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Abstract 

 

Predicting Apnea-Hypopnea Index 

using Heart Rate Variability in 

Obstructive Sleep Apnea 

 
Pona Park 

Otorhinolaryngology, Department of Medicine 

The Graduate School 

Seoul National University 

 
Background: The majority of patients with obstructive sleep apnea 

(OSA) do not receive timely diagnosis and treatment because of the 

complexity of a diagnostic test. We aimed to predict OSA severity 

based on heart rate variability (HRV), body mass index (BMI), and 

demographic characteristics. 

Methods: We investigated the linear correlation between apnea-

hypopnea index (AHI), and age, sex, BMI and HRV parameters in the 

pilot study. Models of binary classification for predicting OSA 

severity by estimation of AHI were constructed using 14 or 17 

features including 11 or 14 HRV variables, age, sex, and BMI. Binary 
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classification was conducted separately using AHI thresholds of 5, 

15, and 30. Sixty percent of the participants were randomly allocated 

to training and validation sets while the other forty percent were 

designated as the test set. Classifying models were developed and 

validated with 10-fold cross-validation using logistic regression, 

random forest, support vector machine, and multilayer perceptron 

algorithms. 

Results: A total of 792 (651 men and 141 women) subjects were 

included in the main study. The sensitivity of the best performing 

binary classifier was 73.6%, 70.7%, and 78.4% when the AHI 

threshold criterion was 5, 10, and 15, respectively. The prediction 

performances of the best classifiers at AHI of 5, 15, and 30 were as 

follows: accuracy, 72.2%, 70.0%, and 70.3%; specificity, 64.6%, 

69.2%, and 67.9%; area under the receiver operating characteristic 

curve, 77.2%, 73.5%, and 80.1%, respectively. In the main study, the 

logistic regression model using the AHI criterion of 30 showed the 

best classifying performance overall among all models. 

Conclusion: OSA severity was fairly predicted by using HRV, BMI, 

and demographic characteristics. Prescreening and continuous 

treatment monitoring of OSA may be possible simply by measuring 
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HRV. 

 

Keyword: Obstructive Sleep Apnea, Heart Rate Variability, 

Polysomnography, Machine Learning 
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Introduction 

 
Obstructive sleep apnea (OSA) is a disease characterized by 

repeated obstruction of the upper airway during sleep, leading to 

intermittent oxygen desaturation and frequent arousal. Patients often 

experience excessive daytime sleepiness, poor cognitive function, 

and impaired quality of life.1 Patients who remain untreated for long 

periods of time have an increased risk of multiple health-related 

outcomes, including cardiovascular disease, stroke, and death from 

all causes.2 OSA is a significant and growing public health problem, 

and is estimated to affect 13–33% and 16–19% of men and women, 

respectively.3 However, the majority of patients with OSA do not 

receive timely diagnosis and treatment.4 

The gold standard for the diagnosis of OSA is polysomnography 

(PSG). The examinee must spend an entire night in the hospital with 

a sleep specialist monitoring them while they sleep. Then, the PSG 

data is scored manually by the specialist according to the American 

Academy of Sleep Medicine guidelines.5 Hence, PSG is not suitable 

for massive screening and/or repeated measurements of OSA. 

Considering night-to-night variability,6,7 PSG is limited for diagnosis 

as well as continuous monitoring for effectiveness during treatment. 
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Various less complicated sleep diagnostic devices have been 

developed, with advantages of low prices and simple installation. 

These devices are portable and can be used at home without medical 

support. Systems developed in the context of OSA diagnosis use 

nasal airflow and/or oxygen saturation as parameters.8,9 However, 

these measurement tools have some intrinsic limitations since mouth 

breathing or incorrect positioning can cause signal loss. 

Measurable heart rate variability (HRV) from single lead 

electrocardiogram signals reflects cardiac autonomic activity and can 

be used to evaluate quantitative changes between normal 

heartbeats.10 The association between OSA and increased 

sympathetic nervous system activity of HRV has been well 

documented since the clinical significance of HRV was introduced 

firstly in 1965.11,12 Recently, further studies on the correlation 

between HRV factors and PSG indices have been conducted.13,14 

Currently, various devices are commercially available that provide 

heart rate monitoring, such as smartwatches, consumer sleep 

wearables, and adhesive electrocardiographic monitor patches. Such 

devices create the possibility of evaluating sleep-disordered 

breathing status of patients by measuring HRV using a heart rate 

monitor. 
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The present study aimed to predict apnea-hypopnea index (AHI) 

using age, sex, body mass index (BMI), and HRV parameters. We 

also aimed to verify the feasibility of using HRV for OSA 

prescreening and treatment monitoring. 
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 Part I: A pilot study 
 

 

Methods (Part I) 

 

Study participants 

 

We retrospectively reviewed patients who visited a department of 

otorhinolaryngology in Seoul National University Bundang Hospital 

(SNUBH) due to snoring or sleep apnea from January 2013 to 

December 2017. We included adult patients, age ≥ 18 years, who 

were treated with mandibular advancement devices or underwent 

OSA surgery after full-night PSG in the study. Then, we excluded 

subjects with any of the followings: 1) significant arrhythmias; 2) 

sleep disorders such as insomnia or narcolepsy; 3) inveterate use of 

sedatives and hypnotics; 4) specific conditions related to HRV 

changes (i.e., myocardial disease, diabetic neuropathy, or heart 

transplantation); 5) low quality data (artefacts > 20% of total sleep 

time); 6) total sleep time < 5 hours; and 7) awake for > 30 minutes 

from midnight–5 AM. A flow chart of the subject selection process is 

summarized in Figure 1. All participants underwent attended, in-

laboratory, full-night PSG (Embla® N7000, Neurolite Advanced 

Medical Solutions, Belp, Switzerland). The anthropometric data of 

subjects were reviewed. The ethics committee of SNUBH (IRB No. 
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B-1907-555-108) approved the use of these data. The need for 

written informed consent was waived by the Institutional Review 

Board. 

