
 

 

저 시-비 리- 경 지 2.0 한민  

는 아래  조건  르는 경 에 한하여 게 

l  저 물  복제, 포, 전송, 전시, 공연  송할 수 습니다.  

다 과 같  조건  라야 합니다: 

l 하는,  저 물  나 포  경 ,  저 물에 적 된 허락조건
 명확하게 나타내어야 합니다.  

l 저 터  허가를 면 러한 조건들  적 되지 않습니다.  

저 에 른  리는  내 에 하여 향  지 않습니다. 

것  허락규약(Legal Code)  해하  쉽게 약한 것 니다.  

Disclaimer  

  

  

저 시. 하는 원저 를 시하여야 합니다. 

비 리. 하는  저 물  리 목적  할 수 없습니다. 

경 지. 하는  저 물  개 , 형 또는 가공할 수 없습니다. 

http://creativecommons.org/licenses/by-nc-nd/2.0/kr/legalcode
http://creativecommons.org/licenses/by-nc-nd/2.0/kr/


   

공학박사 학위논문 

 

 

Structure-Preserving Quality 

Improvement of Cone-Beam CT 

Images Using Contrastive Learning 

 

대조 학습을 이용한 Cone-Beam CT 영상의 구조 

보존 품질 향상에 관한 연구 

 

2023 년 8 월 

 

서울대학교 대학원 

융합과학부 방사선융합의생명전공 

강 세 룡 

  



   

대조 학습을 이용한 Cone-Beam CT 

영상의 구조 보존 품질 향상에 관한 

연구 

 

지도 교수  이 원 진 

이 논문을 공학박사 학위논문으로 제출함 

2023 년 5 월 

 

서울대학교 대학원 

융합과학부 방사선융합의생명전공 

강 세 룡 

 

강세룡의 공학박사 학위논문을 인준함 

2023 년 6 월 

 

위 원 장        허 민 석     (인) 

부위원장        이 원 진     (인) 

위    원        허 경 회     (인) 

위    원        이 재 성     (인) 

위    원        김 준 민     (인)



i 

 

ABSTRACT 

 

Structure-Preserving Quality 

Improvement of Cone-Beam CT 

Images Using Contrastive Learning 

 

 

 

Se-Ryong Kang 

Department of Biomedical Radiation Sciences 

Graduate School of Convergence Science and 

Technology 

Seoul National University 

 

 

 

 

 Cone-beam CT (CBCT) is widely used in dental clinics but 

exhibits limitations in assessing soft tissue pathology because of 

its lack of contrast resolution and low Hounsfield Units (HU) 
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quantification accuracy. Various techniques have been 

investigated to enhance the quality of CBCT images. These 

include analytical modeling methods, advanced iterative 

reconstruction methods, Monte Carlo simulation, rule-based 

methods with prior knowledge, and random forest. However, these 

approaches are time-consuming due to computational complexity 

and have limited effectiveness in reducing complex artifacts.  

Recently, a new solution called cycle-consistent generative 

adversarial networks (CycleGAN) has emerged for generating CT-

like images from CBCT images. The objective of this approach 

was to improve the quality of CBCT images so that they resembled 

CT images. One of the main challenges when employing this 

method is preserving the structure of the original CBCT image. If 

the CT-like generated images fail to retain the anatomical structure 

of the input CBCT images, they become useless for clinical 

applications. Therefore, it is important to consider both the 

similarity of the generated images to CT scans and the preservation 

of the anatomical structures. However, it has been discovered that 

the preservation of the input anatomical structures on CBCT 

images is limited by CycleGAN. 

To address this issue, the adoption of a contrastive 

learning-based GAN was considered as a baseline to enhance the 

correspondence between inputs and outputs. The objective was to 

improve the image quality and HU accuracy of CBCTs to a level 

comparable to CTs, while simultaneously preserving anatomical 
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structures. The structure-preserving contrastive-learning based 

GAN (SPCGAN) was trained on unpaired CT and CBCT datasets 

with the novel combination of losses and the feature extractor 

pretrained on training dataset. The losses employed during training 

included semantic relationship consistency loss, spatial correlation 

loss, and reconstruction loss. The loss functions of semantic 

relation consistency and spatially correlative were designed to 

maximize the learning of information regarding semantic and 

spatial patterns within an image, effectively generating structure-

preserved images. Also, finer information about the input CBCT 

images should be contained in the representations by minimizing 

the reconstruction loss.  

The quality of the generated images was evaluated using 

metrics such as Frechet inception distance (FID), peak signal-to-

noise ratio (PSNR), mean absolute error (MAE), and root mean 

square error (RMSE) over the entire image area. Additionally, the 

structure preservation performance was assessed by the structure 

score. As a result, the CT-like images generated by SPCGAN were 

significantly superior to those generated by various baseline 

models in terms of FID, PSNR, MAE, RMSE, and structure score. 

Therefore, it was demonstrated that the use of SPCGAN provided 

complementary benefits, namely preserving the anatomical 

structures of the input CBCT images while simultaneously 

enhancing the image quality to a level comparable to CT images. 
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INTRODUCTION 

 

 

  

Cone-beam CT (CBCT) is widely used in dental clinics due 

to its lower radiation exposure compared to conventional CTs 

while providing a higher resolution [1, 2, 3]. Because of its high 

spatial resolution, CBCT is mainly used for dental implant 

planning, visualizing abnormal teeth, and evaluating the jaws and 

face [4, 5]. However, CBCT has the limitation of low contrast 

resolution due to various physical and technical factors [6, 7, 8]. 

Highly scattered radiation by cone beam geometry negatively 

affects the contrast in the final reconstructed images [3]. Due to 

these limitations, it negatively impacts the accuracy of HU 

quantification in CBCT images [3, 6], making them inadequate for 

soft tissue evaluation. Therefore, to increase the utilization of 

CBCT in clinical applications, it is necessary to improve the 

accuracy of HU quantification in CBCT images, which should be 

accompanied by improvements in image quality. 

 Various methods have been explored to improve the quality 

of CBCT images, such as analytical modeling methods [9, 10, 11], 

advanced iterative reconstruction methods [12, 13, 14, 15], Monte 

Carlo simulation [16, 17], rule-based methods with prior 

knowledge [18, 19, 20], and random forest [21, 22]. However, 

these methods are time-consuming due to computational 
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complexity and have insufficient ability to reduce complex 

artifacts [23]. Recently, cycle-consistent generative adversarial 

networks (CycleGAN) [24] emerged as a new solution for 

generating CT-like images from CBCT images. This approach 

aimed to increase the quality of CBCT images to be similar to CT 

images. One of the most challenging problems when adopting this 

method is preserving the structure of the input image. It is useless 

in clinical applications if the generated CT-like images lose the 

anatomical structure of input CBCT images. Therefore, 

considering both "how CT-like the generated images are" and 

"how well the structures are preserved" becomes imperative. 

However, a limitation was discovered in the preservation of the 

anatomical structures on the input CBCT images when utilizing 

CycleGAN. 

