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Abstract 

 

Idiopathic pulmonary fibrosis (IPF) is a progressive lung 

disease characterized by the formation of scar tissue, resulting in 

impaired gas exchange. Diffusing capacity of the lung for carbon 

monoxide (DLCO) measures the degree of gas exchange in lung 

alveoli. We aimed to explore and develop artificial intelligence (AI) 

models to predict DLCO using flow-volume curve images and 

quantitative CT features (QCT).  

Flow-volume curves from 272 IPF patients enrolled at Seoul 

National University Hospital (SNUH) in South Korea from 2015 to 

2019 (age=69±8, height=162±8cm, weight=63±10kg, 

M:F=201:71) were retrospectively collected and analyzed. QCT 

features from 60 IPF patients (age=70±5, height=164±6cm, 

weight=68±9kg male:female=53:7) were retrospectively collected 

from 2018 environmental lung disease study cohort (ENV18) at 

SNUH and analyzed.  

DLCO%pred was successfully predicted from flow-volume 

curve (mean absolute error=4.33, R2=0.91). DLCO%pred prediction 

with QCT features were limited due to small sample size, but the data 

provided insights on regional lung structure-function relationship in 
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DLCO%pred prediction.    

Successful prediction of DLCO from spirometry-measured 

flow-volume curve images suggest that the dynamic pattern of the 

flow-volume curve may contain comprehensive information of the 

lung structure-function. Future development of the model may 

include predicting follow-up DLCO after 1 year. Further application 

may elucidate how specific shape or image features from flow-

volume curve and QCT data link gas ventilation and gas exchange.  

 

Keyword : flow-volume curve, diffusing capacity of carbon monoxide, 

machine learning, deep learning, idiopathic pulmonary fibrosis 

Student Number : 2021-24213 
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Chapter 1. Introduction 

 

1.1. Background 

 

Idiopathic pulmonary fibrosis (IPF) is the most common and 

severe idiopathic subtype of interstitial lung disease (ILD) 

characterized by progressive inflammation and scarring around the 

alveoli (Martinez et al., 2017). Damage in alveoli leads to impaired 

gas exchange between air space and blood vessels, which is the 

primary function of the lung to maintain the life of a human body. IPF 

is diagnosed by structural change in the lung where histological 

and/or radiological pattern of usual interstitial pneumonia is evident 

(Raghu et al., 2018; Romei et al., 2020). However, the relationship 

between structural changes and functional decline in IPF is not fully 

understood.     

Functional decline in IPF is, similarly to other chronic lung 

diseases, measured most commonly by pulmonary function test 

(PFT), which includes spirometry, body plethysmography, and 

measure of diffusing capacity of the lung for carbon monoxide 

(DLCO). PFT provides useful quantitative measures in identifying 

and managing pulmonary abnormalities (Crapo, 1994). Forced vital 
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capacity (FVC) from spirometry test is used as a reliable measure 

for functional capacity of the lung with IPF (Hoesterey et al., 2019; 

Du Bois et al., 2011; Fernandez-Villar et al., 2018). DLCO is also 

frequently employed as it provides information about the efficiency 

of gas exchange in the lungs (Morton, 2008). Both spirometry and 

DLCO parameters are used for evaluating states and progression of 

IPF (Song et al., 2019; Fainberg et al., 2022; Raghu et al., 2022). 

Notwithstanding the utility of a single quantitative parameter or 

combination of a few in clinical practice such as the percent-

predicted values of FVC (FVC%pred) and DLCO (DLCO%pred), they 

may not fully reflect the structure-function relationship of the lung 

due to its complex pathophysiologic nature.  

We noted that the flow-volume curve from spirometry may 

contain comprehensive information of lung function. The flow-

volume curve provides a graphical representation of dynamic lung 

function that results from a comprehensive interplay between 

multiscale (large and small) structural and functional features of the 

entire lung. The hidden information may relate the two major 

functional components of the lung, ventilation (or, gas transfer in the 

airways) and gas exchange (between airways and blood vessels). 

Thus, we hypothesize that it is possible to predict DLCO utilizing the 

inherent information of multiscale structure-function relationship in 
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the flow-volume curve. 

