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CNN (Convolutional Neural Network) [1, 18, 28, 29, 35] 

DNN (Deep Neural Network) , (weight)

(Input feature map) convolution 

image classification

[3]. MAC (Multiply and ACcumulate) 

convolution , CNN [6]. 
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1. GPU 
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[32, 33]. GPU 
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GPU CUDA core cycle

. , Tensor core

cycle half precision 4x4 , 

4x4 cycle 64

2.1 Kepler Amepere peak performance

L2 cache size [8-12]
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. Tensor core GPU 

Ampere Pascal 35.5 GEMM 

( 2.1).

L2 cache . 

, GPU

memory access overhead L2 cache size

. 2.1 , Kepler 1.5MB L2 

cache size Ampere 40MB .

2. GPU convolution 

GPU convolution CUDA 

CUTLASS [14] cuDNN [15] . convolution 

GPU , input/output 

feature map (i/ofmap) weight 2D matrix convolution 

GEMM im2col [15]

[4, 7]. 2.2 (a) GPU GEMM 

. GPU GEMM tiling input, 

weight, output matrix thread block (TB) 
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tiling ,  ,  . thread block input tile

× , weight  × 
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GEMM TB tile input weight

input row TB tile , weight column TB 

tile . , TB tile

, GPU 



- 5 -

TB . 2.1 , 

CUDA core Volta m, n tile size

128 , Volta 256 . K tile size 

Volta 8 , Tensor core

Volta Turing 32 , Tensor core

Ampere 64 .

Ampere operation 

2.2 CUDA library GEMM (a) tiling , (b) main loop 
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pipeline . CUDA library GEMM 

2.2 (b) GEMM 

input weight global memory (GMEM)
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latency overhead . Pipeline

stage input weight shared memory “GMEM 

to SMEM”, input weight register (REG)

“SMEM to REG”, REG input weight matrix 

multiplication “REG to CORE” . 

Turing “GMEM to SMEM” 2.2(a)

input weight GMEM REG , SMEM

. L1 cache bandwidth register 

, GMEM REG

REG SMEM stall

[32]. , GPU SMEM

input weight , 

stage (SMEM ) 2 . 

Ampere GPU 2.3 (b) L1, register

GMEM SMEM LDGSTS 

operation , 

pipeline flexible scheduling . , Ampere 

   # Stages

MAX MIN MAX MIN MAX MIN MAX MIN

Pascal 128 32 128 32 8 8 2 2

Volta 256 64 256 64 32 32 2 2

Turing 256 64 256 64 32 32 2 2

Ampere 256 64 256 64 64 32 10 3

2.1 GPU GEMM / tile 
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. BNFF convolution pipeline 
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.

Wgrad fmap

Fprop Dgrad sub BN fusion . 

Wgrad1 Dgrad1 ofmap Fprop1 ifmap . , 

Dgrad1 ofmap sub BN1’ Dgrad1 fusion

GMEM . Wgrad1  , 

batch normalization sub BN1’ . 

Wgrad2 Fprop2 sub BN2 fusion Fprop2

ifmap GMEM . , convolution 

 batch normalization sub BN2 

ReLU . BNFF

, Wgrad1 Wgrad2 .

(2.8)

(2.9)

overhead , BNFF 

Pascal GPU ResNet50 

7.8% [2]. 
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2 

ResNet50 batch normalization

non-convolution memory access GPU 

Ampere A100 . 

, GPU ResNet50 

Pytorch ResNet50 Baseline 2.7

BNFF

. , BNFF CUTLASS[13]1) 2.9

. 

Baseline BNFF memory 

access , 2.7 BNFF

1) CUTLASS linear algebra operations open-source 

library , CUTLASS cuDNN convolution 

Fprop 94%, Dgrad 107%, Wgrad 90% .

2.7 Baseline ResNet50 BNFF ResNet50

breakdown. Baseline Pytorch[21]

ResNet50 .
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memory access size 38% 13% 

. Forward , BNFF memory access 46% 

x1.37 . backward , 

memory access 17% 1.38 . 