 To address this issue, the adoption of a contrastive 

learning-based GAN was employed as a baseline to enhance the 

correspondence between inputs and outputs. Furthermore, 

semantic relation consistency loss [25], spatially correlative loss 

[26], and reconstruction loss were incorporated to enforce the 

network in generating images that are both CT-like and preserve 

the underlying anatomical structures [27]. The loss functions of 

semantic relation consistency and spatially correlative were 

designed to maximize the learning of information regarding 

semantic and spatial patterns within an image, effectively 
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generating structure-preserved images. Also, finer information 

about the input CBCT images should be contained in the 

representations by minimizing the reconstruction loss. A 

hypothesis was formulated that the inclusion of these finer 

representations could potentially result in the generation of CT-

like images while preserving the underlying anatomical structures. 

Therefore, this study aimed to increase the CBCT image quality 

while preserving the anatomical structures by using a proposed 

structure-preserving contrastive learning-based GAN (SPCGAN). 

In summary, the main contributions of the proposed work are as 

follows: 

- Contrastive learning-based GAN was applied to unpaired 

image translation with the aim of enhancing the quality of 

CBCT images. An extensive comparison was conducted with 

other models to assess its performance. 

- A novel combination of loss functions was devised, 

incorporating semantic relation consistency loss, spatially 

correlative loss, and reconstruction loss, in order to enhance the 

quality of CBCT images while simultaneously preserving 

anatomical structures.  
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LITERATURE REVIEW 

  

 

  

Several studies have employed the U-Net CNN 

architecture to enhance CBCT image quality by generating 

synthetic CT images from CBCT [28, 29, 30]. These methods 

utilize deep neural networks to estimate a mapping function that 

transforms the input CBCT into output synthetic CT images, with 

the goal of minimizing dissimilarity from the corresponding 

ground-truth CT images, as formulated in a loss function. 

However, limitations arise from the fact that the overall loss 

function can inadvertently smooth or eliminate soft tissue contrast 

and anatomical features. 

 GAN [31] is a type of deep learning architecture composed 

of two components, a generator and a discriminator, trained 

adversarially to produce synthetic data from input data. GAN has 

been widely used in image-to-image translation, where the goal is 

to translate images from one domain to another. The difficulty in 

obtaining aligned paired images from different modalities in a 

clinical setting can limit the practical application of this approach 

in medical imaging. The idea behind CycleGAN [24] is to learn a 

mapping function from one domain to another without paired 

images. 
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 Self-attention CycleGAN [32] method was developed for 

CBCT-to-CT conversion, resulting in synthetic CT images with 

accurate dose calculations and improved organ boundaries 

compared to CBCT. Cycle-Deblur GAN [33] improved CBCT 

image quality in radiotherapy, with reduced artifacts and enhanced 

structural details. The combination of CycleGAN and two-channel 

U-Net in QCBCT-NET [34] improved the contrast and uniformity 

of the bone image, increasing the accuracy of bone density 

measurement. Respatch-CycleGAN [35] was proposed to convert 

CBCT to synthetic CT images, reducing metal artifacts and 

restoring HU values to match planning CT. All previous efforts to 

enhance the quality of CBCT images by converting them to CT 

images were based on CycleGAN. However, the cycle-

consistency loss assumed that the relationship between the input 

and output domain was a bijection, which was often too restrictive, 

resulting in distortion of the translated images [36]. 

 Recently, contrastive learning-based GAN methods were 

introduced to improve the correspondence between inputs and 

outputs in one-side image translation [25, 26, 36, 37]. This 

approach was based on maximizing the mutual information 

between the same location of the input and output images through 

unsupervised image-to-image translation. CUT [36] was the first 

contrastive learning-based GAN model outperforming CycleGAN, 

and NEGCUT [37] included hard negative samples generated by a 
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negative sample generator to enhance the performance of CUT. 

On the other hand, several methods for preserving the structure of 

input images have been proposed. LSeSim [26] introduced 

spatially correlative loss (SC) utilizing the patchwise similarity 

map to preserve the structure of input images. Semantic relation 

consistency loss (SRC) [25] was proposed to enhance the 

correspondence between input and output images by regularizing 

diverse semantic relations. 

 In order to address the limitations of CycleGAN and 

leverage the strengths of prior research, a contrastive learning-

based GAN was utilized as the foundation. To further enhance its 

performance, the integration of semantic relation consistency loss 

[25] and spatially correlative loss [26] was implemented. 

Additionally, to simultaneously retain quality and maintain the 

structure, reconstruction loss was added to provide finer 

representations [27]. 
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MATERIALS AND METHODS 

 

 

Data acquisition and preparation 

 A total of 30 patients (18 males and 12 females) ranging in 

age from 21 to 80 years were recruited for the study. These patients 

required maxillary and mandibular CT or CBCT scans for 

treatment at the Seoul National University Dental Hospital. All CT 

and CBCT images were taken from July 2021 to June 2022 and 

were anonymized to protect personal information. This study was 

performed with approval from the institutional review board of the 

Seoul National University Dental Hospital (no. CRI21010). The 

workflow of the entire investigation was completed in accordance 

with all applicable rules and guidelines (Declaration of Helsinki). 

 Each patient underwent a CT scan followed by a 

consecutive CBCT scan using a CT scanner (Somatom Definition 

Edge, Siemens AG, Erlangen, Germany) and a CBCT scanner (CS 

9300, Carestream Health, Inc., Rochester, US). The CT images 

were taken at 120 kVp and 120 mA with voxel sizes of 0.37 × 0.37 

× 0.6 mm3, dimensions of 512 × 512 pixels, and 12-bit depth. The 

CBCT images were acquired at 80 kVp and 8 mA with voxel sizes 

of 0.25 × 0.25 × 0.25 mm3, dimensions of 669 × 669 pixels, and 

16-bit depth. The CT and CBCT scans were re-scaled to 256 × 256 

× 250 pixels, yielding 250 slices per patient. To avoid the influence 



8 

 

of non-anatomical structures in the training process, a binary mask 

was applied to the CT and CBCT images to separate the 

maxillomandibular region from the non-anatomical regions [33], 

[34]. Voxel values outside the masked region were replaced with 

the minimum HU value. 

 For the unpaired and unaligned training datasets, 6000 CT 

slices and 6000 CBCT slices from 24 patients were prepared. To 

conduct the test and evaluation, 1500 CT and 1500 CBCT slices 

acquired from the remaining six patients were matched by paired-

point registration using software (3D Slicer, MIT, Cambridge, MA, 

USA). The manually selected eight landmarks for registration 

were the vertex on the lateral incisors, the buccal cusps of the first 

premolars, the distobuccal cusps of the first molars, the anterior 

nasal spine, and the pogonion [34]. Although paired-point 

registration was performed, it was difficult to perfectly match the 

anatomical structures in CTs to CBCTs. Therefore, for more 

accurate registrations, a non-rigid registration method was 

additionally applied using MATLAB software (Ver. R2018a, 

MathWorks, Natick, MA, USA). 