On the other hand, computed tomography (CT) imaging is 

another major assessment tool for IPF. Recent advances in CT 

imaging and quantitative CT (QCT) analysis suggested promising 

applications of regional lung structure and function in IPF and other 

lung diseases (Kang et al., 2021; Choi et al., 2022), as well as in 

normal lung physiology and subclinical abnormality in normal-

appearing lungs (Choi et al., 2017; Shin et al., 2020; Li et al., 2022). 

We hypothesize that the QCT-based structural and functional 

features of the airways, lobes, and the whole lung may provide 

valuable information in predicting DLCO. 

In recent years, advancements in artificial intelligence (AI) 

algorithms such as (shallow) machine learning and deep learning 

techniques have revolutionized the field of medical image analysis 

(Haghighi et al., 2019; Saood and Hatem, 2021; Shelke et al., 2021; 

Zou et al., 2022; Li et al., 2021, 2022;). These techniques enabled the 

extraction of hidden information from medical images, which 

potentially predictive of clinical parameters. As an expansion of the 

medical image analysis, we pondered the potential capturing of hidden 

information from the flow-volume curve obtained during the forced 

vital capacity maneuver of the spirometry test.  
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1.2. Purpose  

 

Our goal in this study is to investigate the utility of image data 

with implicitly nested information and AI algorithms in predicting 

DLCO%pred. Primarily, we aimed to develop a predictive model of 

DLCO%pred in IPF patients, based on deep learning of the flow-

volume curve and basic demographic information. Additionally, to 

enhance the accuracy of DLCO%pred prediction, we incorporate QCT-

based structural and functional features of the lung. 

Three objectives are itemized below. 

1. Develop an AI model for predicting DLCO%pred in IPF 

patients using flow-volume curve images. 

2. Explore enhanced AI prediction of DLCO%pred in IPF 

utilizing QCT imaging-based multiscale lung structure-

function features and compare predictive performance 

across different models  

3. Discuss the interplay between regional lung structure-

function relationship, in bridging whole lung functional 

measurements of ventilation (in the flow-volume curve) 

and gas exchange (DLCO). 

The study may provide a non-invasive and efficient means 
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of assessing gas exchange in IPF, particularly for the patients with 

difficulties in DLCO testing, and new insights in functional 

assessment in IPF. 

 

1.3. Thesis Overview 

 

Detailed methodological approaches utilized in the study are 

introduced in Chapter 2. Results are reported in Chapter 3. 

Interpretation of the findings in DLCO prediction in association with 

complicated lung structure-function relationship in IPF is discussed 

in Chapter 4. Conclusions, limitations, and future works are presented 

in the final chapter, Chapter 5.  
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Chapter 2. Materials and Methods 

 

2.1. Research Design and Patient Data Collection  

 

PFT results including tabular spirometry measures, flow-

volume curve images, and DLCO%pred, patient demographics were 

retrospectively collected (IRB approval no. 2007-174-1143) from 

272 participants enrolled in Seoul National University Hospital in 

South Korea with IPF (age=69±8 years, height=162±8 cm, 

weight=63±10 kg, male:female=201:71) (Table 2.1). Patient 

inclusion criteria is presented in Figure 2.1. 

Additionally, inspiratory and expiratory CTs and DLCO%pred 

measurements of 60 IPF patients (age=70±5, height=164±6cm, 

weight=68±9kg male:female=53:7) (Table 2.2) were 

retrospectively collected from 2018 environmental lung disease 

study (ENV18) Cohort (IRB approval no. 1810-036-977 and with 

subject consent, using a common dose-reduced QCT protocol) at 

Seoul National University Hospital in South Korea. Patient inclusion 

criteria is presented in Figure 2.2.  
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2.2. Image Data Denoising   

 

Image data of flow-volume curve were first cleaned up 

through denoising process. We utilized K-means clustering and in 

house python scripts for image denoising. K-means clustering is a 

machine learning technique used for grouping similar data points into 

k clusters. It is an iterative process that k centroids are randomly 

chosen from the data, and distances between each data point and each 

centroid are computed. The data points are then grouped into clusters 

based on the nearest centroids, and the algorithm continues to select 

k best centroids and cluster data points until the assignments no 

longer change. For our purpose, since original flow-volume curve 

had highly variable color spectrum pixel-wise, certain number of 

clusters, k, was set to 5 to denoise and extract desired graph of a 

specific color (Figure 2.3). For our purpose, we extracted only the 

reference and pre-bronchodilator flow-volume curve. 

