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Abstract 

Cancer big data analysis on acute myeloid 

leukemia for new drug target discovery 

 

Han Sun Kim 

Natural Products Science Major 

College of Pharmacy 

The Graduate School 

Seoul National University 

 

 

 Acute myeloid leukemia (AML) generally has an unsatisfactory prognosis 

despite the recent introduction of new regimens including targeted agents and 

antibodies. Moreover, even though the European LeukemiaNet (ELN) 2017 criteria 

have been widely accepted as the risk classification of AML patients, their 

application in studying biological pathways related to risk categories has been 

limited, and they have not helped improve drug treatment options for high-risk 

patients.  

To address those issues, analysis on cancer big data was used to identify 

new target candidates of AML. Initially, to find a new druggable pathway, 

integrated bioinformatic pathway screening was performed on large Oregon Health 
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& Science University (OHSU) and Microarray Innovations in Leukemia (MILE) 

AML databases. This analysis revealed the SUMOylation pathway, which was 

independently validated with an external dataset (totaling 2959 AML and 642 

normal sample data in all databases). The clinical relevance of SUMOylation in 

AML was supported by its core gene expression, which correlated with patient 

survival, ELN2017 risk classification, and AML-relevant mutations. TAK-981, a 

first-in-class SUMOylation inhibitor currently under clinical trials for solid tumors, 

showed anti-leukemic effects with apoptosis induction, cell-cycle arrest, and 

induction of differentiation marker expression in leukemic cells. It exhibited potent 

nanomolar activity, often stronger than that of cytarabine, which is part of the 

standard-of-care. TAK-981’s utility was further demonstrated in in vivo mouse and 

human leukemia models as well as patient-derived primary AML cells. The results 

also indicated TAK-981 exert direct anti-AML effects inherent to cancer cells, 

different from the IFN1 and immune-dependent mechanism in a previous solid 

tumor study. Overall, these findings provide a proof-of-concept for targeting 

SUMOylation as a new targetable pathway in AML, with TAK-981 showing a 

promising direct anti-AML agent. The data should prompt studies on optimal 

combination strategies and transitions to clinical trials in AML.  

In addition, biological pathways whose upregulations are correlated with 

increased ELN2017 risks were investigated using a recent AML database. Filtering 

and validating with patient survival and other independent transcriptomics and 

proteomics AML database gave ‘synthesis of unsaturated fatty acids’ and 

‘metabolism of folate’ pathways as candidates. Further refinement at the gene level, 

along with a literature search, identified SCD and MTHFD2 as key targets relevant 
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to high-risk groups. Both the SCD inhibitor A939572 and MTHFD2 inhibitor 

DS18561882 showed cancer selectivity and synergy with cytarabine - a standard 

drug for induction therapy - in cell lines with relatively high IC50s for cytarabine. It 

was also found that SCD gene expression correlated with the amount of unsaturated 

fatty acids. Overall, the suggested targets may be further exploited to find better 

therapeutic options and mechanistic insights in high-risk AML. Furthermore, the 

workflow could be readily applied to find other target genes/pathways or even to 

solid tumors. 
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General Introduction 

 

Acute myeloid leukemia (AML) is a heterogeneous disease characterized 

by an accumulation of immature progenitor cells with arrested differentiation 

leading to suppression of hematopoiesis [1]. In the United States, it had the highest 

percentage (62%) of leukemic deaths in 2019 [2]. Also, among all cancer types, 

AML had the 5th worst five-year overall survival in the United States, 2000-2016 

(Surveillance, Epidemiology, and End Results (SEER) data) [2]. In addition, AML 

is typically a disease of older people, with the median age at diagnosis showing 68 

years (2011-2016, SEER data) [2].  

The treatment of AML typically divides into two phases, that is, induction 

therapy and consolidation therapy (Table 1). Initial assessment for deciding 

whether a patient is eligible for intensive induction therapy is needed [1]. If 

complete remission is achieved after induction therapy, appropriate consolidation 

therapy is required [1]. Current standard-of-care treatments for AML include 

combination chemotherapy with cytotoxic drugs, usage of hypomethylating agents, 

and/or hematopoietic stem cell transplantation (HSCT) [3]. The combination 

chemotherapy with cytotoxic drugs has not changed for nearly a half century; that 

is, the “7 + 3” induction therapy regimen comprised of cytarabine (days 1 to 7) plus 

anthracycline-based drugs (days 1 to 3). For patients ineligible for this therapy, i.e. 

in some of older patients, regimens based on low-dose cytarabine is used. Recent 

improvement in the understanding of AML pathogenesis has led to the introduction 

of several novel targeted agents since 2017 (Table 2) [4-12]. Nevertheless, long-
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term survival is still suboptimal without allogeneic HSCT [13], and thus, more 

efforts should be done to unravel novel prognostic, predictive, and targetable 

molecular abnormalities. However, lack of prevailing driver genomic mutations 

and available unique markers for AML has made it quite difficult. In this context, 

investigations into post-genomic pathways relevant to AML pathogenesis and 

approaches to their targeting have been desired. 

ELN2017, originally starting from ELN2010, is a recommendation for the 

diagnosis and management of AML patients suggested by an international expert 

panel on behalf of the European LeukemiaNet (ELN) [3]. ELN2017 classified three 

risk groups (‘Favorable,’ ‘Intermediate,’ and ‘Adverse’) based on molecular and 

genetic aberrations, and it has been widely used in many clinical trials and 

regulatory offices [3, 14]. ELN2017 has proven effective for risk management, 

including hematopoietic stem cell transplantation [15-19]. Some trials refined it to 

classify better the subpopulation of the risk categories [17, 20], particularly 

discovering patient groups with distinctly favorable and poor prognoses, suggesting 

the addition of two new categories (‘Very Favorable’ and ‘Very Adverse’) [17]. 

Even though ELN2017 or its revised versions have shown power in the risk 

classification of AML patients, there are only a few studies investigating which 

biological pathways are related to the categories (or subcategories) of ELN2017 

[21-25]. Considering the clinical importance of the ELN2017, investigating which 

biological pathways are correlated is urgently needed. 

In this study, using bioinformatics, I tried to find pathways or genes to 

target in AML, followed by experimental validation. By comparing gene 

expression from normal samples, I found SUMOylation as a targetable pathway, 
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and suggested TAK-981 as a direct anti-AML agent. In addition, by utilizing multi-

omics database, I found ‘synthesis of unsaturated fatty acids’ and ‘folate 

metabolism’ as targetable pathways in high-risk AML patients in particular, found 

SCD and MTHFD2 genes as target genes, and suggested their inhibitors as drug 

candidates.   
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Table 1. Conventional treatment regimens for AML patients 

Patients criteria Treatment 

Eligible for 

intensive 

chemotherapy 

Induction 

therapy 
All ages "7+3" 

Consolidation 

therapy 

Younger 

patients  

(18-60/65 

years) 

Favorable-risk 

genetics 
IDAC 

Intermediate-risk 

genetics 

IDAC or 

allogeneic 

HSCT 

Adverse-risk  

genetics 
Allogeneic 

HSCT 

Older 

patients 

(> 60/65 

years) 

Favorable-risk 

genetics 
IDAC 

Intermediate/adverse-

risk genetics 

Consider 

allogeneic 

HSCT 

Not eligible for intensive chemotherapy 

Azacitidine 

Decitabine 

Low-dose 

cytarabine 

The information was retrieved and summarized from [3]. “7+3”, cytarabine (days 1 

to 7) plus anthracycline-based drugs (days 1 to 3); IDAC, intermediate-dose 

cytarabine; HSCT, hematopoietic stem cell transplant. 
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Table 2. Recent drugs (since 2017) in AML approved by Food and Drug 

Administration (FDA) 

Treatment Approval date Description 

Midostaurin April 2017 Multikinase FLT3 inhibitor 

Gemtuzumab 

ozogamycin 
September 2017 Anti-CD33 antibody-drug conjugate 

CPX-351 August 2017 
Liposomal cytarabine and daunorubicin 

(5:1 molar ratio) 

Glasdegib November 2018 Hedgehog pathway inhibitor 

Venetoclax November 2018 BCL-2 inhibitor 

Enasidenib August 2017 IDH2 inhibitor 

Ivosidenib 
July 2018 

May 2019 
IDH1 inhibitor 

Gilteritinib November 2018 FLT3 inhibitor 

CC-486 September 2020 Oral azacitidine hypomethylating agent 

Oral Decitabine-

cedazuridine 
July 2020 Oral hypomethylating agent 

The information was retrieved and summarized from [4] and [12]. 
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Part I 

TAK-981, a SUMOylation inhibitor, suppresses AML 

growth immune-independently 

 

I. Introduction 

 

SUMOylation is a post-translational modification (PTM) involved in the 

conjugation of small ubiquitin-like modifiers (SUMOs) to substrate proteins [26]. 

SUMO-activating enzyme E1 (SAE1 and SAE2 encoded by SAE1 and UBA2, 

respectively), an E2 (ubiquitin-conjugating enzyme 9, UBC9 encoded by UBE2I), 

and a limited set of E3 ligases participate in this process [26, 27]. SUMOylation 

seems to be important in nuclear functions of proliferating or developing cells by 

regulating the mitotic cell cycle and DNA damage response [28-30]. Specific 

pathways affected by SUMOylation in cancer may include p53 [31, 32] and cMYC 

[33, 34], but more studies are needed to resolve some of the controversies [35, 36]. 

Additionally, innate immunity is mostly suppressed by SUMOylation, inhibition of 

which, therefore, might have implications for cancer therapy [26, 37]. There were 

some studies on SUMOylation in lymphoma [33] and solid tumors [28, 32, 34, 38, 

39], including cervix, prostate, breast, pancreas, and colon. As for AML, only a 

few studies on the roles of SUMOylation have been published [40-42]. Therefore, 

concrete evidence of the therapeutic utility of SUMOylation or of specific 

inhibitors of SUMOylation in AML has been lacking. TAK-981 is an inhibitor of 

the SUMO-activating enzyme (SAE) that forms a SUMO-TAK-981 adduct [43]. 
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As the first-in-class SAE inhibitor targeting cancers, it is currently in clinical trials 

for solid tumors or lymphomas (NCT03648372, NCT04074330, NCT04381650). 

In blood cancer, it has been known to shift the T cell balance toward healthy 

immune cell subsets in chronic lymphocytic leukemia [44]. To my knowledge, 

TAK-981 has not been studied for AML or evaluated in AML clinical trials. 

For solid tumors, large-scale bioinformatic analysis has been successfully 

performed comparing normal and cancer samples thanks to The Cancer Genome 

Atlas (TCGA) data. TCGA also contains data on AML (TCGA-LAML [45] 

dataset), but it lacks the data for non-cancer controls, limiting its application in 

AML field. As of now, three large-scale gene expression databases contain both 

AML and normal data: 1) MILE study stage I data [46], 2) OHSU data from the 

BeatAML 1.0 program [47], and 3) the Gene Expression Omnibus (GEO) 

compilation [48]. Therefore, analysis of these large databases in all (totaling 2959 

AML and 642 normal samples) might yield new and useful information on targets 

for broader AML patients. 

Here, accessing large gene expression databases for AML, I evaluated the 

clinical relevance of the SUMOylation pathway and investigated the anti-leukemic 

effects of its inhibition by TAK-981.  
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II. Materials and methods 

 

1. Bioinformatics analysis 

1) Data download and preprocessing, GSEA, GSEAPreranked and Pathway 

Clustering 

For MILE study stage I, the gene expression table and sample information 

were downloaded from from the National Center for Biotechnology Information’s 

Gene Expression Omnibus (GEO, https://www.ncbi.nlm.nih.gov/geo/, accession 

number GSE13159). The probe IDs were converted to gene symbols, and for those 

with duplicate matches, the probe with a maximum coefficient of variation (that is, 

standard deviation divided by mean) was selected. Then, for each gene, the 

difference of mean from the AML bone marrow samples (501 samples) to healthy 

bone marrow samples (73 samples) was calculated, and these numbers were used 

as input for GSEAPreranked.  

For OHSU BeatAML 1.0 program, the raw counts and sample information 

were downloaded from GDC (https://portal.gdc.cancer.gov/). The raw counts were 

DESeq2-normalized and rlog-transformed by DESeq2 [49] package in R. The 

ensemble IDs were left as-is. For each gene, the difference of mean from the AML 

bone marrow samples (245 samples) to healthy bone marrow samples (21 samples) 

was calculated, and these numbers were used as input for GSEAPreranked. The 

survival information was downloaded from http://vizome.org/aml/. 

For GEO collection database, the gene expression data and sample 

information were downloaded from https://doi.org/10.5281/zenodo.3257786. 

https://portal.gdc.cancer.gov/
https://doi.org/10.5281/zenodo.3257786
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Specifically, for the gene expression data, 

"All_2761_Corrected_for_All_Factors_SampleSource_DiseaseState_Batch_Datase

twise_2213_AML_1st_548_Healthy_2nd_and_removed_613_dummy_with_44754

_probsets_RMA_Normalized_Log2Trans_Zscore_Standardized_Transposed_Data.

csv" file was downloaded. The probe IDs were converted to gene symbols, and for 

those with duplicate matches, the same procedure was applied as in MILE study 

stage I above. 

For TCGA-LAML database, the gene expression data and survival 

information were downloaded from https://gdc.cancer.gov/about-

data/publications/pancanatlas. Sample IDs starting with "TCGA-AB" were 

considered as AML samples. The categorization of the TCGA samples by 

ELN2017 risk groups was kindly provided by the authors of a recent paper 

publication [50]. 

The GSE173116 dataset used in Fig. 16 was downloaded from GEO. 

GSEA and GSEAPreranked were run using GSEA software from the Broad 

Institute. For gene sets in GSEAPreranked, the gene set database 

(Human_GOBP_AllPathways_no_GO_iea_June_24_2019_symbol.gmt) was 

downloaded from http://baderlab.org/GeneSets. In order to avoid errors in later 

steps, some modifications including removing special characters were performed; 

the R packages GSA, stringr, and rowr were used in this process. The minimum 

and maximum gene set size filters were set to 10 and 500, respectively. As a result, 

7036 gene sets were used in the analysis. 

The AML-upregulated pathway result tables from both GSEAPreranked 

analyses were imported into R, and only the gene sets satisfying the following 

https://gdc.cancer.gov/about-data/publications/pancanatlas
https://gdc.cancer.gov/about-data/publications/pancanatlas
http://baderlab.org/GeneSets
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criteria were selected; (i) nominal p < 0.05 in both databases, (ii) false discovery 

rate (FDR) < 0.25 in at least one database. This resulted in 154 gene sets. For 

pathway clustering analysis, GSCluster [51] package was used with the 154 gene 

sets and the leading-edge genes in both databases. For the q values, the FDR values 

from OHSU results were used. For the clustering method, ‘Distance’ parameter was 

set to pMM, ‘Network weight’ to 1, and ‘Maximum gene-set distance’ to 0.25. 

For gene set database of Fig. 16, the Hallmark gene set in MSigDb 

(version 7.4) was used. For Fig. 18, Biocarta gene set in MSigDb (version 7.5.1) 

was used. 

The following 17 genes were considered as related to SUMOylation in 

Figs. 2B and 5; SAE1, UBA2, UBE2I, PIAS1, PIAS2, PIAS4, BMI1, PHC1, PHC2, 

PHC3, CBX2, CBX4, CBX8, RING1, RNF2, SUMO1, and SUMO2. 

 

2) Survival analysis 

For the association between the SUMOylation pathway and overall 

survival, patient groups were stratified into high or low groups according to the 

expression levels of several important genes in the pathway using the best risk 

separation approach [52], and the survival difference between the two groups was 

evaluated with Cox regression. 

For univariate and multivariate analysis in Table 9, survival R package 

was used. The patient information was retrieved from http://vizome.org/aml and 

original paper of OHSU BeatAML 1.0 program [47]. The following 12 parameters 

were included for the univariate analysis; ELN2017, isRelapse, consensus_sex, 

http://vizome.org/aml
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cumulativeChemo, ageAtSpecimenAcquisition, CEBPA_Biallelic, FLT3-ITD, 

NPM1, RUNX1, ASXL1, TP53, and the converted Gene Set Variance Analysis 

(GSVA) pathway scores of BIOCARTA_SUMO_PATHWAY (termed 

"SUMOgene"). Of these, 6 parameters (ELN2017, cumulativeChemo, 

ageAtSpecimenAcquisition, NPM1, TP53, and SUMOgene) were included for the 

multivariate analysis. 

 

3) Conversion of gene expression data to pathway scores data 

To convert gene expression to pathway scores, GSVA R package was used. 

Hallmark gene sets ("h.all.v7.2.symbols.gmt"), canonical pathways which contain 

BioCarta, Kyoto Encyclopedia of Genes and Genomes (KEGG), Pathway 

Interaction Database (PID), Reactome and WikiPathways pathway database 

("c2.cp.v7.2.symbols.gmt"), and Gene Ontology Biological Process gene sets 

("c5.go.bp.v7.2.symbols.gmt") were downloaded from 

http://baderlab.org/GeneSets, read in R with GSA package and combined. With this 

combined gene set, DESeq2- and rlog-transformed OHSU gene expression data 

from above were used as input for the function gsva, with parameters "min.sz" set 

to 5, "max.sz" to 700, "method" to "gsva". 

 

  

http://baderlab.org/GeneSets
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2. Cells – Reagents 

MOLM-14 (DSMZ, Braunschweig, Germany), U937, THP-1, KG-1, and 

C1498 (ATCC, Manassas, VA, USA) were used in this study. Cells were cultured in 

RPMI 1640 media supplemented with 10% fetal bovine serum (FBS), 100 U/ml 

penicillin, and 100 μg/ml streptomycin, at 37 °C in a 5% CO2 incubator. TAK-981 

was purchased from MedChemExpress (Monmouth Junction, NJ, USA). 

Cytarabine was purchased from Sigma-Aldrich (St.Louis, MO, USA). The 

concentrations used in Figs. 14-24 (except Figs. 16 and 18) were based on the the 

results from the initial estimation of IC50 of TAK-981 for each cell line. Ficoll-

Hypaque is from Sigma-Aldrich (St.Louis, MO, USA). All other chemical reagents 

were from Sigma-Aldrich unless otherwise noted. 

 

3. Antibodies for flow cytometry 

Harvested cells were stained with antibodies against human CD33-PE and 

CD34-PE-Cy7 purchased from BD Biosciences (BD Biosciences, San Jose, CA, 

USA). DAPI (Sigma Aldrich, St. Louis, MO, USA), propidium iodide (PI), and 

annexin-V-APC (BD Biosciences, San Jose, CA, USA) were used to stain dead and 

apoptotic cells, respectively. Mouse cells were stained with antibodies against 

mouse CD90.1 purchased from eBioscience (eBioscience, Waltham, MA, USA). 
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4. Cell viability with CCK-8 assay 

Cells were seeded at 1 × 104 cells/well on 96-well plates and exposed to 

drugs (TAK-981 alone or in combination with cytarabine, azacitidine, quizartinib 

or venetoclax) at various concentrations for 48 h. Cell viability was determined 

with the D-plus CCK Cell Viability Assay Kit (Dongin Biotech, Seoul, South 

Korea). The IC50 value was identified using the GraphPad Prism 9.1.1 software. 

 

5. Primary AML cells from patients 

Bone marrow samples from patients with AML were collected during 

routine diagnostic procedures after informed consent was obtained in accordance 

with Institutional Review Board regulations of The Catholic University of Korea 

(KC20SISI0957) and the Declaration of Helsinki. Mononuclear cells were freshly 

isolated from 25 patients (BM, n = 13, PB, n = 12) with AML and 5 healthy 

controls (Tables 3-5) by Ficoll-Hypaque density gradient centrifugation. The cells 

were cultured with different doses of TAK-981, cytarabine, or both for 48 h. To 

compare cytotoxicity between groups, leukemic cells were gated with CD33 and/or 

CD34 by flow cytometry and viable cells were compared between groups 

according to DAPI negative/Annexin V negative status. 
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Table 3. Patient information for primary AML cells acquired from bone marrow 

Sample 

number 
Sex/Age Type 

Sample 

Status 
ELN Risk Karyotype 

Mutations by 

NGS 
FLT3-ITD 

WBC 

(/μL) 

Bone 

marrow 

blasts 

Frontline 

treatment 

Respo

nse 
HSCT 

Relapse 

after 

HSCT 

Live 

or 

death 

001 Male/78 MRC 
Newly 

diagnosed 
Adverse 46,XY[20] 

ASXL1/RUNX1/CE

BPA 

Not 

mutated 
37040 20% Not treated NA NA NA Died 

002 
Female/

61 

De 

novo 

Newly 

diagnosed 
Favorable 46,XX[20] 

NPM1/TET2/TET2/

ETV6/ETV6/WT1 

Not 

mutated 
63090 98% IDA/ARA 

No 

respo

nse 

NA NA Died 

003 
Female/

21 

De 

novo 

Newly 

diagnosed 
Favorable 46,XX,inv(16)(p13.1q22)[20] NRAS 

Not 

mutated 
47010 84% IDA/ARA CR MSD No Alive 

004 
Female/

21 

De 

novo 

Newly 

diagnosed 
Intermediate 46,XX[20] NRAS/NRAS/ETV6 

Not 

mutated 
54480 60% IDA/ARA CR MUD No Alive 

005 Male/63 
De 

novo 
Relapsed Adverse 

46~47,XY,del(5)(q22q31),+6,-

7,+8,der(11)add(11)(p13)t(4;11

)(q12;q14),-12,add(12)(p13), 

add(15)(p11.2),+21,add(22)(p1

1.2)[cp10]/46~47,idem,der(1)in

s(1;?)(q31;?),del(4)(q21), 

[cp6]/48,idem,der(11)r(11;?),+

del(12)(q21q24.1)[4] 

NRAS/JAK1 
Not 

mutated 
13910 72% Not treated NA NA NA Died 

006 Male/37 MRC 
Newly 

diagnosed 
Intermediate 45,X,-Y[17]/46,XY[3] NRAS/SF3B1/WT1 

Not 

mutated 
12900 70% IDA/ARA CR Haplo NA Alive 

007 Male/62 
De 

novo 
Relapsed Intermediate 46,XY,t(5;9)(q33;q34)[20] NPM1/DNMT3A 

Allelic 

ratio: 8.530 
93990 76% Not treated NA NA NA Died 

008 
Female/

41 

De 

novo 

Newly 

diagnosed 
Intermediate 46,XX,inv(9)(p12q13)[20] NPM1/DNMT3A 

Allelic 

ratio: 2.429 
24910 71% 

IDA/ARA+ 

Gilteretinib 
CR MUD Yes Alive 

009 Male/28 
De 

novo 

Newly 

diagnosed 
Adverse 46,XY[20] CEBPAsm 

Allelic 

ratio: 0.765 
259920 99% 

DNR/ARA+

Midostaurin 
NR Haplo No Alive 

010 
Female/

46 
MRC 

Newly 

diagnosed 
Adverse 46,XX[20] RUNX1 

Allelic 

ratio: 0.616 
3120 73% 

DNR/ARA+

Midostaurin 
CR MSD No Alive 

011 
Female/

57 

De 

novo 

Newly 

diagnosed 
Intermediate 

46,XX,del(19)(q13.2)[15]/46,X

X[5] 
STAG2/CEBPA 

Allelic 

ratio: 0.494 
176340 93% 

DNR/ARA+

Midostaurin 
CR Haplo No Died 

012 Male/67 
De 

novo 

Newly 

diagnosed 
Intermediate 47,XY,+15[20] BCOR 

Allelic 

ratio: 0.119 
27250 95% 

Decitabine+ 

Venetoclax 

No 

respo

nse 

NA NA Died 

013 
Female/

40 

De 

novo 

Newly 

diagnosed 
Favorable 

47,XX,+4[4]/48,idem,+22[15]/

46,XX[1] 
NPM1/FLT3-TKD 

Allelic 

ratio: 0.112 
47390 98% 

IDA/ARA+ 

Gilteretinib 
CR Haplo No Alive 

Abbreviations: NA, non-available; NGS, next-generation sequencing; ELN, EuropeanLeukemia net; MRC, myelodysplasia-related change; IDA/ARA, 

idarubicin/cytarabine; DNR/AR, daunorubicin/cytarabine; CR, complete remission; MSD, matched sibling donor; MUD, matched unrelated donor; Haplo, 

haploidentical donor; HSCT hematopoietic stem cell transplantation 
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Table 4. Patient information for primary AML cells acquired from peripheral blood 

Abbreviations: NA, non-available; NGS, next-generation sequencing; ELN, EuropeanLeukemia net; IDA/ARA, idarubicin/cytarabine; DNR/AR, 

daunorubicin/cytarabine; DEC/VEN, decitabine/venetoclax; CR, complete remission 

 

Sample 

number 
Sex/Age Type 

Sample 

Status 
ELN Risk Karyotype 

Mutations by 

NGS 
FLT3-ITD 

WBC 

(/μL) 

