

저 시-비 리- 경 지 2.0 한민

는 아래 조건 르는 경 에 한하여 게

l 저 물 복제, 포, 전송, 전시, 공연 송할 수 습니다.

다 과 같 조건 라야 합니다:

l 하는, 저 물 나 포 경 , 저 물에 적 된 허락조건
 명확하게 나타내어야 합니다.

l 저 터 허가를 면 러한 조건들 적 되지 않습니다.

저 에 른 리는 내 에 하여 향 지 않습니다.

것 허락규약(Legal Code) 해하 쉽게 약한 것 니다.

Disclaimer

저 시. 하는 원저 를 시하여야 합니다.

비 리. 하는 저 물 리 목적 할 수 없습니다.

경 지. 하는 저 물 개 , 형 또는 가공할 수 없습니다.

http://creativecommons.org/licenses/by-nc-nd/2.0/kr/legalcode
http://creativecommons.org/licenses/by-nc-nd/2.0/kr/

공학석사 학위논문

컨볼루션 신경망 학습의 메모리

집약적 연산 가속을 위한 적응형

커널 퓨전

년 월2023 8

서울대학교 융합과학기술대학원

지능정보융합학과

황 승 환

- ii -

컨볼루션 신경망 학습의 메모리

집약적 연산 가속을 위한 적응형

커널 퓨전

Adaptive Kernel Fusion for Accelerating

Memory-Intensive Operations of

Convolutional Neural Network Training

지도교수 안 정 호

이 논문을 공학석사 학위논문으로 제출함

년 월2023 7

서울대학교 융합과학기술대학원

지능정보융합학과

황 승 환

황승환의 공학석사 학위논문을 인준함

년 월2023 7

 ()

 ()

 ()

- i -

Batch normalization feature map

,

. , GPU

batch normalization

GPU .

batch normalization / fusion

batch normalization “Batch Normalization

Fission-n-Fusion (BNFF)” ,

batch normalization memory access , GPU

.

, GPU batch

normalization layer batch

normalization fusion (Adaptive

Kernel Fusion) . GPU

batch normalization feature map fusion

feature map

fusion . CNN

layer fusion

. ResNet BNFF

ResNet ×1.69 , Pytorch

ResNet ×1.24 .

: , GPU, ,

: 2020-29077

- ii -

1 ··· 1

2 ··· 3

1 ·· 3

 1. GPU ··· 3

 2. GPU convolution ················· 4

 3. ResNet building block ·· 7

 4. batch normalization

··· 10

 2 ·· 14

3 BNFF ··············· 16

 1 BNFF ······················· 16

 2 ··· 21

4 ··· 23

 1 ··· 23

 2 ResNet ········· 24

 3 Feature map ResNet

··· 29

5 ··· 31

 1 Ampere GPU

··· 31

 2 cuDNN

- iii -

·· 32

6 ··· 36

·· 37

Abstract ·· 44

- iv -

[2-1] GPU GEMM / tile

·· 6

[3-1] Sub BN1’ convolution fusion ,

Tile shape SMEM . Tile shape

stage CUTLASS

. ·· 18

[3-2] Normalization fusion ··························· 22

[4-1] ·· 23

[4-2] ResNet building block . R×S

weight width height , channel

ofmap channel . ······························ 24

[5-1] A100 RTX 3090 ······························· 31

- v -

[1-1] BNFF ResNet50 Pytorch

ResNet50 (Batch size: 256) ······ 2

[2-1] Kepler Ampere peak

performance L2 cache size ············· 3

[2-2] CUDA library GEMM (a) tiling (b) main loop

. (a) k TB i main loop

tiling , (b) data

dependency . ··· 5

[2-3] GMEM to SMEM operation (a) Turing 2

stage pipeline data flow, (b) Ampere 3 stage

pipeline data flow. ··· 6

[2-4] ResNet building block . Fprop (Forward

propatagion) (forward propagation)

ifmap weight ofmap

convolution , Dgrad (Data gradient)

(backward propagation) ofmap

weight ifmap convolution

, Wgrad (Weight gradient) Dgrad

ifmap Fprop ifmap convolution

weight () convolution

. ··· 8

- vi -

[2-5] A100 ResNet50

(a) breakdown, (b) breakdown

·· 9

[2-6] GPU Batch Normalization Fission-n-Fusion (a)

Forward propagation, (b) backward propagation

(Dgrad), (c) backard propagation (Wgrad) .

feature map

, fusion

. ···························· 11

[2-7] Baseline ResNet50 BNFF ResNet50

breakdown. Baseline Pytorch

ResNet50 . ··· 14

[3-1] BNFF convolution

breakdown. Baseline cuDNN .

·· 16

[3-2] Ofmap 2x2 tile tile

ifmap weight ·· 19

[3-3] Layer (a) sub BN2 (b) sub BN1’ fusion /

normalization + convolution

breakdown. Fusion

, convolution .

·· 20

- vii -

[3-4] HalfBNFF ResNet50 building block

·· 21

[4-1] ResNet34 (a) , (b)

··· 25

[4-2] ResNet50 (a) , (b)

··· 26

[4-3] ResNet152 (a) , (b)

··· 27

[4-4] Batch size ResNet50

··· 29

[4-5] Batch size (a) forward propagation, (b)

backward propagation normalization

cache hit rate. ·· 30

[5-1] RTX 3090 ResNet ,

·· 32

[5-2] Pytorch ResNet50

(Adaptive) MXNet ResNet50

layer (a) , (b) .