 

2.3. Development of the Deep Leaning Model  

 

We utilized a multimodal deep learning model with early 

fusion. The model combines both flow-volume curve image 
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(128x128 pixels) and tabular features (age, weight, height, gender) 

in the early stages of the network architecture. The model utilizes 

the pretrained EfficientNet-B3 architecture from PyTorch 

(https://pytorch.org/) as a backbone for image feature extraction. 

The curve images are passed through a series of convolutional 

layers and batch normalization, followed by the EfficientNet-B3 

model. The output of the EfficientNet-B3 model is then 

concatenated with the tabular features, which are passed through a 

separate set of fully connected layers. The concatenated features 

are fed into a linear layer to obtain the predicted percent DLCO%pred 

value. (Figure 2.4) 

A multimodal model was employed to leverage the 

complementary information present in both the images and tabular 

features, allowing the model to learn joint representations and 

capture complex relationships between the different modalities, 

resulting in improved DLCO%pred prediction. 

For additional deep learning hyperparameters, a learning 

rate scheduler was employed to adjust the learning rate during 

training, and a one-cycle learning rate policy was utilized to find an 

optimal learning rate. The training process was repeated for 5 folds 

in a cross-validation setup. 
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2.4. Development of the Machine Leaning Model  

 

Tabular data was analyzed using LightGBM, a gradient 

boosting framework that employs tree-based learning algorithms. 

Prior to feature selection, the input features were normalized. The 

scaling technique transforms the feature values to a standardized 

range between 0 and 1, ensuring that each feature contributes 

proportionally to the model training process. For QCT features, 

features showing significant correlation with DLCO%pred were 

selected as input features. All dataset was divided into a 

developmental training set (80%, n=217) and an external test set 

(20%, n=55).  

To optimize the performance of the LightGBM model, 

hyperparameter tuning is conducted using the randomized search 

cross validation (Randomized Search CV) from Python's scikit-

learn library (version 1.0). These options include the number of 

estimators, learning rate, maximum depth, column sample by tree, 

and subsample. After hyperparameter optimization, the best-

performing hyperparameters are used to train the LightGBM model. 
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2.5. CT Image Processing and QCT 

 

Volumetric CT images acquired at full inspiration (IN) and at 

full expiration (EX) were retrospectively collected. CT image data 

were acquired from Philps Ingenuity CT with a protocol for QCT 

analysis: 0.67 mm or 1.0 mm slice thickness, 120 kVp tube voltage, 

93~95 mAs, YC or B reconstruction filter, 0.5 s rotation time. 

From those CT images, segmentation masks basic structural 

measurements were generated for regions of airways, lungs, lobes, 

and blood vessels using VIDA Vision 2.2 software (Coralville, IA, 

USA).  

With image matching between local voxels of IN and EX CT 

images via symmetric mass-preserving nonrigid image registration 

(Yin et al., 2009; Haghighi et al., 2018), 113 local to global lung 

structural and functional variables were computed (Choi et al., 2017; 

Chae et al., 2020; Shin et al., 2020, Kang et al., 2021; Zou et al., 2021; 

Choi et al. 2022), using an in-house QCT software. For example, 

mean lung density (HU), tissue fraction (TF), total lung volume (V), 

tissue volume (TV), high attenuation area percent (HAA%), 

emphysema percent (Emph%) air trapping percent (AirT%), air 

volume (AV), air volume difference between inspiratory and 
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expiratory CTs (∆AV) were computed in voxels based on the CT 

density.  

CT imaging-based computational fluid dynamics (CFD) 

airflow simulation of subject-specific tidal breathing was conducted 

for additional functional assessment. To conduct the simulations for 

all subjects, we used one-dimensional (1D) network-based CFD 

model (Choi 2011; Choi et al. 2019), instead of three-dimensional 

(3D) CFD simulations that provide more details of local flow 

characteristics but computationally too expensive to run for all the 

subjects. The 1D CFD simulations were conducted using CT-based 

3D-1D coupled entire conducting airway model for anatomical 

accuracy and inspiratory-expiratory CT image matching-based 

local vital capacity (VC) information at every modeled terminal 

bronchiole. Airway resistance and lung compliance models were 

coupled in the equation. An entry flow model (Pedley et al. 1970; 

1977) incorporated simplified but accurate flow physics in human 

bronchial branching system.  