 The minimum sample size required for statistically 

significant evaluations of various deep-learning methods was 

estimated. A sample size of 290 was obtained, considering a 

significance level of 0.05 for determining the confidence level of 

the assessment, a statistical power of 0.95 for determining the 
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tolerance, and an effect size of 0.5 for determining the strength of 

the relationship between the two groups (G* Power for Windows 

10, version 3.1.9.7, University of Dusseldorf, Dusseldorf, 

Germany). In this study, the number of 2D CBCT slices used for 

testing was set to 1500, which significantly exceeded the minimum 

requirement. 
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Contrastive learning-based CBCT-to-CT generation 

 The objective of this study was to perform image 

translation from the input CBCT slice domain to the output CT 

slice domain while preserving the structural characteristics of the 

input images. To achieve this, the following approach was 

employed: (1) Initially, a contrastive learning-based method, such 

as CUT adopted by Park [36], was adopted as a starting point to 

establish the baseline performance. (2) Subsequently, three 

additional losses were incorporated to assist in generating images 

that closely resembled CT scans while preserving the anatomical 

structural details of the input CBCT images. These losses included 

semantic relation consistency loss [25], spatially correlative loss 

[26], and reconstruction loss. The details are presented in the 

following subsections.  

The patchwise contrastive learning-based GAN [25, 26, 36, 

37] was employed in this study due to its effectiveness in 

preserving the structure of the input images. This approach 

maximized the mutual information between the input patches and 

their corresponding output patches, resulting in improved 

preservation of structural details. Formally, 𝑋 = {𝐱 ∈ 𝒳}  and 

𝑌 = {𝐲 ∈ 𝒴} are CBCT dataset and CT dataset, respectively, both 

of which are unpaired.  

Following the notation used in a previous study [36], the 

generator 𝐺  can be decomposed into two components: an 
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encoder 𝐺𝑒𝑛𝑐  and decoder 𝐺𝑑𝑒𝑐 . These components wor  

together to generate the output image �̂� = 𝐺𝑑𝑒𝑐(𝐺𝑒𝑛𝑐(𝐱)) ∈

ℝ𝐻×𝑊×1 , with 𝐱  representing the input image. Using the input 

image 𝐱  and its corresponding output image �̂� , embedded 

vectors can be extracted as 𝐳𝑘 = 𝐻(𝐺𝑒𝑛𝑐(𝐱)𝑘) ∈ ℝ𝐶′ and 𝐰𝑘 =

𝐻(𝐺𝑒𝑛𝑐(�̂�)𝑘) ∈ ℝ𝐶′ . Here, 𝐻:ℝ𝐶 → ℝ𝐶′  is a Multi-Layer 

Perceptron (MLP) networ , and the index 𝑘 refers to the spatial 

location in the encoded feature map 𝐺𝑒𝑛𝑐(𝐱) ∈ ℝ𝑆×𝐶. It should be 

noted that for notational convenience, the feature map 𝐺𝑒𝑛𝑐(𝐱) is 

described as a flattened feature map, where 𝑆  represents the 

number of spatial locations. These embedding vectors 𝐳𝑘  and 

𝐰𝑘 correspond to patches in the raw image space, which is why 

this method is referred to as ‘patchwise’ contrastive learning. More 

specifically, the Patchwise Contrastive Learning loss used is 

defined as: 

𝐿𝑃𝐶𝐿 =∑[−log
exp(𝐳𝑘

⊤𝐰𝑘/𝜏)

∑ exp𝑗|𝑗≠𝑘 (𝐳𝑗
⊤𝐰𝑘/𝜏)

]

𝑘∈ℐ

 

where ℐ  is the location indices set of size 𝐾  sampled from 

{1,2, … , 𝑆}  without replacement and 𝜏  is the temperature 

parameter; the higher the 𝜏, the softer the distribution will be. To 

encourage the output image to be similar to the real CT images, an 

adversarial loss [31] is used as follows: 

𝐿𝐺𝐴𝑁 = log𝐷(𝐲) + log(1 − 𝐷(𝐺(𝐱))) 
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where 𝐷 is a discriminator trained by maximizing 𝐿𝐺𝐴𝑁. 

To generate CT-like and structure-preserved images, I combined 

three losses with the contrastive loss: semantic relation 

consistency loss [25], spatially correlative loss [26], and 

reconstruction loss inspired by CAiD [27]. 

 

Semantic relation consistency loss. For a given location index 

𝑘 ∈ ℐ, I can compute the patchwise semantic relation in the input 

image as follows: 

𝑍𝑘(𝑖) =
exp(𝐳𝑘

⊤𝐳𝑖)

∑ exp𝑗∈ℐ (𝐳𝑘
⊤𝐳𝑗)

 

where 𝑖 ∈ ℐ is another location index. Note that 𝑍𝑘(𝑖) can be 

interpreted as the distribution to capture the semantic closeness 

between the 𝑖-th and 𝑘-th location patches of the input images 

[25]. In a similar way, the patchwise semantic relation in the 

output image is defined as: 

𝑊𝑘(𝑖) =
exp(𝐰𝑘

⊤𝐰𝑖)

∑ exp𝑗∈ℐ (𝐰𝑘
⊤𝐰𝑗)

. 

Note that 𝑊𝑘(𝑖) is defined with the same location indices set ℐ 

used in 𝑍𝑘(𝑖). Semantic relation consistency loss is defined to 

preserve the structure during image translation as: 
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𝐿𝑆𝑅𝐶 =∑𝐽

𝑘∈ℐ

𝑆𝐷(𝑍𝑘 ∥ 𝑊𝑘) 

where 𝐽𝑆𝐷( ⋅ ∥ ⋅ ): ℝ𝐾 ×ℝ𝐾 → [0,∞)  denotes Jensen-Shannon 

Divergence. 

Spatially correlative loss. Let 𝐹𝑒𝑥𝑡 denote a pretrained external 

feature extractor that uses images 𝐱 and 𝐲 ∈ ℝ𝐻×𝑊×1 as input, 

and produces feature maps 𝐹𝑒𝑥𝑡(𝐱)  and 𝐹𝑒𝑥𝑡(𝐲) ∈ ℝ𝐻′×𝑊′×𝐶′ . 

For a given spatial location index (𝑖, 𝑗) ∈ [1, 𝐻′] × [1,𝑊′] , let 

𝐹𝑒𝑥𝑡(𝐱)(𝑖,𝑗) ∈ ℝ1×𝐶′  denote a feature of 𝐹𝑒𝑥𝑡(𝐱) whose spatial 

coordinate is (𝑖, 𝑗) , while 𝐹𝑒𝑥𝑡(𝐱)(𝑖,𝑗)
∗ ∈ ℝ𝑁2×𝐶′  denotes the 

‘neighboring features’ including 𝐹𝑒𝑥𝑡(𝐱)(𝑖,𝑗) in the center, where 

𝑁 represents the height and width of the neighboring features. The 

self-similarity, also known as the spatially correlative map, can be 

computed as follows: 

𝑆𝐱
(𝑖,𝑗)

= (𝐹𝑒𝑥𝑡(𝐱)(𝑖,𝑗))(𝐹𝑒𝑥𝑡(𝐱)(𝑖,𝑗)
∗ )

𝑇
 

Note that the spatially correlative map 𝑆𝐱
(𝑖,𝑗)

∈ ℝ1×𝑁2
 captures 

the correlation between the query feature (𝐹𝑒𝑥𝑡(𝐱)(𝑖,𝑗)) and the 

neighboring features (𝐹𝑒𝑥𝑡(𝐱)(𝑖,𝑗)
∗ ) within the input image 𝐱 . 