 

HRV analysis 

 

HRV was measured using exported electrocardiogram data and 

commercially available PSG software (Embla® RemLogic™ 3.0 HRV 

analyzer; Neurolite Advanced Medical Solutions). This methodology 

was described in our previous study.15 Calculations of the time- and 

frequency-domain parameters were performed according to 

standard methods for HRV measurements.10 The electrocardiogram 

signals were interpolated and resampled at 5.0 Hz. Normal-to-

normal (NN) heartbeat intervals > 2,400 ms and < 400 ms were 

omitted. We only analyzed the electrocardiogram signal from 

midnight–5 AM to maintain consistency for comparisons. Therefore, 

the AHI was measured again from midnight to 5 AM. We used seven 

time-domain and seven frequency-domain measures in the present 

pilot study. The time-domain measures included following 

parameters: (1) average normal-to-normal (NN) interval; (2) 

standard deviation of NN interval (SDNN); (3) standard deviation of 
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the 5-minute averages of NN intervals (SDANN); (4) square root of 

the mean of the squared differences of adjacent NN intervals 

(RMSSD); (5) number of pairs of adjacent NN intervals more than 50 

ms (NN50 count); (6) the rate of NN50 in the total number of NN 

intervals (pNN50); and (7) HRV triangular index, the number of all 

NN intervals divided by the maximum of the density distribution. The 

parameters of the frequency-domain measures were as follows: (1) 

total power (variance of all NN intervals); (2) very low frequency 

(VLF; power in 0.003-0.04 Hz range); (3) low frequency (LF; power 

in 0.04-0.15 Hz range); (4) high frequency (HF; power in 0.15-0.4 

Hz range); (5) LF/HF ratio; (6) normalized LF [LF nu; LF / (LF + 

HF) × 100]; and (7) normalized HF [HF nu; HF / (LF + HF) × 100]. 

Frequency-domain measures were yielded as the average of the 

values calculated every 5 minutes. 

 

Prediction of AHI  

 

We explored the linear relationship between AHI, and age, sex, BMI 

(body mass index) and the HRV parameters. Multiple linear 

regression in a free machine learning software (Weka; University of 

Waikato, Hamilton, New Zealand)16 was used in the analysis. 
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Conformity between predicted AHI and true AHI was evaluated. 

Predicting performances of the analysis were expressed as 

sensitivity, specificity, accuracy, and area under the receiver 

operating characteristic curve (AUC). 

 

Development of binary classifiers of OSA 

 

A model of OSA classification was constructed using 17 features and 

actual class according to AHI threshold (Figure 2A). Output was the 

predicted class using estimated AHI scores. The 17 features included 

age, sex, BMI, and the 14 HRV measures. We built the classifying 

model using logistic regression, random forest, support vector 

machine, and multilayer perceptron algorithms in Weka. Sixty 

percent of participants were randomly selected for the training and 

validation sets while the other forty percent were designated as the 

test set. The difference between classes in the training set was 

adjusted using the Synthetic Minority Oversampling Technique in 

Weka. Validation was conducted by applying 10-fold cross-

validation. The enrolled subjects were split randomly into 10 

subgroups. One subgroup was preserved for validation of the 

prediction model. The other nine subgroups were served for the 

training set. The cross-validation process was repetitively 
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conducted 10 times (10-fold) with all 10 subgroups. This produced 

10 evaluation results, which were then averaged. The learning 

algorithm was then applied a final (11th) time in the whole data set 

to gain the final model.16 Ultimately, the test set was included in the 

final training model (Figure 2B). Output was expressed as a 

confusion matrix and AUC. 

The performance outcomes of the machine learning classifiers 

were mainly evaluated by sensitivity, specificity, and accuracy. The 

AUC was also presented to assess the performance of the classifiers. 

All results were extracted from the test set. 
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Results (Part I) 

 

General patient characteristics  

 

A total of 189 participants (165 men and 24 women) with a mean age 

of 49.3 ± 11.2 years were included in the pilot study. The mean BMI 

and AHI score was 26.0 ± 3.4 kg/m2 and 28.7 ± 18.5, respectively. 

Participants were classified according to AHI score as follows: 9, 

normal (AHI < 5); 44, mild OSA (5 ≤ AHI < 15); 61, moderate OSA 

(15 ≤ AHI < 30); and 75, severe OSA (AHI ≥ 30). General and 

polysomnographic characteristics are summarized in Table 1.  