 

2.6. Model Evaluation and Statistical Analysis  

 

Performance of both deep learning and machine learning 
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model were evaluated with mean absolute error (MAE) and R-

squared (R2). Additionally, two-sample Student's t-test to compare 

the distributions of the predicted and actual DLCO%pred values. The 

Bland-Altman analysis was conducted to assess the agreement 

between the predicted and actual DLCO%pred values. The Bland-

Altman analysis includes markers for the mean difference, lower 

and upper limits of agreement, and scatter points representing the 

individual data points. It helps identify any systematic bias or 

heteroscedasticity in the differences between the predicted and 

actual DLCO%pred values.  

All statistical analysis was performed using SciPy (version 

1.8.1) in Python 3 (version 3.8.5) packages. Pearson correlation 

was used for correlation analysis and figures were generated using 

Matplotlib (version 3.5.2) and Seaborn (version 0.11.0) in Python 3 

packages. A p-value less than 0.05 was considered statistically 

significant. 
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Table 2.1. IPF patient characteristics of dataset n=272.   

Characteristics  IPF (n=272) 

Demographics*  

 Age, years 69.9±8.5 

 Height, cm 162.5±7.9 

 Weight, kg 63.1±10.5 

 Sex, male, % 201, 73.9% 

Clinical Variables*   
  FEV1%pred 89.3±21.8 

 FVC%pred 76.3±19.7 

 FEV1/FVC 80.7±7.8 

 DLCO%pred 62.5±19.1 

* Data are Mean ± SD, or n, %. 

 

 

 

  



 

 １４ 

 

Figure 2.1. Patient flow diagram of dataset n=272.  
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Table 2.2. IPF Patient characteristics of dataset n=60.   

Characteristics  IPF (n=60) 

Demographics*  

 Age, years 70.6±5.4 

 Height, cm 164±6.6 

 Weight, kg 68.0±9.3 

 Sex, male 53, 88.3% 

Clinical Variables*   
  FEV1%pred 95.5±18.9 

 FVC%pred 83.1±16.6 

 DLCO%pred 67.7±17.5 

* Data are Mean ± SD, or n, %. 
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Figure 2.2. Patient flow diagram of dataset n=60. 

 

 

 
 

 

 

 

 

 



 

 １７ 

 
Figure 2.3. Schematic of image denoising process using K-means 

clustering. Reference (green) flow-volume and pre-bronchodilator 

flow-volume graph are extracted as final output. 
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Figure 2.4. Schematic of multi modal input deep leaning architecture 

for DLCO%pred prediction. Pretrained CNN architecture 

(EfficientNet-B3) was used for image feature extraction and 

custom multi-layer perceptron (MLP) was used for tabular data 

feature extraction.  
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Chapter 3. Results  

 

3.1. Predicting DLCO%pred with Flow-Volume Curve 

 

This section presents the results of the DLCO%pred prediction 

using the flow-volume curve. The accuracy and agreement between 

the predicted DLCO%pred values and the actual values were assessed 

through various statistical measures (Figure 3.1). The scatter plot in 

Figure 3.1a, compared individual prediction value from the model and 

actual DLCO%pred values. MAE and R2 score are reported to assess 

model performance. In Figure 3.2b, the box plots of the predicted 

DLCO%pred and the actual values indicate distribution between the 

predicted and actual are in good agreement. The Bland-Altman 

analysis revealed a mean bias of -3.74 with a standard deviation of 

3.75. The 95% limits of agreement ranged from -11.09% to 3.61%. 

The results indicate very small systematic difference between the 

predicted and actual DLCO%pred values (Figure 3.1c). A strong 

positive correlation was observed between the predicted and actual 

DLCO%pred values (r=0.98, P=<0.01). This suggests that the 

predicted values closely match the actual values and exhibit a high 

degree of agreement (Figure 3.1d). 
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The mean bias of -3.74 indicates a slight underestimation of 

DLCO%pred, but the limits of agreement (-11.09% to 3.61%) indicate 

that the predicted values generally fall within an acceptable range of 

the actual values.  

 

3.2. Predicting DLCO%pred with Spirometry Data 

 

This section presents the results of the DLCO%pred prediction 

using tabular spirometry data. The accuracy and agreement between 

the predicted DLCO%pred values and the actual values were evaluated 

using various statistical measures. 

