
 

 

저 시-비 리- 경 지 2.0 한민  

는 아래  조건  르는 경 에 한하여 게 

l  저 물  복제, 포, 전송, 전시, 공연  송할 수 습니다.  

다 과 같  조건  라야 합니다: 

l 하는,  저 물  나 포  경 ,  저 물에 적 된 허락조건
 명확하게 나타내어야 합니다.  

l 저 터  허가를 면 러한 조건들  적 되지 않습니다.  

저 에 른  리는  내 에 하여 향  지 않습니다. 

것  허락규약(Legal Code)  해하  쉽게 약한 것 니다.  

Disclaimer  

  

  

저 시. 하는 원저 를 시하여야 합니다. 

비 리. 하는  저 물  리 목적  할 수 없습니다. 

경 지. 하는  저 물  개 , 형 또는 가공할 수 없습니다. 

http://creativecommons.org/licenses/by-nc-nd/2.0/kr/legalcode
http://creativecommons.org/licenses/by-nc-nd/2.0/kr/


 

 

  

이학석사 학위논문 

 

Mounting Visual Metadata on 

Transformer-based Language 

Model for Open-ended Video 

Question Answering 

비디오 메타데이터를 활용한 트랜스포머 기반 

주관식 비디오 질의 응답 

 

 

 

 

 

서울대학교 대학원 

협동과정 인지과학전공 

이 동 건 

 2023년  8월 



 

 

  

Mounting Visual Metadata on 

Transformer-based Language 

Model for Open-ended Video 

Question Answering 

비디오 메타데이터를 활용한 트랜스포머 기반 

주관식 비디오 질의 응답 

 

지도 교수  장 병 탁 

 

이 논문을 이학석사 학위논문으로 제출함 

2023년   7월 

 

서울대학교 대학원 

협동과정 인지과학전공 

이 동 건 

 

이동건의 이학석사 학위논문을 인준함 

 2023년   7월 

 

위 원 장           고 성 룡               (인) 

부위원장           장 병 탁               (인) 

위    원           권 가 진               (인) 



 

 1 

Abstract 

 

Mounting Visual Metadata on 

Transformer-based Language 

Model for Open-ended Video 

Question Answering 
 

Donggeon Lee 

Interdisciplinary Program in Cognitive Science 

The Graduate School 

Seoul National University 

 

 Video question answering has recently received a lot of attention 

from multimodal video researchers. Most video question answering 

datasets are usually in the form of multiple-choice. But, the model 

for the multiple-choice task does not infer the answer. Rather it 

compares the answer candidates for picking the correct answer. This 

method is limited in options, making it difficult to grasp detailed 

interactions between videos and questions. On the other hand, in the 

case of open-ended answer, it is easy for the model to understand 

the complex relationship between the video and the question through 

free answer generation. In addition, from a practical point of view, 

for interaction with humans, subjective interaction is easier than the 

method of providing answer candidates. In this paper, we challenge 

the existing multiple-choice video question answering by changing it 
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to open-ended video question answering. To tackle open-ended 

question answering, we use the pretrained GPT2 model. In order to 

understand the contents of the video, information about the 

characters and events is needed. To utilize the aforementioned 

information, fine-tuning is performed using information such as video 

input, subtitles, metadata, and description. This study is performed 

by changing the existing DramaQA dataset to an open-ended 

question answering, and it shows that performance can be improved 

using video metadata.  
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Chapter 1 

 

Introduction 

 

  Transformers are now the de facto standard for language modeling 

and recently extending their applications in vision and multimodal 

domain [19, 4]. Transformers in the vision and language domain are 

usually pretrained with large scale datasets and applied to various 

downstream tasks. Among downstream tasks, video question 

answering evaluates whether the model understands various 

dimensions of video contents and is usually done in multiple-choice. 

However, when learning a model for multiple-choice video question 

answering, the model selects the correct answer by comparing the 

similarity between the question and the answer candidates rather 

than inferring the correct answer to the question. But, selecting the 

correct answer through comparison with the answer candidates does 

not perform the reasoning required in the question and answering, 

making it difficult to generalize for other tasks. 

In this paper, we tackle the current multiple-choice video question 

answering dataset by changing it into an open-ended format. We 

focus on a more challenging open-ended setting where there is no 

prior knowledge of answer choices. As well as, in the case of open-

ended VQA, additional data like multiple choices is not required to 

generate answers to new questions. 
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The answer candidates are not given in open-ended multimodal 

video question answering, so the model infers the correct answer 

through reasoning. In other words, in the case of multiple choice, 

among the candidates for the correct answer, one that is close to 

what the model understands is found. On the other hand, in the open-

ended model, the model directly finds the answer to the question.  In 

the case of open-ended model, through free answer generation, the 

model can more deeply understand the complex relationship between 

images and questions. In the case of multiple-choice VQA, it can be 

difficult to capture the detailed interactions between images and 

questions due to the limited number of choices.  