Forward Backward
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3 BNFF

GPU BN fusion 

, 

. 3 BNFF BN 

fusion .

1 BNFF 

3.1 ResNet50 BNFF

convolution . 

, normalization (sub BN2, sub BN1’) fusion

. BNFF Dgrad Wgrad

, normalization fusion

overhead .

3.1 BNFF convolution

breakdown. Baseline cuDNN .
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convolution SMEM

tile . 2 1

, CUDA library GEMM 

latency overhead input weight SMEM

. 2.6 (b) (c) , BNFF

Dgrad Wgrad sub BN1’ ofmap ( ) 

fmap ( ) . ,  

  SMEM

, SMEM Reg . 

, sub BN1’ fusion convolution convolution 

SMEM GPU . Sub BN1’

fusion / convolution SMEM 

.

(3.1)

(3.2)

Ampere convolution stage 

pipeline SMEM data

. , sub BN1’ fusion

tile . 3.1 , sub BN1’ fusion , 

tile SMEM 288 KB . , A100 

tile SMEM (164 KB)

sub BN1’ fusion convolution . 

3.1 , tile size Dgrad 9%, Wgrad

23% .

tile normalization 

. CUDA GEMM fmap tiling 
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input weight . 3.2

ofmap 2×2 tiling 4 tile convoluion 

, tile ifmap weight . 

TB0 TB1 A0 , TB2 TB3 A1 . 

TB tile convolution 

ifmap . Weight TB0

TB2 B0 TB1 TB3 B1 weight

. BNFF , Sub BN2 

Fprop ifmap Wgrad weight , sub BN1’ Dgrad

Wgrad ifmap . convolution ofmap 

channel size sub BN2 ifmap channel 

size sub BN1’ .

Normalization im2col . 

SMEM size 

(KB)

Tile shape 

( × _ ×  )

72 128x128_32x3

96
64x64_64x5, 128x64_64x3, 64x64_32x10, 

128x64_32x6, 128x128_32x5, 256x128_32x3

108 256x64_32x3

120
64x64_64x5, 128x64_64x3, 64x64_32x10, 

128x64_32x6, 128x128_32x5, 256x128_32x3

144 128x128_64x3, 64x256_64x3, 256x64_32x4

192 128x128_64x4, 64x256_64x4, 128x256_64x3

216 256x64_64x3

240 256x128_64x3

288 256x64_64x4

3.1 Sub BN1’ convolution fusion , Tile 

shape SMEM . Tile shape stage 

CUTLASS .
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2 1 2.2 , ifmap im2col matrix 

size (N×H×W)×(R×S×C1) . R S 1 , 

convolution ifmap R×S

. , sub BN2 sub BN1’ convolution 

fusion normalization R×S .

ResNet convolution layer channel size . 

, fmap tile BNFF 

overhead . BNFF channel size

3.3 sub BN2 sub BN1’ fusion /

convolution + normalization layer 

. , sub BN2 ofmap channel size

256 weight width 1 layer fusion

(conv2_1_3, conv2_x_3) . , ifmap

channel size 128 weight width 1 layer

fusion (conv_2_1_4, conv2_x_3, conv3_x_3), sub BN1’

fusion . Sub BN1’ fusion 

channel size sub BN2

Dgrad Wgrad sub BN1’ fusion tile size

.

3.2 Ofmap 2x2 tile tile

ifmap weight
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2 

(Adaptive Kernel Fusion) BNFF

kernel fusion GPU 

. GPU kernel

fusion . Adaptive Kernel Fusion

fusion , memory access overhead

layer fusion . Adaptive Kernel 

Fusion 3.4 BN normalization 

fusion BNFF (HalfBNFF) , layer

sub BN1’ sub BN2 fusion . 

sub BN2 fusion 3.2 . 

3.4 HalfBNFF ResNet50 building block 
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Adaptive Kernel Fusion fmap channel size

fusion kernel layer

fusion .