Figure 3.2 illustrates the inference on the test set using 

tabular spirometry data. Figure 3.2a displays the MAE and R2 score, 

providing insights into the predictive performance. Figure 3.2b 

indicates that there is no significant difference between the predicted 

DLCO%pred values and the actual values of all patients. Figure 3.2c 

presents a Bland-Altman plot comparing the predicted and actual 

DLCO%pred values, which shows a mean bias of 2.81 with a standard 

deviation of 15.53. The 95% limits of agreement range from -27.63% 

to 33.27%. These findings suggest a slight systematic difference 

between the predicted and actual DLCO%pred values. Figure 3.2d 
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demonstrates a good correlation between the predicted and actual 

DLCO%pred values (r=0.74, P=< 0.001). This indicates a moderate 

level of agreement between the predicted and actual values. 

The results indicate that the predicted DLCO%pred values 

derived from tabular spirometry data are in a good agreement with 

the actual values. Although a mean bias of 2.81 suggests a slight 

systematic difference, the 95% limits of agreement (-27.63% to 

33.27%) encompass a reasonable range of variation. 

 

3.3. Predicting DLCO%pred with QCT 

 

This section presents the results of the DLCO%pred prediction 

using QCT data. The accuracy and agreement between the predicted 

DLCO%pred values and the actual values were assessed using various 

statistical measures. 

Prediction based only on QCT features were inferior. MAE 

was 15.98 and R2 score turned to be negative, showing a poor fit. 

There was no significant correlation between the predicted 

DLCO%pred values and the actual values of all patients. Figure 3.3a 

presents a Bland-Altman plot comparing the predicted and actual 

DLCO%pred values. The plot shows a bias of -6.70±19.43. The 95% 
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limits of agreement range from -44.80% to 31.40%. These findings 

suggest a noticeable systematic difference between the predicted and 

actual DLCO%pred values. Figure 3.3b demonstrates a moderate but 

not significant correlation between the predicted and actual 

DLCO%pred values (r=0.39, p=0.21). This indicates a weaker level of 

agreement than the model using flow-volume curve. 

The results suggest that QCT data from a relatively small 

sample size (n=60) may have limited predictability for DLCO%pred 

compared to the previous two modeling cases. The mean bias of -

6.70 indicates a noticeable systematic difference, and the wider 95% 

limits of agreement (-44.80% to 31.40%) suggest a larger range of 

variation. 

 

3.4. Performance Comparison with Limited Dataset   

 

This section presents a same sample size comparison of the 

three DLCO%pred prediction models using (1) flow-volume curve, (2) 

tabular spirometry data, and (3) QCT data. The performance of each 

model is evaluated based on MAE and R2 score. Each model was 

trained on 60 data sets (80% train, 20% test) (Figure 3.4). 

For the model using the flow-volume curve, the MAE is 39.04, 
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indicating a relatively large deviation from the actual DLCO%pred 

values (Figure 3.4a). The R2 score of -2.84 suggests a poor fit of 

the predicted values to the actual values. 

For the model using tabular spirometry data, the MAE is 

18.96, indicating a smaller deviation than the flow-volume curve 

model. However, the R2 score of 0.16 still shows a weak correlation 

between the predicted and actual DLCO%pred values (Figure 3.4b). 

Lastly, for the model using QCT data, the MAE is 15.98, 

representing the lowest deviation compared to the other two models. 

This model also showed a poor fit (Figure 3.4c). However, significant 

moderate correlation with DLCO%pred was found in individual QCT 

features such as high attenuation area percent (HAA%) in the whole 

lung and the left upper (LUL) and lower (LLL) lobes (r=-0.47, -

0.39, -0.35; P=<0.001, <0.001, 0.001, respectively), anisotropic 

deformation index (ADI) in the whole lung, LUL and LLL (r=0.28, 

0.30, 0.38; P=0.02, 0.017, 0.003, respectively).  