Perip

heral 

blasts 

Frontline 

treatment 
Response 

SAE1/ 

GAPDH 

SAE2/ 

GAPDH 

UBC9/ 

GAPDH 

001 Male/53 
De 

novo 

Newly 

diagnosed 
Favorable 46,XY[20] 

CEBPA/CEBPA

/DNMT3A 

Not 

mutated 
10180 57% IDA/ARA Pending 1.33 0.75 0.68 

002 Female/65 
De 

novo 

Newly 

diagnosed 
Favorable 46,XX[20] 

NPM1(TypeA) 

/TET2/CEBPA 

Not 

mutated 
4030 37% IDA/ARA Pending 1.25 0.83 0.54 

003 Male/57 
De 

novo 

Newly 

diagnosed 
Intermediate 

46,XY,t(11;19)(q23;p13.1

)[20] 

NRAS/NRAS/ 

STAG2 

Allelic 

ratio: 0.031 
6980 62% DEC+VEN Pending 1.27 0.70 0.65 

004 Female/57 
De 

novo 

Newly 

diagnosed 
Adverse 46,XX[20] Pending 

Allelic 

ratio: 0.796 
15660 79% 

DNR/ARA+

Midostaurin 
Pending 1.25 0.60 0.56 

005 Female/67 
De 

novo 

Newly 

diagnosed 
Adverse 

46,XX,t(9;22)(q34;q11.2)[

20] 
Pending 

Not 

mutated 
24710 77% DEC+VEN Pending 1.23 0.43 0.59 

006 Female/62 
De 

novo 

Newly 

diagnosed 
Pending 46,XX[20] Pending 

Allelic 

ratio: 0.067 
6320 28% 

DNR/ARA+

Midostaurin 
Pending 0.71 0.17 0.24 

007 Male/68 
De 

novo 

Newly 

diagnosed 
Intermediate 46,XY[20] IDH2/DNMT3A 

Allelic 

ratio: 0.069 
5630 1% DEC+VEN Pending 0.29 0.31 1.08 

008 Male/61 
De 

novo 

Remission 

state 
Favorable 

45,X,-

Y,t(8;21)(fq22:q22)[20] 
Pending 

Not 

mutated 
2950 0% IDA/ARA Pending 0.14 0.03 0.14 

009 Female/70 
De 

novo 

Remission 

state 
NA 46,XX[20] Not done 

Not 

mutated 
3420 0% IDA/ARA CR 0.11 0.02 0.14 

010 Male/19 
De 

novo 

Remission 

state 
Intermediate 46,XY[20] 

GATA2/NRAS/ 

TET2 

Not 

mutated 
5340 0% IDA/ARA CR 0.09 0.06 0.16 

011 Female/51 
De 

novo 

Remission 

state 
Favorable 

46,XX,t(8;21)(fq22:q22)[

11]/36,idem,del(9)[q13q2

2)[8]/46,XX[1] 

Not done 
Not 

mutated 
4410 0% IDA/ARA CR 0.17 0.00 0.14 

012 Male/70 
De 

novo 

Remission 

state 
Intermediate 47,XY,+8[8]/46,XY[12] 

IDH2/DDX41/ 

DDX41/TP53 

Not 

mutated 
9440 0% DEC+VEN CR 0.06 0.03 0.20 
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Table 5. Information of healthy controls 

Sample number Sex/Age WBC (/μL) Sample Status 

001 Male/29 6740 Healthy control 

002 Female/30 5600 Healthy control 

003 Male/26 4800 Healthy control 

004 Male/35 7310 Healthy control 

005 Female/25 6200 Healthy control 
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6. Flow cytometry  

The expression of various target proteins was analyzed using an 

LSRFortessaTM flow cytometer (BD Biosciences, San Jose, CA, USA). The 

harvested cells were stained with antibodies against human and mouse cells targets 

and an appropriate isotype-matched antibody was used as a negative control. Flow 

cytometric data were analyzed with FlowJo vX.10 software. 

 

7. Apoptosis analysis 

Cell lines or primary AML cells were seeded at 0.2 × 106 cells/mL or 1.0 

× 106 cells/mL, respectively, in 24-well plate. After 48 h of incubation with drugs, 

cells were harvested and stained with DAPI or PI and annexin-V, according to the 

manufacture’s direction. Viable or apoptotic cells were quantified by flow 

cytometry. Data were analyzed with FlowJo vX.10 software. 

 

8. Cell-cycle analysis 

Cells were seeded on 60 mm dishes (1 × 106 cells/dish), then exposed to 

TAK-981 at indicated concentrations for each cell line. After 48 h incubation, cells 

were washed twice with DPBS and fixed with cold 70% ethanol, then stored at -

20oC for a minimum of 24 h. Before the analysis, ethanol was discarded completely 

through centrifugation and by washing the pellets with cold DPBS. Cellular RNA 

was removed by incubating the pellets with RNAase (200 µg/mL) at 37oC for 30 

min. PI (50 µg/mL) was used to stain the cellular DNA for another 30 min at room 

temperature. The analysis was conducted on a FACSCalibur flow cytometer (BD 
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Biosciences, San Jose, CA, USA). Signals were detected on the FL2 channel (ext. 

488 nm, emi. 564–606 nm) and data were analyzed by FlowJo vX.10 software. 

 

9. RT-qPCR validation 

Total RNA was purified by using a Trizol reagent (Invitrogen, Carlsbad, 

CA, USA) followed by the cDNAs synthesis using the High-Capacity cDNA 

Reverse Transcription Kit (Applied Biosystems, Foster City, CA, USA) according 

to the manufacturer’s instructions. qPCR analysis was conducted on an Applied 

Biosystems Prism 7300 instrument, using the iTaq Universal SYBR Green 

Supermix kit (Bio-Rad, Hercules, CA, USA) and primers listed in Table 12. Data 

were normalized with ACTB mRNA level as an internal reference. 

For primer efficiency in Table 12, cDNA samples from TAK-981-treated-

cell lines were serially diluted, Ct values were obtained for each samples, standard 

curves were drawn, and the slope of the regression line was calculated. The primer 

efficiency was calculated using the following formula: (10^(-1/Slope)-1)*100. 

 

10. Western blotting 

Cells were seeded on 60 mm dishes (1 × 106 cells/dish), then exposed to 

TAK-981 at indicated concentrations for each cell line for 24 h or 48 h. The 

samples were homogenized in RIPA buffer with protease and phosphatase 

inhibitors (1 mM PMSF (phenylmethylsulfonyl fluoride) 2 µg/mL aprotinin, 1 

µg/mL pepstatin A). Protein extracts were separated by SDS (sodium dodecyl 

sulfate) electrophoresis with 10% gel, then transferred to the PVDF 
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(polyvinylidene difluoride) membranes. Membranes were blocked with 5% skim 

milk in TBST (Tris-buffered saline with 0.1% tween) and incubated at 4oC 

overnight with the following primary antibodies: β-actin (sc-47778, Santa Cruz), 

cleaved-caspase 3 (ab32042, Abcam), cytochrome C (1896-1, Epitomics), p21 

(ab109520, Abcam), SUMO-2/3/4 (sc-393144, Santa Cruz), SUMO1 (21C7, 

Thermo Fisher Scientific), SUMO2/3 (8A2, Developmental Studies Hybridoma 

Bank), p53 (ab131442, Abcam), MDM2 (ab38618, Abcam), SAE1 (ab185949, 

Abcam), SAE2 (ab185955, Abcam), UBC9 (4930S, Cell Signaling Technology), 

GAPDH (2118S, Cell Signaling Technology). Anti-rabbit IgG-HRP (sc-2004, Santa 

Cruz) and anti-mouse IgG-HRP (sc-2005, Santa Cruz) were used as secondary 

antibodies. The protein bands were visualized by using an EZ-Western Detection 

kit (DoGen, Seoul, South Korea) and imaged on a LAS-4000 imaging system (GE 

Healthcare, Chicago, IL, USA). 

For SUMOylation levels from TAK-981 treated animals, individual 

samples were pooled to one, since the amount of the live cancer cells from TAK-

981-treated mouse was really small, due to the very high activity of TAK-981, and 

it was very difficult to get live AML cells for analysis. For all the other western 

blots, experiments were in at least three biological replicates. 

 

11. Animal experiments 

All animal experiments were done in accordance with a protocol approved 

by the Institutional Animal Care and Use Committee of The Catholic University of 

Korea (CUMC-2020-0318-01). 
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1) Syngeneic mouse AML models 

C1498 cells labeled with Luc/CD90.1, (C1498/Luc/CD90.1) [53] were 

intravenously injected into C57BL/6 (female, 6–8-weeks-old, Orient-Bio, Korea) 

mice through tail vein at a concentration of 2 × 106 cells/mouse to investigate the in 

vivo effects of treatment with TAK-981. Bioluminescence imaging was used to 

monitor tumor burden. Briefly, mice were anesthetized and imaged noninvasively 

with an in vivo imaging system (Optical in vivo Imaging System-IVIS Lumina 

XRMS; PerkinElmer, Waltham, MA, USA) after injection with luciferase substrate 

coelenterazine (Biotium, Heyward, CA, USA). After confirming leukemia 

engraftment by bioluminescence imaging, mice were randomized into each group. 

TAK-981 (7.5 mg/kg) formulated in 20% 2-hydroxypropyl-β-cyclodextrin was 

administered intravenously three times a week for 3 weeks. The three mice for each 

group were euthanized to examine the extent of leukemic infiltration of different 

organs and femurs with flow cytometry. Remained mice for each group were 

monitored for survival. 

 

2) AML xenograft mouse models 

MOLM-14 cells labeled with Luc/GFP (MOLM-14/Luc/GFP) [54] were 

intravenously injected into NOD/SCID/IL-2rγnull (NSG) mice (NSG, female, 6–8-

weeks-old, The Jackson Laboratory, Bar Harbor, ME, USA) through tail vein at a 

concentration of 0.5 × 106 cells/mouse to investigate the in vivo effects of treatment 

with TAK-981. Bioluminescence imaging was used to monitor tumor burden. 

Briefly, mice were anesthetized and imaged noninvasively with an in vivo imaging 
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system (Optical in vivo Imaging System-IVIS Lumina XRMS; PerkinElmer, 

Waltham, MA, USA) after injection with luciferase substrate coelenterazine 

(Biotium, Heyward, CA, USA). After confirming leukemia engraftment by 

bioluminescence imaging, mice were randomized into each group. TAK-981 (7.5 

mg/kg) formulated in 20% 2-hydroxypropyl-β-cyclodextrin was administered 

intravenously three times a week for 3 weeks. The three mice for each group were 

euthanized to examine the extent of leukemic infiltration of different organs and 

femurs with flow cytometry. Western blot analysis for SUMOylation was 

performed with leukemic cells sorted and separated from bone marrow and spleen 

by flow cytometer in each group. Remained mice for each group were monitored 

for survival. 

 

12. Statistical analysis 

The Wilcoxon rank-sum test was used for most of the comparison of two 

groups. For Figs. 17, 20, 21, 23, and 24, one-way Analysis of Variance (ANOVA) 

and Student’s t-test were used. For Figs. 28B, 29B, 30B and 31B, Student’s t-test 

was used. For the ELN2017 analysis, the Jonckheere-Terpstra test from the 

DescTools package in R was used. All post hoc analyses were performed with the 

two-stage linear step-up procedure of Benjamini, Krieger and Yekutieli, as 

implemented in GraphPad Prism. Cox regression was used for survival analysis, 

with the minimum p-value determined by the surv_cutpoint function in the 

survminer package in R (minprop parameter set to 0.15) or with the median cutoff 
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approach. All of the statistical analyses were performed with GraphPad Prism 9.1.1 

(GraphPad Software, San Diego, CA, USA) or R (version 4.1.1). 
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III. Results 

 

A. Bioinformatic screening identifies SUMOylation pathway 

as AML-specific target 

 

First, I performed an integrated analysis on large-scale databases (MILE 

study stage I and OHSU BeatAML 1.0 program) (Fig. 1A). Selection of significant 

pathways in the two GSEA results (AML vs. Normal) followed by their clustering 

based on common leading-edge genes and protein-protein interactions yielded 4-

distinct pathway clusters: (i) Translation/rRNA/Mitochondria, (ii) Histone-related, 

(iii) SUMOylation, and (iv) Regulation of mRNA (Fig. 1B, and Appendix A and B). 

Interestingly, inhibitors targeting the first cluster, such as ribosome biogenesis 

inhibitors or tetracyclines, had shown both in vitro and in vivo anti-leukemic 

activities and were entered into clinical development [55-57]. These facts show that 

my bioinformatic results may have real relevance for AML targeting. Of the three 

remaining clusters, I focused on the (iii) SUMOylation cluster, because it had not 

been much explored for AML, and the other two were either difficult to establish 

the causality (‘Histone-related’) or too non-specific (‘Regulation of mRNA’). Most 

of the individual genes comprising the SUMOylation pathway were found to be 

upregulated in AML samples from both the MILE and OHSU databases (SUMO1 

and UBA2 in Fig. 2A; all the others in Figs. 3 and 4). I further validated the results 

using another large independent dataset from the GEO collection of 2213 AML and 
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548 normal samples [48]. Consistently, I found that 11 of 17 genes related to 

SUMOylation were found to be significantly upregulated in AML samples 

(SUMO1 and UBA2 in Fig. 2B; all the others in Fig. 5). In particular, I observed 

higher protein levels of E1 (SAE1 and SAE2), targets for TAK-981, and E2 (UBC9) 

in AML patient cells than those in healthy control or patients with remission after 

therapy (Fig. 2C). I believe these provide further support for the involvement of 

SUMOylation at the protein level. The results also suggest that the upregulated 

SUMOylation pathway in AML may be a target for therapeutic intervention. 
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Figure 1. Bioinformatic screening to find AML-specific pathways 

(A) Overall strategy for database screening. (B) Graphical illustration of 4 pathway 

clusters upregulated in AML bone marrow samples from (A), using GSCluster [51] 

R package. The number of connected gene sets in each cluster is indicated. 
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Figure 2. The expression of core genes/pathways of SUMOylation pathway in 

AML 

(A) Comparison of UBA2 and SUMO1 gene expression between healthy and AML 

bone marrow samples in OHSU and MILE databases. (B) Comparison of UBA2 

and SUMO1 gene expression between healthy and AML bone marrow/peripheral 

blood samples in GEO datasets by Roushangar and Mias [48]. (C) Left: 

Representative western blot for SAE2, SAE1, UBC9, and GAPDH in peripheral 

blood from healthy controls and AML patients at diagnosis or remission state after 

treatment. Right: The intensities of the bands from the all samples were quantified 
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by densitometry and displayed as the ratio of each protein to GAPDH (loading 

control). Newly diagnosed AML patients (n = 7), those at remission state (n = 5), 

and healthy controls (n = 5). Results are expressed as the mean  SEM. P-values 

are from Wilcoxon rank-sum test. * p < 0.05, ** p < 0.01, *** p < 0.001, **** p < 

0.0001. 
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Figure 3. Comparison of the gene expression levels related to SUMOylation 

between healthy and AML samples in OHSU database 

mRNA expression levels of genes related to SUMOylation (except UBA2 and 

SUMO1 that are shown in Fig. 2A) in healthy and AML samples from OHSU 

database. AML samples are from bone marrow (BM). P-values are from Wilcoxon 

rank-sum test. ** p < 0.01, *** p < 0.001, **** p < 0.0001. 
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Figure 4. Comparison of the gene expression levels related to SUMOylation 

between healthy and AML samples in MILE database 

mRNA expression levels of genes related to SUMOylation (except UBA2 and 

SUMO1 that are shown in Fig. 2A) in healthy and AML samples from MILE 

database. AML samples are from bone marrow (BM). P-values are from Wilcoxon 

rank-sum test. * p < 0.05, ** p < 0.01, *** p < 0.001, **** p < 0.0001. 
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Figure 5. Comparison of the gene expression levels related to SUMOylation 

between healthy and AML samples in GEO compilation 

mRNA expression levels of genes related to SUMOylation (except UBA2 and 

SUMO1 that are shown in Fig. 2B) in healthy and AML samples from GEO 

collection [48]. AML samples are from peripheral blood. P-values are from 

Wilcoxon rank-sum test. **** p < 0.0001.  
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B. SUMOylation pathway is associated with adverse risk 

features and poor survival in AML 

 

I then explored the clinical relevance of SUMOylation. First, higher 

expression of most of the important genes in the SUMOylation pathway from the 

OHSU database (the survival analysis results of genes analyzed by the median 

cutoff approach in Fig. 6A; genes analyzed by the best risk separation approach in 

Fig. 6B) was significantly associated with shorter survival. Some of those negative 

correlations (for SAE1, BMI1, and PHC2) were validated with the TCGA database 

(Fig. 7), and all the results, along with those without correlations, are shown in 

Table 6. Second, the ELN2017 risk analysis on the four groups (healthy, favorable, 

intermediate, adverse in OHSU database) demonstrated that most of the core genes 

in the SUMOylation pathway expressed at higher levels in the high-risk groups (p 

< 0.05) (SUMO1, UBA2, SAE1 in Fig. 8A, and all the others in Fig. 8B). Post hoc 

analysis showed that the difference concerning SUMOylation pathway between the 

healthy and adverse risk group was significant (except for UBE2I gene). This trend 

also was confirmed from the three patient risk groups (favorable, intermediate, 

adverse) in the TCGA database for several genes including BMI1, CBX2, and core 

genes such as SAE1 and UBA2, and the results are shown in Table 7 along with the 

results for all the other genes without such confirmation [50]. As the above results 

are for individual gene levels, I further explored the pathway-specific relationship 

between SUMOylation and overall survival/ELN2017, by performing similar 

analyses with GSVA pathway scores [58]. Consistent with the results from 
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individual genes, higher scores of SUMOylation pathways were found to be 

significantly related with poorer prognosis in both survival analysis and ELN2017 

risk analysis (Table 8). These relationships remained valid after adjusting for high-

risk AML patient characteristics that might have confounding effects, as evidenced 

by multivariate analysis (Table 9). 

Third, I tested if particular gene mutations are related to core 

SUMOylation gene expression. Among the four gene mutations (FLT3-ITD, NPM1, 

TP53, and RUNX1) that had enough patients (n > 5) for both mutated and wild-type 

groups, three mutations (NPM1, TP53, and RUNX1) exhibited consistent patterns 

between prognosis and core SUMOylation gene expression (SUMO1 and UBE2I in 

Fig. 9A; all the others in Fig. 9B). Specifically, patients with the NPM1 mutation 

associated with better prognosis had lower SUMOylation gene expression, whereas 

those with the TP53 and RUNX1 mutations associated with poor prognosis had 

higher SUMOylation gene expression. These results suggest that activation of the 

SUMOylation pathway is associated with adverse risk features and poorer survival. 
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Figure 6. Survival analysis for genes in SUMOylation pathway in OHSU 

database 

Kaplan-Meier curves with 95% confidence intervals (dotted lines) for overall 

survival of AML patients in OHSU, according to the expression levels of each 
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indicated gene. The division of the high- and low-expression groups was 

determined by the median cutoff or the best risk separation approach, and the genes 

in (A) are those which showed significant result for both approaches. Only the 

result of the median cutoff approach is shown in (A). The genes in (B) are those 

which showed significant result not for the median cutoff approach but for the best 

risk separation approach. HR(high), hazard ratio of high expression group. 
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Figure 7. Survival analysis for genes in SUMOylation pathway in TCGA-

LAML database 

Kaplan-Meier curves with 95% confidence intervals (dotted lines) for genes related 

to SUMOylation that are significantly associated with poor overall survival in 

TCGA-LAML. The division of the high- and low-expression groups was 

determined by the best risk separation approach. HR(high), hazard ratio of high 

expression group. 
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Table 6. Survival analysis results in TCGA-LAML database for genes whose 

high expression showed significance with poor prognosis in OHSU database 

(Fig. 6) 

Genes  p-value HR(high) 

SAE1 0.045 1.56 

UBA2 0.332 1.28 

UBE2I 0.370 1.25 

PIAS1 0.334 0.81 

BMI1 0.010 1.73 

PHC1 0.040 0.65 

PHC2 0.010 1.90 

PHC3 0.003 0.53 

SUMO1 0.149 1.43 

The division of the high- and low-expression groups was determined by the best 

risk separation approach. HR(high), hazard ratio of high expression group. 
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Figure 8. ELN2017 analysis for genes in SUMOylation pathway in OHSU 

database 

Comparison of expression of (A) UBA2, SUMO1, and SAE1 and (B) five other 

indicated genes in SUMOylation pathway across healthy and ELN2017 risk groups. 

P-values are from Jonckheere-Terpstra test. Subsequent post hoc analyses were 

performed with the two-stage linear step-up procedure, and the significance is 

indicated for each comparison. The number of subjects is indicated for each group. 

ns, not significant; * p < 0.05, ** p < 0.01, *** p < 0.001, **** p < 0.0001. 



 

 38 

Table 7. ELN2017 analysis results in TCGA-LAML database for genes which 

showed significant increasing trend with ELN2017 risk categories in OHSU 

database (Fig. 8) 

Genes  p-value 

SAE1 3.32e-04 

UBA2 4.22e-02 

UBE2I 8.35e-01 

BMI1 1.21e-02 

PHC2 9.14e-01 

CBX2 6.21e-04 

RING1 1.17e-01 

SUMO1 5.05e-01 
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Table 8. SUMOylation pathways whose GSVA pathway scores show 

significance in both overall survival and ELN2017 analysis in OHSU database 

Pathways 
Survival  

p-value 

Survival  

HR(high) 

ELN2017  

p-value 

BIOCARTA_SUMO_PATHWAY 0.0483 1.44 7.03e-05 

REACTOME_SUMO_IS_PROTEOL

YTICALLY_PROCESSED 
0.0299 1.51 6.33e-06 

REACTOME_SUMOYLATION_OF_

DNA_METHYLATION_PROTEINS 
0.0129 1.59 3.45e-05 

REACTOME_SUMOYLATION_OF_

IMMUNE_RESPONSE_PROTEINS 
0.0249 1.52 7.33e-03 

The division of the high- and low-expression groups was determined by the median 

cutoff. HR(high), hazard ratio of high expression group. 
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Table 9. Univariate and Multivariate analysis of overall survival utilizing the 

gene expression and clinical information in OHSU database 

Clinical characteristic 

Univariate analysis Multivariate analysis 

HR  

(95% CI) 
P-value 

HR  

(95% CI) 
P-value 

Sex (Male vs. Female) 
1.40  

(0.82-2.37) 
0.333   

Relapse (TRUE vs. 

FALSE) 

0.55  

(0.19-1.56) 
0.260   

Cumulative chemo (y vs. n) 
0.27  

(0.12-0.59) 
0.001 

0.15  

(0.03-

0.81) 

0.027 

ELN2017  

(Favorable vs. Adverse) 

0.32  

(0.18-0.59) 
< 0.001 

0.17  

(0.04-

0.68) 

0.012 

Age at specimen 

acquisition 

1.03  

(1.01-1.04) 
0.002 

1.00  

(0.98-

1.02) 

0.849 

Mutation  

(positive vs. negative) 
    

FLT3-ITD 
1.12  

(0.58-2.16) 
0.746   

RUNX1 
2.44  

(0.91-6.58) 
0.077   

ASXL1 
1.06  

(0.12-9.14) 
0.958   

NPM1 
0.49  

(0.25-0.96) 
0.038 

0.66  

(0.11-

4.10) 

0.653 

TP53 
4.23  

(2.00-8.92) 
< 0.001 

1.01  

(0.39-

2.64) 

0.981 

CEBPA_Biallelic  

(y vs. n) 

3.80e-08  

(0-Inf) 
0.996   

SUMOgene 
2.18  

(1.35-3.52) 
0.002 

2.60  

(1.09-

6.22) 

0.032 

HR, Hazard Ratio. CI, Confidence Interval. 'SUMOgene' refers to GSVA pathway 

score of "BIOCARTA_SUMO_PATHWAY". 
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Figure 9. Comparison of gene expression between groups with or without 

AML-relevant mutations for genes in SUMOylation pathway in OHSU 

database 

(A) Comparison of UBE2I and SUMO1 gene expression between mutated and 

wild-type of NPM1, TP53 and RUNX1 genes in OHSU database. (B) Comparison 

of SAE1 gene expression in patients with mutated and wild-type NPM1 (left), and 

comparison of SAE1 (middle) and UBA2 (right) gene expression in patients with 

mutated and wild-type TP53 in OHSU database. P-values are from Wilcoxon rank-

sum test. * p < 0.05, ** p < 0.01, *** p < 0.001, **** p < 0.0001.  
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C. TAK-981, a new SUMOylation inhibitor, exhibits potent 

anti-leukemic effects in vitro 

 

In my quest for an inhibitor of SUMOylation, I found TAK-981, which 

was developed very recently as a first-in-class inhibitor of SAE step [43] and is 

currently under clinical trials for various solid tumors. As its effects against AML 

are still unknown, I evaluated them in vitro.  

