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ABSTRACT

Structure-Preserving Quality
Improvement of Cone-Beam CT

Images Using Contrastive Learning

Se-Ryong Kang

Department of Biomedical Radiation Sciences
Graduate School of Convergence Science and
Technology

Seoul National University

Cone-beam CT (CBCT) is widely used in dental clinics but
exhibits limitations in assessing soft tissue pathology because of
its lack of contrast resolution and low Hounsfield Units (HU)



quantification accuracy. Various techniques have been
investigated to enhance the quality of CBCT images. These
include analytical modeling methods, advanced iterative
reconstruction methods, Monte Carlo simulation, rule-based
methods with prior knowledge, and random forest. However, these
approaches are time-consuming due to computational complexity
and have limited effectiveness in reducing complex artifacts.

Recently, a new solution called cycle-consistent generative
adversarial networks (CycleGAN) has emerged for generating CT-
like images from CBCT images. The objective of this approach
was to improve the quality of CBCT images so that they resembled
CT images. One of the main challenges when employing this
method is preserving the structure of the original CBCT image. If
the CT-like generated images fail to retain the anatomical structure
of the input CBCT images, they become useless for clinical
applications. Therefore, it is important to consider both the
similarity of the generated images to CT scans and the preservation
of the anatomical structures. However, it has been discovered that
the preservation of the input anatomical structures on CBCT
images is limited by CycleGAN.

To address this issue, the adoption of a contrastive
learning-based GAN was considered as a baseline to enhance the
correspondence between inputs and outputs. The objective was to
improve the image quality and HU accuracy of CBCTs to a level
comparable to CTs, while simultaneously preserving anatomical



structures. The structure-preserving contrastive-learning based
GAN (SPCGAN) was trained on unpaired CT and CBCT datasets
with the novel combination of losses and the feature extractor
pretrained on training dataset. The losses employed during training
included semantic relationship consistency loss, spatial correlation
loss, and reconstruction loss. The loss functions of semantic
relation consistency and spatially correlative were designed to
maximize the learning of information regarding semantic and
spatial patterns within an image, effectively generating structure-
preserved images. Also, finer information about the input CBCT
images should be contained in the representations by minimizing
the reconstruction loss.

The quality of the generated images was evaluated using
metrics such as Frechet inception distance (FID), peak signal-to-
noise ratio (PSNR), mean absolute error (MAE), and root mean
square error (RMSE) over the entire image area. Additionally, the
structure preservation performance was assessed by the structure
score. As a result, the CT-like images generated by SPCGAN were
significantly superior to those generated by various baseline
models in terms of FID, PSNR, MAE, RMSE, and structure score.
Therefore, it was demonstrated that the use of SPCGAN provided
complementary benefits, namely preserving the anatomical
structures of the input CBCT images while simultaneously

enhancing the image quality to a level comparable to CT images.
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INTRODUCTION

Cone-beam CT (CBCT) is widely used in dental clinics due
to its lower radiation exposure compared to conventional CTs
while providing a higher resolution [1, 2, 3]. Because of its high
spatial resolution, CBCT is mainly used for dental implant
planning, visualizing abnormal teeth, and evaluating the jaws and
face [4, 5]. However, CBCT has the limitation of low contrast
resolution due to various physical and technical factors [6, 7, 8].
Highly scattered radiation by cone beam geometry negatively
affects the contrast in the final reconstructed images [3]. Due to
these limitations, it negatively impacts the accuracy of HU
quantification in CBCT images [3, 6], making them inadequate for
soft tissue evaluation. Therefore, to increase the utilization of
CBCT in clinical applications, it is necessary to improve the
accuracy of HU quantification in CBCT images, which should be
accompanied by improvements in image quality.

Various methods have been explored to improve the quality
of CBCT images, such as analytical modeling methods [9, 10, 11],
advanced iterative reconstruction methods [12, 13, 14, 15], Monte
Carlo simulation [16, 17], rule-based methods with prior
knowledge [18, 19, 20], and random forest [21, 22]. However,

these methods are time-consuming due to computational
1



complexity and have insufficient ability to reduce complex
artifacts [23]. Recently, cycle-consistent generative adversarial
networks (CycleGAN) [24] emerged as a new solution for
generating CT-like images from CBCT images. This approach
aimed to increase the quality of CBCT images to be similar to CT
images. One of the most challenging problems when adopting this
method is preserving the structure of the input image. It is useless
in clinical applications if the generated CT-like images lose the
anatomical structure of input CBCT images. Therefore,
considering both "how CT-like the generated images are" and
"now well the structures are preserved" becomes imperative.
However, a limitation was discovered in the preservation of the
anatomical structures on the input CBCT images when utilizing
CycleGAN.

