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Abstract 

 

Jang, Dongjun 

Department of Linguistics 

The Graduate School 

Seoul National University 

 

This paper presents a comprehensive investigation into the linguistic 

knowledge embedded within BERT, a pre-trained language model based on the 

Transformer architecture. We reinforce and expand upon the methodology proposed 

by Jang et al (2022) by introducing the ADTRAS algorithm (An Algorithm for 

Decrypting Token Relationships within Attention Scores), which decrypts token 

relationships within BERT's attention scores to analyze patterns at each layer. Our 

experiments using ADTRAS algorithm demonstrate that BERT autonomously learns 

part-of-speech information by leveraging lexical categories. We also provide insights 

into the general tendencies of BERT's layers when processing content words and 

function words. Additionally, we introduce the Classification of Sentence 

Sequencing (CSS) as a Finetuning Strategy, enabling indirect learning from minimal 

pairs, and leverage the Affinity Prober to examine syntactic linguistic phenomena 

using the BLiMP dataset. By tracing patterns and clustering similar phenomena, we 

enhance our understanding of BERT's interpretation of linguistic structures. 

Furthermore, we establish in detail the attributes of BERT layers related to lexical 

categories by connecting the general tendencies of the layers generalized by the 
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ADTRAS algorithm with the results obtained through the Affinity Prober. Our study 

makes several contributions. First, we introduce the ADTRAS algorithm, which 

enables a comprehensive analysis of BERT's linguistic knowledge. Second, we 

provide experimental evidence demonstrating BERT's ability to learn part-of-speech 

information. Third, we offer insights into the tendencies observed in different layers 

of BERT. Fourth, we propose the CSS Finetuning Strategy, which allows for indirect 

learning from minimal pairs. Fifth, we successfully cluster syntactic phenomena 

using the Affinity Prober. Finally, we uncover the general attention tendency of 

BERT towards lexical categories. 

 

 

Keyword : Natural Language Processing, BERT, linguistic knowledge, ADTRAS 
algorithm, part-of-speech, lexical categories, layer tendencies, content words, 
function words, Classification of Sentence Sequencing (CSS), Finetuning Strategy, 
Affinity Prober, syntactic linguistic phenomena, BLiMP dataset 
Student Number : 2021-22754 
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Chapter 1. Introduction 

 

In recent years, Natural Language Processing (NLP) has seen remarkable progress 

thanks to the introduction of deep learning-based pre-trained models. These models 

have captured considerable interest, largely due to the revolutionary Transformer 

architecture proposed by Vaswani et al. (2017). This groundbreaking architecture has 

opened doors for the creation of advanced models that leverage the power of the 

multi-layer Self Attention Mechanism. These models integrate various components, 

including the Multi-head Attention Layer. 

One prominent example of such models is BERT, which was introduced by 

Devlin et al. (2019). BERT is a pre-trained language model based on the 

Transformer's encoder structure and has been trained using a cloze test-based method. 

This approach has positioned BERT as a specialized language model for Natural 

Language Understanding (NLU), outperforming existing neural network models on 

standard NLU benchmarks. BERT's performance is particularly noteworthy in 

challenging tasks like CoLA, where traditional neural network models face 

significant difficulties. The remarkable performance exhibited by BERT implies the 

existence of latent linguistic knowledge within BERT. 

The field of BERTology (Rogers et al., 2020) has emerged through ongoing 

research, aiming to uncover the potential latent linguistic knowledge embedded 

within BERT. BERTology primarily focuses on investigating the depths of BERT's 

language processing capabilities and exploring the replication of language structures. 

Research in this area ranges from examining the model's post-training performance 

on language information (such as part-of-speech and named entities) to investigating 
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the operational processes of language models, such as the self-attention mechanism, 

in order to reproduce syntactic structures or word dependencies. However, these 

approaches have limitations in terms of directly injecting language knowledge into 

the model to explore linguistic knowledge. The discussion of appropriately training 

the model with directly injected language information is an engineering topic. This 

means that it is not easy to investigate the inherent pure language knowledge within 

the language model. Therefore, in order to comprehensively investigate the linguistic 

knowledge embedded within BERT, it is essential to employ research methodologies 

that involve analyzing the model's outputs, such as embeddings and attention scores, 

generated during its computational process. These outputs should be interpreted from 

a linguistic perspective to uncover the underlying linguistic patterns. 

Jang et al (2022) proposed the Affinity Prober as a specialized probing 

mechanism to investigate token relationships in self-attention-based language 

models. Their research applied the Affinity Prober algorithm to analyze how the 

BERT-base-cased model interprets well-formed and ill-formed sentences. According 

to Jang et al (2022), the decoding of token relationships extracted from attention 

scores, known as Lexical Categories, revealed noteworthy patterns in syntactic 

linguistic phenomena across different layers in the BLiMP benchmark (Warstadt et 

al., 2020). These patterns were observed in both well-formed and ill-formed 

sentences, providing valuable insights into the nature of syntactic processing within 

the model. Conversely, semantic linguistic phenomena displayed similar patterns. 

Furthermore, upon closer examination of specific phenomena such as wh-questions 

and negative polarity items (NPI) using the Affinity Prober, noteworthy distinctions 

in token relationships became evident. These distinctions provide valuable insights 

into the intricate workings of the model's syntactic processing when confronted with 
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these linguistic constructs. Specifically, the study brought attention to distinct 

discrepancies in token relationships between well-formed and ill-formed sentences, 

particularly in the context of wh-questions.  

This study aims to reinforce the methodology proposed by Jang et al (2022) 

through additional experiments. We begin by providing an overview of the research 

methodologies employed in related studies in Section 2, emphasizing the 

distinctiveness and significance of our research approach. In Section 3, we present 

experimental evidence to demonstrate that BERT autonomously learns linguistic 

knowledge related to part-of-speech by leveraging lexical categories. To achieve this, 

we introduce the ADTRAS algorithm (An Algorithm for Decrypting Token 

Relationships within Attention Scores) and combine it with lexical categories to 

analyze patterns at each layer of BERT. Our experiments focus on comparing the 

patterns observed in BERT when it is fine-tuned on specific tasks in the GLUE and 

SuperGLUE datasets and when it is not fine-tuned. We show the importance of 

BERT's part-of-speech processing and report on the general tendencies of layers that 

concentrate on content words and function words. 

In Section 4, we shift our attention to the core of our study, introducing 

experiments using the Affinity Prober to analyze patterns in syntactic linguistic 

phenomena processed by BERT. We revisit Jang's (2022) research to explain our 

decision to focus solely on syntactic linguistic phenomena. We redefine the 

algorithm of the Affinity Prober, provide a clearer explanation of Affinity 

Relationship and Affinity Ratio. We then introduce the BLiMP dataset consisting of 

minimal pairs and the linguistic phenomena it covers. To facilitate comprehensive 

analysis, we present the Classification of Sentence Sequencing (CSS) as a Finetuning 

Strategy that indirectly learns from minimal pairs. 
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In the results section, our focus shifts towards understanding how BERT 

interprets linguistic phenomena in a fine-tuned setting, employing the Affinity Prober. 

By closely analyzing the patterns exhibited by BERT during the processing of 

sentences in various linguistic phenomena, we categorize similar patterns based on 

this information. Additionally, by establishing connections between the observed 

layer tendencies using the ADTRAS algorithm, we aim to generalize the behavior of 

BERT layers when processing sentences with syntactic phenomena, following the 

CSS approach as the fine-tuning strategy. 

Finally, in Chapter 5, we provide a summary of our research contributions and 

discuss the limitations of our study, offering insights into future directions for 

research. 

The key contributions of our study are as follows:  

1. Proposal of ADTRAS Algorithm: The ADTRAS algorithm is introduced to 

analyze patterns at each layer of BERT, strengthening Jang's (2022) 

methodology and enhancing the interpretability of token relationships 

within BERT's attention scores. Our algorithm successfully captures 

significant linguistic movements within attention scores. Can we observe 

any explainable patterns in the activated neurons of continuous prompts 

through layers?  

2. Experimental Evidence on BERT's Part-of-Speech Learning: Through 

empirical experiments, we demonstrate that BERT autonomously learns 

language knowledge related to part-of-speech by utilizing lexical categories. 

This finding supports the notion that BERT possesses an inherent 

understanding of grammatical categories. 

3. Insight into Layer Tendencies: We provide insights into the general 
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tendencies of BERT's layers when processing content words and function 

words. By analyzing patterns at each layer, we uncover BERT's processing 

characteristics associated with different word types. 

4. Introduction of Classification of Sentence Sequencing (CSS): We introduce 

CSS as a Finetuning Strategy, enabling indirect learning from minimal pairs. 

CSS facilitates a more comprehensive analysis of the relationship between 

minimal pairs and the underlying linguistic phenomena, leading to deeper 

insights into BERT's interpretation of linguistic patterns. 

5. Examination of Syntactic Linguistic Phenomena: Using the Affinity Prober, 

we explore the patterns exhibited by BERT in processing syntactic linguistic 

phenomena. The analysis focuses on specific phenomena using the BLiMP 

dataset, highlighting the potential of the Affinity Prober in understanding 

syntactic structures processed by BERT. 

6. Clustering of Similar Linguistic Phenomena: Through the Affinity Prober's 

analysis, we trace patterns exhibited by BERT layers and cluster similar 

linguistic phenomena, enabling a better understanding of their 

interrelationships. 

 

Chapter 2. Related Works 

 

This chapter offers a comprehensive review of significant research examining the 

linguistic knowledge inherent in language models, with a specific emphasis on BERT. 

The chapter is segmented into three sections: Section 2.1 elucidates the Probing 

Classifier Framework and its role in syntactic analysis; Section 2.2 dives into the 
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exploration of syntactic tree generation in correlation with neural networks; and 

finally, Section 2.3 reviews studies that delve into the intricate relationship between 

BERT and linguistics. 

 

2.1. Unveiling Linguistic Insights: The Probing Classifier 

Framework 

 

Before the emergence of Transformers, researchers extensively explored the 

syntactic analysis in context-based representations. Among the analytical methods, 

Probing Classifiers emerged as a viable means of studying the syntactic nuances of 

neural network models in the natural language processing (NLP) realm. Noteworthy 

contributions include those from Belinkov (2017), who examined how Neural 

Machine Translation (NMT) architecture comprehends word structure and part-of-

speech (POS). Blevins et al. (2018) posited that RNN models trained on diverse NLP 

tasks could induce syntactic hierarchy without explicit guidance. Furthering this 

field, Conneau et al. (2018) put forward ten probing tasks for assessing linguistic 

properties, while Hupkes et al. (2018) utilized Diagnostic Classifiers, a supervised 

method, to investigate how RNN models interpret syntactic hierarchy. Hewitt and 

Manning (2018), recognizing the limited explanatory capabilities of neural network 

models in revealing parse trees within deeply learned contextual models, proposed a 

structural probe. They asserted that ELMo and BERT exhibit robust syntax based on 

minimum spanning trees. Yet, the Probing Classifier Framework is not without its 

limitations; Belinkov (2022) highlighted the ambiguity in the choice of classifier for 

diverse contexts. 
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2.2. The Interplay of Syntactic Tree and Neural Networks 

 

One of the crucial research areas in extracting implicit linguistic knowledge within 

neural networks revolves around the generation of syntactic tree structures. A long-

standing challenge in NLP has been to induce such structures in an unsupervised 

manner. Pioneering contributions from Klein and Manning (2001; 2002; 2004) 

implemented probabilistic part-of-speech tagging based on treebank sequences, 

laying the foundation for unsupervised parsing utilizing phrase-structure grammar 

and tree-based models. The emergence of deep learning, as emphasized by LeCun et 

al. (2015), and the introduction of RNN models by Hochreiter and Schmidhuber 

(1997), brought significant attention to the field and propelled extensive research 

efforts in unsupervised syntactic structure induction based on RNN models. The 

advent of the Transformer architecture directed the research on syntactic structures 

beyond the design of neural network models strictly for inducing these structures. 