Surprisingly, TAK-981 showed larger or similar potency compared with 

cytarabine (Ara-C), a standard drug used in clinics, against four AML cell lines 

(Fig. 10A). Notably, the IC50 values for TAK-981, all within a two-digit nanomolar 

range, were somewhat uniform across the cell lines. By contrast, those for 

cytarabine differed markedly (> 1 micromolar for KG-1 and THP-1; two-digit 

nanomolar range for U937). In comparison, tetracycline, targeting the 

“Translation/rRNA/Mitochondria” identified above, exhibited only several-

hundred-micromolar potency (Fig. 10B). 

Next, I tested TAK-981 for any synergistic or dose-reduction effect when 

used with cytarabine for the four cell lines (Fig. 11). In addition, TAK-981’s 

synergy with two new targeted-therapy drugs, venetoclax and quizartinib, along 

with a demethylating drug, azacitidine, was tested for the MOLM-14 cell line 

having the FLT3-ITD mutation, which is associated with poor prognosis (Fig. 11). 

Synergy, as judged by the CompuSyn scores [59], varied substantially across cell 

lines, with U937 and MOLM-14 exhibiting significant synergy, while KG-1 and 

THP-1 showing little synergy in the combination with cytarabine. For MOLM-14, 
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TAK-981 exhibited significant synergy with azacitidine, some synergy at higher 

drug concentrations with venetoclax, but no synergy with quizartinib. In addition, 

TAK-981 showed similar and lower potency in comparison with venetoclax, a 

BCL2 inhibitor, and quizartinib, an FLT3 inhibitor, respectively (Figs. 12 and 13). 

Although I used only concentration values around IC50 for each drug, significant 

synergy might be observed with different concentration combinations. I also 

assessed the dosage reduction effects of TAK-981 (Table 10). Notably, even when 

there was no apparent synergy, the dose reduction indices (DRI) of the drugs 

combined with TAK-981 were above 1 for all of the drug-cell-line settings, 

indicating significant dosage reduction effects. This could be exploited to lower the 

toxicity of such drugs when combined with TAK-981. Overall, TAK-981’s 

combination with conventional or targeted drugs holds promise for improved 

therapeutics. 
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Figure 10. TAK-981 and tetracycline's potency for AML cells 

(A) Dose-response curves of TAK-981 and cytarabine for four AML cell lines. The 

concentration values right beside each curve represent IC50 values. (B) Dose-

response curves of tetracycline for six AML cell lines. Cell viability was measured 

by CCK-8 assay. 
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Figure 11. TAK-981’s synergy with cytarabine or other drugs for AML cells 

(A) Synergy between TAK-981 and cytarabine for four AML cell lines. (B) 

Combination index plots computed from the data in (A) by CompuSyn software. 

For (A), different concentration ranges were used for each drug, and the error bars 

indicate standard deviation. Also, cell viability was measured by CCK-8 assay. For 

(B), values below the dotted line at 1.0 indicate synergy, and Fa refers to ‘Fractions 

affected’. 
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Figure 12. TAK-981’s synergy with azacitidine, quizartinib or venetoclax for 

AML cells 

Synergy between TAK-981 and several drugs for MOLM-14 cell line and 

combination index plots computed by CompuSyn software. For combination index 

plots, values below the dotted line at 1.0 indicate synergy, and Fa refers to 

‘Fractions affected’. Aza, Qui, Ven, and TAK refer to azacytidine, quizartinib, 

venetoclax, and TAK-981, respectively. Cell viability was measured by CCK-8 

assay. 
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Figure 13. Comparison of potency of quizartinib, venetoclax and TAK-981 for 

MOLM-14 cell line 

Dose-response curves of quizartinib, venetoclax, and TAK-981 for MOLM-14 cell 

line. Cell viability was measured with CCK-8 assay.   
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Table 10. Dose reduction index of cytarabine or other drugs when combined 

with TAK-981 in AML cell lines 

Cell line Combination Drug Dose Reduction Index (DRI)  

at Fa = 0.9 

U937 Cytarabine 12.03 

THP-1 Cytarabine 1.25 

KG-1 Cytarabine 2.61 

MOLM-14 Cytarabine 2.94 

MOLM-14 Azacitidine 4.87 

MOLM-14 Quizartinib 8.64 

MOLM-14 Venetoclax 4.98 

Fa, Fractions affected. Fa = 0.9 refers to the point where the inhibition effect is 

90%, i.e., when 90% of the cells are dead. The number 0.9 was chosen, since for 

cancer therapies, high effect levels are thought to be more therapeutically relevant 

than low effect levels [59].   
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D. TAK-981 induces apoptosis, cell-cycle arrest, and/or 

differentiation marker expression in AML cell lines 

 

To study how TAK-981 exhibits anti-leukemic effects, I investigated 

cellular events upon drug treatment. As expected, TAK-981 reduced SUMOylation 

for some of the proteins, if not all, from the cell extracts (24 h or 48 h treatment, 

Figs. 14 and 15). Because SUMOylation plays a critical role in transcription 

regulation, I next analyzed gene expression profile changes by TAK-981 treatment 

(16 h) using GSEA (GSE173116 [39]: THP-1 cells; Fig. 16). The upregulated 

pathways included those for cell death and cell-cycle arrest, such as the p53 

pathway and apoptosis. Experimentally, the mRNA expression of genes for 

apoptosis (DDIT3) and cell-cycle arrest (P21 and TP53), known to be 

downregulated by SUMOylation in AML cells [32, 42, 60], were significantly 

higher in TAK-981-treated THP-1 cells (48 h) than in those from the control or 

cytarabine-treated group (Fig. 17). I also found that there was a trend that SUMO 

core pathway is downregulated in TAK-981-treated THP-1 cells (Fig. 18), although 

TAK-981’s post-translational effect on SUMO may not necessarily involve the 

expression of SUMO core genes. Further analysis in several other AML cell lines 

with Western blot (p21, caspase 3, and cytochrome C; Fig. 19), flow cytometry for 

apoptosis (Fig. 20), and DNA content analysis (Fig. 21) showed that apoptosis and 

cell-cycle arrest were generally observed for the TAK-981-treated AML cells (48 h), 

with only minor variations. For example, G2/M phase arrest was observed for 

U937, THP-1, and KG-1 cells, whereas G0/G1 arrest was observed in MOLM-14 
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cells. Meanwhile, there is heterogeneity in terms of p53 mutations among the cell 

lines used in this study (Table 11). As p21 can be regulated either by p53 

dependently or independently, I tested if the induction of p21 by TAK-981 is also 

reflected in the p53. TAK-981 treatment did not change the levels of either p53 or 

MDM2 (Fig. 22), suggesting that TAK-981-induced p21 change may not be related 

to p53. Possible mechanistic disconnection between p53 and p21 upon TAK-981 

treatment could be an interesting topic for future research. 

TAK-981 treatment (48 h) also affected the differentiation of leukemic 

cells dose-dependently, as shown by the increase in the differentiation markers for 

U937 (CD15) [60-62], THP-1 (CD14), and MOLM-14 (CD11B) cells (Fig. 23). 

Moreover, TAK-981 suppressed the expression of CD39 (48 h, Fig. 24), which is 

known to be involved in AML chemoresistance [63], in both chemo-sensitive 

(U937) and chemo-resistant cells (KG-1, THP-1, MOLM-14). These data suggest 

that TAK-981 exhibits anti-leukemic effects by inducing apoptosis, cell-cycle arrest, 

differentiation, or lower chemoresistance. 
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Figure 14. Effect of TAK-981 on protein SUMOylation 

The effect of TAK-981 on protein SUMOylation in AML cells after 24 h (U937, 

THP-1) or 48 h (MOLM-14, KG-1) treatment. Western blot analysis was 

performed with the antibody for SUMO-2/3/4. 
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Figure 15. Western blot showing the effect of TAK-981 on protein 

SUMOylation with SUMO1- and SUMO2/3- specific antibodies 

Effect of TAK-981 on protein SUMOylation in AML cells after 48 h treatment. 

Western blot analysis was performed with the antibodies specific for (A) SUMO1 

and (B) SUMO2/3. For (B), the arrows indicate decreased protein SUMOylation in 

TAK-981-treated cells. 
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Figure 16. GSEA result from GSE173116 dataset 

Left: Top 12 pathways with p < 0.05 from GSEA analysis of TAK-981-treated 

THP-1 cells from GSE173116 data set with the Hallmark gene set. The pathways 

are in the order of the normalization of the enrichment score (NES). Right: 

Enrichment score plots for genes belonging to p53 and apoptosis pathways from 

the GSEA analysis. 
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Figure 17. Comparison of mRNA expression of genes related with apoptosis or 

cell-cycle arrest after TAK-981 treatment 

Relative mRNA expression of DDIT3, P21, and TP53 in TAK-981 (indicated 

concentrations) and cytarabine (1 µM) in THP-1 cells after 48 h treatment, as 

measured by qRT-PCR. Two-tailed Student’s t-test was used. Data are expressed as 

mean ± SD (n = 3), * p < 0.05, ** p < 0.01, *** p < 0.001, **** p < 0.0001. The 

efficiencies of the primers used are listed in Table 12. 
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Figure 18. Result of GSEA analysis from GSE173116 data with Biocarta gene 

set 

(A) Top 7 pathways which are downregulated in TAK-981-treated THP-1 cells. The 

pathways are in the order of the normalization of the enrichment score (NES). (B) 

Enrichment score plots for "BIOCARTA_SUMO pathway" from the GSEA 

analysis from (A). (C) Heatmap for the genes comprising the "BIOCARTA_SUMO 

pathway". The left 3 columns represent TAK-981-treated THP-1 cells, and the right 

3 columns represent control THP-1 cells. 
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Figure 19. Comparison of protein expression of proteins related with apoptosis 

or cell-cycle arrest after TAK-981 treatment 

Western blot for p21, cleaved caspase-3, and cytochrome C expression in AML 

cells after 48 h treatment with TAK-981. All experiments were done with n = 3. 
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Figure 20. Apoptosis analysis for TAK-981-treated AML cells 

Apoptosis analysis for TAK-981-treated AML cells after 48 h by flow cytometry 

with Annexin V/PI kit. Apoptotic cells (%) (right) is the sum of the early (Q3) and 

late (Q2) apoptosis percentages. Two-tailed Student’s t-test was used. Data are 

expressed as mean ± SD (n = 3), * p < 0.05, ** p < 0.01, *** p < 0.001, **** p < 

0.0001. 
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Figure 21. Cell-cycle analysis for TAK-981-treated AML cells 

Cell-cycle analysis for TAK-981-treated AML cells after 48 h by flow cytometry. 

Each phase of cell cycle was analyzed with Cell-cycle platform in FlowJo software. 

Data are expressed as mean ± SD (n = 3). Two-tailed Student’s t-test was used. * p 

< 0.05, ** p < 0.01, *** p < 0.001, **** p < 0.0001. 
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Table 11. The known TP53 mutation status for AML cell lines used in this 

study 

AML cell lines TP53 mutation status 

U937 Positive 

MOLM-14 Negative 

THP-1 Positive 

KG-1 Positive 

 

The information was retrieved from Cell Model Passports 

(https://cellmodelpassports.sanger.ac.uk) and references [64, 65]. 

  

https://cellmodelpassports.sanger.ac.uk/
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Figure 22. Western blot for MDM2 and p53 expression in AML cell lines 

The four AML cell lines (U937, THP-1, MOLM-14, KG-1) were treated for 24 

hours with TAK-981. All experiments were done with n = 3. 
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Figure 23. Comparison of gene expression of differentiation marker genes 

after TAK-981 treatment 

qRT-PCR analysis of differentiation markers. mRNA expression in 48 h-TAK-981-

treated AML cells for CD15 in U937, CD14 in THP-1, and CD11B in MOLM-14. 

Two-tailed Student’s t-test was used. Data are expressed as mean ± SD (n = 3), * p 

< 0.05, ** p < 0.01, *** p < 0.001, **** p < 0.0001. The efficiencies of the primers 

used are listed in Table 12. 
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Figure 24. Comparison of CD39 gene expression related with chemoresistance 

after TAK-981 treatment 

qRT-PCR analysis of CD39 gene. mRNA expression in 48 h-TAK-981-treated 

AML cells CD39 in all cells. Data are expressed as mean ± SD (n = 3), * p < 0.05, 

** p < 0.01, *** p < 0.001, **** p < 0.0001. The efficiencies of the primers used 

are listed in Table 12. 
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Table 12. RT-qPCR primers (Bioneer, Daejeon, South Korea) 

Genes  
Primer (5’→3’) 

Forward/Reverse 
NCBI reference Efficiency 

ACTB  

(β-actin) 

CATGTACGTTGCTATCCAGGC 

CTCCTTAATGTCACGCACGAT 
NM_001101.5 90.12% 

ITGAM 

(CD11B) 
P201135 V NM_000632.3 97.18% 

CD14 P151972 V NM_000591.3 96.81% 

FUT4 

(CD15) 
P145260 V NM_002033.3 109.16% 

ENTPD1 

(CD39) 

GGAGACGGACCACAGCAAG 

TTGTTCTGGGTCAACCCCAC 
NM_001776.6 96.78% 

DDIT3 
TTGCCTTTCTCCTTCGGGAC 

CAGTCAGCCAAGCCAGAGAA 
NM_001195053.1 95.63% 

CDKN1A 

(P21) 

GGCATAGAAGAGGCTGGTGG 

CATTAGCGCATCACAGTCGC 
NM_001220777.2  106.61% 

TP53 
TGACACGCTTCCCTGGATTG 

TCCGGGGACAGCATCAAATC 
NM_001276695.3 103.77% 

NCBI, National Center for Biotechnology Information 
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E. TAK-981 potency in primary AML cells ex vivo 

 

The effects of TAK-981 also were evaluated ex vivo in primary AML cells 

from patient bone marrow (n = 13). TAK-981 exhibited higher inhibition of 

primary cell proliferation at equimolar concentrations than did cytarabine which 

did not appreciably inhibit the cells at up to ~50 micromolar concentrations (Fig. 

25A). Interestingly, the inhibitory potencies of both compounds for the primary 

cells were much lower than those for the AML cell lines. Also, the SUMOylation 

status of primary AML cells from patients was lower than that in the cell lines (Fig. 

26). The possible reasons for these differences between cell lines and primary cells 

are addressed in the discussion section. 

Still, there was significant synergy between the two drugs against the 

primary cells (Fig. 25B), indicating the possible clinical utility of TAK-981. 

Consistently with the AML cell-line results, TAK-981 induced apoptosis in the 

primary AML cells, and this result suggests its direct effect on cancer cells 

independent of anti-tumor immunity (Fig. 27). 
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Figure 25. TAK-981’s activity against primary AML cells ex vivo 

Freshly isolated mononuclear cells from bone marrow of 13 patients with AML 

were cultured with different doses of TAK-981, cytarabine (Ara-C), or both for 48 

h. (A) Potency and combination effects of TAK-981 and cytarabine. Viable cells 

were estimated by flow cytometric analysis of primary AML cells treated with 

TAK-981, cytarabine or both. Error bars are standard errors. (B) Synergistic 

combination index between TAK-981 and cytarabine from data in (A). 
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Figure 26. Western blot showing basal SUMOylation levels, and ponceau S 

staining in primary AML cells and AML cell lines 

Western blot analysis was performed with the antibody for SUMO-2/3/4. All 

primary AML cells were from different patients, who had none p53-mutation status. 

U, T, M, and K in AML cell lines refer to U937, THP-1, MOLM-14, and KG-1, 

respectively. 
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Figure 27. Apoptosis analysis for TAK-981-treated primary AML cells ex vivo 

Leukemic cells were gated with CD33 and/or CD34 by flow cytometry and viable 

cells (DAPI negative/Annexin V negative) were compared between groups. 

Leukemic cell gating (upper part) and representative data of flow cytometry for 

apoptosis of primary AML cells at different concentrations of TAK-981 with DAPI 

and Annexin V. 
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F. TAK-981's anti-leukemic effects in both syngeneic AML 

mouse and human xenograft models 

 

To assess TAK-981’s anti-AML activity in an immune-competent 

environment, the mouse syngeneic AML model was employed using the C1498 

cell line. For the mice injected with C1498/Luc/CD90.1 cells through tail veins, 

TAK-981 significantly reduced the leukemic burden on day 19 relative to the 

control group, as judged by the bioluminescence (Fig. 28). Flow cytometric 

analysis of leukemic cells from bone marrow and blood (from 3 euthanized animals 

from each group on day 19) showed much less leukemic cells in the TAK-981 

group (Figs. 29A and B), consistent with the above imaging data on day 19. 

Significantly prolonged survival was also observed in the TAK-981 group relative 

to the controls (Fig. 29C). These data in the syngeneic immune-competent cancer 

model confirm TAK-981’s in vivo anti-AML activity. 

To confirm the human relevance of the anti-leukemic activity of TAK-981 

and to evaluate the influence of anti-tumor immunity on its anti-AML effect, 

human AML cell MOLM-14/Luc/GFP (0.5106) was injected into non-irradiated 

immune-deficient NSG mice (no T-cells and defective dendritic cells). Both the 

bioimaging data (Fig. 30) and the flow cytometric results on the blood and bone 

marrow cells (Figs. 31A and B) confirmed the lower leukemic burden in the TAK-

981 group. Western blot with sorted leukemic cells showed a decreased level of 

SUMOylated proteins in the TAK-981 group, thereby confirming its in vivo 

deSUMOylation activity (Fig. 32). Significantly prolonged survival was also 
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observed in the TAK-981 group relative to the control (Fig. 31C). Therefore, the 

data confirm TAK-981’s anti-human AML activity in vivo. Importantly, these data 

show that TAK-981’s in vivo activity is independent of anti-tumor immunity, as it is 

lacking in the NSG mouse model. 
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Figure 28. TAK-981's anti-leukemic effects confirmed by bioluminescence 

imaging in syngeneic AML mouse models (immune-competent mice) 

Syngeneic mouse model was established by injecting C1498 cells labeled with 

Luc/CD90.1 (C1498/Luc/CD90.1) into C57BL/6 mice through tail vein. After 

confirming leukemia engraftment by bioluminescence imaging, the mice were 

divided into two groups (10 mice per group) and treatment began on day 5 until 

day 26: Control (no treatment) or TAK-981 (7.5 mg/kg formulated in 20% 2-

hydroxypropyl-β-cyclodextrin, intravenously three times a week). Representative 

mice from each group were subjected to (A) serial bioluminescence images and (B) 

intensity quantitation on days 5, 12, and 19 after leukemic cell injection. For (B), 

the results are expressed as the mean ± SEM and Student’s t-test was used. ** p < 

0.01. 
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Figure 29. TAK-981's anti-leukemic effects confirmed by flow cytometry and 

survival analysis in syngeneic AML mouse models (immune-competent mice) 
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Syngeneic mouse model was established by injecting C1498 cells labeled with 

Luc/CD90.1 (C1498/Luc/CD90.1) into C57BL/6 mice through tail vein. After 

confirming leukemia engraftment by bioluminescence imaging, the mice were 

divided into two groups (10 mice per group) and treatment began on day 5 until 

day 26: Control (no treatment) or TAK-981 (7.5 mg/kg formulated in 20% 2-

hydroxypropyl-β-cyclodextrin, intravenously three times a week). (A and B) Three 

representative mice per group were euthanized on day 19 to compare leukemic 

burdens in each group. Cells from the bone marrow and blood were analyzed by 

flow cytometry. The proportion of CD90.1-positive cells by flow cytometry to 

identify leukemic cells were compared between the groups. (C) Overall survival 

rate in each group (7 mice per group) was estimated by the Kaplan–Meier method. 

For (B), the results are expressed as the mean ± SEM and Student’s t-test was used. 

* p < 0.05, ** p < 0.01. 
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Figure 30. TAK-981's anti-leukemic effects confirmed by bioluminescence in 

human xenograft AML mouse models (immune-compromised mice) 

Human AML mouse model was established by injecting MOLM-14 cells labeled 

with Luc/GFP (MOLM-14/Luc/GFP) into NOD/SCID/IL-2rγnull (NSG) mice 

through tail vein. After confirming leukemia engraftment by bioluminescence 

imaging, the mice were divided into two groups (10 mice per group) and treatment 

began on day 5 until day 26: Control (no treatment) or TAK-981 (7.5 mg/kg 

formulated in 20% 2-hydroxypropyl-β-cyclodextrin, intravenously three times a 

week). Representative mice from each group were subjected to (A) serial 

bioluminescence images and (B) intensity quantitation on days 5, 12, and 20 after 

leukemic cell injection. For (B), the results are expressed as the mean ± SEM and 

Student’s t-test was used. * p < 0.05. 
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Figure 31. TAK-981's anti-leukemic effects confirmed by flow cytometry and 

survival analysis in human xenograft AML mouse models (immune-

compromised mice) 
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Human AML mouse model was established by injecting MOLM-14 cells labeled 

with Luc/GFP (MOLM-14/Luc/GFP) into NOD/SCID/IL-2rγnull (NSG) mice 

through tail vein. After confirming leukemia engraftment by bioluminescence 

imaging, the mice were divided into two groups (10 mice per group) and treatment 

began on day 5 until day 26: Control (no treatment) or TAK-981 (7.5 mg/kg 

formulated in 20% 2-hydroxypropyl-β-cyclodextrin, intravenously three times a 

week). (A and B) Three representative mice per group were euthanized on day 20 

to compare the leukemic burdens between the groups. Cells from the bone marrow 

and blood were analyzed by flow cytometry. The proportions of GFP-positive cells 

by flow cytometry to identify leukemic cells were compared between the groups. 

(C) The overall survival rate in each group (7 mice per group) was estimated by the 

Kaplan–Meier method. For (B), the results are expressed as the mean ± SEM and 

Student’s t-test was used. ** p < 0.01. 
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Figure 32. Western blot analysis for sorted leukemic cells from TAK-981-

treated human xenograft AML mouse 

Western blot was performed with sorted leukemic cells to evaluate SUMOylated 

proteins in each group. The sample was pooled from individual animals, 

representing the average levels (see the Materials and method section). 
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IV. Discussion 

 

SUMOylation has not been much recognized in AML other than for cases 

of acute promyelocytic leukemia (APL), a minor (~10%) subset of AML with the 

characteristic chromosomal translocation generating the PML-RARα fusion protein 

[66]. The established therapy for APL, with all-trans-retinoic acid (ATRA) and 

As2O3, triggers SUMOylation and subsequent proteasomal degradation of PML-

RARα, thus inducing APL differentiation [67]. Activities of ATRA-induced 

differentiation on some non-APL AML cell lines in vitro [68] led to clinical trials, 

but yielded overall disappointing outcomes [69]. In my results, TAK-981 could 

enhance in vitro differentiation of all AML cells tested. It will be interesting to 

revisit the issue of the differentiation of AML cells upon inhibition of 

SUMOylation in vivo. It is therefore worth noting that the addition of ATRA to 

decitabine improved clinical outcomes for treatment-difficult elderly patients in a 

phase II clinical trial [70]. There have also been a few reports on the SUMOylation 

of individual proteins involved in AML, such as iGF1R, sPRDM, and ERG [40, 41, 

71]. In addition, a protein-array based screening on AML cell lines with acquired 

drug resistance vs. parental cell lines identified possible SUMOylation biomarkers 

related to drug resistance, which is yet to be validated in vivo [72]. However, 

considering the inhibition of the initial step of SUMOylation by TAK-981, it seems 

unlikely that one particular protein is responsible for TAK-981’s anti-leukemic 

activity. Rather, TAK-981’s activity should be contributed to by several 

SUMOylation-dependent processes [73]. The differential profiles of SUMOylation 



 

 78 

dependency might explain why I observed a large variability in synergy between 

TAK-981 and cytarabine across the different AML cells. Inhibition of 

SUMOylation in general with different inhibitors also has been tested. Anacardic 

acid and/or 2-D08 induced apoptosis of leukemic cells through ROS-mediated 

deSUMOylation of NOX or DDIT3 regulators [42, 74]. In addition, anacardic acid 

and 2-D08 sensitized non-APL AML cells to ATRA-based differentiation [60]. 