To address this issue, the adoption of a contrastive
learning-based GAN was employed as a baseline to enhance the
correspondence between inputs and outputs. Furthermore,
semantic relation consistency loss [25], spatially correlative loss
[26], and reconstruction loss were incorporated to enforce the
network in generating images that are both CT-like and preserve
the underlying anatomical structures [27]. The loss functions of
semantic relation consistency and spatially correlative were
designed to maximize the learning of information regarding

semantic and spatial patterns within an image, effectively



generating structure-preserved images. Also, finer information
about the input CBCT images should be contained in the
representations by minimizing the reconstruction loss. A
hypothesis was formulated that the inclusion of these finer
representations could potentially result in the generation of CT-
like images while preserving the underlying anatomical structures.
Therefore, this study aimed to increase the CBCT image quality
while preserving the anatomical structures by using a proposed
structure-preserving contrastive learning-based GAN (SPCGAN).
In summary, the main contributions of the proposed work are as
follows:
- Contrastive learning-based GAN was applied to unpaired
image translation with the aim of enhancing the quality of
CBCT images. An extensive comparison was conducted with
other models to assess its performance.
- A novel combination of loss functions was devised,
incorporating semantic relation consistency loss, spatially
correlative loss, and reconstruction loss, in order to enhance the
quality of CBCT images while simultaneously preserving

anatomical structures.



LITERATURE REVIEW

Several studies have employed the U-Net CNN
architecture to enhance CBCT image quality by generating
synthetic CT images from CBCT [28, 29, 30]. These methods
utilize deep neural networks to estimate a mapping function that
transforms the input CBCT into output synthetic CT images, with
the goal of minimizing dissimilarity from the corresponding
ground-truth CT images, as formulated in a loss function.
However, limitations arise from the fact that the overall loss
function can inadvertently smooth or eliminate soft tissue contrast
and anatomical features.

GAN [31] is a type of deep learning architecture composed
of two components, a generator and a discriminator, trained
adversarially to produce synthetic data from input data. GAN has
been widely used in image-to-image translation, where the goal is
to translate images from one domain to another. The difficulty in
obtaining aligned paired images from different modalities in a
clinical setting can limit the practical application of this approach
in medical imaging. The idea behind CycleGAN [24] is to learn a
mapping function from one domain to another without paired

images.



Self-attention CycleGAN [32] method was developed for
CBCT-to-CT conversion, resulting in synthetic CT images with
accurate dose calculations and improved organ boundaries
compared to CBCT. Cycle-Deblur GAN [33] improved CBCT
image quality in radiotherapy, with reduced artifacts and enhanced
structural details. The combination of CycleGAN and two-channel
U-Net in QCBCT-NET [34] improved the contrast and uniformity
of the bone image, increasing the accuracy of bone density
measurement. Respatch-CycleGAN [35] was proposed to convert
CBCT to synthetic CT images, reducing metal artifacts and
restoring HU values to match planning CT. All previous efforts to
enhance the quality of CBCT images by converting them to CT
images were based on CycleGAN. However, the cycle-
consistency loss assumed that the relationship between the input
and output domain was a bijection, which was often too restrictive,
resulting in distortion of the translated images [36].

Recently, contrastive learning-based GAN methods were
introduced to improve the correspondence between inputs and
outputs in one-side image translation [25, 26, 36, 37]. This
approach was based on maximizing the mutual information
between the same location of the input and output images through
unsupervised image-to-image translation. CUT [36] was the first
contrastive learning-based GAN model outperforming CycleGAN,
and NEGCUT [37] included hard negative samples generated by a



negative sample generator to enhance the performance of CUT.
On the other hand, several methods for preserving the structure of
input images have been proposed. LSeSim [26] introduced
spatially correlative loss (SC) utilizing the patchwise similarity
map to preserve the structure of input images. Semantic relation
consistency loss (SRC) [25] was proposed to enhance the
correspondence between input and output images by regularizing
diverse semantic relations.

In order to address the limitations of CycleGAN and
leverage the strengths of prior research, a contrastive learning-
based GAN was utilized as the foundation. To further enhance its
performance, the integration of semantic relation consistency loss
[25] and spatially correlative loss [26] was implemented.
Additionally, to simultaneously retain quality and maintain the
structure, reconstruction loss was added to provide finer

representations [27].



MATERIALS AND METHODS

Data acquisition and preparation

A total of 30 patients (18 males and 12 females) ranging in
age from 21 to 80 years were recruited for the study. These patients
required maxillary and mandibular CT or CBCT scans for
treatment at the Seoul National University Dental Hospital. All CT
and CBCT images were taken from July 2021 to June 2022 and
were anonymized to protect personal information. This study was
performed with approval from the institutional review board of the
Seoul National University Dental Hospital (no. CRI121010). The
workflow of the entire investigation was completed in accordance
with all applicable rules and guidelines (Declaration of Helsinki).

Each patient underwent a CT scan followed by a
consecutive CBCT scan using a CT scanner (Somatom Definition
Edge, Siemens AG, Erlangen, Germany) and a CBCT scanner (CS
9300, Carestream Health, Inc., Rochester, US). The CT images
were taken at 120 kVp and 120 mA with voxel sizes of 0.37 x 0.37
x 0.6 mm?3, dimensions of 512 x 512 pixels, and 12-bit depth. The
CBCT images were acquired at 80 kVp and 8 mA with voxel sizes
of 0.25 x 0.25 x 0.25 mm?3, dimensions of 669 x 669 pixels, and
16-bit depth. The CT and CBCT scans were re-scaled to 256 x 256

x 250 pixels, yielding 250 slices per patient. To avoid the influence

7



of non-anatomical structures in the training process, a binary mask
was applied to the CT and CBCT images to separate the
maxillomandibular region from the non-anatomical regions [33],
[34]. Voxel values outside the masked region were replaced with
the minimum HU value.

