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Abstract 

 

김 채 영 (ChaeYoung Kim) 

의과학과 의과학전공 (Biomedical Sciences Major) 

The Graduate School 

Seoul National University 
 

Metastasis remains an obstacle to the treatment of colorectal cancer 

(CRC). Liver is one of the most common sites of colorectal cancer 

metastases (CLM). However, the number of experimental models 

that retain the biological and molecular characteristics of CLM is 

insufficient to pinpoint therapeutic targets. Exosomal miRNA, one of 

the many causes of liver metastasis (LM), promotes distant 

metastasis by altering biological processes such as epithelial-

mesenchymal transition (EMT), immunosuppression, and tumor 

microenvironment re-composition. 

In this study, five pairs of organoids established from CLM cell lines 

and tissues were subjected to genetic, translational and 

pharmacological analysis. Then, multi-omics layers were integrated 

with specific molecular markers centered on the transcriptomic and 

miRNA profiles. Decision tree and LARS model indicated that 

regulation of KRAS signaling was highly associated with the 
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responses of anti-tumor drugs. 

My approach not only identified molecular biomarkers that were 

specifically regulated in LM organoids but also connected those 

markers to a certain therapeutic regimen. 
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Introduction 

Colorectal cancer (CRC) is the third most commonly diagnosed 

malignancy worldwide, and the third leading cause of cancer death in 

Korea [1-3]. More than half of CRC patients develop colorectal liver 

metastasis (CLM) largely due to the adjacent anatomical relation [4, 

5]. The prognosis of metastatic CRC patients remains dismal, as only 

11.7% survive within the 5-year follow up period. The benefits of 

hepatectomy would be marginal because more than 90% of CLM 

patients are diagnosed as unresectable due to tumor location, size, or 

inadequate residual liver [6-8]. Accordingly, identifying suitable 

chemotherapeutic targets would improve the prognosis of CLM 

patients. Nevertheless, current research in CLM has been focused on 

only the genetic and transcriptomic layers, limiting understanding of 

tumor dissemination in association with pharmacological 

comprehension [9-11]. 

Regardless of resectability, treatment of CLM mainly depends on 

adjuvant chemotherapy. Combination therapies based on cytotoxic 

agents such as CAPOX, FOLFIRI, and FOLFOX with certain targeted 

drugs, including Bevacizumab and Cetuximab, are considered first-

line treatments [12]. Nevertheless, only a small portion of CLM 
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patients benefit from first-line chemotherapies, highlighting the 

importance of identifying CLM-specific drugs in accordance with 

multi-omics analysis. In this view point, establishing in-vitro CLM 

models contributes to comprehending the sequential cascades of 

tumor dissemination to the liver as well as the overall drug response 

to certain drugs. Especially, the unique ability of patient-derived 

organoids (PDOs) to capture both clinicopathological and molecular 

features of the original tumor is highly valuable [13]. 

Recent studies report that tumor-derived exosomal microRNAs 

(miRNAs) induce metastases by regulating multiple oncogenic 

pathways such as epithelial-mesenchymal transition (EMT), 

angiogenesis, and immunosuppression in CRC [14]. Exosomes are 

small (30-90 nm) cell-derived vesicles that promote intercellular 

communication by delivering bioactive components such as DNA, 

mRNA, protein, and various kinds of non-coding RNA between cells 

[15]. Exosomes can be detected in most body fluids, therefore, they 

are considered a valuable non-invasive liquid biomarker [16, 17]. 

miRNAs are short (18-25 nt) non-coding RNAs involved in the 

post-transcriptional regulation of gene expression [18]. They bind 

to the 3’-untranslated region (3’UTR) of target messenger RNAs 

(mRNAs) and induce translational repression or target degradation 
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[19]. 

In this study, I established eleven PDOs and developed a platform for 

extracting miRNA from the three-dimensional (3D) model. The CLM 

organoids and miRNAs were subjected to next-generation 

sequencing (NGS) and high-throughput drug screening (HTS). 

Subsequently, multi-omics analyses were conducted using 

supervised learning algorithms, including DIABLO, LARS, and 

Random Forest, to identify specific features in liver metastasis (LM). 

The findings of my study suggest a significant correlation between 

miR-3613-5p, eEF2K, and the anti-cancer drug TAS-102. 

Furthermore, it was discovered that there is a relationship between 

the down-regulated gene set regulated by KRAS signaling and the 

response to anti-cancer drugs in liver metastasis (LM). 
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Material and Methods 

Ethics statement 

The research protocol was reviewed and approved by the 

institutional review board of the Seoul National University hospitals. 

The study was performed in accordance with the Declaration of 

Helsinki. Written informed consent was obtained from all patients 

enrolled in this study. IRB No. 1102-098-357. 

 

Establishment of tumor derived organoids 

The dissociated tumor cells were taken up in Basement Membrane 

Extract (BME) (Cultrex (R)PC BME RGF type 2, Aimbio) and plated 

the mixture into a flat-bottomed plate. After the BME gel is 

polymerized, Human Intestinal Stem Cell medium (HISC) was added 

for organoid culture. HISC minus Wnt is composed of basal culture 

medium with 20% R-Spondin conditioned medium, 10% Noggin 

conditioned medium, 1 x B27, 1.25 mM n-Acetyl Cysteine, 10 mM 

Nicotinamide, 50 ng/ml human EGF, 10 nM Gastrin, 500 nM A83-01, 

3 µM SB202190, 10 nM Prostaglandine E2 and 100 mg/ml Primocin 

(Vivogen). Culture medium was exchanged every 2 or 3 days. For 
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passaging cultured organoids, BME was dissolved by applying a 

physical force by pipetting. Dissolved cells were collected in a tube 

and were centrifuged at 1,000 rpm for 3 min. 5 ml Triple Express 

(Invitrogen) was added and the organoids were incubated at 37°C 

for approximately 5 min. FCS and medium were added and cells were 

spun down at 1,500 rpm for 3 min. The pellet was resuspended in 

BME and cells were plated in droplets of 50–100 µL each. After the 

BME gel is polymerized, Human Intestinal Stem Cell medium (HISC) 

was added for organoid culture. All organoids were cultured in a 

humidified incubator at 37 ˚C containing 5% CO2 and 95% air. 

Organoids and cell lines established in this study will be governed 

and distributed worldwide by the leading contact, Dr. Ku Ja-Lok and 

Korean Cell Line Bank (KCLB). 

 

Establishment of cell line derived organoids 

Initial passage (passage 0 ~ 2) cell lines were selected for producing 

CLM organoid (Table 1). Cell lines were trypsinized by Trypsin. FCS 

and medium were added, and cells were spun down at 1,500 rpm for 

3 min. The dissociated cell pellet was resuspended in BME and plated 

the mixture into a flat-bottomed plate at different densities. 
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Subsequent culture methods were identical to those previously 

mentioned in the section “Establishment of tumor derived organoids”. 

Table 1. The passage number of cell lines for establishing PDCO 

Case Number Sample Name 
Cell line  

passage 

Case 1 SNU-2337A-CO p.2 

Case 1 SNU-2337B-CO p.2 

Case 2 SNU-2536B-CO p.1 

Case 2 SNU-2536C-CO p.1 

Case 3 SNU-2600A-CO p.2 

Case 3 SNU-2600B-CO p.2 

Case 3 SNU-2600C-CO p.0 

Case 4 SNU-3546A-CO p.1 

Case 4 SNU-3546B-CO p.1 

 

Whole-exome sequencing 

Whole-exome capture was performed on all PDOs and PDCOs with 

the SureSelect Human All Exon V5 Kit (Agilent Technologies, Tokyo, 

Japan). The captured targets were subjected to sequencing using 

HiSeq 2500 (Illumina, San Diego, CA, USA) with the pair-end 100 

bp read option for organoid samples. The sequence data were 

processed through an in-house pipeline. In brief, paired-end 

sequences were first mapped to the human genome, where the 

reference sequence was UCSC assembly hg19 (original GRCh37 
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from NCBI, Feb. 2009), using the mapping program BWA (version 

0.7.12), and a mapping result file in BAM format was generated using 

BWA-MEM. Then, Picard-tools (ver. 1.130) were applied in order 

to remove PCR duplicates. The local realignment process was 

performed to locally realign reads with BAM files, reducing those 

reads that identically match a position at start into a single one, using 

MarkDuplicates.jar, which requires reads to be sorted. By using the 

Genome Analysis Toolkit, base quality score recalibration (BQSR) 

and local realignment around indels were performed. The Haplotype 

Caller of GATK (GATK v3.4.0) was used for variant genotyping for 

each sample based on the BAM file previously generated (SNP and 

short indels candidates are detected). Somatic mutations were 

identified by providing the reference and sequence alignment data of 

organoids to MuTect2 (involved in GATK v3.8.0) with default 

parameters using tumor-normal mode. Those variants are annotated 

by SnpEff v4.1g in vcf file format, filtering with dbSNP for version 

142 and SNPs from the 1000 genome project. SnpEff was applied to 

filter additional databases, including ESP6500, ClinVar, and dbNSFP 

2.9. 
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RNA-sequencing 

Paired-end sequencing reads of cDNA libraries (101 bp) generated 

from a NovaSeq6000 instrument were verified for sequence quality 

with FastQC v. 0.11.7. For data preprocessing, low-quality bases and 

adapter sequences in reads were trimmed using Trimmomatic v. 0.38. 

The trimmed reads were aligned to the human genome (UCSC hg19) 

using HISAT v2.1.0, a splice-aware aligner. And then, transcript 

assembly of known transcripts, novel transcripts, and alternative 

splicing transcripts was processed by StringTie v1.3.4d. Based on 

the result of that, the expressional abundance of transcript and gene 

was calculated as a read count or TPM value (transcript per million 

mapped reads) per sample. 

 

Gene expression omnibus database analysis 

Gene expression omnibus (GEO) database analysis. The GEO 

database (https://www.ncbi.nlm.nih.gov/geo/) is a web based 

database providing raw gene expression data. This study used a GEO 

expression data (GEO accession: GDS4393) investigating 

responders to FOLFOX therapy of fifty-four unresectable CRC 

patients. The paired t-test was applied by dividing cluster into 
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thirty-three pCRCs and twenty-one LM 

 

Pathway analysis 

50 canonical pathway gene sets from HALLMARK described in 

MsigDB (v7.5.1) were used for pathway analysis. To assign pathway 

enrichment estimates to each organoid, GSVA in the GSVA package 

(version 1.46.0) was applied with standard settings. Differentially 

activated pathway analysis was performed using DEseq2 (version 

1.38.3). 