MXNet sub BN2 fusion / MXNet

(wo subBN2 F) MXNet (w sub BN2 F) .

- viii -

·· 33

[5-3] ResNet50 (Adaptive)

MXNet ResNet50 (MXNet) layer

normalization L2 cache hit rate breakdown

·· 34

- 1 -

1

CNN (Convolutional Neural Network) [1, 18, 28, 29, 35]

DNN (Deep Neural Network) , (weight)

(Input feature map) convolution

image classification

[3]. MAC (Multiply and ACcumulate)

convolution , CNN [6].

GPU

convolution [4-5, 30].

, convolution ,

non-convolution

[31]. Non-convolution

GPU

. , batch normalization(BN) [16]

, feature map

[2].

Batch Normalization Fission-n-Fusion(BNFF) [2] DNN

bottleneck batch normalization

. BNFF batch normalization

/ fusion batch normalization

, ResNet batch

normalization

. , BNFF cache

GPU , 1.1

.

- 2 -

BN fusion

ResNet50 GPU

, BN fusion .

, ,

BN

Adaptive Kernel Fusion . Adaptive Kernel

Fusion GPU

.

. 2

. 3 BN fusion

, BN

. 4

ResNet batch size . 5

GPU

cuDNN

, 6 .

1.1 BNFF ResNet50 Pytorch ResNet50

(Batch size: 256)

- 3 -

2

1

1. GPU

, GPU

cache scale-up

[32, 33]. GPU

. , Volta low-precision

Tensor core [36] GEMM

.

GPU CUDA core cycle

. , Tensor core

cycle half precision 4x4 ,

4x4 cycle 64

2.1 Kepler Amepere peak performance

L2 cache size [8-12]

- 4 -

. Tensor core GPU

Ampere Pascal 35.5 GEMM

(2.1).

L2 cache .

, GPU

memory access overhead L2 cache size

. 2.1 , Kepler 1.5MB L2

cache size Ampere 40MB .

2. GPU convolution

GPU convolution CUDA

CUTLASS [14] cuDNN [15] . convolution

GPU , input/output

feature map (i/ofmap) weight 2D matrix convolution

GEMM im2col [15]

[4, 7]. 2.2 (a) GPU GEMM

. GPU GEMM tiling input,

weight, output matrix thread block (TB)

. , tiling , , ,

tiling , , . thread block input tile

× , weight ×

× dimension matrix multiplication

.

GEMM TB tile input weight

input row TB tile , weight column TB

tile . , TB tile

, GPU

- 5 -

TB . 2.1 ,

CUDA core Volta m, n tile size

128 , Volta 256 . K tile size

Volta 8 , Tensor core

Volta Turing 32 , Tensor core

Ampere 64 .

Ampere operation

2.2 CUDA library GEMM (a) tiling , (b) main loop

. (a) k TB i main loop tiling

, (b) data dependency .

- 6 -

pipeline . CUDA library GEMM

2.2 (b) GEMM

input weight global memory (GMEM)

shared memory (SMEM) pipeline

latency overhead . Pipeline

stage input weight shared memory “GMEM

to SMEM”, input weight register (REG)

“SMEM to REG”, REG input weight matrix

multiplication “REG to CORE” .

Turing “GMEM to SMEM” 2.2(a)

input weight GMEM REG , SMEM

. L1 cache bandwidth register

, GMEM REG

REG SMEM stall

[32]. , GPU SMEM

input weight ,

stage (SMEM) 2 .

Ampere GPU 2.3 (b) L1, register

GMEM SMEM LDGSTS

operation ,

pipeline flexible scheduling . , Ampere

 # Stages

MAX MIN MAX MIN MAX MIN MAX MIN

Pascal 128 32 128 32 8 8 2 2

Volta 256 64 256 64 32 32 2 2

Turing 256 64 256 64 32 32 2 2

Ampere 256 64 256 64 64 32 10 3

2.1 GPU GEMM / tile

- 7 -

GPU load operation ,

stage , latency overhead

[32, 34].

3. ResNet building block

ResNet[1] CNN ,

, benchmark

[3, 37]. ResNet 2.4 convolution

non-convolution building

block , building block

5 (ResNet18, ResNet34, ResNet50, ResNet101,

ResNet151) . Building block non-convolution

3 , normalization [16] Rectified Linear Unit

(ReLU) [17] , element-wise add .

2.3 GMEM to SMEM operation (a) Turing 2

stage pipeline data flow, (b) Ampere 3 stage

pipeline data flow

- 8 -

Batch normalization convolution fmap

.

fmap () (), batch normalization (,

) , 2.1, 2.2 . ,

0 ,

.

2.4 ResNet building block . Fprop (Forward

propatagion) (forward propagation) ifmap weight

ofmap convolution , Dgrad (Data

gradient) (backward propagation) ofmap

weight ifmap convolution , Wgrad

(Weight gradient) Dgrad ifmap Fprop

ifmap convolution weight ()

convolution .

- 9 -

(2.1)

(2.2)

ReLU fmap

fmap 0

0 .

(2.3)

, element-wise add layer

gradient vanishing

batch normalization building

block ifmap .