In summary, based on the comparison of the three DLCO%pred 

prediction models using a limited sample size, the model based on the 

QCT data showed the smallest error and the model based on flow-

volume curve exhibits the largest error while the flow-volume 

curve-based model showed an excellent performance with a large 

sample size. From the results, we could expect an improvement of 
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the QCT-based prediction with a larger sample size.  
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Figure 3.1. Comparison between predicted DLCO%pred from flow-

volume curve and actual DLCO%pred values. (a) Inference on test 

set with MAE and R2 score. (b) Box plots of the predicted 

DLCO%pred and the actual values. (c) Bland–Altman plot of the 

prediction and actual values. (d) Correlation between predicted 

values and actual values (R=0.98; P<0.01). 
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Figure 3.2. Comparison between predicted DLCO%pred using 

spirometry data and actual DLCO%pred values. (a) Inference on test 

set with MAE and R2 score. (b) Box plots of the predicted 

DLCO%pred and the actual values. (c) Bland–Altman plot of the 

prediction and actual values. (d) Correlation between predicted 

values and actual values (R=0.74; P<0.001). 
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Figure 3.3. QCT-based model performance. (a) Bland–Altman plot 

of the prediction and actual values. (b) Correlation between the 

predicted and the actual values. 



 

 ２８ 

 
Figure 3.4. Comparison of the three models with the same sample 

size (n=60): (a) flow-volume curve-based, (b) tabular spirometry 

data-based, and (c) QCT-based models. 
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Chapter 4. Discussion  

 

4.1. Model Performance Comparison 

 

The flow-volume curve-based model showed an excellent 

performance to predict DLCO%pred (MAE=4.33, R2=0.91). Despite 

the great performance, the mean bias and limits of agreement 

(Figures 3.1a and 3.1b) indicated that the model slightly 

underestimated DLCO%pred. The tabular spirometry data-based 

model also showed a moderate performance inferior to the flow-

volume curve-based model. The tabular spirometry data-based 

model exhibited a tendency of overestimating DLCO%pred values. The 

QCT data-based model showed the worst performance of all three, 

attributable to the small sample size of the QCT data compared to the 

data used in the other two models. When all three models were 

evaluated with the same sample size, the QCT model showed rather 

a better performance, indicating it may outperform other models if an 

enough sample size is available. 

To investigate the associations of demographic (weight, 

height, and age) and spirometry (FEV1%pred, FVC%pred, and 

FEV1/FVC) data with DLCO%pred, Pearson’s correlation analysis 
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was conducted (Figure 4.1). The highest correlation was found for 

FVC%pred (r=0.52, P<0.001), which is still much smaller than the 

correlation between the flow-volume curve-based prediction and 

the actual values (r=0.95, P<0.01). This again elucidates the great 

performance of the flow-volume curve-based DLCO%pred prediction, 

which cannot be obtained by a single demographic of spirometry 

value.    

 

4.2. Regional Structure and Function Relationship  

 

DLCO is a measure for the capability of gas exchange in 

alveoli, which is an ultimate function of the lung for the systemic 

respiratory function. While DLCO is associated with spirometry-

measured lung function, particularly FVC, the structure-function 

relationship that links these two measures is not well understood. 

And we tried to provide insights based on “image” data from the 

PFT data and CT data, since PFT measures provide the whole lung 

function and CT can capture regional status of the lung. 

High-resolution CT images of lung regions include detailed 

visual information of the disease status. However, in most clinical 

settings, CT scans rely heavily on qualitative interpretation and are 
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mainly used for structural analysis. Qualitative assessment is subject 

to observer bias and variability (Ostridge and Wilkinson, 2016).  

In the past decades, there has been a significant progress in 

CT-based quantitative analysis of pulmonary structure and function 

using inspiratory and expiratory CT images (Zagers et al., 1996; 

Dowson et al., 2001; Dirksen et al., 1997, 1999; Choi et al., 2015; Choi 

et al., 2017; Barros et al., 2018; Haghighi et al., 2018, 2019; Chae et 

al., 2020; Shin et al., 2020; Kang et al., 2021; Zou et al., 2021; Li et 

al., 2021; Lin et al., 2018; Hoffman 2022; Choi et al., 2022; Suman and 

Koo., 2023). QCT analysis extracts various structural and functional 

variables at different scales, not only for the entire lung but also for 

localized regions, providing improved preclinical pathophysiological 

and clinical understanding (Hoffman et al., 2014; Podolanczuk et al., 

2016; Choi et al., 2015; Choi et al., 2017; Haghighi et al., 2018, 2019; 

Chae et al., 2020; Shin et al., 2020; Kang et al., 2021; Zou et al., 2021; 

