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Abstract

Metabolomics study to
explore pathophysiology and
discover diagnostic biomarkers of
idiopathic inflammatory myopathy
Jihyun Kang

Major in Biomedical Sciences
Department of Biomedical Sciences

Seoul National University Graduate School

INTRODUCTION: Idiopathic inflammatory myopathy (IIM) is a
diverse set of autoimmune diseases with various clinical symptoms,
responses to treatment, and prognoses. The diagnosis for IIM can be
challenging without conducting muscle biopsy. In this study, a panel
of metabolites were identified through a metabolomics approach in
serum samples for IIM detection. The metabolomic signature of IIM
was investigated using both human serum samples and tissue samples
from a mouse model.

METHODS: Serum samples from 50 IIM patients, 30 ankylosing

spondylitis (AS) patients, and 10 healthy volunteers as well as muscle
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tissue samples from C-protein-induced myositis (CIM) which is a
murine model of IIM were collected. All samples were subjected to a
targeted  liquid  chromatography-mass  spectrometry-based
metabolomic approach, and part of human serum samples underwent
an untargeted metabolomics approach. Three machine learning
methods, namely logistic regression (LR), support vector machine
(SVM), and random forest (RF), were applied to build prediction
models for IIM patients. In addition, univariate and multivariate
statistical analyses, as well as pathway enrichment analysis, were
performed on serum and tissue samples to identify metabolic
alterations.

RESULTS: ANOVA revealed 37 IIM-specific metabolites and a set of 7
predictive metabolites was calculated by backward stepwise selection.
The discrimination model for IIM was evaluated within 5-fold cross-
validation by using three machine learning algorithms. The model
produced area under the receiver operating characteristic curve
values of 0.955 (LR), 0.908 (RF), and 0.918 (SVM). Additionally, the
analysis of subset of human serum samples revealed a significant
increase in oxylipins in the IIM group. In mouse tissue samples, a total
of 68 metabolites were significantly changed in CIM mice. The
metabolic profiles of CIM mice showed a consistent pattern among all
metabolites from various classes, except for taurine. Notably, the

polyamine pathway and the beta-alanine pathway were identified as

ii



the pivotal pathways implicated in the inflammatory response of
muscle tissue in CIM mice.

CONCLUSION: A metabolomics-based approach was employed to
identify potential biomarkers of IIM and uncover the relevant
metabolic pathways involved in the underlying pathological processes
of IIM.

*Part of this work has been published as original article in Metabolites
(Kang J and Kim ], et al. Identification of Metabolic Signature
Associated with Idiopathic Inflammatory Myopathy Reveals
Polyamine Pathway Alteration in Muscle Tissue. Metabolites.

2022;12(10))

KEYWORDS: idiopathic inflammatory myopathy, metabolomics, C
protein-induced myositis, biomarker, pathophysiology

STUDENT NUMBER: 2017-25272
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Introduction

Idiopathic inflammatory myopathy (IIM) is a group of rare
autoimmune diseases characterized by immune-mediated myositis
that leads to progressive proximal muscle weakness. It is often
accompanied by various extramuscular manifestations, including
skin rash, arthritis, and interstitial lung disease (1). Despite extensive
research efforts, the exact etiology and underlying molecular
mechanisms driving the pathogenesis of IIM remain incompletely
understood (2). The complex interplay between genetic and
environmental factors, as well as immune dysregulation, is
considered to contribute to the complex of IIM (3). The incidence and
prevalence of IIM remain unclear, but a systemic review reported an
incidence ranged from 1.16 to 19 cases per million per year and a
prevalence ranging from 2.4 to 33.8 per 100,000 inhabitants (4).
Moreover, the incidence of IIM is gradually increasing, which may
reflect the advances in diagnostic technologies.

In 1975, Bohan and Peter suggested the diagnostic criteria of
IIM, especially polymyositis (PM) and dermatomyositis (DM), which
are predominantly used despite certain limitations (5, 6). The recent
discovery of myositis-specific auto-antibodies (MSAs) and myositis-
associated auto-antibodies (MAAs), which are present in up to 60% of

ITM patients, has majorly advanced the diagnosis of IIM (7). However,



a disadvantage of this technique is its limited availability, and
approximately 40% of IIM patients do not exhibit these antibodies (8).
Therefore, a muscle biopsy is necessary if the diagnosis cannot be
confirmed based on clinical and laboratory findings. However,
histopathologic findings are often insufficient for diagnosis because
of the patchy distribution of inflammatory foci in muscle tissue or due
to the use of medication prior to the pathologic diagnosis.

C protein-induced myositis (CIM) is a murine model of
polymyositis (PM) that is induced by a single immunization with
recombinant skeletal muscle C protein fragments in C57BL/6 mice.
Infiltration of CD8+ T cells is the primary mechanism of muscle injury,
and increased levels of interleukin (IL)-1, IL-6, and tumor necrosis
factor (TNF)-a are crucial indicators of the development of CIM (9-11).
Due to the challenges associated with collecting muscle tissues from
humans, studying the inflammatory processes occurring in muscles
has been difficult. Consequently, the CIM model tissue was used to
investigate the pathology of PM for its comparable disease mechanism
in this study.

Ankylosing spondylitis (AS) is one of chronic inflammatory
diseases causing axial arthritis, resulting spinal structural damage (12).
It mainly affects the sacroiliac joints that connect the base of the spine.
ASisalso an autoimmune disease characterized by inflammatory back
pain and spinal stiffness (12). Muscle involvement has uncommonly
been reported in AS patient (13). Therefore, the serum of AS patients
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was evaluated as a disease control group to identify specific
metabolite profiles when inflammation targets the muscle.

Previous studies reported genetic and environmental risk
factors associated with IIM, including muscle weakness and damage
to immune and non-immune mechanisms (14). The metabolome,
which represents a set of metabolites, can be analyzed to discover
biomarkers and describe interactions among genotype, diet, and
environmental factors to elucidate the molecular mechanisms
involved in IIM (15). Furthermore, tissue metabolomics allows
informing the localized effects of environmental factors and complex
interactions that occur at the direct site of pathogenesis (16).
Metabolic alterations have been reported in IIM patients, describing
metabolic dysregulation in serum and muscle tissues (17). Key
metabolic pathways, including anaerobic metabolism, oxidative
defects, and muscle catabolism, were evaluated through
metabolomics (17). However, none of the previous studies analyzed
serum biomarkers using metabolomics to classify IIM or aid in
diagnosis. This study was conducted with the aim of identifying the
metabolite panel as a potential biomarker for differentiating IIM from
controls or disease controls and exploring the metabolic signature of
ITM pathology by using tissue samples from mouse model and serum

samples from ITM patients, AS patients, and healthy controls.



Methods

1. Study participants®

Patients were recruited from Seoul National University Hospital from
March 2010 to February 2020. Patients with IIM who were 19 years or
older and diagnosed according to probable or definite PM or DM
based on the Bohan and Peter criteria were eligible for inclusion (5, 6).
Patients with other rheumatic diseases were excluded. The reference
group was composed of patients with AS, and the healthy control
group included participants without any immune-mediated disease.
AS is a chronic inflammatory autoimmune disease that mainly affects
spine joints, causing severe, chronic pain, and IIM is a chronic
inflammatory disease of unknown etiology that may affect the skin,
muscles, and lungs. These two autoimmune diseases have different
etiopathogeneses as well as clinical and genetic characteristics. In this
study, the serum of AS patients was compared and analyzed as a
disease control. The diagnosis of AS was based on the 1984 Modified
New York Criteria for AS.