Sub BN2 fusion Sub BN1’ fusion

ofmap channel size 256≤ 

Weight width & height = 1

ifmap channel size 128≤ 

Weight width & height = 1

3.2 Normalization fusion 
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4 

1 

4.1 . 

3.1 ResNet50

A100 GPU . Framework

NVIDIA Pytorch 1.10 . Baseline 

NVIDIA Pytorch ResNet [20]

4.2 . mixed 

precision [19] . BNFF, HalfBNFF, Adaptive 

Kernel Fusion iteration 

Nsight compute [26] . , feature map

size Adaptive Kernel Fusion Batch 

size . , GPU

feature map DaLI [25] feature 

map pre-processing .

GPU A100 80GB PCIe

Model ResNet

Parameter
Batch size 256, 512, 1024

Precision Mixed precision

Framework Pytorch 1.10

4.1 
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2 ResNet 

Adaptive Kernel Fusion ResNet 

(ResNet34, ResNet50, ResNet152) Adaptive Kernel Fusion, 

BNFF, HalfBNFF 

.

Layer

name

Output

size

Layer parameters

ResNet34 ResNet50 ResNet152

R×S,

channel

#

blocks

R×S,

channel

#

blocks

R×S,

channel

# 

blocks

conv1 112×112 7×7, 64, stride 2

conv2_x 56×56

3×3 max pool, stride 2

3×3, 64

3×3, 64
×3

1×1, 64

3×3, 64

1×1, 256

×3

1×1, 64

3×3, 64

1×1, 256

×3

conv3_x 28×28
3×3, 128

3×3, 128
×4

1×1, 128

3×3, 128

1×1, 512

×4

1×1, 128

3×3, 128

1×1, 512

×8

conv4_x 14×14
3×3, 256

3×3, 256
×6

1×1, 256

3×3, 256

1×1, 1024

×6

1×1, 256

3×3, 256

1, 1024

×36

conv5_x 7×7
3×3, 512

3×3, 512
×3

1×1, 512

3×3, 512

1×1, 2048

×3

1×1, 512

3×3, 512

1×1, 2048

×3

1×1 Average pool, 1000-d FC, softmax

4.2 ResNet building block . R×S

weight width height , channel ofmap

channel .
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4.1 ResNet34 

. Adaptive Kernel Fusion forward 

(backward) propagation baseline ×1.18 (×1.07) , 

BNFF ×1.16 (x1.96) . , Adaptive Kernel Fusion

forward (backward) propagation 

baseline 31% (15%) , BNFF 13% (0.3%) 

. Adaptive Kernel Fusion BNFF fusion kernel

, fusion 

overhead . 

ResNet34 convolution filter width

4.1 ResNet34 (a) , (b) 



- 26 -

height  4.2 3 , Adaptive Kernel 

Fusion convolution fusion

normalization . , Adaptive Kernel Fusion

HalfBNFF building 

block , 

.

, ResNet50 

. 4.2 batch size 256 ResNet50 

(baseline) BNFF, HalfBNFF, Adaptive Kernel Fusion

4.2 ResNet50 (a) , (b) 
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. 

, Adaptive Kernel Fusion ResNet50

. 

HalfBNFF normalization fusion

forward (backward) propagation

BNFF 13% (6.0%) . , baseline

38.5% (12%) . , 

HalfBNFF layer fusion overhead

forward (backward) propagation BNFF 

×1.03 (×1.56) , baseline ×1.37 (×1.13) . 

ResNet50 ResNet34 filter width height 

1 3 ResNet50 BNFF 

HalfBNFF ResNet34 , Adaptive 

Kernel Fusion

. Adaptive Kernel Fusion

Resnet50 forward propagation backward 

propagation HalfBNFF 1% BNFF

×1.04 (×1.58) , baseline ×1.42 (×1.14) forward 

(backward) propagation . Fusion normalization 

, forward 

(backward) propagation HalfBNFF 2.2% 

(3.8%) . BNFF 10.6% (2.0%) , 

baseline 39.9% (15.3%) .