Similarly, a spatially correlative map within the output image �̂� 

with the same query point (𝑖, 𝑗) is computed as: 

𝑆�̂�
(𝑖,𝑗)

= (𝐹𝑒𝑥𝑡(�̂�)(𝑖,𝑗))(𝐹𝑒𝑥𝑡(�̂�)(𝑖,𝑗)
∗ )

𝑇
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To preserve the structure, spatially correlative loss [27] is defined 

as follows: 

𝐿𝑆𝐶 = ∑ 1

(𝑖,𝑗)∈ℐ′

−
𝑆𝐱
(𝑖,𝑗)

⋅ 𝑆�̂�
(𝑖,𝑗)

∥ 𝑆𝐱
(𝑖,𝑗)

∥∥ 𝑆
�̂�

(𝑖,𝑗)
∥
 

where ℐ′ denotes the location indices set sampled from [1,𝐻′] ×

[1,𝑊′] without replacement. On a final note, a previous study [26] 

adopted VGG16 [38] pretrained on ImageNet [39] as the feature 

extractor 𝐹𝑒𝑥𝑡. However, an ImageNet pretrained feature extractor 

such as VGG16 might be ineffective because CBCT and CT 

images differ quite from the general domain images. Therefore, 

the feature extractor 𝐹𝑒𝑥𝑡 was pretrained using the training set by 

employing an autoencoder structure. In this case, 𝐹𝑒𝑥𝑡 refers to 

the encoder component of the pretrained autoencoder model. The 

ablation study section provides the performance comparison 

between VGG16 and the customized one as the feature extractor 

𝐹𝑒𝑥𝑡. 

 

Reconstruction loss. Hosseinzadeh Taher et al. [27] integrated a 

reconstruction loss with contrastive loss to encode finer 

information into the representations. Inspired by this, the feature 

map𝐺𝑒𝑛𝑐(𝐱) was encouraged to have more information about the 

input images by adding a reconstruction loss. The reconstruction 

loss was defined as follows: 
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𝐿𝑟𝑒𝑐𝑜𝑛 =∥ 𝐱 − 𝐺𝑟𝑒𝑐(𝐺𝑒𝑛𝑐(𝐱)) ∥1 

where 𝐺𝑟𝑒𝑐 denotes an auxiliary decoder for reconstruction with 

the same structure as 𝐺𝑑𝑒𝑐. 

 

 

Final objective. Overall, generator 𝐺 , which consists of 𝐺𝑒𝑛𝑐 

and 𝐺𝑑𝑒𝑐, is trained by minimizing the following final loss: 

𝐿𝑓𝑖𝑛𝑎𝑙 = 𝜆𝑃𝐶𝐿𝐿𝑃𝐶𝐿 + 𝜆𝑆𝑅𝐶𝐿𝑆𝑅𝐶 + 𝜆𝑆𝐶𝐿𝑆𝐶 + 𝜆𝑟𝑒𝑐𝑜𝑛𝐿𝑟𝑒𝑐𝑜𝑛 + 𝐿𝐺𝐴𝑁 . 

An overview of the proposed method is provided in Figure 1. 

The investigation focused on evaluating the performance of 

SPCGAN in generating CT-like images while simultaneously 

preserving the anatomical structures present in the input CBCT 

images. Furthermore, an ablation study was conducted to 

determine the loss function that had the most significant impact on 

both the preservation of anatomical structures and the 

improvement of image quality. Existing models, including 

CycleGAN [24], CUT [36], NEGCUT [37], LSeSim [26], and 

SRC [25], were compared to assess the effectiveness of SPCGAN 

in achieving these objectives. The purpose of this comparison was 

to establish the superiority of SPCGAN in terms of generating CT-

like images with preserved anatomical structures when compared 

to other established models.  
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All models shown in this section were trained using the 

unpaired CBCT and CT images. Each domain had 6,000 axial slice 

images from 24 patients. Then, evaluations were conducted with 

the paired and aligned test sets composed of 1,500 axial slices of 

CBCTs and CTs from 6 patients. HU values of the CT images 

ranged from -1,024 to 3,071, whereas CBCT images in the training 

set ranged from -1,000 to 17,983. Therefore, the CT and CBCT 

images were normalized to the range of [0, 1] using the following 

procedure: 

𝐼′𝐶𝑇 = (𝐼𝐶𝑇 + 1024)/4095

𝐼′𝐶𝐵𝐶𝑇 = (clip(𝐼𝐶𝐵𝐶𝑇 , [−1000,3071]) + 1000)/4071
 

where clip(𝐼, [𝑚𝑖𝑛,𝑚𝑎𝑥]) clamps all elements in input 𝐼 into 

the range [𝑚𝑖𝑛, 𝑚𝑎𝑥]. All images were resized to 256 × 256, 

and a random horizontal flip was applied in the training models. 

The Adam optimizer [40] (𝛽1 = 0.5, 𝛽2 = 0.999) with a learning 

rate of 0.0002 was used. Following the original papers, the values 

of 𝜆𝑃𝐶𝐿, 𝜆𝑆𝑅𝐶, 𝜆𝑆𝐶, and 𝜆𝑟𝑒𝑐𝑜𝑛 were set to 0.1, 0.05, 10.0, and 

1.0, respectively. These values were chosen to balance the 

contribution of each loss term and align with the objectives of the 

study.  
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Quality of generated CT-like image 

First, the Fréchet inception distance (FID) [41] was 

computed as a metric to quantify the quality of images generated 

by the generative model. FID is commonly employed to evaluate 

the similarity between the generated images and real images 

based on their feature representations. FID score compared two 

groups' feature vectors extracted from the Inception V3 model 

pre-trained on the Imagenet dataset. Therefore, FID score did 

not require CBCT-paired ground truth CT images. More 

precisely, the FID score between two image groups, 𝐴 and 𝐵, 

was calculated as follows: 

FID = ∥∥𝐦𝐴 −𝐦𝐵∥∥2
2 + Tr(𝐂𝐴 + 𝐂𝐵 − 2(𝐂𝐴𝐂𝐵)

1/2) 

where 𝐦𝐴,𝐦𝐵 ∈ ℝ2048  were the feature-wise means of the 

feature vectors, and 𝐂𝐴, 𝐂𝐵 ∈ ℝ2048×2048  were covariance 

matrices of the feature vectors.  