Serum samples of the participants were obtained once at the

enrollment date. Information on demographics, including age, sex,

A Patient recruitment, sample collection, and laboratory assessment were conducted

by Prof. Eun Young Lee.



and body mass index (BMI, kg/m?), was collected from all participants.
In addition, the following information was collected from IIM patients:
clinical manifestations at IIM onset, including proximal muscle
weakness, skin rash, dyspnea, dysphagia, Raynaud’s phenomenon,
and arthralgia; previous treatment history of glucocorticoids,
intravenous immunoglobulin, or immunosuppressive agent use;
laboratory results including white blood cell count, creatinine kinase,
aldolase, = myoglobin, lactate  dehydrogenase, erythrocyte
sedimentation rate, and C-reactive protein at the sampling date and
positivity of antinuclear antibodies and anti-Jo-1 (anti-histidyl-transfer
RNA synthetase antibody). The results of the diagnostic tests for
myositis, including electromyography, muscle biopsy, chest computed
tomography, and pulmonary function test, were also retrieved.
Written informed consent was obtained from all participants
before their enrollment in the trial. This study was approved by the
institutional review board of the Seoul National University Hospital
(study identification number: g1103-151-357 and 1902-120-1013) and

was conducted in accordance with the Declaration of Helsinki.



2. Induction of C protein-induced myositis

C57BL/6 mice were purchased from OrientBio (Sungnam, Korea).
Female mice (age 8 to 10 weeks) were immunized intradermally with
200 ug C-protein fragments emulsified in complete Freund’s adjuvant
containing 100 pg heat-killed Mycobacterium butyricum (Difco,
Franklin Lakes, NJ, USA) (9). The immunogens were injected at
multiple sites over the back and into the foot pads, and 250 ng
pertussis toxin (Sigma-Aldrich, St. Louis, MO, USA) diluted with 0.03%
Triton X was injected intraperitoneally. A total of 26 mice were
sacrificed on day 14 after immunization, and the sera and proximal

muscles (hamstring and quadriceps) of both hind legs were harvested.



3. Histological Analysis®

Hematoxylin and eosin-stained 10-um sections of the proximal
muscles were examined histologically for the presence of
mononuclear cell infiltration and necrosis of muscle fibers. The
histologic severity of inflammation in each muscle block was graded
as Grade 1, involvement of a single muscle fiber; Grade 2, a lesion
involving 2-5 muscle fibers; Grade 3, a lesion involving 6-15 muscle
fibers; Grade 4, a lesion involving 16-30 muscle fibers; Grade 5, a
lesion involving 31-100 muscle fibers; and Grade 6, a lesion involving
>100 muscle fibers. When multiple lesions with the same grade were
found in a single muscle section, an additional 0.5 points was added
to the grade. The histologic grading was based on a method that was
modified from that of Sugihara et al. (9). All experiments were done
under specific pathogen-free conditions. The animal experiment was
approved by the Institutional Animal Care and Use Committee of

Seoul National University Hospital [TACUC No. 15-0058-C1A1].

B Histological analysis has been performed by Jeong Yeon Kim and Prof. Eun Young
Lee and previously reported by Jihyun Kang and Jeong Yeon Kim (Kang J and Kim J,
et al. Identification of Metabolic Signature Associated with Idiopathic Inflammatory
Myopathy Reveals Polyamine Pathway Alteration in Muscle Tissue. Metabolites.
2022;12(10)).



4. Mass spectrometry-based analyses

4.1. Mass spectrometry-based targeted metabolomics

analysis

Serum and tissue metabolites were measured by using the Biocrates
AbsoluteIDQ p180 platform (BIOCRATES Life Sciences AG, Innsbruck,
Austria) (Figure 1). This high-throughput metabolome platform
combines a flow-injection analysis and liquid chromatography
method that enables the quantification of amino acids, acylcarnitines,
sphingomyelins  (SMs),  lysophosphatidylcholines  (lysoPCs),
phosphatidylcholines (PCs), hexoses, and biogenic amines. These
assays were analyzed using API 4000 QTRAP (AB Sciex, Framingham,
MA, USA) equipped with an Agilent 1200 series high-performance
liquid chromatography (HPLC) system (Agilent Technologies, Santa
Clara, CA, USA) and an AB SCIEX 5500 QTrap mass spectrometer (AB
Sciex, USA) equipped with a Waters ACQUITY ultra-performance
liquid chromatography (UPLC) I-Class (Waters, Milford, MA, USA)
with electrospray ionization. The concentration of each metabolite
was measured in ng/mL. The calibration standards, internal standards,
quality controls, and 10 uL of human and mouse samples were applied
onto the 96-well extraction plate and dried under nitrogen gas. After
derivatization, all metabolites were extracted for mass spectrometry

analysis. Additionally, 17 bile acids were quantified using Biocrates
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bile acid kit (BIOCRATES Life Sciences AG, Innsbruck, Austria) in part
of human serum. The kit detects 20 bile acids and for further analysis,
the following 16 specific human bile acids were selected: cholic acid
(CA), chenodeoxycholic acid (CDCA), deoxycholic acid (DCA),
lithocholic acid (LCA), ursodeoxycholic acid (UDCA), glycocholic acid
(GCA), glycochenodeoxycholic acid (GCDCA), taurocholic acid (TCA),
taurochenodeoxycholic acid (TCDCA), tauromuricholic acid (TMCA
(ath), glycodeoxycholic acid (GDCA), glycolithocholic acid (GLCA),
taurodeoxycholic acid (TDCA), taurolithocholic acid (TLCA),
glycoursodeoxycholic acid (GUDCA), glycoursodeoxycholic acid

(TUDCA).

4.2. Mass spectrometry-based untargeted metabolomics

analysis

The part of human serum samples also was analyzed using untargeted
metabolomics platform (Figure 1). The 70 plL of plasma sample of
human serum was mixed with 280 pL of pre-chilled 1:1
acetonitrile/methanol (v/v) and vortexed briefly. The mixture was
centrifuged at 14,000 g for 10 mins. 4 uL of aliquot samples were
injected and separated using a 2.1 mm X 100 mm ACQUITY 1.8 um
HSS T3 column. All samples were analyzed using a Q-Exactive Plus™
quadrupole-Orbitrap mass spectrometer (Thermo Fisher Scientific,

United States) with an Ultimate 3000 UPLC system (Dionex, United



States) that was controlled with Thermo Xcalibur software (Thermo
Fisher Scientific, United States). The mobile phase was composed of
0.1% formic acid (solvent A) and methanol containing 0.1% formic
acid (solvent B) at a flow rate of 0.4 ml/min. The gradient started at 5%
B, reached 95% B from 12 to 23 minutes, and was maintained at 5% B
from 23 to 25 minutes. Pooled Quality control (QC) replicates were

analyzed with samples for consistency and stability.
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5. Raw data processing and normalization

5.1. Targeted metabolomics raw data processing using

MetIDQ

The raw data from LC -MS/MS mode was confirmed using Analyst
software 1.6.3 (ABSciex, Framingham, MA, USA) and the quantitative
generated data from FIA-MS/MS mode was generated using MetIDQ
software (BIOCRATES Life Sciences AG, Innsbruck, Austria). Two
batches, including all human and mouse samples, were normalized
with standardized quality control to adjust the batch effect. After
normalization, data were analyzed with MetaboAnalyst 5.0 (18). A
missing value refers to an observed value that is below the limit of
detection or the absence of a metabolite. Metabolites with 50%
missing values were excluded, and the remaining missing values were

imputed with 1/5 of the minimum positive value of each variable.

