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Abstract 

 
Various motor components, including muscle and joint movements, 

force and momentum, and motor kinematic parameters such as speed, 

acceleration, and position of limbs, manifest motor behavior. 

Understanding how the human brain processes these motor 

components is one of the significant interests in neuroscience. For this 

interest, current findings suggested that the cortical processing of 

motor kinematics appears differently depending on its behavioral 

characteristics. These findings had a practical implication for 

improving the decoding performance of brain-computer interfaces 

(BCI) predicting limb movement. 

Numerous single-neuron studies have found a relationship 

between neuronal activity and motor kinematics, such as acceleration, 

velocity, and position. Despite differences between behavioral 

characteristics of each motor kinematic, it is hard to distinguish neural 

representations of their characteristics with macroscopic functional 

images such as electroencephalography (EEG) and 

magnetoencephalography (MEG). The reason might be that cortical 

signals are not sensitive enough to segregate kinematic characteristics 

due to their limited spatial and temporal resolution. Considering the 

different roles of each cortical area in producing movement, there 

might be a specific cortical representation depending on acceleration, 

velocity, and position characteristics.  

Recently, neural network modeling has been actively pursued 

in decoding. I hypothesized that neural features of each kinematic 

parameter could be identified with a high-performing model for 

decoding with an explainable AI method. Here, I aimed to introduce a 

novel method to identify brain processing of motor kinematics using a 
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Deep Neural Network (DNN) model and explainable artificial 

intelligence (XAI) technique.  

First, I developed recurrent neural network (RNN) based DNN 

models to decode times series of motor kinematic parameters of 

directional reaching movements from the cortical source signals. The 

result shows that the DNN models could significantly decode the time 

series of motor kinematic parameters such as acceleration, velocity, 

and position of the hand-reaching movements from the cortical source 

activity (r > .811, p < .001).  

Second, I developed a novel approach to extracting the 

contribution of cortical areas for predicting each motor kinematic 

parameter by decomposing the high-performing DNN models using the 

XAI technique. This approach could segregate the functional areas for 

processing each motor kinematic parameter. The result showed that 

the contribution of cortical areas within visuomotor areas appeared 

differently depending on the motor kinematic parameters. I identified 

that different and shared cortical areas existed for decoding each 

kinematic attribute. Shared areas included bilateral supramarginal gyri 

and angular gyri known to be related to the goal of movement and 

sensory integration. On the other hand, dominant areas for each 

kinematic parameter appeared differently (the contralateral motor 

cortex for acceleration, the contralateral parieto-frontal network for 

velocity, and bilateral visuomotor areas for position). Regarding the 

visuomotor reaching movement, the motor cortex was found to control 

the muscle force, the parieto-frontal network encoded reaching 

movement from sensory information, and visuomotor areas computed 

limb and gaze coordination in the action space. 

Through those studies, I revealed that the motor behavior of 

humans comprises a combination of motor components processed in 
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each cortical area. Such results imply that various motor variables 

should be acquired from cortical areas to develop motor BCI. However, 

in many cases, signals or activities of required brain areas cannot be 

acquired. Primarily, invasive recordings can provide high-resolution 

signals, but such methods can only measure the focal area's signal. I 

speculated that the generative neural network model would help 

address the limitation. Here, I provide a proof of concept for the 

inferring the cortical signals of the motor area essential for producing 

motor kinematics, such as acceleration, from the other cortical signals 

that participate in motor processing but do not in producing. 

 

 

 

Keywords: Brain-computer interface (BCI), Deep neural network, 
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PART I. Introduction 

 

Chapter 1. Human motor behavior and brain 

Motor behavior includes every movement that controls the muscle, from 

involuntary twitches or reflexes to voluntary goal-directed actions, in every 

part of our body, from toe to head. Regardless of their type, the nervous 

system controls motor behavior. Therefore, understanding the control 

mechanism is one of the most significant interests in neuroscience. In addition, 

this is mandatory to develop a brain-computer interface system that controls 

robotic prosthetic limbs for disabled people. This chapter briefly introduces 

how our nervous system controls human motor behavior, specifically the 

cerebral cortex. Furthermore, I also introduce the basic concept of BCI for 

motor behavior. 

 

1.1. Nervous Systems for Human Motor Behavior 

The Human nervous system consists of two main parts: the central nervous 

system (CNS) and the peripheral nervous system (PNS) (Figure 1-1). CNS 

includes the brain and spinal cord. On the other hand, PNS comprises the 

afferent (sensory input channel) and the efferent (motor output channel) 

nerves. Afferent nerves in PNS translate extrinsic stimuli, such as light (vision), 

sound, or touch, and deliver them toward the CNS. The CNS processes the 



 

 ２ 

extrinsic stimuli and then sends control commands toward muscles or organs 

via the efferent nerve of the PNS (Bear et al., 2020). This process is a 

fundamental mechanism of sensation and motor behavior.  

 Anatomically, the brain consists of three subdivisions: forebrain 

(prosencephalon), midbrain (mesencephalon), and hindbrain 

(rhombencephalon). The hindbrain contains the cerebellum and medulla, and 

the midbrain contains the brainstem. Lastly, the forebrain comprises the 

cerebrum, thalamus, and hypothalamus. The cerebrum can be divided into 

four lobes: occipital lobe, parietal lobe, temporal lobe, and frontal lobe 

Figure 1-1. Organization of the human nervous system.  
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(Figure 1-2). Each can be segregated into anatomical or functional structures 

(Glasser et al., 2016) (Figure 1-3). For example, the motor cortex is the 

cerebrum's central structure for motor control. It comprises Brodmann area 4 

(BA4), within the precentral gyrus, and BA6. The BA4 is referred to as the 

primary motor cortex (M1).  

 The CNS comprises a hierarchy system for motor control, with the 

forebrain at the top and the spinal cord at the bottom. In the higher level of 

the hierarchy, association areas of the neocortex and basal ganglia in involved 

in 'strategy', such as the goal of motor behavior or the optimal way to achieve 

the goal. In the middle level, the motor cortex and cerebellum control' tactics', 

Figure 1-2. Lobes of human cerebrum (Bear, Connors, & Paradiso, 2020). 

 
 
 

 
 



 

 ４ 

such as the spatiotemporal sequence of muscle control. Lastly, in the lower 

level, the brainstem and the spinal cord are involved with 'execution', which 

activates motor neurons (efferent). The brain communicates with the spinal 

cord via two major pathways in the hierarchical system (Figure 1-4). One is 

the lateral pathways. Most of the neurons in the pathways originate in the 

motor cortex (Kolb, Whishaw, Teskey, Whishaw, & Teskey, 2001). Through 

these pathways, the motor cortex can control motor behavior directly. Thus, 

Figure 1-3. Dividing cerebral cortex into anatomical or functional organization. 
(upper) Brodmann area. The regions defined by its cytoarchitecture or histological 

structure and organization of cells. (lower) a multi-modal parcellations of 
HCPMMP1 atlas (Glasser et al., 2016), presented on the FreeSurfer Average inflated 

surface.  
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the pathways are involved in the voluntary movement of distal limbs. On the 

other hand, the other, named ventromedial pathways, originates in the 

brainstem and controls locomotion and posture (Purves et al., 2012) 

 

1.2. Cortical Processing for Motor Control 

The cerebral cortex controls overall motor behavior at the top of the central 

motor system. Penfield and Boldrey (1937) found that the electrical 

Figure 1-4. Hierarchical organization of descending spinal tracts and their origins 

with the motor loop of brain-basal ganglia-thalamus (Bear et al., 2020).  
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stimulation on the precentral gyrus would elicit muscle cramps in a specific 

body part. Systemic investigation of the BA4 reveals that the M1 has a 

somatotopic organization (Figure 1-5). The cortical structure of M1 shows 

how this area receives inputs from other cortical areas and sends outputs 

toward the lower motor neurons. The neocortex comprises six layers. Most 

corticospinal cells within the layers originate in the cortical layer V (Kolb & 

Whishaw, 2009). Populations of pyramidal cells in cortical layer V (Betz cells) 

project their axons through the cortico-spinal tract toward the lower motor 

neurons. The axons monosynaptically excite the lower motor neurons. 

Furthermore, the cortico-spinal axons can make branches toward 

the motor neurons. The branches of axons connect to motor neurons and 

inhibitory interneurons and enable the excitation of flexor motor neurons and 

inhibition of extensor muscle simultaneously (Evarts, 1968). The cortical layer 

V receives neural input from the other brain areas, such as BA6, the primary 

somatosensory cortex (S1), or the thalamus.   

Studies on the electrophysiological recordings suggest that the 

cerebral cortex encodes various components for motor behavior: motor 

kinetics, such as force, and kinematics, such as direction, velocity, acceleration, 

and limb position. Early studies focused on the role of the motor cortex. For 

example, Georgopoulos, Schwartz, and Kettner (1986) found that some 

neurons in M1 fired for the reaching movement in one specific direction. 

Further studies found that the premotor area (BA6) processes the preparation 
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of motor behavior (Churchland, Santhanam, & Shenoy, 2006; Churchland, 

Yu, Ryu, Santhanam, & Shenoy, 2006). Along with the studies on the motor 

cortex, other cortical areas also appear to process the component of motor 

behavior. For example, neuron activities of non-human primates in M1 and 

BA5, part of the posterior parietal cortex (PPC), correlate with motor 

kinematics during center-out hand-reaching movement (Ashe & 

Georgopoulos, 1994). Moreover, studies using non-invasive recordings, such 

as magnetoencephalogram (MEG), reveal that the human brain recruits a 

Figure 1-5. A somatotopic organization in the precentral gyrus. Such representation 

also is called as cortical homunculus. 
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large-scale network for processing motor kinematics (Bourguignon, Jousmäki, 

Dalal, Jerbi, & De Tiège, 2019; Bourguignon et al., 2012; Jerbi et al., 2007). 