However, there is a conflicting report according to which, anacardic acid and 

ginkgolic acid alleviated ATRA-mediated inhibition of leukemic cell proliferation 

[75]. This shows that SUMOylation inhibition for AML therapy has not yet been 

well-established and that the existing literature may need to be considered with 

some caution. Particularly, most of these studies have employed cell lines in vitro 

or subcutaneous flank xenografts of AML cells and inhibitors with rather moderate 

micromolar activities without high specificity for SUMOylation [60, 75]. In 

comparison, I started from the clinical relevance of the SUMOylation pathway and 

investigated the association of core genes in the SUMOylation pathways and AML 

characteristics, rather than focusing on a single protein. Furthermore, I evaluated a 

highly specific SUMOylation inhibitor in multiple AML cell lines, patient-derived 

primary cells, and orthotopic leukemia models. Overall, after starting the study 

with bioinformatics using gene expression, I showed that the treatment of TAK-

981 decreased SUMOylation in protein level with potent antileukemic effects 

resulting in prolonged survival in orthotopic models. My results should represent 

sufficient rationale for testing TAK-981 in AML treatment, as it is already being 

done in clinical trials for solid tumors.  
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 TAK-981 is a highly specific inhibitor of SUMOylation having little 

effects on ubiquitination or neddylation [43]. Still, the mechanism of anti-cancer 

activity of TAK-981 may be multifaceted, due to the broad-reaching roles of 

SUMOylation in cancer [26, 73]. Interestingly, recent data suggested that TAK-

981’s activity against solid tumors is dependent on anti-tumor immunity, especially 

through IFN1 signaling regulated by SUMOylation [37, 39]. For an immune-

competent syngeneic flank model, TAK-981’s activity was abolished when the 

IFN1 receptor was knocked out [39]. In addition, in two different syngeneic flank 

models, a survival benefit was observed for the TAK-981-immune checkpoint 

inhibitor (ICI) combination groups but not for the TAK-981 monotherapy groups, 

suggesting a cancer-cell-extrinsic mechanism of TAK-981 [39]. In my orthotopic 

models for AML, a hematologic cancer, I observed significant inhibition of 

leukemia growth and survival benefits in both immune-competent syngeneic 

mouse transplant and human xenograft models with immune-deficient mice. It 

should be noted that the NSG immune-deficient mice used here lacked T 

lymphocytes and had defective dendritic cells that had proved critical to anti-tumor 

immunity by TAK-981 in the above solid-tumor settings. Additionally, I observed 

potent in vitro inhibitory effects of TAK-981 as well as induction of differentiation 

markers for various AML cell lines. Direct apoptotic effects of TAK-981 were also 

observed ex vivo for primary AML cells from patients. These results strongly 

suggest that TAK-981 exhibits cancer-cell-inherent anti-AML activity. The 

apparent discrepancy with the above study may be due to the fundamental 

differences between solid vs. AML cancer or the experimental settings (i.e., flank 

transplant vs. orthotopic (blood) xenograft).  
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 Still, I do not exclude the possibility of anti-AML immunity by TAK-981 

or synergy with ICIs in immune-competent human AML settings that I did not 

study. For acute leukemia, immunotherapy has been advanced and regularly used 

in clinics for acute lymphoblastic leukemia (ALL), and it has been also rapidly 

developing for AML [39, 76], as evidenced by the approval of Gemtuzumab-

ozogamicin in 2017. At this point, ICI monotherapy for AML has been proved not 

to be very satisfactory [77, 78], and its combinations with hypomethylating agents, 

that have their own immune-modulatory effects [79, 80], have yielded mixed 

results [81, 82]. As for the positive ones, those from a phase 1b study on the 

combination of azacitidine and magrolimab on patients ineligible for intensive 

chemotherapy were quite encouraging [81]. Notably, this combination was 

effective even for therapy-refractory TP53-mutated AML patients, though the 

overall number of patients was small. Larger human clinical trials with TAK-981-

ICI combinations are warranted to evaluate real effects in human AML [83].  

 I showed that TAK-981 exhibited stronger or similar potency than 

cytarabine in all of the AML cell lines tested as well as in patient-derived primary 

AML cells. Moreover, TAK-981 exhibited inhibition for cytarabine-resistant AML 

cell lines in vitro (KG-1, THP-1 cells; my results and other studies by Bossis [42], 

and Ma [84]) as well as in a therapy-resistant in vivo model (MOLM-14 orthotopic 

xenograft). TAK-981 also has decreased the expression of CD39, whose expression 

is mediated by SUMOylation [85]. CD39 has been known to be overexpressed in 

both cytarabine-resistant AML cells and residual AML cells in patients after 

chemotherapy [63]. Enhancing CD39 expression provoked resistance against 

cytarabine while inhibiting it improved the response to cytarabine in AML cells 
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[63]. These results might explain TAK-981’s strong activity against cells with high 

IC50 values for cytarabine (> 100 nM) such as KG-1, THP-1, and MOLM-14. 

Considering the different of modes of action between TAK-981 and cytarabine and 

the differences in cell lines and primary cells, it will be interesting to see if their 

potency difference is maintained in real patient cases. Still, the different mode of 

action might explain the strong synergy of TAK-981 with current drugs in several 

settings shown in my study.  

It is worthwhile to note that the IC50 values of both TAK-981 and 

cytarabine for the primary cells were much higher than those for the AML cell 

lines. With the lower SUMOylation status of primary AML cells than that in the 

cell lines (Fig. 26) being one explanation, an important consideration is that 

primary AML cells grow much slower than the established AML cell lines. It is 

possible that the high IC50 value of TAK-981 in primary AML cells may be due to 

the lower frequency of cell division. This is clearly the case with cytarabine that it 

almost completely lost its activity for the primary AML cells, even though it is a 

standard-of-care drug. Therefore, the absolute value of the IC50 may not be directly 

translated into the actually high in vivo toxicity. I believe the much slower 

proliferation of the primary AML cells should be considered seriously, and, 

therefore, a correlation analysis between SUMOylation extent and cytotoxicity 

across primary AML cells and cell lines might not be conclusive. 

Further research should also be focused on (i) comparing the clustering 

result used in this study with other methods to check the consistency, although 

GSCluster was chosen since it could also reflect protein-protein interactions among 
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genes, and (ii) checking if TAK-981 also has immune-dependent anti-cancer 

activity, as in solid tumors.  
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Part II 

SCD and MTHFD2 inhibitors for high-risk acute 

myeloid leukemia patients, as suggested by  

ELN2017-pathway association 

 

I. Introduction 

 

The European LeukemiaNet (ELN) 2017 criteria [3] is widely accepted as 

the risk classification of acute myeloid leukemia (AML) patients. However, their 

application to studying risk-related biological pathways is limited, failing to 

enhance treatment options for high-risk patients. 

Folate metabolism, also known as one-carbon metabolism, aids in the de 

novo synthesis of nucleic acids or methylation reaction that supports the 

methionine cycle. Most studies connecting folate metabolism and AML have 

focused on drug treatment in AML [86-88]. In contrast, bioinformatic studies on 

folate metabolism and AML utilizing transcriptomics or proteomics are not 

common. Particularly, studies about the relationship between folate metabolism 

and prognosis in AML patients are very few [89]. In clinical practice, methotrexate, 

a well-known drug targeting folate metabolism, is not generally used for AML 

patients, except for very specific AML patient cases [90], notably because 

methotrexate has failed in the early clinical trials for AML [91]. Therefore, it may 

be worth investigating whether folate metabolism correlates with the prognosis of 

AML patients and whether drug candidates targeting this pathway might augment 
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the current therapy. 

Unsaturated fatty acids (UFAs) are fatty acids that have at least one 

carbon-carbon double bond in their lipid chain, and they have not been studied 

much in AML [92-97]. However, they are essential lipid components with 

numerous biological functions, as exemplified by omega-3 polyunsaturated fatty 

acids (PUFAs) and omega-6 PUFAs. With a few studies for PUFA in AML [98, 99], 

one study reported PUFA plasma levels were positively correlated with bone 

marrow blasts at diagnosis and with ELN2017 risk categories [98], and another 

study reported that PUFA was elevated in AML serum compared to the controls 

[99]. However, the relationship between genes involving UFAs synthesis and the 

prognosis of AML patients has not been fully explored. From a pharmacological 

point of view, few drugs are available that target the synthesis of UFAs in AML.  

Even though there were recent introductions of several targeted agents for 

AML [4], considering the seriously poor prognosis of the high-risk groups, the 

discovery of new drug candidates has been highly desired. It is also desired to find 

drugs synergizing with cytarabine, the current standard-of-care drug for AML. 

Here, I investigated which pathways are associated with higher risks according to 

the ELN2017 categories. My results suggest targetable pathways and genes in 

AML supported by multi-omics databases and experiments and suggest drugs with 

therapeutic potential. 
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II. Materials and methods 

 

1. Databases used in the study 

For OHSU BeatAML 1.0 database [47], gene expression data were 

obtained as follows; the raw counts were downloaded from the National Cancer 

Institute Genomic Data Commons (GDC, https://portal.gdc.cancer.gov/, 

downloaded on Nov. 2019), and summarized in a table, DESeq2-normalized and 

rlog-transformed using ‘DESeq2’ R package. The clinical information of patients 

was obtained from the original paper [47] and Vizome site (http://vizome.org/). For 

the information on the disease stage of the specimen, I referred to the 

“SpecimenGroups” parameter.  

For TCGA-LAML database [45], pancancer gene expression data and 

clinical information of patients were downloaded from 

https://gdc.cancer.gov/about-data/publications/pancanatlas (downloaded on Feb. 

2020). Gene expression data with only tumor samples was retrieved, and Entrez 

gene IDs were matched with gene symbols using the information downloaded from 

the National Center for Biotechnology Information (NCBI, 

https://www.ncbi.nlm.nih.gov/, downloaded on Sep. 2020). TCGA-LAML had no 

normal samples. The values in the expression table were added by 2, followed by 

log2-transformation. Then, only the gene expression with sample IDs starting with 

‘TCGA-AB,’ which means they are the samples from the TCGA-LAML cohort, 

were retrieved. TP53 mutation status was retrieved from cBioPortal 

(https://www.cbioportal.org/) and karyotype information from GDC.  

https://portal.gdc.cancer.gov/
http://vizome.org/
https://gdc.cancer.gov/about-data/publications/pancanatlas
https://www.ncbi.nlm.nih.gov/
https://www.cbioportal.org/
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For AML Proteomics database [100], tandem-mass-tag (TMT) protein 

abundance data and patients’ clinical information were downloaded from the site 

https://proteomics.leylab.org/ (downloaded on Sep. 2022).  

For the cell lines database, dependency scores in Clustered Regularly 

Interspaced Short Palindromic Repeats (CRISPR) screening and gene expression 

data were downloaded from Depmap (21Q2, https://depmap.org/). The designation 

of cell lines which are AML was based on the metadata from the same database.  

 

2. Designation of canonical and revised ELN2017 risk criteria 

in the individual patients 

For the designation of samples to canonical and revised ELN2017 risk 

groups, different approaches were used depending on the databases. For OHSU 

BeatAML 1.0 database, two files contained clinical information; one is from the 

Vizome site (http://vizome.org/), and the other is from the original paper [47]. 

Since the two files were complementary, I used the two files as needed. Samples 

with the ‘ELN2017’ parameter as ‘Healthy, Individual BM MNC’ were designated 

as ‘Normal’ samples. Samples with ‘Favorable,’ ‘Intermediate,’ and ‘Adverse’ were 

designated as is. I only used samples from bone marrow aspirate, except for Fig. 34. 

Also, by manually reviewing the ‘specificDxAtAcquisition’ parameter, samples 

from non-AML patients were excluded. Among the ‘Favorable’ samples, those who 

have ‘inv(16)’ in the ‘specificDxAtAcquisition’ parameter or ‘y’ in the 

‘CEBPA_Biallelic’ parameter were designated as ‘Very Favorable.’ Among the 

‘Adverse’ samples, firstly those with TP53 mutation were found by excluding those 

https://proteomics.leylab.org/
https://depmap.org/
http://vizome.org/
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who have ‘negative’ or NA as ‘TP53’ parameter; among them, by manually 

reviewing the parameter ‘Karyotype,’ samples only with complex karyotype were 

left to be designated as ‘Very Adverse.’ In total, the number of samples per each 

group was as follows; for survival analysis in Fig. 34, ‘Very Favorable’ (n = 31), 

‘Favorable’ (n = 113), ‘Intermediate’ (n = 170), ‘Adverse’ (n = 184), and ‘Very 

Adverse’ (n = 23); for testing trends in OHSU database, ‘Normal’ (n = 20), 

‘Favorable’ (n = 56), ‘Intermediate’ (n = 68), ‘Adverse_nV’ (n = 68), and ‘Very 

Adverse’ (n = 14). 

For TCGA-LAML database, the designation of samples to canonical 

ELN2017 risk groups was kindly provided by the authors of the previous 

publication [50]. For the designation of the ‘Very Adverse’ category, I utilized 

TP53 mutation status information from cBioPortal, and karyotype information 

from GDC. The samples having ‘Complex’ in the ‘cytogenetic_abnormality_type’ 

parameter were regarded as having complex karyotypes, and the samples which 

both have TP53 mutation and complex karyotype were designated as ‘Very 

Adverse.’ In total, the number of samples per each group was as follows; 

‘Favorable’ (n = 59), ‘Intermediate’ (n = 38), ‘Adverse_nV’ (n = 45), and ‘Very 

Adverse’ (n = 11).  

For AML Proteomics database, canonical ELN2017 risk groups were 

designated according to the ‘RISK (ELN2017)’ parameter. The samples which do 

not have NA as the ‘TP53’ parameter were regarded as having TP53 mutation, and 

among them I determined complex karyotype by reviewing the ‘Cytogenetics’ 

parameter; those having both TP53 mutation and complex karyotype were 

designated as ‘Very Adverse.’ In total, the number of samples per each group was 
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as follows; except for the SCD gene, ‘Favorable’ (n = 14), ‘Intermediate’ (n = 10), 

‘Adverse_nV’ (n = 16), and ‘Very Adverse’ (n = 4); for SCD gene, ‘Favorable’ (n = 

3), ‘Intermediate (n = 3)’, ‘Adverse_nV’ (n = 10), and ‘Very Adverse’ (n = 2). 

In all databases, ‘Adverse_nV’ samples were designated by excluding 

‘Very Adverse’ samples from ‘Adverse’ samples. 

 

3. Transforming gene or protein expression data to pathway 

scores data 

‘GSVA’ R package [58] was used to convert gene or protein expression 

data to pathway scores data. For input for pathways, the combination of curated 

canonical pathways (which includes pathways from BioCarta, KEGG, PID, 

Reactome, and WikiPathways) and hallmark gene sets from MSigDB (version 7.2) 

was used. The R package ‘GSA’ was used when reading the gene sets to R. For 

parameters when running GSVA, ‘min.sz’ was set to 5, ‘max.sz’ to 700, and 

‘method’ to ‘gsva.’  

 

4. Survival analysis and pathway clustering 

For survival analysis, ‘survival’ and ‘survminer’ R packages were used. 

When conducting pairwise comparisons among more than two survival curves, 

pairwise_survdiff function was used, with p.adjust.method parameter set to ‘fdr.’ 

The stratification of two groups by gene expression or pathway scores was based 

on the best risk separation approach [52], using surv_cutpoint function with 

minprop parameter set to 0.1. Log-rank test and Cox regression were used for 
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comparison of the curves and obtaining hazard ratios, using GraphPad Prism 9.1.1 

(GraphPad Software, San Diego, CA, USA) or R (version 4.1.1). 

For disease-specific survival (DSS) analysis in OHSU database, only 

patients with the ‘causeOfDeath’ parameter as ‘Dead-Disease’ and ‘Alive’ were 

included. For overall survival (OS) analysis in the OHSU database, patients who 

did not have the parameter as NA were included.  

For the clustering of pathways, ‘GSCluster’ R package [51] was used. For 

the q value input for GSCluster, FDR values from Jonckheere-Terpstra test 

screening result were used. When plotting the clusters, the Maximum gene-set 

distance parameter was set to 0.85. 

 

5. Cell lines and reagents 

MOLM-14 (DSMZ, Braunschweig, Germany), U937, THP-1, KG-1, 

HCC1954-BL (ATCC, Manassas, VA, USA), and HL-60 (Korean Cell Line Bank, 

Seoul, Korea) were used in this study. Cryopreserved peripheral blood 

mononuclear cells (PBMCs) were purchased from Zen-Bio (Research Triangle, NC, 

USA). Cells were cultured or incubated in RPMI 1640 media supplemented with 

10% fetal bovine serum (FBS) (for KG-1 only, 20%), 100 U/mL penicillin, and 100 

μg/mL streptomycin, at 37 °C in a 5% CO2 incubator. A939572 and DS18561882 

were purchased from MedChemExpress (Monmouth Junction, NJ, USA). 

Cytarabine was purchased from Sigma-Aldrich (St.Louis, MO, USA). 
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6. UFA measurement by NMR 

U937, MOLM-14, THP-1, KG-1, and HL-60 cell lines were seeded 1 × 

107 cells in 10 mL of media and cultured for 24 hours; to minimize potential factors 

affecting UFA amount in the cells, the media was unified to RPMI 1640 media 

supplemented with 20% fetal bovine serum (FBS), 100 U/mL penicillin, and 100 

μg/mL streptomycin. For Fig. 48C, U937 cells were seeded 2 × 106 cells in 6 mL of 

media and cultured for 48 hours. Here, RPMI 1640 media supplemented with 10% 

fetal bovine serum (FBS), 100 U/mL penicillin, and 100 μg/mL streptomycin was 

used to make the media consistent with Fig. 48B. The cells were harvested and 

underwent standard two-phase extraction, and the lipid phase was dried by 

speedvac. The dried samples were dissolved in chloroform-d6 (Cat. 151823, Sigma-

Aldrich) and subjected to 1H NMR. 800 MHz Bruker Avance III HD spectrometer 

equipped with a 5 mm CPTCI CryoProbe (Bruker BioSpin, Germany) was used. 

The spectra were processed with MestReNova software (version 12.0.1-20560). 

The UFA and PUFA amounts were measured as the area under 5.29-5.40 ppm and 

2.70-2.90 ppm of the spectrum, respectively. Then, for each cell line, the numbers 

were normalized by the cell numbers counted at the time the cells were harvested, 

respectively. 

 

7. Cell viability test and synergy test 

For CCK-8 assay, cells were seeded at 1 × 104 cells/well on 96-well plates 

and treated with drugs (A939572, DS18561882, Cytarabine) at various 

concentrations for 48 hours, and measured with the D-plus CCK Cell Viability 
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Assay Kit (Dongin Biotech, Seoul, South Korea). For Trypan blue assay, 1-2 × 104 

cells/well (for cell lines) or 1 × 105 cells/well (for PBMCs) were seeded on 96-well 

plates and treated with drugs (A939572, DS18561882) at various concentrations 

for 48 hours. The cells were counted with Countess II FL Automated Cell Counter 

(Thermo Fisher Scientific, Waltham, USA) or hemocytometer (for PBMCs). The 

IC50 value was obtained using the GraphPad Prism 9.1.1 software. The test for 

synergy and calculation of dose reduction indices were done using CompuSyn 

software [59].  

 

8. Western blotting 

 The samples were homogenized in T-PERTM Tissue Protein Extraction 

Reagent (Thermo Scientific, USA) buffer with protease and phosphatase inhibitors 

(1 mM PMSF (phenylmethylsulfonyl fluoride) 2 µg/mL aprotinin, 1 µg/mL 

pepstatin A). 20 or 30 µg of protein extracts were loaded, and they were separated 

by SDS electrophoresis with 10% gel, then transferred to the NC (nitrocellulose) 

membranes. Membranes were blocked with 5% skim milk in TBST (Tris-buffered 

saline with 0.1% tween) and incubated at 4℃ overnight with the following primary 

antibodies: β-actin (sc-47778, Santa Cruz), SCD (A16429, Abclonal), MTHFD2 

(A22653, Abclonal). Anti-rabbit IgG-HRP (31460, Invitrogen) and anti-mouse 

IgG-HRP (31430, Invitrogen) were used as secondary antibodies. The protein 

bands were visualized by using a Westsave star kit (Abfrontier, Seoul, South Korea) 

and imaged on a Fusion Solo Chemi-DOC (Vilber Lourmat, France). The 
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quantification of the bands was done with EvolutionCapt software (Vilber Lourmat, 

France). 

 

9. Statistical analysis 

Jonckheere-Terpstra test was used when testing for increasing trend across 

groups, using the ‘DescTools’ R package. Since one of the assumptions for the 

Jonckheere-Terpstra test is that the observations should be independent, 

‘Adverse_nV’ instead of ‘Adverse’ was used when performing the test. Post hoc 

analyses were done with the two-stage linear step-up procedure of Benjamini, 

Krieger and Yekutieli in GraphPad Prism. For Fig. 48C, Student’s t-test was used. 

For survival analysis, details are in the ‘Survival analysis and pathway clustering’ 

section. For correlation analysis, Pearson’s correlation was used. All statistical 

analyses were performed with GraphPad Prism 9.1.1 or R (version 4.1.1). 
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III. Results 

 

A. Applicability of canonical and revised ELN2017 to the 

OHSU database 

 

The overall scheme of my study is presented in Fig. 33. I first investigated 

if ELN2017 and its revision [17] are applicable to OHSU patient data for 

prognostic risk categorization. Kaplan-Meier analysis showed significantly 

different survival prognoses among risk groups (Fig. 34). In particular, the ‘Very 

Adverse’ group, specified by TP53 mutation and complex karyotype within the 

‘Adverse’ group, showed a much poorer prognosis than the other groups, consistent 

with previous report [17]. On the other hand, the ‘Very Favorable’ group, specified 

by biallelic CEBPA mutations or inv(16), could not be significantly discriminated 

from the ‘Favorable’ group (FDR-adjusted p = 0.152, Table 13). This analysis 

shows that four distinguished survival risk groups exist in OHSU data, the 

characterization of which may help improve current therapeutic options. 
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Figure 33. Overview of the study 

Overall scheme of the study. 
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Figure 34. Application of revised and canonical ELN2017 to the OHSU 

database 

Kaplan-Meier curves with 95% confidence intervals (dotted lines) for overall 

survival of AML patients in the OHSU BeatAML 1.0 database, according to the (A) 

revised and (B) canonical ELN2017 criteria. P-values are from the log-rank test. 

n.s. refers to not significant. For (A), complete comparisons among the groups are 

in Table 13. 
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Table 13. Results of pairwise comparisons among all groups in Fig. 34A 

 Adverse Favorable Intermediate Very 

Adverse 

Favorable < 0.001 - - - 

Intermediate 0.030 0.002 - - 

Very Adverse 0.002 < 0.001 < 0.001 - 

Very Favorable < 0.001 0.152 0.003 < 0.001 
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B. Screening biological pathways that are risk-correlated 

with revised ELN2017 criteria 

 

I then hypothesized that there should be biological pathways whose 

activities are upregulated as survival risk increases. Correlational screening 

between overall survival risks and pathway scores (Jonckheere-Terpstra test FDR < 

0.05) resulted in 690 pathways. Further filtering the results based on disease-

specific survival (DSS) with more stringent criteria (log-rank test FDR < 0.05, 

hazard ratio (HR) > 3, and FDR of HR < 0.05) resulted in 34 pathways that are 

correlated with patient survival. Analyzing these pathways based on gene 

constituents and protein-protein interactions using the GSCluster approach [51] 

generated three distinct clusters and three unclustered pathways related to survival 

(Fig. 35, and Appendix C and D). The largest cluster (26 pathways) was ‘cell-cycle 

related’; considering 71.2% (146/205) of the samples were from the initial 

diagnosis stage, a connection between the proliferative state at diagnosis and 

patient prognosis is suggested. As relapsed AML cells after chemotherapy exhibit 

higher dormancy [101] and leukemia stem cells often remain in a quiescent state 

[102], it will be an interesting future topic to specifically compare the relationship 

between the prognosis and the cell cycle progression at initial vs. late-stage AML. 