In addition, open-ended expression is easy when interacting with 

humans in a practical aspect. In the real world, you can't always give 

5 options. For example, even when used as an assistive technology 

for the visually impaired, it is difficult to give multiple choice options 

for sights that the disabled cannot see.  

  Challenging open-ended multimodal video question answering, we 

propose an extended model that learns various modalities together 

based on the recently proposed Transformer language model. The 

proposed model receives various metadata and language input of 

video. The results show that performance can be improved by 

combining multiple metadata rather than features from raw videos.  

  This paper is organized as follows. Chapter 2 examines related 

works to video question answering and open-ended question 
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answering. Chapter 3 describes the proposed model and learning 

strategy. Chapter 4 examines the dataset and experimental settings, 

as well as the quantitative results. Finally, in Chapter 5, the 

conclusion and future research directions are described.  
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Chapter 2 

 

Related Works 

 

2.1  Video Question Answering 

  A variety of video question-answering datasets have been 

proposed, including MovieQA[17], PororoQA[10], TGIF-QA[9], 

TVQA[11], DramaQA[5], and are mostly in the multiple-choice 

format. AVSD Dataset[1] is characterized by the fact that question-

answering for video is in the form of dialogue, which is out of the 

existing multiple-choice form.  

Recently, various approaches have been proposed for video story 

question answering, which can be divided into three categories. 

There are techniques using Memory Network[17, 10], Attention[10, 

11], and Transformer[21]. Memory networks stores and utilizes key 

information about a question-answering in a memory network to find 

it among many information in a long video. Attention effectively 

represents only the representation of visual/verbal core information 

by progressing attention across layers. Techniques utilizing context 

matching by applying attention achieved high performance in 

question-and-answer by comparing the context of a question-and-

answer with the context of a given video in detail. Recently, 

researchers propose transformer-based models for video question 
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answering. [18] proposed transformer and the proposed architecture 

brought a huge performance improvement in language modeling, and 

there is a move to expand it to a video domain. Recent state-of-art 

models show that these techniques can perform well in modeling the 

video as well as the language.  
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2.2 Open-Ended Question Answering 

  In the H. Xue et al.[20], Z. Zhao et al.[23], pointed out that the 

existing video question answering task used only one static image 

and text and also dealt with it as a short word oriented multiple-

choice problem. It is emphasized that this approach cannot utilize the 

sequential and temporal information of the video. Therefore, its 

usability is limited in that the answer is chosen within given answers. 

In the above papers, the sequential/time information of the video was 

utilized to finally generate answers through decoders, resulting in 

better results than traditional methods (Mean-VQA, SS-VQA, etc.). 

However, the issues addressed by the above papers are limited in 

that they are short lived, although open-ended, and the format of 

questions and answers is also simple.  

  In the [12], the author conducted a study on AVSD task[1](Given 

video and ten turns of question answering a text, task generates 

natural language answers to the last question) based on 

Transformer(GPT2[15]). This paper extracts features from video 

and text with I3D[3] and VGGish[7], applies positional encoding, 

Beam Search, receives good results from several metrics (BLEU, 

METEOR, CIDEr, etc.). However, the model is not much different 

from above papers, and the position and video feature information 

was not used properly.  
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Chapter 3 

 

Method 

 

 
Figure 3.1 Overview of the proposed multimodal transformer model 

architecture. V_feature : feature vector, V_segment : segment tokens, 

V_position : position encoding, MFM: Masked Frame Modeling, MLM : 

Masked Language Modeling, RLM : Response Language Modeling 

 

3.1 Formulation 

  The purpose of our model is to integrate multimodal information 

(e.g., subtitle, video, audio, question, etc.) to generate the open-

ended answer.  

  Our model consists of inputs of video, question and outputs of 

answer. The video is represented as V = 

({v1,...,vN},{m1,...,mN},{s1,...,sM}). vn is representing the n-th 

frame in V, mn means a image features, and a visual meta data, the 

information such as person, person’s emotion and behavior, in 

bounding box corresponding to n-th frame, sm is m-th subtitle in the 

entire video V. The question is represented as Q = {wa
1, . . . , wq

L}, 

and the answer is represented as A = {wa
1,...,wa

K}. 
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  Each frame can be expressed as vvn by extracting 3 frames per 

second from video and then feeding in the pre-trained I3D[3] model 

to extract feature vectors. There is information about the character 

in the form of {c1 ,...,cImn } in each mn. and information about each 

character is represented as ci = (fi , pi , bi , ei ).  

  fm
i  is a feature representation of the character’s image of 

bounding box using a pre-trained ResNet152[6] model. pi
mn is a 

word embedding representation using a pre-trainned GPT2 model. 

bi
mn is the character’s behavior. ei

mn is a word embedding 

representation of the character’s emotion. 