Syntax-BERT (Bai et al., 2019) proposed syntactic attention layers by inducing 

MASKs based on constituency trees (Chen and Manning, 2014) and dependency 

trees (Zhu et al., 2013). Li et al. (2020) further refined this process by devising a 

Mask Matrix based on dependency parsing information, integrating it into BERT's 

attention scores to enhance its performance. 

 

2.3. BERT and Linguistics 

 

The Bidirectional Encoder Representation from Transformers (BERT) model, 



 

 8 

introduced by Devlin et al. (2019), has made remarkable strides in the field of NLP. 

BERT is a transformer-based language model that leverages the power of self-

attention mechanisms to encode bidirectional contextual information, allowing it to 

achieve state-of-the-art performance on various NLP tasks.  

BERT's architecture is rooted in the transformer model proposed by Vaswani et 

al. (2017), which introduced the concept of self-attention mechanism, enabling 

efficient parallel processing of tokens in a sequence. This mechanism allows BERT 

to capture the contextual information for each token, making it inherently 

bidirectional and resolving some of the limitations of previous unidirectional models. 

Pre-training is a crucial aspect of BERT model. During pre-training, BERT is 

exposed to large corpora and learns contextual representations by predicting masked 

words in a sentence (Masked Language Modeling, MLM) and predicting whether 

two sentences follow each other (Next Sentence Prediction, NSP). This pre-training 

process enables BERT to develop a deep understanding of language structures and 

relationships, which can be further fine-tuned for specific downstream tasks. By fine-

tuning BERT, it is adapted to various NLP tasks such as text classification, named 

entity recognition, question-answering, etc. In this process, BERT's pre-trained 

representations are combined with task-specific classifier layers and fine-tuned on 

smaller specific datasets. This fine-tuning strategy allows BERT to transfer its 

knowledge learned during pre-training to new tasks effectively.  

BERT's remarkable performance across various NLP tasks, particularly 

linguistic tasks, has generated significant interest, leading to extensive explorations 

into its encoding and decoding mechanisms for linguistic information. Numerous 

studies have probed the relationship between BERT and linguistics (Rogers et al., 

2021), with this section specifically concentrating on studies most relevant to our 
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research. Jawahar et al. (2019) have explored BERT's capabilities in capturing 

structural information in language. Their investigation reveals that different layers 

of BERT are dedicated to encoding specific linguistic features. Lower layers tend to 

focus on phrase-level information, middle layers concentrate on syntactic aspects, 

while top layers emphasize semantic understanding. This demonstrates BERT's 

ability to effectively represent different levels of linguistic structures.  

Contrarily, Htut et al. (2019) conducted fine-tuning experiments on syntax-

oriented and semantics-oriented datasets to identify significant shifts in attention 

weights and to extract dependency relations. They try to understand the changes in 

BERT's attention weights following fine-tuning on two distinct datasets: one syntax-

oriented (CoLA) and the other semantics-oriented (MNLI). Although their findings 

indicate attention heads tracking individual dependency types, the generalization of 

such learned representations is limited, shedding light on the challenges in adapting 

BERT's attention mechanisms to different tasks. Although they found BERT's 

attention heads tracked individual dependency types, they noted this might not be a 

universal trait.  

Contrasting these findings, Kovaleva et al. (2019) reported an absence of 

significant attention shifts in BERT, postulating that attention maps might be 

influenced more by pre-training tasks than by task-specific linguistic reasoning. 

Their research primarily investigated whether BERT's fine-tuning on a specific task 

leads to self-attention patterns that emphasize particular linguistic features. 
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Chapter 3. Generalization of Layer-Wise Attention 

Using ADTRAS Algorithm 

 

 

In this chapter, we experimentally demonstrate that BERT learns linguistic 

knowledge about lexical categories during the fine-tuning process and reveal that 

this knowledge can be generalized to explain the properties of BERT layers in terms 

of categories. To conduct our experiments, we propose the ADTRAS (An Algorithm 

for Decrypting Token Relationships within Attention Scores) algorithm. We train the 

BERT-base-cased model on six tasks from the GLUE benchmark and examine the 

attention shift in BERT before and after fine-tuning using the ADTRAS algorithm. 

Ultimately, we uncover the existence of distinct properties within each layer of 

BERT and suggest the potential for layer generalization. Our findings offer valuable 

insights into the possibility of generalizing the behavior and characteristics of BERT 

layers. 

 

3.1. Binary Categorization of Part-of-Speech in Sentences: 

Content Words and Function Words 

 

In this experiment and for further experiment in Section 4, following Carpenter 

(1983), the part-of-speech information within sentences was binary-categorized as 

content words and function words. The part-of-speech information needed for this 

categorization was obtained through the NLTK (Natural Language Toolkit) module.1 

 
1NLTK Module: https://github.com/nltk/nltk 
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- function words = {"CC", "MD", "DT", "EX", "IN", "PDT", "POS", "TO", 

"WDT", "WP", "WP\$", "WRB", "RP"} 

- content words = {"NN”, “NNS”, “NNP”, “NNPS”, “CD”, “FW”, “JJ”, 

“JJR”, “JJS”, “PRP”, “PRP\$”, “RB”, “RBR”, “RBS”, “VB”, “VBD”, 

“VBG”, “VBP”, “VBZ”, “VBN”, “UH”} 

The function words include coordinating conjunctions, modal verbs, 

determiners, existential 'there', prepositions and subordinating conjunctions, 

predeterminers, possessive endings, infinitive 'to', wh-determiners, wh-pronouns, 

 

Table 3.1: Description of NLTK Part-of-Speech Tags on function words 
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possessive wh-pronouns, wh-adverbs, and particles. 

In contrast, the content words include nouns, plural nouns, singular proper 

nouns, plural proper nouns, cardinal numbers, foreign words, adjectives, 

 

Table 3.2: Description of NLTK Part-of-Speech Tags on content words 
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comparative adjectives, superlative adjectives, personal pronouns, possessive 

pronouns, adverbs, comparative adverbs, superlative adverbs, base form verbs, past 

tense verbs, gerunds or present participle verbs, present tense verbs (non-3rd person 

singular), present tense verbs (3rd person singular), past participles, and interjections. 

 

3.2. ADTRAS Algorithm 

 

Our primary objective in this chapter is to investigate the linguistic characteristics 

and attention shift within the layers of BERT, with a specific emphasis on shifts in 

probabilistic scores within BERT's attention matrix. To accomplish this, we 

introduce the ADTRAS (An Algorithm for Decrypting Token Relationships within 

Attention Scores) algorithm, which allows for the decryption of token relationships 

while preserving the original attention values. ADTRAS is designed to work with 

multi-layered models like BERT and aims to uncover the connections between 

tokens that carry significant weights in the attention scores. Our main focus is to 

comprehend the relational structure of tokens, particularly in terms of lexical 

categories or Part-of-Speech. Additionally, the ADTRAS algorithm facilitates the 

extraction and understanding of syntactic configurations, semantic relationships 

between words, and causal correlations. 

In the context of utilizing ADTRAS with BERT and analyzing lexical categories, 

our procedure begins by tokenizing and formatting the input sentence using a BERT 

model, represented as M. This step includes the incorporation of special tokens like 

CLS and SEP to ensure compatibility with the BERT model. Subsequently, the 

algorithm obtains the self-attention weights across all layers, denoted as A, from M 
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and calculates the mean across the heads in each layer, denoted as $\bar{A}$. Our 

analysis primarily focuses on meaningful tokens, excluding special tokens such as 

CLS and SEP. This process can be represented as: 

 

�̅�! = 	𝐸𝑥𝑐𝑙𝑢𝑑𝑒𝑆𝑝𝑒𝑐𝑖𝑎𝑙𝑇𝑜𝑘𝑒𝑛𝑠(�̅�) 

 

If the words are segmented into sub-tokens during tokenization, the attention 

weights are averaged by combining sub-tokens, denoted as 

 

�̅�"#$ = 	𝐴𝑣𝑒𝑟𝑎𝑔𝑒𝑆𝑢𝑏𝑡𝑜𝑘𝑒𝑛𝑊𝑒𝑖𝑔ℎ𝑡𝑠(�̅�!) 

 

For each token, the algorithm identifies the token with the highest attention 

score maxscore from the sequence of tokens ET which contains t number of tokens 

{E1, ..., Et}. In cases where a token's attention is predominantly self-directed, the 

algorithm selects the second-highest attention score. This selection process is 

represented as maxidx = argmax(ET), and if ET = top1 itself , then maxidx = argmax(ET 

\ top1), where 	𝐸% ∈ 	 �̅�"#$. 

The selected tokens are then assigned to their corresponding pre-determined 

lexical categories. Subsequently, the algorithm updates the frequency count for each 

lexical category. 

In conclusion, the relative attention ratio for each lexical category is computed 

by normalizing the frequency count of each category by the total frequency count of 

all the different lexical categories, thus alleviating biases. Mathematically, this can 

be represented as 
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𝑅& =
𝑓&[𝑙𝑒𝑥𝑐𝑎𝑡]
∑𝑓&[𝑙𝑒𝑥𝑐𝑎𝑡]

 

By deriving the attention ratios R, which could explain the relationship between 

tokens in a sentence across all layers, we can perform layer-wise analysis using the 

ADTRAS algorithm. This enables us to examine the distribution patterns of attention 

within each layer. The summarized steps are provided in Alg 1. 
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3.3 The General Language Understanding Evaluation (GLUE) 

 

In this study, we conducted an experiment using the BERT-base-cased model and 

focused on the tasks from the GLUE benchmark (Wang et al., 2018; Wang et al., 

2019). Our goal was to fine-tune the model on a diverse range of tasks that require 

different types of semantic or syntactic information. Specifically, we selected six 

tasks that cover a wide spectrum of linguistic aspects. 

 

3.3.1. The Corpus of Linguistic Acceptability (CoLA) 

 

The Corpus of Linguistic Acceptability (CoLA) dataset, introduced by Warstadt et al 

(2018), is a benchmark in Natural Language Processing (NLP) that assesses models' 

ability to determine the grammatical acceptability of English sentences. Comprising 

10,657 English sentences from various linguistic sources, the CoLA dataset is 

annotated to distinguish between grammatically acceptable and unacceptable 

instances. It focuses on making binary predictions about the grammatical 

acceptability of input sentences. The dataset presents challenges due to the disparity 

between grammatical acceptability and sentence meaning, which are often addressed 

during pre-training of NLP models. CoLA is an essential component of the GLUE 

benchmark, which evaluates the performance of different NLP models across various 

natural language understanding tasks. 
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3.3.2. The Microsoft Research Paraphrase Corpus (MRPC) 

 

The Microsoft Research Paraphrase Corpus (MRPC) is a crucial task in NLP that 

assesses models' ability to determine the paraphrastic relationship between sentence 

pairs. Introduced by Dolan and Brockett in 2005, the MRPC dataset contains 

approximately 5800 sentence pairs sourced from web-based news content. Human 

annotators labeled each pair to indicate whether they exhibit paraphrastic properties. 

The MRPC task revolves around accurately categorizing sentence pairs as 

paraphrases or non-paraphrases. It is commonly approached as a binary classification 

problem, where models predict '1' for paraphrase pairs and '0' for non-paraphrase 

pairs. MRPC is part of the GLUE benchmark and evaluates models' comprehension 

of syntactic and semantic aspects, as well as their ability to recognize and generate 

paraphrases. 