For the unpaired and unaligned training datasets, 6000 CT
slices and 6000 CBCT slices from 24 patients were prepared. To
conduct the test and evaluation, 1500 CT and 1500 CBCT slices
acquired from the remaining six patients were matched by paired-
point registration using software (3D Slicer, MIT, Cambridge, MA,
USA). The manually selected eight landmarks for registration
were the vertex on the lateral incisors, the buccal cusps of the first
premolars, the distobuccal cusps of the first molars, the anterior
nasal spine, and the pogonion [34]. Although paired-point
registration was performed, it was difficult to perfectly match the
anatomical structures in CTs to CBCTs. Therefore, for more
accurate registrations, a non-rigid registration method was
additionally applied using MATLAB software (Ver. R2018a,
MathWorks, Natick, MA, USA).

The minimum sample size required for statistically
significant evaluations of various deep-learning methods was
estimated. A sample size of 290 was obtained, considering a
significance level of 0.05 for determining the confidence level of

the assessment, a statistical power of 0.95 for determining the

8



tolerance, and an effect size of 0.5 for determining the strength of
the relationship between the two groups (G* Power for Windows
10, wversion 3.1.9.7, University of Dusseldorf, Dusseldorf,
Germany). In this study, the number of 2D CBCT slices used for
testing was set to 1500, which significantly exceeded the minimum

requirement.



Contrastive learning-based CBCT-to-CT generation

The objective of this study was to perform image
translation from the input CBCT slice domain to the output CT
slice domain while preserving the structural characteristics of the
input images. To achieve this, the following approach was
employed: (1) Initially, a contrastive learning-based method, such
as CUT adopted by Park [36], was adopted as a starting point to
establish the baseline performance. (2) Subsequently, three
additional losses were incorporated to assist in generating images
that closely resembled CT scans while preserving the anatomical
structural details of the input CBCT images. These losses included
semantic relation consistency loss [25], spatially correlative loss
[26], and reconstruction loss. The details are presented in the
following subsections.

The patchwise contrastive learning-based GAN [25, 26, 36,
37] was employed in this study due to its effectiveness in
preserving the structure of the input images. This approach
maximized the mutual information between the input patches and
their corresponding output patches, resulting in improved
preservation of structural details. Formally, X = {x € X} and
Y = {y € Y} are CBCT dataset and CT dataset, respectively, both
of which are unpaired.

Following the notation used in a previous study [36], the

generator G can be decomposed into two components: an

10



encoder G,,. and decoder G, ... These components work
together to generate the output image ¥ = Ggoc(Gone(X)) €
RAXWX1 "with x representing the input image. Using the input
image X and its corresponding output image ¥, embedded
vectors can be extracted as z; = H(Ggpo (X)) € RY and w,, =
H(Gopne(Mi) € RY . Here, H:R¢—> R is a Multi-Layer
Perceptron (MLP) network, and the index k refers to the spatial
location in the encoded feature map G, (X) € R3*C. It should be
noted that for notational convenience, the feature map G,,.(X) is
described as a flattened feature map, where S represents the
number of spatial locations. These embedding vectors z;, and
w; correspond to patches in the raw image space, which is why
this method is referred to as ‘patchwise’ contrastive learning. More
specifically, the Patchwise Contrastive Learning loss used is

defined as:

exp(z, Wy /7)
LPCL = z _10

g
e~ 2j|j¢k exp (ZjTWk/T)

where 7 is the location indices set of size K sampled from
{1,2,...,5} without replacement and <t is the temperature
parameter; the higher the t, the softer the distribution will be. To
encourage the output image to be similar to the real CT images, an

adversarial loss [31] is used as follows:

Lgan = logD(y) +log(1 - D(G(x)))

11



where D is a discriminator trained by maximizing Lgay.

To generate CT-like and structure-preserved images, | combined
three losses with the contrastive loss: semantic relation
consistency loss [25], spatially correlative loss [26], and

reconstruction loss inspired by CAID [27].

Semantic relation consistency loss. For a given location index
k € 7, 1 can compute the patchwise semantic relation in the input
image as follows:

exp(zy ;)

Y jes exp (21 ;)

Z (@) =

where i € 7 is another location index. Note that Z, (i) can be
interpreted as the distribution to capture the semantic closeness
between the i-th and k-th location patches of the input images
[25]. In a similar way, the patchwise semantic relation in the

output image is defined as:

Note that W, (i) is defined with the same location indices set 7
used in Z,(i). Semantic relation consistency loss is defined to

preserve the structure during image translation as:

12



Lre = ) JSD(Z || W)

kej

where JSD(-Il-): RK x RK — [0,0) denotes Jensen-Shannon

Divergence.