Li et al., 2021; Choi et al., 2022).  Despite advanced QCT imaging 

and image-based modeling approaches in assessing structural and 

functional alterations in lungs, the transition of these techniques to 

clinical application has been challenging due to high computational 

demand and limited methodological consistency that bridge both 

preclinical and clinical lung structure-function interpretation (Chen-

Mayer, 2017; Felder and Walsh, 2023). 
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We conducted supplementary correlation analysis between 

DLCO%pred and QCT features of the 60 patients with QCT data, and 

found a good correlation between DLCO%pred and high attenuation 

area percent (HAA%) in the whole lung and the left upper and lower 

lobes showed significant negative correlations (r=-0.35, -0.47, -

0.39; P=0.001, <0.001, <0.001, respectively). Greater HAA% is 

known to be associated with more reduced lung function, biomarkers 

of inflammation, and mortality rate in ILD, which is an umbrella term 

for diseases characterized by inflammation and scarring in the lungs 

including IPF (Podolanczuk et al., 2017). Our results agree that HAA% 

correlated well with lower lung function particularly DLCO%pred that 

implies lower gas exchange ability in alveoli.  

We may need to note that the ultimate role of the lung is gas 

exchange between the internal (blood) body and external 

(atmosphere) environment. In other words, gas exchange is in fact 

the primary function of the lung for the whole body and gas delivery 

throughout the airways supports it, whilst spirometry data is getting 

more attention than DLCO among PFT results. 

The importance of our work is that the great performance of 

flow-volume curve-based model in predicting DLCO suggests that 

there exists a strong relationship between the dynamic pattern of the 

ventilatory function measured at the mouth, i.e., the proximal end of 
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the conducting airways, and the gas-exchanging function at the most 

distal region of the lung.  

 

4.3. Limitations and Future Work  

 

This study is a novel work exploring the relationship between 

ventilation and gas exchange via AI; however, it is not without 

limitations. First, AI models usually requires a large amount of data 

for better performance and generalizability. We were only able to 

collect a relatively small sample size, particularly for the QCT data. 

We may need to collect more samples from a larger patient pool 

across different institutions in the future for more robust model 

performance and generalizability. For example, although the trained 

models were evaluated on a separate test set, external validation 

using external independent test set is desirable. Second, our 

multimodal deep learning model may lack a viable interpretability or 

transparency. At the most basic level, we do not know how individual 

neurons correlates with each other to transform input data into output 

(Sheu, 2020). We may incorporate grad-CAM-based color 

visualization or SHapley Additive exPlanations (SHAP) methodology 

for interpretation of AI models. Grad-CAM examines the gradient of 
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the model's output with respect to the intermediate feature maps of 

the CNN (Panwar et al., 2020). SHAP values are used for explaining 

the output of machine learning models in terms of the contributions 

of each feature to the model's prediction (Rodriguez-Perez & 

Bajorath, 2020). For future work, we may incorporate longitudinal 

data, predicting DLCO changes over time.    
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Figure 4.1. Correlation of DLCO%pred with tabular spirometry data 

and demographic data: (a) age, (b) height, (c) weight, (d) 

FEV1%pred, (e) FVC%pred, and (f) FEV1/FVC.    
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Chapter 5. Conclusions 

 

5.1. Overview  

We successfully predicted DLCO%pred in IPF from flow-

volume curve images via multimodal deep learning model with 

transfer learning of pretrained CNN model (EfficnetNet-B3). The 

flow-volume curve-based model (MAE=4.33, R2=0.91) 

outperformed tabular spirometry-based model (MAE=13.11, 

R2=0.46). Findings suggest that flow-volume curve may include 

comprehensive information of regional or multiscale lung structure-

function relationship, where “multiscale” indicates local voxels to 

the global (whole) lung.  

 

5.2. DLCO%pred prediction with flow-volume curve 

 

Deep learning modeling of flow-volume curve images 

accurately predicted the DLCO%pred values in IPF patients. This 

approach of DLCO prediction may be extended to patients with other 

ILD subtypes, who were able to undergo spirometry but not DLCO 

testing. 
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5.3. DLCO%pred prediction with Spirometry Data  

 

Using tabular spirometry features with machine learning 

showed moderate performance, underperforming relative to using 

flow-volume curve but improved performance compared to QCT 

features.  