 

3.3.3. The Stanford Sentiment Treebank 2.0 (SST-2) 

 

The Stanford Sentiment Treebank 2.0 (SST-2) is a dataset designed for sentiment 

analysis in NLP. Developed by Socher et al. in 2013, it builds upon the original 

Stanford Sentiment Treebank. With 67,349 English sentences extracted from movie 

review excerpts, the SST-2 dataset labels each sentence as positive or negative 

sentiment. It focuses on binary sentiment classification, removing neutral instances 

for simplicity and effective model training and evaluation. The SST-2 task aims to 

accurately determine the sentiment expressed in a given sentence, providing a testing 

ground for models' understanding of sentiment in text. SST-2 is part of the GLUE 
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benchmark and enables evaluation and benchmarking of NLP models' performance 

across various natural language understanding tasks. 

 

3.3.4. The Quora Question Pairs (QQP) 

 

The Quora Question Pairs (QQP) dataset is a significant benchmark for evaluating 

NLP models' ability to identify semantically equivalent questions. Created by Quora 

to consolidate duplicate questions, the QQP dataset consists of over 400,000 question 

pairs. The task involves determining whether a pair of questions are duplicates or 

not, making it a binary classification problem. The QQP dataset presents challenges 

due to the variation in expressions used to ask essentially the same question. Models 

must understand the underlying semantic content of questions rather than relying 

solely on lexical matches. 

 

3.3.5. The Multi-Genre Natural Language Inference (MNLI) 

 

The Multi-Genre Natural Language Inference (MNLI) task evaluates NLP models' 

ability to identify semantic relationships between sentence pairs. Introduced by 

Williams et al. in 2017, the MNLI dataset contains approximately 433,000 sentence 

pairs, each labeled with textual entailment information. The pairs consist of a 

premise and a hypothesis sentence, and the task is to determine whether the premise 

entails, contradicts, or is neutral to the hypothesis. MNLI draws sentences from ten 

genres of written and spoken English, providing a diverse range of linguistic styles 

and lexical choices for evaluation. MNLI is included in the GLUE benchmark and 
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serves as a rigorous evaluation of models' understanding of textual entailment and 

semantic relationships between sentences. 

 

3.3.6. The Words in Context (WiC) 

 

The Words in Context (WiC) task, part of the SuperGLUE evaluation suite, focuses 

on word sense disambiguation in NLP. Introduced by Wang et al. in 2019, the WiC 

task tests models' ability to determine the correct sense of a target word in two 

different contexts. The dataset provides pairs of sentences, each containing a target 

word, and models must determine whether the word has the same sense in both 

sentences. The WiC dataset consists of approximately 1,000 instances, labeled as 

'True' if the target word retains the same sense and 'False' if the senses differ. This 

binary classification task requires a deep understanding of language and context 

beyond syntactic comprehension. The WiC task originated from the Word in Context 

dataset and provides a challenging evaluation for NLP models. 

 

3.3.7. Summary 

 

For each task, we fine-tune the bert-base-cased model. Additionally, we employ the 

ADTRAS algorithm to decode word attention relations, allowing us to identify 

notable shifts when examining the data through the lens of lexical categories. To 

classify and tag content words and function words, we utilize the NLTK (Natural 

Language Toolkit) module, following the definition provided by Carpenter (1983). 

By conducting experiments on these diverse tasks and analyzing attention 
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relations with respect to lexical categories, we aim to gain insights into the model's 

understanding and representation of semantic and syntactic information across 

different linguistic phenomena. 

 

3.4 Evaluating Attention Variations in Lexical Categories on 

NLU tasks 

 

In the results, we evaluate the six models on six distinct test datasets, both before 

and after fine-tuning. Using the ADTRAS algorithm, we analyze the changes in 

attention within the lexical category at each layer. This analysis allows us to examine 

the variations in attention patterns for different models and layers. 

 

 

 

Table 3.3: Changes in Attention Distribution Across Lexical Categories from Pre-trained 
Model to Fine-tuned Model 
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3.4.1 Intrinsic Learning of Lexical Categories in BERT for 

Downstream Task 

 

This section explores the impact of fine-tuning BERT on attention weights across 

various downstream tasks, offering valuable insights into the learning capabilities of 

self-attention in relation to lexical categories. Specifically, our analysis focuses on 

the last layer of BERT, which previous studies (Liu et al., 2019; Kovaleva et al., 2019; 

Hao et al., 2019) have identified as task-specific. The findings highlight significant 

attention shifts dependent on the task type, as depicted in Figure 3.1 and summarized 

in Table3.3. 

For example, when fine-tuning BERT for the CoLA and MRPC tasks, which 

emphasizes syntactic structures, we observe an increase in attention towards function 

words and a decrease in attention towards content words. On the other hand, fine-

tuning for the WiC task, which focuses on relationships among content words, leads 

to an increase in attention towards content words and a decrease for function words. 

This shift is intriguing because the fine-tuned model exhibits even higher attention 

 

Figure 3.1: Changes in Attention Distribution Across Lexical Categories from Pre-trained 
Model to Fine-tuned Model 
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to content words, surpassing the significant attention already present in the 

pretrained model. Moreover, tasks like SST-2 and QQP, prioritizing semantic aspects 

over syntactic ones, demonstrate an escalation in attention towards content words. 

In contrast, the MNLI task, which requires both syntactic and semantic 

understanding, exhibits a substantial amplification in attention towards function 

words. These observations indicate a strong connection between the MNLI task and 

the utilization of syntactic information. 

To summarize, tasks involving syntactic information (CoLA, MRPC, MNLI) 

show increased attention weights on function words, while tasks emphasizing 

semantic information (SST-2, QQP, WiC) exhibit heightened attention on content 

words (refer to Table 3.3). These findings suggest that as language models undergo 

fine-tuning for specific objectives, they acquire inherent linguistic knowledge related 

to lexical categories. 

 

 

Table 3.4: Top 3 Layers which mostly attend on the content words and function words on 6 
downstream tasks 
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3.4.2 Generalization of Layer-Wise Attention in Fine-Tuned 

BERT Models 

 

Table 3.4 provides a comprehensive summary of the top three layers in each fine-

tuned model, highlighting their highest attention to content words and function 

words. Interestingly, despite the variations in the fine-tuning process for each model, 

we can still observe consistent linguistic patterns in relation to lexical categories. 

The results in Table 3.4 demonstrate that Layers 1, 10, 11, and 12 predominantly 

focus on content words, while Layers 2, 4, 8, and 9 primarily focus on function words. 

This finding challenges previous studies that suggested BERT layers cannot be 

generalized (Htut et al., 2019; Kovaleva et al., 2019). Through the application of the 

ADTRAS algorithm, we successfully generalize the linguistic characteristics of 

BERT layers across six different downstream tasks. 

 

Chapter 4. Probing Intrinsic Linguistic Knowledges 

of Deep Learning-based Language Model using 

Affinity Prober 

 

In Section 3, we observed noteworthy changes in attention scores using the 

ADTRAS algorithm during the fine-tuning of BERT. This algorithm, focused on the 

Lexical Category, revealed a tendency to prioritize the relevant lexical categories 

based on the specific task objectives. One intriguing finding was the identification 

of layers within each of the six fine-tuned models that exhibited distinct attention 
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patterns towards content and function words. This indicates the ability to fine-tune 

BERT to pay closer attention to specific linguistic aspects, tailored to the objectives 

of each experiment. 

The purpose of this section is to explore the relationships between different 

layers of BERT across various syntactic language phenomena, specifically focusing 

on lexical categories. This investigation is motivated by the belief that BERT 

possesses inherent linguistic knowledge in relation to lexical categories. Our focus 

is specifically on syntactic language phenomena, based on the evidence presented in 

Jang's 2022 study. This study revealed meaningful differences between well-formed 

and ill-formed sentences in terms of syntactic language phenomena, as analyzed 

from the perspective of lexical categories. Such distinctions were not observed in 

semantic language phenomena. 

In this chapter, we begin by presenting the findings from Jang's (2022) study. 

We then proceed to refine and revisit the Affinity Prober algorithm. Additionally, we 

provide a concise overview of the syntactic language phenomena that will be utilized 

in our forthcoming experiment. 

 

4.1 Jang et al (2022) 

 

In Jang's (2022) study, a novel methodology called the Affinity Prober was 

introduced to investigate the decision boundaries of deep learning-based pre-trained 

language models when processing linguistic phenomena. The Affinity Prober 

leverages the attention scores of the language model's self attention mechanism to 

extract word affinity relationships, particularly focusing on the relationship between 
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content and function words. 

In the context of syntactic language phenomena, Jang discovered that the top 

layers of the language model exhibited decision boundaries that could explain the 

differences between well-formed and ill-formed sentences through lexical affinity. 

He also observed a strong reinforcement of the relationship between function words 

in syntactic language phenomena at the higher layers of BERT. Furthermore, Jang 

successfully delineated the acceptance decision boundary through the examination 

of wh-questions. However, he did not identify clear decision boundaries for 

distinguishing between well-formed and ill-formed sentences in semantic language 

phenomena. Ambiguity was commonly observed in the affinity relationship of 

minimal pairs involving negative polarity items. He found that semantic language 

phenomena prioritize relationships between content words, while little emphasis is 

placed on relationships between function words at all levels of BERT. 

The Affinity Prober sets itself apart from existing probing methods by 

extracting universal language information from sentences in parallel. This distinction 

is significant. Moreover, Jang's study demonstrated the validity of the Affinity Prober 

by uncovering clear decision boundaries in the language model that revolve around 

lexical categories in syntactic language phenomena. By calculating the affinity 

relationship between content and function words, the study provided insights into 

how the bert-base-cased model interprets specific grammatical phenomena, 

particularly the distinction between declarative and non-declarative sentences. This 

further validated the usefulness of the proposed probing method based on pre-

training-based language models. 
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4.2 Affinity Prober 

 

In this section, we deeply examine the workings of the Affinity Prober and provide 

a more technical definition of its mathematical notation and Affinity Relationship. 

The Affinity Prober is a distinctive algorithm that utilizes attention scores to 

systematically extract and quantify the affinity relationships, represented as $<A, 

F>$, among words within a given context, specifically in Transformer-based pre-

trained language models. The attention scores embed the semantic interconnections 

between words and serve as a robust foundation for identifying and characterizing 

these relationships. 

 

4.2.1 Multi-Head Attention on Transformer Architecture 

 

Self-attention, also known as scaled dot-product attention, forms the foundation. For 

a given set of query Q, key K, and value V matrices, the self-attention score is 

computed through a sequence of operations (Vaswani et al., 2017). 

Firstly, the dot product of the query and key matrices is evaluated ($QKT), 

subsequently scaling the output by the square root of the dimensionality of the key 

vectors (D𝑑'). Following this operation, a softmax function is applied to these scaled 

scores, yielding a set of attention weights. These weights are multiplied with the 

value matrix V to yield the output of the self-attention mechanism. In formal 

mathematical terms, this sequence of operations is represented as:  
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𝐴𝑡𝑡(𝑄, 𝐾, 𝑉) 	= 	𝑠𝑜𝑓𝑡𝑚𝑎𝑥	(
𝑄𝐾%

D𝑑'
)𝑉 

 

Here, T signifies the transposition of a matrix, and softmax is the softmax function. 

 

𝑠𝑜𝑓𝑡𝑚𝑎𝑥(𝑥) =
𝑒𝑥𝑝(𝑥()

∑ 𝑒𝑥𝑝(𝑥()(
 

 

Expanding on the self-attention mechanism, the multi-head attention paradigm 

allows the model to concentrate on various positions in parallel. Instead of 

implementing a singular attention function with one set of learned linear projections, 

the model performs h parallel attention functions, each with a different set of learned 

linear projections for the queries, keys, and values (Vaswani et al., 2017). Each 

attention function or 'head' i yields an output value, which are concatenated and 

linearly transformed to produce the final output. This can be formalized as: 

 

𝑀𝑢𝑙𝑡𝑖𝐻𝑒𝑎𝑑(𝑄, 𝐾, 𝑉) = 𝐶𝑜𝑛𝑐𝑎𝑡(ℎ), . . . , ℎ*)𝑊+ ,	 

where each  

ℎ( 	= 	𝐴𝑡𝑡(𝑄 ∙ 𝑊,( , 𝐾 ∙ 𝑊-(	, 𝑉 ∙ 𝑊/(	) 

In the above equations, 𝑊,(, 𝑊-(	, 𝑊/(	and 𝑊+	denote the model parameters to be 

learned, while Concat refers to the concatenation operation. 