Spatially correlative loss. Let F,,, denote a pretrained external
feature extractor that uses images x and y € RP*W*1 as input,
and produces feature maps F,,.(x) and F,,.(y) € RE>WrxCr,
For a given spatial location index (i,j) € [1,H'] x [1,W'], let
Fext (X) (i) € R*¢" denote a feature of F,,.(x) whose spatial
coordinate is (i,j), while Fo (X)(; jy e RV°*¢’ denotes the
‘neighboring features’ including Fe,.(X)(; ;) in the center, where

N represents the height and width of the neighboring features. The
self-similarity, also known as the spatially correlative map, can be

computed as follows:

S)Ei’j) = (Fext (X) (i,j)) (Fext (X) ’(‘i,j))T

Note that the spatially correlative map S’ € R™N* captures

the correlation between the query feature (F,,. (X)) and the
neighboring features (Fe,;(X)(; ;) within the input image x.
Similarly, a spatially correlative map within the output image y

with the same query point (i,j) is computed as:
- R o AT
}SJ) = (Fext M i,y) Fexe (i jy)

13



To preserve the structure, spatially correlative loss [27] is defined

as follows:

U . Sy("'j)
LSC == Z 1 — — —
1 SED s
(i,j)eqr X y

where 7’ denotes the location indices set sampled from [1, H'] X
[1, W'] without replacement. On a final note, a previous study [26]
adopted VGGL16 [38] pretrained on ImageNet [39] as the feature
extractor F,,;. However, an ImageNet pretrained feature extractor
such as VGG16 might be ineffective because CBCT and CT
images differ quite from the general domain images. Therefore,
the feature extractor F,,, was pretrained using the training set by
employing an autoencoder structure. In this case, F,,; refers to
the encoder component of the pretrained autoencoder model. The
ablation study section provides the performance comparison
between VGG16 and the customized one as the feature extractor
Fext.

Reconstruction loss. Hosseinzadeh Taher et al. [27] integrated a
reconstruction loss with contrastive loss to encode finer
information into the representations. Inspired by this, the feature
mapG.,.(x) was encouraged to have more information about the
input images by adding a reconstruction loss. The reconstruction

loss was defined as follows:
14



Lyecon =l X = Grec(Genc (X)) 1l

where G,,. denotes an auxiliary decoder for reconstruction with

the same structure as G .-

Final objective. Overall, generator G, which consists of G,

and G, Is trained by minimizing the following final loss:

Leinai = ApcrLpcr + AsrcLsre + AscLsc + Areconlrecon + Lean-
An overview of the proposed method is provided in Figure 1.

The investigation focused on evaluating the performance of
SPCGAN in generating CT-like images while simultaneously
preserving the anatomical structures present in the input CBCT
images. Furthermore, an ablation study was conducted to
determine the loss function that had the most significant impact on
both the preservation of anatomical structures and the
improvement of image quality. Existing models, including
CycleGAN [24], CUT [36], NEGCUT [37], LSeSim [26], and
SRC [25], were compared to assess the effectiveness of SPCGAN
in achieving these objectives. The purpose of this comparison was
to establish the superiority of SPCGAN in terms of generating CT-
like images with preserved anatomical structures when compared

to other established models.
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All models shown in this section were trained using the
unpaired CBCT and CT images. Each domain had 6,000 axial slice
images from 24 patients. Then, evaluations were conducted with
the paired and aligned test sets composed of 1,500 axial slices of
CBCTs and CTs from 6 patients. HU values of the CT images
ranged from-1,024 to 3,071, whereas CBCT images in the training
set ranged from -1,000 to 17,983. Therefore, the CT and CBCT
images were normalized to the range of [0, 1] using the following

procedure:

I,CT = (ICT + 1024)/4095
I'cper = (clip(Ieger, [-1000,3071]) + 1000) /4071

where clip(I, [min, max]) clamps all elements in input I into
the range [min, max]. All images were resized to 256 x 256,
and a random horizontal flip was applied in the training models.
The Adam optimizer [40] (8, = 0.5, B, = 0.999) with a learning
rate of 0.0002 was used. Following the original papers, the values
of Apcr, Aspes Asc, and A,...on, Were set to 0.1, 0.05, 10.0, and
1.0, respectively. These values were chosen to balance the
contribution of each loss term and align with the objectives of the
study.

16



Quality of generated CT-like image

First, the Fréchet inception distance (FID) [41] was
computed as a metric to quantify the quality of images generated
by the generative model. FID is commonly employed to evaluate
the similarity between the generated images and real images
based on their feature representations. FID score compared two
groups' feature vectors extracted from the Inception V3 model
pre-trained on the Imagenet dataset. Therefore, FID score did
not require CBCT-paired ground truth CT images. More
precisely, the FID score between two image groups, A and B,

was calculated as follows:
FID = lm, — mgllZ + Tr(C, + C5 — 2(C,Cp)Y/?)

where m,, my € R?%48 were the feature-wise means of the
feature vectors, and C,,Cp € R2948%2048 \ere covariance

matrices of the feature vectors.

Unlike the setting for obtaining FID scores, the quality of
the generated CT-like images was also evaluated using a paired
test setting. In this setting, each CBCT image in the test set was
paired with its corresponding CT image. This evaluation
approach allowed for a direct comparison between the generated
images and their ground truth counterparts, enabling a more

comprehensive assessment of the image quality.