Non-convolution convolution

memory access memory intensive ,

ResNet50 .

batch normalization

 × ×

 ≥

2.5 A100 ResNet50

(a) breakdown, (b) breakdown

- 10 -

non-convolution

. 2.5 ,

A100 ResNet50 , non-convolution

memory access size forward propagation

67% 75% batch normalization

47% 41% . Backward propagation

non-convolution memory access size

55% 67% , batch normalization 56%

48% .

4. batch normalization

Kernel fusion [27]

kernel ,

non-convolution memory access overhead

[22-24]. Batch Normalization Fission-n-Fusion

(BNFF) kernel fusion BN

batch normalization sub

operation fission , operation /

fusion .

2.6 convolution - BN - ReLU - convolution

building block BNFF .

Batch normalization (reduction

) (normalization) .

Normalization element-wise ReLU

convolution fusion . reduction

fmap , tile

convolution fusion .

- 11 -

BNFF BN kernel reduction sub BN1

normalization sub BN2 CONV1

CONV2 fusion . , CONV1 fusion sub BN1 tile

mean square mean . , reduction

operation tile mean square mean

reduction feature map .

BNFF reduction .

 (2.4)

 Sub BN2 ReLU CONV2 fusion .

2.6 GPU Batch Normalization Fission-n-Fusion

(a) Forward propagation, (b) backward propagation (Dgrad),

(c) backward propagation (Wgrad) . feature

map ,

fusion .

 × × ×

- 12 -

element-wise convolution

fusion . BNFF , sub BN2 fusion

convolution 2.5 .

(2.5)

BNFF , , ReLU

. , tile mean

tile square mean access ,

1.5 MB (batch size 256) feature map

(12 ~ 300MB) .

Backward propagation 2.6 (b), (c) fission

fusion . Backward batch normalization

(,) reduction (sub BN2’)

normalization (sub BN1’)

. Sub BN2’ Dgrad2, ReLU fusion tile

(,) . reduction operation ,

 . sub BN1’ Dgrad1 fusion

normalization . BNFF batch

normalization backward propagation .

(2.6)

(2.7)

Backward Wgrad 2.6 (c) BNFF

. fusion Wgrad

 ⊗

 × × × ⊗

- 13 -

fmap GMEM , GMEM famp

Wgrad fmap

. BNFF convolution pipeline

. , GEMM tiling TB tile

ifmap TB tile .

TB tile

pipeline GMEM

.

Wgrad fmap

Fprop Dgrad sub BN fusion .

Wgrad1 Dgrad1 ofmap Fprop1 ifmap . ,

Dgrad1 ofmap sub BN1’ Dgrad1 fusion

GMEM . Wgrad1 ,

batch normalization sub BN1’ .

Wgrad2 Fprop2 sub BN2 fusion Fprop2

ifmap GMEM . , convolution

 batch normalization sub BN2

ReLU . BNFF

, Wgrad1 Wgrad2 .

(2.8)

(2.9)

overhead , BNFF

Pascal GPU ResNet50

7.8% [2].

 ⊗

- 14 -

2

ResNet50 batch normalization

non-convolution memory access GPU

Ampere A100 .

, GPU ResNet50

Pytorch ResNet50 Baseline 2.7

BNFF

. , BNFF CUTLASS[13]1) 2.9

.

Baseline BNFF memory

access , 2.7 BNFF

1) CUTLASS linear algebra operations open-source

library , CUTLASS cuDNN convolution

Fprop 94%, Dgrad 107%, Wgrad 90% .

2.7 Baseline ResNet50 BNFF ResNet50

breakdown. Baseline Pytorch[21]

ResNet50 .

- 15 -

memory access size 38% 13%

. Forward , BNFF memory access 46%

x1.37 . backward ,

memory access 17% 1.38 .

Forward Backward

.

- 16 -

3 BNFF

GPU BN fusion

,

. 3 BNFF BN

fusion .

1 BNFF

3.1 ResNet50 BNFF

convolution .

, normalization (sub BN2, sub BN1’) fusion

. BNFF Dgrad Wgrad

, normalization fusion

overhead .

3.1 BNFF convolution

breakdown. Baseline cuDNN .

- 17 -

convolution SMEM

tile . 2 1

, CUDA library GEMM

latency overhead input weight SMEM

. 2.6 (b) (c) , BNFF

Dgrad Wgrad sub BN1’ ofmap ()

fmap () . ,

 SMEM

, SMEM Reg .

, sub BN1’ fusion convolution convolution

SMEM GPU . Sub BN1’

fusion / convolution SMEM

.

(3.1)

(3.2)

Ampere convolution stage

pipeline SMEM data

. , sub BN1’ fusion

tile . 3.1 , sub BN1’ fusion ,

tile SMEM 288 KB . , A100

tile SMEM (164 KB)

sub BN1’ fusion convolution .

3.1 , tile size Dgrad 9%, Wgrad

23% .

tile normalization

. CUDA GEMM fmap tiling

 ′

 ′

 × × ×

 × × × ×

- 18 -

input weight . 3.2

ofmap 2×2 tiling 4 tile convoluion

, tile ifmap weight .

TB0 TB1 A0 , TB2 TB3 A1 .

TB tile convolution

ifmap . Weight TB0

TB2 B0 TB1 TB3 B1 weight

. BNFF , Sub BN2

Fprop ifmap Wgrad weight , sub BN1’ Dgrad

Wgrad ifmap . convolution ofmap

channel size sub BN2 ifmap channel

size sub BN1’ .

Normalization im2col .