  Each s an be expressed as (p ,{w1 ,...,wJsm }) which which can be 

divided into sentence, {w1 ,...,wJsm}, which can be divided into a 

word wj and a speaker p Both speakers and words can be expressed 

in a previous way. Sentences can also be broken down into words 

using the GPT2 tokenizer.  
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3.2 GPT2 

  We reference and use GPT2, a transformer model, which uses 

attention in place of the previous recurrence and convolution based 

architectures. Attention mechanisms allow the model to selectively 

focus on segments of input text it predicts to be the most relevant.  

  GPT2 models receive the feature, segment, and position as inputs. 

Feature refers to data that embeds text input through GPT2 

tokenizer, segment refers to data that means a token type of each 

word, such as [eos] and [sos], and position refers to the location of 

each word in the sentence. 

 
Figure 3.2 Multimodal transformer model architecture. The video 

embedder is a linear layer which embeds feature of video size to feature 

of embedding size, and the text embedder is a linear which embeds 

feature of vocab size to feature of embedding size. Denot We used the 

following segment tokens [V] : Video, [Bbf] : feature of bounding box, 

[Per] : person’s name, [Beh] : person’s behavior, [Emo] : person’s 

emotion, [Spk] : speaker, [Scr] : script, [Que] : question. 
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3.2.1 Feature Embedding 

  Feature embedding input is all of the preceding (v , {c1 , . . . , 

cImn }) to a two-dimensional sequence over time. Subsequent (p , 

{w1 , . . . , wJsm }) similarly leads to a two-dimensional sequence 

over time. Finally, we attach {wq
1 , . . . , wq

L }. Therefore, the 

sequence length is N + ΣN
mn=1Imn + M + ΣM

sm=1Jsm + L. On the 

other hand, if features are extracted using I3D or ResNet, the 

features are different from those extracted with GPT2 models, so the 

dimensions are adjusted through a layer of learnable linear layers.  
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3.2.2 Segment Embedding 

 

Table 3.1 Notation and description for segments 

  Segment embedding distinguishes the various inputs that enter the 

video. The distinguishing features can be divided into eight as Table 

3.1. 

  For each of these eight Feature categories, Segment embedding 

was performed using special token in GPT2.  
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3.3 Decoding Method 

3.3.1 Beam Search 

 

Figure 3.3 Beam search 

Beam search is a heuristic search algorithm that explores a graph by 

expanding the most promising node in a limited set. Beam search is an 

optimization of best-first search that reduces its memory requirements. 

Best-first search is a graph search which orders all partial solutions 

according to some heuristic. But in beam search, only a predetermined 

number of best partial solutions are kept as candidates. It is thus a 

greedy algorithm. 
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3.3.2 Nucleus 

Sampling

 

Figure 3.4 Nucleus Sampling 

Deterministic sentence generation methods such as Beam Search, 

Greedy Search have the disadvantage of generating repeated words 

consecutively or resulting in too general sentences when used in an 

open-ended text generation task, which is a sentence generation 

task in which the end of a sentence is not determined. 

Human generated sentences don’t look like this. Therefore, in open-

ended generation, a stochastic sampling-based sentence generation 

method, rather than a deterministic method, is often used to mimic the 

human sentence generation method. 

Nucleus sampling is a method that compensates for the disadvantages 

of “Sampling with SoftMax temperature” and “Top-k sampling”, which 

are representative sampling methods. Nucleus sampling sorts the words 

in descending order of probability when the model calculates the 

probability of the next word to appear, and selects words in order until 



 

 20 

the point when the probability value of each word is accumulated 

exceeds the hyperparameter p. We then renormalize the probabilities of 

the selected words and sample words from that distribution. 

 

Table 3.2 It is a description of the performance and time required for 

each Decoding Method for 3453 data in a subtitle-only environment. 

 

Figure 3.5 Decoding Strategy Comparison 

To find an effective decoding method for multimodal answer 

generation, we try the decoding methods, including beam search and 

Nucleus Sampling[8] which samples text from the dynamic nucleus 

of the probability distribution. Although beam search showed slightly 
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high performance, it took about 16 times more time to use it in real-

time, so Neclues Sampling was used.  