17



In this setting, several metrics were computed to evaluate
the quality of the generated CT-like images. These metrics
included the Peak Signal-to-Noise Ratio (PSNR), Mean
Absolute Error (MAE), and Root Mean Square Error (RMSE):

PSNR =10-1 MAX®
— 0810\ RMSE?
1 m—-1n-1
g L e
— " X G ~ K@)
i=0 j=0
m-1n-1

1
RMSE = — z Z [1(i,)) — K(i,)]?

—0

~

where I and K were a generated CT-like image and the
ground truth CT image, respectively, while MAX denoted the
maximum possible value of the image (i.e., 4,095 in case when
the values were represented using 12 bits). Additionally, the
assessment of the uniformity of the generated CT-like images
was performed by computing the Spatial Non-Uniformity
(SNU):

HUmax - HUmin
NU = X1 0
SNU 500 00(%)

where HU_., and HU,;, were the maximum and the
minimum of the mean of the selected ROIs, respectively. Six
rectangular ROIs of soft tissue for each patient were selected

around the mandible and maxilla.
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Preservation of anatomical structures

To evaluate how well a model preserved the structures of
an input, the structure score in SSIM [42] was used:

Oxy +C

s(x,y) = W

where C,0Z, of, and o, denote a constant for computational
stability, the variance of an image x, the variance of an image vy,
and the covariance of x and y, respsctively. It is important to
note that the structure score was calculated specifically between
the input CBCT image (x) and the generated CT-like image (V)
obtained from different models. This comparison allowed for a
quantitative assessment of how well each model preserved the
structural information present in the original CBCT image while
generating the CT-like image. By evaluating the structure score
between the input and generated images, the effectiveness of each

model in preserving the anatomical structures could be determined.
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Ablation study

The final loss of SPCGAN was composed of reconstruction
(Rec), spatially correlative (SC), and semantic relation consistency
(SRC) losses. To better understand the influence of different
components on the proposed loss, a thorough analysis was
conducted by training models under various conditions using the
same datasets. This involved systematically adding the
components of SPCGAN in a progressive manner and observing
the corresponding performance. By examining the quantitative
performance of the models at each stage of component addition,
the individual contributions and impacts of these components on
the overall performance of SPCGAN could be comprehended and
evaluated. In addition, SC had two variants in terms of the external
feature extractor F,,;; one used the feature extractor pretrained on
training set (customized SC or cmSC), while the other used the
VGG16 pretrained on ImageNet (vggSC) [26].
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Evaluation of image quality by CBCT z-axis slice

position

The cone-shaped beam geometry of CBCT causes
asymmetry in the X-ray path, leading to position-dependent in
beam hardening and endo/exo-mase effects [43-45]. As a result,
image quality degradation and artifacts may occur more at the top
and bottom of the field of view (FOV), and the contrast and HU
quantification accuracy of the image are affected depending on the
z-axis position of the slice image [46]. To evaluate the
performance of SPCGAN with respect to the z-axis position of
CBCT images, a quantitative performance of various models was
conducted. The CBCT slices were categorized into three groups
(upper, middle, and lower) based on their z-axis position, as

depicted in Figure 8 alongside the entire field of view (FOV).
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Figure 1. An overview of the proposed structure preserving contrastive-learning based GAN
(SPCGAN). SPCGAN is constructed by adding Genc for Lpci and Lsge, Fext for Lsc, and Grec fOr Lrecon
based on a GAN consisting of a generator and a discriminator. Genc encoder of generator, Ggec

decoder of generator, D discriminator, Fe; feature extractor, Gy generator for image reconstruction,

GAN generator adversarial network, Lpc. patchwise contrastive learning loss, Lsrc Semantic relation

consistency loss, Lsc spatially correlative 0ss, Lecon reconstruction loss.
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RESULTS

Table 1 shows FID scores between CT images and CT-
like images generated by various models. The SPCGAN
performed the best, achieving an FID score of 42.126, which
indicates that SPCGAN generated CT-like images most

similarly with original CT images.

As shown in Table 2, SPCGAN outperformed all other
models in terms of PSNR, MAE, and RMSE, achieving a PSNR
of 26.735, an MAE of 63.044, and an RMSE of 156.020.
However, SPCGAN showed SNU of 29.921, which was inferior
to that of CUT achieving the best score of 28.546. All measures
of SPCGAN exhibited significant differences from all other
models (p < 0.05) except for the SNU from CycleGAN,
NEGCUT, and SRC. Therefore, SPCGAN resulted in greater
image quality improvement in all aspects except for uniformity
compared to the other methods.

Figure 2 shows the HU accuracy by visualizing the
difference between generated CT-like images and ground truth
CT images. In the soft tissue region of the subtraction images, it
was evident that the generated CT-like images exhibited

significantly fewer discrepancies with the ground truth CT
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images compared to the input CBCT images. In particular, the
differences around the teeth, dense bone, and airway were more
reduced in SPCGAN than in other networks. However, there
were relatively large differences in the spinal and occipital bone
regions at the maxilla. This results from the registration
limitations due to differences in patient scan positions during the
acquisition of the CBCT and CT datasets.

Figure 3 shows the horizontal and vertical HU-line
profiles of the generated CT-like images and the ground truth
CT images. The Pearson correlation coefficient between the
ground truth CT images and the CT-like images generated by
SPCGAN was 0.975 for the horizontal profile and 0.951 for the
vertical profile, outperforming all other models’ images. In other
words, SPCGAN better reflected the boundaries and fine details
of the images than others. Figure 4 shows the HU histogram
plots between -300 HU and 300 HU in ground truth CT, input
CBCT, and generated CT-like images. Compared with the
histogram of the other methods’ images, the histogram of
SPCGAN’s images was closer to that of ground truth CT images,
demonstrating improvement in HU fidelity.