 

Predicting performance of multiple linear regression 

analysis 

 
 

After multiple linear regression analysis, estimated AHI was equal to 

0.279Age +2.0999BMI -0.0385Avg NN interval -0.0945SDANN 

+0.0698RMSSD -0.0018NN50 +0.7285pNN50 +0.8397Triangular 

index +0.0004VLF -0.0003LF -4.2576LF/HF +0.4963LF nu -

0.3409HF nu -33.27. Among 17 variables, 4 variables including sex, 

SDNN, Total power, and HF were excluded automatically by Weka. 
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A conformity map between predicted OSA severity and true OSA 

severity was drawn in Figure 3. Predicting performances of multiple 

linear regression analysis were summarized in Table 2. The analysis 

showed best predicting performance when AHI criterion was 30. 

Sensitivity was 78.7%, specificity was 74.6%, accuracy was 76.2%, 

and AUC was 84.8%.  

 

Performance of classifying models 

 

The classifying performance results derived from four algorithms 

with the AHI threshold for binary classification defined as 5, 15, and 

30, are summarized in Table 3. When the AHI criterion was 5, logistic 

regression showed the best performance. The sensitivity and 

specificity of the model were 79.7% and 100%, respectively. The 

accuracy and AUC of the model were 80.3% and 89.9%, respectively. 

When the AHI criterion was 15, the best classifying model was also 

multilayer perceptron. The sensitivity and specificity of the model 

were 72.6% and 52.0%, respectively. The accuracy and AUC of the 

model were 65.8% and 70.7%, respectively. When the AHI threshold 

criterion reached 30, a model using random forest showed the best 

classifying results as follows: sensitivity, 63.3%; specificity, 80.4%; 

accuracy, 73.7%; and AUC, 77.5%. The logistic regression model 
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using the AHI criterion of 5 showed the best classifying performance 

among all models. 
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Part II: A main study 
 

 

Methods (Part II) 

 

Study participants 

 

We retrospectively reviewed outpatients and inpatients who visited 

SNUBH sleep center owing to snoring or sleep apnea between 

January 2013 and December 2017. Adult patients, aged ≥ 18 years 

were included in this study. We excluded patients who underwent 

split-night PSG. After reviewing AHI scores, we randomly allocated 

patients to non-OSA and mild, moderate, and severe OSA groups 

proportionally to reduce selection bias. Participants were then 

excluded according to the same exclusion criteria as in the pilot study. 

A flow chart of the participant selection process is summarized in 

Figure 4. All subjects underwent in-laboratory, full-night PSG 

(Embla® N7000, Neurolite Advanced Medical Solutions, Belp, 

Switzerland). Age, sex, and BMI of the subjects were collected. The 

present study protocol was reviewed and approved by the ethics 

committee of SNUBH (IRB No. B-2111-723-110). The 

requirement for written informed consent was waived by the ethics 

committee owing to the retrospective nature of the study. 
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HRV parameters and development of binary classifiers 

of OSA 

 

Fourteen HRV parameters were measured in the same manner as in 

the pilot study. Only ECG signals from midnight to 5 AM were 

analyzed. Then, AHI was measured anew from midnight to 5 AM. 

First, binary classification according to OSA severity was performed 

using 17 features including age, sex, BMI, and 7 time- and 7 

frequency-domain variables in a consistent fashion as the pilot study.  

Next, the same process was performed using a total of 14 variables, 

excluding two time-domain variables and one frequency-domain 

variable. The excluded parameters were SDANN, HRV triangular 

index, and VLF. Weka displayed the output as a confusion matrix and 

AUC. The machine learning classifiers’ performance outcomes were 

measured by sensitivity, specificity, accuracy, and AUC. All results 

came from the test set. 

The final 11 HRV measures according to OSA severity are 

presented as the mean ± standard deviation, and were compared by 

one-way analysis of variance using SPSS software (version 22.0, 

IBM Corp., Armonk, NY, USA). Turkey, Bonferroni or Dunnett T3 

test were used for post-hoc comparisons. P values < 0.05 were 
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considered statistically significant. 
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Results (Part II) 

 

General patient characteristics  

 

The main study involved 792 participants (651 men and 141 women) 

who had an average age of 55.1 ± 12.6 years. The average BMI and 

AHI score was 25.9 ± 3.5 kg/m2 and 22.9 ± 19.2, respectively. 

Based on AHI score, participants were grouped as follows: 124, 

normal (AHI < 5); 223, mild OSA (5 ≤ AHI < 15); 221, moderate 

OSA (15 ≤ AHI < 30); and 224, severe OSA (AHI ≥ 30). Table 4 

shows the general and polysomnographic characteristics. 

 

Performance of classifying models using 17 features 

 

Table 5 shows a summary of the results of four algorithms for binary 

classification using different AHI thresholds: 5, 15, and 30. The best 

performance for the AHI threshold of 5 was achieved by logistic 

regression. The model had a sensitivity of 72.5% and a specificity of 

62.5%. The accuracy and AUC of the model were 71.0% and 75.6%, 

respectively. For the AHI threshold of 15, logistic regression 

analysis was the best model as well. The model had a sensitivity of 

68.4% and a specificity of 67.8%. The accuracy and AUC of the model 
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were 68.1% and 74.2%, respectively. For the AHI threshold of 30, 

logistic regression was also the best model. The model had a 

sensitivity of 68.9% and a specificity of 72.0%. The accuracy and 

AUC of the model were 71.3% and 78.3%, respectively. Among all 

models, the logistic regression model with the AHI threshold of 30 

had the best classifying performance. 