5.2. Untargeted metabolomics raw data processing

Raw data were imported into Progenesis QI software (version 2.3;
Nonlinear Dynamics, Newcastle, UK). Peak alignment, peak picking,
deconvolution, normalization, and statistical analysis were performed.

using pooled QC replicates. Minimum peak width was set at 0.02 min.
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Metabolic features with a coefficient of variation <30% were filtered

to remove unstable metabolites.
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6. Protein Extraction and Western Blot Analysis®

Skeletal muscles were extracted using a lysis buffer containing 20 mM
Hepes-NaOH (pH 7.0), 0.15 M NaCl, 10% glycerol, 1% Nonidet P-40, 1
mM EDTA, 1 mM EGTA, 10 mM B-phosphoglycerate, 1 mM sodium
vanadate, 5 mM NaF, 1 mM trichostatin A, and 20 mM nicotinamide,
along with a mixture of protease inhibitor and phosphatase inhibitor
(Sigma Aldrich, St. Louis, MO, USA). The lysates were centrifuged to
remove debris, and the supernatants were used for immunoblot
analysis. The final protein concentrations were determined using the
Bradford protein assay (Bio-Rad, Hercules, CA, USA). The protein
extracts were subjected to SDS-PAGE gel (8-15%), and NuPAGE Novex
4-12% Bis-Tris gel electrophoresis (Invitrogen) and electrophoresis
were carried out using sodium dodecyl sulfate-10% polyacrylamide
gels electrophoresis (SDS-PAGE). The separated proteins were
transferred to a polyvinylidene difluoride membrane. The membrane
was incubated overnight at 4 °C with primary antibodies (ODC-1
(Abcam), SMOX (Abcam), tubulin (cell signaling)) and then for 1 h at
room temperature with horseradish peroxidase-conjugated secondary

antibodies and enhanced chemiluminescence reagents (ELPIS

¢ Protein extraction and western blot analysis has been performed by Jeong Yeon
Kim and Prof. Eun Young Lee and previously reported by Jihyun Kang and Jeong
Yeon Kim (Kang J and Kim ], et al. Identification of Metabolic Signature Associated
with Idiopathic Inflammatory Myopathy Reveals Polyamine Pathway Alteration in
Muscle Tissue. Metabolites. 2022;12(10)).
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Biotech, Daejeon, Korea). Films were scanned, and optical densities

were quantified using Image] software.
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7. Enzyme-linked immunosorbent assay®

Serum cytokines were determined by using interleukin 6 (IL-6),
interleukin-13 (IL-1f), and Tumor necrosis factor alpha (TNF-a),
enzyme-linked immunosorbent assay (ELISA) kits (R&D Systems,

Minneapolis, MN, USA).

D ELISA has been performed by Jeong Yeon Kim and Prof. Eun Young Lee and
previously reported by Jihyun Kang and Jeong Yeon Kim (Kang J and Kim ], et al.
Identification of Metabolic Signature Associated with Idiopathic Inflammatory
Myopathy Reveals Polyamine Pathway Alteration in Muscle Tissue. Metabolites.
2022;12(10)).
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8. Statistical analysis

8.1. Normalized targeted metabolomics data

Multivariate, univariate, cluster and enrichment pathway analyses
were performed in MetaboAnalyst 5.0 (18). Significant metabolites
were selected with a false discovery rate (FDR) adjusted p-value less
than 0.05 by using the Kruskal-Wallis one-way analysis of variance
(ANOVA) followed by Dunn’s post hoc test for human serum samples
and by using the non-parametric t-test for mouse samples. All
individual graph of significant metabolites was generated using
GraphPad Prism software. Model and machine learning analyses were
performed using R software (version 4.2.0). The number of significant
metabolites was reduced by backward stepwise selection. A predictive
model was established using logistic regression (LR), random forest
(RF), and a support vector machine (SVM). The receiver operating
characteristic (ROC) curve was used for the evaluation of model
performance. Additionally, network analysis was processed with an
FDR-adjusted p-value, fold change and fold change direction by using
MetaMapp and was visualized using Cytoscape. The differential
metabolites between CIM and control group were uploaded to the
enrichment analysis in Metaboanalyst 5.0 by applying HMDB

identifiers. Significant pathways were selected using p-value.
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8.2. Untargeted metabolomics data

After raw data processing, further analysis was subjected to
multivariate statistical analysis by EZinfo 2.0 software (Umetrics,
Umea, Sweden). Principal component analysis (PCA) with pareto
scaling algorithm was applied for detecting the dominant patterns and
grouping. Additional statistical analysis for selecting significant
metabolites (FDR adjusted p-value < 0.05) were performed in

Progenesis QI.
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Results

1. Clinical characteristics of the participants

From March 2010 to August 2019, a total of 50 patients with IIM, 30
patients with AS, and 10 healthy controls were enrolled in the study.
The demographic characteristics of the study population are
presented in Table 1, and there was no statistically significant
intergroup difference in age, sex, and BMI. The mean age at the
diagnosis of IIM was 48.4 years, and the mean duration of the disease
was 2.24 years. Thirty-four patients (68%) presented with proximal
muscle weakness, 30 (60%) had skin manifestations such as Gottron’s
sign, heliotrope rash, or V-neck sign, and 27 (55.1%) were diagnosed
with interstitial lung disease at an initial presentation. Anti-Jo-1
antibody was identified in six patients. Forty-one patients (82%) had a
previous history of glucocorticoid therapy before the enrollment date.
The mean values were stated as CK of 532 U/L, LDH of 329 IU/L, and

CRP of 1.44 mg/dL at the sample collection date.
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Table 1. Demographics and clinical parameters of study participants.