Since the ‘cell-cycle related’ cluster already encompasses a standard regimen drug, 

cytarabine, I focused on other pathways. Of the remaining eight pathways, three 

pathways were related to the synthesis of unsaturated fatty acids, two pathways 

with cholesterol biosynthesis, and the unclustered three pathways with the 
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metabolism of folate, signaling by MST1, and NO metabolism in cystic fibrosis 

(Fig. 35). Actual correlations between the pathway scores and the survival risks are 

given in Figs. 36-39, and Table 14. 
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Figure 35. Pathways that are risk-correlated with revised ELN2017 criteria in 

OHSU database 

Clustering result of 34 pathways filtered by risk-correlation with revised ELN2017 

and survival analysis. 
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Figure 36. Identification of risk-correlated biological pathways 

(A, B) The distributions of GSVA pathway scores of (A) 

KEGG_BIOSYNTHESIS_OF_UNSATURATED FATTY ACIDS pathway or (B) 

REACTOME_METABOLISM_OF_FOLATE_AND_PTERINES pathway, in each 

risk category of revised ELN2017 in OHSU BeatAML 1.0 database. (C, D) 

Kaplan-Meier curves with 95% confidence intervals (dotted lines) for disease-

specific survival of AML patients in OHSU BeatAML 1.0 database, for (C) 

KEGG_BIOSYNTHESIS_OF_UNSATURATED FATTY ACIDS pathway or (D) 

REACTOME_METABOLISM_OF_FOLATE_AND_PTERINES pathway. For (A), 

and (B), ‘Adverse_nV’ refers to the patients in the ‘Adverse’ category but not in the 

‘Very Adverse’ category. The black lines indicate medians for each group. P-values 

are from the Jonckheere-Terpstra test. Post hoc analyses were performed with a 

two-stage linear step-up procedure. * p < 0.05, ** p < 0.01, *** p < 0.001. For (C), 

and (D), p-values are from the log-rank test. The stratification of two groups in 

each graph was based on the best risk separation approach. HR(high) refers to the 

hazard ratio of the group with high pathway scores. 
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Figure 37. The distributions of GSVA pathway scores of high-risk pathways in 

the OHSU database 
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The GSVA pathway scores for each risk category of the revised ELN2017 are 

plotted. The pathways are from Fig. 35, except for the pathways in the ‘cell-cycle 

related’ cluster, KEGG_BIOSYNTHESIS_OF_UNSATURATED FATTY ACIDS 

pathway, and REACTOME_METABOLISM_OF_FOLATE_AND_PTERINES 

pathway. ‘Adverse_nV’ refers to patients in the ‘Adverse’ category but not the 

‘Very Adverse’ category. The black lines indicate medians for each group. P-values 

are from Jonckheere-Terpstra test. Post hoc analyses were performed with a two-

stage linear step-up procedure. * p < 0.05, ** p < 0.01, *** p < 0.001, **** p < 

0.0001. 
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Figure 38. Disease-specific survival analysis of high-risk pathways in the 

OHSU database 

Kaplan-Meier curves with 95% confidence intervals (dotted lines) for disease-

specific survival of AML patients in OHSU BeatAML 1.0 database for pathways in 

Fig. 35, except for pathways in the ‘cell-cycle related’ cluster, 

KEGG_BIOSYNTHESIS_OF_UNSATURATED FATTY ACIDS pathway, and 

REACTOME_METABOLISM_OF_FOLATE_AND_PTERINES pathway. P-

values are from the log-rank test. The stratification of two groups in each graph 

was based on the best risk separation approach. HR(high) refers to the hazard ratio 

of the group with high pathway scores. 
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Figure 39. Overall survival analysis of high-risk pathways in OHSU database 

Kaplan-Meier curves with 95% confidence intervals (dotted lines) for overall 

survival of AML patients in the OHSU BeatAML 1.0 database for pathways in Fig. 

35, except for pathways in the ‘cell-cycle related’ cluster. P-values are from the 

log-rank test. The stratification of two groups in each graph was based on the best 

risk separation approach. HR(high) refers to the hazard ratio of the group with high 

pathway scores. 
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Table 14. Risk-correlation analysis of revised ELN2017 for pathways using multi-omics databases 

Pathway 

 OHSU  TCGA-

LAML 

Proteomics 

Jonckheere

-Terpstra 

test 

Survival 

(DSS) 

HR Survival 

(OS) 

HR Jonckheere

-Terpstra 

test 

Jonckheere

-Terpstra 

test 

KEGG_BIOSYNTHESIS_OF_UNSATURATED_FA

TTY_ACIDS 

(‘UFA_Synthesis’) 

< 0.001 < 0.001 3.15 < 0.001 2.25 0.007 0.013 

WP_OMEGA3OMEGA6_FA_SYNTHESIS < 0.001 < 0.001 3.12 < 0.001 2.86 0.196 0.036 

WP_OMEGA9_FA_SYNTHESIS < 0.001 < 0.001 4.08 < 0.001 3.43 0.068 0.067 

REACTOME_CHOLESTEROL_BIOSYNTHESIS 0.003 0.001 3.16 0.021 1.66 0.466 0.195 

WP_MEVALONATE_PATHWAY 0.004 < 0.001 5.06 < 0.001 3.04 0.622 0.471 

REACTOME_METABOLISM_OF_FOLATE_AND

_PTERINES 

(‘Folate_Metabolism’) 

< 0.001 < 0.001 4.68 < 0.001 2.35 0.006 0.001 

REACTOME_SIGNALING_BY_MST1 < 0.001 < 0.001 3.22 < 0.001 2.81 < 0.001 NA 

WP_NO_METABOLISM_IN_CYSTIC_FIBROSIS 0.002 < 0.001 3.28 0.006 2.30 < 0.001 0.220 

DSS, disease-specific survival; OS, overall survival; HR, the hazard ratio of the high pathway score group; NA, not available. 
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C. Validation of two targetable pathways with independent 

TCGA and proteomics database 

 

For the eight pathways outside the ‘cell-cycle related’ cluster, I tried to 

validate the correlations between pathway scores and prognosis in another 

extensive AML database, TCGA-LAML. I divided the TCGA-LAML patients into 

four categories of revised ELN2017 criterion as above in reference to the karyotype 

information and TP53 mutation status, and especially with the information 

provided by Straube et al [50]. Similar correlation analysis showed that all 

pathways, except those related to cholesterol and those with specific omega-3, 6, or 

9 fatty acid synthesis, were still significant in TCGA-LAML (Table 14).  

Further validation was performed at the protein level using recent 

proteomics AML database [100]. I leveraged Gene Set Variation Analysis (GSVA), 

originally used for transcriptomic data, to generate pathway scores from proteomic 

data. The trend analysis between risk groups and pathways showed that 

‘KEGG_BIOSYNTHESIS_OF_UNSATURATED_FATTY_ACIDS’ (hereby 

termed ‘UFA_Synthesis’) and 

‘REACTOME_METABOLISM_OF_FOLATE_AND_PTERINES’ (hereby termed 

‘Folate_Metabolism’) were significant (Table 14). Combining all the above 

analysis suggested that these two pathways are significantly related to the revised 

ELN2017 risk groups. 
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D. Finding candidate genes in the risk-related pathways 

 

Having found the risk-correlated pathways, I tried to find targetable genes 

in those pathways. For the Folate_Metabolism pathway, recent literatures directly 

suggest the MTHFD2 gene as a target for AML [87, 88]; therefore, I tried to 

investigate this gene. Upon similar analysis used for pathways, MTHFD2 gene 

expression exhibited a significant increasing trend according to the ELN2017 risk 

groups in OHSU (Fig. 40A). In survival analysis, patients with higher expression 

of MTHFD2 gene exhibited significantly shorter overall survival than those with 

lower expression (Fig. 40B). This also shows that my bioinformatic screening 

approach is valid. Clinical trials of methotrexate, an antifolate drug, were 

unsuccessful in AML due to reduced polyglutamylation activity, which is essential 

for its effectiveness [103]. Therefore, alternative drugs targeting this pathway seem 

necessary. 

Up to this date, little has been known about the UFA_Synthesis pathway 

in AML. Hence, I analyzed the expression of all 22 genes in the pathway according 

to the ELN2017 risk groups in OHSU, TCGA-LAML, and proteomics database 

(Table 15). Then, I looked for genes whose high expression is significantly 

associated with poor survival in OHSU (Table 15). The results showed that ACOT7 

and SCD genes were the only genes passing all the criteria (Table 15; Fig. 41 for 

the SCD gene, and Fig. 42 for the ACOT7 gene). I also looked for dependency 

scores in CRISPR screening in AML cell lines from the Depmap database. SCD 

had the lowest median dependency scores compared to the other genes (Fig. 43), 
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indicating its essentiality in AML cell lines. On the other hand, the median 

dependency score of ACOT7 was close to 0, indicating that this gene is not 

essential. Therefore, I selected SCD as the target. Notably, while SCD level was 

higher in the ‘Normal’ group than in the ‘Favorable’ group, there was a clear and 

significant upward trend of SCD expression correlating with worse ELN2017 

criteria (Fig. 41A). This provides rationale for SCD as a target, aligning with my 

goal of finding targets for high-risk AML patients. 
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Figure 40. Risk-correlation and survival analysis for MTHFD2 gene in the 

OHSU database 

(A) The distributions of gene expression of MTHFD2 gene in each risk category of 

revised ELN2017 in OHSU BeatAML 1.0 database. (B) Kaplan-Meier curves with 

95% confidence intervals (dotted lines) for overall survival of AML patients in the 

OHSU BeatAML 1.0 database for MTHFD2 gene. For (A), ‘Adverse_nV’ refers to 

the patients in the ‘Adverse’ category but not in the ‘Very Adverse’ category. The 

black lines indicate medians for each group. P-value is from the Jonckheere-

Terpstra test. Post hoc analyses were performed with a two-stage linear step-up 

procedure. ** p < 0.01, *** p < 0.001, **** p < 0.0001. For (B), p-value is from 

the log-rank test. The stratification of two groups in the graph was based on the 

best risk separation approach. HR(high) refers to the hazard ratio of the group with 

high gene expression. 
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Table 15. Risk-correlation analysis of revised ELN2017 for genes in the UFA_Synthesis pathway using multi-omics databases 

Gene 

 OHSU  TCGA-LAML Proteomics 

Jonckheere-

Terpstra test 

Survival 

(DSS) 

HR 

for DSS 

Survival (OS) HR 

for OS 

Jonckheere-

Terpstra test 

Jonckheere-

Terpstra test 

ACAA1 0.940  0.076  0.582  0.119  0.683  1.000  0.929  

ACOT1 < 0.001  0.199  0.702  0.267  0.785  0.102  0.325  

ACOT2 < 0.001  0.210  1.410  0.197  0.624  0.005  0.834  

ACOT4 0.420  0.089  0.641  0.033  0.627  0.999  0.500  

ACOT7 < 0.001  < 0.001  3.130  < 0.001  2.370  0.004  0.007  

ACOX1 0.317  0.023  0.551  0.079  0.693  0.652  0.364  

ACOX3 0.329  0.086  0.580  0.032  0.600  0.006  0.067  

BAAT 0.014  < 0.001  3.090  < 0.001  2.510  0.001  NA 

ELOVL2 0.067  0.004  2.090  0.005  1.780  < 0.001  NA 

ELOVL5 0.878  0.005  0.413  0.016  0.530  0.023  0.013  

ELOVL6 0.301  0.004  2.710  0.106  1.800  0.001  NA 

FADS1 < 0.001  0.002  2.640  0.004  1.990  0.020  0.114  

FADS2 0.007  0.048  1.800  0.048  1.610  0.084  0.013  

HACD1 0.053  0.005  2.070  0.029  1.610  0.576  0.977  

HACD2 0.724  0.019  1.870  0.009  1.720  0.001  0.021  

HADHA 0.254  0.056  0.617  0.027  0.628  0.966  0.542  

HSD17B12 0.089  0.049  1.770  0.068  1.500  0.895  0.774  

PECR 0.389  < 0.001  2.930  < 0.001  2.110  < 0.001  0.001  

SCD < 0.001  < 0.001  3.430  < 0.001  2.320  < 0.001  0.010  

SCD5 0.656  0.006  2.030  0.012  1.810  0.796  0.563  

TECR 0.703  0.083  1.870  0.073  1.480  0.238  0.252  

YOD1 0.019  0.029  2.000  0.046  1.650  < 0.001  0.075  

DSS, disease-specific survival; OS, overall survival; HR, the hazard ratio of the high expression group; NA, not available.
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Figure 41. Risk-correlation and survival analysis for SCD gene in the OHSU 

database 

(A) The distributions of gene expression of SCD gene in each risk category of 

revised ELN2017 in OHSU BeatAML 1.0 database. (B) Kaplan-Meier curves with 
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95% confidence intervals (dotted lines) for disease-specific survival and overall 

survival of AML patients in OHSU BeatAML 1.0 database for SCD gene. For (A), 

‘Adverse_nV’ refers to the patients in the ‘Adverse’ category but not in the ‘Very 

Adverse’ category. The black lines indicate medians for each group. P-value is 

from the Jonckheere-Terpstra test. Post hoc analyses were performed with a two-

stage linear step-up procedure. ** p < 0.01, *** p < 0.001, **** p < 0.0001. For 

(B), p-values are from the log-rank test. The stratification of two groups in each 

graph was based on the best risk separation approach. HR(high) refers to the hazard 

ratio of the group with high gene expression. 
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Figure 42. Identification of risk-correlated target gene ACOT7 

(A) The distributions of gene expression of the ACOT7 gene in each risk category 

of revised ELN2017 in the OHSU BeatAML 1.0 database. ‘Adverse_nV’ refers to 



 

 114 

patients in the ‘Adverse’ category but not the ‘Very Adverse’ category. The black 

lines indicate medians for each group. P-value is from the Jonckheere-Terpstra test. 

Post hoc analyses were performed with a two-stage linear step-up procedure. ** p 

< 0.01. (B) Kaplan-Meier curves with 95% confidence intervals (dotted lines) for 

disease-specific survival and overall survival of AML patients in the OHSU 

BeatAML 1.0 database for the ACOT7 gene. P-values are from the log-rank test. 

The stratification of two groups in each graph was based on the best risk separation 

approach. HR(high) refers to the hazard ratio of the group with high expression. 

  



 

 115 

 

Figure 43. Identifying essentiality for genes in the ‘UFA_Synthesis’ pathway in 

AML 

The distributions of CRISPR dependency scores in AML cell lines for each gene 

comprising the ‘UFA_Synthesis’ pathway. The scores were retrieved from Depmap. 

A score of 0 represents no viability effect, and a score of -1 corresponds to the 

median effect of known common-essential genes. A lower score indicates a higher 

likelihood that the gene of interest is essential in the given cell line. The genes are 

ordered by medians of the scores. 

 

  



 

 116 

E. Experimental and functional validation of the target genes 

with inhibitors and AML cell lines  

 

With MTHFD2 and SCD bioinformatically suggested as risk-associated 

genes, I experimentally validated them using five AML (U937, MOLM-14, THP-1, 

KG-1, and HL-60) and one normal (HCC1954-BL) cell line. CCK-8 assay 

confirmed MTHFD2 inhibitor DS18561882 exhibit higher potency against all five 

AML cell lines compared to normal cell line (Fig. 44A). SCD inhibitor A939572 

also showed ~8 times higher IC50s for normal cell line (Fig. 44B). Trypan blue 

assay, along with normal peripheral blood mononuclear cells (PBMCs), also 

demonstrated the two inhibitors’ cancer cell selectivity (Fig. 45). Additionally, SCD 

and MTHFD2 proteins’ expression was higher in AML cell lines than normal 

PBMCs (Fig. 46). However, no significant correlations were observed among AML 

cell lines (Fig. 47). DS18561882 treatment reduced MTHFD2 protein levels (Fig. 

48A), and A939572 treatment reduced unsaturated fatty acid levels without 

affecting SCD protein levels (Figs. 48B and 48C), confirming the targeted effects 

of both drugs on the target proteins. Due to limited references regarding SCD in 

AML, I further validated its functional relevance. Unsaturated fatty acids (PUFA 

and UFA) were measured in AML cell lines using nuclear magnetic resonance 

(NMR). Among the 22 genes, SCD highly correlated with unsaturated fatty acids 

(Fig. 49 and Table 16). My findings suggest the proposed inhibitors’ selectivity 

toward AML cells, indicating their potential use for high-risk AML groups. 
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My bioinformatic screening showed the ‘cell-cycle related’ cluster 

significantly correlated with AML-risk groups. Cytarabine, a currently standard-of-

care drug for AML, is a DNA replication inhibitor and inhibits the cell cycle [104]. 

Interestingly, it exhibited a remarkable difference in sensitivity across five AML 

cell lines (Fig. 50). For example, THP-1 and KG-1 were about 50 times less 

sensitive to cytarabine than U937. As the function of my target genes, MTHFD2 

and SCD, are orthogonal to the cytarabine’s mechanism, I hypothesized that their 

inhibitors might exhibit synergy when used with cytarabine. I tested the 

combination of A939572 or DS18561882 with cytarabine for THP-1 and KG-1 

with high IC50 values for cytarabine (Fig. 51). The results showed that cytarabine 

combined with the SCD inhibitor or the MTHFD2 inhibitor exhibit synergy in 

AML cell survival inhibition (Fig. 52). In addition, dose-reduction of cytarabine 

was observed in all four combinations (Table 17), suggesting that A939572 or 

DS18561882 might be tested to alleviate cytarabine toxicity. 
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Figure 44. Cell viability assay for DS18561882 and A939572 drugs by CCK-8 

assay 

Dose-response curves and IC50s for (A) DS18561882 drug and (B) A939572 drug 

to five AML cell lines (U937, MOLM-14, THP-1, KG-1, and HL-60) and one 

normal cell line (HCC1954-BL) by CCK-8 assay. The drugs were treated for 48 

hours. 
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Figure 45. Cell viability assay for DS18561882 and A939572 drugs including 

normal PBMCs by Trypan blue assay 

Dose-response curves and IC50s for (A) DS18561882 and (B) A939572 to five 

AML cell lines (U937, MOLM-14, THP-1, KG-1, and HL-60), one normal cell line 

(HCC1954-BL) and normal PBMCs by Trypan blue assay. The drugs were treated 

for 48 hours.  
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Figure 46. Basal SCD and MTHFD2 protein expression in AML cell lines and 

PBMCs 

Western blot for SCD and MTHFD2 proteins in five AML cell lines (U937, 

MOLM-14, THP-1, KG-1, and HL-60) and normal PBMCs. U, M, T, K, and H 

refer to U937, MOLM-14, THP-1, KG-1, and HL-60, respectively. 
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Figure 47. Correlation of MTHFD2 and SCD protein levels with their 

respective inhibitors 

The relationship of (A) MTHFD2 protein level with DS18561882 IC50s and (B) 

SCD protein level with A939572 IC50s in the 5 AML cell lines (U937, MOLM-14, 

THP-1, KG-1, and HL-60). The IC50s are from Fig. 44. Regression lines, r, R2, and 

p-values from Pearson correlation analysis are shown. 
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Figure 48. Effect of DS18561882 on MTHFD2 protein and A939572 on SCD 

protein 

Western blot for (A) MTHFD2 protein in the MOLM-14 cell line treated with 

DS18561882 and (B) SCD protein in the U937 cell line in the indicated 

concentrations. The drugs were treated for 48 hours. (C) The amount of unsaturated 

fatty acids normalized by the cell numbers between A939572 non-treated and 

treated U937 cell lines. The drug was treated for 48 hours. P-value is from 

Student’s t-test. * p < 0.05.  
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Figure 49. Functional validation of SCD gene 

(A) Volcano plots for PUFAs and UFAs in the 5 AML cell lines (U937, MOLM-14, 

THP-1, KG-1, and HL-60). The x-axis refers to the Pearson correlation coefficient 

calculated by correlating gene expression of five AML cell lines in Depmap with 

measured PUFAs or UFAs by NMR for the genes only in the ‘UFA_Synthesis’ 

pathway. The y-axis refers to the minus log10-transformed p-value of the Pearson 

correlation coefficient. Non-significant (p-value 0.05 or higher) genes are indicated 

in grey. (B) The relationship of SCD gene expression and measured PUFAs or 

UFAs in the 5 AML cell lines. Regression lines, r, R2, and p-values from Pearson 

correlation analysis are shown.  
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Table 16. UFA and PUFA correlation analysis for genes in the UFA_Synthesis 

pathway 

Gene 
UFA (5.29 – 5.40 ppm) PUFA (2.70 – 2.90 ppm) 

Pearson’s r p-value Pearson’s r p-value 

ACAA1 0.585 0.300 0.662 0.224 

ACOT1 -0.536 0.352 -0.417 0.485 

ACOT2 -0.487 0.406 -0.358 0.554 

ACOT4 -0.471 0.423 -0.383 0.525 

ACOT7 0.500 0.391 0.493 0.398 

ACOX1 -0.116 0.853 0.008 0.989 

ACOX3 0.401 0.504 0.447 0.451 

BAAT -0.505 0.386 -0.493 0.399 

ELOVL2 -0.351 0.562 -0.297 0.627 

ELOVL5 0.741 0.152 0.798 0.106 

ELOVL6 -0.334 0.583 -0.236 0.702 

FADS1 0.527 0.362 0.653 0.232 

FADS2 0.605 0.280 0.719 0.171 

HACD1 0.209 0.736 0.367 0.543 

HACD2 0.242 0.695 0.295 0.629 

HADHA 0.685 0.202 0.693 0.195 

HSD17B12 -0.708 0.181 -0.633 0.252 

PECR 0.119 0.849 0.230 0.710 

SCD 0.943 0.016 0.984 0.002 

SCD5 0.916 0.029 0.938 0.018 

TECR 0.044 0.944 0.149 0.811 

YOD1 0.444 0.454 0.543 0.344 

UFA, unsaturated fatty acid; PUFA, polyunsaturated fatty acid. 
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Figure 50. Dose-response curves for cytarabine 

Dose-response curves and IC50s for cytarabine to five AML cell lines (U937, 

MOLM-14, THP-1, KG-1, and HL-60) and one normal cell line (HCC1954-BL). 

The drugs were treated for 48 hours. 
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Figure 51. Combination of SCD and MTHFD2 inhibitor with cytarabine 

(A, B) Dose-response curves for THP-1 cell line, testing synergy of cytarabine 

either with (A) A939572 or (B) DS18561882. (C, D) Dose-response curves for 

KG-1 cell line, the testing synergy of cytarabine either with (C) A939572 or (D) 

DS18561882. 
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Figure 52. Synergy of SCD and MTHFD2 inhibitor with cytarabine 

(A, B) Combination index plots for THP-1 cell line for the combination of 

cytarabine with (A) A939572 or (B) DS18561882. (C, D) Combination index plots 

for KG-1 cell line for the combination of cytarabine with (C) A939572 or (D) 

DS18561882. The combination index of less than 1 indicates synergy, and Fa refers 

to fractions affected by particular dose of a drug, herein the fraction of dead cells 

compared to non-treated samples.  
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Table 17. Dose reduction index of cytarabine at fractions affected (Fa) = 0.9 in 

cytarabine-resistant cell lines 

 THP-1 KG-1 

Cytarabine + A939572 6.65 1.76 

Cytarabine + DS18561882 3.59 8.03 
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IV. Discussion 

 

Since its inception in 2017, ELN2017 has been used for diagnosing and 

managing AML patients and has also been applied to research. Still, most studies 

have focused on validating ELN2017 risk criteria in terms of survival in individual 

hospitals. Only a few papers have addressed specific biological pathways 

dysregulated in high-risk groups or specific drugs targeting these pathways. Some 

focused on individual mutations comprising the ‘Adverse’ category of ELN2017, 

such as RUNX1 mutation [21] or TP53 mutation [22]. Another study found gene 

modules related to 14 markers, including ELN2017 itself and the contributing 

mutations, later focusing on modules correlated with NPM1/FLT3-ITD mutation 

[25]. Other researchers first sought to find particular genes related to survival and 

then constructed the prognostic risk scores correlated with ELN2017 [23, 24]. Of 

note, one of the studies found that the high-risk phenotype score is enriched with 

the biosynthesis of unsaturated fatty acid gene set [24], consistent with my result 

implicating high expression of the SCD gene in high-risk groups. Furthermore, a 

metabolomics study also showed that plasma levels of some species of PUFA were 

positively correlated with risk stratification [98] in AML patients. 

Compared with the previously reported approaches, the critical difference 

in my current work is that I initiated the analysis by assessing pathways that 

directly correlate with ELN2017 using GSVA pathway scores. Other studies started 

with individual genes, rather than pathways, for survival relationships or focused 

on individual mutations comprising ELN2017. Then, I subsequently validated the 
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resulting pathways and genes with survival data and also with results from other 

multi-omics databases. I also added the ‘Very Adverse’ group and the ‘Normal’ 

group, which were not included in most of the prior studies, which, I believe, gave 

more reliable results. I also utilized the proteomics AML database, which has not 

been used in the above studies, adding confidence to my results. Probably most 

importantly, I carried out experimental and functional validation of the target genes 

after the bioinformatics screening, which is seldom the case for most related 

studies. My results showing the relationship between SCD expression and actual 

UFA and PUFA amounts suggest that SCD is a promising target for AML. I believe 

that these extra steps enabled my suggested drugs, A939572 and DS18561882, to 

exhibit selectivity toward cancer cells and efficacy against AML cells relatively 

resistant to cytarabine. These drugs’ synergy and dose reduction for cytarabine 

against cell lines with high IC50 values, THP-1 and KG-1, are noteworthy for 

developing new combinational treatments. It is also important to note that these 

cell lines harbor TP53 mutation (https://cellmodelpassports.sanger.ac.uk) and 

complex karyotype (https://www.dsmz.de/), which are the important characteristics 

of the ‘Very Adverse’ group of revised ELN2017 criteria usedf in my study. To my 

knowledge, only limited information about SCD inhibitors on AML is available. 

MTHFD2 inhibitors’ effects on AML have been revealed only recently, particularly 

the study suggesting pyrimidine depletion and replication stress as the underlying 

mechanism [88]. Although the authors observed synergy between MTHFD2 

inhibitors and ATR inhibitors or dUTPase inhibitors, they did not address the 

synergy with cytarabine, a standard-of-care drug. My results for synergy between 

https://cellmodelpassports.sanger.ac.uk/
https://www.dsmz.de/
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SCD/MTHFD2 inhibitors and cytarabine may have additional implications in this 

respect.  