3.4 Implementation Details 

  All experiments are run on NVIDIA [TITAN Xp]. Because of the 

lack of memory, we use a batch size of 1 input unit. We use AdamW 

optimizer[13] with a learning rate of 1e-4 and weight decay of 1e-5. 

Cross-entropy loss is used to train the model.  
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Chapter 4 

Result 

4.1 Settings 

4.1.1 Dataset 

 

Figure 4.1 An example of DramaQA dataset which contains video clips, 

scripts, and QA pairs with levels of difficulty. A pair of QA corresponds 

to either a shot or a scene, and each QA is assigned one out of possible 

four stages of difficulty. A video clip consists of a sequence of images 

with visual annotations centering the main characters. 

To show the effectiveness of the proposed method, we evaluate it 

on video question answering datasets, i.e., DramaQA [5]. This 

dataset is for multiple-choice tasks. So, the sentence corresponding 

to the correct answer among the multiple-choice options was 

converted into a label and used. 
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Figure 4.2 Examples of character-centered video annotations: (a) 

coreference resolved scripts and (b) visual metadata which contains the 

main characters’ bounding box, name, behavior, and emotion. All 

annotations for characters in script and visual metadata can be co-

referred by unique character’s name. 

 

Figure 4.3 Four examples of different QA level. Difficulty 1 and 2 target 

shot-length videos. Difficulty 1 requires single supporting fact to answer, 

and Difficulty 2 requires multiple supporting facts to answer. Difficulty 3 

and 4 require a time factor to answer and target scene-length videos. 

Especially, Difficulty 4 requires causality between supporting facts from 

different time. 
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Table 4.1 Statistics about train, validation, and test split of DramaQA 

dataset. # QAs: The number of QA pairs. # Clips: The number of video 

clips including shot and scene. Avg. Video Len: Average video length 

per each video clip. # Annotated Images: The number of annotated 

images in total target video. # QAs by Difficulty: The number of QA 

pairs for each difficulty level. 
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Figure 4.4 (a) The number of QA pairs per episode and difficulty level. 

Given that the length of scene is tens of times longer than the size of 

shot, the variation between levels is small compared to the number of 

videos. (b) The number of 5W1H question types per difficulty level. 
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Figure 4.5 (a) The percentage of each character’s frequency in visual 

metadata. Haeyoung1 and Dokyung are two main characters of drama 

AnotherMissOh. Haeyoung2 is the person who has same name with 

Haeyoung1, but we divided their name with numbers to get rid of 

confusion. (b) The percentage of each behavior frequency in the visual 

metadata. none behavior occupies a lot because there are many frames 

with only character’s face. (c) The percentage of each emotion 

frequency in the visual metadata. 
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Figure 4.6 (a) Top: Top-3 the person who the speaker frequently talks 

to, for each top 6 most spoken person. Bottom: Top-3 the person who 

the speaker frequently talks about, for each top 6 most spoken person. 

(b) The percentage of each person’s utterance in the script. 
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4.2 Metrics 

4.2.1 BLEU 

  BLEU(Bilingual Evaluation Understudy) is a method of measuring 

translation performance by comparing how similar machine 

translation results are to human translation results. The metric is 

based on n-grams. BLEU is not a perfect method, but it has several 

advantages. It can be used regardless of language, and the 

calculation speed is fast. 

4.2.2 METEOR 

METEOR(Metric for Evaluation of Translation with Explicit 

Ordering) is a metric for the evaluation of machine translation output. 

The metric is based on the harmonic mean of unigram precision and 

recall, with recall weighted higher than precision. It also has several 

features that are not found in other metrics, such as stemming and 

synonymy matching, along with the standard exact word matching 

The metric was designed to fix some of the problems found in the 

more popular BLEU metric, also produce good correlation with 

human judgement at the sentence or segment level. This differs from 

the BLEU metric in that BLEU seeks correlation at the corpus level. 
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4.2.3 BERTScore 

 

Figure 4.7 Illustration of the computation of the recall metric R_BERT. 

Given the reference x and candidate x^, it compute BERT embeddings 

and pairwise cosine similarity. The highlighted the greedy matching in 

red, and include the optional idf importance weighting  

BERTScore is an automatic evaluation metric for text generation 

Analogously to common metrics, BERTSCORE computes a similarity 

score for each token in the candidate sentence with each token in the 

reference sentence. However, instead of exact matches, it computes 

token similarity using contextual embeddings. It evaluates using the 

outputs of 363 machine translation and image captioning systems. 