SMEM size

(KB)

Tile shape

(× _ ×)

72 128x128_32x3

96
64x64_64x5, 128x64_64x3, 64x64_32x10,

128x64_32x6, 128x128_32x5, 256x128_32x3

108 256x64_32x3

120
64x64_64x5, 128x64_64x3, 64x64_32x10,

128x64_32x6, 128x128_32x5, 256x128_32x3

144 128x128_64x3, 64x256_64x3, 256x64_32x4

192 128x128_64x4, 64x256_64x4, 128x256_64x3

216 256x64_64x3

240 256x128_64x3

288 256x64_64x4

3.1 Sub BN1’ convolution fusion , Tile

shape SMEM . Tile shape stage

CUTLASS .

- 19 -

2 1 2.2 , ifmap im2col matrix

size (N×H×W)×(R×S×C1) . R S 1 ,

convolution ifmap R×S

. , sub BN2 sub BN1’ convolution

fusion normalization R×S .

ResNet convolution layer channel size .

, fmap tile BNFF

overhead . BNFF channel size

3.3 sub BN2 sub BN1’ fusion /

convolution + normalization layer

. , sub BN2 ofmap channel size

256 weight width 1 layer fusion

(conv2_1_3, conv2_x_3) . , ifmap

channel size 128 weight width 1 layer

fusion (conv_2_1_4, conv2_x_3, conv3_x_3), sub BN1’

fusion . Sub BN1’ fusion

channel size sub BN2

Dgrad Wgrad sub BN1’ fusion tile size

.

3.2 Ofmap 2x2 tile tile

ifmap weight

- 20 -

- 21 -

2

(Adaptive Kernel Fusion) BNFF

kernel fusion GPU

. GPU kernel

fusion . Adaptive Kernel Fusion

fusion , memory access overhead

layer fusion . Adaptive Kernel

Fusion 3.4 BN normalization

fusion BNFF (HalfBNFF) , layer

sub BN1’ sub BN2 fusion .

sub BN2 fusion 3.2 .

3.4 HalfBNFF ResNet50 building block

- 22 -

Adaptive Kernel Fusion fmap channel size

fusion kernel layer

fusion .

Sub BN2 fusion Sub BN1’ fusion

ofmap channel size 256≤

Weight width & height = 1

ifmap channel size 128≤

Weight width & height = 1

3.2 Normalization fusion

- 23 -

4

1

4.1 .

3.1 ResNet50

A100 GPU . Framework

NVIDIA Pytorch 1.10 . Baseline

NVIDIA Pytorch ResNet [20]

4.2 . mixed

precision [19] . BNFF, HalfBNFF, Adaptive

Kernel Fusion iteration

Nsight compute [26] . , feature map

size Adaptive Kernel Fusion Batch

size . , GPU

feature map DaLI [25] feature

map pre-processing .

GPU A100 80GB PCIe

Model ResNet

Parameter
Batch size 256, 512, 1024

Precision Mixed precision

Framework Pytorch 1.10

4.1

- 24 -

2 ResNet

Adaptive Kernel Fusion ResNet

(ResNet34, ResNet50, ResNet152) Adaptive Kernel Fusion,

BNFF, HalfBNFF

.

Layer

name

Output

size

Layer parameters

ResNet34 ResNet50 ResNet152

R×S,

channel

#

blocks

R×S,

channel

#

blocks

R×S,

channel

blocks

conv1 112×112 7×7, 64, stride 2

conv2_x 56×56

3×3 max pool, stride 2

3×3, 64

3×3, 64
×3

1×1, 64

3×3, 64

1×1, 256

×3

1×1, 64

3×3, 64

1×1, 256

×3

conv3_x 28×28
3×3, 128

3×3, 128
×4

1×1, 128

3×3, 128

1×1, 512

×4

1×1, 128

3×3, 128

1×1, 512

×8

conv4_x 14×14
3×3, 256

3×3, 256
×6

1×1, 256

3×3, 256

1×1, 1024

×6

1×1, 256

3×3, 256

1, 1024

×36

conv5_x 7×7
3×3, 512

3×3, 512
×3

1×1, 512

3×3, 512

1×1, 2048

×3

1×1, 512

3×3, 512

1×1, 2048

×3

1×1 Average pool, 1000-d FC, softmax

4.2 ResNet building block . R×S

weight width height , channel ofmap

channel .

- 25 -

4.1 ResNet34

. Adaptive Kernel Fusion forward

(backward) propagation baseline ×1.18 (×1.07) ,

BNFF ×1.16 (x1.96) . , Adaptive Kernel Fusion

forward (backward) propagation

baseline 31% (15%) , BNFF 13% (0.3%)

. Adaptive Kernel Fusion BNFF fusion kernel

, fusion

overhead .

ResNet34 convolution filter width

4.1 ResNet34 (a) , (b)

- 26 -

height 4.2 3 , Adaptive Kernel

Fusion convolution fusion

normalization . , Adaptive Kernel Fusion

HalfBNFF building

block ,

.

, ResNet50

. 4.2 batch size 256 ResNet50

(baseline) BNFF, HalfBNFF, Adaptive Kernel Fusion

4.2 ResNet50 (a) , (b)

- 27 -

.

, Adaptive Kernel Fusion ResNet50

.

HalfBNFF normalization fusion

forward (backward) propagation

BNFF 13% (6.0%) . , baseline

38.5% (12%) . ,

HalfBNFF layer fusion overhead

forward (backward) propagation BNFF

×1.03 (×1.56) , baseline ×1.37 (×1.13) .