Furthermore, the significant advantage of my approach is that it can also 

be applied to find other target genes/pathways, or even for solid tumors. Even 

though I chose the MTHFD2 gene in the Folate_Metabolism pathway due to its 

literature evidence, when I looked for another candidate gene using the same 

approach used in the UFA_Synthesis pathway, ALDH1L2 gene was found to be the 

only gene significant in all three databases (Table 18). Unlike MTHFD2, in AML, 

no literature study and no inhibitors are available, but as seen in the case of the 

SCD gene, the ALDH1L2 gene could be the possible target. In addition, in solid 

tumors, the ELN2017 category is analogous to stage or grade information in that it 

is closely related to patient prognosis. Other relevant parameters, such as 

recurrence status after initial treatment and lymph/distant metastasis status 

available in TCGA databases, could also be combined to build an ELN2017-like 

variable for prognosis categorization. Then, a simple Jonckheere-Terpstra test can 

be applied to correlate pathways to the variable, as it is a non-parametric test that 

can be used regardless of sample distributions. This correlation between the 

prognosis variable and pathways should give more valuable information related to 

cancer malignancy than conventional analysis of tumor vs. normal samples.  

Very recently, a new version of ELN recommendation, ELN2022, was 

introduced [105]. While the stratification of patients into three categories was 

maintained, it now uses more information on patient genetics, such as bZIP in-

frame mutated CEBPA, KAT6A::CREBBP fusion, or variant allele fraction of 

TP53 mutation [105], some of which information is not registered in the present 
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databases. According to a study that attempted the validation of ELN2022 in clinic  

[106], 83%, 72%, and 90% of patients in each risk category kept their allocation in 

ELN2017, suggesting broadly similar categorization. Also, in this study, the 

authors concluded that the ELN2022 classification did not significantly perform 

better in outcome prognostication than ELN2017 classification, implying that much 

more validations are yet needed. Therefore, my analysis with ELN2017 should still 

be meaningful and valuable. 
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Table 18. Risk-correlation analysis of revised ELN2017 for genes in the Folate_metabolism pathway using multiomics databases 

Gene 

 OHSU  TCGA-LAML Proteomics 

Jonckheere-

Terpstra test 

Survival 

(DSS) 

HR 

for DSS 

Survival (OS) HR 

for OS 

Jonckheere-

Terpstra test 

Jonckheere-

Terpstra test 

ALDH1L1 0.965  0.012  2.031  0.016  1.749  0.241  0.093  

ALDH1L2 0.027  0.004  2.303  < 0.001   2.119  < 0.001 0.001  

DHFR 0.483  0.001  3.075  0.002  2.029  0.800  0.259  

DHFR2 0.995  0.076  2.023  0.153  1.494  0.139  NA 

FOLR2 0.353  0.035  1.889  0.121  1.432  < 0.001 0.002  

FPGS 0.050  0.002  0.414  0.003  0.525  0.406  0.424  

MTHFD1 0.008  0.035  1.865  0.009  2.149  0.004  0.275  

MTHFD1L < 0.001 0.043  1.805  0.056  1.561  0.003  0.816  

MTHFD2 < 0.001 0.054  1.788  0.029  1.808  0.181  0.092  

MTHFD2L 0.008  0.051  0.553  0.236  0.759  0.747  0.500  

MTHFR 0.017  0.153  0.484  0.093  1.406  < 0.001 0.061  

MTHFS 0.269  0.038  1.714  0.069  1.462  0.986  0.982  

SHMT1 0.873  < 0.001 2.943  0.003  1.936  0.991  0.325  

SHMT2 0.001  0.007  2.103  0.004  2.014  0.158  0.339  

SLC19A1 0.062  0.066  1.639  0.060  1.490  0.001  0.002  

SLC25A32 0.003  0.049  5.777  0.073  2.741  0.034  0.014  

SLC46A1 0.841  0.072  1.780  0.235  1.363  0.111  NA 

DSS, disease-specific survival; OS, overall survival; HR, the hazard ratio of the high expression group; NA, not available. 
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Conclusion 

 

Overall, I used bioinformatics to find target genes or pathways in AML, 

looked for literature support, and performed experimental validations.  

The study from Part I provides strong evidence for SUMOylation as a 

new targetable pathway for AML, based on integrated bioinformatic screening and 

validations with in vitro, ex vivo, and in vivo preclinical AML models. For toxicity, 

the longer survival of TAK-981-treated mice indicates a favorable therapeutic 

index. Consistent with this, a previous study with TAK-981 showed a good toxicity 

property up to 40 mg/kg in mice [39]. In addition, normal or patients with 

remission after therapy had lower SAE1/SAE2, the target of TAK-981, than 

patients with active AML (Fig. 2C), suggesting possible selectivity of the drug. 

These favorable efficacy and toxicity data should prompt further studies for its 

optimal combination and transitions to clinical trials with AML. 

In the study from Part II, by utilizing transcriptomics and proteomics 

databases, I found pathways upregulated in correlation with increased risk, the 

specific genes to target in those pathways, and suggested drugs that might have a 

synergistic effect with standard-of-care drug cytarabine. Since not much is known 

about the roles of unsaturated fatty acids or folate metabolism in AML, my results 

could be further exploited to find a mechanistic relationship between those 

pathways and the malignancy of AML, and also to test the target drugs on high-risk 

AML animal models. 
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To summarize, in Part I, I found SUMOylation as AML-specific target 

pathway compared to normal bone marrow and suggested TAK-981 as the drug 

candidate. In Part II, I found SCD and MTHFD2 gene as target for high-risk AML 

patients and suggested their respective inhibitors as the drug candidates. 
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국문초록 

 
암 빅데이터 분석을 통한 급성 골수성 

백혈병에서의 새로운 약물 타겟 발굴 

 

김한선 

천연물과학 전공 

서울대학교 약학과 

 

급성 골수성 백혈병 (AML)은 최근 새로운 치료법으로 표적 치료제

와 항체 치료제 등을 도입했음에도 불구하고 일반적으로 예후가 만족스럽

지 못하다. 또한, AML 환자들의 예후 위험도를 분류하기 위한 European 

LeukemiaNet (ELN) 2017 분류법이 널리 사용되고 있지만, 각 위험도 카

테고리와 관련된 생물학적 경로에 관한 연구는 부족한 상태이며, 이로 인해 

고위험 환자군에 대한 약물 치료 옵션에 대한 개선에도 도움이 되지 못하였

다. 

 이러한 문제에 대처하기 위해, AML에서의 새로운 타겟 후보를 찾

기 위해 암 빅데이터 분석을 이용하였다. 우선, 약물로 타겟 가능한 새로운 

경로를 찾기 위해, 대규모 AML 데이터베이스인 Oregon Health & 

Science University (OHSU)와 Microarray Innovations in Leukemia 
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(MILE)를 활용하여 종합적인 생물정보학적 경로 스크리닝을 수행하였다. 

이를 통해 SUMOylation 경로를 찾아내었으며, 이 결과를 외부 데이터베이

스에서 독립적으로 검증하였다 (총 2959개의 AML 샘플과 642개의 정상 

샘플 데이터 사용). AML에서의 SUMOylation의 임상적 연관성은 주요 유

전자의 발현량과 환자의 생존율, ELN2017 위험도 분류, AML과 연관된 돌

연변이들과의 관련성을 통해 확인되었다. 현재 고형암에서 임상 시험 중에 

있는 새로운 SUMOylation 억제제인 TAK-981은 AML 세포에서 세포 사

멸을 유도하고, 세포 주기를 정지시키며 분화 마커 유전자 발현을 유도함으

로써 항백혈병 효과를 보였다. TAK-981은 강력한 nanomolar 활성을 나

타냈고, 표준 치료제인 cytarabine보다도 강한 활성을 보이기도 하였다. 

TAK-981의 유용성은 환자 유래 primary AML 세포 및 in vivo 마우스 그

리고 사람의 백혈병 모델에서도 확인되었다. 또한 이전 고형암 연구와는 다

르게 IFN1 및 면역 의존적인 메커니즘 대신, TAK-981은 직접적이고 암 

세포에 고유한 항백혈병 효과를 보여주었다. 요약하면, AML에서 

SUMOylation이 새로운 타겟 가능한 경로임을 확인하고, TAK-981을 유

망하고 직접적인 항백혈병 약물로 제시하였다. 이러한 근거를 바탕으로, 

AML에서 약물 병용 투여 전략의 최적화에 대한 연구와 임상 시험을 기대

하는 바이다. 

 또한, 최근의 AML 데이터베이스를 사용하여, ELN2017 위험도가 

증가함에 따라 함께 증가하는 생물학적 경로를 조사하였다. 환자의 생존 분

석과 다른 독립적인 전사체학, 단백질학의 AML 데이터베이스를 이용하여 
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필터링하고 검증한 결과, ‘불포화 지방산의 합성’과 ‘엽산 대사’ 경로가 후

보로 도출되었다. 문헌 조사와 유전자 수준에서의 추가적인 조사를 통해, 

고위험 환자군과 연관된 핵심 타겟으로 SCD와 MTHFD2 유전자가 확인되

었다. SCD 억제제인 A939572와 MTHFD2 억제제인 DS18561882는 암 

선택성을 보였고, 또한 관해 유도요법에 사용되는 표준 약인 cytarabine에 

비교적 높은 IC50를 가진 세포주들에서 cytarabine과 시너지를 보였다. 

SCD 유전자 발현은 불포화 지방산의 양과 상관성이 있는 것으로 나타났다. 

요약하면, 본 연구에서 제시된 타겟들은 고위험 AML 환자군에서 보다 더 

나은 치료 옵션을 찾거나 메커니즘의 이해를 위해 연구될 수 있으며, 이와 

같은 연구 접근법은 다른 타겟 유전자나 경로를 찾거나 심지어 고형암에서

도 용이하게 적용될 수 있다. 

 

주요어: 급성 골수성 백혈병, SUMOylation, TAK-981, 면역 독립적, 

ELN2017, 고위험, SCD, MTHFD2 

학번: 2017-20187 
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Appendix 

This appendix includes supporting information for the main text (A-D), followed 

by two of my published papers. I contributed one paper as the first author and the 

other as the co-first author. These works were done during my Ph.D. course under 

my supervisor, Professor Sunghyouk Park. 

 

A. List of pathways and their sources in each cluster of Fig. 1B 

Clu

ster 

Pathway Source 

(i) ACTIVATION.OF.THE.MRNA.UPON.BINDING.OF.THE.CAP_BINDING.C

OMPLEX.AND.EIFS_.AND.SUBSEQUENT.BINDING.TO.43S 

REACTOME.DATABA

SE.ID.RELEASE.69 

AMIDE.BIOSYNTHETIC.PROCESS GOBP 

AMINO.ACID.ACTIVATION GOBP 

CAP_DEPENDENT.TRANSLATION.INITIATION REACTOME.DATABA

SE.ID.RELEASE.69 

COTRANSLATIONAL.PROTEIN.TARGETING.TO.MEMBRANE GOBP 

CYTOPLASMIC.RIBOSOMAL.PROTEINS WIKIPATHWAYS_201

90610 

CYTOPLASMIC.TRANSLATION GOBP 

DEADENYLATION.OF.MRNA REACTOME 

DEADENYLATION_DEPENDENT.MRNA.DECAY REACTOME 

ESTABLISHMENT.OF.PROTEIN.LOCALIZATION.TO.ENDOPLASMIC.R

ETICULUM 

GOBP 

ESTABLISHMENT.OF.PROTEIN.LOCALIZATION.TO.MEMBRANE GOBP 

ESTABLISHMENT.OF.PROTEIN.LOCALIZATION.TO.ORGANELLE GOBP 

ESTABLISHMENT.OF.RNA.LOCALIZATION GOBP 

EUKARYOTIC.TRANSLATION.ELONGATION REACTOME.DATABA

SE.ID.RELEASE.69 

EUKARYOTIC.TRANSLATION.INITIATION REACTOME 

EUKARYOTIC.TRANSLATION.TERMINATION REACTOME.DATABA

SE.ID.RELEASE.69 

FORMATION.OF.A.POOL.OF.FREE.40S.SUBUNITS REACTOME.DATABA

SE.ID.RELEASE.69 

FORMATION.OF.THE.TERNARY.COMPLEX_.AND.SUBSEQUENTLY_.T

HE.43S.COMPLEX 

REACTOME 

GTP.HYDROLYSIS.AND.JOINING.OF.THE.60S.RIBOSOMAL.SUBUNIT REACTOME 



 

 156 

IMPORT.INTO.NUCLEUS GOBP 

INFLUENZA.INFECTION REACTOME.DATABA

SE.ID.RELEASE.69 

INFLUENZA.LIFE.CYCLE REACTOME 

INFLUENZA.VIRAL.RNA.TRANSCRIPTION.AND.REPLICATION REACTOME.DATABA

SE.ID.RELEASE.69 

L13A_MEDIATED.TRANSLATIONAL.SILENCING.OF.CERULOPLASMI

N.EXPRESSION 

REACTOME.DATABA

SE.ID.RELEASE.69 

MAJOR.PATHWAY.OF.RRNA.PROCESSING.IN.THE.NUCLEOLUS.AND.

CYTOSOL 

REACTOME 

MATURATION.OF.5_8S.RRNA GOBP 

MATURATION.OF.5_8S.RRNA.FROM.TRICISTRONIC.RRNA.TRANSCRI

PT._SSU_RRNA_.5_8S.RRNA_.LSU_RRNA_ 

GOBP 

MATURATION.OF.LSU_RRNA GOBP 

MATURATION.OF.LSU_RRNA.FROM.TRICISTRONIC.RRNA.TRANSCR

IPT._SSU_RRNA_.5_8S.RRNA_.LSU_RRNA_ 

GOBP 

MATURATION.OF.SSU_RRNA GOBP 

MATURATION.OF.SSU_RRNA.FROM.TRICISTRONIC.RRNA.TRANSCR

IPT._SSU_RRNA_.5_8S.RRNA_.LSU_RRNA_ 

GOBP 

MIRNA.METABOLIC.PROCESS GOBP 

MITOCHONDRIAL.GENE.EXPRESSION GOBP 

MITOCHONDRIAL.RNA.METABOLIC.PROCESS GOBP 

MITOCHONDRIAL.TRANSLATION GOBP 

MITOCHONDRIAL.TRANSLATION REACTOME.DATABA

SE.ID.RELEASE.69 

MITOCHONDRIAL.TRANSLATION.ELONGATION REACTOME.DATABA

SE.ID.RELEASE.69 

MITOCHONDRIAL.TRANSLATION.TERMINATION REACTOME 

MITOCHONDRIAL.TRANSLATIONAL.TERMINATION GOBP 

MITOCHONDRIAL.TRNA.AMINOACYLATION REACTOME.DATABA

SE.ID.RELEASE.69 

MRNA.CATABOLIC.PROCESS GOBP 

MRNA.EXPORT.FROM.NUCLEUS GOBP 

MRNA.PROCESSING WIKIPATHWAYS_201

90610 

MRNA.PROCESSING GOBP 

MRNA.SPLICING REACTOME.DATABA

SE.ID.RELEASE.69 

MRNA.SPLICING_.VIA.SPLICEOSOME GOBP 

MRNA.TRANSPORT GOBP 

MRNA_CONTAINING.RIBONUCLEOPROTEIN.COMPLEX.EXPORT.FR

OM.NUCLEUS 

GOBP 
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NCRNA.3__END.PROCESSING GOBP 

NCRNA.METABOLIC.PROCESS GOBP 

NCRNA.PROCESSING GOBP 

NONSENSE.MEDIATED.DECAY._NMD_.ENHANCED.BY.THE.EXON.JU

NCTION.COMPLEX._EJC_ 

REACTOME 

NONSENSE.MEDIATED.DECAY._NMD_.INDEPENDENT.OF.THE.EXON.

JUNCTION.COMPLEX._EJC_ 

REACTOME.DATABA

SE.ID.RELEASE.69 

NONSENSE_MEDIATED.DECAY._NMD_ REACTOME.DATABA

SE.ID.RELEASE.69 

NUCLEAR.TRANSPORT GOBP 

NUCLEAR_TRANSCRIBED.MRNA.CATABOLIC.PROCESS GOBP 

NUCLEAR_TRANSCRIBED.MRNA.CATABOLIC.PROCESS_.NONSENS

E_MEDIATED.DECAY 

GOBP 

NUCLEIC.ACID.TRANSPORT GOBP 

NUCLEOBASE_CONTAINING.COMPOUND.CATABOLIC.PROCESS GOBP 

NUCLEOBASE_CONTAINING.COMPOUND.TRANSPORT GOBP 

NUCLEOCYTOPLASMIC.TRANSPORT GOBP 

PEPTIDE.BIOSYNTHETIC.PROCESS GOBP 

PEPTIDE.CHAIN.ELONGATION REACTOME 

PEPTIDE.METABOLIC.PROCESS GOBP 

PRE_MRNA.SPLICING REACTOME 

PROCESSING.OF.CAPPED.INTRON_CONTAINING.PRE_MRNA REACTOME.DATABA

SE.ID.RELEASE.69 

PRODUCTION.OF.MIRNAS.INVOLVED.IN.GENE.SILENCING.BY.MIRN

A 

GOBP 

PROTEIN.IMPORT GOBP 

PROTEIN.LOCALIZATION.TO.ENDOPLASMIC.RETICULUM GOBP 

PROTEIN.TARGETING GOBP 

PROTEIN.TARGETING.TO.ER GOBP 

PROTEIN.TARGETING.TO.MEMBRANE GOBP 

REGULATION.OF.EXPRESSION.OF.SLITS.AND.ROBOS REACTOME.DATABA

SE.ID.RELEASE.69 

RIBONUCLEOPROTEIN.COMPLEX.ASSEMBLY GOBP 

RIBONUCLEOPROTEIN.COMPLEX.BIOGENESIS GOBP 

RIBONUCLEOPROTEIN.COMPLEX.EXPORT.FROM.NUCLEUS GOBP 

RIBONUCLEOPROTEIN.COMPLEX.LOCALIZATION GOBP 

RIBONUCLEOPROTEIN.COMPLEX.SUBUNIT.ORGANIZATION GOBP 

RIBOSOMAL.LARGE.SUBUNIT.ASSEMBLY GOBP 

RIBOSOMAL.LARGE.SUBUNIT.BIOGENESIS GOBP 
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RIBOSOMAL.SCANNING.AND.START.CODON.RECOGNITION REACTOME.DATABA

SE.ID.RELEASE.69 

RIBOSOMAL.SMALL.SUBUNIT.BIOGENESIS GOBP 

RIBOSOME.ASSEMBLY GOBP 

RIBOSOME.BIOGENESIS GOBP 

RNA.3__END.PROCESSING GOBP 

RNA.CATABOLIC.PROCESS GOBP 

RNA.EXPORT.FROM.NUCLEUS GOBP 

RNA.LOCALIZATION GOBP 

RNA.METHYLATION GOBP 

RNA.POLYMERASE.II.TRANSCRIPTION.TERMINATION REACTOME.DATABA

SE.ID.RELEASE.69 

RNA.SPLICING GOBP 

RNA.SPLICING_.VIA.TRANSESTERIFICATION.REACTIONS GOBP 

RNA.SPLICING_.VIA.TRANSESTERIFICATION.REACTIONS.WITH.BU

LGED.ADENOSINE.AS.NUCLEOPHILE 

GOBP 

RNA.TRANSPORT GOBP 

RRNA.METABOLIC.PROCESS GOBP 

RRNA.MODIFICATION.IN.THE.NUCLEUS.AND.CYTOSOL REACTOME 

RRNA.PROCESSING REACTOME 

RRNA.PROCESSING GOBP 

RRNA.PROCESSING.IN.THE.NUCLEUS.AND.CYTOSOL REACTOME.DATABA

SE.ID.RELEASE.69 

SELENOAMINO.ACID.METABOLISM REACTOME.DATABA

SE.ID.RELEASE.69 

SELENOCYSTEINE.SYNTHESIS REACTOME.DATABA

SE.ID.RELEASE.69 

SIGNALING.BY.ROBO.RECEPTORS REACTOME 

SPLICEOSOMAL.SNRNP.ASSEMBLY GOBP 

SRP_DEPENDENT.COTRANSLATIONAL.PROTEIN.TARGETING.TO.ME

MBRANE 

GOBP 

SRP_DEPENDENT.COTRANSLATIONAL.PROTEIN.TARGETING.TO.ME

MBRANE 

REACTOME.DATABA

SE.ID.RELEASE.69 

TRANSLATION GOBP 

TRANSLATION REACTOME 

TRANSLATION.FACTORS WIKIPATHWAYS_201

90610 

TRANSLATION.INITIATION.COMPLEX.FORMATION REACTOME.DATABA

SE.ID.RELEASE.69 

TRANSLATIONAL.ELONGATION GOBP 
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TRANSLATIONAL.INITIATION GOBP 

TRNA.AMINOACYLATION GOBP 

TRNA.METABOLIC.PROCESS GOBP 

VIRAL.GENE.EXPRESSION GOBP 

VIRAL.MRNA.TRANSLATION REACTOME 

VIRAL.TRANSCRIPTION GOBP 

(ii) ACTIVATED.PKN1.STIMULATES.TRANSCRIPTION.OF.AR._ANDROGE

N.RECEPTOR_.REGULATED.GENES.KLK2.AND.KLK3 

REACTOME 

ACTIVATION.OF.ANTERIOR.HOX.GENES.IN.HINDBRAIN.DEVELOPM

ENT.DURING.EARLY.EMBRYOGENESIS 

REACTOME 

ACTIVATION.OF.HOX.GENES.DURING.DIFFERENTIATION REACTOME 

ACTIVATION.OF.RRNA.EXPRESSION.BY.ERCC6._CSB_.AND.EHMT2._

G9A_ 

REACTOME.DATABA

SE.ID.RELEASE.69 

B_WICH.COMPLEX.POSITIVELY.REGULATES.RRNA.EXPRESSION REACTOME.DATABA

SE.ID.RELEASE.69 

DNA.METHYLATION REACTOME 

EPIGENETIC.REGULATION.OF.GENE.EXPRESSION REACTOME 

HDACS.DEACETYLATE.HISTONES REACTOME 

NEGATIVE.EPIGENETIC.REGULATION.OF.RRNA.EXPRESSION REACTOME 

NORC.NEGATIVELY.REGULATES.RRNA.EXPRESSION REACTOME 

OXIDATIVE.STRESS.INDUCED.SENESCENCE REACTOME.DATABA

SE.ID.RELEASE.69 

PACKAGING.OF.TELOMERE.ENDS REACTOME 

POSITIVE.EPIGENETIC.REGULATION.OF.RRNA.EXPRESSION REACTOME.DATABA

SE.ID.RELEASE.69 

PRC2.METHYLATES.HISTONES.AND.DNA REACTOME.DATABA

SE.ID.RELEASE.69 

RNA.POLYMERASE.I.PROMOTER.CLEARANCE REACTOME 

RNA.POLYMERASE.I.PROMOTER.ESCAPE REACTOME.DATABA

SE.ID.RELEASE.69 

RNA.POLYMERASE.I.TRANSCRIPTION REACTOME 

(iii) SUMOYLATION.OF.CHROMATIN.ORGANIZATION.PROTEINS REACTOME 

SUMOYLATION.OF.RNA.BINDING.PROTEINS REACTOME 

SUMOYLATION.OF.TRANSCRIPTION.COFACTORS REACTOME.DATABA

SE.ID.RELEASE.69 

(iv) REGULATION.OF.MRNA.METABOLIC.PROCESS GOBP 

REGULATION.OF.MRNA.POLYADENYLATION GOBP 

REGULATION.OF.MRNA.PROCESSING GOBP 

GOBP, Gene Ontology Biological Process. 
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B. List of genes used in the clustering in Fig. 1B and their expression 

differences between AML and normal samples in OHSU and MILE databases 

Cluster Gene 
OHSU MILE 

Median_diff P-value Median_diff P-value 

(i) AAMP 0.282 < 0.001 0.038 < 0.001 

AAR2 0.399 0.010 0.043 < 0.001 

AARS2 0.045 0.250 0.028 0.023 

ACE 0.245 0.324 0.036 < 0.001 

ACSF3 0.088 0.010 0.034 < 0.001 

ADA 1.215 < 0.001 0.133 < 0.001 

ADPRM 0.396 0.017 0.022 < 0.001 

AGXT 0.614 < 0.001 0.030 0.002 

AIMP1 0.587 < 0.001 0.035 < 0.001 

AMN 1.578 < 0.001 0.095 < 0.001 

ANKRD16 0.463 0.002 0.018 < 0.001 

AP3M1 -0.039 0.902 0.025 < 0.001 

AP4M1 0.578 < 0.001 0.047 < 0.001 

AP4S1 0.295 0.001 0.032 0.001 

B4GALT6 0.556 0.007 0.066 < 0.001 

BAD 0.560 < 0.001 0.033 0.026 

BDH2 0.357 0.002 0.044 < 0.001 

BICD1 0.122 0.247 0.042 < 0.001 

BMF -0.074 0.989 0.031 < 0.001 

BMS1 -0.044 0.359 0.052 < 0.001 

BOP1 0.423 < 0.001 0.048 < 0.001 

BRF1 0.165 0.024 0.025 0.021 

CALR 0.328 0.022 0.044 < 0.001 

CCAR2 0.218 < 0.001 0.039 < 0.001 

CCNT1 0.054 0.938 0.076 < 0.001 

CDK9 0.451 < 0.001 0.038 < 0.001 

CELF1 -0.203 0.353 0.016 0.012 

CERS1 0.534 0.004 0.026 < 0.001 

CERS6 0.948 < 0.001 0.077 < 0.001 

CLASRP -0.108 0.202 0.020 < 0.001 

CLN8 0.189 0.077 0.028 0.006 
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CLNS1A 0.410 < 0.001 0.056 < 0.001 