IIM AS Control
(=50 (=30 (=10  Prave
Age (y) * 50.7 +12.2 525+ 11.4 450+ 15.0 0.249
Male 25 (50.0) 15 (50.0) 5 (50.0) 1.000
BMI (kg/m?) 235+ 34  228+28  25.0+22 0.376
Age at disease onset (y) 48.4 +12.4
Disease duration (y) 2.24 £2.74
Clinical features at disease onset (n)
Proximal muscle weakness 34 (68.0)
Skin manifestations T 30 (60.0)
Interstitial lung disease 27 (55.1)
Elevated serum level of enzymes * 46 (92.0)
Anti-Jol antibody present 6(12.2)
Laboratory data *
WBC (X 10%/uL) 8445 + 5095
Creatinine kinase (U/L) 532 + 934
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Aldolase (U/L) 19.1 +23.2

Myoglobin (ng/mL) 694 + 885
LDH (IU/L) 329 + 179
C-reactive protein (mg/dL) 1.44 + 3.59
ESR (mm/h) 30.5 + 28.1
Treatment history *
Corticosteroids (ever) 41 (82.0)
IVIG (ever) 4 (8.0)

Note: Values are expressed as the mean + SD or numbers (%) unless stated otherwise. * At sample col-lection date; T Gottron’s sign
or heliotrope rash or V-neck sign; # Creatinine kinase or lactate dehydrogenase or aspartate aminotransferase or alanine
aminotransferase; § Treatment history before the sample collection date; Abbreviation: ANA, Antinuclear antibodies; ESR,

Erythrocyte sedimentation rate; IVIG, Intravenous immunoglobulin; LDH, Lactate dehydrogenase; WBC, White blood cell.
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2. Metabolic profiling of healthy control, AS and IIM

patients

High-throughput targeted metabolomics analysis was performed to
explore the metabolic signature of IIM using serum samples from IIM
patients, AS patients, and healthy controls. After missing value
imputation, a total of 148 metabolites remained for further analysis in
human serum. A full name of metabolites was shown in Table 2.
Principal component analysis (PCA), an unsupervised multivariate
statistical analysis, in human serum samples showed differences
between the IIM group and the other groups (Figure 2), whereas the
AS and healthy control groups showed no intergroup difference. In
total, 88 significant metabolites were identified using ANOVA with an
FDR-adjusted p-value less than 0.05 for IIM, AS, and healthy control
groups (Table 3). The clustered heatmap using Euclidean distance and
the Ward method, revealed distinct clusters with metabolite similarity
(Figures 3A, B). The heatmap with group averages clearly showed
differences between the 1IM, AS, and healthy control groups (Figures
4A, B). In particular, the metabolic signature between the healthy
control and IIM was distinctively different. L-acetylcarnitine, cis-5-
tetradecenoylcarnitine, serotonin, glycine, creatinine and methionine
were down-regulated, whereas all other significant metabolites were

upregulated in IIM compared to the healthy control (Figure 4A). To
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visualize the global metabolomic data, mapping of biochemical
pathways and chemical similarity for significant metabolites in IIM
compared to healthy controls was conducted (Figure 5). All significant
metabolites were mapped as three main clusters: (i) amino acids and
biogenic amine, (ii) glycerophospholipids, and acylcarnitine, and (iii)
sphingomyelin. Clearly, all significantly changed sphingomyelins
were down-regulated in IIM compared to the healthy controls. Besides
sphingomyelin, numerous metabolites in other clusters were altered
in the serum of IIM compared to healthy controls. These results
support that inflammation in muscle impacts the systemic serum

metabolite profile.

23



Table 2. Abbreviations used to describe metabolites.

Metabolite abbreviation Full name HMDB ID
Ala L-Alanine HMDB0000161
Arg L-Arginine HMDB0000517
Asn L-Asparagine HMDBO0000168
Asp L-Aspartic acid HMDB0000191
Cit Citrulline HMDB0000904
Gln L-Glutamine HMDB0000641
Glu L-Glutamic acid HMDB0000148
Gly Glycine HMDB0000123
His L-Histidine HMDB0000177
Ile L-Isoleucine HMDB0000172
Leu L-Leucine HMDB0000687
Lys L-Lysine HMDB0000182
Met L-Methionine HMDB0000696
Orn Ornithine HMDB0000214
Phe L-Phenylalanine HMDBO0000159
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Pro L-Proline HMDBO0000162

Ser L-Serine HMDB0000187
Thr L-Threonine HMDB0000167
Trp L-Tryptophan HMDB0000929
Tyr L-Tyrosine HMDB0000158
Val L-Valine HMDBO0000883
Ac-Orn N-Acetylornithine HMDB0003357
ADMA Asymmetric dimethylarginine HMDB0001539
alpha-AAA Aminoadipic acid HMDB0000510
c4-OH-Pro cis-4-Hydroxyproline HMDB0240251
Carnosine Carnosine HMDB0000033
Creatinine Creatinine HMDB0000562
DOPA L-Dopa HMDBO0000181
Dopamine Dopamine HMDB0000073
Histamine Histamine HMDB0000870
Kynurenine L-Kynurenine HMDBO0000684
Met-SO Methionine sulfoxide HMDB0002005
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Nitro-Tyr 3-Nitrotyrosine HMDB0001904
PEA Phenylethylamine HMDBO0012275
Putrescine Putrescine HMDB0001414
SDMA Symmetric dimethylarginine HMDBO0003334
Serotonin Serotonin HMDB0000259
Spermidine Spermidine HMDB0001257
Spermine Spermine HMDB0001256
t4-OH-Pro 4-Hydroxyproline HMDBO0000725
Taurine Taurine HMDB0000251
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Table 3. List of significant metabolites in serum of IIM patients, AS

patients, and healthy controls.

Metabolites  FDR-adjusted p-value

Met-SO 4.49E-06
PC aa C38:4 1.55E-05
Glu 3.55E-05
PC ae C38:0 8.07E-05
PCaa C38:6 8.07E-05
PCaa C38:1 8.07E-05
PCae C36:1 8.07E-05
PCaa C42:4 8.58E-05
PC ae C38:6 8.58E-05
PC aa C40:6 8.58E-05
PC aa C24:0 0.0001
lysoPC a C24:0 0.0002
PC ae C38:2 0.0002
PC ae C38:5 0.0002
PCaa C36:4 0.0003
Gln 0.0003
Kynurenine 0.0003
C2 0.0003
PCae C36:5 0.0003
PCaa C38:5 0.0003
PCaa C42:5 0.0005
PC aa C36:0 0.0005
PC ae C42:4 0.0006
PC ae C40:5 0.0006
PC aa C40:3 0.0006
lysoPC a C26:0 0.0006
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PC aa C42:2 0.0009
PC ae C30:2 0.0009
Serotonin 0.0010
Asp 0.0011
PCaa C40:1 0.0011
PC aa C40:2 0.0021
Met 0.0022

Phe 0.0024
lysoPC a C20:4 0.0026
PCae C42:5 0.0026
PC ae C40:6 0.0026
Ile 0.0026

Ala 0.0026

Leu 0.0026

PC ae C44:3 0.0026
Ser 0.0027
ADMA 0.0027

PC ae C44:4 0.0027
SM C26:0 0.0037
Pro 0.0039

SM (OH) C22:2 0.0040
PC ae C36:4 0.0040
Cl4:1 0.0040
lysoPC a C28:0 0.0040
lysoPC a C17:0 0.0041
Orn 0.0041

PC ae C30:0 0.0042
PCaa C42:1 0.0042
PC ae C40:2 0.0042
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Lys 0.0042

PC ae C38:3 0.0042
PC ae C42:3 0.0043
PCaa C30:2 0.0043
lysoPC a C28:1 0.0043
PC aa C40:4 0.0052
Val 0.0057

SM (OH) C22:1 0.0061
PC ae C40:4 0.0063
PC aa C38:3 0.0077
PCae C30:1 0.0094
Creatinine 0.0100
Taurine 0.0112
Tyr 0.0112

Gly 0.0135

PC ae C38:0 0.0151
lysoPC a C16:0 0.0151
alpha-AAA 0.0151
PC ae C40:3 0.0169
SM (OH) C24:1 0.0170
Putrescine 0.0173
PC ae C36:2 0.0173
PCae C42:1 0.0179
PC aa C40:5 0.0183
PC ae C42:2 0.0232
PC aa C32:0 0.0308
PC aa C42:6 0.0330
t4-OH-Pro 0.0333
lysoPC a C18:0 0.0361
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lysoPC a C16:1 0.0422
SM (OH) C14:1 0.0430
PC aa C36:3 0.0439
PCae C36:0 0.0439

Statistical analysis was performed using one-way analysis of variance

(ANOVA).
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Figure 3. Cluster heatmap of significant metabolites in serum of AS patients, IIM patients, and healthy controls.