ResNet50 ResNet34 filter width height

1 3 ResNet50 BNFF

HalfBNFF ResNet34 , Adaptive

Kernel Fusion

. Adaptive Kernel Fusion

Resnet50 forward propagation backward

propagation HalfBNFF 1% BNFF

×1.04 (×1.58) , baseline ×1.42 (×1.14) forward

(backward) propagation . Fusion normalization

, forward

(backward) propagation HalfBNFF 2.2%

(3.8%) . BNFF 10.6% (2.0%) ,

baseline 39.9% (15.3%) .

, ResNet ResNet152

. 4.3

, HalfBNFF ResNet152 forward (backward)

propagation baseline ×1.39 (×1.16) ,

BNFF ×1.07 (×1.84) . ResNet152

ResNet50 channel convolution

- 28 -

BNFF HalfBNFF ResNet50 .

baseline 39% (12%)

, BNFF 13% (5.4%) .

Adaptive Kernel Fusion ResNet152

HalfBNFF ResNet152 .

4.3 , HalfBNFF Adaptive Kernel Fusion forward

(backward) propagation 0.3% (0.6%)

1.1% (2.4%) . ResNet152

. ResNet152 ResNet50 building

block . , building

4.3 ResNet152 (a) , (b)

- 29 -

block channel size convolution ,

building block Adaptive Kernel Fusion

.

3 Feature map

ResNet

Fmap Adaptive Kernel Fusion

batch size ResNet50

. , Fmap size Adaptive Kernel Fusion

BNFF . 4.4 batch

size 512 , Adaptive kernel Fusion ResNet50

forward (backward) propagation HalfBNFF

×1.01 (×1.01) , BNFF ×1.03 (×1.65) , baseline x1.46

(1.16) . Batch size 1024

. Adaptive kernel Fusion forward (backward) propagation

HalfBNFF ×1.01 (×1.01) , BNFF ×1.03

4.4 Batch size ResNet50

- 30 -

(×1.66) , baseline ×1.48 (1.17) .

Fmap size HalfBNFF Adaptive Kernel Fusion

BNFF . GPU cache size

normalization cache hit rate .

4.5 , fmap normalization cache hit

rate . , normalization batch

size , HalfBNFF Adaptive Kernel

Fusion batch size .

batch size channel size

convolution row tiling .

4.5 Batch size (a) forward propagation, (b) backward

propagation normalization cache hit rate.

- 31 -

5

 1 Ampere

GPU

Adaptive Kernel Fusion RTX 3090 Ampere

, A100 ResNet

. RTX 3090 A100 GPU Ampere

GPU , 5.1 A100 GPU GA100

Tensor core , L2 cache SMEM

GA102 .

RTX 3090 L2 cache size normalization

cache hit rate 30~50% A100 10~20% .

, Adaptive Kernel Fusion

, RTX 3090 Adaptive Kernel Fusion

HalfBNFF . RTX 3090 Adaptive

Kernel Fusion ResNet50 , forward

(backward) propagation baseline ×1.47 (×1.16)

, BNFF ×1.01 (×1.24) , HalfBNFF

GPU features A100 RTX 3090

Tensor core Performance (TFLOPS) 310 142

L2 cache size (MB) 40 6

SMEM size (KB) 164 100

5.1 A100 RTX 3090 [12, 40]

- 32 -

1% . L2 cache hit Adaptive Kernel

Fusion A100 RTX 3090

tile shape A100 . RTX

3090 SMEM 164KB 100KB

tile shape A100 .

2 cuDNN

NVIDIA closed source library cuDNN 7.6 batch

normalization forward propagation BNFF

fusion cudnnFusedOps_t .

BNFF forward propagation batch

normalization sub BN1 sub BN2 /

convolution fusion . Sub BN2 convolution

fusion , BNFF backward Wgrad

sub BN2 ReLU . Backward propagation

, BNFF batch normalization

5.1 RTX3090 ResNet50 ,

- 33 -

/ fusion , non-convolution (Batch

normalization, ReLU) fusion batch normalization ReLU

.

cudnnFusedOps_t ResNet50 NVIDIA

MXNet [38] . MXNet open source

, GPU CPU . NVIDIA

5.2 Pytorch ResNet50

(Adaptive) MXNet ResNet50 (a)

, (b) . MXNet sub BN2 fusion

MXNet (wo subBN2 F) MXNet (w sub BN2 F) .

- 34 -

MXNet cuDNN cuBLAS MXNet GPU

. MXNet ResNet50

NVIDIA benchmark MLCommons GPU

report “state-of-the-art” [39].

CudnnFusedOps_t ResNet50 Adaptive Kernel

Fusion ResNet50

. 5.2 , forward propagation

MXNet (wo sub BN2 F) MXNet (w sub BN2 F) Adaptive

Kernel Fusion ResNet50 4%, 17%

×1.15 , ×1.2 . Backward

propagation , MXNet (wo sub BN2 F) Adaptive Kernel

Fusion 11% ×1.07 ,

MXNet (w sub BN2 F) Adaptive Kernel Fusion 10%

, Wgrad

×1.02 . Adaptive

Kernel Fusion (MXNet (wo sub BN2 F)

×1.02 , MXNet (w sub BN2 F) ×1.09),

Pytorch MXNet ,

5.3 ResNet50 (Adaptive)

MXNet ResNet50 (MXNet) layer normalization

L2 cache hit rate breakdown

- 35 -

backward propagation Adaptive Kernel Fusion

MXNet . , MXNet GPU

cuDNN , fusion

Adaptive Kernel Fusion

. 5.2 , forward propagation

convolution batch normalization

Adaptive Kernel Fusion MXNet . , backward

propagation , MXNet convolution batch normalization

Adaptive Kernel Fusion .