 

Performance of classifying models using 14 features 

and Final 11 HRV parameters 

 

The classifying performance results obtained from four algorithms 

were presented in Table 6. Logistic regression had the best 

performance when the AHI criterion was 5. The model had a 

sensitivity and specificity of 73.6% and 64.6%, respectively. The 

model also had an accuracy and AUC of 72.2% and 77.2%, 

respectively. Logistic regression was also the best classifying model 

when the AHI criterion was 15. The model had a sensitivity and 

specificity of 70.7% and 69.2%, respectively. The model also had an 

accuracy and AUC of 70.0% and 73.5%, respectively. Logistic 

regression had the best classifying results when the AHI threshold 

criterion was 30 as well: sensitivity, 78.4%; specificity, 67.9%; 
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accuracy, 70.3%; and AUC, 80.1%. The logistic regression model 

with the AHI criterion of 30 using 14 features had the best classifying 

performance among all models in the main study. 

The means and standard deviations of the final 11 HRV parameters 

according to OSA severity are presented in Table 7. The HRV 

parameters presented a significant difference according to OSA 

severity except for RMSSD, NN50 count, and pNN50 (P < 0.05). 

Post-hoc analyses were performed on 8 HRV variables showing 

significant differences in Table 7. The total power, LF, LF/HF ratio, 

and LF nu values increased with OSA severity. The average NN 

interval, HF, and HF nu showed a decreasing tendency as the severity 

of OSA increased. 
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Discussion 
 

 

In the pilot and main study, OSA severity was fairly predicted using 

age, sex, BMI, and time- and frequency-domain HRV. In the binary 

classifiers using 14 features of the main study, sensitivity of the best 

performing model was over 70% in all AHI criteria. In particular, it 

showed better performance with 78.4% sensitivity in discriminating 

severe OSA. Furthermore, the best binary classifier of the pilot study 

showed performance with sensitivity of 79.7% and specificity of 100% 

in distinguishing OSA. As the purpose of the present study was to 

evaluate the use of HRV in OSA prescreening rather than to develop 

an accurate diagnostic tool as an alternative to PSG, we determined 

that HRV can be an intuitive and informative tool for large-scale 

preliminary screening to determine whether or not a patient should 

undergo additional PSG. Because it is binary classification, identifying 

the quantitative difference in terms of treatment effect can be difficult 

if the patient remains at the same level of OSA severity. However, 

considering the simplicity of this concept, measuring HRV to 

determine OSA severity, HRV has the potential to become a very 

powerful assessment tool. The main study was conducted on a larger 

scale (including 792 subjects) than previous other studies that have 

investigated the relationship between HRV parameters and PSG 
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indices.13,17,18 Furthermore, considering that OSA severity differs by 

race,19 our study has significance in that it was conducted in an Asian 

population (in particular, Koreans) with physical characteristics that 

differ those of Westerners. 

Our findings indicate that the best performing algorithm was 

logistic regression among the four machine learning algorithms. Since 

we aimed to confirm the feasibility of using HRV in OSA screening 

and treatment monitoring, the machine learning algorithm itself was 

not that important. 

Several studies have attempted to differentiate OSA based on 

HRV that changes owing to sympathetic nervous system activity in 

hypoxic conditions. One study found that by using the difference 

between the daytime and nighttime standard deviations of the NN 

interval index, they could detect OSA with a sensitivity of 89.7% and 

83% and a specificity of 98.1% and 96.5% in 91 and 52 subjects, 

respectively.17 However, this study was limited in that PSG and 

Holter monitoring, which is used to measure HRV, were not 

simultaneously performed. Since heart rate is affected by various 

external factors, measuring the heart rate at the different times may 

create problems with reproducibility. Another study attempted to 

calculate equations for HRV variables and PSG parameters such as 
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AHI score, micro-arousal index, and oxygen desaturation index 

through multiple regression analyses in 25 patients with OSA.13 

However, the statistical significance was only evaluated using one-

way analysis of variance analysis, with no evaluation of prediction 

accuracy. In contrast, another study attempted to develop a model 

for OSA detection using machine learning methods based on HRV, 

pulse oxygen saturation, and BMI in 148 patients with OSA and 33 

non-OSA participants.18 A proposed model showed high prediction 

accuracy. However, the accuracy was not reliable in that oxygen 

desaturation index was used as a predictor of AHI score, which is 

nearly the same thing as providing the correct answer in machine 

learning. Some studies have validated commercial fitness trackers, 

such as Fitbit, the Oura Ring and Whoop, which utilize HRV, by 

comparing them with PSG indices.20-22 These studies compared sleep 

variables, such as sleep onset latency, total sleep time, sleep 

efficiency, and sleep stages. However, no studies have been 

conducted yet on the prediction of AHI score or assessment of OSA 

classifiers using such utilities. Moreover, further studies on the 

correlations between HRV parameters and PSG diagnostic indices 

such as AHI score have been conducted recently.14 However, few 

studies have been conducted on a model of binary classification for 



 

２１ 

 

OSA severity by predicting AHI score using simultaneously 

measured HRV variables without the use of oxygen saturation levels. 