   

1.3. Brain-Computer Interface System 

Brain-Computer interface (BCI) is a direct communication pathway between 

brain activity and external devices. Thus, the BCI system utilizes brain signals 

to control external devices, such as cursors or robotic limbs. Such technology 

will help disabled people interact with the world again (Wolpaw, 2013). 

Furthermore, BCI technology also can be employed to implement human 

experiences (Si-Mohammed et al., 2018). 

BCI system comprises three modules. The first part is the acquisition 

module that measures the brain activities of BCI users. Measuring brain 

activity can be divided into invasive and non-invasive methods (Hagen et al., 

2018) (Figure 1-6). The invasive method places sensors (electrodes) on the 

surface or inside the brain tissue. Thus, since this method measures brain 

activity directly in the brain, it can provide a high signal-to-noise ratio. 

However, this method can cause damage to the brain and be unsuitable for 

long-term implantation. Moreover, spatial coverage is limited to focal brain 

areas. In contrast, the non-invasive methods are highly accessible and safe 

since it does not require surgical procedures. Furthermore, although external 

noises can affect these methods, they can measure whole-brain activity. 

Therefore, the non-invasive method is currently more suitable than the 
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invasive method for developing a universal BCI system for ordinary people. 

The second is the signal processing module. This module process brain signals, 

measured by electrodes, into meaningful signals. The electrodes measure brain 

activity and transform them into a digital signal. However, the electrodes can 

also record external noises and brain signals simultaneously. The processing 

module filters these artifacts and leaves the brain signals. The general signal 

processing procedure includes detrending, artifact correction, signal filtering, 

and re-referencing.  

Then, the prediction module, the third part, decodes the behavior 

Figure 1-6. The methods to measure the brain signals for BCI (Hagen, Næss, Ness, 
& Einevoll, 2018). Non-invasive methods (EEG and MEG) measured the 
electrophysiological signals outside the scalp. On the contrary, the invasive methods 

measured it inside the skull, right over the brain surfaces or penetrates the cortices to 

measure the cell activity. 
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from the brain signals using an ML model. Traditional ML models included 

a manual feature engineering process. In this process, spatiotemporal features 

of brain signals, which seem related to behavior, are extracted before the 

prediction process. However, deep learning models learn the relationship 

between behavior and brain signals and automatically infer the signal features 

(Goodfellow et al., 2016) for the behavior. Although learning deep learning 

models requires large datasets compared to the traditional ML models, they 

have become critical methods for BCI with high accuracy and the advantage 

above.  
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Chapter 2. Application of Artificial Intelligence to 

Develop Neuroscience and Neuro-engineering 

Research. 

 

 

In this chapter, I will briefly introduce the basics of AI and its subfields to 

promote understanding of this thesis. In addition, I also introduce some 

examples of the application of AI, especially deep neural networks (DNN), in 

neuroscience and neuro-engineering research.  

 

2.1. Artificial Intelligence and Machine Learning 

Artificial Intelligence (AI) is one of the fields of computer science that attempts 

to implement human learning, reasoning, and perceptual abilities artificially. 

Most of the works humans try to solve through AI are things humans can do 

intuitively and without difficulty. However, the critical challenge of artificial 

intelligence is to provide (teach) this intuitive and informal knowledge to 

computers (Goodfellow et al., 2016). Thus, artificial intelligence should be 

able to extract characteristics from original data and acquire knowledge 

independently.  

Machine learning (ML), one of the subfields of AI (Figure 2-1), 

studies a computer algorithm that automatically improves through experience 
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ML comprises two fundamental concepts. One is representation, the data 

evaluation, and the other is a generalization, which is the processing of 

unknown data. The primary processing workflow of ML consists of three 

parts. The first part is input. The data flows into the algorithm. The feature 

extraction algorithm extracts the hidden features from the input data in the 

second part. In the early days, this process was done manually through feature 

engineering. However, with the development of deep learning, the algorithm 

also learns and infers the feature. The third part is prediction. The ML 

algorithm predicts the output data based on the features.  

There are two large categories of learning algorithms in ML: 

Figure 2-1. A Venn diagram showing relationship between AI and its subfields and 

representative examples of each field (Goodfellow, Bengio, & Courville, 2016).  
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supervised learning and unsupervised learning. Supervised learning learns the 

hidden relationship between the input and the output data (Russell, 2010). It 

learns the error (or loss) between predicted and real output (label) during the 

learning. Finally, after complete learning, supervised learning can predict the 

output of the new input data. Supervised learning allows us to regress or classify 

the input data. 

On the other hand, the label does not be given in unsupervised 

learning. Unsupervised learning allows algorithms to infer patterns or clusters 

of data (Hinton & Sejnowski, 1999). Furthermore, this algorithm can learn 

the probability densities of given data. Thus, an unsupervised learning 

algorithm can generate novel data that resemble the given data. 

  

2.2. Deep Learning (Deep Neural Network) 

Among the various subfields of ML, one has recently attracted researchers 

and developers. Deep learning is one of the subfields of ML and is defined as 

a class of ML algorithms that uses multiple layers to progressively extract 

higher-level abstracts from the raw input data (Yoshua Bengio, Courville, & 

Vincent, 2013; Deng & Yu, 2014). The fundamental concept of deep learning, 

artificial neural network (ANN), was proposed more than 50 years ago. 

However, since 2012, deep learning has become a fundamental modern 

artificial intelligence technology.  

The mechanism of the human neural network inspired the 
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fundamental concept of the DNN model (Figure 2-2). The dendrites of 

biological neurons receive external input. When the external input exceeds the 

threshold, the neurons fire an action potential and transmit the signals 

through the axon (Kandel et al., 2000). Similarly, the artificial neurons in the 

DNN model receive input data (or features) (𝑋), and then they multiply 

synaptic weights (𝑊) on the data and add bias (𝑏) (equation 2-1). The 

synaptic weights could correspond to the number of synapses made with the 

Figure 2-2. Structures and computational mechanism of biological and artificial 
neurons. (upper) A basic structure of biological neuron. The neurons receive external 
input from the other neurons and fire action potential. (lower) computation 

mechanism of artificial neuron within deep neural network (DNN).  
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other neurons. For the weighted inputs (𝑍), the artificial neurons transform 

them via activation function, 𝑔 (equation 2-2).  

 

(2-1)  𝑍 = 𝑊𝑋 + 𝑏  

(2-2)  𝑌 = 𝑔(𝑍) 

 

 DNN models comprise several layers of artificial neurons. The most 

representative form of the DNN model is a multi-layer perceptron (MLP) 

(Figure 2-3). MLP consists of an input layer, a hidden layer, and an output 

layer. Like the traditional ML models, the input layer receives the input data 

(𝑋 ), and the output layer makes predictions (𝑌+ ). However, the unique 

characteristic of DNN is in the hidden layers. The number of hidden layers 

between the input and output layers determines the depth of the DNN model. 

In the DNN model, the input data is transmitted to the output layer through 

the hidden layer (equation 2-3). The output of the hidden layer (𝐻) may be 

input to another hidden layer again and, at the end of this chain, reaches the 

output layer (equation 2-4). Through this architecture, the DNN models can 

learn more complex representations. 
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(2-3) 𝑍! = 𝑊!𝑋 + 𝑏!,						𝐻! = 𝑔(𝑍!) 

(2-4) 𝑍" = 𝑊"𝐻! + 𝑏",						𝑌+ = 𝑔(𝑍") 

 

The learning (or fitting) of the neural network model means 

approximating the model's prediction (𝑌+) to label (𝑌). The output layer learns 

the error (loss) between the labels and predictions and then approximates the 

predictions to the labels. However, there are no explicit labels for the hidden 

layers, and the data did not suggest the desirable values that the layers should 

produce. Thus, the learning rules of deep learning propagate the error between 

Figure 2-3. Multi-layer perceptron (MLP). MLP comprises an input layer, hidden 
layers, and an output layer. As the hidden layers became deeper, the level of 

representation increased from low (contrast or edges) to high (eye, lips, or nose). 
Image source came from Google Tech Talk by Jeff Dean at Campus Seoul on March 

7, 2016. 
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prediction and label toward the parameters of each hidden layer.  

Since the errors are propagated backward from the output layer to 

the first hidden layer, the learning algorithm is called backpropagation. This 

algorithm calculates the gradient of the error function into parameters of a 

target hidden layer (equation 2-5). Since the output is made through the chain 

of hidden layers, the values can be calculated following the chain rule of 

partial differentiation (equation 2-6). To utilize the backpropagation, the 

activation functions must be differentiable. The learning algorithm controls 

the amount of learning with the learning rate (𝜂). Thus, the parameters are 

converged toward an optimized point by repeating the subtraction of the 

gradient.  

 

(2-5) 𝑊# ∶= 𝑊# − 𝜂
$

$%!
𝐿3𝑌, 𝑌+4 

(2-6) 𝑊# ∶= 𝑊# −
$&
$%"

$'"
$&"

$&#
$'"

$
$&#

𝐿(𝑌, 𝑌+) 

 

 Currently, neuroscience and neuro-engineering research adopt the 

DNN models. For example, for BCI development, DNN can apply to decode 

human behavior, such as hand-reaching movement, from complex brain 

signals (Kim, Kim, & Chung, 2023; Lawhern et al., 2018; Ma et al., 2021; 

Yeom, Kim, & Chung, 2020). In addition, since the DNN model is more 

biologically plausible than the traditional ML model, several studies have tried 

to understand human brain function and its mechanism by investigating the 
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layers within the model (Kar, Kubilius, Schmidt, Issa, & DiCarlo, 2019; 

Richards et al., 2019; Yamins & DiCarlo, 2016).  

  

2.3. Explainable Artificial Intelligence (XAI) 

Deep learning allows us to enhance prediction performance compared to 

traditional ML algorithms. Furthermore, since the hidden layers learn the 

feature of the data, the deep learning model does not need a feature 

engineering process. However, understanding the inference behind the model's 

decision is almost impossible since millions of parameters are interwound 

between multiple layers. Thus, AI systems are considered 'black boxes' to users 

and developers, and how the features of input data influence the prediction 

output is hard to understand.   