5.3 MXNet normalization Adaptive

Kernel Fusion cache hit .

- 36 -

6

convolution batch

normalization ReLU non-convolution

. Non-convolution convolution

memory access

. BNFF Kernel fusion

non-convolution memory access

. , GPU ,

cache size BNFF

, .

, non-convolution

.

BNFF ResNet50 layer

BNFF , GPU

BNFF Adaptive

Kernel Fusion . Adaptive Kernel Fusion normalization

/ HalfBNFF , layer

normalization fusion

normalization fusion overhead .

Adaptive Kernel Fusion ResNet HalfBNFF

×1.01 , BNFF ×1.68 , baseline ×1.24

. , fusion kernel BNFF

ResNet 5.5% ,

HalfBNFF ResNet baseline

3.3%, 25% .

- 37 -

[1] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun

“Deep Residual Learning for Image Recognition,” Proceedings

of the IEEE Conference on Computer Vision and Pattern

Recognition (CVPR), 2016, pp. 770-778.

[2] Olga Russakovsky, Jia Deng, Hao Su, Jonathan Krause,

Sanjeev Satheesh, Sean Ma, Zhiheng Huang, Andrej Karpathy,

Aditya Khosla, Michael Bernstein, and Alexander C. Berg & Li

Fei-Fei “Imagenet large scale visual recognition challenge,”

International journal of computer vision 115 (IJCV), 2015, pp.

211-252.

[3] Heehoon Kim, Hyoungwook Nam, Wookeun Jung, and Jaejin

Lee, “Performance analysis of CNN frameworks for GPUs,”

IEEE International Symposium on Performance Analysis of

Systems and Software (ISPASS). IEEE, 2017, pp. 55-64.

[4] Wonkyung Jung, Daejin Jung, Byeongho Kim, Sunjung Lee,

Wonjong Rhee, and Jung Ho Ahn, “Restructuring Batch

Normalization to Accelerate CNN Training,” The Conference

on Systems and Machine Learning (sysML), 2019, pp. 14-26.

[5] Sangkug Lym, Donghyuk Lee, Mike O'Connor, Niladrish

Chatterjee, and Mattan Erez, “DeLTA: GPU performance

model for deep learning applications with in-depth memory

system traffic analysis,” IEEE international symposium on

performance analysis of systems and software (ISPASS).

- 38 -

IEEE, 2019, pp 293-303.

[6] Canziani, Alfredo, Adam Paszke, and Eugenio Culurciello, “An

analysis of deep neural network models for practical

applications,” arXiv:1605.07678, 2016.

[7] Sunjung Lee, Seunghwan Hwang, Michael Jaemin Kim, Jaewan

Choi, and Jung Ho Ahn, “Future Scaling of Memory Hierarchy

for Tensor Cores and Eliminating Redundant Shared Memory

Traffic Using Inter-Warp Multicasting,” IEEE Transactions on

Computers, 2022, pp. 3115-3126.

[8] NVIDIA, “KeplerTM GK110/210,” https://keplernetwork.s3.eu

central-1.amazonaws.com/WhitePaper/Kepler_WhitePaper_EN.p–

df, 2012.

[9] NVIDIA, “Pascal Architecture Whitepaper,” https://images.

nvidia.com/content/pdf/tesla/whitepaper/pascal-architecture-whi

tepaper.pdf, 2016.

[10] Choquette, Jack, Olivier Giroux, and Denis Foley, “Volta:

Performance and programmability,” Micro, Ieee, 2018, pp.

42-52.

[11] John Burgess, “Rtx on the nvidia turing gpu,” Micro, IEEE, —

2020, pp. 36-44.

[12] Jack Choquette, Wishwesh Gandhi, Olivier Giroux, Nick Stam,

and Ronny Krashinsky, “Nvidia a100 tensor core gpu:

- 39 -

Performance and innovation,” Micro, IEEE, 2021, pp. 29-35.

[13] NVIDIA, “CUTLASS,” https://github.com/NVIDIA/cutlass.

[14] Andrew Kerr, Duane Merrill, Julien Demouth, and John Tran,

“CUTLASS: Fast Linear Algebra in CUDA C++,”

https://developer.nvidia.com/blog/cutlass-linear-algebra-cuda/,

2017.

[15] Sharan Chetlur, Cliff Woolley, Philippe Vandermersch,

Jonathan Cohen, John Tran, Bryan Catanzaro, and Evan

Shelhamer, “cuDNN: Efficient Primitives for Deep Learning,”

arXiv:1410.0759, 2014.

[16] Sergey Ioffe and Christian Szegedy, “Batch normalization:

Accelerating deep network training by reducing internal

covariate shift,” International conference on machine learning

(PMLR), 2015, pp 448-456.

[17] Vinod Nair and Geoffrey E. Hinton, “Rectified linear units

improve restricted boltzmann machines,” Proceedings of the

27th international conference on machine learning (ICML),

2010, pp.807-814.