 

Exosome isolation 

For exosome isolation, culture medium was replaced with serum-

free HISC after passaging. Serum-free HISC is composed of serum 

minus basal culture medium with 20% R-Spondin conditioned 

medium, 10% Noggin conditioned medium, 1 x B27, 1.25 mM n-

Acetyl Cysteine, 10 mM Nicotinamide, 50 ng/ml human EGF, 10 nM 

Gastrin, 500 nM A83-01, 3 µM SB202190, 10 nM Prostaglandine E2 

and 33 mg/ml Primocin (Vivogen). After 10 – 14 days, culture 

medium was harvested and centrifuged at 2000 x g for 30 min. 

Supernatant was filtered with 100 um syringe filter and transferred 
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to new tube. 1/2 volume of exosome isolation (from cell culture media) 

reagent (cat no. 4478359, Thermo Fisher Scientific, Inc.) was added 

to filtered medium. Mixed medium-reagent mixture was incubated in 

4 ˚C overnight. After incubation, mixture was centrifuged at 10000 

x g 1h 4 ˚C. Exosome pellet was resuspended by PBS and stored in 

the deep freezer at -70 °C. 

 

Western blot for exosome detection 

Organoid harvesting solution was added, and the organoids were 

incubated at 4 °C for approximately 3 h while shaking. Cells were 

spud down at 1500 rpm in 3 min. Cells were lysed with RIPA lysis 

buffer (ATTO corporation) adding proteinase inhibitors and 

phosphatase inhibitors. Protein concentrations were determined 

using the SMARTTM Micro BCA Protein Assay Kit (Intron 

Biotechnology, Inc.). Proteins (8 µg) were loaded on Mini-

PROTEAN Ⓡ TGX Precast Gels (Bio-Rad Laboratories, Inc.) with 

4✕ SDS buffer and transferred to PVDF membranes using the 

Trans-Blot Turbo™ Transfer Pack (Bio-Rad Laboratories, Inc.). 

The membranes were blocked at room temperature for 1 h with 2% 

skim milk in 0.05% TBS-Tween (BD Biosciences). The membranes 
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were then exposed to primary antibodies for 1–2 h at room 

temperature against CD63 (RRID:AB_394205, cat. no. 551458; 

1:2000; Thermo Fisher Scientific, Inc.) and Calnexin 

(RRID:AB_2259493, cat no. 2692-1; 1:500; Abcam, UK). 

Subsequently, membranes were incubated with anti-mouse IgG 

(H+L) secondary antibody, HRP (RRID:AB_2536527, cat. no. G-

21040; 1:5,000; Thermo Fisher Scientific, Inc.) and anti-rabbit IgG 

(H+L) secondary antibody, HRP (RRID:AB_1500696, cat. no. G-

21234; 1:5,000; Thermo Fisher Scientific, Inc.). For visualized the 

target protein, ECL reagent (Pierce™ ECL Western Blotting 

Substrate; cat no. 32106; Thermo Fisher Scientific, Inc.) was used. 

 

Exosomal miRNA extraction 

Exosomal miRNA was extracted with the Total Exosome RNA & 

Protein Isolation Kit (cat no. 4478545, Thermo Fisher Scientific, Inc.) 

Exosome was mixed with 200µl of 2X denaturing solution (pre-

warmed at 37 °C) and incubated on ice for 5 min. 400µl of Acid-

Phenol:Chloroform was added to the exosome mixture and 

centrifuged for 5 min at 10,000 x g at room temperature. The 

aqueous phase was collected in a new tube without lower phase 
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contamination. 1.25 volumes of 100% ethanol were added to the 

aqueous phase. The mixture was placed on the filter cartridge. The 

filter cartridge with the mixture was centrifuged at 10,000 X g for 

~15 s and washed with wash solution. The filter cartridge was 

transferred to a collection tube. miRNA was eluted with (pre-heated 

at 95 °C) nuclease free water. 

 

miRNA microarray 

The Affymetrix Genechip miRNA 4.0 array was used for miRNA 

detection. 1000 ng RNA samples were labeled with the FlashTag™ 

Biotin RNA Labeling Kit (Genisphere, Hatfield, PA, USA). The 

labeled RNA was quantified, fractionated, and hybridized to the 

miRNA microarray according to the standard procedures provided by 

the manufacturer. The labeled RNA was heated to 99 ˚C for 5 

minutes and then to 45 ˚C for 5 min. RNA-array hybridization was 

performed with agitation at 60 rotations per minute for 16 h at 48 ˚

C on an Affymetrix GeneChip Hybridization over 645. The chips were 

washed and stained using a Genechip Fluidics Station 450 

(Affymetrix, CA, United States). The chips were then scanned with 

an Affymetrix GCS 3000 canner (Affymetrix). Raw data (CEL file) 
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were generated by Affymetrix Genechip Command Console Software 

(AGCC). CEL files were normalized, checked for probe quality and 

filtered by the manufacturer’s procedure. Only quality checked 

probes (330) were used for miRNA analysis. 

 

miRNA target prediction  

Top 20 miRNAs were selected through comparative analysis 

between pCRC and LM and target genes were predicted through 

miRWalk 3.0. Then, the target genes’ expression amount was 

evaluated on the mRNA-seq. In detail, the target genes of the up-

regulated miRNAs were sorted by only the common gene, whose 

log2FC ≤ 1 on the RNA-seq data. Conversely, the target genes of the 

down-regulated miRNAs were sorted by the common gene, which 

has log2FC ≥ 1. The schematic diagram of miRNA target prediction is 

in Figure 1. 
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Figure 1. Scheme of miRNA target prediction. 

 

Organoids drug sensitivity test 

All drug screens were repeated more than three times. Organoids 

were enzymatically and mechanically dissociated into single cells by 

incubating and pipetting in TrypLE Express solution for 5 to 10 min. 

The mixture was spun down at 1500 rpm for 3 min. After dissolving 
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BME, the cell pellet was resuspended with 7:3 mixtures of HISC 

medium and BME. Cell-BME-HISC mixture (60 µL, 20 000 

organoids mL−1) was plated homogeneously in clear-bottomed, 

white-walled 96-well plates (Corning, Cat# 3903) using F1-

ClipTip Multichannel Pipettes (Thermo Fisher Scientific, MA, USA). 

After allowing the BME to be polymerized, pre-warmed HISC 

medium (20 µL) was added to each well using an F1- ClipTip 

Multichannel Pipettes. 72 h after seeding, drug solution (20 µL) was 

added to each well using F1- ClipTip Multichannel Pipettes. In the 

HISC medium, the drugs were serially diluted at a ratio of 1:3 from 

the maximum dose to produce six dose points. The mixture of HISC 

medium and drug-solvent solution was added to all plates for the 

control group. The drug list used in this study is documented in Table 

2. 
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Table 2. Compounds list of organoid drug screening. 

Drug 
Commercial 

name 

Max  

conc. 

(µM) 

Target 

TAS-102 LONSURF 100 nucleoside metabolism 

Regorafenib Stivarga 100 VEGFR1/2/3, PDGFR-β, FGFR, c-KIT, c-RET, RAF 

Capecitabine Xeloda 1000 nucleoside metabolism 

Apitolisib (GDC-0980)  50 mTOR 

Belinostat (PXD101) Beleodaq 100 histone deacetylase(HDAC) 

Trametinib (GSK1120212) Mekinist 50 MEK1/2 

cyclopamine  50 Smoothened(Smo) 

ICG-001 Foscenvivint 100 β-catenin 

Buparlisib Norvatis 100 PI3K 

Vorinostat SAHA 50 histone deacetylase(HDAC) 

Afatinib Gilotrif 50 ErbB family of tyrosine kinases 

Vistusertib (AZD2014)  5 mTORC 1/2 

MK-5108  100 Aurora A kinase 

Olaparib LYNPARZA 50 poly ADP-ribse polymerase(PARP) enzyme  

Irinotecan Hydrochloride Camptosar 100 topoisomerase I 

5-FU (Fluorouracil injection) Efudex 20000 deoxyribonucleic acid(DNA) synthesis 

Oxaliplatin Eloxatin 100 DNA synthesis 

Dabrafenib Tafinlar 10 BRAF 

MK-2206  4 AKT 1/2/3 

Cabozantinib Cometriq 10 tyrosine kinase receptor(VEGFR2, c-MET, RET) 

Everolimus (RAD001) Afinitor 10 mTOR 
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Multi-omics integration 

DIABLO method of the mixOmics package (version 6.22.0) was used 

to integrate RNA-seq, miRNA expression, and drug response data. 

Each piece of data was normalized and filtered by its own method to 

be used as an input for data integration. The matrix used for data 

integration consisted of three blocks: RNA-seq (319 features) x 

miRNA microarray (296 features) x drug responses (21 features) 

estimating more than two thousand multi-omics combinations. While 

running the tuning function tune.black.splsda (), parameters called 

Overall.BER and centroids.dist were used for best accuracy [20]. 

 

Construction of prediction model 

R packages were used for all estimates and visualization [21]. To 

identify the highest performance, six different machine learning 

models were used: Decision tree[22, 23], k-Nearest-Neighbor [24], 

Logistic regression [25], Naïve bayes [26], Neural network [27], 

and Random forest [28]. Comparison and visualization was done by 

modelr package [29]. The estimation of accuracy and confusion 

matrix is done by yardstick within tidymodels package [25] to 

quantify how well model fits to a data set. I checked and found that 
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the overall prediction results did not depend very much on the 

machine-learning method and parameter tuning (which requires a 

huge computational resource), but more on the set of meaningful 

biological features (data not shown). Pathway enrichment score 

(NES) and miRNA expression are used to select genomic features 

for training machine learning models. In addition, I incorporated the 

response of 21 drugs in the unit of AUC. 

I have implanted the automatic machine learning package Lares [9] 

with the following settings: split = 0.7 (train set), target = 

“metastasis”, no_outliers = TRUE, unique_train = TRUE, center = 

FALSE, scale = FALSE, nfolds = 5, max_models = 500, thresh = 10. 

All appropriate algorithms, including Distributed Random Forest 

(DRF), Extremely Randomized Trees (XRT), and Generalized Linear 

Model with regularization are used if the search stopping criteria 

allow. 

 

Statistical analysis 

All statistical analysis was conducted using the R program (version 

4.2.2). A p-value of 0.05 was considered statistically significant. To 

determine the optimal number of clusters, use the elbow and 
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silhouette methods of the factoextra (version 1.0.7).  

Multidimensional scaling was conducted using limma (version 3.54.1). 
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Results 

11 CRC and paired LM organoids were successfully established 

Primary CRC (pCRC) and paired LM lesions were collected from 5 

patients, resulting in five matched CLM PDOs. Four cases (SNU-

2337, SNU-2536, SNU-2600, and SNU-3546 case) are derived 

from initial passages of previously established cell lines (-CO). The 

case of SNU-5455 was directly originated from the patient tissues 

(-TO). The name given to an established organoid indicates the 

institute, sample number, sampling location, and model type in order 

(Figure 2). STR profiling confirmed that there was no cross-

contamination among samples (Table 2). 