 The explainable artificial intelligence (XAI) technique helps describe 

the relationship between model predictions and input data features. One of 

the aims of this technique is to turn the black boxes into glass boxes. Figure 

2-4 illustrates the intuitive example of the XAI. Inception V1 (GoogLeNet) is 

one of the most potent image classifier models, consisting of 22 layers and 

about 11 million parameters. This model predicts the image as 'Giant Panda' 

with an 89.8% chance. The XAI can explain where the complex model seeks 

the attribution of Giant Panda. The attributions of the Giant Panda appear 

around the face, nose, and texture of the panda's fur.  
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 XAI technique can be utilized in functional neuroimaging research. 

Through the XAI, the neural attribution for behavior can be identified from 

brain activity. For example, Kim et al. (2023) decoded various motor 

kinematics of hand-reaching movement via the high-performing recurrent 

neural network (RNN) models. They identified the cerebral cortices in those 

models with XAI.  

 

  

Figure 2-4. An example of explainable artificial intelligence (XAI) in the image 
classification model. The attribution mask (lower left) is where the areas contributed 
to classify the image as ‘Giant Panda’. A XAI method for this example was integrated 

gradients (IG). Image source: https://www.tensorflow.org/tutorials/interpretability/ 

integrated_gradients?hl=ko 
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Chapter 3. Purpose of the study 

 

Human beings make ceaseless and countless movements in their lives. Motor 

behavior is manifested by various motor characteristics, including muscle and 

joint movements, force and momentum, and motor kinematic parameters 

such as speed, acceleration, position, and direction of limbs (Ashe & 

Georgopoulos, 1994; Bourguignon et al., 2019; Humphrey, Schmidt, & 

Thompson, 1970; Jerbi et al., 2007; Kakei, Hoffman, & Strick, 1999). 

Therefore, the relationship between neural activity and various motor 

characteristics is essential for understanding the movement behavior of a 

person. It also has a practical implication for improving the decoding 

performance of brain-computer interfaces (BCI). 

Previous studies using non-human primates have found that 

neuronal activity is closely related to various motor kinematic parameters. An 

early study on the relationship between neuronal activity and motor kinematic 

parameters has shown that neurons in the primary motor cortex (M1) can 

selectively respond to a specific direction of reaching movement 

(Georgopoulos et al., 1986). A further study has reported that neuronal 

activities in M1 and Brodmann area 5 (BA5) significantly correlate to time-

varying motor kinematic parameters such as velocity, position, acceleration, 

and direction (Ashe & Georgopoulos, 1994). Two notable results were drawn 
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from that study. First, neurons in M1 and BA5 preferred a specific kinematic 

parameter. Among neurons recorded in the M1 and BA5, the proportion of 

neurons that preferred velocity was the highest, followed by position-

preferred and acceleration-preferred neurons. This neuronal preference 

toward a specific motor kinematic characteristic has been validated in 

subsequent studies (Churchland, Santhanam, et al., 2006; Moran & Schwartz, 

1999; Wang, Chan, Heldman, & Moran, 2007). Second, this preference 

varied across cortical areas. For example, acceleration-preferred neurons 

were found in BA5 but not in M1. These results suggest that the neural system 

of animals has the processor for motor kinematics even at the small brain level. 

Moreover, the neural process for kinematics may vary across brain areas. 

Since the spatial coverage to measure a single neuron activity was limited to 

a focal area (Sejnowski, Churchland, & Movshon, 2014), it was hard to 

identify neural representations that appeared throughout the brain. Thus, 

finding a cortical representation of each kinematic parameter with 

macroscopic neural data has been an important issue.  

Non-invasive studies of humans have suggested that large-scale 

cortical activity also seems to be closely related to kinematic parameters. For 

example, Jerbi et al. (2007) found that reaching speed is significantly coherent 

with cortical source activity from M1, premotor cortex (PM), posterior 

parietal cortex (PPC), and dorsolateral prefrontal cortex (DLPFC). A similar 

coherence map was found at speed and acceleration (Bourguignon et al., 
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2012). Taken together, motor kinematic parameters appeared to be handled 

in a large-scale network that centered around the motor-related cortex. 

However, since these two coherence maps were presented similarly, cortical 

areas related only to acceleration or velocity could not be identified from the 

abovementioned studies. I speculated that coherence-based mapping could 

not distinguish cortical areas for each kinematic parameter because the spatial 

resolution of a non-invasive method is too limited to segregate them. Instead 

of mapping a simple relation of cortical activity with kinematic parameters, 

an alternative approach is needed to map cortical areas contributing to the 

production of each kinematic parameter. 

Thus, this study aimed to identify cortical areas for each kinematic 

parameter. To achieve this aim, a novel approach was employed to 

complement the shortcomings of limited coverage of single neurons and 

limited resolution of large-scale approaches. Here, I developed state-of-art 

methods called deep neural network (DNN) model and explainable artificial 

intelligence (AI) to investigate the complex relationship of processing motor 

kinematics.  

In Chapter 4, I developed deep neural network models to elucidate 

the relationship between various motor kinematics, such as acceleration, 

velocity and position, and brain signals. I implemented recurrent neural 

network (RNN) architecture to process sequential brain signal features for 

each motor kinematics. I hypothesized that the DNN models could predict 
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the time series of those motor kinematics. 

DNN models were a powerful method to investigate the relationship 

between complex brain signals and time-series of motor kinematics since the 

decoding accuracy was high and hand-reaching movement toward the targets 

was accurately recovered. However, such models had a limitation in 

explainability due to their complex architecture. In Chapter 5, I tried to 

identify the attribution of motor kinematics in the cerebral cortices hidden 

inside the model. Using the XAI technique, I decomposed the high-

performing DNN models that can decode motor kinematics. This approach 

enabled me to identify the cerebral cortices' contribution to decoding 

acceleration, velocity, and position. The findings in Chapters 4 and 5 have 

been published in NeuroImage (Kim et al., 2023). 

 It should be necessary to acquire signals of brain areas corresponding 

to motor components throughout such studies to develop a reliable motor BCI 

system. However, acquiring brain signals of desired areas was sometimes 

challenging. For example, invasive methods, such as iEEG, can provide high-

resolution signals, but such methods only could measure a focal brain area. 

Thus, In Chapter 6, I tried to provide a proof of concept for the inference of 

the brain activity of the motor cortex from the motor-related brain area via 

a generative adversarial neural network (GAN). I employed a signal generator 

network, MelGAN, to translate signals of the motor-related area (IPS) into 

the primary motor area (M1) and generate artificial signals of the area. I 
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hypothesized that the GAN model could translate the signals of the motor-

related area and generate artificial brain signals. Furthermore, the DNN 

model, which decodes hand-reaching acceleration from the M1 area, could 

also decode the acceleration from translated and generated signals. 

  



 

 ２５ 

PART II. Experimental Studies 

 

Chapter 4. Decoding Motor Kinematics from 

Cortical Source Signals Using Deep Neural Network 

Model 

 

 

4.1. Chapter Introduction 

Brain-computer interfaces (BCIs) represent a promising field of research and 

development in neuroscience that has the potential to change the way we 

interact with technology significantly. These devices establish a direct 

communication pathway between the human brain and external devices, 

allowing individuals to control them through their thoughts. As a result, BCIs 

offer a wide range of potential applications in various fields, such as 

neuroprosthetics (R. A. Andersen, Aflalo, & Kellis, 2019; Muller-Putz & 

Pfurtscheller, 2007), gaming and virtual reality (Kerous, Skola, & Liarokapis, 

2018). Besides restoring mobility and independence for people with physical 

disabilities, BCIs could improve human cognitive abilities, enhance learning, 

and treat neurological disorders. 

As I introduced in Chapter 1, a machine learning (ML) algorithm 
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exists in the center of the BCI system and mediates brain activity and behavior. 

First, ML receives the brain signals directly or refined neural features and 

behavior, then learns their hidden relationship. Then, the algorithm can 

decode the brain signals and predict the behavior that the users intended. 

Recently, deep learning algorithms have been drawing attention in AI. The 

deep neural network (DNN) model, the essential architecture of the algorithm, 

can significantly enhance the performance of BCIs by allowing for more 

accurate and efficient analysis of brain signals (Altaheri et al., 2021; Lawhern 

et al., 2018; Yeom et al., 2020). 

Despite recent progress in ML algorithms for BCI, significant 

challenges remain in developing accurate and reliable systems. One of those 

challenges is decoding continuous behavior from a time-series of brain signals. 

Most human behavior, especially motor behavior, is continuous and 

expressed as continuous variables, such as time series of kinematics or kinetics. 

Thus, the algorithm should learn the relationship between the time-series of 

motor kinematics and brain signals. However, the current DNN-based BCI 

still focused on classifying several behavior classes (Lawhern et al., 2018; Ma 

et al., 2021), with few attempts to predict the time-series behaviors using 

traditional ML algorithm (Bradberry, Gentili, & Contreras-Vidal, 2009; 

Bundy, Pahwa, Szrama, & Leuthardt, 2016). Furthermore, although those 

attempts reported that the movement was significantly decoded, the 

prediction accuracy was too low for the practical application of the BCI 
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system. 

The present study tested that the DNN model could decode time-

series motor kinematics of hand-reaching movements, such as acceleration, 

velocity, and position, from the cortical source signals. I speculated that the 

recurrent neural network (RNN) architecture could process the sequential 

features of brain signals during hand-reaching movement. Therefore, I 

developed the RNN-based regression model to predict the time-series motor 

kinematics from the cortical source signals measured by 

magnetoencephalography (MEG).  