BERTSCORE correlates better with human judgments and provides 

stronger model selection performance than existing metrics. Finally, 

it uses an adversarial paraphrase detection task to show that 

BERTSCORE is more robust to challenging examples when compared 

to existing metrics. 
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4.3.4 BLEURT 

 

Table 4.3 BLEURT’s pre-training signals 

 

Table 4.4 Agreement with human ratings on the WMT17 Metrics Shared 

Task 

  The most popular choices for evaluating language generation 

model(e.g., BLEU and ROUGE) may correlate poorly with human 

judgments. BLEURT is a learned evaluation metric based on BERT 

that can model human judgments with a few thousand possibly biased 

training examples. A key aspect of this approach is a novel pre-

training scheme that uses millions of synthetic examples to help the 

model generalize. 
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The evaluation is carried out using BLEU[14] based on n-gram, 

METEOR[2] considering recall as a traditional metric to evaluate the 

generated text. In addition, we evaluate the answers generated with 

a total of four metrics, including BERTScore[22] which is measured 

based on a similarity between each token embedding and 

BLEURT[16] which uses the pre-learned model as metric.  
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4.3 Quantitative Results  

 

Table 4.4 Quantitative experimental results for the DramaQA validation 

set. S stand for subtitle, V stands for video features extracted from I3D, 

B stands for bounding box features extracted from ResNet, and M 

stands for visual metadata composed of person, emotion, and behavior, 

D stands for description for scene. 

  Table 3 shows metadata plays a major role in improving 

performance. Our model is based on GPT2, so there is language bias. 

It helps improve performance with language metadata.  

  The information in bounding box features also helps answer 

questions by looking at S / B + S. However, comparing M + S / B, M 

+ S did not improve performance.  

  Video information lowers performance. For reasons, a 

transformer-based model is a model with large language bias, and 

the entire video that is irrelevant to the question works even worse 

than bounding box features.  
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Finally, it can be seen that the descriptive information on Scene 

greatly affects the performance of the model. Since it is a language-

based model, meaningful text data can greatly improve the 

performance of the model. Video capping can be used to replace the 

limited situation in which the description is directly applied.  

4.4 Qualitative Results 

 

Figure 4.8 Qualitative results. question prediction pairs for levels 1, 2, 3, 

and 4 are shown. 
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Chapter 5 

Conclusion 

  In this paper, we challenge the existing multiple-choice video 

question answer by converting it into an open-ended form. We 

construct the model in the form of a multimodal transformer by 

adding video and metadata from video to the existing pre-trained 

language model. Ablation studies using the DramaQA dataset showed 

that video metadata helped performance. 

For future work, we plan to use the dense caption features in the 

video space transferred into the language space to circumvent the 

language bias problem. As a result of using description data in 

DramaQA Dataset for verification, it showed remarkable performance 

improvement. 

In addition, performance can be improved by using language 

models such as chatgpt, Galactica, and GPT3 that have recently been 

released. 
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국문 초록 

 비디오 질의응답은 최근 멀티 모달 비디오 연구자들로부터 많은 관심을 

받고 있다. 대부분의 비디오 질의응답 데이터셋은 객관식 질의응답의 

형식으로 제공되고 있다. 그러나 객관식 질의응답 태스크는 답을 

추론하지 않고, 답안 후보군들을 비교해서 더 나은 선택지를 찾는 

방식을 택한다. 이러한 방식은 선택지에 제한되어 비디오와 질문 간의 

상세한 상호작용을 파악하기 어렵다. 그에 반해 주관식의 경우 자유로운 

답변 생성을 통해 모델이 비디오와 질문 사이의 복잡한 관계를 

이해하기에 용이하다. 뿐만 아니라 실용적인 측면에서 인간과의 

상호작용을 위해서는 답안 후보군을 제공하는 방식보다 주관식으로의 

상호작용이 더 용이하다. 본 논문에서는 기존의 객관식 질의응답 문제를 

주관식 질의응답으로 바꿔서 앞서 말한 문제들을 해결하고자 한다. 

주관식 질의 응답 문제를 해결하기 위해 미리 학습된 GPT2 model 을 

활용한다. 비디오의 내용을 이해하기 위해서는 등장인물, 사건에 대한 

정보들이 필요하다. 이를 위해 비디오 입력, 자막, 메타데이터, 

디스크립션 등의 정보를 활용해 파인 튜닝한다. 본 연구에서는 기존의 

DramaQA 데이터셋을 주관식 질의응답이 가능한 형태로 변형해 

수행되었다. 비디오 메타데이터, 디스크립션을 활용해 주관식 질의응답 

문제에 높은 성능을 보였다. 

 

 

주요어 : 비디오, 비디오 질의응답, 주관식, transformer, visual 

metadata, Language Model 
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