 

 

Figure 2. Nomenclature of established organoids. 
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PDOs had various morphologies, even from the same patient (Figure 

3). One or more lumens at the center were typical morphologic 

features of CLM organoids. Both cystic and solid forms were also 

observed in all case of organoids. No standing morphological 

difference was observed between pCRC and LM organoids. 

Eleven CLM organoids were subjected to whole-exome sequencing 

(WES), RNA sequencing (RNA-seq), and drug screening. The 

medium used during organoid culture was harvested to perform 

miRNA microarray. Various omics data were integrated and used to 

identify the characteristics between pCRC and LM that offer a 

clinically effective therapeutic target. The scheme of the experiment 

is given in Figure 4. 
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Table 3. STR profiles of 11 CLM organoids with matched normal, tissues and cell lines. 

Continued 

Sample Name Sample Type Amelogenin D3S1358 D1S1656 D2S441 D10S1248 D13S317 Penta E D16S539 D18S51 D2S1338 CSF1PO Penta D 

SNU-2337A-CO Cell Line Derived Organoid X,Y 13,16 15,16 11,14 14,16 12,13 20,21 10,13 16 18,24 11,12 9 

SNU-2337A Cell Line X,Y 16 15,16 11,14 14,16 13 20,21 10,13 16 18,24 11,12 9 

SNU-2337B-CO Cell Line Derived Organoid X,Y 13,16 15,16 11,14 14,16 12,13 20,21 10,13 16 18,24 11,12 9 

SNU-2337B Cell Line X,Y 13,16 15,16 11,14 14,17 12,13 20,21 10,13 16 18,24 11,12 9 

SNU-2536B Cell Line X 16       8,11   11 10,14 18,23 10,11   

SNU-2536B-CO Cell Line Derived Organoid X 16 16 11,14 13,15 11 11,15 11 14 18,23 10,11 11,12 

SNU-2536C Cell Line X 16 16 11,14 13 8,11 11,15 11 14 18,23 10,11 11,12 

SNU-2536C-CO Cell Line Derived Organoid X,Y 16 16 11,14 13,15 8,11 11,15 11 14 18,23 10,11 11,12 

SNU-2600A-CO Cell Line Derived Organoid X 14,16 15,18 11,13 14,17 8,11 5,17 9 18 19,23 10,11 9,12 

SNU-2600A Cell Line X 14,16 15,18 11,13 14,17 8,11 5,17 9 18 19,23 10,11 9,12 

SNU-2600B-CO Cell Line Derived Organoid X,Y 14,16 15,18 11,13 14,17 8,11 5,17 9 18 19,23 10,11 9,12 

SNU-2600B Cell Line X,Y 14,16 15,18 11,13 14,17 8,11 5,17 9 18 19,23 10,11 9,12 
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Sample Name Sample Type Amelogenin D3S1358 D1S1656 D2S441 D10S1248 D13S317 Penta E D16S539 D18S51 D2S1338 CSF1PO Penta D 

SNU-2600C-CO Cell Line Derived Organoid X,Y 14,16 15,18 11,13 14,17 8,11 5,17 9 18 19,23 10,11 9,12 

SNU-2600C Cell Line X,Y 14,16 15,18 11,13 14,17 8,11 5,17 9 18 19,23 10,11 9,12 

SNU-3546A Cell Line X 16       8,13   9,12 16 21,25 11   

SNU-3546A-CO Cell Line Derived Organoid X 16 14,18.3 9.1,10 13 8,13 12,13 9,12 16 21,25 11 10,11,12 

SNU-3546B Cell Line X 16       8,13   9,12 16 21,25 11   

SNU-3546B-CO Cell Line Derived Organoid X 16 14,18.3 9.1,10 13 8,13 12,13 9,12 16 21,25 11 10,12 

SNU-5455-TO Organoid X,Y 17       9,12   9,12 16 25 10,12   

SNU-5455_TilTissue Til Tissue X,Y 17       9,12   9,12 15,16 25 10,12   

SNU-5455_NormalTissue Tissue X,Y 17       9,12   9,12 15,16 25 10,12   

SNU-5455 Cell Line X,Y 17 13,15 11,14 13 9,12 10 9,12 16 25 10,12 10,11 

SNU-5455L-TO Organoid X,Y 17       9,12   9,12 16 25 10,12   

SNU-5455LT Cell Line X 17 13,15 11,14 13 12 10 9,12 16 25 10,12 10,11 

Continued 
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Sample Name TH01 Vwa D21S11 D7S820 D5S818 TPOX D8S1179 D12S931 D19S433 D61043 D22S1045 DYS391 FGA DYS576 DYS570 

SNU-2337A-CO 9,10 17,18 29 12 11,12 8,9 11,13 15 14.2 12 17 10 20,24 18 19 

SNU-2337A 9,10 17,18 29 12 11,12 8,9 11,13 15 14.2 12 17 10 20,24 18 19 

SNU-2337B-CO 9,10 17 29 12 11,12 8,9 11,13 15 14,14.2 12 17 10 20,24 18 19 

SNU-2337B 9,10 17 29 12 11,12 8,9 11,13 15 14,14.2 12 17 10 20,24 18 19 

SNU-2536B 6,9 16,18 29,30 8,11 10,13 8,10     13,14.2       22     

SNU-2536B-CO 6,9 16,18 29,30 8,11 10,13 8,10 15 21 13,14.2 11,19 15   22     

SNU-2536C 6,9 16,18 29,30 8,11 10,13 8,10 15 21 13,14.2 11,19 15   22     

SNU-2536C-CO 6,9 16,18 29,30 8,11 13 8,10 15 21 13,14.2 19 15 10 22 17 19 

SNU-2600A-CO 7,9 14,17 30,32.2 12,13 13 8,11 15,17 17,19 13,14 12,19 11,15 - 23 - - 

SNU-2600A 7,9 17 30,32.2 12,13 13 8,11 15,17 19 13,14 12,19 11,15   23     

SNU-2600B-CO 7,9 14,17 30,32.2 12,13 13 8,11 15,17 17,19 13,14 12,19 11,15 10 23 17 19 

SNU-2600B 7,9 17 30,32.2 12,13 13 8,11 15,17 19 13,14 12,19 11,15 10 23 17 19 

Continued
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Sample Name TH01 Vwa D21S11 D7S820 D5S818 TPOX D8S1179 D12S931 D19S433 D61043 D22S1045 DYS391 FGA DYS576 DYS570 

SNU-2600C-CO 7,9 14,17 30,32.2 12,13 13 8,11 15,17 17,19 13,14 12,19 11,15 10 23 17 19 

SNU-2600C 7,9 14,17 30,32.2 12,13 13 8,11 15,17 17,19 13,14 12,19 11,15 10 23 17 19 

SNU-3546A 6 16 28,29 11 11 8,11     13       22,24     

SNU-3546A-CO 6 16 28,29 11 11 8,11 11,13 18,20 13 12,16 16,17 - 22,24 - - 

SNU-3546B 6 16 28,29 11 11 8,11     13       22,24     

SNU-3546B-CO 6 16 28,29 11 11 8,11 11,13 18,19,20 13 12,16 16,17 - 22,24 - - 

SNU-5455-TO 7,9 17,18 31 8,12 9,12 10,11     13,14       24     

SNU-5455_TilTissue 7,9 17,18 30,31 8,12 9,12 10,11     13,14       22,24     

SNU-5455_NormalTissue 7,9 17,18 30,31 8,12 9,12 10,11     13,14       22,24     

SNU-5455 7,9 17,18 31 8,12 9,12 10,11 10,15 21,23 13,14 11,12,18 17 10 24 18 18 

SNU-5455L-TO 7,9 17,18 31 8,12 9,12 10,11     13,14       24     

SNU-5455LT 7,9 17 31 8 12 10,11 10,15 21,23 13,14 11,18 17   24     
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Figure 3. The morphology of CLM organoids. The CLM PDOs had a 

heterogenous morphologic characteristic. Organoids formed lumens, 

cystic structure and cell aggregates are mixed together in each 

sample. Organoids had similar morphology regardless of tumor type 

(pCRC or LM). Scale bar (red bar) = 200µm. Magnification = 10X. 
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Figure 4. Graphical scheme of study. Eleven PDOs and PDCOs were 

successfully established, and exosomes were extracted from culture 

media. The CLM organoids and miRNAs were subjected to whole 

exome sequencing (WES), RNA sequencing (RNA-seq), miRNA 
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microarray, and drug screening. Subsequently, multi-omics analyses 

and prediction model construction were performed. 
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Liver metastatic organoids had identical mutational characteristics of 

primary CRC organoids 

WES was conducted to identify the mutational characteristics of CLM 

organoids. The normal mucosa was acquired together during surgery 

and used as a criterion to sort somatic mutations for the SNU-5455 

case. In the case of other samples, somatic mutations were identified 

based on an in-house normal colorectal organoid panel. All samples 

showed only known pathogenic mutations from Clinvar. Several 

studies report that APC, KRAS, and TP53 mutations are major genes 

in CRC tumorigenesis [30]. In my cohort, mutations of CRC driver 

genes including APC, KRAS, and TP53 were observed in the 

organoids of SNU-2337, SNU-2600, SNU-3546, and SNU-5455 

(Figure 5). Exceptionally, SNU-2536 only harbored SACS, FBN1, 

and SLC4A1 mutations. A recent study reported that SACS and FBN1 

have oncogenic functions in CRC [31, 32]. Intriguingly, I found that 

mutations in primary cancer organoids were equal to mutation in 

metastatic organoids in all PDOs except for the RFX5 c.353+2T>G 

splice sites mutation in SNU-2337A-CO (Figure 5; Table 4). 

Furthermore, I could not observe the excessive VAF value variation 

in the process of metastasis (Table 4). 
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Figure 5. Mutational landscape of somatic mutations in CLM cohort. 

Adjacent normal mucosa (for SNU-5455) and 50 normal colorectal 

organoid panel (for SNU-2337; SNU-2536; SNU-2600; SNU-

3546) were used for eliminating germline mutations. LM organoids 

had almost identical somatic mutations as pCRC organoids. 
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Table 4. Mutational profiles of 11 CLM organoids. 