CLP1 0.341 0.115 0.048 < 0.001 

CLUH -0.063 0.665 0.038 < 0.001 

CNOT7 0.202 0.002 0.033 < 0.001 

COL4A5 1.445 0.350 0.030 0.015 

CPSF1 0.322 < 0.001 0.023 0.003 

CPSF6 0.199 0.047 0.032 < 0.001 

CPSF7 0.027 0.524 0.023 < 0.001 

CPXM1 1.946 < 0.001 0.184 < 0.001 

CSNK1E 0.560 0.003 0.045 < 0.001 

CT45A1 0.000 0.017 0.065 < 0.001 

DARS 0.526 < 0.001 0.035 < 0.001 

DCAF13 0.003 0.867 0.019 0.003 

DCTPP1 0.731 < 0.001 0.046 < 0.001 

DDO 1.891 < 0.001 0.042 < 0.001 

DDX17 -0.560 0.003 0.011 0.294 

DDX21 0.284 0.016 0.019 < 0.001 

DDX28 0.214 0.429 0.032 0.020 

DDX31 0.275 0.031 0.051 < 0.001 

DDX42 -0.045 0.511 0.025 0.013 

DDX49 0.462 < 0.001 0.024 0.009 

DDX5 0.148 0.014 0.037 < 0.001 

DDX52 0.288 < 0.001 0.052 < 0.001 

DEGS2 1.015 < 0.001 0.040 0.001 

DENR 0.641 < 0.001 0.067 < 0.001 

DERA 0.421 < 0.001 0.035 < 0.001 

DHPS 0.204 < 0.001 0.028 < 0.001 

DHRS4 0.569 < 0.001 0.045 < 0.001 

DHX37 0.326 < 0.001 0.031 < 0.001 

DIS3 0.096 0.501 0.025 < 0.001 

DIS3L 0.203 0.005 0.028 < 0.001 

DKC1 0.285 0.022 0.015 < 0.001 

DNPEP 0.508 < 0.001 0.025 < 0.001 

DTD2 -0.074 0.895 0.026 < 0.001 

DYNC1H1 0.186 0.022 0.027 0.007 
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EDC3 0.138 0.223 0.012 0.028 

EDC4 0.147 0.001 0.026 < 0.001 

EEF1A1 0.888 < 0.001 0.040 < 0.001 

EEF2K 0.186 0.001 0.020 < 0.001 

EFTUD2 0.218 0.002 0.032 0.038 

EIF1AX 0.208 0.003 0.039 < 0.001 

EIF2A 0.246 0.010 0.031 < 0.001 

EIF2S1 0.231 0.189 0.011 0.005 

EIF2S2 0.068 0.251 0.027 0.002 

EIF2S3 0.443 < 0.001 0.042 < 0.001 

EIF3C 0.466 < 0.001 0.020 0.010 

EIF3D 0.401 < 0.001 0.032 < 0.001 

EIF3E 0.580 < 0.001 0.022 < 0.001 

EIF3G 0.066 0.433 0.038 < 0.001 

EIF3H 0.373 0.001 0.078 < 0.001 

EIF3I 0.506 < 0.001 0.025 < 0.001 

EIF3L 0.681 < 0.001 0.014 < 0.001 

EIF3M 0.445 < 0.001 0.051 < 0.001 

EIF4A1 0.670 < 0.001 0.028 < 0.001 

EIF4B 0.459 < 0.001 0.019 < 0.001 

EIF4EBP1 0.297 0.025 0.030 < 0.001 

ELAC2 0.129 0.027 0.024 0.024 

ELAVL1 0.082 0.149 0.028 0.001 

ELP3 0.135 0.188 0.021 < 0.001 

ENDOG 0.489 0.002 0.036 < 0.001 

ENO1 1.075 < 0.001 0.024 0.006 

ENY2 0.337 0.010 0.019 0.061 

ERCC2 0.187 0.055 0.022 < 0.001 

ERI3 0.360 < 0.001 0.045 < 0.001 

ETF1 0.583 0.001 0.018 0.001 

EXOSC2 0.072 0.210 0.039 0.001 

EXOSC5 0.495 0.004 0.046 < 0.001 

EXOSC6 0.222 0.020 0.062 < 0.001 

FAM98B 0.101 0.326 0.012 0.045 

FARS2 0.369 < 0.001 0.014 0.053 
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FARSA 0.199 0.139 0.031 < 0.001 

FASTKD1 0.464 0.003 0.027 0.002 

FASTKD5 0.179 0.110 0.030 0.013 

FPGS 0.510 < 0.001 0.072 < 0.001 

FURIN 0.414 0.003 0.012 0.098 

FUS 0.129 0.109 0.036 0.003 

FYTTD1 0.466 < 0.001 0.048 < 0.001 

GATB 0.280 0.065 0.022 < 0.001 

GEMIN8 0.365 < 0.001 0.032 < 0.001 

GET4 0.234 0.079 0.038 0.002 

GGA1 0.076 0.429 0.031 < 0.001 

GNMT 0.438 0.006 0.022 0.006 

GNPTAB 0.574 < 0.001 0.052 < 0.001 

GOLPH3 0.533 < 0.001 0.031 < 0.001 

GRSF1 0.420 < 0.001 0.014 < 0.001 

GSS 0.404 < 0.001 0.042 < 0.001 

GSTK1 0.152 0.017 0.041 < 0.001 

GSTP1 0.736 < 0.001 0.020 < 0.001 

GSTZ1 0.397 < 0.001 0.018 < 0.001 

GTF3A 0.823 < 0.001 0.037 < 0.001 

GTF3C3 0.239 0.001 0.025 0.001 

GTF3C4 0.452 0.001 0.039 < 0.001 

GTF3C6 0.394 < 0.001 0.030 < 0.001 

HACD1 1.408 < 0.001 0.095 < 0.001 

HENMT1 0.569 0.001 0.026 0.001 

HHEX 1.048 < 0.001 0.088 < 0.001 

HINT1 0.822 < 0.001 0.071 < 0.001 

HM13 0.002 0.982 0.020 0.038 

HNRNPA0 0.690 < 0.001 0.046 < 0.001 

HNRNPA1 0.593 < 0.001 0.032 < 0.001 

HNRNPC 0.280 0.002 0.015 0.014 

HNRNPL 0.323 0.003 0.042 < 0.001 

HNRNPM 0.399 < 0.001 0.020 0.002 

HOMER3 1.366 < 0.001 0.136 < 0.001 

HOXA2 1.634 < 0.001 0.090 < 0.001 
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HPGDS -0.014 0.679 0.041 0.007 

HSP90AB1 0.908 < 0.001 0.053 < 0.001 

HSPA14 0.499 < 0.001 0.033 0.003 

HSPA5 0.680 0.003 0.020 0.007 

HSPD1 0.550 < 0.001 0.039 0.004 

IARS2 0.500 < 0.001 0.016 0.004 

IDH1 0.201 0.077 0.051 < 0.001 

IMMP2L 0.849 < 0.001 0.053 < 0.001 

INTS8 0.286 < 0.001 0.034 < 0.001 

IPO4 0.353 0.001 0.034 < 0.001 

IPO5 0.507 < 0.001 0.032 < 0.001 

IPO7 0.336 0.003 0.029 < 0.001 

ITPA 0.427 < 0.001 0.053 < 0.001 

KARS 0.338 < 0.001 0.017 < 0.001 

KDELR1 0.452 < 0.001 0.073 < 0.001 

KIN -0.016 0.646 0.010 0.018 

KPNA3 0.371 0.001 0.016 < 0.001 

KPNA5 0.336 0.008 0.064 < 0.001 

KPNB1 0.340 < 0.001 0.050 < 0.001 

KRI1 -0.297 0.052 0.027 < 0.001 

KTI12 0.593 < 0.001 0.048 < 0.001 

LAMP1 0.761 < 0.001 0.034 < 0.001 

LAMP2 0.694 < 0.001 0.017 0.017 

LAS1L -0.024 0.907 0.047 < 0.001 

LSM1 0.138 0.101 0.022 < 0.001 

LSM2 0.491 < 0.001 0.046 < 0.001 

LSM3 0.654 < 0.001 0.044 < 0.001 

LTV1 -0.159 0.060 0.037 < 0.001 

LUC7L -0.216 0.094 0.035 < 0.001 

MAEL 0.541 0.010 0.031 < 0.001 

MCTS1 0.408 < 0.001 0.007 0.101 

MDN1 -0.212 0.297 0.016 < 0.001 

MGST1 0.570 0.012 0.032 < 0.001 

MICALL1 0.234 0.117 0.064 < 0.001 

MRPL15 0.416 0.003 0.030 < 0.001 
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MRPL21 0.346 0.012 0.019 < 0.001 

MRPL23 0.558 0.005 0.031 0.008 

MRPL30 0.332 0.001 0.031 < 0.001 

MRPL33 0.805 < 0.001 0.037 < 0.001 

MRPL38 0.043 0.235 0.012 0.060 

MRPL4 0.191 0.146 0.021 < 0.001 

MRPL42 -0.051 0.926 0.023 < 0.001 

MRPL48 0.104 0.044 0.018 < 0.001 

MRPL54 0.353 0.001 0.021 < 0.001 

MRPS2 0.064 0.470 0.032 < 0.001 

MRPS27 0.516 < 0.001 0.017 0.029 

MRPS30 0.373 < 0.001 0.016 0.023 

MRPS33 0.571 < 0.001 0.009 0.181 

MRPS35 0.346 0.001 0.031 < 0.001 

MRPS6 -0.098 0.596 0.009 0.011 

MRRF 0.035 0.320 0.019 0.026 

MTPAP 0.293 0.002 0.040 < 0.001 

MTRF1L 0.088 0.695 0.085 < 0.001 

NARS -0.118 0.766 0.013 0.002 

NARS2 0.797 < 0.001 0.033 < 0.001 

NAT10 -0.056 0.698 0.036 < 0.001 

NCBP2 0.211 0.008 0.056 < 0.001 

NDUFA7 0.212 0.029 0.023 0.039 

NEIL2 0.155 0.271 0.031 0.001 

NLE1 0.328 0.016 0.037 < 0.001 

NOA1 0.617 < 0.001 0.039 < 0.001 

NOB1 0.500 0.001 0.095 < 0.001 

NOC4L 0.057 0.693 0.025 < 0.001 

NOL8 -0.016 0.769 0.017 < 0.001 

NOLC1 -0.018 0.717 0.031 < 0.001 

NOP2 -0.062 0.481 0.025 < 0.001 

NPEPPS 0.151 0.005 0.022 0.048 

NSUN4 0.580 < 0.001 0.033 0.002 

NT5C 0.561 < 0.001 0.045 < 0.001 

NTHL1 0.691 < 0.001 0.078 < 0.001 
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NTN1 1.500 < 0.001 0.036 0.001 

NUDT15 0.563 0.001 0.068 < 0.001 

NUDT5 0.523 < 0.001 0.082 < 0.001 

NUP54 0.389 0.002 0.040 0.005 

NUTF2 0.382 < 0.001 0.035 < 0.001 

NXT1 0.849 < 0.001 0.040 < 0.001 

PABPN1 0.325 < 0.001 0.030 < 0.001 

PAK6 0.503 0.002 0.078 < 0.001 

PAN3 0.433 < 0.001 0.052 < 0.001 

PARN 0.245 0.001 0.031 < 0.001 

PDCD11 0.081 0.210 0.028 < 0.001 

PDCD7 0.246 0.068 0.014 0.058 

PES1 0.053 1.000 0.045 < 0.001 

PEX26 0.082 0.010 0.030 0.021 

PEX3 0.110 0.329 0.044 < 0.001 

PEX6 0.469 0.001 0.059 < 0.001 

PFKP 1.148 < 0.001 0.152 < 0.001 

PHYH 0.950 < 0.001 0.051 < 0.001 

PIH1D2 0.430 < 0.001 0.027 < 0.001 

PITRM1 0.220 0.001 0.029 < 0.001 

PMPCA 0.380 < 0.001 0.029 < 0.001 

PNN -0.278 0.213 0.031 < 0.001 

PPIL4 0.114 0.051 0.021 0.001 

PPP2R1A 0.483 < 0.001 0.021 < 0.001 

PRICKLE1 0.781 0.039 0.073 < 0.001 

PRKACB 0.260 0.015 0.069 < 0.001 

PRKCI 0.309 0.002 0.048 < 0.001 

PRKRA 0.538 < 0.001 0.061 < 0.001 

PRMT5 0.358 0.006 0.035 < 0.001 

PRMT7 0.030 0.477 0.028 < 0.001 

PRPF4 0.232 0.054 0.031 < 0.001 

PSMB1 0.591 < 0.001 0.054 < 0.001 

PSMB10 0.494 < 0.001 0.026 0.001 

PSMB5 0.533 < 0.001 0.019 0.002 

PTGES3 0.562 < 0.001 0.015 < 0.001 
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PTTG1IP 0.728 < 0.001 0.037 < 0.001 

PUS1 0.123 0.120 0.023 < 0.001 

QARS 0.576 < 0.001 0.028 < 0.001 

RAB34 1.339 < 0.001 0.134 < 0.001 

RAN 0.118 0.234 0.021 < 0.001 

RANBP6 0.768 < 0.001 0.037 < 0.001 

RBM15B 0.430 < 0.001 0.032 < 0.001 

RBM28 -0.194 0.443 0.023 < 0.001 

RBM39 0.448 < 0.001 0.043 < 0.001 

RBM4 0.445 < 0.001 0.023 < 0.001 

RBMX 0.112 0.316 0.021 0.003 

RBMX2 0.134 0.212 0.022 < 0.001 

REXO4 0.515 < 0.001 0.051 < 0.001 

RHOA 0.497 < 0.001 0.024 0.032 

RNASEH2B 0.519 < 0.001 0.035 < 0.001 

ROBO2 0.000 0.199 0.013 0.090 

RPF2 -0.033 0.731 0.036 < 0.001 

RPL10A 0.995 < 0.001 0.010 0.018 

RPL13 0.846 < 0.001 0.009 0.130 

RPL14 0.476 0.008 0.051 < 0.001 

RPL15 0.842 < 0.001 0.052 < 0.001 

RPL17 0.068 0.436 0.034 < 0.001 

RPL18 0.475 0.001 0.013 0.001 

RPL18A 0.448 0.009 0.045 < 0.001 

RPL22 0.665 < 0.001 0.049 < 0.001 

RPL27 0.462 0.001 0.031 0.002 

RPL27A 0.401 0.006 0.041 < 0.001 

RPL28 -0.046 0.421 0.075 < 0.001 

RPL31 0.942 < 0.001 0.058 < 0.001 

RPL37A 0.679 < 0.001 0.033 < 0.001 

RPL7 0.949 < 0.001 0.027 < 0.001 

RPP40 0.770 0.001 0.066 < 0.001 

RPS11 0.294 0.145 0.082 < 0.001 

RPS15A 0.625 < 0.001 0.023 0.001 

RPS16 0.670 < 0.001 0.020 < 0.001 
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RPS19 1.149 < 0.001 0.047 < 0.001 

RPS20 0.605 < 0.001 0.045 < 0.001 

RPS21 1.090 < 0.001 0.046 < 0.001 

RPS23 1.035 < 0.001 0.085 < 0.001 

RPS24 0.741 < 0.001 0.043 < 0.001 

RPS27 0.467 0.022 0.032 0.145 

RPS27L 0.884 < 0.001 0.032 < 0.001 

RPS28 0.429 0.004 0.025 0.002 

RPS29 0.498 < 0.001 0.073 < 0.001 

RPS6KA3 0.018 0.196 0.049 < 0.001 

RRP1B -0.189 0.055 0.014 0.012 

RRP7A 0.030 0.682 0.031 0.027 

RSL1D1 0.597 < 0.001 0.048 < 0.001 

RSL24D1 1.083 < 0.001 0.025 < 0.001 

RTCB 0.324 < 0.001 0.018 < 0.001 

SAGE1 -1.208 0.194 0.028 < 0.001 

SARS2 0.244 0.009 0.021 < 0.001 

SART1 0.124 0.426 0.032 < 0.001 

SCAF8 0.089 0.427 0.018 < 0.001 

SCARB2 0.375 < 0.001 0.025 0.013 

SCRIB 0.310 0.003 0.042 < 0.001 

SEC61A2 0.134 0.132 0.067 < 0.001 

SEC61B 0.553 < 0.001 0.054 < 0.001 

SF3B3 -0.093 0.429 0.027 < 0.001 

SLC25A19 0.229 0.134 0.029 < 0.001 

SLC25A33 0.921 < 0.001 0.078 < 0.001 

SLC25A36 0.679 < 0.001 0.064 < 0.001 

SLC35B2 0.554 < 0.001 0.036 < 0.001 

SLC35B4 0.018 0.536 0.106 < 0.001 

SLC35C2 -0.121 0.336 0.047 < 0.001 

SMG1 -0.087 0.905 0.026 < 0.001 

SMG5 0.381 < 0.001 0.047 < 0.001 

SMG6 0.176 0.008 0.025 0.004 

SMNDC1 0.366 < 0.001 0.016 < 0.001 

SNAPC1 0.177 0.058 0.027 < 0.001 
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SNAPC2 0.464 < 0.001 0.034 < 0.001 

SNRNP70 -0.351 0.013 0.096 < 0.001 

SNRPA 0.112 0.518 0.042 < 0.001 

SNRPA1 0.014 0.971 0.019 0.010 

SNRPD2 0.133 0.304 0.015 < 0.001 

SNRPE 0.952 < 0.001 0.077 < 0.001 

SNX33 0.794 0.002 0.038 < 0.001 

SPIN1 0.591 < 0.001 0.060 < 0.001 

SPOP 0.140 0.107 0.025 0.097 

SPPL3 0.288 0.002 0.019 < 0.001 

SPTLC2 0.360 0.001 0.031 < 0.001 

SRBD1 0.332 0.001 0.038 < 0.001 

SRSF12 0.697 0.002 0.028 < 0.001 

STRAP 0.360 0.006 0.022 0.040 

SUGP2 0.033 0.046 0.018 < 0.001 

SYMPK -0.130 0.163 0.067 < 0.001 

SYNCRIP 0.102 0.192 0.030 < 0.001 

TAF11 0.272 < 0.001 0.028 0.094 

TARBP1 0.501 0.001 0.082 < 0.001 

TARS 0.497 < 0.001 0.020 0.023 

TARSL2 -0.043 0.840 0.044 < 0.001 

TCP1 0.475 < 0.001 0.052 < 0.001 

TEFM 0.229 0.014 0.031 0.018 

TEX10 0.186 0.023 0.071 < 0.001 

TFAM 0.333 0.007 0.040 < 0.001 

TFB1M 0.137 0.018 0.033 < 0.001 

THOC6 0.416 < 0.001 0.020 < 0.001 

THUMPD1 -0.011 0.945 0.021 < 0.001 

THUMPD2 0.336 0.090 0.035 < 0.001 

TIMM44 0.262 0.001 0.029 < 0.001 

TIMM50 0.333 0.003 0.082 < 0.001 

TIMM9 0.629 < 0.001 0.043 < 0.001 

TMED10 0.033 0.956 -0.006 0.417 

TOE1 0.351 0.002 0.032 < 0.001 

TOMM34 0.331 0.009 0.030 < 0.001 
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TPI1 0.654 < 0.001 0.067 < 0.001 

TRA2A -0.009 0.780 0.028 0.195 

TRA2B 0.755 < 0.001 0.027 0.007 

TRIM71 1.839 < 0.001 0.160 < 0.001 

TRMT10B -0.171 0.131 0.017 0.011 

TRMT44 0.145 0.004 0.036 < 0.001 

TRMT61A 0.308 0.018 0.025 < 0.001 

TRNT1 0.090 0.149 0.013 0.006 

TSC2 0.009 0.447 0.030 0.001 

TSR1 0.146 0.092 0.058 < 0.001 

TUFM 0.392 < 0.001 0.034 < 0.001 

TXNL4A 0.253 0.004 0.034 0.002 

TYW3 0.244 0.002 0.052 < 0.001 

U2AF1 -0.114 0.975 0.019 0.018 

U2AF1L4 -0.111 0.608 0.047 < 0.001 

UPP2 0.248 0.051 0.036 0.002 

UQCRC2 0.495 < 0.001 0.044 < 0.001 

URB1 0.261 0.063 0.028 < 0.001 

USPL1 0.250 0.093 0.026 0.015 

UTP14A 0.072 0.485 0.037 < 0.001 

UTP6 0.297 0.033 0.023 0.005 

VARS2 0.122 0.018 0.024 < 0.001 

WARS2 0.476 < 0.001 0.018 0.008 

WBP11 -0.043 0.288 0.016 0.003 

WDR12 0.206 0.065 0.028 < 0.001 

WDR46 0.378 < 0.001 0.027 < 0.001 

XAB2 0.259 0.001 0.014 < 0.001 

XPNPEP1 0.534 < 0.001 0.024 0.021 

XPOT 0.094 0.313 0.014 0.003 

YARS 0.365 < 0.001 0.010 0.013 

YARS2 0.410 < 0.001 0.031 < 0.001 

YTHDF2 0.744 < 0.001 0.037 < 0.001 

ZC3H15 0.359 < 0.001 0.022 0.055 

ZDHHC2 0.589 < 0.001 0.030 0.034 

ZDHHC21 0.121 0.056 0.038 < 0.001 
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ZDHHC4 1.002 < 0.001 0.041 < 0.001 

ZFAND1 0.365 0.001 0.042 < 0.001 

ZNF593 0.491 < 0.001 0.068 < 0.001 

ZNF598 0.652 < 0.001 0.062 < 0.001 

ZPR1 0.220 0.043 0.050 < 0.001 

(ii) AEBP2 0.133 0.152 0.039 0.001 

AR -0.432 0.645 0.043 < 0.001 

BMI1 0.868 < 0.001 0.067 < 0.001 

CBX2 0.912 0.004 0.024 0.001 

CBX3 0.560 < 0.001 0.021 0.002 

CDK6 1.467 < 0.001 0.129 < 0.001 

DDX21 0.284 0.016 0.019 < 0.001 

ERCC2 0.187 0.055 0.022 < 0.001 

H3F3B 1.439 < 0.001 0.049 < 0.001 

HIST1H2AD 2.497 < 0.001 0.045 0.002 

HIST1H2AE 2.572 < 0.001 0.033 0.073 

HIST1H2AG 0.930 < 0.001 0.035 0.001 

HIST1H2AM 1.241 < 0.001 0.051 < 0.001 

HIST1H2BB 0.675 < 0.001 0.006 0.137 

HIST1H2BC 2.798 < 0.001 0.093 < 0.001 

HIST1H2BG 2.200 < 0.001 0.055 0.032 

HIST1H2BK 1.833 < 0.001 0.094 < 0.001 

HIST1H2BL 1.043 < 0.001 0.032 < 0.001 

HIST1H2BN 1.636 < 0.001 0.022 0.024 

HIST1H2BO 1.089 < 0.001 0.038 0.033 

HIST1H3A 2.214 < 0.001 0.043 0.002 

HIST1H4A 1.306 < 0.001 0.024 0.085 

HIST1H4D 0.645 < 0.001 0.026 0.002 

HIST1H4E 2.407 < 0.001 0.026 0.008 

HOXA2 1.634 < 0.001 0.090 < 0.001 

HOXA3 2.346 0.002 0.164 < 0.001 

HOXA4 1.626 < 0.001 0.162 < 0.001 

HOXB3 0.844 0.073 0.135 < 0.001 

HOXB4 0.829 0.108 0.071 < 0.001 

IFNB1 0.697 < 0.001 0.013 0.031 
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KAT2A 0.607 < 0.001 0.096 < 0.001 