Various methods for screening OSA have been introduced. The 

STOP-Bang questionnaire is one of the well-known sleep 

questionnaires to predict OSA. One study found that when total score 

was greater than 3, the probability for severe sleep apnea continued 

to increase from 31.3% (score 4) to 81.9% (score 8), while the 

probability for everything else (non-OSA, mild and moderate OSA) 

decreased.23 The questionnaire is probably the simplest way to 

screen for OSA without any cost or time. However, it can be difficult 

to obtain information other than that the probability of severe OSA 

increases as the score increases. Respiratory sounds during sleep 

may be used for prediction of OSA severity. In our previous study, a 

simple algorithm for prescreening of OSA on the basis of respiratory 

sounds recorded during PSG was developed.24 Accuracies of 

classification at AHI criteria of 5, 15, and 30 were 82.7%, 84.4%, and 

85.3%, respectively. However, this modality needs to overcome 

technical issues such as noise cancellation. There may be restrictions 

on its application, for example, when a patient has a bed partner or a 

companion animal. In comparison, each method for screening OSA 

has its own strength and weakness. 



 

２２ 

 

When chronic intermittent hypoxia and sleep interruption are 

caused by OSA, the accumulation of oxidative stress and 

inflammatory responses, as well as increased sympathetic nervous 

system activity can occur.25 HRV reflects cardiac autonomic activity, 

which is a balance between sympathetic and parasympathetic 

nervous system activity. Regarding the frequency-domain 

parameters of HRV, LF activity reportedly reflects both sympathetic 

and parasympathetic nervous system activity, while HF has been 

correlated to parasympathetic nervous system activity.26 Therefore, 

the LF/HF ratio is regarded as the balance between sympathetic and 

parasympathetic nervous system activity, and has been linked with 

AHI scores in patients with OSA.11 LF nu and HF nu are considered 

markers of sympathetic and parasympathetic nervous system activity, 

respectively.26 Therefore, theoretically, the increased risk for OSA 

can be estimated using HRV analysis. In our study, the total power, 

LF, LF/HF ratio, and LF nu values increased with OSA severity. 

Conversely, when the OSA severity increased, the average NN 

interval, HF, and HF nu presented a decreasing tendency. From these 

results, a linear relationship can be inferred. 

The development of predicting models for OSA severity by 

estimation of AHI are important in several respects. First, if 
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predictive models were applied to various electrocardiogram 

measuring devices such as smartwatches, wearable sleep devices, 

and adhesive patches, more patients would get the chance to 

prescreen their OSA at home on a daily basis. Indeed, considering 

the aforementioned limitations of PSG, many OSA patients are 

underdiagnosed despite the high prevalence. Individuals with 

recurrent snoring, daytime drowsiness, or poor quality of sleep 

should see a doctor firstly and undergo PSG. Ambulatory at-home 

monitoring devices have similar limitations in that a symptomatic 

patient must visit a hospital with the appropriate equipment at first. 

Second, given the night-to-night variability in OSA severity, this 

kind of prediction algorithm may assist clinicians with a more 

accurate diagnosis beyond the weaknesses of PSG and home testing 

devices by replacing repetitive tests without additional economic 

burden. Third, a prediction algorithm for OSA severity may be useful 

for verifying the therapeutic effects of OSA treatments such as 

mandible advancement devices or positive airway pressure in real 

time. Moreover, serial monitoring of the therapeutic results of OSA 

surgery are feasible using HRV. Conversely, such treatment effect 

analysis may serve as the basis for determining how to treat OSA in 

the future. Ultimately, early diagnosis and decisions regarding the 
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most effective treatment modality reduce the social and economic 

burden of OSA since OSA is a risk factor for multi-organ diseases, 

such as neurovascular, cardiovascular, and metabolic diseases. 

In the pilot study and the main study, each feature for classifying 

model was contributed without weight in constructing the 

classification model. In the main study, classifying modeling was 

performed with 14 HRV variables at first, and after 3 HRV variables 

were reduced by referring to the study of Nakayama et al.27, it was 

confirmed that overall classification performance for OSA severity 

improved. In the future, it may be possible to build a classification 

model that shows better classification performance by giving 

different weights to each feature. In addition, the process of 

optimizing the classification model, such as selecting the HRV 

variables necessary for model construction or putting different 

weights on each variable, can also use machine learning or even 

artificial intelligence. 

The most suitable situation for using this study is to use the 

electrocardiogram data from the 24-hour Holter monitoring patch 

used for the diagnosis of heart disease to screen for OSA. In the 

future, it is expected to develop a user-friendly OSA screening 

device based on the HRV variables used in this study. 
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This study had some limitations.  

First, we included a relatively small number of subjects without 

OSA because the participants were patients who visited a tertiary 

hospital for snoring or sleep apnea. Therefore, we tried to eliminate 

any numerical imbalance between classes by randomly selecting 

patients with mild, moderate, and severe OSA to proportion in the 

main study. In addition, we used the Synthetic Minority Oversampling 

Technique, a general method often used to solve this type of problem 

in the machine learning process.  

