conceptualize the design phase as a subsample selection process, where a researcher

adjusts the estimand of her regression. Then, we demonstrate that covariate balance is a valid

criterion for this selection process, in that it quantifies the maximum misspecification that

can be compromised for each subsample. As a result, the design phase can be understood as

a means to identify a “better” estimand that is more robust to bias due to misspecification

of the regression model.
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Figure 3: Total variation bound (N1 = 50, N0 = 100)
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Figure 4: Kolmogorov-Smirnov bound (N1 = 50, N0 = 100)
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A Proofs

A.1 Proof of Proposition 1

We use the following observation for our result.

Lemma 1. Suppose that Assumption 1 holds. Then,

E[Y |D = d] = α + βd+ E[s(X)′γ|D = d]. (27)

Proof. Since the right-hand side of

Y − s(X)′γ = α + βD + E (28)

is saturated-in-D, E[E] = E[DE] = 0, and E[ZZ ′] is positive definite,

E[Y − s(X)′γ|D] = α + βD, (29)

where the left-hand side is well-defined since Y and s(X) have their first moments. Then,

expanding the left-hand side yields the desired result.

Now, we have

τ = E[Y |D = 1]− E[E[Y |X,D = 0]|D = 1]

= E[Y |D = 1]−
(∫

E[Y |X = x,D = 0]G0(dx) +

∫
E[Y |X = x,D = 0](G1 −G0)(dx)

)
= β + (E[s(X)′γ|D = 1]− E[s(X)′γ|D = 0])−

∫
E[Y |X = x,D = 0](G1 −G0)(dx)

= β −
∫
(E[Y |X = x,D = 0]− s(x)′γ)(G1 −G0)(dx)

= β −
∫
(E[Y |X = x,D = 0]− (α + s(x)′γ))(G1 −G0)(dx),

where Lemma 1 is used in the third equality.
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A.2 Proof of Corollary 1

Using the Jensen’s inequality,

∣∣∣∣∫ (f(x, 0)− l(x, 0))(g1(x)− g0(x))µ(dx)

∣∣∣∣
≤

∫
|f(x, 0)− l(x, 0)||g1(x)− g0(x)|µ(dx)

≤ ‖f(x, 0)− l(x, 0)‖L∞(µ)

∫
|g1(x)− g0(x)|µ(dx).

A.3 Proof of Corollary 2

By Assumption 3, f(·, 0) − l(·, 0) is continuous and bounded on X 0, which is closed by

definition. By the Tietze extension theorem, there exists a continuous and bounded extension

on R. Thus, H is non-empty. Take any h ∈ H. Then,

∫
[a,b]

(f(x, 0)− l(x, 0))Gd(dx) =

∫
[a,b]∩X 0

(f(x, 0)− l(x, 0))Gd(dx)

=

∫
[a,b]∩X 0

h(x)Gd(dx) =

∫
[a,b]

h(x)Gd(dx),

where Assumption 2 is used in the first and last equalities when d = 1. Since h is continuous

and Gd is nondecreasing, Riemann-Stieltjes integral
∫ b

a
h(x)dGd(x) exists and coincides with∫

[a,b]
h(x)Gd(dx). (Kolmogorov and Fomin, 1975, p.368) Integrating by parts,

∫
[a,b]

h(x)Gd(dx) =

∫ b

a

h(x)dGd(x) = h(b)Gd(b)− h(a)Gd(a)−
∫ b

a

Gd(x)dh(x).

(Protter and Morrey, 1991, p.320) Combining the previous two observations, we have

∫
[a,b]

(f(x, 0)− l(x, 0))(G1 −G0)(dx) = h(b)(G1 −G0)(b)− h(a)(G1 −G0)(a)−
∫ b

a

(G1 −G0)(x)dh(x).
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The third term of the right-hand side is bounded by

∣∣∣∣∫ b

a

(G1 −G0)(x)dh(x)

∣∣∣∣ ≤ sup
x∈[a,b]

|G1(x)−G0(x)|V b
a (h) ≤ sup

x∈[−∞,∞]

|G1(x)−G0(x)|V ∞
−∞(h).

Taking a, b → ±∞, by the dominated convergence theorem, and since limb→∞ h(b)(G1 −

G0)(b) = lima→−∞ h(a)(G1 −G0)(a) = 0, where we use the boundedness of h,

lim
a,b→±∞

∣∣∣∣∫ b

a

(G1 −G0)(x)dh(x)

∣∣∣∣ = ∣∣∣∣∫
[−∞,∞]

(f(x, 0)− l(x, 0))(G1 −G0)(dx)

∣∣∣∣.
This term does not depend on h, and thus we have

∣∣∣∣∫ (f(x, 0)− l(x, 0))(G1 −G0)(dx)

∣∣∣∣ ≤ sup
x∈[−∞,∞]

|G1(x)−G0(x)| inf
h∈H

V ∞
−∞(h).

A.4 Proof of Corollary 3

In cases where either mDR or cDR is infinity, the inequality trivially holds. Thus, we assume

that both are finite. Then, by the Cauchy-Schwartz inequality,

mDRcDR ≥
∫

|(f(x, 0)− l(x, 0))(g1(x)/g0(x)− 1)|G0(dx) (30)

=

∫
|(f(x, 0)− l(x, 0))(g1(x)/g0(x)− 1)|g0(x)µ(dx) (31)

≥
∣∣∣∣∫ (f(x, 0)− l(x, 0))(g1(x)− g0(x))µ(dx)

∣∣∣∣. (32)

A.5 Proof of Corollary 4

It follows from Corollary 1, 2, or 3 that |β − τ0| ≤ mc. Note that

β̂ − β

seβ(β̂)
− mc

seβ(β̂)
≤ t =

β̂ − τ0

seβ(β̂)
=

β̂ − β

seβ(β̂)
+

β − τ0

seβ(β̂)
≤ β̂ − β

seβ(β̂)
+

mc

seβ(β̂)
,
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where the left- and right-hand sides converge in distribution to N (−v/σβ, 1) and N (v/σβ, 1)

by Assumption 5 and the Slutsky theorem. Thus, as N tends to infinity,

Pr[t ≤ z] ≥ Pr

[
β̂ − β

seβ(β̂)
+

mc

seβ(β̂)
≤ z

]
→ Φ(z − v/σβ) and

Pr[t ≤ z] ≤ Pr

[
β̂ − β

seβ(β̂)
− mc

seβ(β̂)
≤ z

]
→ Φ(z + v/σβ).