 

4.2. Materials and Methods 

4.2.1. Dataset information 

I used the dataset of H. G. Yeom, Kim, and Chung (2013). Nine right-handed 

subjects participated in the study. Their mean age was 26.7 ± 6.8 (mean ± 

standard deviation) years (range, 19 to 37 years). The subject's handedness 

was evaluated through the Edinburgh Handedness Inventory. All participants 

were confirmed as right-handed with a performance of more than 80 points 

(87.2 ± 5.7).  

The experimental paradigm follows the center-out reaching task. 

Subjects were instructed to move their right hands toward the target 

represented in a 3D space with a visual movement cue during the experiment. 

Visual stimuli were presented on screen with a STIM2 system (Neuroscan, El 
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Paso, USA). At the beginning of each trial, subjects were instructed to hold 

the index finger of the right hand on the sphere in the center of the screen for 

4s. After that, a target sphere connected with the line was presented randomly 

in one of four corners for 1s. Participants were instructed to reach their right 

hand toward the target and return to the center as quickly and accurately as 

possible within the given time. This center-out task was repeated in 120 trials 

per session. All subjects repeated the session twice. Experiments were 

approved by the Institutional Review Board (IRB) of Seoul National 

University Hospital (approval number: 1105-095-363). They were 

performed under the Declaration of Helsinki.  

During the experiment, 306 channels of the whole-head MEG system 

(VectorView TM, Elekta Neuromag, Finland) measured the subject’s brain 

activities. The sensors were distributed in 102 locations. On each location, 

two planar gradiometers and one magnetometer were positioned. 

Simultaneously, a three-axis accelerometer on the subject’s index finger 

measured the kinematics of hand-reaching movement. For both signals, the 

sampling frequency was 600.615Hz.  

 

4.2.2. Signal Preprocessing 

Although the whole-head MEG system measured the brain activity, I only 

used the 68 gradiometers in the 34 locations to decode the kinematics of 

hand-reaching movement. The gradiometers had a better signal-to-noise 
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ratio (SNR) than magnetometers in measuring cortical signals (Hämäläinen, 

Hari, Ilmoniemi, Knuutila, & Lounasmaa, 1993). Furthermore, 34 locations 

around parietal regions were known to represent center-out reaching 

movement (Waldert et al., 2008; H. G. Yeom et al., 2013).  

In the signal preprocessing, the signals of the MEG sensors were 

0.8Hz high pass filtered. Then, the signal artifacts, such as electrooculography 

(EOG) and electrocardiogram (ECG), were corrected by independent 

component analysis (ICA). After artifact correction, the signals were filtered 

with a bandpass of 0.5Hz - 8Hz. Then, the filtered MEG signals were down-

sampled to 50Hz (20ms of intervals). On the other hand, the accelerometer 

signals were filtered with a bandpass of 0.2Hz – 5Hz and down-sampled to 

50Hz. Then, the linear trends were corrected. Thus, the individual data shapes 

were [240 trials X 141 time-points X 68-gradiometer channels] and [240 

trials X 151 time-points X 3-axis of accelerometer].  

Next, the cortical source activities of each trial were estimated from 

the preprocessed MEG sensor data. Since the individual MRI data were not 

acquired, I projected the MEG sensors on the template brain data. The 

template brain was the FreeSurfer average brain (Dale, Fischl, & Sereno, 1999; 

Fischl, Sereno, & Dale, 1999; Fischl, Sereno, Tootell, & Dale, 1999). I 

computed a forward solution of MEG sensor space and FreeSurfer average 

(FsAverage) source space. Then, the inverse solution was computed by a 

minimum-norm inverse operator. The estimation method was dynamic 



 

 ３０ 

statistical parametric mapping (dSPM) (Dale et al., 2000). The whole 

preprocessing procedures were done with a Python software package for 

M/EEG processing, MNE (Gramfort et al., 2013). 

 

4.2.3. Deep Neural Network Model 

A model with a high decoding ability was needed to accurately infer the 

relationship between cortical source activity and each kinematic parameter. 

To this end, I used a state-of-the-art model called DNN. Since DNN is more 

Figure 4-1. Deep Neural Network based decoding model. DNN models for decoding 

kinematic trajectories from neural signal are described. The basic architecture is Long 
Short-Term Memory (LSTM), a specific type of Recurrent Neural Network (RNN) 
for processing time-series dynamics of neural signals. (A) The specific architecture of 

LSTM, (B) Decoding model structure, an 8-layerd deep neural network model. 
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biologically plausible than conventional linear regression, motor kinematic 

parameters can be more accurately decoded by the DNN. A recurrent neural 

network (RNN) architecture was selected among various neural network 

architectures. RNN is appropriate for decoding time-series or sequential data 

(Petneházi, 2018). The specific architecture type of RNN was Long-short 

term memory (LSTM; Figure 4-1A) (Hochreiter & Schmidhuber, 1997). 

LSTM can process time-series data by adjusting states cumulated from the 

past (memory) and updating them with current information. This process can 

effectively address the vanishing gradient problem when the model is fitted 

through error backpropagation through time. An overview of the LSTM 

operation can be summarized in the following equations. ‘Gates’ in the LSTM 

can update time-series (or sequencing) information and apply it to the current 

feature. First, LSTM concatenates current data (𝑥( ) and past information 

(ℎ()!) and then expresses them to gates. The forget gate notated in equation 

4-1 adjusts memories (called ‘state (𝐶)’) conveyed from the past state (𝐶()!) 

by the forgetting ratio. Here, the function 𝑔 has a sigmoid function. Thus, 

the forget gate adjusts the amount of data from the past. In equation 4-2, the 

input gate decides how much information should be saved in memories. 

Adding forgotten memories and new information from the input gate makes 

a new state of memories (𝐶() (equation 4-3). Finally, the current decoded 

output is made by multiplying sigmoidal information and the vector of 

memories, as noted in equations 4-4. 
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(4-1) 𝑓( = 𝑔3𝑊*	[𝑥( , ℎ()!]4, 𝑓𝑜𝑟𝑔𝑒𝑡	𝑔𝑎𝑡𝑒 = 𝑓(	⨀	𝑐()! 

(4-2) 𝑖( = 𝑔(𝑊+ 	[𝑥( , ℎ()!]), �̃�( = tanh(𝑊, 	[𝑥( , ℎ()!]),  

𝑖𝑛𝑝𝑢𝑡	𝑔𝑎𝑡𝑒 = 	 𝑖(	⨀	�̃�( 

(4-3) 𝑐( = 𝑖𝑛𝑝𝑢𝑡	𝑔𝑎𝑡𝑒 ⊕ 𝑖𝑛𝑝𝑢𝑡	𝑔𝑎𝑡𝑒 

(4-4) 𝑜( = 𝑔(𝑊-	[𝑥( , ℎ()!])  ℎ( = 𝑜(	⨀	tanh	(𝑐() 

 

A bidirectional LSTM (bLSTM) was used to increase decoding 

performances so that time series computation by LSTM was done 

bidirectionally (Schuster & Paliwal, 1997). The model had eight layers, 

including an input layer with a sequencing function, two layers of bLSTM 

with two batch-normalization layers to cope with gradient vanishing and 

overfitting problems, and two dense layers. The last dense layer is the 

regression layer which made the 3-axis coordination of kinematic parameters 

in a 3D space. Figure 4-1B illustrates the structure of the bLSTM model. The 

bLSTM model comprises 3,083,267 parameters (weights) and includes two 

bLSTM with a layer normalization layer and two fully connected dense layers. 

The last dense layer predicted the three-axis coordination of each motor 

kinematics. The summary of the model is described in Table 4-1. The model's 

initial state was sampled from the Glorot normal distribution (Glorot & 

Bengio, 2010).  
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Table 4-1. A detailed description of the DNN model’s architecture 

Layer name  
(activation) 

Number of  
parameters 

Output shape of 
the layer 

Note 

Input - [Batch, 151, 445] 
[Batch size, time- 

points (tps), number 
of sources] 

Lambda 
(Sequencing) 

- 
[Batch, 141, 11, 

445] 

Sequencing time- 
series signals into  

20ms bin 

bLSTM 
(tanh) 

1,437,696 [Batch, 141, 512] 
Many-to-one 

LSTM 

Batch 
Normalization 

- [Batch, 141, 512]  

bLSTM 
(tanh) 

1,574,912 [Batch, 141, 512] 
Many-to-many 

LSTM 

Batch 

Normalization 
- [Batch, 141, 512]  

Dense 

(ELU) 
65,664 [Batch, 141, 128]  

Dense 
(linear) 

387 [Batch, 141, 3] 
Output layer, 3-axis  

coordinations 

Total number  
of parameters 

3,083,267   

 

 

4.2.4. Model Training and Evaluation 

For the model training, I split the individual dataset into five-fold. Four (196 

trials) were used for training, and the other (48 trials) for testing. In addition, 

I applied five-fold cross-validation methods to evaluate the whole dataset. 

Thus, the accuracy of individual subjects was the average of five-fold cross-

validation. Then, the input data were normalized through the Min-Max 

scaler. By the scaler, the range of input data was between 0.0 and 1.0. It helps 
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make the model’s gradient follow the global minimum point. In addition to 

the data normalization, the weights of the DNN models were initialized.  

The mean absolute error function ( MAE(𝑌, 𝑌+	) , (equation (5)) 

computed the loss between predicted (𝑌+) and real (𝑌) trajectories of each 

kinematics. The learning rule for optimization was Adaptive moment 

estimation (Adam) (Kingma and Ba, 2014). For the model training, I set the 

learning rate for optimization to 1E-3. In addition, beta1 and beta2, the 

exponential decay rates of the Adam optimizer, were set to 0.9 and 0.99. 

  

(1) MAE3𝑌, 𝑌+4 = !
.
∑P𝑌+ −	𝑌/QP 

 

For efficient training, mini-batch training methods were used (Li, 

Zhang, Chen, & Smola, 2014). I set the mini-batch size to eight. Thus, the 

optimizer updated the models’ parameters per eight trials. The model was 

trained by iterating the whole train dataset 100 times. During the training, I 

only saved the parameters which produced the lowest validation error. 