Figure 5 shows the Bland—Altman plots between the
ground truth CT and SPCGAN, SRC, LSeSim, NEGCUT, CUT,
CycleGAN, and input CBCT images. The Bland-Altman plot
between the ground truth CT and SPCGAN’s images

demonstrated a lower bias of mean difference and a better level
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of agreement than the plots between the ground truth CT and
CT-like images generated by other models. In other words, the
CT-like images generated by SPCGAN exhibited statistically
significant similarity with the ground truth CT compared to
other methods. Figure 6 shows the linear regression curves
between the ground truth CT and generated CT-like images. The
slope between the ground truth CT and SPCGAN ‘s images was
closer to 1 than that between the ground truth CT and other
methods’ images, demonstrating the superiority of SPCGAN in

terms of HU accuracy.

SPCGAN had a structural score of 0.880 + 0.043, which
outperformed LSeSim (0.868 + 0.047), SRC (0.866 = 0.043),
NEGUT (0.862 + 0.045), CUT (0.865 + 0.046), and CycleGAN
(0.862 + 0.042). The statistical analysis using t-tests confirmed a
significant difference between the result of SPCGAN and those

from the other deep-learning models.

Figure 7 shows an input CBCT image and CT-like images
generated by various models. SPCGAN retained the finely
detailed structures of the input CBCT image, whereas the other
models tended to deform these structures. In particular, distortions
were prominent in the airway area (indicated by the cyan box) and
vertebrae area (indicated by the pink box) of the images generated
by other deep-learning models. In addition, as shown in the soft
tissue area (indicated by the green box), SPCGAN best preserved
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the boundaries and distribution of fat and muscle. CycleGAN, a
non-contrastive learning model, suffered the greatest structure

collapse.

The results presented in Table 3 indicate how each loss
influenced the evaluation metrics. When cmSC was added to SRC,
there was no significant improvement in the quality evaluation
factor, but the structure score improved. When Rec was further
applied, the results showed the best performance not only in
structure scores, but also in FID, PSNR, MAE, and RMSE. This
demonstrated that SC was advantageous for preserving anatomical
structures and that adding Rec improved the overall image quality.
In addition, cmSC exhibited more effective improvement in
anatomical preservation and image quality than vggSC.

The results in Table 4 indicate how the evaluation metrics
vary in slice images based on the z-axis position. Notably, when
evaluating the slice located in the middle of the z-axis, the best
performances were obtained for FID, PSNR, MAE, RMSE, SNU,
and structure score. However, the overall results did not match
those of the middle group when examining the upper and lower
slice images. Despite this, the difference was not statistically
significant. The findings demonstrated that the deep learning
models, including SPCGAN, effectively improved the quality of
CBCT images as much as CT images across the entire FOV of
CBCT.
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Figure. 2. The ground truth CT images, the CT-like images generated by deep learning methods and
input CBCT images (the first and third rows) and their subtractions from the ground truth CT images
(the second and fourth rows) at the maxilla and the mandible. The red squares shown in the CT images
are the ROIs for calculation of spatial non-uniformity (SNU).
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Figure. 3. The line profiles of HU values for CT, SPCGAN, LSeSim, NEGCUT, CUT, CycleGAN,
and input CBCT image in the horizontal (top) and vertical (bottom) directions. The images shown on
the left are CT-like images generated by SPCGAN. Pearson correlation coefficients of SPCGAN, SRC,
LSeSim, NEGCUT, CUT, CycleGAN, and input CBCT images with the ground truth CT images are
0.975, 0.938, 0.951, 0.926, 0.929, 0.905, and 0.904, respectively, for the horizontal profile and 0.951,
0.933, 0.943, 0.927, 0.936, 0.925, and 0.924, respectively, for the vertical profile.
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Figure. 4. The histogram shows the range of HU values ranging from -300 to 300 within the circular
regions of interest (ROIs) in the maxilla (left) and mandible (right) areas, excluding the non-
anatomical regions, in the ground truth CT, SPCGAN, SRC, LSeSim, NEGCUT, CUT, CycleGAN,
and input CBCT images shown in Figure 2.
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NEGCUT, CUT, CycleGAN, and input CBCT images.
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Figure 6. The linear regressions between the ground truth CT and
the generated CT-like images. The slope of SPCGAN is 0.925 and
the intercept is 20.330. The slope of SRC is 0.897 and the intercept
15 9.164. The slope of LSeSim is 0.893 and the intercept is 54.622.
The slope of NEGCUT is 0.820 and the intercept is 20.536. The
slope of CUT is 0.864 and the intercept is 42.857. The slope of
CycleGAN is 0.841 and the intercept is 19.421. The slope of input
CBCT is 0.802 and the intercept is 69.069.

31

H 1 1_'_” o]

I

U
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Figure 7. Visual comparison between the input CBCT image from the test datasets and CT-like images
generated by deep learning methods. The cyan, pink, and green squares shown in the input CBCT
image represent ROIs with significant differences compared to the generated images. The display

window is set equal to [-300, 900] HU.
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Figure. 8. The slices according to the z-axis position of the CBCT were divided into three groups

(upper, middle, and lower) along with the entire field of view (FOV).
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Table 1. Fréchet Inception Distance (FID) score between CT and

generated CT-like images in the test set.