 

4.2.2 Affinity Relationship 

 

Affinity Relationship (AR) represents a strong mutual correlation within a sentence, 

particularly between an "Affiner" and an "Affinee". Mathematically, if we consider 

W as the set of all words in a sentence and Att(w) as the attention score assigned to a 
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specific word $w$, we can define the "Affiner" denoted as A Î W, and the "Affinee" 

denoted as F Î W, as follows: 

- Affiner A: A word that maximizes the affinity score across the set of words. 

 

𝐴	 = 	𝑎𝑟𝑔𝑚𝑎𝑥0∈2𝐴𝑡𝑡(𝑤) 

 

- Affinee F: The word which receives the maximum attention score from 

the Affiner. 

𝐹	 = 	𝑎𝑟𝑔𝑚𝑎𝑥0∈2𝐴𝑡𝑡(𝐴,𝑤) 

 

Here, Att(A, w) signifies the attention score assigned by A to word w. Hence, 

the "Affiner" is the word which assigns the highest attention score to another word 

F in the sentence, and this mutual relationship, expressed as <A, F>, is termed the 

Affinity Relationship. The Affinity Prober's approach to word interrelationships, 

thereby, provides a robust mathematical framework for exploring the associations 

within language models. 

 

4.2.3 Probabilistic Distribution of Categorized Affinity 

Relationships 

 

In the work conducted with the Affinity Prober, we position linguistic concepts as a 

foundation for word categorization, such as part-of-speech tagging. This paradigm 

enables an examination of the efficacy of pre-established linguistic concepts through 

their interactive behavior within the language model and facilitates the calculation 

of the affinity ratio between categories to study their respective impact on the model. 
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Take, for example, two categories X and Y, capable of serving as taxonomies for 

natural language. We can derive information about affinity relationships such as <X, 

X>, <X, Y>, <Y, X>, and <Y, Y>. Given that all words are binarized into their 

respective categories, the <A, F> relationships for all words can be parsed into four 

distinctive categories. This procedure leads us to the derivation of each affinity 

relationship's probability distribution, an attribute we define as the Affinity Ratio in 

equation below. 

- Affinity Ratio: Suppose C denotes a categorization function mapping a 

word to a category (either X or Y). If $N$ represents the total number of 

words in a corpus and N(c1, c2) is the count of <A, F> pairs where Affiner 

is categorized as c1 and Affinee as c2, the affinity ratio AR(c1, c2) is 

formulated by: 

𝐴𝑅(𝑐), 𝑐3) 	= 	𝑁(𝑐), 𝑐3)/𝑁, 𝑓𝑜𝑟	𝑐), 𝑐3 ∈ 	𝑋, 𝑌	 

 

This equation expresses the probability distribution of the affinity relationships 

across categories X and Y. 

 

4.2.4 The Algorithm of Affinity Prober on BERT 

 

We represent a BERT model as M, which consists of L layers. Each layer l is 

equipped with H self-attention heads, resulting in a total of L ´ H self-attention 

operations. Specifically, the BERT-base model consists of 12 layers (L=12), with 

each layer containing 12 attention heads (H=12). Therefore, any given input 

sequence undergoes 144 (L ´ H) distinct self-attention operations. 
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During each self-attention operation, an attention score matrix is generated, 

capturing the semantic and syntactic correlations between tokens. Higher attention 

scores indicate stronger relationships, indicating that the model places greater 

emphasis on these token pairs when encoding the sequence. 

The Affinity Prober algorithm is designed to interpret these attention scores as 

a measure of word "Affinity". For a given input sentence s = {w1, w2, ..., wN}, the 

algorithm leverages the self-attention mechanism of M to establish Affinity 

Relationships for each word wi. It identifies the word wj that has the maximum 

attention score in relation to wi across all layers and heads. This relationship, denoted 

as (wi, wj), is referred to as AR (wi) and can be expressed mathematically as: 

 

𝐴𝑅(𝑤() 	= 	𝑎𝑟𝑔𝑚𝑎𝑥	𝐴𝑡𝑡&*(𝑤( , 𝑤4), 

 

where 𝐴𝑡𝑡&*(𝑤( , 𝑤4)	is the attention score between 𝑤( and 𝑤4 at layer l and head 

h. By applying this process to all words in s, we obtain a collection of Affinity 

Relationships that encompass the entire sentence, representing the word associations 

as perceived by the BERT model. 

To investigate the layer-wise characteristics of BERT, we adapt the Affinity 

Prober to calculate the average attention head outputs for each layer. As a result, the 

equation is modified as: 

𝐴𝑣𝑔𝐴𝑡𝑡&(𝑤( , 𝑤4) 	=
1
𝐻
	V𝐴𝑡𝑡&,*	(𝑤( , 𝑤4)
6

*7)

, 

which computes the average attention score across all heads in layer l between 𝑤( 

and 𝑤4. Then, the Affinity Relationship, computed with averaged attention across 
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all heads at each layer, is given by: 

 

𝐴𝑅&(𝑤() = 	𝑎𝑟𝑔𝑚𝑎𝑥0!𝐴𝑣𝑔𝐴𝑡𝑡&(𝑤( , 𝑤4) 

 

Here, 𝐴𝑅&(𝑤()denotes 𝑤4 that shares the maximum averaged attention score with 

𝑤( 	at layer $l$. Consequently, 𝑤4 	is recognized as the Affinee of 𝑤( 	at layer l. This 

reformulation enables layer-wise operation of the Affinity Prober, averaging 

attention scores across all heads in a particular layer. 

The Affinity Relationship extracted through the Affinity Prober focuses solely 

on strong connections between tokens. Leveraging the Affinity Prober opens up 

numerous research possibilities, such as precisely investigating the Dependency 

Parsing of sentence structures by tracking the relationships between specific words 

as they traverse through layers. Additionally, it is possible to map each token to 

specific linguistic concepts, such as parts-of-speech, using the Affinity Prober. This 

would enable tracking how the language model interprets parts-of-speech based on 

the relationships between them. 
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Chapter 5. The Benchmark of Linguistic Minimal 

Pairs (BLiMP) 

 

The Benchmark of Linguistic Minimal Pairs (BLiMP), formulated by Warstadt et al 

(2020), serves as a rigorous evaluation benchmark to assess the linguistic 

understanding of language models. The dataset comprises 67 linguistic phenomena, 

each meticulously examined using a curated collection of 1000 minimal pairs. 

Minimal pairs consist of two sentences that are nearly identical, except for one 

crucial difference. In these pairs, one sentence adheres to grammatical rules (well-

formed), while the other violates them (ill-formed).2 

The BLiMP dataset aims to test the ability of language models to distinguish 

grammatically correct sentences from flawed ones, focusing on subtle differences 

between them. It assumes that language models with strong linguistic knowledge 

gained from their training data should be capable of discerning such nuanced 

variations. 

The dataset covers a wide range of linguistic phenomena, including agreement, 

case marking, filler-gap dependencies, and island effects, among others. The 

sentences in the dataset are intentionally kept simple, avoiding idiomatic or 

ambiguous structures to ensure a clear focus on the specific phenomena under 

examination. 

Each phenomenon in the dataset is accompanied by a detailed description, 

 
2 i.  a. well-formed sentence: The cat is sleeping on the bed. 

      b. ill-formed sentence. The cat is sleeps on the bed. 
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example sentences, and a concise discussion that explains the grammatical errors in 

the ill-formed sentences based on English grammar rules. This makes the dataset not 

only a valuable tool for evaluation but also a valuable resource for understanding the 

strengths and weaknesses of language models in acquiring different aspects of 

linguistic knowledge. 

Due to the complexity of the BLiMP dataset as a benchmark, achieving a high 

score is a challenging task. Despite the simplicity of the sentences, the distinctions 

between well-formed and ill-formed sentences can be extremely subtle, requiring a 

deep understanding of English grammar for accurate classification. 

 

5.1 Adjunct Island 

 

Adjunct Island constraints are a type of  the family of syntactic rules known as 

island constraints, which govern the circumstances under which a constituent can be 

moved from one position to another in a sentence, or whether it can not be moved at 

all. In general, an adjunct island refers to a syntactic configuration in which a word 

or phrase (usually a wh-word) is moved out of an adjunct clause, and this movement 

is typically considered to be unacceptable.  

In the BLiMP dataset, the Adjunct Island tests would involve pairs of sentences 

where one violates the adjunct island constraint, and one does not. 

 

 (1)  a. Who should Derek hug aftershocking Richard? 

     b. *Who should Derek hug Richard after shocking? 
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5.2 Animate Subject 

5.2.1 Animate Subject Passive 

 

The "Animate Subject Passive" is a category of grammatical phenomena which 

BLiMP includes for testing the capability of models to handle passive constructions 

in sentences where the subject is animate (i.e., a living entity). 

In English, passive sentences are those where the subject is acted upon by the 

verb, and the agent of the action may be omitted or introduced by a prepositional 

phrase. In passive constructions, animate subjects typically receive an action rather 

than perform it. An example of such a sentence pair in BLiMP is following: 

 

(2)  a. The cat was chased by the dog. 

b. *The cat was chased by the table. 

 

In this pair, (2a) is grammatically correct and makes sense, as "the cat" (an animate 

entity) can logically be chased. (2b) is considered ungrammatical or nonsensical 

because semantically a table (an inanimate object) cannot chase a cat. Models 

successful on this task would need to understand the concept of animacy and its role 

in grammatical sentence construction.  

 

5.2.2 Animate Subject Trans 

 

The "Animate Subject Trans" subset in the BLiMP (Benchmark of Linguistic 
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Minimal Pairs) dataset pertains to instances of transitive syntactic constructions with 

animate subjects. A transitive construct necessitates the presence of both a subject 

and one or more objects. 

Within the scope of the "Animate Subject Trans" classification, the emphasis is 

on the animate subject (a living entity) instigating an action that has a direct impact 

on an object. The BLiMP dataset presents pairs of sentences: one conforming to 

grammatical norms, and the other demonstrating an error. For example: 

 

 (3) a. The dog pursued the ball. 

b. The dog pursued. 

 

In the provided example, the first sentence (3a) abides by grammatical rules 

with "the dog" (an animate subject) executing the action (pursued) that directly 

involves an object ("the ball"). (3b) is grammatically incorrect due to the absence of 

an object for the transitive verb "pursued." 

Models proficient in this specific task would be expected to grasp the concept 

of transitivity, as well as the requirement for animate subjects to be associated with 

an object in instances involving a transitive verb. 

 

5.3 Causative 

 

Causation entails a situation in which a specific action or event is instigated or 

facilitated by a causer. Within this context, the "causee" (the entity on which the 

action is performed) experiences a state change or action due to the actions of the 
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"causer" (the agent initiating the action). We refer to instances extracted from the 

BLiMP dataset to elucidate this: 

 

(4)  a. Aaron breaks the glass. 

b. *Aaron appeared the glass. 

 

In the context of (4a), "Aaron" functions as the causer, effectuating the action of 

breaking, while "the glass" is the causee, undergoing the action. However, (4b) 

deviates from conventional causative use. Here, the verb "appeared" does not fit the 

traditional causative framework, leading to an ill-formed construction. In this setting, 

the verb "appeared" takes "Aaron" as a causer, which doesn't typically take. This 

example serves to underline the model's capability to distinguish well-formed and 

ill-formed causative sentences, thereby evaluating its understanding of causative 

phenomena. 

 

5.4 Complex NP Island 

 

The Complex Noun Phrase (NP) Island Constraint, also known as the Complex NP 

Constraint, is a syntactic rule that disallows extraction out of certain complex noun 

phrases. 