Unlike the setting for obtaining FID scores, the quality of 

the generated CT-like images was also evaluated using a paired 

test setting. In this setting, each CBCT image in the test set was 

paired with its corresponding CT image. This evaluation 

approach allowed for a direct comparison between the generated 

images and their ground truth counterparts, enabling a more 

comprehensive assessment of the image quality. 
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In this setting, several metrics were computed to evaluate 

the quality of the generated CT-like images. These metrics 

included the Peak Signal-to-Noise Ratio (PSNR), Mean 

Absolute Error (MAE), and Root Mean Square Error (RMSE): 

𝑃𝑆𝑁𝑅 = 10 ⋅ log10 (
𝑀𝐴𝑋2

𝑅𝑀𝑆𝐸2
)

𝑀𝐴𝐸 =
1

𝑚𝑛
∑ ∑|

𝑛−1

𝑗=0

𝑚−1

𝑖=0

𝐼(𝑖, 𝑗) − 𝐾(𝑖, 𝑗)|

𝑅𝑀𝑆𝐸 = √
1

𝑚𝑛
∑ ∑[

𝑛−1

𝑗=0

𝑚−1

𝑖=0

𝐼(𝑖, 𝑗) − 𝐾(𝑖, 𝑗)]2

 

where 𝐼  and 𝐾  were a generated CT-like image and the 

ground truth CT image, respectively, while 𝑀𝐴𝑋 denoted the 

maximum possible value of the image (i.e., 4,095 in case when 

the values were represented using 12 bits). Additionally, the 

assessment of the uniformity of the generated CT-like images 

was performed by computing the Spatial Non-Uniformity 

(SNU): 

𝑆𝑁𝑈 =
HUmax − HUmin

1000
× 100(%) 

where HUmax  and HUmin  were the maximum and the 

minimum of the mean of the selected ROIs, respectively. Six 

rectangular ROIs of soft tissue for each patient were selected 

around the mandible and maxilla. 
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Preservation of anatomical structures 

To evaluate how well a model preserved the structures of 

an input, the structure score in SSIM [42] was used: 

𝑠(𝑥, 𝑦) =
𝜎𝑥𝑦 + 𝐶

𝜎𝑥𝜎𝑦 + 𝐶
 

where 𝐶, 𝜎𝑥
2, 𝜎𝑦

2, and 𝜎𝑥𝑦 denote a constant for computational 

stability, the variance of an image 𝑥, the variance of an image 𝑦, 

and the covariance of 𝑥 and 𝑦, respsctively. It is important to 

note that the structure score was calculated specifically between 

the input CBCT image (𝐱) and the generated CT-like image (̂�̂�) 

obtained from different models. This comparison allowed for a 

quantitative assessment of how well each model preserved the 

structural information present in the original CBCT image while 

generating the CT-like image. By evaluating the structure score 

between the input and generated images, the effectiveness of each 

model in preserving the anatomical structures could be determined. 
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Ablation study 

The final loss of SPCGAN was composed of reconstruction 

(Rec), spatially correlative (SC), and semantic relation consistency 

(SRC) losses. To better understand the influence of different 

components on the proposed loss, a thorough analysis was 

conducted by training models under various conditions using the 

same datasets. This involved systematically adding the 

components of SPCGAN in a progressive manner and observing 

the corresponding performance. By examining the quantitative 

performance of the models at each stage of component addition, 

the individual contributions and impacts of these components on 

the overall performance of SPCGAN could be comprehended and 

evaluated. In addition, SC had two variants in terms of the external 

feature extractor 𝐹𝑒𝑥𝑡; one used the feature extractor pretrained on 

training set (customized SC or cmSC), while the other used the 

VGG16 pretrained on ImageNet (vggSC) [26]. 
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Evaluation of image quality by CBCT z-axis slice 

position 

The cone-shaped beam geometry of CBCT causes 

asymmetry in the X-ray path, leading to position-dependent in 

beam hardening and endo/exo-mase effects [43-45]. As a result, 

image quality degradation and artifacts may occur more at the top 

and bottom of the field of view (FOV), and the contrast and HU 

quantification accuracy of the image are affected depending on the 

z-axis position of the slice image [46]. To evaluate the 

performance of SPCGAN with respect to the z-axis position of 

CBCT images, a quantitative performance of various models was 

conducted. The CBCT slices were categorized into three groups 

(upper, middle, and lower) based on their z-axis position, as 

depicted in Figure 8 alongside the entire field of view (FOV).  
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Figure 1. An overview of the proposed structure preserving contrastive-learning based GAN 

(SPCGAN). SPCGAN is constructed by adding Genc for LPCL and LSRC, Fext for LSC, and Grec for Lrecon 

based on a GAN consisting of a generator and a discriminator. Genc encoder of generator, Gdec 

decoder of generator, D discriminator, Fext feature extractor, Grec generator for image reconstruction, 

GAN generator adversarial network, LPCL patchwise contrastive learning loss, LSRC semantic relation 

consistency loss, LSC spatially correlative loss, Lrecon reconstruction loss.
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RESULTS 

 

 

Table 1 shows FID scores between CT images and CT-

like images generated by various models. The SPCGAN 

performed the best, achieving an FID score of 42.126, which 

indicates that SPCGAN generated CT-like images most 

similarly with original CT images. 

As shown in Table 2, SPCGAN outperformed all other 

models in terms of PSNR, MAE, and RMSE, achieving a PSNR 

of 26.735, an MAE of 63.044, and an RMSE of 156.020. 

However, SPCGAN showed SNU of 29.921, which was inferior 

to that of CUT achieving the best score of 28.546. All measures 

of SPCGAN exhibited significant differences from all other 

models (p < 0.05) except for the SNU from CycleGAN, 

NEGCUT, and SRC. Therefore, SPCGAN resulted in greater 

image quality improvement in all aspects except for uniformity 

compared to the other methods. 

Figure 2 shows the HU accuracy by visualizing the 

difference between generated CT-like images and ground truth 

CT images. In the soft tissue region of the subtraction images, it 

was evident that the generated CT-like images exhibited 

significantly fewer discrepancies with the ground truth CT 
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images compared to the input CBCT images. In particular, the 

differences around the teeth, dense bone, and airway were more 

reduced in SPCGAN than in other networks. However, there 

were relatively large differences in the spinal and occipital bone 

regions at the maxilla. This results from the registration 

limitations due to differences in patient scan positions during the 

acquisition of the CBCT and CT datasets. 

Figure 3 shows the horizontal and vertical HU-line 

profiles of the generated CT-like images and the ground truth 

CT images. The Pearson correlation coefficient between the 

ground truth CT images and the CT-like images generated by 

SPCGAN was 0.975 for the horizontal profile and 0.951 for the 

vertical profile, outperforming all other models’ images. In other 

words, SPCGAN better reflected the boundaries and fine details 

of the images than others. Figure 4 shows the HU histogram 

plots between -300 HU and 300 HU in ground truth CT, input 

CBCT, and generated CT-like images. Compared with the 

histogram of the other methods’ images, the histogram of 

SPCGAN’s images was closer to that of ground truth CT images, 

demonstrating improvement in HU fidelity. 

Figure 5 shows the Bland–Altman plots between the 

ground truth CT and SPCGAN, SRC, LSeSim, NEGCUT, CUT, 

CycleGAN, and input CBCT images. The Bland-Altman plot 

between the ground truth CT and SPCGAN’s images 

demonstrated a lower bias of mean difference and a better level 
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of agreement than the plots between the ground truth CT and 

CT-like images generated by other models. In other words, the 

CT-like images generated by SPCGAN exhibited statistically 

significant similarity with the ground truth CT compared to 

other methods. Figure 6 shows the linear regression curves 

between the ground truth CT and generated CT-like images. The 

slope between the ground truth CT and SPCGAN ‘s images was 

closer to 1 than that between the ground truth CT and other 

methods’ images, demonstrating the superiority of SPCGAN in 

terms of HU accuracy. 