A.6 Proof of Proposition 2

We first show that EG∗ [Z(EF [Y |X,D]−EF∗ [Y |X,D])] converges to zero in probability. For

any joint distribution G̃ of D and X,

EG̃[Z(EF [Y |X,D]− EF∗ [Y |X,D])]

= EG̃

[
Z

(
EF [Y |X,D]−

∑
i∈S∗

1{Xi = X,Di = D}∑
j∈S∗ 1{Xj = X,Dj = D}

Yi

)]
= EG̃

[
Z

(
EF [Y |X,D]−

∑
i∈S∗

1{Xi = X,Di = D}∑
j∈S∗ 1{Xj = X,Dj = D}

(EF [Yi|Xi, Di] + Ui)

)]
= EG̃

[
Z

(
−
∑
i∈S∗

1{Xi = X,Di = D}∑
j∈S∗ 1{Xj = X,Dj = D}

Ui

)]
= −

∑
i∈S∗

EG̃

[
Z

1{Xi = X,Di = D}∑
j∈S∗ 1{Xj = X,Dj = D}

]
Ui.

Since

EG∗

[
Z

1{Xi = X,Di = D}∑
j∈S∗ 1{Xj = X,Dj = D}

]
=

1

|S∗|
∑
k∈S∗

Zk
1{Xi = Xk, Di = Dk}∑

j∈S∗ 1{Xj = Xk, Dj = Dk}

= Zi
1

|S∗|
∑
k∈S∗

1{Xi = Xk, Di = Dk}∑
j∈S∗ 1{Xj = Xk, Dj = Dk}︸ ︷︷ ︸
=1 if j=k and =0 otherwise

=
1

|S∗|
Zi,
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we then have

EG∗ [Z(EF [Y |X,D]− EF∗ [Y |X,D])] = − 1

|S∗|
∑
i∈S∗

ZiUi.

Note that

Var

[
1

|S∗|
∑
i∈S∗

ZiUi

∣∣∣∣ X,D] = Var

[
1

|S∗|

N∑
i=1

1{i ∈ S∗}ZiUi

∣∣∣∣ X,D]
=

1

|S∗|2
∑
i,j

Cov[1{i ∈ S∗}ZiUi,1{j ∈ S∗}ZjUj|X,D]

=
1

|S∗|2
∑
i,j

1{i ∈ S∗}1{j ∈ S∗}Cov[ZiUi, ZjUj|X,D]

=
1

|S∗|2
∑
i∈S∗

Var[ZiUi|X,D]

=
1

|S∗|2
∑
i∈S∗

E[ZiUi(ZiUi)
′|Xi, Di],

where the second and third to the last equation hold by

Cov[ZiUi, ZjUj|X,D] = E[ZiZ
′
jUiUj|X,D]− E[ZiUi|X,D]E[ZjUj|X,D]′

= ZiZ
′
j E[UiUj|X,D]− ZiZ

′
j E[Ui|X,D]E[Uj|X,D]′ = 0

and Assumption 6, respectively. Thus, by Assumption 8, it follows that

∥∥∥∥Var

[
1

|S∗|
∑
i∈S∗

ZiUi

∣∣∣∣ X,D]∥∥∥∥ ≤ 1

|S∗|2
∑
i∈S∗

E[‖ZiUi‖2|Xi, Di] ≤
M

|S∗|
. (33)

for some M > 0. Since

Var

[
E

[
− 1

|S∗|
∑
i∈S∗

ZiUi

∣∣∣∣ X,D]] = Var

[
− 1

|S∗|
∑
i∈S∗

Zi E[Ui|Xi, Di]︸ ︷︷ ︸
=0

]
= 0,
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by the law of total variance and equation (33), we have

∥∥∥∥Var

[
− 1

|S∗|
∑
i∈S∗

ZiUi

]∥∥∥∥ =

∥∥∥∥E[Var

[
1

|S∗|
∑
i∈S∗

ZiUi

∣∣∣∣ X,D]]∥∥∥∥ ≤ E

[
M

S∗

]
→ 0,

as N tends to infinity. The inequality holds, because 1/S∗ is bounded by one and converges

to zero in probability.

Now, if λ∗ > λ/2 > 0,

‖(EG∗ [ZZ ′])−1EG∗ [Z(EF [Y |X,D]− EF∗ [Y |X,D])]‖

≤ ‖(EG∗ [ZZ ′])−1‖‖EG∗ [Z(EF [Y |X,D]− EF∗ [Y |X,D])]‖

. ‖EG∗ [Z(EF [Y |X,D]− EF∗ [Y |X,D])]‖.

Thus, by Assumption 7, for η > 0,

Pr[‖(EG∗ [ZZ ′])−1EG∗ [Z(EF [Y |X,D]− EF∗ [Y |X,D])]‖ > η]

≤ Pr[λ∗ ≤ λ/2] +Pr[‖EG∗ [Z(EF [Y |X,D]− EF∗ [Y |X,D])]‖ > η] →p 0.

A.7 Proof of Proposition 3

We first show that (1/
√

|S∗|)
∑

i∈S∗ ZiUi →d N (0,∆∗).

Fix λ ∈ R. Let ξi ≡ (1/
√

|S∗|)1{i ∈ S∗}ZiUi so that

N∑
i=1

ξi =
1√
|S∗|

∑
i∈S∗

ZiUi.