Continued 

Sample Name Gene Symbol Chromosome HGVS.c HGVS.p DP AD VAF Variant 

SNU-2337A-CO RFX5 chr1 c.353+2T>G . 10 2 0.2 splice_donor_variant&intron_variant 

SNU-2337A-CO APC chr5 c.4012C>T p.Gln1338* 70 70 1 stop_gained 

SNU-2337A-CO ACAN chr15 c.7204C>T p.Arg2402Cys 19 19 1 missense_variant 

SNU-2337A-CO TP53 chr17 c.637C>T p.Arg213* 69 69 1 stop_gained 

SNU-2337B-CO APC chr5 c.4012C>T p.Gln1338* 37 37 1 stop_gained 

SNU-2337B-CO ACAN chr15 c.7204C>T p.Arg2402Cys 14 14 1 missense_variant 

SNU-2337B-CO TP53 chr17 c.637C>T p.Arg213* 48 48 1 stop_gained 

SNU-2536B-CO SACS chr13 c.10855G>T p.Glu3619* 148 39 0.263513514 stop_gained 

SNU-2536B-CO FBN1 chr15 c.4615C>T p.Arg1539* 35 6 0.171428571 stop_gained 

SNU-2536B-CO SLC4A1 chr17 c.1331C>A p.Thr444Asn 45 45 1 missense_variant 

SNU-2536C-CO SACS chr13 c.10855G>T p.Glu3619* 132 32 0.242424242 stop_gained 

SNU-2536C-CO FBN1 chr15 c.4615C>T p.Arg1539* 41 21 0.512195122 stop_gained 

SNU-2536C-CO SLC4A1 chr17 c.1331C>A p.Thr444Asn 29 29 1 missense_variant 

SNU-2600A-CO HPS6 chr10 c.2038C>T p.Gln680* 171 96 0.561403509 stop_gained 

SNU-2600A-CO LRP6 chr12 c.1418G>A p.Arg473Gln 186 92 0.494623656 missense_variant 

SNU-2600A-CO KRAS chr12 c.35G>T p.Gly12Val 92 42 0.456521739 missense_variant 

SNU-2600A-CO TP53 chr17 c.817C>T p.Arg273Cys 36 34 0.944444444 missense_variant 
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Sample Name Gene Symbol Chromosome HGVS.c HGVS.p DP AD VAF Variant 

SNU-2600B-CO HPS6 chr10 c.2038C>T p.Gln680* 122 65 0.532786885 stop_gained 

SNU-2600B-CO LRP6 chr12 c.1418G>A p.Arg473Gln 86 54 0.627906977 missense_variant 

SNU-2600B-CO KRAS chr12 c.35G>T p.Gly12Val 49 27 0.551020408 missense_variant 

SNU-2600B-CO TP53 chr17 c.817C>T p.Arg273Cys 28 28 1 missense_variant 

SNU-2600C-CO HPS6 chr10 c.2038C>T p.Gln680* 134 67 0.5 stop_gained 

SNU-2600C-CO LRP6 chr12 c.1418G>A p.Arg473Gln 153 58 0.379084967 missense_variant 

SNU-2600C-CO KRAS chr12 c.35G>T p.Gly12Val 64 15 0.234375 missense_variant 

SNU-2600C-CO TP53 chr17 c.817C>T p.Arg273Cys 34 34 1 missense_variant 

SNU-3546A-CO TP53 chr17 c.659A>G p.Tyr220Cys 66 65 0.984848485 missense_variant 

SNU-3546A-CO AMER1 chrX c.1489C>T p.Arg497* 40 40 1 stop_gained 

SNU-3546B-CO TP53 chr17 c.659A>G p.Tyr220Cys 38 38 1 missense_variant 

SNU-3546B-CO AMER1 chrX c.1489C>T p.Arg497* 39 39 1 stop_gained 

SNU-5455-TO KMT2C chr7 c.925C>T p.Pro309Ser 296 58 0.195945946 missense_variant 

SNU-5455-TO KRAS chr12 c.35G>A p.Gly12Asp 92 47 0.510869565 missense_variant 

SNU-5455L-TO KMT2C chr7 c.925C>T p.Pro309Ser 284 47 0.165492958 missense_variant 

SNU-5455L-TO KRAS chr12 c.35G>A p.Gly12Asp 94 49 0.521276596 missense_variant 
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In order to investigate the impact of mutations on the metastatic 

process, MutationalPatterns packages in R was utilized to examine 

the mutation patterns in CLM organoids. Initially, I observed that C>T 

transitions occurred most frequently in our cohort (Figure 6). 

Comparing the mutational patterns of cancer driver genes between 

pCRC and LM, I found that they were nearly identical. This implies 

that there were no newly discovered mutation associated with liver 

metastasis. 
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Figure 6. Mutation patterns of cancer driver genes in CLM organoid. 

Y axis means proportion of mutation and x axis means trinucleotides 

(sequence) context of mutation. Overally, CLM organoids showed 

similar mutation patterns among organoids derived from the same 

patient. 
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Transcriptomic analysis elucidates high heterogeneity between patient 

in CLM organoids 

I plotted the multi-dimensional scaling (MDS) based on the total 

35,994 normalized mRNA expressions to understand the overall 

transcriptome feature in my cohort. Transcriptomic features were 

similar between initial and metastatic PDOs derived from the same 

patient compared to inter-patient comparison (Figure 7). 

Continuously, using the DESeq2 in the R package, differentially 

expressed genes (DEGs) analysis was conducted to compare 

dysregulated gene expression pattern between pCRC and LM 

organoids. Normalized read-count values of CLM organoids were 

analyzed by paired t-test A comparison result showed twenty-one 

genes were highly expressed in LM organoids (|log2 Fold Change 

(FC)| ≥ 1, p-value ≤ 0.05) (Figure 8). Among the DEGs, eleven 

protein-coding genes were identified including CYSTM1 (Cysteine 

Rich Transmembrane Module Containing 1), CCDC7 (Coiled-Coil 

Domain Containing 7), DRAM2 (DNA Damage Regulated Autophagy 

Modulator 2), CD300LD (CD300 Molecule Like Family Member D), 

ARL5B (ADP Ribosylation Factor Like GTPase 5B), CXorf58 

(Chromosome X Open Reading Frame 58), CASP1 (Caspase 1), 

CENPI (Centomere Protein I), GCNT1 (Glucosaminyl Transferase 1), 
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GIMAP1 (GTPase, IMAP Family Member 1), GOPC (Golgi Associated 

PDZ And Coiled-Coil Motif Containing), and ALX3 (ALX Homeobox 

3). There was no low-expression gene satisfying statistical 

significance in LM compared to pCRC (Figure 8). 

Eleven up-regulated genes in LM were validated using the GEO 

database (GEO accession: GDS4393). The gene expression levels of 

fifty-four CLM patients were extracted and used for comparative 

analysis. The paired t-test was applied by dividing cluster into 

thirty-three pCRC and twenty-one LM. I was able to confirm the 

expression patterns of eight genes except for CYSTM1, CCDC7, and 

CD300LD. In GEO database, CXorf58, CENPI, GIMAP1, and GOPC 

were shown to be up-regulated in LM compared to pCRC (Figure 9). 

Among them, CENPI was identified as a statistically significant gene, 

with p-value of 0.05 or less. CENPI is a member of centromere 

protein family, forming efficient and correct microtubule attachment. 

It is reported that up-regulated of CENPI increased CRC cell 

migration and invasion. My study also confirmed that CENPI, as an 

oncogene, is involved in metastasis of CRC [33]. 
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Figure 7. Multidimensional scaling (MDS) of CLM organoids based on 

35,994 normalized gene expression. Color represents tumor types 

(blue, pCRC; red, LM). The sample origin was classified into shapes. 

Organoids derived from the same patients are located close to each 

other on the MDS plot. 
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Figure 8. MA-plot depicting differentially expressed genes (DEGs) of CLM organoids. 
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x axis = Log2 mean expression, y axis = Log2FC. Up-regulated genes, down regulated genes, and non-significantly 

expressed genes were differently represented (red, up-regulated; blue, down-regulated; gray, non-significant). The 

normalized read-count values of pCRC and LM organoids were analyzed by paired t-test to compare gene expression 

between them. 
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Figure 9. GEO database analysis of up-regulated genes in LM 

organoids. The following analysis was performed for further 
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validation. The expression data in CLM were extracted from GEO 

expression data (GEO accession: GDS4393). The paired t-test was 

applied between thirty-three pCRCs and twenty-one LM. If a p-

value is less than 0.05, it is marked with a single star (*). If a p-

value is less than 0.01, it is marked with two stars (**). 
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A gene set variation analysis was performed to validate the enriched 

pathways in each PDO. Pathway estimates were assigned to each 

organoid using the GSVA in the R package. The entire transcriptome 

read count (n = 35,994) was utilized for the GSVA analysis. In 

general, pathways associated with the development process 

exhibited a high enrichment score, while those related to the immune 

process showed a low enrichment score (Figure 10; Table 5). 

Notably, the hedgehog pathway, which plays a role in cell signaling, 

was highly enriched in CLM organoids. Additionally, the epithelial 

mesenchymal transition (EMT) pathway and angiogenesis, both 

crucial processes for metastasis, were examined. The EMT pathway 

was highly enriched in 83% (5 out of 6) of pCRC organoids, while the 

angiogenesis pathway was highly enriched in 66% (4 out of 6) of 

pCRC organoids and in 2 out of 6 LM organoids. It was expected that 

the enrichment patterns would be similar between primary and 

metastatic tumors. However, there was no significant consistency 

observed between the two types (Table 5). 
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Table 5. Hallmark pathway enrichment score of CLM organoids. 