In other words, it refers to a phenomenon where certain elements (such as a 

relative clause) within a complex noun phrase create a 'syntactic island'—an area of 

a sentence from which constituents cannot be moved or extracted, especially in 

questions and relative clauses. Consider the examples from the BLiMP dataset: 
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(5)  a. Who aren't most hospitals that hadn't talked about most waitresses alarming? 

b. *Who aren't most waitresses alarming most hospitals that hadn't talked about? 

 

In this case, the NP "most hospitals" forms an island, which restricts the movement 

of constituents out of that island. The NP "most waitresses" is base-generated within 

the relative clause, and in (5a), it could not move out of the island created by "most 

hospitals." However, in (5b), "most waitresses" attempts to move across the island, 

which violates the island constraint and makes the sentence ungrammatical. 

 

5.5 Coordinate Structure Constraint 

 

The Coordinate Structure Constraint (CSC), an established axiom within linguistics, 

asserts that constituents such as words or phrases cannot be isolated from a single 

clause within coordinate structures (those combined by conjunctions such as "and" 

or "or"). 

 

5.5.1 Left Branch 

 

An extrapolation of the principle above, known as the Coordinate Structure 

Constraint Complex Left Branch (CSC Complex Left Branch), stipulates a 

prohibition on extracting a constituent from the left (or initial) aspect of a coordinate 

structure that possesses complexity, such as subordination or embedding. To 

illustrate, consider a pair of exemplars from the BLiMP corpus: 
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(6)  a. What senators was Alicia approaching and some teachers scaring? 

b. What was Alicia approaching senators and some teachers scaring? 

 

In (6a), "What senators" is the constituent extracted from the left branch of each 

clause in the coordinate structure: "Alicia was approaching [what senators]" and 

"some teachers scaring [what senators]". Each of these sentences could 

independently ask about the identity of the senators, and when combined with the 

conjunction "and", the sentence remains grammatically sound. Therefore, this 

sentence respects the CSC Complex Left Branch constraint. 

Contrarily, in the case of (6b), "What" is extracted, and it is unclear to which 

part of the sentence it applies: "Alicia was approaching [what] senators" or " [what] 

some teachers scaring". Here, "what" is not tied to a specific constituent and its 

relation to the rest of the sentence is ambiguous. This ambiguity breaches the CSC 

Complex Left Branch constraint, rendering the sentence ungrammatical. 

 

5.5.2 Object Extraction 

 

The Coordinate Structure Constraint (CSC) "Object Extraction" paradigm entails the 

displacement of an object from one of the conjuncts in a coordinated structure to the 

sentence-initial position. 

Extraction in linguistic parlance constitutes a mechanism wherein a lexical item, 

a phrase, or a clause is translocated from a larger structure, engendering a gap. This 

operation is most commonly associated with question formation, but it also surfaces 

in the creation of relative clauses and other syntactic constructions. Let us consider 
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a pair of sentences from the BLiMP corpus: 

 

(7)  a. Who were all men and Eric leaving? 

b. *Who were all men leaving and Eric? 

 

In (7a), the pronoun "who" operates as the object of the action executed by the 

coordinated unit "all men and Eric". This sentence conforms to standard English 

grammar and is deemed well-formed as "who" serves as the object of the action 

carried out by the entire coordinated entity. 

In constrast, in (7b), "who" is conceived as the object of the action executed 

solely by "all men". However, the Coordinate Structure Constraint forbids the 

extraction of "who" from a single conjunct ("all men") while leaving the remaining 

conjunct ("Eric") unrelated to the extracted object. Consequently, this sentence 

contravenes English syntactic norms, resulting in an ill-formed construction. 

 

5.6 Drop Argument 

 

"Drop Argument" in linguistics refers to a phenomenon where certain verbs allow 

for their arguments (subjects, objects, etc.) to be omitted or "dropped" without refers 

to the sentence ungrammatical. 

Specifically, certain verbs, often called 'unergative verbs' such as 'run', 'sing', 

'tour', are often found in contexts where the verb takes an agent as its subject without 

the complements as its object. For example, in the sentence "John is running", the 

verb 'run' does not require a direct object for the sentence to be grammatical. 
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However, not all verbs allow for their arguments to be dropped. These are often 

called 'transitive verbs', like 'reveal', 'find', 'hit', etc., which typically require a direct 

object. If the direct object is dropped, the sentence usually becomes ungrammatical. 

Let's consider the examples from the BLIMP dataset: 

 

(8)  a. Travis is touring. 

b. *Travis is revealing. 

 

In (8a), 'touring' is an unergative verb that doesn't require a direct object, so the 

sentence is grammatical even when the object is dropped. In contrast, in (8b), 

'revealing' is a transitive verb which requires a direct object, so when the object is 

dropped, the sentence becomes ungrammatical. 

 

5.7 Ellipsis N-bar 

 

The syntactic phenomena of "N-bar Ellipsis" pertains to the construct wherein a 

fragment of an N-bar (a syntactic constituent typically encompassing an adjective 

and a noun) is subject to omission given its inferability from context. 

The underlying principle of N-bar Ellipsis stipulates that constituents such as 

adjectives and nouns established in an antecedent portion of a sentence can be 

strategically omitted in a subsequent part, provided their contextual inference is 

preserved. Importantly, this presupposes a correspondence in syntactic structure and 

semantic content between the elided and the inferred elements. Consider the 

following instances derived from the BLiMP dataset: 
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(9)  a. Dawn's ex-husband wasn't going to one rough grocery store and Becca 

wasn't going to many. 

b. *Dawn's ex-husband wasn't going to one grocery store and Becca wasn't 

going to many rough. 

 

In (9a), the phrase "rough grocery store" qualifies as an N-bar, with the term 

"rough grocery store" being validly elided in the second clause, given its implicit 

presence in the initial part of the sentence, thus referring the sentence syntactically 

well-formed. 

Conversely, in (9b), the ellipsis of "grocery store" is syntactically flawed. This 

discrepancy stems from a structural mismatch between the elided component "many 

rough" and its antecedent in the sentence's initial clause, namely "grocery store". As 

such, the sentence contravenes English syntactic norms, and is deemed ill-formed. 

 

5.8 Inchoative 

 

Inchoative verbs represent a distinct class of verbs that manifest a transition in state. 

These verbs, rather than indicating an action instigated by the subject, instead signify 

a change being undergone by the subject. Consider the ensuing examples curated 

from the BLiMP corpus: 

 

 (10)  a. Patricia had changed. 

b. *Patricia had forgotten. 
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In instance (10a), the sentence "Patricia had changed" conforms to the grammatical 

rules, as "changed" is an inchoative verb that encapsulates a state transformation 

within the subject "Patricia".  

On the other hand, sentence (10b) "*Patricia had forgotten.", employs the verb 

"forgotten" which does not conform to the inchoative verb schema as it fails to 

signify a change in state. Consequently, this sentence is deemed ill-formed within 

the context of inchoative verbs. 

 

5.9 Intransitive 

 

Intransitive predicates are those that do not necessitate a direct object to complete 

their semantic proposition, contrasting with transitive predicates that demand one or 

more object complements. Exemplary instances from the BLiMP corpus illustrate 

this phenomenon: 

 

(11)  a. Anna's grandmothers aren't benefiting. 

b. *Anna's grandmothers aren't arguing about. 

 

In instance (11a), the verb "benefiting" appropriately operates in an intransitive 

capacity, not necessitating an object for semantic completeness, yielding a well-

structured statement. 

Contrarily, (11b) constructs an ill-formed utterance in English syntax as the 

predicate "arguing about" inherently demands an object to convey a comprehensive 

semantic intent, thereby violating the premise of intransitive predicates. 
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5.10 Transitive 

 

The phenomenon of transitivity pertains to the ability of a verb to necessitate an 

object for the completion of its meaning. In the English language, specific verbs like 

"buy" or "consume" are identified as transitive due to their syntactic and semantic 

demand for an object - the recipient of the action. Inspect the ensuing instances 

derived from the BLiMP dataset: 

 

(12)  a. This cousin of Theodore buys some mushroom. 

b. *This cousin of Theodore wept some mushroom. 

 

In (12a), the verb "buys" is employed transitively, encompassing "some 

mushroom" as its object, which results in a well-formed grammatical construction. 

Conversely, in (12b), the verb "wept" is generally recognized as intransitive, 

hence it does not customarily admit an object. Consequently, the presence of "some 

mushroom" following "wept" engenders a syntactically ill-formed sentence, 

breaching the grammatical conventions of English. 

 

5.11 Left Branch Island 

5.11.1 Echo Question 

 

"Left Branch Island Echo Question" pertains to a constraint in which wh-words, 

when serving as the leftmost branch of a constituent, cannot be extracted to form an 

echo question. Echo questions, in essence, are a type of interrogative wherein the 
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speaker replicates part of a previous statement to request additional clarification. 

Consider the examples provided from the BLiMP dataset: 

 

 (13) a. Edward has returned to which customers? 

b. *Which has Edward returned to customers? 

 

In (13a), the wh-word "which" serves as the leftmost branch of the complement 

of the prepositional phrase "to which customers" and its placement adheres to the 

grammatical rules, resulting in a well-formed echo question. 

However, in (13b), an attempt is made to extract "which" from the prepositional 

phrase and move it to the beginning of the sentence. This violates the Left Branch 

Island constraint, resulting in a sentence that is not syntactically well-formed in 

English. The structure of the sentence indicates an echo question, but it does not 

adhere to the acceptable syntactic pattern, leading to an ill-formed construct. 

 

5.11.2 Simple Question 

 

"Left Branch Island Simple Question" phenomenon refers to a syntactic constraint 

that prohibits the extraction of a determiner (like 'whose', 'which', 'what', etc.) from 

a noun phrase (NP) in wh-questions. This constraint refers to such extraction 

ungrammatical, marking the structure as a syntactic island -- a part of a sentence 

from which certain constituents cannot be moved or extracted. Take the provided 

examples from the BLiMP dataset: 
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 (14) a. Whose museums had Dana alarmed? 

b. *Whose had Dana alarmed museums? 

 

In (14a), the wh-word "whose" correctly precedes and modifies the noun 

"museums". This sentence represents a grammatically well-formed English question, 

adhering to the accepted rules of English syntax. 

On the other hand, in (14b), an attempt is made to extract the determiner 

"whose" from the noun phrase and place it at the sentence's beginning. This violates 

the Left Branch Island constraint and thus refers to the sentence ungrammatical. The 

ill-formed structure indicates that "whose" does not correctly modify the noun 

"museums", resulting in a syntactically flawed English question. 

 

5.12 Passive 

 

"Passive" phenomenon pertains to a syntactic structure where the subject of the 

sentence is the entity that the action is performed upon rather than the entity 

performing the action. This contrasts with active sentences, where the subject 

performs the action denoted by the verb. Consider the provided examples from the 

BLiMP dataset: 

 

 

(15) a. Lucille's sisters are confused by Amy. 

b. *Lucille's sisters are communicated by Amy. 
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In sentence (15a), "Lucille's sisters" are the subject and the entity upon which 

the action (confusing) is performed. "Amy," in this context, is the agent performing 

the action. The verb "confused" is correctly used in the passive voice, leading to a 

grammatically well-formed English sentence. 

Distinctively, in sentence (15b), "communicated" is not typically used in the 

passive voice in English, particularly without an indirect object or a prepositional 

phrase to complete its meaning. Thus, the sentence is considered ill-formed 

according to standard English syntax. In other words, "Amy" cannot passively 

"communicate" Lucille's sisters, making this sentence a violation of the rules 

governing passive structures in English. 