Consider the filtration Fk ≡ σ(D1, . . . , DN , X1, . . . , XN , {Ui}i∈S∗,1≤i≤k), where σ(·) denotes

the σ-field generated by the arguments. Then,
∑k

i=1 ξ
′
iλ is a martingale with respect to Fk,
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because (i) Fk−1 ⊆ Fk, (ii) σ(
∑k

i=1 ξ
′
iλ) ⊆ Fk, (iii) by Assumption 11,

E

[∣∣∣∣ k∑
i=1

ξ′iλ

∣∣∣∣] ≤
( k∑

i=1

E[‖ξi‖2]
)
‖λ‖2 ≤

( k∑
i=1

(E[‖ZiUi‖2])1/2
)
‖λ‖2 < ∞, (34)

and (iv)

E

[ k∑
i=1

ξ′iλ

∣∣∣∣ Fk−1

]
=


∑k−1

i=1 ξ
′
iλ+ Zk E[Uk|Xk, Dk]

′λ =
∑k−1

i=1 ξ
′
iλ if k ∈ S∗,

E[
∑k−1

i=1 ξ
′
iλ|Fk−1] =

∑k−1
i=1 ξ

′
iλ if k /∈ S∗.

Note that by Assumptions 6 and 12,

N∑
i=1

E[(ξ′iλ)
2|Fi−1] = λ′

N∑
i=1

E[ξiξ
′
i|Fi−1]λ = λ′

(
1

|S∗|
∑
i∈S∗

ZiZ
′
i E[U

2
i |Xi, Di]

)
λ →p λ

′∆∗λ,

and for each ε > 0, by Assumption 11,

N∑
i=1

E[|ξ′iλ|21{ξ′iλ > ε}] ≤
N∑
i=1

E

[
|ξ′iλ|2+δ 1

εδ

]

≤ ‖λ|2+δ

εδ

N∑
i=1

E[‖ξi‖2+δ]

≤ ‖λ|2+δ

εδ
E

[ N∑
i=1

E[‖ξi‖2+δ|X,D]
]

≤ ‖λ|2+δ

εδ
E

[
1

|S∗|1+δ/2

∑
i∈S∗

E[‖ZiUi‖2+δ|Xi, Di]

]
≤ 1

εδ
‖λ‖2+δ

2 E

[
1

|S∗|δ/2

]
c → 0,

where c is some constant. Then, by the Lindeberg-Feller martingale central limit theorem

(Billingsley, 2011, Theorem 35.12),
∑n

i=1 ξ
′
iλ →d N (0, λ′∆∗λ), and the assertion follows from

the Cramér-Wold device.
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Now, by Slutsky’s lemma and Assumption 10, we have

√
|S∗|(θG∗,F∗ − θG∗,F ) =

(
1

|S∗|
∑
i∈S∗

ZiZ
′
i

)−1(
1√
|S∗|

∑
i∈S∗

ZiUi

)
→d N (0, (Γ∗)−1∆∗(Γ∗)−1).

A.8 Proof of Proposition 4

Lemma 4 is required for our result, and for that, we show Lemma 2–3. The proofs of Lemma

2–4 closely follow those of Abadie and Imbens (2008, Lemma 1) and Abadie et al. (2014,

Lemma A.2, Lemma A.3), respectively.

Lemma 2. Let W1, . . . ,WN be random variables whose support W ⊆ Rp is bounded with re-

spect to a metric ‖‖. Let S∗ be a function of W ≡ (Wi)
N
i=1. Define lW (i) ≡ argminj∈S∗,j 6=i ‖Wi−

Wj‖ to be the index of the closest unit in S∗ to i. Then, if plimN→∞ |S∗(W)| = ∞, as N

tends to infinity,

1

|S∗|
∑
i∈S∗

‖Wi −WlW (i)‖ →p 0. (35)

Proof. Let ε > 0 be given. Suppose that there are M i’s such that ‖Wi−WlW (i)‖ > 2ε. Define

Bε(w) ≡ {w′ ∈ W : ‖w′ − w‖ < ε}. By the definition of lW (i), then Bε(Wi) ∩ Bε(Wj) = ∅

for all j ∈ S∗ such that j 6= i.

Since W is bounded, there exists a closed ball C with radius no larger than diam(W)

such that W ⊆ C, where diam(W) denotes the diameter of W . Then,

M
πp/2εp

Γ(p
2
+ 1)

=
∑

i∈S∗:‖Wi−WlW (i)‖>2ε

Vol[Bε(Wi)]

= Vol

[ ⋃
i∈S∗:‖Wi−WlW (i)‖>2ε

Bε(Wi)

]

< Vol[Cε] =
πp/2(diam(W)(1 + ε))p

Γ(p
2
+ 1)

,

where Cε denotes ε-enlargement of C. Hence, M < diam(W)p((1 + ε)/ε)p. Assuming |S∗| >
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M , we then have

1

|S∗|
∑
i∈S∗

‖Wi −WlW (i)‖ ≤ 1

|S∗|

(
M diam(W) + 2ε(|S∗| −M)

)
< diam(W)

M

|S∗|
+ 2ε < diam(W)p+1 (

1+ε
ε
)p

|S∗|
+ 2ε.

Now, let ε = 1/|S∗|1/(p+1). Then, the last equation converges to zero in probability, because

ε →p 0 and for any η > 0,

Pr

[
diam(W)p+1 (

1+ε
ε
)p

|S∗|
> η

]
≤ Pr

[(
1 + ε

ε

)p

& |S∗|
]
= Pr[|S∗|−1/(p+1) & 1] → 0.

Combining results, for any η > 0,

Pr

[
1

|S∗|
∑
i∈S∗

‖Wi −WlW (i)‖ > η

]
≤ Pr[M ≥ |S∗|] +Pr

[
|S∗| > M,

1

|S∗|
∑
i∈S∗

‖Wi −WlW (i)‖ > η

]
≤ Pr

[(
1 + ε

ε

)p

& |S∗|
]
+Pr

[
diam(W)p+1 (

1+ε
ε
)p

|S∗|
+ 2ε > η

]
→ 0.

Lemma 3. Suppose that (V1,W1), . . . , (VN ,WN) are i.i.d., where Vi is scalar and the support

of Wi, which we denote by W, is compact. Let S∗ ⊆ {1, . . . , N} be a function of W ≡ (Wi)
N
i=1.

Assume that µr(w) ≡ E[V r
i |Wi = w] is Lipschitz in w with a constant Lr, where r = 1, . . . , R.