(A) including amino acid, biogenic amine and acylcarnitine class. (B) including SMs, lysoPCs, PC, and hexoses.
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3. Predictive Biomarker and Machine Learning
Algorithm Optimization for Distinguishing IIM

Following the ANOVA test, multiple comparisons were performed to
identify 37 IIM-specific metabolites (Table 4 and Figure 6). Among
these, a combination of seven metabolites was calculated to
distinguish IIM from AS and healthy controls using backward stepwise
selection (Figure 7). LR, RF, and SVM algorithms were used to
establish a prediction model for IIM. ROC analysis using LR, RF, and
SVM was performed to assess model performance, yielding area under
the ROC curve (AUC) values of 0.966 (95% CI, 0.928-1.000), 1 (1.000-
1.000), and 0.957 (0.910-1.000), respectively (Figure 8A). The prediction
model was evaluated using a five-fold cross-validation method,
resulting in AUC values were 0.955 (LR), 0.908 (RF) and 0.918 (SVM)
(Figure 8B). By using the prediction model as well as 5-fold cross-
validation, a panel of seven metabolite was identified as powerful

contributors in distinguishing ITM from the other groups (Figure 8B).
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Table 4. List of IIM specific metabolites based on ANOVA and post-hoc analysis.

ANOVA (FDR- Post-hoc
Metabolite IIM AS Healthy control ) .
adjusted p-value) analysis
Ala 723.841+46.99 566.23143.33 480.51+36.72 0.0026 i ¥
Asp 157.89+19.58 82.031+14.32 44.66+3.84 0.0011 N
Glu 650.621t46.49 397.02+51.95 242.4+33.14 0.0000 [ N
Orn 224.1+16.49 162.05+11.65 130.57+9.14 0.0041 T
Val 406.221+26.74 330.53+24.58 291.9+12.19 0.0057 T
Met-SO 39.361+4.47 22.42+7.25 2.310.44 0.0000 [l i
Serotonin 0.31£0.02 0.48£0.05 0.5610.08 0.0010 Tt
lysoPC a C20:4 4.54+0.23 5.5310.28 6.7510.72 0.0026 T
lysoPC a C24:0 0.530.03 0.3310.04 0.1610.05 0.0002 B
lysoPC a C26:0 0.760.08 0.510.09 0.16%0.03 0.0006 N
PCaa C24:0 0.31£0.02 0.17£0.02 0.1£0.02 0.0001 T T T
PCaa C36:0 6.841+0.46 4.6810.4 3.72+0.39 0.0005 T T
PCaa C36:4 76.981t3.22 102.41+5.25 111.26+9.39 0.0003 T T T
PCaa C38:1 4.68+0.37 2.54+0.42 2.410.37 0.0001 N
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PC aa C38:4 41.43+1.71 64.6713.91 68.5946.37 0.0000 i i
PC aa C38:5 24.481.35 36.092.74 39.76--3.87 0.0003 T
PC aa C38:6 48.1442.57 67+5.12 88.33-4.36 0.0001 Rk i
PC aa C40:3 2.460.16 1.68+0.18 1.11+0.16 0.0006 ot
PC aa C40:4 4.9440.26 3.750.25 3.447-0.47 0.0052 £t
PC aa C40:6 18.82+1.09 29.842.68 32.73+1.76 0.0001 R
PC aa C42:1 0.480.03 0.370.03 0.320.03 0.0042 £t
PC aa C42:2 0.940.05 0.590.05 0.5520.07 0.0009 £ttt
PC aa C42:4 1.340.08 0.797-0.08 0.597-0.1 0.0001 R
PC aa C42:5 0.73+0.03 0.52-0.04 0.5+0.06 0.0005 <ttt
PC ae C30:2 0.25+0.01 0.160.02 0.14--0.02 0.0009 Rt
PC ae C36:1 22.4311.44 13.97+1.5 9.7340.85 0.0001 ot i
PC ae C36:4 8.55-0.49 11.10.8 12.3+1.04 0.0040 o
PC ae C36:5 5.53+0.31 7.55+0.5 8.86-0.77 0.0003 B ¥
PC ae C38:0 9.63+0.77 5.43--0.82 3.01--0.44 0.0001 Bt i
PC ae C38:2 9.4170.64 6.12-0.82 3.68-0.47 0.0002 B i
PC ae C38:3 13.7140.77 9.76+1.1 8.55+1.37 0.0042 £t
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PC ae C38:5 7.2240.37 9.944-0.65 11.524+1.12 0.0002 BT i
PC ae C38:6 3.9+0.25 5.7110.47 6.660.4 0.0001 X
PC ae C42:3 1.85+0.09 1.4+0.11 1.21+0.14 0.0043 ot
PC ae C42:4 1.76-0.08 1.230.09 1.2970.15 0.0006 ottt
PC ae C44:4 0.5370.02 0.4474-0.02 0.36-0.03 0.0027 o
SM (OH) C24:1 0.95+0.04 1.08+0.05 1.15+0.08 0.0170 ot

Concentration of each group represented as mean = SEM. Comparing Healthy control vs IIM, * p <0.05; ** p < 0.005; *** p < 0.0005,
*** p < 0.0001. Comparing AS vs IIM, T p <0.05; T T p <0.005; T ¥ 1 p <0.0005, T ¥ T 1 p <0.0001. Listed metabolites were not
significantly different between healthy control and AS.
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Figure 6. Heatmap of I[IM-specific metabolites based on ANOVA and

post-hoc analysis.

IIM Specific metabolites were selected using FDR adjusted p-value < 0.05 by

Kruskal-Wallis test and post-hoc analysis by Dunn’s test between three groups.
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4. Bile acid levels in human serum

After missing value imputation, a total of 15 bile acids remained for
further analysis in human serum. The concentration of serum bile
acids levels was measured in IIM patients, AS patients, and healthy
controls. PCA based on serum bile acid characteristics showed no
significant differences between the three groups (Figure 9A). In
addition, there was no IIM specific bile acid from AS and healthy
control group. Hierarchical clustering heatmap also revealed no
distinct variation among these groups (Figure 9B). Even though, there
was no IIM specific bile acid, GCA, GCDCA, TCA, TCDCA and TUDCA
were significantly changed in IIM compared to healthy controls
(Figure 10). GCDCA, GUDCA, TCDCA and TUDCA were also

significantly changed in AS compared to healthy control (Figure 10).
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Figure 9. Multivariate analysis of bile acids in serum samples.