SPCGAN had a structural score of 0.880 ± 0.043, which 

outperformed LSeSim (0.868 ± 0.047), SRC (0.866 ± 0.043), 

NEGUT (0.862 ± 0.045), CUT (0.865 ± 0.046), and CycleGAN 

(0.862 ± 0.042). The statistical analysis using t-tests confirmed a 

significant difference between the result of SPCGAN and those 

from the other deep-learning models. 

Figure 7 shows an input CBCT image and CT-like images 

generated by various models. SPCGAN retained the finely 

detailed structures of the input CBCT image, whereas the other 

models tended to deform these structures. In particular, distortions 

were prominent in the airway area (indicated by the cyan box) and 

vertebrae area (indicated by the pink box) of the images generated 

by other deep-learning models. In addition, as shown in the soft 

tissue area (indicated by the green box), SPCGAN best preserved 
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the boundaries and distribution of fat and muscle. CycleGAN, a 

non-contrastive learning model, suffered the greatest structure 

collapse. 

The results presented in Table 3 indicate how each loss 

influenced the evaluation metrics. When cmSC was added to SRC, 

there was no significant improvement in the quality evaluation 

factor, but the structure score improved. When Rec was further 

applied, the results showed the best performance not only in 

structure scores, but also in FID, PSNR, MAE, and RMSE. This 

demonstrated that SC was advantageous for preserving anatomical 

structures and that adding Rec improved the overall image quality. 

In addition, cmSC exhibited more effective improvement in 

anatomical preservation and image quality than vggSC. 

The results in Table 4 indicate how the evaluation metrics 

vary in slice images based on the z-axis position. Notably, when 

evaluating the slice located in the middle of the z-axis, the best 

performances were obtained for FID, PSNR, MAE, RMSE, SNU, 

and structure score. However, the overall results did not match 

those of the middle group when examining the upper and lower 

slice images. Despite this, the difference was not statistically 

significant. The findings demonstrated that the deep learning 

models, including SPCGAN, effectively improved the quality of 

CBCT images as much as CT images across the entire FOV of 

CBCT. 
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Figure. 2. The ground truth CT images, the CT-like images generated by deep learning methods and 

input CBCT images (the first and third rows) and their subtractions from the ground truth CT images 

(the second and fourth rows) at the maxilla and the mandible. The red squares shown in the CT images 

are the ROIs for calculation of spatial non-uniformity (SNU).  
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Figure. 3. The line profiles of HU values for CT, SPCGAN, LSeSim, NEGCUT, CUT, CycleGAN, 

and input CBCT image in the horizontal (top) and vertical (bottom) directions. The images shown on 

the left are CT-like images generated by SPCGAN. Pearson correlation coefficients of SPCGAN, SRC, 

LSeSim, NEGCUT, CUT, CycleGAN, and input CBCT images with the ground truth CT images are 

0.975, 0.938, 0.951, 0.926, 0.929, 0.905, and 0.904, respectively, for the horizontal profile and 0.951, 

0.933, 0.943, 0.927, 0.936, 0.925, and 0.924, respectively, for the vertical profile.  
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Figure. 4. The histogram shows the range of HU values ranging from -300 to 300 within the circular 

regions of interest (ROIs) in the maxilla (left) and mandible (right) areas, excluding the non-

anatomical regions, in the ground truth CT, SPCGAN, SRC, LSeSim, NEGCUT, CUT, CycleGAN, 

and input CBCT images shown in Figure 2. 
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Figure 5. The Bland–Altman plots of HU between the ground truth CT and SPCGAN, SRC, LSeSim, 

NEGCUT, CUT, CycleGAN, and input CBCT images.
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Figure 6. The linear regressions between the ground truth CT and 

the generated CT-like images. The slope of SPCGAN is 0.925 and 

the intercept is 20.330. The slope of SRC is 0.897 and the intercept 

is 9.164. The slope of LSeSim is 0.893 and the intercept is 54.622. 

The slope of NEGCUT is 0.820 and the intercept is 20.536. The 

slope of CUT is 0.864 and the intercept is 42.857. The slope of 

CycleGAN is 0.841 and the intercept is 19.421. The slope of input 

CBCT is 0.802 and the intercept is 69.069. 
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Figure 7. Visual comparison between the input CBCT image from the test datasets and CT-li e images 

generated by deep learning methods. The cyan, pin , and green squares shown in the input CBCT 

image represent ROIs with significant differences compared to the generated images. The display 

window is set equal to [−300, 900] HU. 
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Figure. 8. The slices according to the z-axis position of the CBCT were divided into three groups 

(upper, middle, and lower) along with the entire field of view (FOV).
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Table 1. Fréchet Inception Distance (FID) score between CT and 

generated CT-like images in the test set. 

 CycleGAN CUT NEGCUT LSeSim SRC SPCGAN 

FID ↓ 50.418 47.201 43.929 43.410 42.913 42.126 

Note: The lower the score, the more similar the two groups of 

images are. 
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Table 2. Quantitative analysis results for assessing the quality of 

CBCT and CT-like images generated by CycleGAN, CUT, 

NEGCUT, LSeSim, SRC, and SPCGAN compared to the ground 

truth CT images. PSNR peak signal to noise ratio, MAE mean 

absolute error, RMSE root mean square error, SNU spatial non-

uniformity. 

 PSNR ↑ MAE(HU) ↓ RMSE ↓ SNU(%) ↓ 

CBCT 
22.169
± 1.430∗ 

156.915
± 3.735∗ 

246.325
± 44.973∗ 

38.477
± 7.698∗ 

CycleGAN 
25.389
± 1.813∗ 

68.551
± 3.656∗ 

171.636
± 41.240∗ 

30.282
± 8.736 

CUT 
25.062
± 1.900∗ 

71.938
± 4.367∗ 

178.638
± 44.974∗ 

𝟐𝟖. 𝟓𝟒𝟔
± 5.733∗ 

NEGCUT 
25.861
± 1.972∗ 

66.486
± 3.502∗ 

163.342
± 43.711∗ 

30.913
± 6.958 

LSeSim 
25.653
± 1.963∗ 

64.511
± 3.017∗ 

167.190
± 43.558∗ 

31.447
± 5.470∗ 

SRC 
25.863
± 2.073∗ 

65.763
± 3.312∗ 

163.782
± 45.821∗ 

30.319
± 6.154 

SPCGAN 
𝟐𝟔. 𝟕𝟑𝟓
± 1.794 

𝟔𝟑. 𝟎𝟒𝟒
± 3.086 

𝟏𝟓𝟔. 𝟎𝟐𝟎
± 40.992 

29.921
± 4.958 

 

Note: PSNR, MAE, and RMSE compare generated CT-li es and 

ground truth CTs, whereas SNU is computed using only generated 

CTs. * indicates a statistically significant difference (p < 0.05) 

when conducting an independent t-test between SPCGAN and 

each other model.  
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Table 3. Quantitative results of ablation studies over the adding components of the loss function of 

SPCGAN. FID Fréchet inception distance, PSNR peak signal to noise ratio, MAE mean absolute error, 

RMSE root mean square error, SNU spatial non-uniformity. 