Second, there was possibility that arrythmias which could not be 

ruled out with a single lead might be included during 

electrocardiogram analysis although significant arrhythmia was 

excluded from the study subject selection process. Therefore, NN 

intervals that were greater than 2,400 ms and less than 400 ms were 

excluded during electrocardiogram analysis to avoid arrhythmias as 

much as possible. 

Third, our binary classifier may not cover all sleep stages because 

we only analyzed data between midnight and 5 AM. Heart rate varies 

by sleep stage, although we did not consider sleep stages in this 

study. Since rapid eye movement sleep generally occurs 90 minutes 

after sleep onset, it would be better to measure HRV after the onset 
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of deep sleep. If the sleep stage were detectable, HRV analysis could 

begin after one sleep cycle. However, since HRV can vary by time 

period because of circadian rhythms, studying measurements by 

particular time period may have an advantage from a certain 

perspective.  

Fourth, considering the characteristics of the machine learning 

process, classifying its performance may have been affected by the 

distribution of patients in the training set. Indeed, there are many 

more people without OSA in the general population; therefore, 

discrepancies between research results and the real world can occur, 

although this can be corrected later through real-world validation. 

Fifth, the external validation was not performed. Since the present 

study was conducted in a single institution, there may be potential 

bias. It can be supplemented through future multi-institutional 

studies.  

Finally, there are hurdles to overcome in order to apply our 

classifying model to multiple devices. Since there is difference in the 

electrode for each device, validation is required to predict AHI. In the 

future, studies which comparing HRV of PSG and HRV of a sleep 

device or a smart watch are needed by wearing the multiple devices 

and implementing PSG simultaneously for application of our 
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classification model. 
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Conclusion 

OSA severity by estimation of AHI was fairly predicted using HRV 

parameters, BMI, and demographic characteristics. In the final 

classifying model, the binary classification sensitivity for OSA was 

over 70% in each AHI criterion. In addition, the best binary 

classification model in the main study showed performance with 78% 

sensitivity in discriminating severe OSA. This study may have high 

value regarding the feasibility of HRV for OSA prescreening and 

continuous monitoring of treatment effects. Further real-world 

validation studies may lead to improvements in the classifying 

performance of HRV for OSA severity. 
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Figure 1. Flow chart of participant selection process in the pilot 

study. Data on outpatients who visited a department of otorhino-

laryngology due to snoring or sleep apnea between 2013 and 2017 

were collected. Patients who were under 18 years old were 

excluded. Subjects who treated with MAD or underwent OSA 

surgery were included. The final study participants were selected 

by excluding additional patients with factors likely to influence the 

classifying performance for OSA using heart rate variability 

parameters. 

PSG = polysomnography, MAD= mandible advancement device, 

OSA = obstructive sleep apnea, HRV = heart rate variability. 
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Figure 2. Study framework of machine learning process. (A) 

Seventeen features including age, sex, body mass index, and 14 

measures of heart rate variability were used in the machine learning 

process for binary classification of obstructive sleep apnea by 

predicting the apnea-hypopnea index score. (B) Sixty percent of 

the data was used for training and a 10-fold cross-validation 

process. The remaining forty percent of data was used for the final 

training model. The classifying result was expressed as a confusion 

matrix. Sensitivity, specificity, and accuracy were calculated by the 

confusion matrix. AUC was calculated by the program. 

AHI = apnea-hypopnea index, AUC = area under the receiver 

operating characteristic curve 
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Figure 3. A conformity map of the predicted obstructive sleep apnea 

severity for three different apnea hypopnea index thresholds. 

Obstructive sleep apnea (OSA) severity was estimated through 

multiple linear regression analysis using heart rate variability 

parameters, age, and body mass index. The cell shows both the 

number of subjects and the percentage for each OSA severity level 

(which is also indicated by the color scale). 

OSA = obstructive sleep apnea. 
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Figure 4. Flow chart of subject selection process in the main study. 

Data on outpatients and inpatients who visited our sleep center due 

to snoring or sleep apnea between 2013 and 2017 were collected. 

Patients who were under 18 years old and underwent split-night 

polysomnography were excluded. To reduce selection bias, patients 

were randomly allocated proportionally according to OSA severity. 

The final study group was selected by excluding additional patients 

with factors likely to influence the classifying performance for OSA 

using heart rate variability parameters. 

HRV = heart rate variability, OSA = obstructive sleep apnea, PSG 

= polysomnography.
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Table 1. General and polysomnographic characteristics of the pilot study 

Variables AHI < 5 

(n = 9) 

5 ≤ AHI < 15 

(n = 44) 

15 ≤ AHI < 30 

(n = 61) 

AHI ≥ 30 

(n = 75) 

P value 

Age, yr 40.7±12.5 49.4±11.4 52.1±11.1 47.9±10.2 0.003 

Ｍ／Ｆ 7:2 33:11 52:9 73:2 0.015 

BMI, kg/m2 24.1±3.2 24.8±3.2 25. 4±2.8 27.4±3.4 < 0.001 

AHI, per hour 3.1±1.1 10.1±2.7 22.1±4.4 47.9±12.4 < 0.001 

AHI = apnea hypopnea index, Ｍ／Ｆ＝ Male/Female ratio， BMI= body mass index. 
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Table 2. Predicting performance of multiple linear regression analysis in the pilot study 

Criteria Accuracy(%) Sensitivity(%) Specificity(%) AUC(%) 