(A) The bile acids distribution of AS patients, IIM patients, and healthy
controls by PCA score plot showing relatively high within group variation in

IIM group. (B) Cluster heatmap of bile acids in all individual samples.
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5. Oxylipin profiles from untargeted metabolomic

analysis

Serum samples of 28 patients with IIM, 10 patients with AS, and 10
healthy controls were subjected to untargeted analysis. A total of 3042
metabolic features were detected in the ESI* and EST- mode. Pooled QC
samples were closely clustered in the center of the PCA model,
validating the stability of this study. As demonstrated by the PCA in
Figure 11, serum metabolome showed clear differences between the
healthy control group and disease groups in both positive (ESI*) and
negative (ESI') electrospray ionization mode. The similarity in serum
metabolomes between ITM and AS groups indicated that inflammation
status may share a number of metabolic features. A total of 796
metabolites were significantly changed in IIM compared to healthy
control. Further evaluation using ANOVA revealed that a total of 241
metabolites were significantly changed in IIM compared to AS and
healthy controls (Figure 12). Finally, 40 metabolites were annotated
from a public library, and 8 metabolites were identified using
authentic compounds (Figure 13). Except for L-methionine, the IIM
specific metabolites were upregulated in the IIM group compared to
the healthy control and AS group (Figure 13). The majority of these
metabolites, 6 out of 8, were oxylipins that mediate oxidative stress

and inflammation.
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Figure 11. PCA plot of AS patients, I[IM patients, and healthy controls in positive and negative mode.
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Figure 12. Heatmap of significant metabolites based on ANOVA from

untargeted metabolomics data.

(A) Positive mode. (B) Negative mode.
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6. Serum metabolites change after corticosteroid

treatment

Among the participants of our study, the majority of patients (82%)
received corticosteroid treatment. We collected pre-dose and post-
dose data of corticosteroid treatment from 7 patients. PCAs, using
both targeted and untargeted metabolomics data, did not show clear
separation between the pre- and post-treatment (follow-up) groups
(Figure 14). Furthermore, we identified 7 metabolites with raw p-
values < 0.05 from the Wilcoxon test. Among these metabolites, four
oxylipins and Met-SO demonstrated a decrease in levels during the
follow-up period, while C2 and serotonin showed an increase (Figure
15). The metabolic profile following corticosteroid treatment in ITM
patients exhibits a resemblance to that of healthy controls, contrasting

with the metabolic profile observed in ITM patients prior to treatment.
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7. Metabolic profiling in the C-protein-induced

myositis mouse model

To examine the alteration of metabolites in the muscle, we used a
mouse model induced by injection of immunogens. Mouse quadriceps
and hamstring muscles were stained with hematoxylin and eosin
(H&E) to assess muscle histology (Figure 16A). The histological score
showed a significant increase in the quadriceps and hamstring
muscles of CIM mice compared to control mice (Figure 16B). CIM mice
showed increased production of cytokines TNF-a, IL-6, and IL-1 in
mouse serum samples (Figure 16C). Univariate and multivariate
analyses were performed to explore the effect on the metabolite
profile in muscle tissue with inflammation. After missing value
imputation, a total of 157 metabolites remained for further analysis in
mouse muscle tissue. PCA analysis of mouse muscle samples showed
a difference between CIM and control mice (Figure 17A). A volcano
plot was constructed to visualize significant metabolites (t-test with
FDR-adjusted p-value less than 0.05) between CIM and control mice.
(Figure 17B). In total, 68 metabolites were changed in the tissue of CIM
mice (Table 5). A clustered heatmap showed the similarity of the
metabolite patterns of individual samples in each group (Figure 17C).
Among the significant metabolites, the levels of amino acids, biogenic

amines, and acylcarnitines, except taurine, were decreased in CIM

52



mice.Conversely, the levels of all lipids increased in CIM mice.
Interestingly, biogenic amines, except taurine, and all metabolites
from other classes showed the same pattern in CIM mice in the
network analysis (Figure 18). In addition, 37 metabolites were altered
in the serum of CIM mice compared to controls (Figures 19, 20 and
Table 6). Significant metabolites such as carnosine, tryptophan, and
creatinine observed in CIM mouse muscle, were also altered in the

serum of CIM mice (Figure 20).
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Table 5. List of significant metabolites in mouse tissue.

Fold FDR-adjusted p-

Metabolites
change value
PCae C36:2 3.1 0.0122
PC ae C34:2 3.1 0.0122
PC ae C36:3 3.0 0.0122
PCaa C34:3 2.8 0.0122
PCaa C36:2 3.5 0.0139
PCaa C34:2 2.4 0.0139
Creatinine 0.5 0.0139
PCaa C36:1 3.5 0.0171
PC aa C40:4 3.2 0.0171
PCaa C32:0 2.9 0.0171
PCae C34:3 2.8 0.0171
PCaa C34:1 2.6 0.0171
PCaa C32:2 2.6 0.0171
PCae C34:1 2.6 0.0171
PC ae C38:5 2.5 0.0171
PC ae C36:4 2.3 0.0171
SM C16:0 2.1 0.0171
Carnosine 0.5 0.0171
Co 0.5 0.0171
SM (OH) C24:1 1.7 0.0171
PC ae C36:5 3.1 0.0195
PC aa C40:5 3.1 0.0195
PCaa C36:3 2.7 0.0195
PC aa C36:0 2.6 0.0195
PCae C32:1 2.4 0.0195
PC ae C36:1 2.4 0.0195
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PCaa C32:1 2.3 0.0195
C18:1 0.5 0.0195
PCae C30:1 1.8 0.0195
Taurine 1.1 0.0195
C18:1-OH 0.6 0.0228
Cl6:1 0.4 0.0238
PC aa C38:4 2.5 0.0238
PC ae C38:2 2.4 0.0238
PCae C34:0 2.3 0.0238
PCaa C38:1 2.2 0.0238
PCae C32:2 2.2 0.0238
PCaa C42:4 1.9 0.0238
SM (OH) C16:1 1.8 0.0238
PCaa C38:0 2.5 0.0255
PC aa C40:2 2.5 0.0283
C18:2 0.3 0.0293
SM C24:1 2.8 0.0293
SM (OH) C22:1 2.7 0.0293
PCaa C38:3 2.4 0.0293
PC aa C40:6 2.4 0.0293
PC ae C38:6 2.2 0.0293
PCae C42:1 2.0 0.0293
Met 0.7 0.0293
Tyr 0.7 0.0293

PC ae C30:0 3.0 0.0313
PCaa C30:2 1.6 0.0359
Asp 0.4 0.0364

PC aa C42:5 1.9 0.0364
PC ae C36:0 1.8 0.0364
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Spermine 0.3 0.0372
Spermidine 0.5 0.0372
PC ae C38:4 1.9 0.0372

His 0.6 0.0372

SM (OH) C22:2 2.3 0.0460
SM C24:0 2.8 0.0474
C14:1 0.5 0.0474

SM (OH) C14:1 1.9 0.0474

Cl16:1-OH 0.6 0.0474

PC ae C38:0 1.6 0.0474
C2 0.6 0.0474
Thr 0.7 0.0474
PC ae C40:4 1.3 0.0474

Statistical analysis was performed using t-test.
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Table 6. List of significant metabolites in mouse serum.