Hallmark pathway 

SNU- 

2337A 

-CO 

SNU- 

2337B 

-CO 

SNU- 

2536B 

-CO 

SNU- 

2536C 

-CO 

SNU- 

2600A- 

CO 

SNU- 

2600B 

-CO 

SNU- 

2600C 

-CO 

SNU- 

3546A 

-CO 

SNU- 

3546B 

-CO 

SNU- 

5455 

-TO 

SNU- 

5455L 

-TO 

HALLMARK_ADIPOGENESIS -0.07 -0.01 -0.22 -0.09 -0.04 0.02 0.02 -0.08 -0.13 -0.07 -0.15 

HALLMARK_ALLOGRAFT_REJECTION -0.41 -0.46 -0.31 -0.46 -0.48 -0.47 -0.45 -0.42 -0.39 -0.43 -0.44 

HALLMARK_ANDROGEN_RESPONSE 0 0.06 -0.01 -0.06 -0.13 0.01 0.16 -0.07 -0.11 -0.17 -0.1 

HALLMARK_ANGIOGENESIS 0.21 -0.22 -0.05 -0.24 0.1 -0.03 -0.12 0.14 -0.01 0.07 0.35 

HALLMARK_APICAL_JUNCTION -0.21 -0.16 -0.17 -0.14 -0.02 -0.17 -0.17 0 -0.03 -0.16 -0.2 

HALLMARK_APICAL_SURFACE -0.25 -0.14 -0.18 0.05 -0.18 0.03 -0.07 0.39 0.12 -0.2 -0.21 

HALLMARK_APOPTOSIS -0.06 -0.04 0.02 -0.01 -0.16 -0.19 -0.08 -0.11 -0.21 -0.22 -0.2 

HALLMARK_BILE_ACID_METABOLISM -0.07 -0.04 -0.07 0.28 0.06 -0.07 -0.01 -0.14 0 0.01 0.1 

HALLMARK_CHOLESTEROL_HOMEOSTASIS -0.05 -0.17 -0.21 -0.15 -0.12 -0.09 -0.04 0.02 0.11 -0.09 -0.02 

HALLMARK_COAGULATION -0.21 -0.12 -0.23 -0.3 -0.1 -0.16 0.02 -0.19 -0.06 -0.24 -0.15 

HALLMARK_COMPLEMENT -0.16 -0.15 -0.22 -0.17 -0.18 -0.19 -0.03 -0.19 -0.04 -0.15 -0.08 

HALLMARK_DNA_REPAIR -0.13 -0.15 -0.06 -0.07 -0.09 -0.19 -0.1 -0.13 -0.07 -0.01 0.11 

Continued 
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Hallmark pathway 

SNU- 

2337A 

-CO 

SNU- 

2337B 

-CO 

SNU- 

2536B 

-CO 

SNU- 

2536C 

-CO 

SNU- 

2600A 

-CO 

SNU- 

2600B 

-CO 

SNU- 

2600C 

-CO 

SNU- 

3546A

-CO 

SNU- 

3546B 

-CO 

SNU- 

5455 

-TO 

SNU- 

5455L 

-TO 

HALLMARK_E2F_TARGETS -0.12 -0.06 0 -0.06 -0.01 0.07 0 0.06 0.19 -0.08 -0.13 

HALLMARK_EPITHELIAL_MESENCHYMAL_TRANSITION -0.07 -0.1 -0.02 -0.17 0.14 0.03 0.22 -0.11 -0.14 0.02 -0.07 

HALLMARK_ESTROGEN_RESPONSE_EARLY -0.13 -0.04 -0.1 -0.12 -0.08 -0.16 -0.13 -0.23 -0.01 -0.16 -0.08 

HALLMARK_ESTROGEN_RESPONSE_LATE -0.15 -0.07 -0.1 -0.04 -0.13 -0.21 -0.06 -0.17 -0.1 -0.1 -0.15 

HALLMARK_FATTY_ACID_METABOLISM -0.12 -0.04 -0.06 -0.07 -0.03 -0.04 -0.01 -0.03 -0.07 0 -0.04 

HALLMARK_G2M_CHECKPOINT -0.04 -0.06 0.03 -0.06 0.01 -0.02 -0.11 0.09 0.15 -0.08 -0.15 

HALLMARK_GLYCOLYSIS 0 0.02 -0.04 -0.13 0.04 -0.03 -0.01 -0.13 -0.12 -0.12 -0.05 

HALLMARK_HEDGEHOG_SIGNALING 0.26 0.26 0.14 0.11 0.01 0.21 0.12 -0.01 0.08 -0.05 -0.06 

HALLMARK_HEME_METABOLISM -0.05 0.12 -0.15 -0.14 0 -0.02 0.06 -0.11 0.02 -0.21 -0.13 

HALLMARK_HYPOXIA 0.1 0.05 -0.04 -0.04 0.01 -0.14 0.07 -0.15 -0.16 -0.19 -0.26 

HALLMARK_IL2_STAT5_SIGNALING -0.16 -0.07 -0.09 -0.02 -0.14 -0.1 -0.24 -0.01 -0.01 0.09 0.1 

HALLMARK_IL6_JAK_STAT3_SIGNALING -0.27 -0.25 -0.16 -0.32 0.19 -0.12 0.03 -0.14 -0.05 -0.17 -0.14 

Continued 
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Hallmark pathway 

SNU- 

2337A 

-CO 

SNU- 

2337B 

-CO 

SNU- 

2536B 

-CO 

SNU- 

2536C 

-CO 

SNU- 

2600A 

-CO 

SNU- 

2600B 

-CO 

SNU- 

2600C 

-CO 

SNU- 

3546A 

-CO 

SNU- 

3546B 

-CO 

SNU- 

5455 

-TO 

SNU- 

5455L 

-TO 

HALLMARK_INFLAMMATORY_RESPONSE -0.07 -0.09 0.05 -0.23 0.01 -0.18 0.02 -0.19 -0.13 -0.13 -0.11 

HALLMARK_INTERFERON_ALPHA_RESPONSE -0.28 -0.38 -0.33 -0.34 -0.26 -0.37 -0.33 -0.13 -0.15 -0.35 -0.32 

HALLMARK_INTERFERON_GAMMA_RESPONSE -0.32 -0.33 -0.32 -0.3 -0.31 -0.44 -0.38 -0.18 -0.21 -0.23 -0.25 

HALLMARK_KRAS_SIGNALING_DN -0.07 -0.13 0.02 -0.15 -0.09 -0.25 -0.17 -0.05 -0.17 -0.02 -0.09 

HALLMARK_KRAS_SIGNALING_UP -0.26 -0.1 0.03 -0.05 -0.08 -0.14 0.01 -0.09 -0.05 -0.13 -0.16 

HALLMARK_MITOTIC_SPINDLE -0.06 -0.01 -0.04 -0.01 0 -0.06 -0.14 -0.1 -0.16 -0.04 -0.14 

HALLMARK_MTORC1_SIGNALING -0.15 -0.19 -0.1 0.15 -0.07 -0.03 -0.03 0.1 0.03 -0.13 -0.14 

HALLMARK_MYC_TARGETS_V1 -0.27 -0.12 -0.18 -0.17 -0.15 -0.1 -0.09 -0.04 -0.22 -0.1 -0.15 

HALLMARK_MYC_TARGETS_V2 -0.22 -0.15 -0.2 -0.16 -0.12 0.11 0.06 0.24 -0.12 0.1 -0.12 

HALLMARK_MYOGENESIS 0.11 -0.19 -0.1 -0.06 -0.1 -0.23 0.11 -0.13 0.03 -0.07 -0.14 

HALLMARK_NOTCH_SIGNALING 0.11 0.18 -0.02 0.05 -0.41 -0.13 -0.12 0.12 -0.14 -0.23 -0.14 

HALLMARK_OXIDATIVE_PHOSPHORYLATION -0.05 -0.07 -0.09 -0.15 -0.18 -0.17 -0.1 -0.06 -0.14 -0.07 -0.07 

HALLMARK_P53_PATHWAY -0.14 -0.11 -0.01 0.1 -0.15 -0.22 -0.17 -0.09 -0.12 -0.02 -0.15 

Continued 
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Hallmark pathway 

SNU- 

2337A 

-CO 

SNU- 

2337B 

-CO 

SNU- 

2536B 

-CO 

SNU- 

2536C 

-CO 

SNU- 

2600A 

-CO 

SNU- 

2600B 

-CO 

SNU- 

2600C 

-CO 

SNU- 

3546A 

-CO 

SNU- 

3546B 

-CO 

SNU- 

5455 

-TO 

SNU- 

5455L 

-TO 

HALLMARK_PANCREAS_BETA_CELLS 0.05 0.05 -0.37 -0.02 -0.36 0 0.17 -0.26 -0.09 -0.24 -0.3 

HALLMARK_PEROXISOME -0.29 -0.36 0.06 0.21 0.14 0.04 0.14 -0.19 -0.12 -0.12 -0.03 

HALLMARK_PI3K_AKT_MTOR_SIGNALING -0.16 -0.06 -0.15 -0.21 -0.23 -0.17 -0.25 -0.22 -0.06 -0.1 -0.06 

HALLMARK_PROTEIN_SECRETION 0.09 0.16 -0.01 -0.05 -0.17 -0.23 0.15 0.02 -0.15 0.1 -0.05 

HALLMARK_REACTIVE_OXYGEN_SPECIES_PATHWAY 0.02 0.01 -0.13 -0.2 -0.13 -0.18 -0.2 -0.09 -0.13 -0.42 -0.38 

HALLMARK_SPERMATOGENESIS -0.12 -0.12 0.18 0.13 0.05 -0.07 -0.11 -0.06 0 -0.17 -0.01 

HALLMARK_TGF_BETA_SIGNALING -0.24 0.02 -0.32 0.02 -0.25 -0.18 0.05 -0.09 -0.03 0.22 0.25 

HALLMARK_TNFA_SIGNALING_VIA_NFKB -0.04 -0.05 -0.1 -0.12 -0.08 -0.2 -0.16 -0.21 -0.23 -0.15 -0.11 

HALLMARK_UNFOLDED_PROTEIN_RESPONSE -0.02 -0.01 -0.06 -0.05 -0.1 -0.13 -0.11 0.03 -0.02 -0.1 0.04 

HALLMARK_UV_RESPONSE_DN -0.18 -0.05 -0.16 -0.23 -0.02 0.01 -0.01 -0.15 -0.03 0.03 -0.03 

HALLMARK_UV_RESPONSE_UP -0.29 -0.28 -0.07 -0.2 -0.02 -0.12 -0.1 -0.35 -0.21 -0.26 -0.11 

HALLMARK_WNT_BETA_CATENIN_SIGNALING -0.19 -0.27 0.03 -0.02 -0.19 -0.08 -0.07 0.03 0.06 -0.32 0.01 

HALLMARK_XENOBIOTIC_METABOLISM -0.15 -0.16 -0.25 -0.1 -0.08 -0.11 0.01 -0.09 -0.16 -0.1 -0.24 
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Figure 10. Heatmap of normalized enrichment score (NES) by gene 

set variation analysis (GSVA). 
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Pathways were categorized and marked by each representative color. 

The range of enrichment scores is -4.8 ~ 3.9 (purple, enriched; 

green, depleted). 
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Exosomal miRNA Profiling and functional characterization of exosomal 

miRNA in CLM 

Differentially expressed miRNAs (DEMs) analysis was conducted on 

11 CLM organoids using miRNA microarray data. The exosomal 

miRNA was extracted from culture media, and it was confirmed that 

there was no cell lysate contamination by assessing the presence of 

CD63 and calnexin. CD63, an essential component of exosomal 

membranes from the tetraspanin family, was utilized as a positive 

marker for validating exosomes. The expression of CD63 was 

observed in the media of all organoid media (Figure 11), indicating 

successful extraction of exosomes from the organoid culture media. 

Calnexin, a protein expressed in the endoplasmic reticulum, was not 

detected in any of the exosome media, confirming the absence of 

protein or vesicle contamination from other compartments [34]. 