Then, for all nonnegative integers k and m such that k ∨m ≤ R/2, as |S∗| tends to infinity,

1

|S∗|
∑
i∈S∗

V k
i V

m
lW (i) −

1

|S∗|
∑
i∈S∗

E[V k
i |Wi]E[V

m
i |Wi] →p 0. (36)
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Proof. We first show that

E

[
1

|S∗|
∑
i∈S∗

V k
i V

m
lW (i) −

1

|S∗|
∑
i∈S∗

E[V k
i |Wi]E[V

m
i |Wi]

]
= o(1). (37)

Note that Vi and VlW (i) is independent conditional on W. Hence,

E

[
1

|S∗|
∑
i∈S∗

V k
i V

m
lW (i)

]
= E

[
E

[
1

|S∗|
∑
i∈S∗

V k
i V

m
lW (i)

∣∣∣∣ W]]
= E

[
1

|S∗|
∑
i∈S∗

E[V k
i |Wi]E[V

m
lW (i)|WlW (i)]

]
= E

[
1

|S∗|
∑
i∈S∗

µk(Wi)µm(Wi)

]
+ E

[
1

|S∗|
∑
i∈S∗

µk(Wi)(µm(WlW (i))− µm(Wi))

]
.

The second term in the last equation is bounded by

∣∣∣∣E[ 1

|S∗|
∑
i∈S∗

µk(Wi)(µm(WlW (i))− µm(Wi))

]∣∣∣∣
≤ E

[
1

|S∗|
∑
i∈S∗

|µk(Wi)||µm(WlW (i))− µm(Wi)|
]

≤ ck · E
[

1

|S∗|
∑
i∈S∗

‖WlW (i) −Wi‖
]
· Lm = o(1),

where cl ≡ supw∈W µl(w), which is finite by the compactness of W and (Lipschitz) continuity

of µk. The second inequality follows from µr(·) being Lipschitz, and the last equality holds as

|S∗|−1
∑

i∈S∗ ‖WlW (i) −Wi‖ is bounded and op(1) by Lemma 3. Equation (37) then follows.

Next, we show that

E

[(
1

|S∗|
∑
i∈S∗

V k
i V

m
lW (i) −

1

|S∗|
∑
i∈S∗

E[V k
i |Wi]E[V

m
i |Wi]

)2]
= o(1). (38)
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We expand the left-hand side of equation (38):

E

[(
1

|S∗|
∑
i∈S∗

V k
i V

m
lW (i)

)2]
︸ ︷︷ ︸

≡A

+E

[(
1

|S∗|
∑
i∈S∗

E[V k
i |Wi]E[V

m
i |Wi]

)2]
︸ ︷︷ ︸

≡B

− 2E

[(
1

|S∗|
∑
i∈S∗

V k
i V

m
lW (i)

)(
1

|S∗|
∑
i∈S∗

E[V k
i |Wi]E[V

m
i |Wi]

)]
︸ ︷︷ ︸

≡C

.

We start by investigating the term C. Note that

C = E

[(
1

|S∗|
∑
i∈S∗

E[V k
i |Wi]E[V

m
i |Wi]

)2]
+ E

[(
1

|S∗|
∑
i∈S∗

V k
i V

m
lW (i) −

1

|S∗|
∑
i∈S∗

E[V k
i |Wi]E[V

m
i |Wi]

)(
1

|S∗|
∑
i∈S∗

E[V k
i |Wi]E[V

m
i |Wi]

)]
,

where the second term is bounded by

∣∣∣∣E[ 1

|S∗|
∑
i∈S∗

V k
i V

m
lW (i) −

1

|S∗|
∑
i∈S∗

E[V k
i |Wi]E[V

m
i |Wi]

]∣∣∣∣ · ckcm = o(1)

where we use equation (37) in the last equality. Thus, we obtain C = B + o(1).

Then, we argue that A = B + o(1). The first term in the right-hand side of

E

[(
1

|S∗|
∑
i∈S∗

V k
i V

m
lW (i)

)2]
= E

[
1

|S∗|2
∑
i∈S∗

V 2k
i V 2m

lW (i)

]
+ E

[
1

|S∗|2
∑
i∈S∗

∑
j 6=i

V k
i V

m
lW (i)V

k
j V

m
lW (j)

]

is o(1), because

E

[
1

|S∗|2
∑
i∈S∗

V 2k
i V 2m

lW (i)

]
= E

[
E

[
1

|S∗|2
∑
i∈S∗

V 2k
i V 2m

lW (i)

∣∣∣∣ W]]
= E

[
1

|S∗|2
∑
i∈S∗

E[V 2k
i |Wi]E[V

2m
lW (i)|WlW (i)]

]
≤ E

[
1

|S∗|

]
c2kc2m = o(1),
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where 2k, 2m ≤ R. Thus, we focus on the second term.

It can be decomposed into two terms:

E

[
1

|S∗|2
∑
i∈S∗

∑
j 6=i:lW (j)6=i,lW (i) 6=j,lW (j) 6=lW (i)

V k
i V

m
lW (i)V

k
j V

m
lW (j)

]

+ E

[
1

|S∗|2
∑
i∈S∗

∑
j 6=i:lW (j)=i or lW (i)=j or lW (j)=lW (i)

V k
i V

m
lW (i)V

k
j V

m
lW (j)

]
.

(39)

Note that for each i ∈ S∗, |{j ∈ S∗ : lW (j) = i}| ≤ K(p), where K(p) denotes the “kissing

number,” i.e., the maximum number of times that each unit can be used as a match in

p-dimensions. Since |{j ∈ S∗ : lW (i) = j}| = 1, |{j 6= i : lW (j) = i or lW (i) = j or lW (j) =

lW (i)}| ≤ 2K(p) + 1. Then, the second term of equation (39) is bounded by

∣∣∣∣E[ 1

|S∗|2
∑
i∈S∗

∑
j 6=i:lW (j)=i or lW (i)=j or lW (j)=lW (i)

V k
i V

m
lW (i)V

k
j V

m
lW (j)

]∣∣∣∣
= E

[
1

|S∗|2
∑
i∈S∗

∑
j 6=i:lW (j)=i or lW (i)=j or lW (j)=lW (i)

|E[V k
i V

m
lW (i)V

k
j V

m
lW (j)|W]|

]
. E

[
1

|S∗|

]
= o(1),

where the inequality results from

∑
j 6=i:lW (j)=i or lW (i)=j or lW (j)=lW (i)

|E[V k
i V

m
lW (i)V

k
j V

m
lW (j)|W]| ≤ (2K(p) + 1) · (c2k+m ∨ ck+mckcm ∨ c2mc

2
k).