Furthermore, model ensemble methods were applied to increase the 

decoding performance (Zhou, Wu, & Tang, 2002). Here, I trained five DNN 

models for prediction. Each model had the same architecture but was 

initialized in different random states. The average prediction of five models 

determined the decoding result.  
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4.3. Results 

4.3.1. Decoding Accuracy 

I calculated the decoding accuracy through correlation between real- and 

decoded time-series trajectories of motor kinematics (Figure 4-2). The first 

approach was calculating cross-correlation (Figure 4-2A). The result shows 

that the correlation peaks at the 0-lag point in every subject. Then, Pearson's 

Figure 4- 2. Decoding accuracy. (A) Mean of normalized cross-correlation (NCC) 

between real and predicted motor kinematics. (B) Mean of Pearson’s correlation. (C) 

Pearson’s correlation of individual data. 
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correlation was calculated between real kinematic parameters and decoded 

ones (Figure 4-2B and C) to evaluate the performances of DNN models. The 

mean correlations indicated that every motor kinematic parameter was 

decoded with a significantly high correlation (r > .811, p < .001). Velocity (r 

= .858, SEM = .026) showed the highest mean value of correlation, followed 

by position (r = .854, SEM = .024) and acceleration (r = .811, SEM = .025). 

Nevertheless, their differences were insignificant (F (2, 24) = 1.385, p = 0.270).  

 

4.3.2. Trajectories of Motor kinematics Predicted by DNN models.  

Figure 4-3 shows the predicted trajectories of acceleration and velocity, and 

the predicted trajectories of hand positions are presented in Figure 4-4. In 

both results, the predicted trajectories of motor kinematics seem to follow the 

real trajectories. Furthermore, in addition to the position directly predicted by 

DNN models, both the positions obtained by integrating the predicted 

velocity and acceleration were recovered. Figure 4-5 illustrates the predicted 

trajectories of the hand-reaching movement of individual subjects in 3D space. 

Overall results presented that the DNN models could decode the motor 

kinematics of hand-reaching movement from the cortical source activities. 
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4.4. Discussion 

4.4.1. Decoding time-series motor kinematics via DNN Model 

This study demonstrates that DNN models can significantly decode the time-

series motor kinematics of hand-reaching movement from the cortical source 

signals. Furthermore, I could decode the various motor kinematics of hand-

reaching movements, such as acceleration, velocity, and position, from the 

same cortical source signal. This result means that the DNN models 

significantly learned the time-series features of neural signals to process 

acceleration, velocity, and position. Furthermore, this result implies that the 

spatiotemporal features of brain signals might exist according to motor 

kinematics. The functional brain areas for processing motor components will 

be identified if these features can be visualized. 

Figure 4-3. The 2D plots of real and predicted hand-reaching acceleration (A) and 
velocity (B). The black solid lines represent the real trajectories of motor kinematics 

and the dotted color lines are predicted ones. 
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4.4.2. RNN Architecture for Decoding Time-series Neural Signals 

Since Krizhevsky, Sutskever, and Hinton (2017) employed a deep learning 

architecture, the convolutional neural network (CNN) is the most frequently 

used. CNN architecture shows strong performance for image processing. 

Implementation of DNN models for BCI has also been developed based on 

CNN. For example, EEGNet (Lawhern et al., 2018) has shown that CNN-

based architecture could decode various behavior and cognitive states from 

EEG features such as P300, the error-related negativity (ERN), and sensory-

motor rhythm (SMR). In addition, this model showed better accuracy for the 

BCI tasks than the conventional ML models. 

Figure 4-4. Normalized trajectories of hand-reaching position recovered from 
decoded kinematic parameters per axis and directions. I calculated position from the 

decoded acceleration and velocity by integrating them. 
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I also considered CNN a candidate model but determined that the 

RNN architecture was more suitable for processing brain signals since 

characteristics of brain signals include spatial (brain areas) and temporal 

features simultaneously. However, the proposed CNN models for BCI are 

implemented based on the image processing model. Therefore, such models 

can process the spatial features of brain data but are limited in processing 

temporal features.  

On the other hand, RNN has an advantage in processing long-term 

Figure 4-5. Recovered trajectories from motor kinematic parameters. The first on the 

left side shows real trajectories. Others are decoded. Decoded trajectories were 
calculated from decoded kinematic parameters by integrating them. For example, 
acceleration kinematics was decoded by Deep Neural Network (DNN) and then 

integrated into position coordination. White dots in the center of plots were 

initiation-point of movement. 
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temporal features (Petneházi, 2018; Schuster & Paliwal, 1997). However, 

processing long-term temporal features can cause a problem of long-term 

dependencies (Y. Bengio, Simard, & Frasconi, 1994), in which the early 

information in the hidden layer vanishes during propagation. To address the 

problem, I employ LSTM and bidirectional RNN architecture. This 

architecture helps the neural information of previous time points propagate 

toward the latest time points. Furthermore, such a design allows the DNN to 

decode time-series of motor kinematics from the complex brain signals.  

 

4.4.3. Limitation 

Although the DNN models learn the neural features for processing the motor 

kinematics, they are hard to identify since the model comprises multiple 

hidden layers and millions of parameters. Such limitation is one of the 

challenges in employing the DNN model for investigating the relationship 

between input and output data. In the next chapter, I will try to identify the 

neural features by decomposing the complex DNN models with explainable 

artificial intelligence (XAI) technique.   
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Chapter 5. Identification of Cerebral Cortices for 

Processing Motor Kinematics Using DNN and 

Explainable Artificial Intelligence 

 

5.1. Chapter Introduction 

 

The results of Chapter 4 suggest that the DNN model learns the relationship 

between cortical source activity and motor kinematics, such as acceleration, 

velocity, and position since the decoding performance was significant and 

high. Therefore, I speculated that analyzing the decoding features hidden 

inside the DNN models allows me to identify the cortical areas processing 

each motor kinematics. Since the decoding performance on each motor 

kinematics does not differ, I hypothesized that the cortical representation for 

the acceleration, velocity and position might differ. 

However, one of the most noticeable shortcomings of the DNN 

model is that the model works as a ‘black box’. The inner structure of the 

model is composed of complex connections between multiple layers consisting 

of millions of parameters. Although decoding performance is excellent, it is 

hard to identify neural features that the DNN model uses. To open the ‘black 

box’, explainable AI (XAI), I employed another state-of-art method in this 

study to evaluate the cortical area’s contribution inside the DNN model for 
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decoding each kinematic parameter. This method can evaluate the 

contribution of input neural data when DNN models decode an output 

(Hoffman, Mueller, Klein, & Litman, 2018). These approaches allowed us to 

construct a high-performing decoding model to decode each kinematic 

parameter and to identify large-scale cortical representation based on the 

cortical area’s contributions inside the high-performing model for each 

specific kinematic parameter. 

 

 

5.2. Materials and Methods 

5.2.1. Data information 

Here, I decomposed pre-trained DNN models introduced in Chapter 4. Those 

models decoded time-series motor kinematic parameters from the cortical 

source signals. In the decoding, I employed twenty-five models (five-fold 

cross-validation X five-ensemble models).  

 

5.2.3. Explainable Artificial Intelligence (XAI) 

Although a DNN model showed a powerful decoding performance, it has a 

shortcoming in explaining the model itself. The DNN model consisted of 

millions of trainable parameters (known as 'neurons'). Furthermore, the 

complex interactions between stacks of layers within the DNN models made 

it hard to explain their mechanism.  
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For this shortcoming, the XAI technique is currently drawing 

attention. (Ancona, Ceolini, O' ztireli, & Gross, 2017; Hoffman et al., 2018). 

XAI evaluates the contribution of each input data characteristic in computing 

the model's prediction. In the present study, I decomposed the DNN models 

for decoding the motor kinematics through the XAI technique. Thus, I could 

map the contribution of each cortical area for decoding each kinematic 

parameter. 

I employed an axiomatic attribution method named ‘Integrated 

Gradients’ (IG) (Sundararajan, Taly, & Yan, 2017). Figure 1-5 illustrates an 

intuitive example of which the IG calculated the attribution of the ‘giant 

panda’ image from the neural network image classifier model. IG follows two 

axioms called ‘Sensitivity’ and ‘Implementation invariance’. If the input data 

(𝑥) and their baseline (�̅�) had a single different feature, but different outputs 

came out, the feature should have a non-zero attribution. This axiom is 

sensitivity. The attribution might be distorted because the gradient-based 

method (Ancona et al., 2017) could violate this axiom. Methods such as 

DeepLift and LRP can fulfill this axiom. They try to fulfill the axiom by 

employing a baseline.  

Meanwhile, when two or more models predict the same outputs from 

the same input data concerning the model’s structures, the attribution of the 

data should be the same. This axiom is the implementation invariance. 

Unfortunately, although the gradient-based methods could fulfill it, DeepLift 
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and LRP violate this axiom. 

IG was designed to follow both axioms. The IG could be calculated 

through equation (6). A fundamental concept of IG is to calculate the 

difference between the input and the baseline by integrating the parameter. 

Here, the 𝐹(𝑥) is the DNN model. 

 

(6) IG(𝑥+) = (𝑥+ − �̅�+)	∫
$
$0$

!
1 𝐹(𝑎𝑥+ + (1 − 𝑎)�̅�+)𝑑𝑎 

 

The equation adjusted the proportion of input data and the baseline by 

constant ‘𝑎’. This constant is an interpolation constant that confounds the 

feature of input data. The equation is transformed into equation (7) after 

applying Reimann integration for implementation. If a partition value is large 

enough, the calculation output is approximated to integration.  