Note: ∗ indicates a statistically significant difference (p < 0.05) when conducting an independent 

t-test between SPCGAN (SRC + scmSC + Rec) and each other model. † indicates a statistically 

significant difference (p < 0.05)  when conducting an independent t -test between cmSC +SRC 

and each other model. 

Settings 
Structu

re score 

↑ 

FID ↓ 
PSNR 

↑ 

MAE 

(HU) ↓ 

RMSE 

↓ 

SNU 

(%) ↓ SR

C 

cm

SC 

vgg

SC 
Rec 

✓    0.866

± 0.043∗ † 
42.913 

25.863

± 2.073∗ 

65.763

± 3.312∗ 

163.782

± 45.821∗ 

30.319

± 6.154 † 

✓  ✓  0.869

± 0.038∗ † 
43.605 

25.927

± 1.854∗ 

65.164

± 3.711∗ 

163.038

± 42.931∗ 

31.540

± 6.063∗ 

✓  ✓ ✓ 
0.870

± 0.046∗ † 
43.583 

26.176

± 1.923∗ † 

63.485

± 3.406∗ † 

162.608

± 42.596∗ 

30.217

± 5.027 † 

✓ ✓   0.878

± 0.044 
42.959 

25.892

± 2.104∗ 

65.373

± 3.204∗ 

165.405

± 44.639∗ 

31.934

± 5.832∗ 

✓ ✓  ✓ 
𝟎. 𝟖𝟖𝟎

± 0.043 
42.126 

𝟐𝟔. 𝟕𝟑𝟓

± 1.794 

𝟔𝟑. 𝟎𝟒𝟒

± 3.086 

𝟏𝟓𝟔. 𝟎𝟐𝟎

± 40.992 

𝟐𝟗. 𝟗𝟐𝟏

± 4.958 
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Table 4. Quantitative results of image quality evaluation by the CBCT z-axis slice position (upper, 

middle, lower) of the CBCT and the generated CT-like images. FID Fréchet inception distance, PSNR 

peak signal to noise ratio, MAE mean absolute error, RMSE root mean square error, SNU spatial non-

uniformity. 

   CBCT  CycleGAN  CUT  NEGCUT  LSeSim  SRC  SPCGAN 

   Upper Middle Lower  Upper Middle Lower  Upper Middle Lower  Upper Middle Lower  Upper Middle Lower  Upper Middle Lower  Upper Middle Lower 

FID  64.721 62.513 63.812  51.231 49.428 50.968  47.867 47.101 48.023  44.523 43.464 44.731  44.110 42.957 43.552  43.216 42.857 43.164  43.158 42.012 42.878 

PSNR  

22.334 

± 1.250 

23.234 

± 1.703 

23.149 

± 2.210 
 

24.823 

± 2.679 

25.761 

± 2.337 

24.897 

± 2.963 
 

25.090 

± 2.183 

25.328 

± 2.067 

25.274 

± 2.960 
 

26.091 

± 3.336 

26.416 

± 2.828 

25.431 

± 3.600 
 

25.080 

± 2.543 

26.064 

± 2.471 

25.885 

± 2.566 
 

25.099 

± 3.475 

25.884 

± 2.774 

25.796 

± 3.336 
 

27.006 

± 2.959 

27.342 

± 2.705 

27.072 

± 2.876 

MAE 

(HU) 
 

158.312 

± 3.142 

156.221 

± 3.291 

156.615 

± 3.946 
 

68.412 

± 4.184 

67.990 

± 3.730 

68.928 

± 4.243 
 

71.272 

± 5.443 

71.108 

± 5.310 

71.989 

± 5.335 
 

66.315 

± 4.396 

65.624 

± 4.000 

65.960 

± 4.340 
 

64.797 

± 4.100 

64.043 

± 3.907 

64.774 

± 4.787 
 

65.766 

± 4.521 

64.881 

± 4.261 

65.397 

± 4.960 
 

63.035 

± 4.965 

63.023 

± 4.051 

63.794 

± 4.748 

RMSE  

244.699 

± 

47.121 

243.300 

± 45.036 

245.598 

± 

45.183 

 

170.086 

± 

42.477 

169.486 

± 41.744 

170.164 

± 

42.584 

 

179.976 

± 

46.817 

178.520 

± 45.951 

179.043 

± 

46.573 

 

164.017 

± 

44.844 

163.128 

± 44.631 

163.620 

± 

44.905 

 

165.101 

± 

44.608 

164.937 

± 44.387 

165.411 

± 

44.619 

 

163.037 

± 

47.265 

162.374 

± 46.372 

162.705 

± 

47.050 

 

158.508 

± 

42.369 

155.610 

± 41.726 

158.436 

± 

42.574 

SNU 

(%) 
 

39.187 

± 6.582 

37.508 

± 7.698 

39.513 

± 6.913 
 

29.918 

± 9.683 

29.852 

± 8.739 

30.708 

± 8.912 
 

29.030 

± 7.108 

28.186 

± 6.418 

28.769 

± 7.322 
 

31.445 

± 7.855 

30.878 

± 7.518 

31.418 

± 7.792 
 

31.202 

± 5.709 

31.061 

± 5.500 

31.947 

± 5.521 
 

30.757 

± 7.926 

30.030 

± 7.111 

30.700 

± 7.584 
 

30.530 

± 6.227 

29.105 

± 5.879 

29.453 

± 6.191 

Structure 

score 
   

0.859 

± 0.043 

0.866 

± 0.043 

0.861 

± 0.046 
 

0.854 

± 0.045 

0.864 

± 0.046 

0.862 

± 0.047 
 

0.860 

± 0.046 

0.865 

± 0.044 

0.859 

± 0.047 
 

0.864 

± 0.045 

0.873 

± 0.047 

0.867 

± 0.044 
 

0.867 

± 0.045 

0.870 

± 0.043 

0.863 

± 0.044 
 

0.884 

± 0.046 

0.890 

± 0.044 

0.886 

± 0.047 
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DISCUSSION 

 

 

CT-like images were generated from CBCT images using 

the SPCGAN with unpaired datasets. SPCGAN was trained by a 

novel combination of semantic relation consistency, spatially 

correlative, and reconstruction losses. The loss functions of 

semantic relation consistency and spatially correlative were 

designed to maximize the learning of information regarding 

semantic and spatial patterns within an image, effectively 

generating structure-preserved images. Also, finer information 

about the input CBCT images should be contained in the 

representations by minimizing the reconstruction loss. As a result, 

the CT-like images generated by SPCGAN were significantly 

superior to those generated by various baseline models in terms of 

the quality improvement of CBCT images (Table 1 and Table 2) 

and structure preservation (Table 3). This clearly showed that 

SPCGAN, which maximized the mutual information between 

inputs and corresponding outputs, was more effective in the 

CBCT-to-CT task than the other methods. 

As shown in the ablation study (Table 4), adding 

reconstruction loss improved the overall quality of the images. It 

was conjectured that the inclusion of the reconstruction loss 

contributed to enriching the feature map 𝐺𝑒𝑛𝑐(𝐱) with input 
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information, leading to improved quality in CBCT images. One 

trade-off for the quality improvement of CBCT images was 

training time. When adding the reconstruction loss to SRC, the 

number of learnable parameters increased from 14.7M to 19.8M, 

and the training time increased from 0.098 to 0.119 (s/image). 