Hence, it suffices to show that the first term of equation (39) converges to B.

This is done by three steps. First, note that

E

[
1

|S∗|2
∑
i∈S∗

∑
j 6=i:lW (j)6=i,lW (i)6=j,lW (j) 6=lW (i)

V k
i V

m
lW (i)V

k
j V

m
lW (j)

− 1

|S∗|2
∑
i∈S∗

∑
j 6=i:lW (j)6=i,lW (i)6=j,lW (j)6=lW (i)

E[V k
i |Wi]E[V

m
i |Wi]E[V

k
j |Wj]E[V

m
j |Wj]

]

= E

[
1

|S∗|2
∑
i∈S∗

∑
j 6=i:lW (j)6=i,lW (i) 6=j,lW (j) 6=lW (i)

E[V k
i |Wi]E[V

k
j |Wj]

× (E[V m
lW (i)|WlW (i)]E[V

m
lW (j)|WlW (j)]− E[V m

i |Wi]E[V
m
j |Wj])

]
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≤ E

[
1

|S∗|2
∑
i∈S∗

∑
j 6=i:lW (j)6=i,lW (i)6=j,lW (j)6=lW (i)

E[V k
i |Wi]E[V

k
j |Wj]

×
E[V m

lW (i)|WlW (i)] + E[V m
i |Wi]

2
(E[V m

lW (j)|WlW (j)]− E[V m
j |Wj]])

]
+ E

[
1

|S∗|2
∑
i∈S∗

∑
j 6=i:lW (j)6=i,lW (i)6=j,lW (j)6=lW (i)

E[V k
i |Wi]E[V

k
j |Wj]

×
E[V m

lW (j)|WlW (j)] + E[V m
j |Wj]

2
(E[V m

lW (i)|WlW (i)]− E[V m
i |Wi]])

]
.

We bound each term in the last equation. The first term is bounded by

∣∣∣∣E[ 1

|S∗|2
∑
i∈S∗

∑
j 6=i:lW (j) 6=i,lW (i)6=j,lW (j)6=lW (i)

E[V k
i |Wi]E[V

k
j |Wj]

×
E[V m

lW (i)|WlW (i)] + E[V m
i |Wi]

2
(E[V m

lW (j)|WlW (j)]− E[V m
j |Wj]])

]∣∣∣∣
≤ E

[
1

|S∗|2
∑
i∈S∗

∑
j 6=i:lW (j) 6=i,lW (i)6=j,lW (j)6=lW (i)

|E[V k
i |Wi]||E[V k

j |Wj]|

×
|E[V m

lW (i)|WlW (i)]|+ |E[V m
i |Wi]|

2
|E[V m

lW (j)|WlW (j)]− E[V m
j |Wj]]|

]∣∣∣∣
≤ E

[
1

|S∗|2
∑
i∈S∗

∑
j∈S∗

c2kcmLm‖WlW (j) −Wj‖
]
= c2kcmLm E

[
1

|S∗|
∑
j∈S∗

‖WlW (j) −Wj‖
]
= o(1),

where we use Lemma 2 in the last equation. Likewise, the second term can be bounded by

o(1). Next,

∣∣∣∣E[ 1

|S∗|2
∑
i∈S∗

∑
j 6=i:lW (j)6=i,lW (i)6=j,lW (j)6=lW (i)

E[V k
i |Wi]E[V

m
i |Wi]E[V

k
j |Wj]E[V

m
j |Wj]

− 1

|S∗|2
∑
i∈S∗

∑
j 6=i

E[V k
i |Wi]E[V

m
i |Wi]E[V

k
j |Wj]E[V

m
j |Wj]

]∣∣∣∣
= E

[
1

|S∗|2
∑
i∈S∗

∑
j 6=i:lW (j)=i or lW (i)=j or lW (j)=lW (i)

|E[V k
i |Wi]||E[V m

i |Wi]||E[V k
j |Wj]||E[V m

j |Wj]|︸ ︷︷ ︸
≤c2kc

2
m

]

≤ c2kc
2
m(2K(p) + 1)E

[
1

|S∗|

]
= o(1).

42



Lastly, combining the previous two results,

∣∣∣∣B − E

[
1

|S∗|2
∑
i∈S∗

∑
j 6=i:lW (j)6=i,lW (i)6=j,lW (j)6=lW (i)

V k
i V

m
lW (i)V

k
j V

m
lW (j)

]∣∣∣∣
≤

∣∣∣∣B − E

[
1

|S∗|2
∑
i∈S∗

∑
j 6=i

E[V k
i |Wi]E[V

m
i |Wi]E[V

k
j |Wj]E[V

m
j |Wj]

]∣∣∣∣+ o(1)

= E

[
1

|S∗|2
∑
i∈S∗

(E[V k
i |Wi]E[V

m
i |Wi])

2

]
≤ c2kc

2
m E

[
1

|S∗|

]
= o(1)

Now, A+B − 2C = (B + o(1)) +B − 2(B + o(1)) = o(1).