 

5.13 Sentential Subject Island 

 

"Sentential Subject Island" phenomenon in linguistics pertains to the restrictions on 

the movement of constituents out of sentential subjects, a scenario often referred to 

as an 'island' for movement. That is, sentential subjects are syntactic constituents 

from which movement is generally prohibited, forming an 'island'. Consider the 

following examples from the BLiMP dataset: 

 

 (16)  a. Who has the waitress's observing Christine bothered? 

b. *Who has the waitress's observing bothered Christine? 

 

In sentence (16a), the question word "who" is intended to be the object of the 

action "bothering". This sentence is grammatically correct and well-formed because 
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"who" is not extracted from the sentential subject "the waitress's observing 

Christine". 

However, in sentence (16b), "who" is intended to be the object of the action 

"observing by the waitress". This sentence is ungrammatical because extraction from 

a sentential subject is generally disallowed in English. Thus, attempting to extract 

"who" from "the waitress's observing" results in a violation of the Sentential Subject 

Island Constraint, and the sentence is considered ill-formed according to standard 

English syntax. 

 

5.14 Wh Island 

 

Wh-Island phenomenon in linguistics refers to a situation where a wh-word (like 

"who", "what", "when", "where", "why", etc.) cannot be extracted from a clause that 

is already introduced by another wh-word. This is considered an 'island' constraint 

and movement out of this 'island' is generally restricted. Consider the following 

examples drawn from the BLiMP dataset: 

 

(17) a. Who have those men revealed they helped? 

b. *Who have those men revealed who helped? 

 

In sentence (17a), the wh-word "who" is appropriately extracted from a clause 

that is not introduced by another wh-word. Therefore, this sentence adheres to the 

grammatical rules and is well-formed. 

However, in sentence (17b), an attempt is made to extract "who" from a clause 
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that has been introduced by another wh-word ("who helped"). The clause "who 

helped who" creates an island, and the lower "who'' cannot be extracted. This 

extraction violates the WH-Island Constraint, and thus, the sentence is considered 

ill-formed or ungrammatical according to the rules of English syntax. In accordance 

with the restrictions stipulated by the WH-Island phenomenon, a wh-word cannot be 

extracted from a clause that is already introduced by another wh-word. 

 

5.15 Wh Questions 

5.15.1 Object Gap 

 

Wh-Question Object Gap phenomenon in linguistics relates to the positional 

constraint of WH-words, typically interrogative words, in object positions. A WH-

word as an object in a sentence can create a 'gap', its original place before syntactic 

derivations. Consider the following examples from the BLiMP dataset: 

 

(18) a. Joel discovered the vase that Patricia might take. 

b. *Joel discovered what Patricia might take the vase. 

 

In the well-formed sentence (18a), "the vase" is the object that Patricia might 

take. However, in sentence (18b), an attempt is made to transform the sentence into 

a WH-question by moving "the vase" to the front, replacing it with "what". The 

resulting sentence is not grammatically correct in English due to the absence of the 

'gap' created in the object position of "take". This sentence violates the rule that, in 

WH-question formation, the Wh-word should correspond to the gap it leaves behind, 
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which is not the case here. Thus, sentence (18b) provides an instance of an ill-formed 

WH-Question Object Gap phenomenon. 

 

5.15.2 Subject Gap 

 

The Wh-Question Subject Gap phenomenon in linguistics concerns the positional 

constraint of WH-words, typically interrogative words, in subject positions. A Wh-

word used as a subject can create a 'gap' in the position where it would ordinarily be 

located before it is moved to the front of the sentence or clause during the question 

formation process. Consider the following examples from the BLiMP dataset: 

 

(19) a. Brian had questioned an association that can astound Diana.  

b.*Brian had questioned who an association can astound Diana. 

 

In the grammatically correct sentence (19a), "an association" is the subject that 

can astound Diana. However, in sentence (19b), an attempt is made to convert the 

sentence into a WH-question by moving "an association" to the front and replacing 

it with "who". The resulting sentence is not grammatically acceptable in English due 

to the absence of the 'gap' created in the subject position. This sentence violates the 

rule that in WH-question formation, the WH-word must correspond to the gap it 

leaves behind, which is not the case in this context. Therefore, sentence (19b) serves 

as an instance of the ill-formed WH-Question Subject Gap phenomenon. 
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Chapter 6. Experiment 

 

This paper's objective is to analyze layer-wise outcomes using the bert-base-cased 

language model. Our focus is on the syntactic linguistic aspects of the BLiMP 

benchmark. To achieve this, we utilize the Affinity Prober to obtain Affinity 

Relationships. Initially, we investigate the Affinity Ratio for each layer, specifically 

centered on the part-of-speech within each linguistic phenomenon. We analyze this 

at the lexical category level, which represents a higher category of the part-of-speech. 

Subsequently, we extract the Affinity Relationship from both correct and incorrect 

sentences across all layers and compare the disparities. Lastly, we extract the Affinity 

Relationship centered around the trigger token wtrigger, which is responsible for the 

incorrect sentences. Our goal is to assess whether there are distinctions in 

distinguishing between correct and incorrect sentences for each linguistic 

phenomenon. Building upon Jang's (2022) research findings, we anticipate 

significant variations in AR(A, wtrigger) between IF and WF sentences in terms of 

syntactic linguistic phenomena. 

 

6.1 Finetuning Strategy 

 

In our research, we propose a novel methodology called Classification of Sentence 

Sequencing (CSS) as an alternative to traditional binary classification approaches for 

grammaticality judgment. CSS enables the bert-base-cased model to distinguish 

between grammatically well-formed and ill-formed sentences by providing it with 

data from minimal pairs of sentences. Following the example of benchmarks such as 
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Question Answering, Natural Language Inference, and Word-in-Context, where 

pairs of sentences (S1 and S2) are inputted into the model, CSS introduces a 

combination of grammatically correct and incorrect sentences to improve the model's 

understanding. 

The task of CSS involves determining the correct sequence of a well-formed 

(WF) and an ill-formed (IF) sentence within a minimal pair. For example, if the WF 

sentence is labeled as S1 and the IF sentence as S2, it corresponds to a boolean value 

of 'True'. Conversely, if the IF sentence is labeled as S1 and the WF sentence as S2, it 

returns a boolean value of 'False'. The model is trained using cross-entropy loss 

between the predicted labels (Lpred) and the actual labels (L), similar to a Logistic 

Regression model. 

The CSS approach provides a significant advantage by enabling the model to 

effectively distinguish between two sentences with grammaticality determined by 

minimal pair tokens. If the model successfully accomplishes this task, it suggests 

that the language model has independently incorporated intrinsic linguistic 

knowledge. During training, we combined all datasets labeled in the syntactic 

domain within the BLiMP Benchmark. After randomly assembling the dataset, it was 

divided into training and testing sets in an 80:20 ratio, resulting in a model fine-tuned 

with syntactic knowledge. 

For training, we utilized the Tanh activation function and the cross-entropy loss 

function, along with the AdamW optimizer and a batch size of 16. The model 

underwent a total of 3 epochs of training. The training dataset consisted of 10,402 

instances for the positive class (well-formed) and 10,398 instances for the negative 

class (ill-formed), while the test dataset included 2,095 positive instances and 2,065 

negative instances which are extracted from the syntactic phenomena in BLiMP 
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datasets. Impressively, our model achieved remarkable results, with a training 

performance of 99.9% accuracy and a loss value of 0.127. Equally impressive, the 

test performance mirrored these results with 99.9% accuracy and a loss value of 

0.129. These findings support the effectiveness of our approach and its potential for 

high-impact applications. 

The motivation behind adopting this specific training approach is to indirectly 

teach the model to discern the sequencing between well-formed and ill-formed 

sentences. However, it is important to note that the performance achieved through 

CSS training alone does not guarantee a complete distinction between the two 

categories. 

 

6.2 Result: Clustering of Similar Linguistic Phenomena 

 

In this section, we demonstrate how the Affinity Prober allows us to interpret the 

patterns obtained from the Affinity Relationship AR(c1, c2) of each layer in BERT, 

where c belongs to the lexical category C defined in Section 3.1, based on different 

linguistic phenomena. We show that not all linguistic phenomena exhibit distinct 

patterns across layers in AR(c1, c2). Instead, there are cases where similar patterns 

emerge, and these patterns can be grouped together. Through our observations, we 

are able to cluster these patterns into a total of four groups. This finding shows the 

interplay between linguistic phenomena and layer-wise patterns in the AR, ultimately 

enriching our understanding of language processing in BERT. 
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6.2.1 Group I: Passive and Ellipsis N-bar 

 

The AR(Con., Con) results in Figure 6.1(a) demonstrate a consistent pattern across 

three datasets. All three exhibit a similar fluctuation range, marked by varying 

affinity ratio that fluctuate throughout the layers. An interesting commonality 

observed in all three datasets is an initial drop from the first to the second layer, 

indicating a uniform trend at the onset of the layers. If we interpret this drop in 

connection with the tendency of layers defined in section 3.4.2, the sharp drop of 

AR(Con., Con.) between Layer 1 and Layer 2 can be attributed to Layer 1's tendency 

to give high attention to content words, while Layer 2 shows a tendency to give high 

attention to function words. In other words, as the attention on function words 

increases in Layer 2, the relationship between content words relatively weakens. 

Similarly, we can observe that the fluctuation in the middle layers and the 

maintenance of relationships between content words in the final layer align partially 

with the results presented in section 3.4.2. In the middle layers, which tend to focus 

on function words, the relationships between content words weaken again, only to 

 

Figure 6.1: The Affinity Relationship (AR) in three language phenomena associated with 
Group I: Passive, Animate Subject Passive, and Ellipsis N-bar. The solid lines in the figure 

represent the AR(Con., Con.), while the dotted lines depict the AR(Fun., Fun.). 
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be strengthened again around the final layer, where high attention is given to content 

words. An interesting point is that the relationship with function words also 

experiences a sudden drop in the final layer. This strengthening of function words in 

the final layer looks like a common phenomenon observed across all syntactic 

phenomena. This can be interpreted as a tendency that arises from the BERT model 

being fine-tuned in a CSS manner, where the task-specific considerations for 

distinguishing syntactic differences between two sentences are given to function 

words near the final layer. 

When analyzing the linguistic phenomena of passive, animate subject passive, 

and ellipsis N-bar, there are some findings (Figure 6.2). 

Passive The overall values of AR(Con., Fun.) are slightly lower for ill-formed 

sentences compared to well-formed sentences, indicating a slightly weaker feature 

in the context of ill-formed sentences. Although specific layers show small 

differences, such as lower values in the first and second layers for ill-formed 

sentences, the variations are not significant. However, there is a notable difference 

in layer 12, where the value of AR(Fun., Con.) is higher for ill-formed sentences, 

suggesting a slightly stronger feature in that layer for ill-formed sentences. 

Animate Subject Passive Both well-formed and ill-formed sentences follow a 

similar data shape in AR(Con., Fun.) patterns. However, differences arise, such as a 

significantly higher value in the 9th layer of ill-formed sentences. Well-formed 

sentences display stability and a gradual decrease, while ill-formed sentences exhibit 

fluctuations and peaks. The 12th layer value is also higher for ill-formed sentences. 

In the AR(Fun., Con.) patterns, both types of sentences have a similar trend but 

diverge towards the end, with well-formed sentences declining more steeply. Ill-

formed sentences fluctuate within a narrower range compared to well-formed 
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sentences. 

Ellipsis N-bar Both well-formed and ill-formed sentences show relatively high 

values in certain layers, indicating the presence of AR(Con., Fun.) in both cases. 