A total of 6,609 Homo sapiens-specific miRNAs were detected from 

the microarray. Among the captured probes, miRNAs detected in both 

pCRC and LM were selected for further analysis in each group. The 

fold change was calculated as log2[Normalized expression of LM 

PDOs/Normalized expression of pCRC PDOs]. The volume 

represents the detection intensity and is defined as the geometric 

mean of expression values between the two groups (Table 6). In 
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cases where the fold change is the same, a probe with higher volume 

is considered more reliable than a probe with lower volume. The top 

20 miRNAs (|FC| ≥ 3, top 20 volume) in each group were identified 

as significant miRNAs that potentially influence the metastasis 

process (Figure 12A-E; Table 6). 

To gain further insights into DEMs, the target genes of the top 20 

DEMs were predicted using miRWalk 3.0. Subsequently, the target 

genes were cross-validated from the actual RNA-seq data (Figure 

1). 

Additionally, gene ontology (GO) analysis was performed on the 

common genes identified from each set. The Q-value cutoff was set 

to 0.05. The resulting biological processes associated with the 

common genes in each set are depicted in the cnet plot (Figure 13A-

E). In the case of SNU-2337B-CO, the common genes were mainly 

related to lipid metabolism and localization (Figure 13A). In SNU-

2536C-CO, the common genes were highly associated with the ERK1 

and ERK2 cascades and cell morphogenesis processes (Figure 13B). 

The common genes identified in the liver metastatic type of SNU-

2600 were mainly involved in several organ development processes 

(Figure 13C). As for SNU-3546B-CO, the common genes were 

primarily associated with mesenchymal cell differentiation, cell 
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junction assembly, and skin development (Figure 13D). In particular, 

processes such as mesenchymal cell differentiation and cell junction 

assembly are involved in epithelial-mesenchymal transition (EMT) 

or mesenchymal-epithelial transition (MET), which facilitate the 

movement and colonization of primary cancer cells in a new 

environment during metastasis (Figure 13D) [35-39]. However, in 

the case of SNU-5455, no biological process met the Q-value 

criterion due to an insufficient number of target genes.
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Figure 11. Expression of exosomes markers identified by western 

blot. CD63 was used as a positive marker for the exosome, and 

calnexin (an endoplasmic reticulum marker) was used as a negative 

marker. To confirm the contamination of cell lysate, cell lysate was 

used as an internal control. 
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Table 6. Top 20 DEMs of CLM organoids. 

SNU-2337 set 
 

SNU-2536 set 
 

SNU-2600 set 
  

mirBase ID Log2FC Volume   mirBase ID Log2FC Volume   mirBase ID Log2FC Volume 

hsa-miR-6090 -1.99 10.65  hsa-miR-320a 2.11 8.22  hsa-miR-4440 -2.49 8.72 

hsa-miR-6089 -1.89 10.49  hsa-miR-320c 2.01 8.11  hsa-miR-6732-5p -1.93 8.64 

hsa-miR-4516 -1.69 9.4  hsa-miR-320b 2.16 8.11  hsa-miR-4743-5p -2.32 8.52 

hsa-miR-4743-5p 2.12 7.8  hsa-miR-320d 1.67 6.95  hsa-miR-1246 -3.37 8.34 

hsa-miR-6732-5p 1.75 7.66  hsa-miR-4484 -1.66 6.84  hsa-miR-4793-3p -2.15 8.3 

hsa-miR-4440 2.07 6.94  hsa-miR-1290 1.95 6.2  hsa-miR-619-5p -3.14 7.84 

hsa-miR-4793-3p 1.68 6.63  hsa-miR-22-3p 2.43 5.82  hsa-miR-1273g-3p -2.28 7.54 

hsa-miR-619-5p 2.09 6.28  hsa-miR-23a-3p 1.93 4.99  hsa-miR-8075 -2.11 7.36 

hsa-miR-7110-5p -2.05 6.26  hsa-miR-361-5p 2.38 4.76  hsa-miR-3620-5p -2.27 6.85 

hsa-mir-320e 1.66 5.84  hsa-miR-4429 1.82 4.02  hsa-miR-1228-5p -1.75 6.7 

hsa-miR-4443 -1.84 5.47  hsa-miR-103a-3p -2 3.75  hsa-miR-297 -2.93 6.51 

hsa-miR-3663-3p -1.65 5.39  hsa-miR-24-3p 2.39 3.48  hsa-mir-6869 -2.66 6.51 

hsa-miR-1290 -2.21 4.93  hsa-miR-106a-5p -1.84 3.45  hsa-miR-5093 -2.9 6.19 

hsa-miR-4486 1.78 4.86  hsa-miR-107 -1.88 3.1  hsa-miR-1910-5p -1.65 6.11 

hsa-miR-6749-5p -1.73 4.65  hsa-miR-320e 2.7 2.58  hsa-miR-6869-5p 1.92 6.08 

hsa-miR-5093 2.99 4.53  hsa-miR-1273h-5p 1.79 2.52  hsa-miR-4486 -2.31 6.03 

hsa-miR-4433b-3p -2.16 4.28  hsa-miR-6879-5p -2 2.45  hsa-miR-4507 -2.2 5.99 

hsa-miR-4530 -2.29 4.12  hsa-miR-1273f 1.7 2.33  hsa-miR-92a-3p -1.91 5.88 

hsa-miR-4689 -2.03 3.94  hsa-miR-338-5p 1.69 2.32  hsa-miR-6756-5p -1.59 5.82 

hsa-miR-92b-5p 1.71 3.82           hsa-miR-1915-3p 2.13 5.69 

Continued 
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SNU-3546 set 
 

SNU-5455 set 
 

mirBase ID Log2FC Volume   mirBase ID Log2FC Volume 

hsa-miR-4516 1.8 8.66  hsa-miR-7110-5p 2.03 5.66 

hsa-miR-320a -2.29 8.62  hsa-miR-6756-5p 1.69 5.47 

hsa-miR-320c -1.9 8.57  hsa-miR-6848-5p 1.59 5.36 

hsa-miR-320b -2.08 8.54  hsa-miR-6789-5p 2.02 5.15 

hsa-miR-7110-5p 1.8 7.8  hsa-miR-2861 1.79 4.95 

hsa-miR-6786-5p 1.9 7.48  hsa-miR-619-5p 2.98 4.87 

hsa-miR-1273g-3p -2.56 7.07  hsa-miR-320b -2.36 4.46 

hsa-miR-663a 2.36 7.01  hsa-miR-4707-5p -2.18 4.32 

hsa-miR-4440 -3.2 6.84  hsa-miR-4687-3p -1.73 3.96 

hsa-miR-4281 3.12 6.4  hsa-miR-4440 2.9 3.78 

hsa-miR-6816-5p 1.9 6.23  hsa-miR-4529-3p 2.03 3.54 

hsa-miR-4793-3p -3.64 6.18  hsa-miR-6743-5p 1.99 3.49 

hsa-miR-6724-5p 2.16 6.07  hsa-miR-548ac -1.61 3.44 

hsa-miR-1915-3p 1.96 5.93  hsa-miR-6722-3p 1.68 3.4 

hsa-miR-619-5p -2.34 5.86  hsa-miR-7150 -1.82 3.13 

hsa-mir-4539 -1.95 5.81  hsa-miR-320d -3.07 3 

hsa-miR-4687-3p 3.02 5.56  hsa-miR-668-5p -2.67 2.87 

hsa-miR-1910-5p -1.92 5.44  hsa-miR-4535 1.79 2.8 

hsa-miR-4508 2.31 5.35        

hsa-miR-6749-5p 3.06 5.19         
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Figure 12A-E. Volume plots visualized differentially expressed 

miRNAs (DEMs) in LM organoids compared to pCRC organoids. x 

axis = volume. y axis = log2FC. While satisfying the cut-off (|FC| 

>3), the top 20 ranking probes in the order of the highest volume 

were marked with colored dots (red, up-regulated; blue, down-

regulated; gray, non-DEM). High volume means high intensity in 
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microarray results.  

A Volume plot of the SNU-2337 group. B Volume plot of the SNU-

2536 group. C Volume plot of the SNU-2600 group. D Volume plot 

of the SNU-3546 group. E Volume plot of the SNU-5455 group 
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Figure 13A-D. Gene ontology (GO) analysis of common genes 

(miRNA target gene – DEGs). In the cnet plot, biological processes 

and genes related to each other are linked to the edges. The size of 

the GO term (circle) represents the associated genes. Cut-off = 

qvalue, 0.05. 

A GO of the SNU-2337 group. B GO of the SNU-2536 group. C GO 

of the SNU-2600 group. D GO of the SNU-3546 group. 
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Integrated analysis of transcriptomic and pharmaco-omics data 

derived LM specific therapeutic targets 

Twenty-one compounds library was designed for drug screening of 

the PDOs. Each drug was selected based on their typical usage in 

clinical practice as determined by the National Cancer Institute (NCI). 

The drug screening process was conducted at least three times in 

different passages. Drug sensitivity was assessed using the area 

under the curve (AUC). In my drug library, there are certain drugs 

that exert cytotoxic effects on cells such as TAS-102, Capecitabine, 

5-FU, and Oxaliplatin. Therefore, it is challenging to represent the 

responsiveness of these drugs using IC50, which indicates the 

maximum concentration at which the activity of cells is reduced by 

half upon drug administration. Consequently, we graphically depicted 

the drug responsiveness as a function of drug concentration at six 

points and calculated the AUC beneath this curve. Through this 

approach, we compared the pharmacological efficacy among the 

drugs. The final drug AUC was calculated as the average of the 

technical replicates. A high AUC indicates resistance to drugs, and a 

low AUC means sensitivity to drugs. To categorize the drugs, a 

clustering analysis using the elbow and silhouette methods was 

performed (Figures 14A–C). Cluster 1 demonstrated a sensitive 
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response in most PDOs (Figure 14C; Table 7). Cluster 2 exhibited a 

heterogeneous response across the different PDOs and included the 

drugs Irinotecan, AZD-2014, MK-5108, SAHA, ICG-001, and 

Everolimus. The final cluster, cluster 3, generally demonstrated 

resistance in most PDOs. 
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Table 7. Drug AUC values of the 11 CLM organoids on 21 compounds. 