AHI 5 93.7 98.3 0.0 72.9 

AHI 15 76.2 97.1 22.6 79.8 

AHI 30 76.2 78.7 74.6 84.8 

AUC = area under receiver operating characteristic curve, AHI = apnea-hypopnea index
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Table 3. Classification performances using 17 features in the pilot study 

Criteria Method Accuracy 

(%) 

Sensitivity 

(%) 

Specificity 

(%) 

AUC 

(%) 

AHI 5 Logistic regression 80.3 79.7 100.0 89.9 

 Random forest 93.4 96.0 0.0 67.2 

 SVM 97.4 100.0 0.0 50.0 

 Multilayer perceptron 82.9 85.1 0.0 66.2 

AHI 15 Logistic regression 67.1 70.6 60.0 71.7 

 Random forest 57.9 66.7 40.0 59.9 

 SVM 67.1 100.0 0.0 50.0 

 Multilayer perceptron 65.8 72.6 52.0 70.7 

AHI 30 Logistic regression 64.5 53.3 71.7 65.2 

 Random forest 73.7 63.3 80.4 77.5 

 SVM 60.5 0.0 100.0 50.0 

 Multilayer perceptron 67.1 56.7 73.9 67.0 

AUC, area under receiver operating characteristic curve; AHI, apnea hypopnea index; SVM, support vector machine. 
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Table 4. General and polysomnographic characteristics of the main study 

Variables AHI < 5 

(n = 124) 

5 ≤ AHI < 15 

(n = 223) 

15 ≤ AHI < 30 

(n = 221) 

AHI ≥ 30 

(n = 224) 

P value 

Age, yr 48.9 ± 14.0 56.1 ± 11.9 57.8 ± 11.8 54.7 ± 12.0 < 0.001 

Ｍ／Ｆ 86:38 168:55 184:37 213:11 < 0.001 

BMI, kg/m2 24.0 ± 3.1 25.3 ± 3.5 25.9 ± 2.9 27.6 ± 3.4 < 0.001 

AHI, per hour 2.6 ± 1.4 9.8 ± 2.7 21.4 ± 4.0 48.6 ± 14.8 < 0.001 

AHI = apnea hypopnea index, Ｍ／Ｆ＝ Male/Female ratio， BMI= body mass index. 
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Table 5. Classification performances using 17 features in the main study 

Criteria Method Accuracy 

(%) 

Sensitivity 

(%) 

Specificity 

(%) 

AUC 

(%) 

AHI 5 Logistic regression 71.0 72.5 62.5 75.6 

 Random forest 78.2 86.2 33.3 70.5 

 SVM 15.1 0.0 100.0 50.0 

 Multilayer perceptron 75.4 80.7 45.8 61.2 

AHI 15 Logistic regression 68.1 68.4 67.8 74.2 

 Random forest 66.2 67.2 65.0 70.2 

 SVM 54.9 100.0 0.0 50.0 

 Multilayer perceptron 63.7 62.1 65.7 67.5 

AHI 30 Logistic regression 71.3 68.9 72.0 78.3 

 Random forest 73.5 64.9 76.1 76.9 

 SVM 23.3 100.0 0.0 50.0 

 Multilayer perceptron 65.6 74.3 63.0 76.1 

AUC, area under receiver operating characteristic curve; AHI, apnea hypopnea index; SVM, support vector machine. 
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Table 6. Classification performances using 14 features in the main study 

Criteria Method Accuracy 

(%) 

Sensitivity 

(%) 

Specificity 

(%) 

AUC 

(%) 

AHI 5 Logistic regression 72.2 73.6 64.6 77.2 

 Random forest 80.1 87.0 41.7 74.0 

 SVM 15.1 0.0 100.0 50.0 

 Multilayer perceptron 76.3 81.8 45.8 62.9 

AHI 15 Logistic regression 70.0 70.7 69.2 73.5 

 Random forest 62.8 67.2 57.3 69.5 

 SVM 54.9 100.0 0.0 50.0 

 Multilayer perceptron 65.6 77.6 51.0 71.9 

AHI 30 Logistic regression 70.3 78.4 67.9 80.1 

 Random forest 74.1 66.2 76.5 77.2 

 SVM 23.3 100.0 0.0 50.0 

 Multilayer perceptron 60.3 81.1 53.9 75.8 

AUC = area under receiver operating characteristic curve, AHI = apnea-hypopnea index, SVM = support vector 

machin 
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Table 7. Final 11 heart rate variability characteristics according to obstructive sleep apnea severity 

Variables AHI < 5 

(Group 1) 

5 ≤ AHI < 15 

(Group 2) 

15 ≤ AHI < 30 

(Group 3) 

AHI ≥ 30 

(Group 4) 