Note that even if the reconstruction loss caused the training 

process to slow slightly, testing time remained the same, which 

was more important to end users such as practitioners. 

Someone may interpret the reconstruction loss as the cycle 

consistency loss in CycleGAN. However, there is a difference in 

that the cycle consistency loss regulates both 𝐺𝑒𝑛𝑐 and 𝐺𝑑𝑒𝑐 by 

reversing �̂� to 𝐱, and the reconstruction loss regulates only 𝐺𝑒𝑛𝑐 

by reversing 𝐺𝑒𝑛𝑐(𝐱) to 𝐱. Moreover, the cycle consistency loss 

required another generator (𝐹𝑒𝑛𝑐 , 𝐹𝑑𝑒𝑐 ) and discriminator (𝐷′), 

whereas the reconstruction loss required only another decoder 

( 𝐺𝑟𝑒𝑐 ). Therefore, it may be reasonable to interpret the 

reconstruction loss as a ‘light’ cycle consistency loss. 

It is also worth mentioning that using customized 𝐹𝑒𝑥𝑡 

pretrained on training set was more effective for the structure 

preservation than was using VGG16 pretrained on ImageNet, even 

if the customized structure was a simple encoder composed of 

ResBlocks and trained by autoencoding with an auxiliary decoder. 

This demonstrated that the CT domain was quite different from the 

general domain (e.g., ImageNet), which implied room for 

improvement by fine-tuning the model. 
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There were some limitations in this study. The model 

developed in this work used a 2D network architecture to generate 

CT-like images slice by slice. Considering that CT data are 3D 

volumes, a 3D network that takes an entire 3D CBCT volume as 

input and generates an entire CT-like volume at a time can capture 

the relationship between the upper and lower slices. However, 

when implementing a 3D model, the required GPU memory and 

model size is much larger, requiring more training datasets than 

the current model. To address these limitations, the initial focus of 

this study was on the 2D model to demonstrate the performance of 

the contrast learning method. Further studies are required to 

enhance its performance by transitioning to a 3D model. 

Additionally, it's important to note that the CBCT datasets used in 

this study were obtained from a single device. Therefore, the 

generality of the method to other devices may be limited. Future 

investigations using CBCT datasets from multiple devices would 

provide a more comprehensive evaluation and enhance the 

applicability of the proposed method in different settings. 

In conclusion, CT-like images were successfully generated 

from CBCT images using SPCGAN model. The model 

incorporated a novel combination of losses and a pretrained 

feature extractor, enhancing its performance. The generated CT-

like images outperformed those produced by various baseline 

models, as indicated by significant improvements in FID, PSNR, 

MAE, RMSE, and structure score. The results of this study 
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demonstrated the complementary benefits of SPCGAN. It 

effectively preserved the anatomical structures present in the input 

CBCT images while simultaneously improving the image quality 

to closely resemble that of CT images. This achievement had 

important implications, as accurate quantification of Hounsfield 

Units (HU) could be achieved using CBCT, expanding its potential 

utility in clinical settings. The success of this proposed method 

highlighted its efficacy in enhancing the quality and fidelity of 

CBCT images, bringing them closer to the standards set by CT 

images. This breakthrough opened up new possibilities for 

utilizing CBCT in a wider range of clinical scenarios, providing 

valuable insights and facilitating improved patient care. 
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 Cone-beam CT (CBCT)는 공간해상도가 높고 CT보다 

촬영이 용이하여 그 활용도가 높다. 그러나, CBCT는 

영상의 연조직 대조도와 Hounsfield Units (HU) 정량화 

정확도가 CT 영상에 비해 부족하여 연조직 진단에는 
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한계가 있다. CBCT 영상의 품질을 향상시키기 위해 분석 

모델링 방법, 반복 재구성 방법, Monte Carlo 시뮬레이션, 

사전 지식 기반 규칙 기반 방법, 그리고 랜덤 포레스트 

등을 포함한 다양한 기술들이 연구되었다. 그러나 이러한 

방법들은 계산 복잡성으로 인해 시간이 많이 소요되며, 

복잡한 아티팩트 감소에 있어서 CT 영상의 품질만큼 

향상시키기에는 한계가 있다.  

최근에는 CycleGAN이라는 새로운 해결책이 

등장하여 CBCT 영상에서 CT와 유사한 영상을 생성하는 

데 사용되고 있다. 이 방법의 목표는 CBCT 영상의 

품질을 개선하여 CT 영상과 유사하게 만드는 것이다. 이 

방법을 적용할 때 주요한 과제 중 하나는 원본 CBCT 

영상의 구조를 보존하는 것이다. 그러나 CycleGAN이 

입력 CBCT 영상의 구조를 보존하는 데 한계를 가지고 

있다. 

이 문제를 해결하기 위해, 대조 학습 기반 GAN을 

기본 모델로 사용하여, 입력과 출력 사이의 대응 관계를 

개선한 뒤, 입력 CBCT 영상의 구조를 보존하면서, CT와 

유사한 영상 품질로 CBCT 영상의 품질을 향상시키고자 

했다. Structure-preserving contrastive-learning based GAN 

(SPCGAN)을 설계한 뒤, CBCT와 CT 데이터셋을 



51 

 

활용하여 훈련시켰다. 이 과정에서는 새로운 조합의 손실 

함수와 훈련 데이터셋에서 사전 훈련된 특징 추출기를 

사용했다. 훈련에 사용된 손실 함수는 의미론적 관계 

일관성 손실, 공간 상관 관계 손실, 그리고 재구성 

손실로 구성했다. 의미론적 관계 일관성 손실과 공간 

상관 관계 손실은 이미지 내 의미론적 및 공간적 패턴을 

포착하여 구조를 보존하는 이미지를 효과적으로 

생성하는 데 사용했고, 재구성 손실을 최소화함으로써 

입력 CBCT 영상에 대한 더 세부적인 정보를 표현에 

포함시켰다.  

FID (Frechet Inception Distance), PSNR (Peak Signal-to-

Noise Ratio), MAE (Mean Absolute Error), RMSE (Root Mean 

Square Error), 및 structure score를 지표로 SPCGAN이 

생성한 영상의 품질을 평가했다. 환자 데이터를 이용한 

실험을 통해 SPCGAN이 생성한 영상이 다른 기존 

모델이 생성한 영상보다 FID, PSNR, MAE, RMSE, structure 

score 측면에서 우수하다는 것을 입증했다. 본 연구는 

CBCT 영상의 해부학적 구조를 보존하면서 영상의 

품질을 CT 영상과 유사하게 향상시키는 딥러닝 방법을 

제안하였다. 이를 통해, CBCT의 정확한 HU 정량화를 

가능하게 하여, 다양한 임상에서 CBCT를 사용할 수 
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있게 할 것이다. 

주요어 : 대조 학습, 구조 보존, Cone-beam CT 영상, 

딥러닝, SPCGAN 

학 번 : 2013-22422 
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