Drug Max Conc. (uM) 

SNU- 

2337A 

-CO 

SNU- 

2337B 

-CO 

SNU- 

2536B 

-CO 

SNU- 

2536C 

-CO 

SNU- 

2600A 

-CO 

Tas-102 100 1.59 1.74 1.39 1.85 1.83 

Regorafenib 100 1.55 1.91 1.4 1.92 1.49 

Capecitabine 1000 1.69 1.93 1.33 1.83 1.49 

Apitolisib 50 0.72 0.87 0.8 0.95 0.7 

Belinostat 100 0.58 0.78 0.47 0.55 0.69 

Trametinib 50 0.96 0.58 0.43 0.56 0.68 

Cyclopamine 50 1.84 1.87 1.52 2 1.61 

ICG-001 100 1.54 1.07 0.95 1.04 1.01 

Buparlisib 100 0.79 0.97 0.47 0.99 1.02 

SAHA 50 0.71 1.41 1.02 1.5 1.31 

Afatinib 50 0.49 0.67 0.26 1.2 1.07 

AZD-2014 5 1.67 1.23 0.99 1.63 1.45 

MK-5108 1000 1.54 1.37 1.06 1.5 1.23 

Olaparib 50 1.77 1.48 1.45 1.57 1.73 

Irinotecan 100 1.56 1.27 1.17 1.53 1.24 

Fluorouracil 20000 0.59 0.79 0.65 0.62 0.87 

Oxaliplatin 100 1.34 1.47 1.41 1.76 1.7 

Dabrafenib 10 1.9 1.77 1.25 1.89 1.53 

MK-2206 4 1.74 1.64 1.45 1.56 1.44 

Cabozantinib 10 1.66 1.55 1.45 1.77 1.52 

Everolimus 10 1.38 1.65 0.81 0.62 0.78 

Continued  
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Drug Max Conc. (uM) 

SNU- 

2600B 

-CO 

SNU- 

2600C 

-CO 

SNU- 

3546A 

-CO 

SNU- 

3546B 

-CO 

SNU- 

5455 

-TO 

SNU- 

5455L 

-TO 

Tas-102 100 1.7 1.82 1.35 1.72 1.55 1.67 

Regorafenib 100 1.43 1.34 1.41 1.81 1.56 1.32 

Capecitabine 1000 1.64 1.53 1.5 1.56 1.43 1.56 

Apitolisib 50 0.82 0.72 0.97 0.99 0.66 0.78 

Belinostat 100 0.68 0.53 0.7 0.6 0.4 0.3 

Trametinib 50 0.62 0.58 0.53 0.78 0.43 0.36 

Cyclopamine 50 1.79 2.08 2.2 1.82 1.77 1.71 

ICG-001 100 1.09 1.27 1.08 0.92 1.1 1.39 

Buparlisib 100 0.89 0.77 1 0.93 0.73 1.03 

SAHA 50 1.78 1.28 1.34 1.07 1.07 1.1 

Afatinib 50 1.13 0.58 0.57 0.94 1.01 1.04 

AZD-2014 5 1.59 1.56 1.36 1.43 1.4 1.41 

MK-5108 1000 1.3 1.32 1.52 1.4 1.3 1.38 

Olaparib 50 1.57 1.5 1.72 1.78 2.02 1.9 

Irinotecan 100 1.43 1.51 1.44 1.71 1.58 1.16 

Fluorouracil 20000 0.93 0.57 0.75 0.85 0.75 0.53 

Oxaliplatin 100 2 1.55 1.84 1.43 1.31 1.66 

Dabrafenib 10 1.63 1.37 1.91 1.51 1.41 1.4 

MK-2206 4 1.8 1.38 1.64 1.57 1.16 1.08 

Cabozantinib 10 1.8 1.57 1.7 1.48 1.12 1.48 

Everolimus 10 1.06 1.33 1.12 0.99 1.1 0.88 
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Figure 14A-C. Heatmap of area under the curve (AUC) values represented the sensitivity of 21 compounds on CLM 

organoids. 
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A Elbow plot. B Silhouette plot. C Drugs and samples were clustered using the elbow method and the silhouette method. 

The range of AUC is 0.26 ~ 2.20 and the drug response was distinguished by different colors (blue, sensitive; red, 

resistant). 
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To further investigate the correlation among miRNA expression, 

mRNA expression, and drug response, DIABLO method of mixOmics 

package in R was used for data integration. Since DIABLO is a feature 

extraction method based on supervised learning, I designated pCRC 

cancer as dependent variable 1 and LM cancer as dependent variable 

2. From each normalized dataset, 319 mRNA expressions, 296 

miRNA expressions, and twenty-one drug AUC values were selected 

and used as input data for DIABLO.  

To ensure distinct correlations, R-squared value was set to 0.825. 

Using the circos plot, I confirmed significant correlations within the 

specified cut-off range, including miR-3613-5p - eEF2K - TAS-

102 and miR-663b - HTD2 - Apitolisib (Figure 15). The AUC value 

of TAS-102 exhibited a negative correlation with both eEF2K gene 

expression and miR-3613-5p. Additionally, eEF2K showed a 

positive correlation with miR-3613-5p. Furthermore, HTD2 and 

miR-663b demonstrated a negative correlation in Apitolisib 

sensitivity, while HTD2 and has-miR-663b exhibited a positive 

correlation. 

To elucidate the association among miR-3613-5p, eEF2K, and 

TAS-102, the target genes of miR-3613-5p were predicted using 

the mirWalk database. Among the target genes, EIF4B, POLDIP3, and 
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RPL37 were found to interact with eEF2K in a protein-protein 

interaction (PPI) network (Figure 16).
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Figure 15. Circos plot of DIABLO analysis. Normalized mRNA 

expression, miRNA expression, and drug AUC values were used as 

input data for N-integration (purple, mRNA; red, miRNA; light green, 

drug). The cutoff was set at r = 0.825 for obtaining clear correlations. 

The correlation between each factor was connected by lines (orange, 

positive correlation; deep blue, negative correlation). 
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Figure 16. Protein-protein interaction (PPI) network between 

eEF2K and target genes of miR-3613-5p. Each circle represents a 

gene. The genes interact with each other and are connected by edges. 

Significant genes (eEF2K and target genes of miR-3613-5p) are 

highlighted in bold font. 
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Despite encountering challenges due to the inter patient 

heterogeneity, I was able to identify bio-signatures that effectively 

clustered the variables of pCRC and LM within my cohort. Using 

fifteen factors, the eleven CLM PDOs were categorized into pCRC 

and LM groups (Figure 17). It was observed that TAS-102, 

Buparilisib, SAHA, Apitolisib, and Capecitabine exhibited relative 

resistance in LM. Additionally, significant differences in the 

expression patterns of miR-541-5p, miR-3613-5p, miR-6800-5p, 

miR-6789-5p, miR-221-3p, DEGS2, ADAMTS16, EBF4, KIF25, 

and eEF2K were observed between pCRC and LM. 
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Figure 17. Clustered image map (CIM) of DIABLO analysis. Among 

the input values (319 mRNA expression, 296 miRNA expression, and 

21 drug AUC values), 15 factors that were assigned high weight to 

explain the dependent variable were represented on CIM. Cancer 

types were well clustered by those variables. 
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Building regression models indicates actionable molecular targets 

connecting KRAS signaling to Regorefenib and Apitolisib 

It is significant to apply the dataset to predicting the metastatic 

potency of the pCRC. I built a decision tree model utilizing a multi-

omics dataset along with the responses of twenty-one clinically 

relevant drugs. The Decision Tree package in the R program was 

employed to standardize the patterns of multiple numeric values, 

incorporating one hundred and two predictors comprising drug 

response in terms of AUC, pathway enrichment scores, and miRNA 

expression. 

KRAS signaling down pathway and the response to Regorafenib were 

the most statistically significant factors for predicting LM in pCRC 

(Figure 18). Down-regulation of the KRAS signaling down pathway 

(< -0.112) indicated the highest possibility of LM. Here, the 

HALLMARK KRAS signaling down pathway refers to a gene set that 

is down-regulated upon KRAS activation. Generally, a low NES for 

this pathway was associated with LM (4 out of 5 cases). This implies 

that there is less expression of down-regulated genes when KRAS 

is activated in LM compared to pCRC. On the other hand, when the 

NES of HALLMARK KRAS signaling down pathway was up-

regulated (≥ -0.112), the response to regorafenib became a 
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determining factor for the potency of LM.  

Furthermore, I identified the top 15 variables for LM prediction using 

lares in the R package. Least Angle Regression (LARS) is an 

automated machine learning (autoML) model that utilizes the LARS 

algorithm for optimal variable selection, model building, and handling 

of multi-collinearity. One hundred and two factors used in the 

decision tree analysis were equally selected as input values. Among 

these variables, TGF beta signaling emerged as the most influential 

factor in discriminating LM within my cohort (Figure 19). Previous 

studies have already highlighted the role of late stage TGF beta 

signaling in promoting tumor invasion or metastasis  [40]. This 

finding further validated the efficacy of my model in representing 

CLM. KRAS signaling down, which was selected as a splitter for 

predicting type in the decision tree, appeared as the second most 

relevant variable, accounting for 17% of autoML respondents 

(Figures 18 and 19). Regorafenib played a role in determining the 

difference between pCRC and LM, which are not classified by KRAS 

signaling down. Regorafenib also had a high probability of predicting 

LM. Apitolisib and miR-3613-5p, which exhibited significant 

correlations in DIABLO analysis, ranked as the fourth and fifteenth 

most relevant variables, respectively (Figures 15 and 19). 
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Figure 18. Decision tree using eleven CLM organoids. 

HALLMARK_KRAS_SIGNALING_DN pathway and Regorafenib were 

estimators capable of distinguishing LM from pCRC. The NES of the 

KRAS signaling down (-0.112) and the AUC value of Regorafenib 

(1.363) were the criteria for classification. Numerical values under 

each circle (nodes) represent impurities and percentages of the total. 
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Figure 19. Top 15 most LM-relevant variables. The top 15 variables out of 102 variables were shown. TGF beta 

signaling pathway accounted for 36% of AutoML respondents, making it the most relevant variable. 
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Discussion 

Despite extensive considerations regarding chemotherapy and 

precision medicine for CRC, metastasis remains a significant 

challenge in treatment. Due to the liver's role as a major blood filter 

in the body, cancer cells that separate from the primary tumor often 

travel through the bloodstream and settle in the liver, making it the 

most common site of metastasis for colon cancer [4]. Consequently, 

anatomical factors such as blood flow play a crucial role in the 

occurrence of distant metastases, particularly liver metastases. 

Exosomes present in the bloodstream can transport various 

molecules that contribute to the tumor microenvironment and 

regulate transcription. Exosomal miRNAs are believed to facilitate 

the process of primary cancer cells settling or proliferating in the 

liver through the bloodstream. Therefore, I noted exosomal miRNAs 

as potential drivers of CLM. 