P value 

Average NN 

interval, ms 

993.6 ± 109.5 984.0 ± 116.9 989.7 ± 129.2 937.8 ± 123.3 < 0.001a 

SDNN, ms 98.7 ± 41.4 92.5 ± 37.5 92.0 ± 30.8 101.5 ± 52.1 0.043b 

RMSSD, ms 69.4 ± 64.7 63.1 ± 56.2 59.4 ± 42.4 61.6 ± 47.8 0.386 

NN50 count 3,345.1 ± 3,096.6 2,780.4 ± 2,698.7 2,875.8 ± 2,940.3 3,047.5 ± 2,869.2 0.328 

pNN50, % 20.1 ± 19.5 15.8 ± 16.2 15.8 ± 16.4 15.8 ± 14.4 0.069 

Total power, ms2 42,784.8  

± 20,451.1 

43,610.0  

± 20,253.2 

50,459.8  

± 48,297.3 

59,346.9  

± 36,301.6 

< 0.001c 

LF, ms2 13,334.0 ± 7,085.8 13,835.2 ± 7,808.8 14,494.5 ± 7,632.1 18,414.9 ± 11,904.5 < 0.001d 

HF, ms2 7,780.8 ± 3,501.2 7,080.6 ± 3,615.8 7,081.2 ± 3,823.0 6,412.5 ± 3,089.1 0.006e 

LF/HF ratio 2.0 ± 1.2 2.4 ± 1.8 2.8 ± 1.8 3.5 ± 3.4 < 0.001f 
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LF nu 61.2 ± 13.0 63.4 ± 14.5 64.4 ± 14.9 70.3 ± 11.9 < 0.001g 

HF nu 38.5 ± 13.0 35.5 ± 14.0 33.8 ± 13.8 28.1 ± 11.3 < 0.001h 

AHI = apnea-hypopnea index, NN = normal to normal, SDNN = standard deviation of NN intervals, RMSSD = square 

root of the mean of the squared differences of adjacent NN intervals, NN50 count = number of pairs of adjacent NN 

intervals more than 50 ms, pNN50 = rate of NN50 in the total number of NN intervals, LF = low frequency, HF = 

high frequency, LF nu = LF power in normalized units, HF nu = HF power in normalized units. 

Post-hoc analyses. a,d,gGroup 4 vs. Group 1, 2 and 3 (all P < 0.001); bGroup 2 vs. Group 4 (P = 0.002); cGroup 4 vs. 

Group 1, 2 and 3 (P < 0.001, P < 0.001 and P = 0.004); eGroup 1 vs. Group 4 (P < 0.001); fGroup 4 vs. Group 1, 2 

and 3 (all P < 0.001), Group 1 vs. Group 3 (P = 0.005); hGroup 4 vs. Group 1, 2 and 3 (all P < 0.001), Group 1 vs. 

Group 3 (P = 0.01).  
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Abstract in Korean 

 

폐쇄성 수면무호흡에서 심박 변이도를 

이용한 무호흡-저호흡 지수 예측 

 

박보나 

의학과， 이비인후과학 전공 

서울대학교 대학원 

 

 

배경: 폐쇄성 수면 무호흡 환자의 대부분은 진단 검사의 복잡함 때문에 

적시에 진단 및 치료를 받지 못한다. 본 연구에서는 심박 변이도 변수, 

나이, 성별, 체질량지수를 기반으로 무호흡-저호흡 지수를 예측함으로써 

폐쇄성 수면 무호흡을 선별할 수 있는 모델을 개발하고자 했다. 

방법: 선행 연구에서 무호흡-저호흡 지수와 연령, 성별, 체질량 지수 및 

심박 변이도 변수들 간의 선형적 상관관계를 조사했다. 여러 심박 변이

도 변수들, 연령, 성별, 체질량지수를 이용하여 폐쇄성 수면 무호흡의 중

증도를 예측하기 위한 이진 분류모델을 구축하였다. 이진 분류는 무호흡

-저호흡 지수 5, 15, 30을 기준으로 각각 수행하였다. 연구 대상자의 

60%는 훈련 및 검증군에 무작위로 할당되었고, 나머지 40%는 테스트

군으로 지정되었다. 분류 모델은 로지스틱 회귀, 랜덤 포레스트, 서포트 

벡터 머신 및 다층 퍼셉트론 알고리즘을 사용하여 10배 교차 검증으로 
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개발 및 검증되었다. 

결과: 본 연구에는 총 792명(남성 651명, 여성 141명)의 대상자가 포

함되었다. 무호흡-저호흡 지수 기준이 5, 15, 30일 때 최고 성능을 보이

는 분류 모델의 민감도는 각각 73.6%, 70.7%, 78.4%였다. 그리고 무호

흡-저호흡 지수 5, 15, 30 기준일 때 최고 예측 능력은 각각 정확도, 

72.2%, 70.0%, 70.3%; 특이도, 64.6%, 69.2%, 67.9%; 수신기 작동 특

성 곡선 아래의 면적, 77.2%, 73.5%, 80.1% 였다. 본 연구에서는 무호

흡-저호흡 지수 30을 기준으로 사용한 로지스틱 회귀 모델이 모든 모

델 중 전반적으로 최고의 분류 성능을 보였다. 

결론: 폐쇄성 수면 무호흡 중증도는 심박 변이도, 나이, 성별, 체질량 지

수를 기반으로 비교적 정확하게 예측되었다. 이는 단순히 심박 변이도를 

측정하는 것만으로 폐쇄성 수면 무호흡의 사전 선별 및 지속적인 치료 

경과 추적이 가능할 수도 있다는 것을 보여준다. 

 

주요어: 폐쇄성 수면 무호흡， 심박 변이도， 수면 다원 검사， 

기계 학습 

학 번: 2017-32830 
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