, ResNet ResNet152 

. 4.3

, HalfBNFF ResNet152 forward (backward) 

propagation baseline ×1.39 (×1.16) , 

BNFF ×1.07 (×1.84) . ResNet152 

ResNet50 channel convolution 
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BNFF HalfBNFF ResNet50 . 

baseline 39% (12%) 

, BNFF 13% (5.4%) .

Adaptive Kernel Fusion ResNet152 

HalfBNFF ResNet152 . 

4.3 , HalfBNFF Adaptive Kernel Fusion forward 

(backward) propagation 0.3% (0.6%)

1.1% (2.4%) . ResNet152 

. ResNet152 ResNet50 building 

block . , building 

4.3 ResNet152 (a) , (b) 
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block channel size convolution , 

building block Adaptive Kernel Fusion

.

3 Feature map 

ResNet 

Fmap Adaptive Kernel Fusion

batch size ResNet50 

. , Fmap size Adaptive Kernel Fusion

BNFF . 4.4 batch 

size 512 , Adaptive kernel Fusion ResNet50 

forward (backward) propagation HalfBNFF

×1.01 (×1.01) , BNFF ×1.03 (×1.65) , baseline x1.46 

(1.16) . Batch size 1024

. Adaptive kernel Fusion forward (backward) propagation 

HalfBNFF ×1.01 (×1.01) , BNFF ×1.03 

4.4 Batch size ResNet50 
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(×1.66) , baseline ×1.48 (1.17) .

Fmap size HalfBNFF Adaptive Kernel Fusion

BNFF . GPU cache size 

normalization cache hit rate . 

4.5 , fmap normalization cache hit 

rate . , normalization batch 

size , HalfBNFF Adaptive Kernel 

Fusion batch size . 

batch size channel size

convolution row tiling .

4.5 Batch size (a) forward propagation, (b) backward 

propagation normalization cache hit rate.
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5 

 1 Ampere 

GPU

Adaptive Kernel Fusion RTX 3090 Ampere 

, A100 ResNet 

. RTX 3090 A100 GPU Ampere 

GPU , 5.1 A100 GPU GA100

Tensor core , L2 cache SMEM

GA102 . 

RTX 3090 L2 cache size normalization 

cache hit rate 30~50% A100 10~20% . 

, Adaptive Kernel Fusion

, RTX 3090 Adaptive Kernel Fusion

HalfBNFF . RTX 3090 Adaptive 

Kernel Fusion ResNet50 , forward 

(backward) propagation baseline ×1.47 (×1.16) 

, BNFF ×1.01 (×1.24) , HalfBNFF

GPU features A100 RTX 3090

Tensor core Performance (TFLOPS) 310 142

L2 cache size (MB) 40 6

SMEM size (KB) 164 100

5.1 A100 RTX 3090 [12, 40]
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1% . L2 cache hit Adaptive Kernel 

Fusion A100 RTX 3090

tile shape A100 . RTX 

3090 SMEM 164KB 100KB

tile shape A100 .

2 cuDNN 

NVIDIA closed source library cuDNN 7.6 batch 

normalization forward propagation BNFF

fusion cudnnFusedOps_t . 

BNFF forward propagation batch 

normalization sub BN1 sub BN2 /

convolution fusion . Sub BN2 convolution 

fusion , BNFF backward Wgrad 

sub BN2 ReLU . Backward propagation

, BNFF batch normalization 

5.1 RTX3090 ResNet50 , 
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/ fusion , non-convolution (Batch 

normalization, ReLU) fusion batch normalization ReLU 

.

cudnnFusedOps_t ResNet50 NVIDIA

MXNet [38] . MXNet open source 

, GPU CPU . NVIDIA

5.2 Pytorch ResNet50 

(Adaptive) MXNet ResNet50 (a) 

, (b) . MXNet sub BN2 fusion

MXNet (wo subBN2 F) MXNet (w sub BN2 F) .
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MXNet cuDNN cuBLAS MXNet GPU 

. MXNet ResNet50 

NVIDIA benchmark MLCommons GPU

report “state-of-the-art” [39].