 

(7) IG2334-0(𝑥+) = (𝑥+ − �̅�+) ∗ 	∑
$
$0$
𝐹 Z�̅�+ +

5
2
(𝑥+ − �̅�+)[2

56!
!
2
 

 

Here, I set the number of steps in the Riemann approximation (𝑎) to 100, 

which should be enough to approximate equation (5). In addition, the 

baseline (𝑥/\ ) was set to be zero-matrix, which could represent a non-

movement state. Through this analysis, I could obtain twenty-five 

contribution matrices per subject.  
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5.2.3. Statistical analysis 

The contribution matrices were expressed as [240 trials 𝖷 445 areas 𝖷 

141 times] for every subject. These matrices were generalized with the 

following procedures. First, the trial dimension was averaged. Time-course 

contributions during reaching movement (0 ms onset from the visual cue to 

the offset of movement) were then averaged to reconstruct a representative 

contribution of each area. Representative contributions of 445 cortical areas 

were obtained per subject. Then, I tested the significance of the contribution 

of 445 cortical areas to decode each kinematic parameter. A one-sample t-

test was conducted for each kinematic parameter. The comparison baseline 

was set to be the mean value of the contribution. Areas with significantly 

higher contributions than the mean (p < .05 level) were left. As a result, large-

scale cortical maps were made according to each kinematic parameter. 

Cortical areas within each map were categorized into two groups: 

shared areas and dominant areas. The notation ‘shared’ meant that the 

intersecting set of areas significantly contributed to all kinematic parameters. 

On the other hand, the notation ‘dominant’ indicated that the set of areas 

significantly contributed to specific kinematic parameters. The dominant 

areas were different sets of areas for the other two. These areas were marked 

on the FreeSurfer inflated surface for visualization (Figures 5-1 to 5-4). 

 

5.3. Results 
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5.3.1. Shared areas 

I could identify those 35 labels that significantly contributed to predicting all 

motor kinematics (p < .05) (Figure 5-1). These shared areas mainly consisted 

of the inferior parietal lobule (IPL), such as bilateral supramarginal gyrus 

(SMG, BA40), Brodmann area 5 (BA5), parts of left angular gyrus (AG, 

BA39). In addition, adjacent areas in the temporal lobe and occipital cortex, 

such as left occipital association areas (BA19), including V3A and right V2 

area (BA18), were also included in the shared areas.  

 

5.3.2. Acceleration-dominant areas 

I could identify 40 labels in the contralateral motor cortex and ipsilateral 

visual areas (Figure 5-2), significantly contributing to acceleration decoding. 

Such areas included the contralateral arm and hand regions of M1 (BA4) and 

S1(BA2, BA3), a supplementary motor area (SMA, within BA6), and an 

inferior part of DLPFC (BA46). In addition, the ipsilateral visual association 

area (BA19) contributed to acceleration decoding.  

5.3.3. Velocity-dominant areas 

Twenty-five labels contributed only to velocity decoding. These areas were in 

the contralateral parieto-frontal reaching network, including the dorsal part 

of the premotor cortex (PMd within BA6), parts of BA5, the medial part of 

IPS (mIPS), an anterior part of DLPFC (BA10), and a part of bilateral AG. 



 

 ４７ 

Like acceleration areas, some parts of the right BA18 within the visual areas 

were also significant (Figure 5-3). Ventral and posterior parts of the bilateral 

superior temporal sulcus (STS) also significantly contributed to velocity 

decoding. 

5.3.4. Position dominant areas 

Figure 5-1. Shared areas. Color-marked (green) areas are shared areas that 

significantly contribute to every kinematic parameter. Because the significance is 
different across the parameters, the level of significance is not presented. Lines on the 

cortical source surface is borders that separates Brodmann’s area (Van Essen, 2005). 
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Forty-seven areas for position decoding were identified in the bilateral visual 

area for spatial processing and the ipsilateral motor cortex for saccadic eye-

movement control. Figure 5-4 illustrates the position-dominant areas. These 

areas consisted of parietal to occipital areas such as the lateral IPS (LIP), a 

part of the superior parietal lobule (BA7), and contralateral superior parieto-

Figure 5-2. Acceleration dominant areas that contribute to decoding for reaching 
acceleration only. Color-marked areas significantly contributed to decoding for 
reaching acceleration from source activity. Computed significance was plotted on the 

Freesurfer average source space. At the bottom of the figure, brightness means the 
significance level. Source space is displayed in split view. Columns correspond to each 
hemisphere. Frontal, lateral, parietal, and dorsal views of the brain are displayed in 

each row. Lines on the cortical source space is borders that separates Brodmann’s 

area (Van Essen, 2005). 
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occipital cortex (SPOC) known as the junction of SPL and lateral parieto-

occipital sulcus. In addition, I found the bilateral extra-striate cortex around 

the V3-V3A complex in BA19 only for position decoding. Furthermore, the 

ipsilateral motor cortex, such as the face region of M1 and S1, frontal eye 

field (FEF, BA8), superior frontal regions with supplementary eye field (SEF), 

and the posterior part of DLPFC (BA9) also significantly contributed to 

Figure 5-3. Velocity dominant areas that contribute to decoding for reaching velocity 

only. Color-marked areas significantly contributed to decoding for reaching velocity 
from source activity. Computed significance was plotted on the Freesurfer average 
source space. Columns correspond to each hemisphere. Frontal, lateral, parietal, and 

dorsal views of the brain are displayed in each row. Lines on the cortical source space 

is borders that separates Brodmann’s area (Van Essen, 2005). 
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position decoding. 

 

5.4. Discussion 

5.4.1. Mapping cortical areas for movement kinematics with DNN and XAI 

technique 

Through a DNN model and XAI, I could uncover the specific cortical 

Figure 5-4. Position dominant areas that contribute to decoding for reaching position 
only. Color-marked areas are significant parcellations that contribute to decoding 
for reaching position from source activity. Computed significance was plotted on the 

Freesurfer average source space. Columns correspond to each hemisphere. Frontal, 
lateral, parietal, and dorsal views of the brain are displayed in each row. Lines on the 

cortical source space is borders that separates Brodmann’s area (Van Essen, 2005). 
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representation for each kinematic parameter, such as acceleration, velocity, 

and position. For the DNN models, I then used XAI to extract cortical 

representation embedded in the DNN model. Therefore, I could distinguish 

cortical maps for acceleration, velocity, and position. 

This approach allows us to overcome the limitations of previous 

studies on single neurons and large-scale non-invasive cortical activity. 

Studies on single-neuron activity and motor kinematic parameters have found 

a relationship between motor neuron activity and kinematic parameters using 

a computational model (Ashe & Georgopoulos, 1994; Moran & Schwartz, 

1999; Wang et al., 2007). Although such a method has a fine spatial resolution, 

the coverage was too focal to map the cortical activity across the whole brain 

corresponding to each motor kinematic parameter. To overcome this 

limitation, whole-brain activity was measured during reaching movement 

with a non-invasive method. DNN models learned relationships between 

large-scale cortical sources and kinematic parameters. XAI then identifies 

DNN models’ attributions for kinematic parameters for large-scale cortical 

maps. Although the spatial resolution of this approach is lower than the 

single-neuron activity, it is enough to segregate large-scale cortical 

representation for each kinematic parameter. 

Another method, the coherence between non-invasive MEG source 

signals and motor kinematic signals (Bourguignon et al., 2012; Jerbi et al., 

2007), has the advantage of measuring the whole brain activity for motor 
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kinematic parameters. However, it is limited because coherence maps of 

kinematic parameters are superimposed and hard to distinguish. This might 

be because the spatial resolution is too low to segregate cortical 

representations according to each kinematic parameter.  

Although a neural network model has a high decoding ability, it is 

difficult to know what happens inside them since it consists of multiple hidden 

layers of hundreds of thousands of parameters (here, about 3,000,000 

parameters of 8 layers). Currently, there are approaches to explain the inside 

of a neural network model. One of them is the XAI method. It can map the 

attribution of models by calculating the contribution of each part of input 

data for decoding output results (Hoffman et al., 2018). Using such a method, 

features used by neural network models could be extracted and mapped from 

the input data. Based on this point, I employed an XAI method for 

neuroimaging data. One of various XAI methods, IG (Sundararajan et al., 

2017), was used in this study. This method extracted cortical areas that 

contributed to decoding acceleration, velocity, and position from the DNN 

model. I mapped contributing areas and segregated them into dominant areas 

to identify cortical representations according to kinematic parameters. In 

cortical maps, there were also shared areas that appeared for all kinematic 

parameters. Therefore, it can overcome the limitation of previous large-scale 

coherence studies, which could not distinguish each kinematic parameter. 

A machine learning (ML) model for decoding behavior from non-
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invasive neural signals and a method to analyze neural features used by the 

model can provide more reliable neural features than conventional 

methodologies such as PCA (Hatamimajoumerd, Talebpour, & Mohsenzadeh, 

2020). For example, hand direction (Wang et al., 2010), different hand 

movements (Belkacem, Nishio, Suzuki, Ishiguro, & Hirata, 2018), or invariant 

visual object information (Isik, Meyers, Leibo, & Poggio, 2014) could be 

classified from the MEG signals through LDA and support vector machine 

(SVM). The neural features used by the ML model reflected robust findings, 

such as the activity of motor cortices for movement or the role of posterior 

occipital regions for visual information. However, the conventional ML 

method also seems insufficient to sensitively identify the cortical 

representation of various components constituting a behavior. Beyond the 

conventional ML method above, this study increases the reliability and 

sensitivity by using the state-of-art and the biologically plausible method 

called the DNN model. The DNN model can increase the decoding accuracy 

higher than in a previous study using a conventional time-series ML model 

(H. G. Yeom et al., 2013). Furthermore, I can extract neural features used by 

the high-performing models through another state-of-art method, XAI. As 

a result, I can identify cortical areas for acceleration, velocity, and position 

from the directional reaching movement. 