Lemma 4. Suppose that (V ′
1 ,W1), . . . , (V

′
N ,WN) are i.i.d. where Vi ≡ (V1,i, . . . , VdimV,i) is a

vector and the support of Wi is compact. Moreover, assume that, for any j, k = 1, . . . , dimV ,

E[V
rj
j,i V

rk
k,i |Wi = w] is Lipschitz with a constant Lrj ,rk , where 0 ≤ r1, r2 ≤ 2. Define:

V̂ ≡ 1

2|S∗|
∑
i∈S∗

(Vi − VlW (i))(Vi − VlW (i))
′. (40)

Then, as |S∗| tends to infinity,

V̂− 1

|S∗|
∑
i∈S∗

Var[Vi|Wi] → 0. (41)

Proof. Let V̂j,k be the (j, k)th element of V̂. Then,

V̂j,k =
1

2|S∗|
∑
i∈S∗

(Vj,i − Vj,lW (i))(Vk,i − Vk,lW (i))

=
1

2|S∗|
∑
i∈S∗

Vj,iVk,i +
1

2|S∗|
∑
i∈S∗

Vj,lW (i)Vk,lW (i) −
(

1

2|S∗|
∑
i∈S∗

Vj,iVk,lW (i) +
1

2|S∗|
∑
i∈S∗

Vj,lW (i)Vk,i

)

By applying Lemma 3 to Vj,iVk,i with (k,m) = (1, 0) and (k,m) = (0, 1), we have

1

|S∗|
∑
i∈S∗

Vj,iVk,i −
1

|S∗|
∑
i∈S∗

E[Vj,iVk,i|Wi] → 0 and (42)
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1

|S∗|
∑
i∈S∗

Vj,lW (i)Vk,lW (i) −
1

|S∗|
∑
i∈S∗

E[Vj,iVk,i|Wi] → 0. (43)

Note that

1

|S∗|
∑
i∈S∗

Vj,iVk,lW (i) +
1

|S∗|
∑
i∈S∗

Vj,lW (i)Vk,i

=
1

|S∗|
∑
i∈S∗

(Vj,i + Vk,i)(Vj,lW (i) + Vk,lW (i))−
1

|S∗|
∑
i∈S∗

Vj,iVj,lW (i) −
1

|S∗|
∑
i∈S∗

Vk,iVk,lW (i).

Lemma 3 applied to Vj,i + Vk,i, Vj,i, and Vk,i with (k,m) = (1, 1) yields

1

|S∗|
∑
i∈S∗

(Vj,i + Vk,i)(Vj,lW (i) + Vk,lW (i))−
1

|S∗|
∑
i∈S∗

(E[Vj,i + Vk,i|Wi])
2 →p 0, (44)

1

|S∗|
∑
i∈S∗

Vj,iVj,lW (i) −
1

|S∗|
∑
i∈S∗

(E[Vj,i|Wi])
2 →p 0, and (45)

1

|S∗|
∑
i∈S∗

Vk,iVk,lW (i) −
1

|S∗|
∑
i∈S∗

(E[Vk,i|Wi])
2 →p 0. (46)

Combining results,

V̂j,k −
(

1

2|S∗|
∑
i∈S∗

E[Vj,iVk,i|Wi] +
1

2|S∗|
∑
i∈S∗

E[Vj,iVk,i|Wi]

−
(

1

2|S∗|
∑
i∈S∗

(E[Vj,i + Vk,i|Wi])
2 − 1

2|S∗|
∑
i∈S∗

(E[Vj,i|Wi])
2 − 1

2|S∗|
∑
i∈S∗

(E[Vk,i|Wi])
2

))
= V̂j,k −

1

|S∗|
∑
i∈S∗

(E[Vj,iVk,i|Wi]− E[Vj,i|Wi]E[Vk,i|Wi]) →p 0.

Let W ≡ (X 1×{1})∪ (X 0×{0}) ⊆ Rp×{0, 1}. First, we show that W is (sequentially)

compact with respect to the metric ‖‖. Let (xr, dr) be a sequence in W . Without loss of

generality, we assume that {r ∈ N : dr = 1} is infinite. Then, consider the subsequence

(xr, dr)dr=1 of (xr, dr). Since (xr)dr=1 is a sequence in X 1, which is (sequentially) compact

by Assumption 14, there exists a subsequence (xl)dl=1 of (xr)dr=1 such that ρ(xl, x
∗) =
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‖(xl, dl)− (x∗, 1)‖ → 0 for some x∗ ∈ X 1. Thus, (xr, dr) has a convergent subsequence in W .

Let Vi ≡ Zi(Yi −Z ′
iθ

∗) and Wi ≡ (Xi, Di). First, by Assumptions 14–15, E[V rj
j,i V

rk
k,i |Wi =

w] is Lipschitz with respect to ‖‖. Then, by the compactness of W , Lemma 4 yield

1

|S∗|
∑
i∈S∗

(Vi − VlW (i))(Vi − VlW (i))
′ − 1

|S∗|
∑
i∈S∗

Var[Vi|Wi] →p 0. (47)

Now, let Vi(θ) ≡ Zi(Yi − Z ′
iθ). Since Vi(θ)− Vi = ZiZ

′
i(θ

∗ − θ),

1

|S∗|
∑
i∈S∗

(Vi(θ)− VlW (i)(θ))(Vi(θ)− VlW (i)(θ))
′ − 1

|S∗|
∑
i∈S∗

(Vi − VlW (i))(Vi − VlW (i))
′

=
1

|S∗|
∑
i∈S∗

(ZiZ
′
i − ZlW (i)Z

′
lW (i))(θ

∗ − θ)(Vi − VlW (i))
′

+
1

|S∗|
∑
i∈S∗

(Vi − VlW (i))(θ
∗ − θ)′(ZiZ

′
i − ZlW (i)Z

′
lW (i))

′

+
1

|S∗|
∑
i∈S∗

(ZiZ
′
i − ZlW (i)Z

′
lW (i))(θ

∗ − θ)(θ∗ − θ)′(ZiZ
′
i − ZlW (i)Z

′
lW (i))

′,

The first two terms are bounded by

‖θ∗ − θ‖ 1

|S∗|
∑
i∈S∗

‖ZiZ
′
i − ZlW (i)Z

′
lW (i)‖‖Vi − VlW (i)‖

≤ ‖θ∗ − θ‖
(

1

|S∗|
∑
i∈S∗

‖ZiZ
′
i‖‖Vi‖+

1

|S∗|
∑
i∈S∗

‖ZlW (i)Z
′
lW (i)‖‖Vi‖

+
1

|S∗|
∑
i∈S∗

‖ZiZ
′
i‖‖VlW (i)‖+

1

|S∗|
∑
i∈S∗

‖ZlW (i)Z
′
lW (i)‖‖VlW (i)‖

)

≤ ‖θ∗ − θ‖
((

1

|S∗|
∑
i∈S∗

‖Vi‖2
) 1

2

+

(
1

|S∗|
∑
i∈S∗

‖VlW (i)‖2
) 1

2
)