However, the values are slightly higher for well-formed sentences, suggesting a 

potentially stronger feature. Differences exist in specific layers, with some showing 

similar values while others exhibit notable differences. Similarly, in AR(Fun., Con.), 

both types of sentences exhibit moderate values, but the overall values and specific 

layers differ. Ill-formed sentences have slightly higher values, indicating a 

potentially stronger feature in that context. 
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Figure 6.2: Lexical Category-based Affinity Relationship in Language Phenomena 
corresponding to Group I 
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6.2.2 Group II: Island Effects 

 

The Affinity Prober successfully extracts distinct patterns specific to the Island 

Effect. Group II comprises five language phenomena: Complex NP Island, Wh 

Island, Left Branch Island Echo Question, Left Branch Island Simple Question, and 

Sentential Subject Island. Notably, AR(Con., Con.) exhibits different patterns 

between well-formed sentences and ill-formed sentences. In well-formed sentences, 

the Affinity Ratio in AR(Con., Con.) remains stable compared to ill-formed sentences, 

maintaining consistently high relationships. Similar to Group I, the relationship 

patterns between lexical categories within well-formed sentences are quite similar. 

We observe a sharp decline from Layer 1 to Layer 2 in AR(Con., Con.), indicating a 

stronger focus on function words in the middle layers as the relationships between 

content words weaken. Analyzing AR(Fun., Fun.), we find that the relationship 

between function words strengthens towards the final layer, indicating an effort to 

capture syntactic information. The patterns in AR(Con., Con.) for ill-formed 

sentences in Group II are particularly interesting. Layer 10 and 11 show a significant 

 

Figure 6.3: The Affinity Relationship (AR) in five language phenomena associated with 
Group II: Complex NP Island, Wh Island, Left Branch Island Echo Question, Left Branch 

Island Simple Question, Sentential Subject Island. The solid lines in the figure represent the 
AR(Con., Con.), while the dotted lines depict the AR(Fun., Fun.). 
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decline, with a strong emphasis on function words. Conversely, attention towards 

function words rapidly increases in the same layers, resulting in a cross pattern 

between the two graphs. Interpreting this in line with section 3.4.2, we understand 

that the language model struggles with structures differing from those observed and 

indirectly learned during forward propagation of ill-formed sentences. The sudden 

decline in layers 10 and 11 reflects this behavior, which can be attributed to the 

violation of NP island constraints and the complete disruption of sentence structure 

often seen in the Island Effect language phenomena. 

When analyzing the linguistic phenomena of Complex NP Island, Wh Island, 

Left Branch Island Echo Question, Left Branch Island Simple Question, and 

Sentential Subject Island, there are some findings (Figure 6.4). 

Complex NP Island Both well-formed and ill-formed sentences show 

fluctuations in the AR(Con., Fun.) patterns, starting low and decreasing towards the 

end. ill-formed sentences generally exhibit higher values and a broader range of 

fluctuations, suggesting a potentially stronger interaction. Specific layers, like layer 

10, demonstrate distinct interactions in ill-formed sentences. The AR(Fun., Con.) 

patterns also exhibit fluctuations, with ill-formed sentences showing slightly higher 

values overall and specific layers of note. 

Wh Island The strength and direction of AR(Con., Fun.) can vary between the 

relationships. ill-formed sentences tend to have higher overall values, indicating a 

stronger interaction. Significant differences exist in specific layers, such as layer 10, 

where ill-formed sentences display much higher values. In AR(Fun., Con.), ill-

formed sentences generally have higher values, suggesting a stronger association. 

Left Branch Island Echo Question Both well-formed and ill-formed sentences 

exhibit higher values in AR(Con., Fun.) for specific layers, indicating a relatively 
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stronger relationship. ill-formed sentences generally have higher overall values, 

especially in layer 8. In AR(Fun., Con.), ill-formed sentences also tend to have higher 

values overall, with notable differences in specific layers. 

Left Branch Island Simple Question There is a presence of positive values 

across all layers in AR(Con., Fun.) for both well-formed and ill-formed sentences. 

ill-formed sentences have higher overall values, particularly in layers 1 to 9, while 

well-formed sentences show stronger association in layers 10 to 12. In AR(Fun., 

Con.), ill-formed sentences again have higher values overall, with variations in 

specific layers. 

Sentential Subject Island There are differences in overall values and specific 

layers between the patterns. ill-formed sentences tend to have higher values in 

AR(Con., Fun.), particularly in layer 10. In AR(Fun., Con.), there is no significant 

difference in overall values, but layer 10 shows higher values in well-formed 

sentences. 
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6.2.3 Group III: Syntactic Constraints on Movement 

 

Group III is composed of linguistic phenomena with constraints on movement. 

Among them, Adjunct Island is also included. The first difference from Group II is 

that the ratio of AR(Con., Con) relationships is lower in Group III compared to Group 

II. Secondly, there is activation of AR(Fun., Fun.) at the 8th layer. According to 

section 3.4.2, the 8th layer showed a tendency to give high attention to function words. 

Except for previous Ellipsis N-bar, in well-formed sentences, there is no significant 

increase in the reinforcement of function words at the 8th layer. In contrast, Group III 

exhibits patterns that most closely match the tendencies observed in the layer 

analysis of section 3.4.2. The AR(Con., Con.) relationship undergoes a sharp drop 

from the 1st layer to the 2nd layer, while the AR(Fun., Fun.) relationship increases 

simultaneously. As mentioned earlier, there is a drastic rise in function words at the 

8th layer, indicating a decrease in attention to content words. Near the last layer, 

which shows a high tendency towards content words, the AR(Con., Con.) 

relationship remains stable. Similar to other groups, there is a significant rise in 

 

Figure 6.5: The Affinity Relationship (AR) in five language phenomena associated with 
Group III: Adjunct Island, Coordinate Structure Object Extraction, Wh Questions Subject 
Gap, Wh Questions Object Gap, Coordinate Structure Left Branch. The solid lines in the 

figure represent the AR(Con., Con.), while the dotted lines depict the AR(Fun., Fun.). 
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AR(Fun., Fun.) near the last layer, and the gap difference between AR(Con., Con.) is 

not significant. In contrast, in ill-formed sentences, there is an increase in function 

words at the 8th layer, but the relationship between AR(Con., Con.) is highly irregular, 

and there is significant fluctuation. This phenomenon, similar to Group II, reflects 

the difficulty of BERT in correctly interpreting syntactic dependency when 

processing sentences that violate constraints in movement, making it challenging to 

focus on which lexical category. This is clearly demonstrated in AR(Con., Con.). Our 

result analysis is stronger and more reliable based on the findings of section 3.4.2. 

When analyzing the linguistic phenomena of Adjunct Island, Coordinate 

Structure Object Extraction, Wh Questions Subject Gap, Wh Questions Object Gap, 

and Coordinate Structure Left Branch, several findings emerge (Figure 6.6). 

Adjunct Island The AR(Con., Fun.) patterns show fluctuations and non-linear 

trends. ill-formed sentences have a larger range of AR values, with higher maximum 

values, compared to well-formed sentences. Additionally, there is a spike at layer 9 

in ill-formed sentences. The final AR value at layer 12 is notably higher for ill-

formed sentences compared to well-formed sentences. In AR(Fun., Con.), both 

patterns exhibit fluctuating trends, but there are differences in the lowest values and 

the final AR(Fun., Con.) at layer 12, with ill-formed sentences having lower values 

at specific layers and at the end of the series. There is also a significant decline at 

layer 9 in ill-formed sentences. 

Coordinate Structure Object Extraction Both well-formed and ill-formed 

sentences show decreasing values in AR(Con., Fun.) and AR(Fun., Con.) patterns 

from layer 1 to layer 12. ill-formed sentences tend to have slightly higher values, 

with distinct AR patterns at certain layers. The range of fluctuations is similar, but 

ill-formed sentences exhibit higher peaks and more pronounced decreases compared 
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to well-formed sentences. 

Wh Questions Subject Gap The AR(Con., Fun.) patterns show higher overall 

values in ill-formed sentences compared to well-formed sentences. Specific layers, 

like layer 10, exhibit significantly higher values in ill-formed sentences, indicating a 

stronger AR(Con., Fun.) in ill-formed sentences at those points. In AR(Fun., Con.), 

while the overall values are relatively similar, there are differences in specific layers, 

such as layer 2, where well-formed sentences have significantly higher values. This 

suggests a stronger AR(Fun., Con.) in well-formed sentences, particularly in layer 2. 

Wh Questions Object Gap Ill-formed sentences have higher overall values in 

AR(Con., Fun.) compared to well-formed sentences, indicating a stronger 

relationship in ill-formed sentences. Significant differences are observed in specific 

layers, such as layer 10, where ill-formed sentences have considerably higher values. 

In AR(Fun., Con.), ill-formed sentences also tend to have slightly higher overall 

values, with slight variations in specific layers, such as layer 8. This suggests a 

weaker AR(Fun., Con.) in ill-formed sentences for that specific layer. 

Coordinate Structure Left Branch Both well-formed and ill-formed sentences 

exhibit fluctuating values in the AR(Con., Fun.) patterns. ill-formed sentences 

generally have higher values, particularly in certain layers like layer 6 and 8. The 

overall trend in AR(Con., Fun.) for ill-formed sentences shows higher peaks and 

more pronounced variations compared to well-formed sentences. In AR(Fun., Con.), 

ill-formed sentences also tend to have higher values, with distinct patterns in specific 

layers, indicating a potentially stronger relationship between AR(Con., Fun.) in ill-

formed sentences. 
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6.2.4 Group IV: Verbal Predicate Types and Argument 

Structure 

 

Group IV typically focuses on different types of verbal predicates and their argument 

structures. Their patterns exhibit a very consistent form, unlike other groups. The 

reason for this can be observed when examining example sentences of each linguistic 

phenomenon. In many cases, minimal pair sentences do not disrupt the sentence 

structure on the surface level. It is often in the lexical dimension where non-clauses 

are formed, with issues such as problems with the number of arguments taken by the 

predicate or semantically incorrect thematic roles. Therefore, BERT, in the process 

of learning information about minimal pairs through the CSS approach, compared 

sentences that do not have significant structural differences. Hence, the overall 

patterns of well-formed sentences and ill-formed sentences appear to be similar. 

However, there are also common patterns that emerge in Group IV. These include 

the initial downward trend of AR(Con., Con), subtle reinforcement of the AR(Fun., 

Fun.) relationship at the 8th layer, and a rapid rise in the relationship between function 

 

Figure 6.7: The Affinity Relationship (AR) in six language phenomena associated with 
Group III: Animate Subject Trans, Inchoative, Causative, Drop Argument, Intransitive, 

Transitive. The solid lines in the figure represent the AR(Con., Con.), while the dotted lines 
depict the AR(Fun., Fun.). 
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words near the last layer. Similarly, there is a slight weakening of the relationship 

between content words at intermediate layers. A characteristic of Group IV is that 

there is not a significant difference in patterns between well-formed sentences and 

ill-formed sentences, unlike other groups. As mentioned above, Group IV discusses 

the grammaticality in the relationship between predicates and arguments, and the 

information about this is likely to be better represented in Word Embedding rather 

than Attention. 

When examining the linguistic phenomena of Animate Subject Trans, 

Inchoative, and Causative, interesting patterns emerge in the AR(Con., Fun.) and 

AR(Fun., Con.) relationships between well-formed sentence and ill-formed sentence 

(Figure 6.8). 

Animate Subject Trans The AR(Con., Fun.) patterns show similar variability 

but diverge in specific layers. ill-formed sentences generally have higher values from 

the 4th layer, indicating a stronger AR(Con., Fun.) relationship. Significant 

differences are observed at the 12th layer, where well-formed sentences drop to 0 

while ill-formed sentences remain higher. Fluctuations at the 6th, 8th, and 10th layers 

are seen in ill-formed sentences, not mirrored in well-formed sentences. In terms of 

AR(Fun., Con.), both patterns start with high values and gradually decrease, but ill-

formed sentences consistently have higher values across all layers, suggesting a 

stronger AR(Fun., Con.) relationship. The rate of decrease also varies, with ill-

formed sentences showing a more notable decline, especially after the 10th layer. 

Notably, at the 12th layer, well-formed sentences have a significantly lower value 

compared to ill-formed sentences. The drop at the 10th layer is also more significant 

in ill-formed sentences. 