[18] Karen Simonyan and Andrew Zisserman, “Very deep

convolutional networks for large-scale image recognition,”

arXiv:1409.1556, 2014.

[19] Paulius Micikevicius, Sharan Narang, Jonah Alben, Gregory

- 40 -

Diamos, Erich Elsen, David Garcia, Boris Ginsburg, Michael

Houston, Oleksii Kuchaiev, Ganesh Venkatesh, and Hao Wu,

“Mixed Precision Training,” arXiv:1710.03740, 2017.

[20] NVIDIA, “DeepLearningExamples,” https://github.com/NVIDIA

/DeepLearningExamples.

[21] Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer,

James Bradbury, Gregory Chanan, Trevor Killeen, Zeming

Lin, Natalia Gimelshein, Luca Antiga, Alban Desmaison,

Andreas Kopf, Edward Yang, Zachary DeVito, Martin Raison,

Alykhan Tejani, Sasank Chilamkurthy, Benoit Steiner, Lu

Fang, Junjie Bai, and Soumith Chintala, “PyTorch: An

Imperative Style, High-Performance Deep Learning Library,”

Advances in Neural Information Processing Systems 32

(NeurIPS), 2019.

[22] Jaewan Choi, Hailong Li, Byeongho Kim, Seunghwan Hwang,

and Jung Ho Ahn, “Accelerating Transformer Networks

through Recomposing Softmax Layers,” IEEE International

Symposium on Workload Characterization (IISWC), 2022, pp.

92-103.

[23] Tianqi Chen, Thierry Moreau, Ziheng Jiang, Lianmin Zheng,

Eddie Yan, Meghan Cowan, Haichen Shen, Leyuan Wang,

Yuwei Hu, Luis Ceze, Carlos Guestrin, and Arvind

Krishnamurthy, “TVM: An Automated End-to-End Optimizing

Compiler for Deep Learning, ”, arXiv:1802.04799, 2018.

- 41 -

[24] Han Vanholder, “Efficient inference with tensorrt,” GPU

Technology Conference, 2016.

[25] Joaquin Anton Guirao, Krzysztof Łęcki, Janusz Lisiecki, Serge

Panev, Michał Szołucha, Albert Wolant, and Michał

Zientkiewicz, “Fast AI Data Preprocessing with NVIDIA

DALI”, https://developer.nvidia.com/blog/fast-ai-data-

preprocessing-with-nvidia-dali, 2019

[26] NVIDIA, “Nsight Compute Documentation,” https://docs.nvidia.

com/nsight-compute/NsightCompute/index.html, 2021.

[27] Guibin Wang, YiSong Lin, and Wei Yi, “Kernel Fusion: An

Effective Method for Better Power Efficiency on

Multithreaded GPU,” IEEE/ACM Int'l Conference on Green

Computing and Communications & Int'l Conference on Cyber,

Physical and Social Computing. IEEE, 2010, pp. 344-350.

[28] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E. Hinton,

“ImageNet classification with deep convolutional neural

networks,” Advances in Neural Information Processing

Systems, 2012.

[29] Gao Huang, Zhuang Liu, Laurens van der Maaten, and Kilian

Q. Weinberger, “Densely Connected Convolutional Networks,”

Proceedings of the IEEE conference on computer vision and

pattern recognition (CVPR), 2017, pp. 4700-4708.

[30] Maohua Zhu, Tao Zhang, Zhenyu Gu, Yuan Xie, “Sparse

- 42 -

Tensor Core: Algorithm and Hardware Co-Design for

Vector-wise Sparse Neural Networks on Modern GPUs,”

Proceedings of the 52nd Annual IEEE/ACM International

Symposium on Microarchitecture (MICRO), 2019, pp.

359-371.

[31] Zhen Zheng, Pengzhan Zhao, Guoping Long, Feiwen Zhu, Kai

Zhu, Wenyi Zhao, Lansong Diao, Jun Yang, and Wei Lin,

“Fusionstitching: boosting memory intensive computations for

deep learning workloads,” arXiv:2009.10924, 2020.

[32] Guillaume Thomas-Collignon and Vishal Mehta, “OPTIMIZING

CUDA APPLICATIONS FOR NVIDIA A100 GPU,” GPU

Technology Conference, 2020.

[33] Ronny Krashinsky and Olivier Giroux, “Inside the NVIDIA

Ampere Architecture,” GPU Technology Conference, 2020.

[34] Carter Edwards, “CUDA on NVIDIA GPU AMPERE

MICROARCHITECTURE Taking your algorithms to the next

level of performance,” GPU Technology Conference, 2020.

[35] Mingxing Tan and Quoc Le, “EfficientNet: Rethinking Model

Scaling for Convolutional Neural Networks”, Proceedings of

the 36th International Conference on Machine Learning

(PMLR), 2019, pp. 6105-6114.

[36] Stefano Markidis, Steven Wei Der Chien, Erwin Laure, Ivy

Bo Peng, and Jeffrey S. Vetter, “NVIDIA Tensor Core

- 43 -

Programmability, Performance & Precision,” IEEE

International Parallel and Distributed Processing Symposium

Workshops (IPDPSW), 2018, pp. 522-531

[37] Peter Mattson, Christine Cheng, Cody Coleman, Greg

Diamos, Paulius Micikevicius, David Patterson, Hanlin Tang,

Gu-Yeon Wei, Peter Bailis, Victor Bittorf, David Brooks,

Dehao Chen, Debojyoti Dutta, Udit Gupta, Kim Hazelwood,

Andrew Hock, Xinyuan Huang, Atsushi Ike, Bill Jia, Daniel

Kang, David Kanter, Naveen Kumar, Jeffery Liao, Guokai Ma,

Deepak Narayanan, Tayo Oguntebi, Gennady Pekhimenko,

Lillian Pentecost, Vijay Janapa Reddi, Taylor Robie, Tom St.