The results showed that cortical areas for acceleration, velocity, and 

position within the visuomotor network could be identified. Furthermore, 
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among these areas, both shared, and dominant characteristics were observed 

across areas of acceleration, velocity, and position. Thus, I segmented the 

cortical areas into shared and dominant and discussed them below. 

 

5.4.2. Shared areas representing sensory processing and action goal selection 

for reaching movement. 

Cortical areas of acceleration, velocity, and position could be obtained from 

DNN models and XAI. Some areas overlapped. We defined these overlapped 

cortices as shared areas. We speculated that there would be common functions 

in the neural system for all kinematic parameters. Sensory integration and goal 

selection functions would be essential to produce common kinematic 

attributes. First, we considered sensory integration as a common kinematics 

parameter. For successful reaching movement, our brain has to integrate 

various kinds of external sensory information from limbs and organs to 

minimize motor errors (Sober & Sabes, 2005). Goal-selecting behavior may 

represent a common attribute of all kinematic parameters. Although 

kinematic parameters have unique behavioral characteristics, their common 

purpose is to set and reach a goal of the movement.  

My DNN models could identify cortical areas according to kinematic 

parameters and shared functions for them. The present study identified shared 

areas as SMG, superior parietal lobule, and AG within PPC by DNN models 

and XAI. PPC converts external sensory information of limbs to an internal 
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kinematic model and then locates them in the desired location (Buneo & 

Andersen, 2006). Since external sensory information input for each kinematic 

parameter is integrated into the internal kinematics model in the neural system, 

shared areas seem to contribute to all kinematic parameters. A distinct feature 

of shared areas is that these areas are centered around the bilateral SMG. This 

region is related not only to somatosensory integration but also to the function 

of goal selection. Fogassi et al. (2005) have found that neurons in the primate 

left IPL, which includes SMG and AG, represent action goals. Inducing a 

virtual lesion on this site by rTMS can cause a delay in goal-oriented action 

(Tunik, Lo, & Adamovich, 2008). Based on the functions of these areas, we 

speculate that shared areas might be identified for all kinematic parameters 

based on these two behaviors. 

 

5.4.3. Dominant areas showing unique characteristics for decoding each 

kinematic parameter in 3D space. 

I identified that each kinematic parameter was identified in the cortices of the 

motor-related network. In our study, acceleration areas consisted of the 

contralateral motor cortex, such as the hand and arm regions of M1 and S1, 

SMA, and a subregion of DLPFC (BA46). This result indicates that these 

motor cortices can best explain behavioral attributes of acceleration. Contrary 

to previous studies (Ashe & Georgopoulos, 1994; Bourguignon et al., 2012; 

Jerbi et al., 2007; Kadmon Harpaz, Ungarish, Hatsopoulos, & Flash, 2018; 
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Moran & Schwartz, 1999; Wang et al., 2007) that the motor area was related 

to all kinds of movement kinematic parameters, I identified that these motor-

execution areas only represented acceleration. Although findings of the neural 

relationship between the M1 (or motor region) and movement acceleration 

have also been presented (Bourguignon et al., 2012; Kadmon Harpaz et al., 

2018), they could not address the issue that arose in the overlapped 

relationship between motor cortices and all kinds of kinematic parameters 

since they did not include velocity or position. Unlike previous studies, our 

study showed dominant cortical areas to produce acceleration using DNN 

models and XAI methods. 

In the reaching movement, behavioral attribution of acceleration is 

closely related to the control of muscle force. The force increases with the 

initiation of reaching movement from a stationary state. To reach the target, 

the force decreases for fine adjustment of limb action. The muscle force during 

a motor execution can be described as acceleration. M1 appears only in 

acceleration because the region is known to encode muscle force (Evarts, 1968; 

Kakei et al., 1999). In large-scale studies (Bourguignon et al., 2012; Jerbi et 

al., 2007), like M1, S1 is also found to be related to several kinematic 

parameters. I also found that S1 was significantly involved only in acceleration. 

It might be due to somatosensory processing for muscle control, such as 

proprioception (Tuthill & Azim, 2018). The interesting point was that 

different roles depended on the region within the premotor cortex 
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(Brodmann’s area 6, BA6), which involved movement preparation. SMA was 

shown to encode acceleration. 

On the other hand, the premotor area (here, PMd) was shown to 

encode velocity. I noted that SMA was involved in the initiation and execution 

of movement (Eckert, Peschel, Heinze, & Rotte, 2006; Krainik et al., 2001). 

Compared to the premotor area, which prepares a visual-guided movement, 

SMA encodes the initiation and execution of upcoming motor sequences 

(Roland, Larsen, Lassen, & Skinhoj, 1980; Roland, Skinhoj, Lassen, & Larsen, 

1980). Functions of contralateral sensorimotor areas and SMA can explain 

the behavior of humans to produce acceleration. These areas are presented in 

the acceleration dominant areas in our DNN models. 

Considering a behavioral characteristic of the movement, velocity is 

presumed to be the most crucial variable for preparing a reaching movement 

and visuomotor transformation. Participants prepared a reaching movement 

based on the velocity (or speed) because they intended to reach their hand 

and drawback to an initial point as fast as possible. Based on the behavior, 

cortices that accounted for the velocity appeared in regions for visuomotor 

transformation and motor planning. Areas that account for these functions 

are mIPS and PMd within the parieto-frontal network, which is one of the 

fundamental systems for visual-guided reaching movement (Burnod et al., 

1999). A parietal part of the network, mIPS, encodes reaching movement from 

visuospatial information of action space (Vesia & Crawford, 2012). The 
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encoded information is known to include action intentions (Michael Vesia & 

Davare, 2011). Considering the importance of mIPS in velocity decoding, it is 

presumed that the encoded information represents the velocity of movement 

rather than the position or acceleration. The encoded reaching movement was 

then transmitted to PMd through the parieto-frontal network. A frontal part, 

PMd, is a reaching region in the motor preparation area (Churchland, Yu, et 

al., 2006). For the velocity of movement, the velocity of upcoming reaching 

movement can be decoded from neural signals of PMd (Churchland, 

Santhanam, et al., 2006). After motor preparation based on the velocity was 

transmitted to areas for motor execution, the reaching movement could be 

executed using muscle control by acceleration. 

Cortical areas for the position were also identified from large-scale 

visuomotor cortices such as SPOC, LIP, FEF, and SEF. These regions are 

known to play a role in visuospatial processing and eye (or saccadic) 

movement control (R. Andersen, Bracewell, Barash, Gnadt, & Fogassi, 1990; 

Purcell, Weigand, & Schall, 2012; Vesia & Crawford, 2012; Vesia, Prime, Yan, 

Sergio, & Crawford, 2010). Positional information on limb movement is 

mainly encoded by visual processing. The first behavior participants took was 

capturing the target based on spatial information. They then established a 

movement space from the hand to the target. After starting the movement, 

participants tracked their hands in the space and continuously updated the 

displacement between the moving hand and the target to reach it accurately. 
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Since saccadic eye movement and a spatial process between a hand and the 

target in the action space are necessary for an accurate movement, visual-

motor areas significantly contribute to position decoding. I found the 

contribution of a visuospatial area called V3a of visual cortices. 

Along with visual space area, SPOC in the occipito-parietal junction 

(Vesia & Crawford, 2012) corresponds to a parietal reach region (PRR) of 

primates, which encodes reaching movement (Galletti, Kutz, Gamberini, 

Breveglieri, & Fattori, 2003; Vesia & Crawford, 2012). Disrupting the 

function of SPOC by rTMS stimulation can increase positional errors of 

reaching movement (Vesia et al., 2010). According to the gain fields theory, 

the receptive fields of this region can be modulated by gaze position, target, 

and hand position (Chang, Papadimitriou, & Snyder, 2009). PRR has encoded 

the displacement between the hand and gaze in a primate study (Blohm & 

Crawford, 2009). For hand position, saccadic eye movement information 

seems more important than motor information for reaching control. The 

saccadic eye movement along with the target and the reaching motion is also 

essential in addition to visuospatial information. Areas such as LIP, SEF, and 

FEF also appeared to contribute to position decoding. These areas are known 

to be related to the control of a saccadic eye movement. In the parietal part, 

LIP is known to encode a saccadic movement during reaching (R. Andersen 

et al., 1990). In the frontal part, SEF and ipsilateral FEF are known to initiate 

saccadic movement and oculomotor control (Purcell et al., 2012; Schall, 
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2004). Since ipsilateral motor-related areas are presented along with FEF, the 

contribution of these regions may also represent eye-related information. 

Identifying these areas for the position can also be due to peripersonal space 

processing between the hand and the target. An ablation study using primates 

has shown that lesions in FEF can cause inattention to stimuli presented in the 

space (Berti, Smania, & Allport, 2001). In humans, ipsilateral brain damage 

can cause neglect in the peripersonal space (Halligan & Marshall, 1991). 

Visuospatial areas in our results possibly reflect spatial processing between the 

participant’s hand and the target. 

Interestingly, the results segregated a specific cortical area into sub-

regions according to kinematic parameters. It is typically found in the 

intraparietal sulcus, DLPFC, and occipital lobe. As discussed, DNN models 

used neural information from subregions within the intraparietal sulcus 

according to the velocity and position. The identified IPS regions matched 

previous findings (Andersen et al., 1990; Vesia et al., 2010). Within the 

DLPFC, an anterior part, a posterior part, and a more inferior part than the 

velocity part contributed to velocity, position, and acceleration, respectively. 

The well-known functions of DLPFC are attention and decision-making. 

However, DLPFC seems somewhat involved in movement control 

(Bourguignon et al., 2012; Jerbi et al., 2007; Ryun et al., 2014). As in the case 

of the intraparietal region, I speculate that a specific subregion of DLPFC 

might control corresponding kinematic parameters. To this end, further 
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research is needed to clarify the relationship between the subregion of DLPFC 

and each kinematic parameter.  

In cortical areas for kinematic parameters, functional lateralization 

across hemispheres is found according to motor-related functions. It seems 

likely that motor-related functions are processed in the contralateral cortex. 