 

5.4. DLCO%pred prediction with QCT  

 

Attributable to a small sample size, QCT features did not 

successfully predict the values of DLCO%pred in IPF patients. 

However, QCT-based regional lung structure-function features 

showed significant moderate correlations with DLCO%pred. 

Association of DLCO%pred with the HAA% values suggests that 

reduced gas exchange is associated with subpleural lung damage that 

is a primary characteristic of IPF and further disease progress with 

inflammation and fibrosis. The correlation between HAA% and 

DLCO%pred was highest in the LUL, implying that the degree of the 

LUL impairment by HAA% in the LUL can be a good indicator of the 

progression of the disease. We speculate that such regional lung 

structural and functional alteration is reflected in the dynamic pattern 
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of the flow-volume curve. It may worth noting that the study with 

QCT data from a larger dataset may provide more insights in linking 

regional lung structural and functional alteration with DLCO%pred. 

Findings and discussions of the current study provide insights on the 

pathophysiological changes in lung structure and function in IPF 

patients.  

 

5.5. Concluding Remarks 

 

The aim of this study was to explore the possibility of using 

image data in predicting DLCO%pred using AI algorithms in IPF. We 

developed a deep learning model predicting DLCO%pred from flow-

volume curve images. We also developed a machine learning model 

taking tabular spirometry and QCT data as input, from preliminary 

data sets. Lastly, we suggest that the flow-volume curve may include 

comprehensive information of the lung structure-function 

relationship and hence reflect of the interplay between regional lung 

structure and function throughout the entire respiratory tract, 

providing new insights of bridging two aspects of lung function (gas 

delivery and gas exchange). 

AI can accelerate healthcare practitioner’s decision making 

and improve patient health outcome (Kumar et al., 2023). For safe 
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and effective implementation of AI decision support tools in clinical 

setting, not only improving model performance is important but also 

securing model interpretability, uncertainty handling and model 

development based on correct understanding of pathophysiological 

processes are imperative (Giri et al., 2021; Tran et al., 2021). 
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Abstract in Korean 

특발성 폐 섬유화 (Idiopathic pulmonary fibrosis, IPF)는 

흉부에 흉터 조직이 형성되어 기체 교환에 장애를 초래하는 진행성 

폐질환이다. 일산화탄소확산능 검사 (Diffusing capacity of the lung for 

carbon monoxide, DLCO)는 폐포의 기체 교환 정도를 측정하는 

방법이다. 기류-용적 곡선 (flow-volume) 이미지와 정량적 CT 

(Quantitative CT, QCT) 변수들을 이용하여 DLCO를 예측하기 위한 

인공지능(AI) 모델을 개발하는 것을 목표로 한다. 

2015년부터 2019년까지 한국의 서울대병원(SNUH)에 등록된 

272명의 IPF 환자의 기류-용적 곡선(연령=69±8, 신장=191±8cm, 

체중=63±10kg, 남:여=201:71)을 후향적으로 수집하여 분석하였다. 

60명의 IPF 환자(연령=70±5, 신장=196±6cm, 체중=68±9kg 

남:여=53:7)의 QCT 변수들은 서울대병원의 2018 환경 폐 질환 연구 

코호트(ENV18)에서 후향적으로 수집하여 분석하였다. 

기류-용적 곡선을 통해 DLCO%pred를 성공적으로 예측할 수 

있었다. (MAE=4.33, R2=0.91). 이는 기류-용적 곡선이 폐기능에 대한 

포괄적인 병리 생리학적 정보를 포함하고 있을 수 있다는 것을 시사한다. 

QCT 변수를 사용한 DLCO%pred 예측은 샘플 크기가 작기 때문에 

제한되었지만 이들은 지역적 폐 구조-기능 관계에 대한 통찰력을 

제공한다. 

폐활량계 (spirometry)의 기류-용적 곡선 이미지로부터 

DLCO의 성공적인 예측은 기류-용적 곡선의 동적 패턴이 폐 구조-

기능의 포괄적인 정보를 포함할 수 있음을 시사한다. 향후 모델의 

개발은 1년 후의 DLCO를 예측하는 분석을 진행할 수 있다. 더 나아가 

산소 환기와 기체 교환과 관련된 특정한 형태나 이미지 특징들이 기류-

용적 곡선과 QCT 데이터로부터 어떻게 연관되는지에 대한 추가적인 

분석이 진행될 수 있다. 
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