However, there was a lack of 3D models available to study the 

mechanism of CLM. To overcome these limitations, I developed the 

CLM PDCO by combining in-house 3D culture method with pre-

existing cell lines. By utilizing these in-vitro models, I was able to 

overcome the time constraints associated with establishing pCRC and 
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matched simultaneously, while still benefiting from organoids’ ability 

to better simulate the complexity of living organism. The cell lines 

used in organoid production were selected at early passages to 

ensure they retained the genetic characteristics of the tumor tissues 

as closely as possible. 

Herein, I successfully established 11 CLM PDOs and PDCOs by 

constructing a biobank. I performed comprehensively profiling of 

CLM organoids characteristics using NGS and a HTS strategy. Then, 

I focused on a multi-omics approach, examining transcriptome, 

miRNA expression, and drug response. 

There was a notable correlation between miR-3613-5p (miRNA 

expression), eEF2K (mRNA expression), and TAS-102 (drug 

response). Eukaryotic elongation factor 2 (eEF2) kinase (eEF2K), 

also known as calmodulin-dependent protein kinase III (CAMKIII), 

is a gene that regulates eEF2 protein synthesis by inducing 

phosphorylation. The eEF2 gene facilitates codon-codon 

translocation at the ribosome during protein synthesis, allowing 

transcription to be continued [41]. Previous studies has indicated 

that elevated levels of eEF2K expression enhance invasion and 

migration, leading to metastasis [42]. I observed that eEF2K was 

highly expressed in pCRC compared to LM (Figure 11). This 
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suggests that elevated eEF2K expression may trigger the metastatic 

potential of primary cancer. 

EIF4B, POLDIP3, and RPL37 were identified as target genes of miR-

3613-5p that interact with eEF2K (Figure 12). Previous studies 

have implicated mammalian POLDIP3 and EIF4B in the regulation of 

the mTOR signaling pathway[43, 44]. RPL37 is a ribosomal 

component involved in mRNA translation like eEF2K. there is 

evidence suggesting that eEF2K activity can be modulated by the 

mTOR signaling pathway [45]. Consequently, it is inferred that miR-

3613-5p is linked to eEF2K and participates in protein synthesis and 

the mTOR cascade. 

TAS-102 is an oral drug composed of trifluridine (TFD) and tipiracil 

hydrochloride (TPI). TFD is the key compound of TAS-102 acting 

as a binding agent to DNA rather than a thymidine-based nucleoside 

to show an anti-tumor effect. TPI is an auxiliary substance that 

maximizes TPI efficacy while inhibiting the TFI degradation enzyme 

[46]. Although there is currently no research specifically 

investigating the resistance of TAS-102 related to eEF2K or miR-

3613-5p. It is anticipated that eEF2K and miR-3613-5p may impact 

cancer-related pathways, leading to resistance against TAS-102 in 

LM. 
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Preclinical studies have demonstrated significant anti-tumor activity 

of TAS-102 in mCRC groups resistant to 5-FU, making it a 

promising option for mCRC treatment. [47, 48]. However, in my 

study, TAS-102 exhibited resistance in LM compared to pCRC. 

Further research appears to be necessary to understand why TAS-

102 exhibits resistance in LM organoids, aiming to find promising 

anti-cancer drugs for 5-FU resistant CLM. Additionally, in-silico 

analysis alone may have limitations in studying miRNAs that function 

as transcription factors. Therefore, additional functional studies are 

needed to explore the relationship between miR-3613-5p, eEF2K, 

and TAS-102. 

Through the prediction model and N-integration analysis, I identified 

significant variables that differentiate pCRC from LM. KRAS signaling 

down, Apitolisib, and Regorafenib emerged as important factors. In 

LM, Hallmark KRAS signaling down was found to be suppressed 

compared to pCRC (Table 7). Regorafenib, an FDA-approved multi-

kinase inhibitor targeting RAF, acts as a substrate for various 

molecules, thereby exerting an anti-tumor effect [49]. It can be 

inferred that the up-regulated KRAS affects downstream proteins of 

the mTOR and MAPK pathways, leading to resistance to Regorafenib 

and Apitolisib resistant (Figure 20). In addition, I note that KRAS and 



78 

the gene set which is downregulated when KRAS signaling is 

activated can be the putative molecular target of CLM (Table 8). 

Moreover, KRAS wild-type (WT) patients have shown a significant 

extension in overall survival when treated with Regorafenib. 

However, in the case of most colorectal cancer patients with KRAS 

mutations, relatively minimal benefits have been reported [50]. 

There have been reports suggesting that the activation of KRAS 

influences the response to Regorafenib. Therefore, considering the 

influence of KRAS is essential when targeting LM with Regorafenib. 

Understanding the mechanisms underlying changes in drug response 

is important for the treatment development. My study holds 

importance in utilizing the organoid model to efficiently screen 

various drugs and establish correlations between gene expression, 

pathway, and miRNA expression. Moreover, I derived a potential 

prediction system from these findings.  

Indeed, due to the lack of cohort numbers, previous statistical 

analysis could not be convinced that there was a clear correlation 

between the tumor type and molecular features. Because my study 

has the specificity of focusing on CLM, there was insufficient public 

data for result validation. Nevertheless, I employed supervised 

learning methods to enhance the impact of the study and identify drug 
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targets specific to CLM. This approach could provide a basis for 

effective drug prescription or chemotherapy development for 

unresectable CLM patient. However, it is crucial to validate my 

results accurately through further research. 

In summary, liver metastasis remains a significant therapeutic 

challenge in colorectal cancer, and there has been a scarcity of in-

vitro models for studying CLM. My study provides a comprehensive 

understanding of the molecular features and pharmacological 

responses of LM compared to pCRC, achieved through the 

establishment of PDOs. As a result, PDOs have proven to be valuable 

preclinical models for investigating anti-cancer targets and building 

prediction system. Furthermore, it is meaningful that exosomes were 

integrated into organoids to expand the scope of organoids’ use as 

preclinical model. 
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Figure 20. Molecular targets of Regorafenib and Apitolisib. The sharp 

arrow (→) means stimulation while blunt arrow (┴) indicates 

inhibition. 
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Table 8. Gene set of HALLMARK_KRAS_signaling_dn pathway. 

Human Gene Set: HALLMARK_KRAS_SIGNALING_DN 

ABCB11 CALML5 COL2A1 FGFR3 IL12B LFNG NRIP2 RGS11 SLC5A5 TFCP2L1 

ABCG4 CAMK1D COPZ2 FGGY IL5 LGALS7 NTF3 RIBC2 SLC6A14 TFF2 

ACTC1 CAPN9 COQ8A FSHB INSL5 LYPD3 NUDT11 RSAD2 SLC6A3 TG 

ADRA2C CCDC106 CPA2 GAMT IRS4 MACROH2A2 OXT RYR1 SMPX TGFB2 

AKR1B10 CCNA1 CPB1 GDNF ITGB1BP2 MAGIX P2RX6 RYR2 SNCB TGM1 

ALOX12B CCR8 CPEB3 GP1BA ITIH3 MAST3 P2RY4 SCGB1A1 SNN THNSL2 

AMBN CD207 CYP11B2 GP2 KCND1 MEFV PAX3 SCN10A SOX10 THRB 

ARHGDIG CD40LG CYP39A1 GPR19 KCNE2 MFSD6 PAX4 SELENOP SPHK2 TLX1 

ARPP21 CD80 DCC GPR3 KCNMB1 MSH5 PCDHB1 SERPINA10 SPRR3 TNNI3 

ASB7 CDH16 DLK2 GPRC5C KCNN1 MTHFR PDCD1 SERPINB2 SPTBN2 TSHB 

ATP4A CDKAL1 DTNB GRID2 KCNQ2 MX1 PDE6B SGK1 SSTR4 UGT2B17 

ATP6V1B1 CELSR2 EDAR GTF3C5 KLHDC8A MYH7 PDK2 SHOX2 STAG3 UPK3B 

BARD1 CHRNG EDN1 HNF1A KLK7 MYO15A PKP1 SIDT1 SYNPO VPREB1 

BMPR1B CHST2 EDN2 HSD11B2 KLK8 MYOT PLAG1 SKIL TAS2R4 VPS50 

BRDT CKM EFHD1 HTR1B KMT2D NGB PNMT SLC12A3 TCF7L1 WNT16 

BTG2 CLDN16 EGF HTR1D KRT1 NOS1 PRKN SLC16A7 TCL1A YBX2 

C5 CLDN8 ENTPD7 IDUA KRT13 NPHS1 PRODH SLC25A23 TENM2 YPEL1 

CACNA1F CLPS EPHA5 IFI44L KRT15 NPY4R PROP1 SLC29A3 TENT5C ZBTB16 

CACNG1 CLSTN3 FGF16 IFNG KRT4 NR4A2 PTGFR SLC30A3 TEX15 ZC2HC1C 

CALCB CNTFR FGF22 IGFBP2 KRT5 NR6A1 PTPRJ SLC38A3 TFAP2B ZNF112 
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국문 초록 

대장암 환자에게 전이는 여전히 치료의 장애물이다. 간은 대장과 비교적 

멀리 떨어져 있는 기관임에도 불구하고, 간 문맥에 의하여 연결되어 있

기 때문에 대장암 전이가 가장 호발하는 부위이다. 전이의 다양한 원인 

중 엑소좀 유래 마이크로 RNA는 상피-간엽 이행, 면역 억제, 종양 미

세환경 구성 등의 생물학적 과정에 영향을 주어 원격 전이를 유발한다. 

하지만 대장암 간 전이를 연구할 수 있는 실험 모델은 여전히 부족한 상

황이다. 

본 연구에서는 동일 환자 유래 대장 원발암과 간 전이암으로 구성된 11

개의 환자 유래 오가노이드 (PDO) 및 환자 유래 세포주 오가노이드 

(PDCO)를 수립하여 대장암의 간 전이 연구를 가능하게 하는 생체 외 

모델을 구축하였다. 수립한 대장암 간 전이 (CLM) 모델은 게놈 및 전

사체, 약리학적 분석에 사용하였다. 

본 연구는 전사체 및 마이크로 RNA, 약물 반응성 수치를 통합하는 다

중 오믹스 분석을 통해 대장 원발암과 간 전이암 사이의 약물 반응성에 

영향을 미치는 마이크로 RNA 바이오마커를 밝혔다. 또한 요인들 간의 

상관관계 분석을 통해 약물 반응성에 영향을 미치는 간 전이암 특이적인 

분자 간의 상호 작용을 서술하였다. 뿐만 아니라 기계 학습 모델을 적용

하여 대장 원발암과 간 전이암의 차이를 예측할 수 있는 회귀 모델을 도

출하였고, 더 나아가 KRAS 신호 조절이 간 전이암의 항암제 반응과 높
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은 연관성이 있음을 제시하였다.  
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