Inchoative Both well-formed and ill-formed sentences exhibit a weak AR(Con., 
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Fun.) with low values. well-formed sentences tend to have slightly higher values, 

suggesting a potentially stronger AR(Con., Fun.) in well-formed sentences. In terms 

of AR(Fun., Con.), both patterns show a similar overall trend, but specific values 

may vary slightly, indicating potential differences based on sentence grammaticality. 

Causative Both well-formed and ill-formed sentences display similar dynamics 

in the AR(Con., Fun.) patterns, but differences arise in overall values, specific points, 

ending values, and peak values. ill-formed sentences generally have slightly higher 

values, indicating a stronger AR(Con., Fun.) interaction. Notably, ill-formed 

sentences end with a non-zero value at layer 12, suggesting continued AR(Con., Fun.) 

interaction. The peak value for ill-formed sentences occurs later compared to well-

formed sentences, indicating intensification of the AR(Con., Fun.) interaction in ill-

formed sentences. In terms of AR(Fun., Con.), both patterns show a similar trend but 

differ in overall value, drop-off point, intermediate fluctuations, and initial values. 

well-formed sentences generally have slightly higher values, suggesting a stronger 

AR(Fun., Con.) interaction. The drop towards the end is more dramatic for well-

formed sentences. 

Drop Argument Both grammatical and ill-formed sentences exhibit a weak 

AR(Con., Fun.) with low and consistent values across most layers. However, 

differences arise in the overall values and specific layers. ill-formed sentences tend 

to have slightly higher values, suggesting a potentially stronger AR(Con., Fun.) in 

ill-formed sentences. Specific layers, such as 2, 3, and 4, show lower values in well-

formed sentences compared to ill-formed sentences, indicating a weaker AR(Con., 

Fun.) in well-formed sentences for these layers. In terms of AR(Fun., Con.), both 

patterns show a moderate AR(Fun., Con.) with relatively close values across most 

layers. well-formed sentences generally have slightly higher values, suggesting a 



 

 69 

potentially stronger AR(Fun., Con.) in well-formed sentences. However, the 

differences are minor, indicating a similar overall trend in the AR(Fun., Con.) 

relationship between the two sentence types. 

Intransitive Both grammatical and ill-formed sentences exhibit a positive 

AR(Con., Fun.) with relatively consistent positive values across most layers. 

However, there are differences in magnitude between the patterns. ill-formed 

sentences tend to have higher values, indicating a stronger AR(Con., Fun.) in ill-

formed sentences. Specific layers show variations, with some layers having higher 

values in the ungrammatical pattern and others in the grammatical pattern. Notably, 

the last layer has a lower value in the grammatical pattern compared to the 

ungrammatical pattern, suggesting a weaker AR(Con., Fun.) in well-formed 

sentences for this specific layer. In terms of AR(Fun., Con.), both patterns exhibit a 

positive AR(Fun., Con.) with relatively close values across most layers. well-formed 

sentences generally have slightly higher values, indicating a potentially stronger 

AR(Fun., Con.) in well-formed sentences. However, there are slight variations in 

specific layers, such as at layer 12, where the value in the AR(Fun., Con.) on well-

formed sentences is lower than in the AR(Fun., Con.) on ill-formed sentences, 

implying a weaker AR(Fun., Con.) in well-formed sentences for this specific layer. 

Transitive Both well-formed and ill-formed sentences show a moderate 

AR(Con., Fun.) with relatively higher values in specific layers compared to other 

layers. The overall values are similar in magnitude, but there are differences in 

specific layers. Certain layers have higher values in the grammatical pattern, 

indicating a relatively stronger AR(Con., Fun.) in well-formed sentences for those 

layers, while other layers have higher values in the ungrammatical pattern, 

suggesting a relatively stronger AR(Con., Fun.) in ill-formed sentences for those 
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layers. Notably, the last layer has a lower value in the grammatical pattern compared 

to the ungrammatical pattern, indicating a weaker AR(Con., Fun.) in well-formed 

sentences for this specific layer. In terms of AR(Fun., Con.), both patterns exhibit a 

general trend of decreasing values as the layer increases. The overall values are 

relatively similar, but there are differences in specific layers. Some layers have 

slightly higher values in the grammatical pattern, indicating a relatively stronger 

AR(Fun., Con.) in well-formed sentences for those layers, while other layers have 

slightly higher values in the ungrammatical pattern, suggesting a relatively stronger 

AR(Fun., Con.). 
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6.3 Summary 

In this chapter, we apply the Affinity Prober to interpret patterns obtained from the 

Affinity Relationship, AR(c1, c2), in each layer of the BERT model, considering 

different linguistic phenomena. It is found that not all linguistic phenomena have 

distinct patterns across layers; some phenomena show similar patterns that can be 

clustered together. Four distinct groups were identified, demonstrating the 

interaction between linguistic phenomena and layer-wise patterns in the AR, which 

helps deepen our understanding of language processing in BERT. 

We observed common patterns in the layers of the BERT model across four 

groups. These patterns indicate a shift in attention from content words to function 

words during BERT's layer-wise processing. This finding aligns perfectly with the 

Layer tendency identified by the advanced ADTRAS algorithms. As a result, we can 

generalize that the First layer is content word-friendly, while the second layer is 

function word-friendly. Furthermore, we noticed a consistent trend in all groups 

where the attention ratio once again favors content words in the final layer. This 

observation corresponds well with the valuable insights provided by the ADTRAS 

algorithm, which identifies layers 10, 11, and 12 as content word-friendly layers. The 

middle layers of Groups 1, 2, and 3 particularly emphasize function words, 

suggesting a heightened focus on the functional aspects of sentences, such as 

grammar and syntactic relationships. This correlation supports the significance of 

layer 8 as a function word-friendly layer, as indicated by the output of the ADTRAS 

algorithm. Importantly, the final layers, known for their content word-friendly 

attributes, effectively address the interplay among function words. This intriguing 

phenomenon can be attributed to the indirect assimilation of the relevance of 
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function words through fine-tuning on the CSS approach. The final layers are 

specialized for task-specific objectives, which contributes to their ability to rectify 

the role of function words. 

We have successfully utilized the insightful patterns extracted from the Affinity 

Prober to cluster and explain various linguistic phenomena. These clusters exhibit 

fascinating interconnections, including the Island effect, movement constraint, Verb 

and Argument. Furthermore, we have established a strong link between the output of 

the ADTRAS algorithm and the layer tendencies discovered through the Affinity 

Prober, demonstrating the coherence and robustness of our analysis. 

 

Chapter 7. Conclusion 

 

In this study, we aimed to enhance the methodology proposed by Jang et al (2022) 

through additional experiments and analysis. We introduced the ADTRAS algorithm, 

which analyzes patterns at each layer of the BERT model and improves the 

interpretability of token relationships within attention scores. Through empirical 

experiments, we provided evidence that BERT autonomously learns linguistic 

knowledge related to lexical categories. We also investigated the general tendencies 

of BERT's layers when processing content words and function words, highlighting 

its processing characteristics associated with different word types. 

Furthermore, we examined patterns in syntactic linguistic phenomena 

processed by BERT, focusing on specific phenomena within the BLiMP dataset. Our 

analysis revealed the potential of the Affinity Prober in understanding syntactic 

structures processed by BERT and facilitated clustering of similar linguistic 

phenomena. While this study offers valuable insights, it is important to acknowledge 
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its limitations.  

l First, our analysis focuses primarily on syntactic linguistic phenomena, 

neglecting other aspects of phenomena such as semantic, morphology, or 

discourses. Future research should aim to incorporate a broader range of 

linguistic phenomena to provide a more comprehensive understanding of 

BERT's capabilities. 

l Second, our study relies on the use of the BERT model and the specific datasets 

employed, namely GLUE, SuperGLUE, and BLiMP. The findings may not 

necessarily generalize to other language models or datasets. Therefore, caution 

should be exercised when extrapolating the results beyond the scope of this 

study. 

l Third, while the ADTRAS algorithm improves interpretability, it still relies on 

part-of-speech, which have inherent limitations in capturing complex linguistic 

relationships. Future research could explore alternative approaches or combine 

Affinity Prober with other linguistic features to gain deeper insights into BERT's 

processing mechanisms. 

l Lastly, the Affinity Prober clusters linguistic phenomena based on patterns 

observed in BERT's layers. While this approach provides valuable information, 

it is important to note that clustering alone does not imply causal relationships 

or deeper understanding of linguistic phenomena. Further investigations and 

complementary analysis are needed to validate and interpret the observed 

patterns more thoroughly. 

 

By addressing these limitations, researchers can further refine our understanding of 

BERT and its applications in natural language processing. 
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국문 초록 

  

Transformer(Vaswani et al., 2017)의 등장 이후 Self Attention 

기제를 사용한 다양한 사전학습 언어모델(Pre-trained Language 

Model)이 제안되었다. 이러한 사전학습 언어 모델은 일반적으로 

미세조정(fine-tuning)을 통해 다양한 자연어 처리 문제에서 높은 

성능을 보여왔다. 언어학 분야에서는 언어 모델의 내재적 언어 지식을 

탐구하기 위해 통사론, 의미론, 언어 습득 등의 이론 및 실험 언어학 

접근법을 기반으로 활발히 연구되고 있다. 본 논문은 Jang et al 

(2022)에서 제안한 언어 지식 탐침 방법론인 Affinity Prober의 사용 

범주를 확장시키는 것을 목표로 한다. 이를 위해 self-attention 

mechanism에서 어텐션 스코어 값을 보존하며 토큰 간의 관계를 

해석하는 알고리즘인 ADTRAS 알고리즘 (An Algorithm for Decrypting 

Token Relationships within Attention Scores)을 제안한다. 본 논문은 

ADTRAS 알고리즘을 활용하여 첫 번째 실험에서 GLUE 벤치마크 내의 

통사-의미적 기능을 요구하는 6가지 태스크에 각각 훈련된 BERT 

모형의 레이어 패턴을 분석한다. 이를 통해 BERT 모형이 토큰 관계의 

유의미한 변화를 포착하고, ADTRAS 알고리즘을 활용하여 BERT 

어텐션 변화를 기반으로 BERT 모델이 스스로 어휘 범주(Lexical 

Category)를 활용하여 품사 정보를 학습한다는 실증적인 증거를 

제시한다. 또한 어휘 범주를 중심으로 BERT 레이어의 분명한 언어학적 

특징을 일반화한다. 두 번째 실험으로는 Affinity Prober를 활용하여 

통사적 언어현상에서의 최소쌍 문장을 처리하는 BERT의 특징을 

분석한다. 이 실험은 사용된 15가지의 통사적 언어현상이 BERT 

모델에서 처리되는 과정을 Affinity Prober를 활용하여 탐구하여 레이어 

별 패턴을 분석하는 것을 목적으로 한다. 이러한 실험 결과로 총 네 

가지의 패턴이 관찰되었는데, 본 논문은 관찰된 패턴이 각각 유사한 

언어현상 별로 묶인다고 주장한다. 첫 번째 패턴은 Passive와 Ellipsis 

N-bar와 관련된 언어현상들이 주를 이루며, 두 번째 패턴은 Island 

Effects, 세 번째 패턴은 Movement에서의 Syntactic Constraints에서의 

언어현상, 마지막으로 네 번째 패턴에서는 Verb Predicate Types과 

논항 구조에서의 언어현상들로 나타난다. 이러한 각 레이어 별 패턴이 

ADTRAS 알고리즘에서의 결과와 일치한다는 점에서 본 실험을 통해 

도출된 결과를 뒷받침한다. 요약하자면, 본 논문은 ADTRAS 알고리즘을 
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제안하고, Jang et al (2022)에서 제안한 Affinity Prober를 확장하여 

연구에 활용하였다. 이 과정에서 통사적 언어현상의 BERT 레이어 별 

패턴을 성공적으로 추출하여 결과를 설명하고자 노력하였다. 
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