CycleGAN CUT NEGCUT  LSeSim SRC SPCGAN

FID | 50.418 47.201 43.929 43.410 42913 42.126

Note: The lower the score, the more similar the two groups of
1mages are.
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Table 2. Quantitative analysis results for assessing the quality of
CBCT and CT-like images generated by CycleGAN, CUT,
NEGCUT, LSeSim, SRC, and SPCGAN compared to the ground
truth CT images. PSNR peak signal to noise ratio, MAE mean

absolute error, RMSE root mean square error, SNU spatial non-

uniformity.
PSNR T MAE(HU) ! RMSE! SNU(%) !
22.169 156.915 246.325 38.477
CBCT +1.430° +3735° +44973°  +7.698"
25.389 68.551 171.636 30.282
CycleGAN |7 g13- +3.656"  +41.240°  +8.736
CUT 25.062 71.938 178.638 28.546
+1.900° +4367°  +44974°  +5.733°
25.861 66.486 163.342 30.913
NEGCUT 7 g7, +3502°  +43711°  +6.958
[ SeSim 25.653 64.511 167.190 31.447
+1.963" +3.017°  +43558°  +5.470°
SRC 25.863 65.763 163.782 30.319
+2.073" +3312°  +45821°  +6.154
26.735 63.044 156.020  29.921
SPCGAN 1 794 +3.086 +40992  +4958

Note: PSNR, MAE, and RMSE compare generated CT-likes and
ground truth CTs, whereas SNU is computed using only generated
CTs. * indicates a statistically significant difference (p < 0.05)
when conducting an independent t-test between SPCGAN and

each other model.
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Table 3. Quantitative results of ablation studies over the adding components of the loss function of
SPCGAN. FID Fréchet inception distance, PSNR peak signal to noise ratio, MAE mean absolute error,
RMSE root mean square error, SNU spatial non-uniformity.

Settings
ritrsliztri D L PSNR MAE RMSE SNU
SR cm vgg e 1 ) (HO) | l (%) !
C SC SC
Y 0.866 oots 25863 65.763 163.782 30.319
+0.043° + ' +2073° +3312°  +45821°  +6.154+
0.869 25.927 65.164 163.038 31.540
v v +0.038" + 43605 | 854t 43711 +£42931°  +6.063"
0.870 26.176 63.485 162.608 30.217
43583
v v Vo 0046 + +1923°+ +3406°+ +42596°  +5027 +
0.878 25.892 65.373 165.405 31.934
v v +0.044 4299 5104 43204  +44639°  +5832°
0.880 26.735 63.044 156.020 29.921
v v v +0.043 42126 1704 +3.086 + 40.992 +4.958

Note: * indicates a statistically significant difference (p < 0.05) when conducting an independent
t-test between SPCGAN (SRC + scmSC + Rec) and each other model. 1 indicates a statistically

significant difference (p < 0.05) when conducting an independent t-test between cmSC +SRC
and each other model.
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Table 4. Quantitative results of image quality evaluation by the CBCT z-axis slice position (upper,
middle, lower) of the CBCT and the generated CT-like images. FID Fréchet inception distance, PSNR
peak signal to noise ratio, MAE mean absolute error, RMSE root mean square error, SNU spatial non-
uniformity.

CBCT CycleGAN CuT NEGCUT LSeSim SRC SPCGAN

Upper Middle Lower Upper Middle Lower Upper Middle Lower Upper Middle Lower Upper Middle Lower Upper Middle Lower Upper Middle Lower

FID 64.721 62.513 63.812 51.231 49.428 50.968 47.867 47.101 48.023 44.523 43.464 44.731 44.110 42957 43.552 43.216 42.857 43.164 43.158 42.012 42.878

22.334 23.234 23.149 24.823 25761 24.897 25.090 25.328 25.274 26.091 26.416 25.431 25.080 26.064 25.885 25.099 25.884 25.796 27.006 27.342 27.072
PSNR
+1.250 £1.703 +2.210 +2.679 +2.337 +2963 +2.183 +2.067 £2.960 *3.336 +2.828 +3.600 +2.543 + 2471 +2566 +3.475 +2.774 +3.336 +2.959 *2.705 *2.876

MAE  158.312 156.221 156.615 68.412 67.990 68.928 71.272 71.108 71.989 66.315 65.624 65.960 64.797 64.043 64.774 65.766 64.881 65.397 63.035 63.023 63.794
(HU)  £3.142 £3.291 +3.946 +4.184 +3.730 + 4.243 +5443 + 5310 +5.335 +4.396 + 4.000 +4.340 +4.100 +3.907 +4.787 +4.521 +4.261 +4.960 +4.965 + 4.051 + 4.748

244.699 243.300 245.598 170.086 169.486 170.164 179.976 178.520 179.043 164.017 163.128 163.620 165.101 164.937 165.411 163.037 162.374 162.705 158.508 155.610 158.436