Metabolites Fold change FDR-adjusted p-value
lysoPC a C20:4 0.3 3.E-05
lysoPC a C20:3 0.5 0.0002

t4-OH-Pro 1.7 0.0004
Trp 0.6 0.0005
lysoPC a C17:0 0.6 0.0007

PCae C34:1 1.5 0.0007

lysoPC a C18:2 0.5 0.0007

Carnosine 0.3 0.0007
lysoPC a C18:1 0.6 0.0010
lysoPC a C16:0 0.7 0.0012
Arg 1.7 0.0012

PC aa C40:2 1.8 0.0016
lysoPC a C16:1 0.7 0.0034

H1 0.6 0.0036

PCaa C42:4 1.6 0.0038

PCae C40:1 0.6 0.0038
lysoPC a C18:0 0.7 0.0038

ADMA 1.6 0.0043
PC aa C36:0 0.7 0.0049
SM C26:0 0.6 0.0067
PC ae C38:0 0.7 0.0078
PCae C36:5 0.7 0.0093
SM C18:0 0.7 0.0110
PCaa C32:1 1.5 0.0175
PC aa C30:0 1.2 0.0184
SM C16:0 1.3 0.0216
SM C24:1 1.3 0.0216
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PC ae C32:1 1.3 0.0244
PC aa C36:6 0.8 0.0277
lysoPC a C24:0 0.6 0.0279
PCaa C36:4 0.6 0.0279
SM C18:1 0.7 0.0344
PC ae C42:3 0.7 0.0458
Co 0.8 0.0458
Creatinine 0.8 0.0458
SM (OH) C22:2 0.8 0.0458
PC aa C38:4 0.6 0.0488

Statistical analysis was performed using t-test.
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8. Metabolic pathway associated with the muscle of

CIM mice and expression of ODC-1 and SMOX

After performing statistical analysis on metabolites measured through
targeted analysis, an enrichment pathway analysis was performed to
identify alterations in metabolic pathways that could potentially be
associated with IIM muscle. (Figure 21). The pathway analysis showed
that 6 metabolites—aspartic acid, histidine, carnosine, spermidine,
and spermine (Figure 22)—were predominantly linked to beta-alanine
and histidine metabolism (Table 7). Furthermore, spermine and
spermidine were significantly decreased in the CIM mice, indicating
the down-regulation of the polyamine pathway (Figure 23). These
metabolites have been detected in several studies but were not
confirmed in the CIM mouse model (19, 20). Thus, the expression
levels of enzymes related to spermine and spermidine were
additionally examined. Spermine oxidase (SMOX) converts spermine
to spermidine, playing a critical role in the regulation of spermine and
spermidine concentration, and ornithine decarboxylase 1 (ODC-1) is
known as the rate-limiting enzyme in the polyamine pathway (21, 22).
To further understand the alteration of polyamines concentration in
muscle tissue, western blot analysis was performed to assess the levels
of ODC-1 and SMOX (Figure 24A, B). The expression of ODC-1

increased, whereas SMOX expression decreased in CIM mice.
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Table 7. Significantly altered pathway using enrichment analysis in

mouse tissue.

P-
Pathway  Total Hit Metabolites
value
Beta- L-Aspartic acid, Carnosine,
Alanine 21 5 Spermine, L-Histidine, 0.0018
metabolism Spermidine
Histidine L-Histidine, L-Aspartic acid,
_ 16 4 . 0.0315
metabolism Carnosine
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Figure 21. Dot plot of metabolic pathway influenced by statistically significant metabolites.

Color gradient and symbol size represent significant metabolite changes in the corresponding pathway.
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Discussion

1. IIM-specific metabolites based on targeted

metabolomics analysis

Using a targeted metabolomics platform, this study highlights that all
groups from patients and healthy control showed different blood
metabolic signatures, indicating the potential of the biomarker for IIM
and the significant alteration of metabolites to discover the
underlying mechanism related to muscle inflammation.

In this study, both targeted metabolomics and untargeted
metabolomics analyses were conducted and they revealed distinct
trends and patterns among the three groups. In the untargeted
metabolomics PCA, a clear separation was observed between the
disease-associated inflammation group and the healthy control group.
On the other hand, in the targeted metabolomics PCA, the AS group
and the healthy control group showed some overlap. It should be
noted that targeted metabolomics data represents a limited set of
metabolites, whereas untargeted metabolomics data provides an
unbiased global metabolic profile that can be associated with
inflammation.

Notable metabolites, including five amino acids and two biogenic

amines besides lipids, were altered specifically in IIM patients. These
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findings are in agreement with those of a previous study that showed
serum amino acid concentration alteration in IIM patients (17). Amino
acids, especially branched-chain amino acids (BCAA), are essential for
skeletal muscle and whole-body metabolism (23). In previous studies,
BCAA is recommended as a supplement for muscle development and
fatigue treatment (24). However, increased levels of BCAAs can cause
inflammation by activating mTORC1, which subsequently increases
the production of proinflammatory cytokines (25). The observation of
increased BCAA level in the serum in IIM patients needs to be
investigated further, along with the levels of other increased amino
acids. Remarkably, methionine sulfoxide was specifically increased in
IIM patients compared to healthy controls and AS patients, while
methionine was decreased in IIM patients compared to healthy
control. Methionine sulfoxide, the oxidized form of methionine, can
be reduced back to methionine by methionine reductases, which
serve as protective mechanisms against oxidative stress and regulate
the aging process (26, 27). The altered levels of methionine sulfoxide
and methionine are considered biomarkers of oxidative stress, and,
therefore, our result might reflect increased ROS production in IIM
patients (28, 29).

Additionally, these results showed that various metabolites in the
lipid class were altered, specifically in IIM patients. PCs are prominent
phospholipids constituting approximately 40-50% of the overall
phospholipid content in cell membranes (30). PCs are composed of a
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phosphocholine head group connected to two fatty acyl chains via a
glycerol backbone. They are predominantly located in the outer layer
of the cell membrane, while other glycerophospholipids such as
phosphatidylethanolamines, phosphatidylserines, and
phosphatidylinositols are primarily found in the inner membrane
leaflet. PCs play a crucial role in the initial stages of the inflammatory
process (31). Moreover, lysoPCs, the breakdown products of PCs, also
contribute to the regulation of the immune system by activating and
transporting immune cells. These biological functions have been
associated with various inflammatory disorders, including diabetes,
obesity, atherosclerosis, cancer, and rheumatoid arthritis (32).
Phospholipid metabolism has been highlighted in energy
metabolisms, as well as in skeletal muscle function (30). A few studies
have reported changes in lipid profiles in the serum of myopathy
patients and speculated that dysregulation of the lipid metabolism in
patients with polymyositis and dermatomyositis may result in
persistent muscle weakness and fatigue (33, 34).