×
((

1

|S∗|
∑
i∈S∗

‖ZiZ
′
i‖2

) 1
2

+

(
1

|S∗|
∑
i∈S∗

‖ZlW (i)Z
′
lW (i)‖2

) 1
2
)

= ‖θ∗ − θ‖Op(1),

where we use Lemma 3 in the last inequality. Likewise, the third term is bounded by

‖θ∗ − θ‖2 1

|S∗|
∑
i∈S∗

‖ZiZ
′
i − ZlW (i)Z

′
lW (i)‖2
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≤ ‖θ∗ − θ‖2
(

1

|S∗|
∑
i∈S∗

‖ZiZ
′
i‖‖ZiZ

′
i‖+

1

|S∗|
∑
i∈S∗

‖ZlW (i)Z
′
lW (i)‖‖ZiZ

′
i‖

+
1

|S∗|
∑
i∈S∗

‖ZiZ
′
i‖‖ZlW (i)Z

′
lW (i)‖+

1

|S∗|
∑
i∈S∗

‖ZlW (i)Z
′
lW (i)‖‖ZlW (i)Z

′
lW (i)‖

)
= ‖θ∗ − θ‖2Op(1).

Hence,

∥∥∥∥ 1

|S∗|
∑
i∈S∗

(Vi(θ̂
∗)− VlW (i)(θ̂

∗))(Vi(θ̂
∗)− VlW (i)(θ̂

∗))′ − 1

|S∗|
∑
i∈S∗

(Vi − VlW (i))(Vi − VlW (i))
′
∥∥∥∥

≤ ‖θ∗ − θ̂∗‖Op(1) = op(1),

where in the last equation we use θ̂∗ − θ∗ = (θ̂∗ − θG∗,F ) + (θG∗,F − θ∗) = op(1), which holds

by Proposition 2 and Assumption 13. Combined with equation (47), we then have

1

|S∗|
∑
i∈S∗

(Vi(θ̂
∗)− VlW (i)(θ̂

∗))(Vi(θ̂
∗)− VlW (i)(θ̂

∗))′ − 1

|S∗|
∑
i∈S∗

Var[Vi|Wi] →p 0.

Because Var[Vi|Wi] = Zi Var[Yi − Z ′
iθ

∗|Xi, Di]Z
′
i = ZiZ

′
i E[U

2
i |Xi, Di], it follows that

∥∥∥∥( 1

|S∗|
∑
i∈S∗

ZiZ
′
i

)−1
1

|S∗|
∑
i∈S∗

(Vi(θ̂
∗)− VlW (i)(θ̂

∗))(Vi(θ̂
∗)− VlW (i)(θ̂

∗))′
(

1

|S∗|
∑
i∈S∗

ZiZ
′
i

)−1

−
(

1

|S∗|
∑
i∈S∗

ZiZ
′
i

)−1
1

|S∗|
∑
i∈S∗

ZiZ
′
i E[U

2
i |Xi, Di]

(
1

|S∗|
∑
i∈S∗

ZiZ
′
i

)−1∥∥∥∥
≤

∥∥∥∥ 1

|S∗|
∑
i∈S∗

ZiZ
′
i

∥∥∥∥−2∥∥∥∥ 1

|S∗|
∑
i∈S∗

(Vi(θ̂
∗)− VlW (i)(θ̂

∗))(Vi(θ̂
∗)− VlW (i)(θ̂

∗))′

− 1

|S∗|
∑
i∈S∗

ZiZ
′
i E[U

2
i |Xi, Di]

∥∥∥∥ = Op(1)op(1)

where we use Assumption 10 in the last equation.
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B Supplementary materials

B.1 Extension of Proposition 1

Let L be a class of functions with arguments (x, d), where x ∈ Rp and d ∈ {0, 1}.

Assumption 16. There exists l ∈ L such that l(X,D) has a finite first moment. Further-

more, there exists a random variable E with a finite first moment such that E[DE] = 0 and

Y = l(X,D) + E. Finally, Pr[D = 1] ∈ (0, 1).

For notational convenience, let ∆l(X, ·) ≡ l(X, 1) − l(X, 0) and ∆E[l(X, 0)|D = ·] ≡

E[l(X, 0)|D = 1]− E[l(X, 0)|D = 0].

Proposition 5. Suppose that Assumption 16 holds. Then,

E[∆l(X, ·)|D = 1]− τ =

∫
(f(x, 0)− l(x, 0))(g1(x)− g0(x))µ(dx). (48)

Consider an extension of (3)

Y = α + βD + s(X)′γ +D(s(X)− E[s(X)|D = 1])′δ︸ ︷︷ ︸
l(X,D)

+E, (49)

which additionally includes the interaction terms between D and s(X). Note that ∆l(X, ·) =

β + (s(X)− E[s(X)|D = 1]), and thus E[∆l(X, ·)|D = 1] = β.

B.1.1 Proof of Proposition 5

Lemma 5. Suppose that Assumption 16 holds. Then,

E[Y |D] = E[l(X, 0)|D = 0] + (E[∆l(X, ·)|D = 1] + ∆E[l(X, 0)|D = ·])D. (50)

Proof. Let a ≡ E[l(X,D)|D = 0] and b ≡ E[l(X,D)|D = 1] − E[l(X,D)|D = 0], both of

which exist and finite. Define Ẽ ≡ l(X,D)− (a+ bD). Then, E[DẼ] = E[Dl(X,D)]− (a+
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b)Pr[D = 1] = 0. Thus, E[l(X,D)|D] = a+ bD. Also, since E[DE] = 0, E[E|D] = 0.

Combining results,

E[Y |D] = E[l(X,D)|D] + E[E|D]

= E[l(X,D)|D = 0] + (E[l(X,D)|D = 1]− E[l(X,D)|D = 0])D,

and by telescoping E[l(X, 0)|D = 1] in the coefficient of D, we obtain the desired result.