MAP2K7 0.064 0.224 0.036 < 0.001 

MAPK11 1.335 < 0.001 0.032 < 0.001 

MAPK8 -0.048 0.858 0.017 0.001 

MBD3 0.470 < 0.001 0.038 < 0.001 

MEIS1 2.064 < 0.001 0.128 < 0.001 

PHC1 0.486 0.008 0.129 < 0.001 

PHC2 0.525 < 0.001 0.099 < 0.001 

PHF19 -0.018 0.412 0.017 0.031 

PKN1 0.662 < 0.001 0.049 < 0.001 

POLR1E 0.447 < 0.001 0.018 0.097 

RRN3 0.505 < 0.001 0.014 0.120 

SAP18 0.601 < 0.001 0.023 < 0.001 

SIN3A -0.015 0.733 0.024 0.015 

TAF1D 0.410 < 0.001 0.038 < 0.001 

TERF2 0.221 0.049 0.006 0.141 

TWISTNB 0.713 < 0.001 0.092 < 0.001 

TXN 0.811 < 0.001 0.025 < 0.001 

YY1 0.036 0.769 0.036 < 0.001 

(iii) BMI1 0.868 < 0.001 0.067 < 0.001 

CBX2 0.912 0.004 0.024 0.001 

DDX5 0.148 0.014 0.037 < 0.001 

HIST1H4E 2.407 < 0.001 0.026 0.008 

NUP54 0.389 0.002 0.040 0.005 

PHC1 0.486 0.008 0.129 < 0.001 

PHC2 0.525 < 0.001 0.099 < 0.001 

RING1 0.219 0.001 0.036 < 0.001 

SUMO1 0.405 < 0.001 0.037 < 0.001 

SUMO2 0.190 0.077 0.034 < 0.001 

TRIM28 0.663 < 0.001 0.042 < 0.001 

UBE2I 0.091 0.127 0.044 0.001 

ZBED1 0.630 < 0.001 0.035 < 0.001 

(iv) CCNT1 0.054 0.938 0.076 < 0.001 

CDK9 0.451 < 0.001 0.038 < 0.001 

CNOT7 0.202 0.002 0.033 < 0.001 
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CPSF6 0.199 0.047 0.032 < 0.001 

CPSF7 0.027 0.524 0.023 < 0.001 

CTR9 -0.063 0.633 0.018 0.001 

DDX17 -0.560 0.003 0.011 0.294 

DDX5 0.148 0.014 0.037 < 0.001 

DIS3 0.096 0.501 0.025 < 0.001 

ELAVL1 0.082 0.149 0.028 0.001 

EXOSC2 0.072 0.210 0.039 0.001 

EXOSC5 0.495 0.004 0.046 < 0.001 

EXOSC6 0.222 0.020 0.062 < 0.001 

FASTKD1 0.464 0.003 0.027 0.002 

FTO -0.232 0.371 0.033 < 0.001 

FXR1 0.648 < 0.001 0.030 0.014 

HNRNPA0 0.690 < 0.001 0.046 < 0.001 

HNRNPA1 0.593 < 0.001 0.032 < 0.001 

HNRNPL 0.323 0.003 0.042 < 0.001 

HNRNPM 0.399 < 0.001 0.020 0.002 

HSF1 0.272 < 0.001 0.053 < 0.001 

IGF2BP2 0.848 < 0.001 0.092 < 0.001 

KHDRBS1 0.537 < 0.001 0.012 0.009 

MAPKAPK2 0.561 0.002 0.014 0.003 

NANOS3 1.061 < 0.001 0.019 0.009 

PABPN1 0.325 < 0.001 0.030 < 0.001 

PARN 0.245 0.001 0.031 < 0.001 

PSMB1 0.591 < 0.001 0.054 < 0.001 

PSMB10 0.494 < 0.001 0.026 0.001 

PSMB5 0.533 < 0.001 0.019 0.002 

RBFOX3 0.240 0.165 0.036 < 0.001 

RBM15B 0.430 < 0.001 0.032 < 0.001 

RBM3 0.406 0.055 0.028 < 0.001 

RBM4 0.445 < 0.001 0.023 < 0.001 

RBMX 0.112 0.316 0.021 0.003 

SAP18 0.601 < 0.001 0.023 < 0.001 

SET 0.754 < 0.001 0.040 < 0.001 

SRSF12 0.697 0.002 0.028 < 0.001 
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SYNCRIP 0.102 0.192 0.030 < 0.001 

TRA2A -0.009 0.780 0.028 0.195 

TRA2B 0.755 < 0.001 0.027 0.007 

TRIM71 1.839 < 0.001 0.160 < 0.001 

YTHDF2 0.744 < 0.001 0.037 < 0.001 

YTHDF3 0.369 0.033 0.023 < 0.001 

YWHAZ 0.342 0.007 0.027 < 0.001 

ZC3H10 0.121 0.088 0.031 0.001 

The genes are common leading-edge genes from the result of GSEAPreranked from both 

OHSU and MILE databases. Median_diff refers to the median difference from AML 

samples to normal samples. P-values are from Wilcoxon rank-sum test. 
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C. List of pathways and their sources in each cluster of Fig. 35 

Cluster Pathway Source 

Cell-cycle 

related 

HALLMARK_E2F_TARGETS HALLMARK 

KEGG_OOCYTE_MEIOSIS KEGG 

PID_RANBP2_PATHWAY PID 

REACTOME_ABERRANT_REGULATION_OF_MITOTIC_EXIT_IN_C

ANCER_DUE_TO_RB1_DEFECTS 

REACTOME 

REACTOME_AURKA_ACTIVATION_BY_TPX2 REACTOME 

REACTOME_CELL_CYCLE REACTOME 

REACTOME_CELL_CYCLE_CHECKPOINTS REACTOME 

REACTOME_CHROMOSOME_MAINTENANCE REACTOME 

REACTOME_CONVERSION_FROM_APC_C_CDC20_TO_APC_C_CD

H1_IN_LATE_ANAPHASE 

REACTOME 

REACTOME_G2_M_CHECKPOINTS REACTOME 

REACTOME_GABA_RECEPTOR_ACTIVATION REACTOME 

REACTOME_GENOME_REPLICATION_AND_TRANSCRIPTION REACTOME 

REACTOME_INHIBITION_OF_THE_PROTEOLYTIC_ACTIVITY_OF_

APC_C_REQUIRED_FOR_THE_ONSET_OF_ANAPHASE_BY_MITOTI

C_SPINDLE_CHECKPOINT_COMPONENTS 

REACTOME 

REACTOME_MITOTIC_PROMETAPHASE REACTOME 

REACTOME_MITOTIC_SPINDLE_CHECKPOINT REACTOME 

REACTOME_PHASE_4_RESTING_MEMBRANE_POTENTIAL REACTOME 

REACTOME_PHOSPHORYLATION_OF_THE_APC_C REACTOME 

REACTOME_RECRUITMENT_OF_MITOTIC_CENTROSOME_PROTEI

NS_AND_COMPLEXES 

REACTOME 

REACTOME_RECRUITMENT_OF_NUMA_TO_MITOTIC_CENTROSO

MES 

REACTOME 

REACTOME_REGULATION_OF_PLK1_ACTIVITY_AT_G2_M_TRANS

ITION 

REACTOME 

REACTOME_RHO_GTPASES_ACTIVATE_FORMINS REACTOME 

REACTOME_TELOMERE_EXTENSION_BY_TELOMERASE REACTOME 

REACTOME_TRANSCRIPTION_COUPLED_NUCLEOTIDE_EXCISIO

N_REPAIR_TC_NER_ 

REACTOME 

WP_HIJACK_OF_UBIQUITINATION_BY_SARSCOV2 WP 

WP_PARKINUBIQUITIN_PROTEASOMAL_SYSTEM_PATHWAY WP 

WP_RETINOBLASTOMA_GENE_IN_CANCER WP 

Synthesis of 

cholesterol 

REACTOME_CHOLESTEROL_BIOSYNTHESIS REACTOME 

WP_MEVALONATE_PATHWAY WP 
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Synthesis of 

unsaturated 

fatty acids 

KEGG_BIOSYNTHESIS_OF_UNSATURATED_FATTY_ACIDS KEGG 

WP_OMEGA3OMEGA6_FA_SYNTHESIS WP 

WP_OMEGA9_FA_SYNTHESIS WP 

KEGG, Kyoto Encyclopedia of Genes and Genomes; PID, the Pathway Interaction 

Database; WP, WikiPathways. 
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D. List of genes used in the clustering in Fig. 35 including the unclustered 

pathways 

Cluster 

or pathway 
Genes 

Cell-cycle 

related 

AAAS, ABL1, ABRAXAS1, AC023512.1, ACD, ACTB, ACTG1, ACTR1A, ADCY1, ADCY2, 

ADCY3, ADCY4, ADCY5, ADCY6, ADCY7, ADCY8, ADCY9, AHCTF1, AJUBA, AK2, AKAP9, 

AKT1, AKT2, AKT3, ALMS1, ANAPC1, ANAPC10, ANAPC11, ANAPC13, ANAPC15, ANAPC16, 

ANAPC2, ANAPC4, ANAPC5, ANAPC7, ANKLE2, ANKRD28, ANLN, ANP32E, AQR, AR, 

ARHGEF9, ARPP19, ASF1A, ASF1B, ATAD2, ATM, ATR, ATRIP, ATRX, AURKA, AURKB, 

B9D2, BABAM1, BABAM2, BANF1, BARD1, BIRC5, BLM, BLZF1, BORA, BRCA1, BRCA2, 

BRCC3, BRIP1, BRMS1L, BTRC, BUB1, BUB1B, BUB3, CABLES1, CALM1, CALM2, CALM3, 

CALML3, CALML5, CALML6, CAMK2A, CAMK2B, CAMK2D, CAMK2G, CASK, CASP1, 

CASP8, CBFB, CBX5, CC2D1B, CCDC6, CCNA1, CCNA2, CCNB1, CCNB2, CCND1, CCND2, 

CCND3, CCNE1, CCNE2, CCNH, CCP110, CDC14A, CDC16, CDC20, CDC23, CDC25A, 

CDC25B, CDC25C, CDC26, CDC27, CDC42, CDC45, CDC6, CDC7, CDCA3, CDCA5, 

CDCA8, CDK1, CDK11A, CDK11B, CDK2, CDK4, CDK5RAP2, CDK6, CDK7, CDKN1A, 

CDKN1B, CDKN1C, CDKN2A, CDKN2B, CDKN2C, CDKN2D, CDKN3, CDT1, CENPA, 

CENPC, CENPE, CENPF, CENPH, CENPI, CENPJ, CENPK, CENPL, CENPM, CENPN, 

CENPO, CENPP, CENPQ, CENPS, CENPT, CENPU, CENPW, CENPX, CEP131, CEP135, 

CEP152, CEP164, CEP192, CEP250, CEP290, CEP41, CEP43, CEP57, CEP63, CEP70, 

CEP72, CEP76, CEP78, CETN2, CHEK1, CHEK2, CHMP2A, CHMP2B, CHMP3, CHMP4A, 

CHMP4B, CHMP4C, CHMP6, CHMP7, CHP1, CHP2, CHTF18, CHTF8, CIT, CKAP5, CKS1B, 

CKS2, CLASP1, CLASP2, CLIP1, CLSPN, CNEP1R1, CNOT9, CNTRL, COP1, COPS2, COPS3, 

COPS4, COPS5, COPS6, COPS7A, COPS7B, COPS8, CPEB1, CSE1L, CSNK1D, CSNK1E, 

CSNK2A1, CSNK2A2, CSNK2B, CTC1, CTCF, CTDNEP1, CTPS1, CUL1, CUL2, CUL4A, 

CUL4B, DAAM1, DAXX, DBF4, DCK, DCLRE1B, DCTN1, DCTN2, DCTN3, DCTPP1, DDB1, 

DDX39A, DDX5, DEK, DEPDC1, DHFR, DIAPH1, DIAPH2, DIAPH3, DIDO1, DKC1, 

DLGAP5, DMC1, DNA2, DNMT1, DONSON, DSCC1, DSN1, DUT, DVL1, DVL2, DVL3, 

DYNC1H1, DYNC1I1, DYNC1I2, DYNC1LI1, DYNC1LI2, DYNLL1, DYNLL2, DYRK1A, E2F1, 

E2F2, E2F3, E2F4, E2F5, E2F6, E2F8, EED, EIF2S1, ELL, ELOB, ELOC, EMD, EML4, ENSA, 

EP300, ERCC1, ERCC2, ERCC3, ERCC4, ERCC5, ERCC6, ERCC6L, ERCC8, ESCO1, ESCO2, 

ESPL1, EVL, EXO1, EXOSC8, EZH2, FAF1, FANCG, FBXL18, FBXL7, FBXO43, FBXO5, 

FBXW11, FBXW7, FEN1, FKBP6, FKBPL, FMNL1, FMNL2, FMNL3, FOXM1, FZR1, 

GABBR1, GABBR2, GABRA1, GABRA2, GABRA3, GABRA4, GABRA5, GABRA6, GABRB1, 

GABRB2, GABRB3, GABRG2, GABRG3, GABRQ, GABRR1, GABRR2, GABRR3, GAR1, GINS1, 

GINS2, GINS3, GINS4, GMNN, GNAI1, GNAI2, GNAI3, GNAL, GNAT3, GNB1, GNB2, GNB3, 

GNB4, GNB5, GNG10, GNG11, GNG12, GNG13, GNG2, GNG3, GNG4, GNG5, GNG7, GNG8, 

GNGT1, GNGT2, GOLGA2, GORASP1, GORASP2, GPR37, GPS1, GSK3A, GSK3B, GSPT1, 

GTF2H1, GTF2H2, GTF2H3, GTF2H4, GTF2H5, GTSE1, H2AB1, H2AC14, H2AC18, 

H2AC19, H2AC20, H2AC4, H2AC6, H2AC7, H2AC8, H2AJ, H2AX, H2AZ1, H2AZ2, H2BC1, 

H2BC10, H2BC11, H2BC12, H2BC13, H2BC14, H2BC15, H2BC17, H2BC21, H2BC3, H2BC4, 

H2BC5, H2BC6, H2BC7, H2BC8, H2BC9, H2BS1, H2BU1, H3-3A, H3-3B, H3-4, H3C1, 
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H3C10, H3C11, H3C12, H3C13, H3C14, H3C15, H3C2, H3C3, H3C4, H3C6, H3C7, H3C8, 

H4-16, H4C1, H4C11, H4C12, H4C13, H4C14, H4C15, H4C2, H4C3, H4C4, H4C5, H4C6, 

H4C8, H4C9, HAUS1, HAUS2, HAUS3, HAUS4, HAUS5, HAUS6, HAUS7, HAUS8, HDAC1, 

HDAC4, HDAC8, HELLS, HERC2, HJURP, HLTF, HMGA1, HMGB1, HMGB2, HMGB3, 

HMGN1, HMMR, HNRNPD, HSP90AA1, HSP90AB1, HSPA14, HSPA1A, HSPA1B, HSPA1L, 

HSPA2, HSPA4, HSPA5, HSPA6, HSPA8, HSPA9, HUS1, IGF1, IGF1R, ILF3, INCENP, ING3, 

INS, IPO7, IST1, ISY1, ITGB1, ITGB3BP, ITPR1, ITPR2, ITPR3, JAK2, JPT1, KAT5, KCNJ10, 

KCNJ12, KCNJ14, KCNJ15, KCNJ16, KCNJ2, KCNJ3, KCNJ4, KCNJ5, KCNJ6, KCNJ9, 

KCNK1, KCNK10, KCNK12, KCNK13, KCNK15, KCNK16, KCNK17, KCNK18, KCNK2, 

KCNK3, KCNK4, KCNK5, KCNK6, KCNK7, KCNK9, KIF18A, KIF18B, KIF20A, KIF22, 

KIF23, KIF2A, KIF2B, KIF2C, KIF4A, KMT5A, KNL1, KNTC1, KPNA2, KPNB1, LBR, LCMT1, 

LEMD2, LEMD3, LIG1, LIG3, LIN37, LIN52, LIN54, LIN9, LMNA, LMNB1, LPIN1, LPIN2, 

LPIN3, LUC7L3, LYAR, LYN, MAD1L1, MAD2L1, MAD2L2, MAP2K1, MAPK1, MAPK12, 

MAPK13, MAPK3, MAPRE1, MASTL, MAU2, MAX, MCM10, MCM2, MCM3, MCM4, MCM5, 

MCM6, MCM7, MCM8, MCPH1, MDC1, MDM2, MDM4, MELK, MIR3917, MIS12, MIS18A, 

MIS18BP1, MKI67, MLH1, MLH3, MMS22L, MNAT1, MND1, MOS, MRE11, MRTFA, MSH2, 

MSH4, MSH5, MSH6, MTHFD2, MXD3, MYBL2, MYC, MZT1, MZT2A, MZT2B, NAA38, NAE1, 

NAP1L1, NASP, NBN, NCAPD2, NCAPD3, NCAPG, NCAPG2, NCAPH, NCAPH2, NDC1, 

NDC80, NDE1, NDEL1, NEDD1, NEK2, NEK6, NEK7, NEK9, NHP2, NINL, NIPBL, NME1, 

NME7, NOLC1, NOP10, NOP56, NPAT, NPM1, NPTN, NSD2, NSL1, NUDC, NUDT21, NUF2, 

NUMA1, NUP107, NUP133, NUP153, NUP155, NUP160, NUP188, NUP205, NUP210, 

NUP214, NUP35, NUP37, NUP42, NUP43, NUP50, NUP54, NUP58, NUP62, NUP85, NUP88, 

NUP93, NUP98, ODF2, OFD1, OIP5, OPTN, ORC1, ORC2, ORC3, ORC4, ORC5, ORC6, 

PA2G4, PAFAH1B1, PAICS, PAN2, PCBP4, PCM1, PCNA, PCNT, PDS5A, PDS5B, PFN1, 

PFN2, PGR, PHF20, PHF5A, PHF8, PHLDA1, PIAS1, PIAS2, PIAS4, PIF1, PKMYT1, PLCZ1, 

PLK1, PLK4, PMF1, PMS2, PNN, POLA1, POLA2, POLD1, POLD2, POLD3, POLD4, POLE, 

POLE2, POLE3, POLE4, POLK, POLR2A, POLR2B, POLR2C, POLR2D, POLR2E, POLR2F, 

POLR2G, POLR2H, POLR2I, POLR2J, POLR2K, POLR2L, POM121, POM121C, POP7, POT1, 

PPIE, PPM1D, PPME1, PPP1CA, PPP1CB, PPP1CC, PPP1R12A, PPP1R12B, PPP1R8, 

PPP2CA, PPP2CB, PPP2R1A, PPP2R1B, PPP2R2A, PPP2R2D, PPP2R3B, PPP2R5A, 

PPP2R5B, PPP2R5C, PPP2R5D, PPP2R5E, PPP3CA, PPP3CB, PPP3CC, PPP3R1, PPP3R2, 

PPP6C, PPP6R3, PRDM9, PRDX4, PRIM1, PRIM2, PRKACA, PRKACB, PRKACG, PRKAR2B, 

PRKCA, PRKCB, PRKDC, PRKN, PRKX, PRMT2, PRPF19, PRPS1, PSIP1, PSMA1, PSMA2, 

PSMA3, PSMA4, PSMA5, PSMA6, PSMA7, PSMA8, PSMB1, PSMB10, PSMB11, PSMB2, 

PSMB3, PSMB4, PSMB5, PSMB6, PSMB7, PSMB8, PSMB9, PSMC1, PSMC2, PSMC3, 

PSMC3IP, PSMC4, PSMC5, PSMC6, PSMD1, PSMD10, PSMD11, PSMD12, PSMD13, 

PSMD14, PSMD2, PSMD3, PSMD4, PSMD5, PSMD6, PSMD7, PSMD8, PSMD9, PSME1, 

PSME2, PSME3, PSME4, PSMF1, PTK6, PTTG1, PTTG2, RAB1A, RAB1B, RAB2A, RAB8A, 

RABIF, RAC1, RACGAP1, RAD1, RAD17, RAD21, RAD50, RAD51, RAD51AP1, RAD51C, 

RAD9A, RAD9B, RAE1, RAF1, RAN, RANBP1, RANBP2, RANGAP1, RB1, RBBP4, RBBP7, 

RBBP8, RBL1, RBL2, RBP1, RBX1, RCC1, RCC2, REC8, RFC1, RFC2, RFC3, RFC4, RFC5, 

RHNO1, RHOA, RHOB, RHOC, RHOD, RMI1, RMI2, RNASEH2A, RNF168, RNF19A, RNF8, 

RPA1, RPA2, RPA3, RPA4, RPS27, RPS27A, RPS6KA1, RPS6KA2, RPS6KA3, RPS6KA6, RRM1, 
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RRM2, RSF1, RTEL1, RUVBL1, RUVBL2, SAP30, SCAI, SDCCAG8, SEC13, SEH1L, SEM1, 

SEPTIN5, SET, SFI1, SFN, SGO1, SGO2, SHMT1, SHQ1, SIAH1, SIAH2, SIN3A, SIRT2, SKA1, 

SKA2, SKP1, SKP2, SLBP, SLK, SMARCA2, SMARCA5, SMC1A, SMC1B, SMC2, SMC3, SMC4, 

SMC6, SNCA, SNCAIP, SNRPB, SPAG5, SPAST, SPC24, SPC25, SPDL1, SPDYA, SPDYC, 

SPO11, SRC, SRF, SRGAP2, SRSF1, SRSF2, SSNA1, SSRP1, STAG1, STAG2, STAG3, STMN1, 

STN1, STUB1, SUMO1, SUN1, SUN2, SUV39H1, SYCE1, SYCE2, SYCE3, SYCP1, SYCP2, 

SYCP3, SYNCRIP, SYNE1, SYNE2, TACC3, TAOK1, TBRG4, TCEA1, TCF19, TEN1, TERF1, 

TERF2, TERF2IP, TERT, TEX12, TEX15, TFDP1, TFDP2, TFRC, TIMELESS, TINF2, TIPIN, 

TK1, TMPO, TNPO1, TOP2A, TOP3A, TOPBP1, TP53, TP53BP1, TPR, TPX2, TRA2B, TRIP13, 

TTK, TUBA1A, TUBA1B, TUBA1C, TUBA3C, TUBA3D, TUBA3E, TUBA4A, TUBA4B, TUBA8, 

TUBAL3, TUBB, TUBB1, TUBB2A, TUBB2B, TUBB3, TUBB4A, TUBB4B, TUBB6, TUBB8, 

TUBB8B, TUBG1, TUBG2, TUBGCP2, TUBGCP3, TUBGCP4, TUBGCP5, TUBGCP6, TYMS, 

UBA1, UBA3, UBA52, UBB, UBC, UBE2C, UBE2D1, UBE2E1, UBE2G1, UBE2G2, UBE2I, 

UBE2J1, UBE2J2, UBE2L3, UBE2L6, UBE2N, UBE2S, UBE2T, UBE2V2, UBR7, UIMC1, 

UNG, USO1, USP1, USP7, UVSSA, VHL, VPS4A, VRK1, VRK2, WAPL, WDR90, WEE1, 

WRAP53, WRN, XAB2, XPA, XPO1, XRCC1, XRCC6, YWHAB, YWHAE, YWHAG, YWHAH, 

YWHAQ, YWHAZ, ZCRB1, ZNF385A, ZNF655, ZNF830, ZW10, ZWILCH, ZWINT, ZYG11B 

Synthesis of 

cholesterol 

ACAT2, ARV1, CYP51A1, DHCR24, DHCR7, EBP, FDFT1, FDPS, GGPS1, HMGCR, HMGCS1, 

HSD17B7, IDI1, IDI2, LBR, LSS, MSMO1, MVD, MVK, NSDHL, PLPP6, PMVK, SC5D, SQLE, 

TM7SF2 

Synthesis of 

unsaturated 

fatty acids 

ACAA1, ACOT1, ACOT2, ACOT4, ACOT7, ACOX1, ACOX3, ACSL1, ACSL3, ACSL4, BAAT, 

ELOVL1, ELOVL2, ELOVL3, ELOVL5, ELOVL6, FADS1, FADS2, FASN, HACD1, HACD2, 

HADHA, HSD17B12, MIR1908, MIR6734, PECR, PLA2G4A, PLA2G4B, PLA2G5, PLA2G6, 

SCD, SCD5, TECR, YOD1 

Metabolism 

of folate and 

pteridines 

[Pathway] 

ALDH1L1, ALDH1L2, DHFR, DHFR2, FOLR2, FPGS, MTHFD1, MTHFD1L, MTHFD2, 

MTHFD2L, MTHFR, MTHFS, SHMT1, SHMT2, SLC19A1, SLC25A32, SLC46A1 

Signaling by 

MST1 

[Pathway] 

HPN, MST1, MST1R, SPINT1, SPINT2 

NO 

metabolism 

in cystic 

fibrosis 

[Pathway] 

CARM1, DDAH1, DDAH2, NOS1, NOS2, NOS3, PRMT1, PRMT2, PRMT3, PRMT5, PRMT6, 

PRMT7, PRMT8 

NO, nitric oxide. 
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