John, Tsuguchika Tabaru, Carole-Jean Wu, Lingjie Xu,

Masafumi Yamazaki, Cliff Young, and Matei Zaharia, “MLPerf

Training Benchmark,” Proceedings of Machine Learning and

Systems (MLsys), 2022, pp. 336-349.

[38] Tianqi Chen, Mu Li, Yutian Li, Min Lin, Naiyan Wang, Minjie

Wang, Tianjun Xiao, Bing Xu, Chiyuan Zhang, and Zheng

Zhang, “MXNet: A Flexible and Efficient Machine Learning

Library for Heterogeneous Distributed Systems,”

arXiv:1512.01274, 2015.

[39] MLCOMMONS, “MLPerf Training Reference Implementations,”

https://github .com/mlcommons/training

[39] NVIDIA, “NVIDIA AMPERE GA102 GPU ARCHITECTURE,”

https://www.nvidia.com/content/PDF/nvidia-ampere-ga-102-g

pu-architecture-whitepaper-v2.pdf, 2021.

- 44 -

Abstract

Adaptive Kernel Fusion for

Accelerating Memory-Intensive

Operations of Convolutional

Neural network Training

SeungHwan Hwang

Department of Intelligence and Information

Gradute School of Convergence Sceience and

Technology

Seoul National University

The batch normalization operation improves the accuracy of

machine learning models by normalizing the data distribution of

feature maps to a Gaussian distribution. However, it requires a

large amount of memory access compared to its computational

workload, which induces the under-utilization of GPU

performance. To address this issue, an algorithm called “Batch

normalization Fission-n-Fusion(BNFF)” was proposed to optimize

batch normalization by splitting the batch algorithm into two

operations and fusing them into former and later operations. It

- 45 -

reduces the memory access of batch normalization, but it is not

suitable for modern GPU hardware, because the BNFF algorithm

increases the training computation time.

In this paper, we propose an adaptive kernel fusion algorithm,

which changes the fusion mechanism of batch normalization

according to the model parameter, for efficiently optimizing the

batch normalization optimization algorithm in modern GPU

architecture. We analyze the efficiency according to the feature

map size and the fusion mechanism of batch normalization on

modern GPU architecture and determine the optimal fusion

mechanism based on the feature map size. Based on the analysis,

we propose a new algorithm that applies an optimal fusion

mechanism to each layer of the machine learning model. Our

evaluation shows that Adaptive kernel fusion improves the training

time of the ResNet model up to ×1.24 and ×1.69, compared to

the BNFF algorithm-based ResNet model and the original Pytorch

ResNet model.

keywords : CNN, GPU, Batch normalization, Kernel fusion

Student Number : 2020-29077

	제 1 장 서론
	제 2 장 배경 및 동기
	제 1 절 배경
	1. GPU 하드웨어의 구조 변화
	2. GPU 하드웨어를 이용한 convolution 연산 변화
	3. ResNet의 building block 구조
	4. 딥러닝 모델의 batch normalization 연산 최적화 알고리즘 소개

	제 2 절 동기

	제 3 장 BNFF의 성능 하락 분석 및 개선
	제 1 절 역전파에서의 BNFF 성능 하락 분석
	제 2 절 적응형 커널 퓨전

	제 4 장 성능
	제 1 절 실험 환경
	제 2 절 알고리즘별 ResNet 모델 최적화 성능 분석
	제 3 절 Feature map 크기에 따른 알고리즘별 ResNet 모델 최적화 성능 분석

	제 5 장 고찰
	제 1 절 캐시 크기가 작은 Ampere 세대 GPU에서의 적응형 커널 퓨전의 성능 비교
	제 2 절 cuDNN 라이브러리와 적응형 커널 퓨전의 성능 비교

	제 6 장 결론
	참고문헌
	Abstract

<startpage>12
제 1 장 서론 1
제 2 장 배경 및 동기 3
 제 1 절 배경 3
 1. GPU 하드웨어의 구조 변화 3
 2. GPU 하드웨어를 이용한 convolution 연산 변화 4
 3. ResNet의 building block 구조 7
 4. 딥러닝 모델의 batch normalization 연산 최적화 알고리즘 소개 10
 제 2 절 동기 14
제 3 장 BNFF의 성능 하락 분석 및 개선 16
 제 1 절 역전파에서의 BNFF 성능 하락 분석 16
 제 2 절 적응형 커널 퓨전 21
제 4 장 성능 23
 제 1 절 실험 환경 23
 제 2 절 알고리즘별 ResNet 모델 최적화 성능 분석 24
 제 3 절 Feature map 크기에 따른 알고리즘별 ResNet 모델 최적화 성능 분석 29
제 5 장 고찰 31
 제 1 절 캐시 크기가 작은 Ampere 세대 GPU에서의 적응형 커널 퓨전의 성능 비교 31
 제 2 절 cuDNN 라이브러리와 적응형 커널 퓨전의 성능 비교 32
제 6 장 결론 36
참고문헌 37
Abstract 44
</body>