Now,

τ = E[Y |D = 1]−
∫

E[Y |X = x,D = 0]G1(dx)

= E[Y |D = 1]− E[Y |D = 0]−
∫

E[Y |X = x,D = 0](G1 −G0)(dx)

= E[∆l(X, ·)|D = 1] + ∆E[l(X, 0)|D = ·]−
∫

E[Y |X = x,D = 0](G1 −G0)(dx)

= E[∆l(X, ·)|D = 1]−
∫

(E[Y |X = x,D = 0]− l(x, 0))(G1 −G0)(dx),

where we use Lemma 5 in the third equality.

B.2 Proofs of selected equations

B.2.1 Proof of equation (5)

Let (a, b) ≡ argmin(ã,b̃) E[(D−(ã+s(X)′b̃))2] be the linear projection coefficient of (1, s(X)′)

obtained by regressing D on (1, s(X)) in the population. Define D̃ ≡ D − (a+ s(X)′b). We

reformulate the linear regression model as

Y = α + βD + s(X)′γ + E (51)

= α + β(a+ s(X)′b+ D̃) + s(X)′γ + E (52)

= βD̃ + (α + βa) + s(X)′(βb+ γ) + E︸ ︷︷ ︸
≡Ẽ

. (53)
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Suppose that E[D̃2] = 0. Then, D = a+ s(X)′b almost surely, and thus

Z =


1

D

s(X)

 =


1 0

a b′

0 I


︸ ︷︷ ︸

M

 1

s(X)

 almost surely. (54)

Here, the rank of M is dim θ−1. Hence, the rank of E[ZZ ′] cannot be larger than dim θ−1,

which violates Assumption 1. From contraposition, E[D̃2] > 0 then follows.

Furthermore,

E[D̃Ẽ] = β E[D̃(1 s(X)′)]︸ ︷︷ ︸
=0 by the definition of linear projection

α + βa

βb+ γ

+ β(−a, 1− b′)E[ZE]︸ ︷︷ ︸
=0 by Assumption 1

= 0. (55)

Combining results, (E[D̃2])−1E[D̃Y ] = β + (E[D̃2])−1E[D̃Ẽ] = β.

B.2.2 Proof of equation (22)

By Assumption 1, EG,F [‖ZY ‖] ≤ EG[‖Z‖2]‖θ‖+EG,F [‖ZE‖] < ∞. Thus, EF [ZY |X,D] is fi-

nite almost surely (a.s.), and so is |S∗|−1
∑

i∈S∗ EF [ZY |X = Xi, D = Di] = EG∗ [EF [ZY |X,D]].

Then, since EG∗ [ZZ ′] = |S∗|−1
∑

i∈S∗ ZiZ
′
i is positive definite, θG∗,F is finite a.s.

Let Ẽi ≡ Yi − Z ′
iθG∗,F . We show that Z and Ẽ satisfy Assumption 1 for the population

(G∗, F ) a.s. First, since S∗ is finite, so is EG∗ [‖Z‖2] = |S∗|−1
∑

i∈S∗ ‖Zi‖2. Second,

EG∗,F [‖ZẼ‖] ≤ EG∗ [EF [‖ZY ‖|X,D]] + EG∗ [‖Z‖2]‖θG∗,F‖

=
1

|S∗|
∑
i∈S∗

EF [‖ZY ‖|X = Xi, D = Di] +

(
1

|S∗|
∑
i∈S∗

‖Zi‖2
)
‖θG∗,F‖

is finite a.s., by combining previous results. Third, EG∗ [ZZ ′] is positive definite by assump-

tion. Lastly, EG∗,F [ZE] = EG∗,F [ZY ]− EG∗ [ZZ ′](EG∗ [ZZ ′])−1EG∗,F [ZY ] = 0 a.s.

By Assumption 2, the support of G1∗, which is a subset of X 1, is contained in that of
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F 0. Assumption 3 is automatically satisfied for (G∗, F ).

B.3 Omitted simulation results

In this subsection, we present the simulation results for the omitted cases where (N1, N0) ∈

{(50, 75), (50, 125)}. These results demonstrate that an increase in the ratio N0/N1 leads to

improved covariate balance, consequently reducing the bias of regressions.
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Figure 6: Pre- and Post-estimands (N1 = 50, N0 = 75)
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Figure 7: Pre- and Post-estimands (N1 = 50, N0 = 125)
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Figure 8: Pre- and Post-biases (N1 = 50, N0 = 75)
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Figure 9: Pre- and Post-biases (N1 = 50, N0 = 125)
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Figure 10: Total variation bound (N1 = 50, N0 = 75)
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Figure 11: Kolmogorov-Smirnov bound (N1 = 50, N0 = 75)
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Figure 12: Density ratio bound (N1 = 50, N0 = 75)
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Figure 13: Total variation bound (N1 = 50, N0 = 125)
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Figure 14: Kolmogorov-Smirnov bound (N1 = 50, N0 = 125)

0.005 0.010 0.0150.02

0.03

0.04

0.05

0.06

0.07

0.0 0.5 1.0 1.5

cDR

m
D

R

Post−matching

Pre−matching

Specification A

0.005 0.010 0.015

0.01

0.02

0.03

0.04

0.0 0.5 1.0 1.5

cDR

m
D

R

Post−matching

Pre−matching

Specification B

0.005 0.010 0.0150.015

0.020

0.025

0.030

0.035

0.0 0.5 1.0 1.5

cDR

m
D

R

Post−matching

Pre−matching

Specification C

Figure 15: Density ratio bound (N1 = 50, N0 = 125)
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국문초록

“설계단계”란연구자가추론의강건성과신뢰성을위해통제변수분포가

처치집단별로균형잡힌하위표본을구축하는관측데이터연구의한단계를

일컫는다. 본논문은선형회귀분석에서의이러한설계단계의역할을탐구

하고그것을정당화한다. 이를위해우선설계단계는추정대상을조정하는

하위표본의선택과정으로서규정된다. 그다음, 통제변수분포의균형은그

선택과정의타당한기준으로정당화되는데, 이는주어진하위표본에대해

통제변수분포의균형이추정대상과관심모수간차이를목표정밀도이내

로제한하고자할때최대허용될수있는모형설정오류의정도를말해주기

때문이다. 따라서, 통제변수분포가균형잡힌하위표본을구축하는작업은

모형설정오류로인한편향에강건한추정대상을탐색하는과정으로서이해

될수있다.
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