Due to its primary role in facilitating insulin-stimulated glucose
disposal, skeletal muscle is widely recognized as the most significant
tissue contributing to whole-body insulin resistance (35). In the
context of skeletal muscle, insulin resistance is commonly associated
with the accumulation of lipids, leading to disruptions in fatty acid (FA)
metabolism (36). These disruptions can involve various aspects of FA
processing, including altered muscle FA uptake, impaired synthesis of
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triacylglycerols (TG), perturbed breakdown of TG (lipolysis),
compromised FA oxidation, or a combination of these factors (37). A
previous study demonstrated that patients with dermatomyositis were

observed with increased insulin resistance (38).
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2. Diagnostic biomarker discovery of IIM

In the past few years, machine learning techniques have been widely
used to discover biomarkers of muscle diseases. Previous findings
have predicted the cancer risk of anti-TIFly+ myositis and have
suggested gene markers for muscle disease classification using
machine learning algorithms. In this study, a set of seven metabolites
was identified, which allows for the discrimination of IIM patients
from AS patients and healthy controls using machine learning
algorithms based on the AUC values of 0.955 (LR), 0.908 (RF) and 0.918
(SVM) (39, 40). These results highlight the potential of using this set of
metabolites as a predictive biomarker for IIM patients, providing
insights into the underlying pathophysiologic mechanisms of IIM.
This biomarker discovery may help in the diagnosis or disease activity
monitoring, replacing the need for invasive procedures such as

muscle biopsies.
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3. Muscle inflammation induces alteration of
oxylipins

Upon cleavage of PCs containing a fatty acyl group known as C20:4,
arachidonic acid (20:4) is released, which serves as the precursor for a
group of oxylipins and eicosanoids (32). In this study, a significant
decrease in lysoPC a C20:4 was observed in patients with IIM
compared to healthy controls. However, no significant change was
observed in arachidonic acid levels. Interestingly, three oxylipins
derived from arachidonic acid, 9-HETE, 11-HETE, and 8-HEPE,
showed a significant increase in IIM patients compared to the healthy
control group. Oxylipins are lipid mediators synthesized from
polyunsaturated fatty acids (PUFAs), which are categorized into two
groups: omega-6 (n-6) and omega-3 (n-3), based on the position of the
final double bond from the end of the carbon chain. Similarly,
oxylipins are also categorized into n-6 and n-3 subtypes as PUFA
metabolites (41, 42). Omega-3 PUFAs, such as eicosapentaenoic acid
(EPA; C20:5n-3) and docosahexaenoic acid (DHA; C22:6n-3), are
known to produce functional anti-inflammatory mediators, including
protectins and resolvins, which are effective in both acute and chronic
inflammatory conditions (43). On the other hand, arachidonic acid
(AA), a representative omega-6 PUFA, is extensively studied due to its
association with the inflammatory response (44). In this study,

oxylipin levels were significantly increased in IIM patients compared
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to healthy controls, whereas previous studies showed opposite results
and demonstrated the effect of myositis on muscle performance (17).
However, individual oxylipin levels were observed in this study, and
further studies are needed to clarify the role of oxylipins related to

inflammation in muscle.
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4. Pathophysiology of IIM in mouse muscle tissue

In the muscle tissue of CIM mice, spermine and spermidine from the
polyamine pathway were significantly down-regulated in this study. In
addition, ornithine and putrescine, which also are involved in the
polyamine pathway, were significantly increased in the serum of IIM
patients compared to healthy controls. Previous studies have
described dysregulated polyamine metabolism associated with
various diseases and inflammation (45, 46). Polyamines in muscle
diseases are related to the degeneration and regeneration of muscular
fibers, and the concentrations of spermine and spermidine are
regulated by a key enzyme, SMOX (47). Furthermore, SMOX
expression was also reduced, along with the decreased spermine and
spermidine concentrations, in CIM mice. A recent study
demonstrated that a significant reduction of SMOX expression is
associated with muscle atrophy induced by various conditions (48).
Aging is one of the conditions that can reduce spermidine levels and
SMOX expression, which can bring about a loss of skeletal muscle (49).
The significant reduction of spermine, spermidine, and SMOX
expression and significant induction of ODC was highly consistent
with that in aged skeletal muscle. These alterations in metabolites and
enzyme expression may be affected by aging, which involves

decreased cell proliferation and protein synthesis (50). Thus, the
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alterations in polyamine metabolites and associated enzymes might
reflect an aging phenotype in inflammatory muscle.

Moreover, enrichment pathway analysis revealed changes in
metabolites related to beta-alanine and histidine metabolisms.
Compared to the control mice, histidine, carnosine, and aspartic acid
levels were lower in the muscle tissue of CIM mice. Carnosine, formed
from histidine and beta-alanine, is highly present and primarily
synthesized in skeletal muscle tissue in mammals (51). In addition,
carnosine has protective effects, including the reduction of
proinflammatory and profibrotic cytokines, which can suppress ROS
production and inflammation (52, 53). Histidine also plays an
important role in skeletal muscle by enhancing muscle performance
and contributing to the synthesis of carnosine (54). The decrease in
muscle carnosine and histidine levels may reflect cell damage in the
presence of inflammation.

In our study, interestingly, metabolic profiling in tissue samples
from CIM mice showed that metabolites from each class, except
taurine, changed in the same direction. The significant reduction in
several amino acids and amines, such as aspartic acid, histidine,
methionine, threonine, tyrosine, carnosine, creatinine, spermidine,
and spermine, observed in our study is highly consistent with previous
studies on aging. Essential amino acids stimulate protein synthesis in
skeletal muscle, and the delivery of amino acids is closely associated
with muscle weakness and atrophy (55). Previous studies further
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showed that reduced amino acid delivery and protein synthesis are
stimulated by mTORC1 in aged skeletal muscle (56). Our findings in
this study have particular relevance to the aging phenotype.
Additionally, significant metabolites in human serum were compared
with those in mouse tissue to investigate the association between
these samples. It was observed that the majority of significant
metabolites identified in mouse tissue did not exhibit significant
changes in human serum in this study. While the mouse model is
commonly utilized as a disease model, it is important to consider the
potential impact of species differences on metabolic processes in
pathophysiology. Moreover, the present study included various
subtypes of IIM in human patients, whereas the mouse model only

mimicked polymyositis, significantly influencing our findings.

81



5. Study limitations

The limitations of the present study include the lack of a validation
cohort for modeling, the small sample size of patient groups and
healthy controls, the lack of various disease controls, and the potential
gender difference of polyamine metabolites in the mouse model. The
lack of a validation set in this study poses a risk of model overfitting.
As IIM is a rare disease, it was challenging to recruit an additional
validation cohort. To overcome this limitation, the five-fold cross-
validation method with three machine learning algorithms was
practiced. Additionally, one of the limitations is the small sample size.
Therefore, IIM specific metabolites and the diagnostic metabolite
panel remain to be further investigated using larger cohorts to validate

these results.
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Conclusion

In summary, this study utilized targeted and untargeted
metabolomics profiling to identify a specific metabolic signature in
both serum and inflamed tissue of IIM patients. To the best of our
knowledge, this is the first study to propose a metabolic biomarker for
IIM patients using a machine learning algorithm-based prediction
model. Beyond suggesting a predictive marker of IIM, our study
additionally uncovered alteration of metabolites related to muscle

inflammation and provided new insights into IIM pathology.
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