RMSE E: E: * E: E: +
+44.631 + 44.387 +46.372 +41.726

+ + + + +
+45.951 46.573 44.844 44.905 44.608 ~ 44.619 47.265 47.050 42.369 42.574

t +450% _* o osaqas t *
47121 40038 45183 40477 T4 Lo 58s 6817

SNU 39.187 37.508 39.513 29.918 29.852 30.708 29.030 28.186 28.769 31.445 30.878 31.418 31.202 31.061 31.947 30.757 30.030 30.700 30.530 29.105 29.453
(%) +6.582 £7.698 +6.913 £9.683 +8739 +8912 +7.108 +6.418 +7.322 +7.855 +7.518 +7.792 +5.709 £ 5.500 +5.521 +7.926 +7.111 +7.584 +6.227 +5.879 +6.191
Structure 0.859 0.866 0.861 0.854 0.864 0.862 0.860 0865 0.859 0.864 0.873 0.867 0.867 0.870 0.863 0.884 0.890 0.886

score +0.043 +£0.043 +0.046 +0.045 +0.046 + 0.047 +0.046 + 0.044 + 0.047 +0.045 +0.047 +0.044 +0.045 +0.043 +0.044 +0.046 +0.044 +0.047
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DISCUSSION

CT-like images were generated from CBCT images using
the SPCGAN with unpaired datasets. SPCGAN was trained by a
novel combination of semantic relation consistency, spatially
correlative, and reconstruction losses. The loss functions of
semantic relation consistency and spatially correlative were
designed to maximize the learning of information regarding
semantic and spatial patterns within an image, effectively
generating structure-preserved images. Also, finer information
about the input CBCT images should be contained in the
representations by minimizing the reconstruction loss. As a result,
the CT-like images generated by SPCGAN were significantly
superior to those generated by various baseline models in terms of
the quality improvement of CBCT images (Table 1 and Table 2)
and structure preservation (Table 3). This clearly showed that
SPCGAN, which maximized the mutual information between
inputs and corresponding outputs, was more effective in the
CBCT-to-CT task than the other methods.

As shown in the ablation study (Table 4), adding
reconstruction loss improved the overall quality of the images. It
was conjectured that the inclusion of the reconstruction loss

contributed to enriching the feature map Genc(x) with input
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information, leading to improved quality in CBCT images. One
trade-off for the quality improvement of CBCT images was
training time. When adding the reconstruction loss to SRC, the
number of learnable parameters increased from 14.7M to 19.8M,
and the training time increased from 0.098 to 0.119 (s/image).
Note that even if the reconstruction loss caused the training
process to slow slightly, testing time remained the same, which

was more important to end users such as practitioners.

Someone may interpret the reconstruction loss as the cycle
consistency loss in CycleGAN. However, there is a difference in
that the cycle consistency loss regulates both G,,. and Gg4.. by
reversing § to x, and the reconstruction loss regulates only G,
by reversing G,,.(x) to x. Moreover, the cycle consistency loss
required another generator (F,,,., F4e.) and discriminator (D'),
whereas the reconstruction loss required only another decoder
( Gyoc ). Therefore, it may be reasonable to interpret the
reconstruction loss as a ‘light’ cycle consistency loss.

It is also worth mentioning that using customized F,,;
pretrained on training set was more effective for the structure
preservation than was using VGG16 pretrained on ImageNet, even
if the customized structure was a simple encoder composed of
ResBlocks and trained by autoencoding with an auxiliary decoder.
This demonstrated that the CT domain was quite different from the
general domain (e.g., ImageNet), which implied room for
improvement by fine-tuning the model.

39



There were some limitations in this study. The model
developed in this work used a 2D network architecture to generate
CT-like images slice by slice. Considering that CT data are 3D
volumes, a 3D network that takes an entire 3D CBCT volume as
input and generates an entire CT-like volume at a time can capture
the relationship between the upper and lower slices. However,
when implementing a 3D model, the required GPU memory and
model size is much larger, requiring more training datasets than
the current model. To address these limitations, the initial focus of
this study was on the 2D model to demonstrate the performance of
the contrast learning method. Further studies are required to
enhance its performance by transitioning to a 3D model.
Additionally, it's important to note that the CBCT datasets used in
this study were obtained from a single device. Therefore, the
generality of the method to other devices may be limited. Future
investigations using CBCT datasets from multiple devices would
provide a more comprehensive evaluation and enhance the

applicability of the proposed method in different settings.

In conclusion, CT-like images were successfully generated
from CBCT images using SPCGAN model. The model
incorporated a novel combination of losses and a pretrained
feature extractor, enhancing its performance. The generated CT-
like images outperformed those produced by various baseline
models, as indicated by significant improvements in FID, PSNR,
MAE, RMSE, and structure score. The results of this study
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demonstrated the complementary benefits of SPCGAN. It
effectively preserved the anatomical structures present in the input
CBCT images while simultaneously improving the image quality
to closely resemble that of CT images. This achievement had
important implications, as accurate quantification of Hounsfield
Units (HU) could be achieved using CBCT, expanding its potential
utility in clinical settings. The success of this proposed method
highlighted its efficacy in enhancing the quality and fidelity of
CBCT images, bringing them closer to the standards set by CT
images. This breakthrough opened up new possibilities for
utilizing CBCT in a wider range of clinical scenarios, providing

valuable insights and facilitating improved patient care.
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FID (Frechet Inception Distance), PSNR (Peak Signal-to-
Noise Ratio), MAE (Mean Absolute Error), RMSE (Root Mean

Square Error), % structure scoreE A|ZEE SPCGANO|
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