CudnnFusedOps_t ResNet50 Adaptive Kernel 

Fusion ResNet50 

. 5.2 , forward propagation

MXNet (wo sub BN2 F) MXNet (w sub BN2 F) Adaptive 

Kernel Fusion ResNet50 4%, 17% 

×1.15 , ×1.2 . Backward 

propagation , MXNet (wo sub BN2 F) Adaptive Kernel 

Fusion 11% ×1.07 , 

MXNet (w sub BN2 F) Adaptive Kernel Fusion 10% 

, Wgrad 

×1.02 . Adaptive 

Kernel Fusion (MXNet (wo sub BN2 F) 

×1.02 , MXNet (w sub BN2 F) ×1.09 ), 

Pytorch MXNet , 

5.3 ResNet50 (Adaptive)

MXNet ResNet50 (MXNet) layer normalization 

L2 cache hit rate breakdown 
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backward propagation Adaptive Kernel Fusion

MXNet . , MXNet GPU

cuDNN , fusion

Adaptive Kernel Fusion

. 5.2 , forward propagation

convolution batch normalization 

Adaptive Kernel Fusion MXNet . , backward 

propagation , MXNet convolution batch normalization 

Adaptive Kernel Fusion . 

5.3 MXNet normalization Adaptive 

Kernel Fusion cache hit .
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6 

convolution batch 

normalization ReLU non-convolution 

. Non-convolution convolution 

memory access

. BNFF Kernel fusion 

non-convolution memory access

. , GPU , 

cache size BNFF

, . 

, non-convolution 

.

BNFF ResNet50 layer 

BNFF , GPU 

BNFF Adaptive 

Kernel Fusion . Adaptive Kernel Fusion normalization 

/ HalfBNFF , layer

normalization fusion

normalization fusion overhead . 

Adaptive Kernel Fusion ResNet HalfBNFF 

×1.01 , BNFF ×1.68 , baseline ×1.24

. , fusion kernel BNFF

ResNet 5.5% , 

HalfBNFF ResNet baseline

3.3%, 25% . 
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Abstract

Adaptive Kernel Fusion for 

Accelerating Memory-Intensive 

Operations of Convolutional 

Neural network Training

SeungHwan Hwang

Department of Intelligence and Information

Gradute School of Convergence Sceience and

Technology

Seoul National University

The batch normalization operation improves the accuracy of 

machine learning models by normalizing the data distribution of 

feature maps to a Gaussian distribution. However, it requires a 

large amount of memory access compared to its computational 

workload, which induces the under-utilization of GPU 

performance. To address this issue, an algorithm called “Batch 

normalization Fission-n-Fusion(BNFF)” was proposed to optimize 

batch normalization by splitting the batch algorithm into two 

operations and fusing them into former and later operations. It 
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reduces the memory access of batch normalization, but it is not 

suitable for modern GPU hardware, because the BNFF algorithm 

increases the training computation time.

In this paper, we propose an adaptive kernel fusion algorithm, 

which changes the fusion mechanism of batch normalization 

according to the model parameter, for efficiently optimizing the 

batch normalization optimization algorithm in modern GPU 

architecture. We analyze the efficiency according to the feature 

map size and the fusion mechanism of batch normalization on 

modern GPU architecture and determine the optimal fusion 

mechanism based on the feature map size. Based on the analysis, 

we propose a new algorithm that applies an optimal fusion 

mechanism to each layer of the machine learning model. Our 

evaluation shows that Adaptive kernel fusion improves the training 

time of the ResNet model up to ×1.24 and ×1.69, compared to 

the BNFF algorithm-based ResNet model and the original Pytorch 

ResNet model.

keywords : CNN, GPU, Batch normalization, Kernel fusion

Student Number : 2020-29077
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