In contrast, other functions, such as processes about the body's motion and 

space and goal-selection, are in bilateral or ipsilateral cortices. Current 

notions about motor behaviors are that limb is controlled by contralateral 

motor areas such as M1, PMd, S1, and BA7 (Bourguignon et al., 2012; 

Churchland, Santhanam, et al., 2006; Jerbi et al., 2007). In the present study, 

such contralateral motor cortex was valuable in cortices for acceleration and 

velocity. This is because acceleration is related to muscle control, and velocity 

is processed through parieto-frontal network for visuomotor transformation. 

I speculate that motor control or sensory-motor transformation is required 

for kinematic parameter processing. It may involve the role of contralateral 

cortices. On the other hand, concerning spatial processing or action goal-

selection, such lateralization seemed to be weaker. V3 and SMG were found 

bilaterally. Some areas in the ipsilateral hemisphere were found to be involved 

in kinematics processing. Such ipsilateral cortices were found in the visual 

association area of acceleration areas and the primary sensorimotor area 

within shared areas. Unfortunately, the roles of the ipsilateral hemisphere for 

visuomotor behavior are unclear. The contribution of ipsilateral areas might 



 

 ６２ 

be due to the processing of accelerating motion of biological limbs 

(Limanowski, Sarasso, & Blankenburg, 2018; Schlack, Krekelberg, & 

Albright, 2007) or an inter-callosal inhibition of motor cortices to facilitate 

kinematics control of contralateral limbs (Kobayashi, Hutchinson, Theoret, 

Schlaug, & Pascual-Leone, 2004). Further research on functional 

lateralization of the kinematics map would be necessary. 

Current non-invasive neuroimaging methods have been based on the 

simple relationship between neural- and behavioral signals, such as cortical-

kinematic coherence (Bourguignon et al., 2012; Jerbi et al., 2007) or general 

linear model (Yeom, Kim & Chung., 2013). However, sensitivity is limited to 

segregating cortical representation according to the various cognitive 

components hidden in a behavior. Here, a state-of-art methodological 

scheme is presented to complement the limitation. With the DNN model and 

XAI, it is possible to sensitively map the kinematic representation of cerebral 

cortices hidden inside the biologically plausible neural model. Beyond the 

representation of motor components, I hope to apply this methodological 

scheme in exploring neural representations of various human behavior and 

cognition, such as semantic representation according to words, the neural 

representation of visual objects, or kinetics of movement. 

 

5.4.4. Limitations 

The reliability of the maps, which XAI could extract, depends on the 
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performance accuracy of neural network models (Lawhern et al., 2018). If 

there is a model that can perfectly decode kinematic parameters from neural 

data, cortical areas for these parameters will be identified more precisely. 

However, our model did not reach that level. Nevertheless, since our DNN 

models significantly decoded all kinematic parameters above r = .80 (p < .001), 

I speculate that this performance is the current state-of-art. Thus, I consider 

those cortical areas reliable enough to understand the kinematic parameters. 

In the future, a more biologically plausible and more accurate neural network 

model may produce a more reliable and sophisticated cortical contribution 

map. 

Currently, many kinds of XAI methods are being implemented. Thus, 

results may vary depending on the XAI method (Ancona et al., 2017). In the 

current study, I implemented a method called IG. The method is known to 

effectively control issues derived from two axioms that could not be fulfilled 

by other previous methods (Sundararajan et al., 2017). I expect that more 

sophisticated imaging will be possible by developing XAI methodologies in 

the future. 
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PART III. General Conclusion and Perspectives 

 

Chapter 6. General Conclusion and Perspectives 

	

6.1	General	Conclusion	

Throughout studies, cortical areas for motor kinematics, such as acceleration, 

velocity, and position, were identified using DNN models and explainable AI. 

The cortical representation of the kinematic process was identified in two 

folds: shared and dominant areas. The findings regarding shared areas imply 

that multisensory integration and motor goal selection are crucial for 

producing a reaching movement. On the other hand, dominant areas 

represent unique characteristics of acceleration, velocity, and position in our 

brains. Each characteristic was presented as a cortical map which appeared 

according to a cortical characteristic for visuomotor functions. These findings 

suggest that our brain can process movement by decomposing it into various 

kinematic components, like how we describe the physical world.  

 

6.2.	Perspectives	

Throughout the studies, I showed that the deep neural network (DNN) could 
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decode various motor kinematic parameters. In addition, explainable AI (XAI) 

enables me to decompose complex neural network models and to identify the 

cortical areas for each motor kinematic parameter. Such findings suggested 

that the cortical processing of motor kinematics appears differently depending 

on its behavioral characteristics. Along with the scientific implication, the 

findings also had practical implications in developing a practical motor BCI 

system to control a robotic limb. 

The results imply two points. The first is that the human brain may 

process motor behavior by dispersing it into various motor variables. Second 

is that various motor variables can be acquired from various cortical 

areas to develop efficient motor BCI (e.g., M1-acceleration, IPS-

velocity, and visual cortex-position). However, the spatial coverage in 

measuring brain signals might sometimes be limited. For example, invasive 

methods, such as electrocorticography (ECoG), ensure a high signal-to-noise 

ratio (SNR) (Lawhern et al., 2018; Waldert et al., 2008), but the spatial 

coverage is limited to several brain areas. Due to this limitation, researchers 

might have to acquire neural data from ‘related areas’, such as PPC (Vesia & 

Crowford, 2012), not the primary area like M1.  

Furthermore, considering those findings, neural features contributing 

to decoding specific information might not exist even in the related areas. For 

example, since the IPS contributes to processing hand-reaching velocity and 

not to acceleration, the neural signals of IPS alone have a limit to predicting 
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the acceleration of the hand. In this case, the neural signals of M1 should be 

mandatory. However, in many cases, covering both areas using invasive 

Figure 6-1. Signal translation using MelGAN model. (A) Averaged signals (evoked 
response) of each subject. The shaded areas represent the standard deviation. The third 
and fourth rows present the generated signals. The third row (M1(IPS)) is the IPS-

translated M1 signals, and the fourth row (M1(Noise)) is the nosie-generated M1 
signals. (B) Cross-correlation between signals. The maker on the line represents the 
maximal point of the correlation. (C) Pearson correlation between M1 and the other 

signals (IPS, IPS-translate M1, and noise-generated M1). The asterisk mark over and 
under the bar represents significancy. (D) Mutual information. (E) Frechet Inception 

Distance (FID) score. For the visibility, I reverse the score to FID-1. 
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methods could be challenging. 

Generating the artificial data could address the limitation by 

augmenting spatial coverage. This approach also allows investigators to infer 

and utilize unobserved data from observed data. The most promising model 

structure is the generative adversarial neural network (GAN) proposed by 

Goodfellow et al. (2020). GAN comprises two networks: the generator and 

the discriminator. The generator synthesis artificial data and the discriminator 

identifies the authenticity of the data (fake or real). Repeating the competition 

between the generator and the discriminator could refine the artificial data 

like real data. Furthermore, current research demonstrated that the data ‘style’ 

could be translated into another data style by GAN. For example, GAN 

translates horses in an image into a zebra (Zhu, Park, Isola, & Efros, 2017), 

or a man's voice into a female (Yamamoto, Song, & Kim, 2020). Although 

several works tried to generate artificial brain signals, mostly EEG (Roy, Dora, 

McCreadie, and Prasad, 2020; Hartmann, Schirrmeister, and Ball, 2018; 

Kwon & Im, 2022), those studies employ image generation GANs, not the 

signal. Unlike the image, neural signals comprised spectrotemporal features. 

Thus, a model that generates the signal based on those features could be a 

more suitable approach than employing an image generator. 

Thus, further works should aim to generating artificial brain signals 

for motor behavior from motor-related areas. I can provide a proof of 

concept for the idea and aim. I generate brain signals of M1 using a generative 
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adversarial neural network (GAN) designed for signal generation called 

MelGAN (Kumar et al., 2019).  

I find that the model can learned the spectrotemporal features of M1 

signals. At first, the signal waveforms of IPS and M1 appeared differently. 

However, when the model translated the IPS signal waveforms into M1, the 

waveforms changed similar to the M1’s signal waveforms (Figure 7-1A). 

Moreover, measuring the similarity quantitively shows the signal waveforms 

of M1 and translated signals were linearly similar (Figure 7-1B and C). In 

addition, the mutual dependencies appeared higher between the brain signals 

(M1-IPS and M1-IPS-translated M1) than the noise (Figure 7-1D and E). 

Furthermore, I also find that the acceleration trajectories of the hand-reaching 

Figure 6-2. Decoding real and generated brain signals through deep neural network 

(DNN) model. The architecture of DNN model is bidirectional Long-short term 
memory (bLSTM). (A) Individual subject’s average decoding accuracy for five-fold 
cross-validation. (B) Decoded trajectories of hand-reaching acceleration of Subject 

3. Dashed black lines are real trajectory, and colored lines are decoded trajectories. 
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movement can be decoded from the IPS-translated M1 signals (Figure 7-2).  

Such a results illustrates the signal generation model can learn the 

spectrotemporal features of motor cortex and infer the signals from the 

motor-related area. Moreover, although the translated signals were the 

artificially generated ones, those signals can work as brain signals for motor 

BCI.  

I know that the current the proof of concept had many limitations. 

For example, since the MelGAN model only can generate a single channel, 

the complex feature presented across the cerebral cortex are hard to generate. 

In addition, the dataset seemed small (240 samples per subject), so there might 

be a possibility of overfitting issue. Although I reduced the model and 

trainable parameters (4.6M to 1.23M) and stopped the training iterations to 

prevent overfitting, the fundamental approach to address current limitation 

should be increasing data samples. I speculate that designing GAN for multi-

channel signal generation can address the one of limitations. In addition, the 

framework for addressing small amount of data, such as transfer learning or 

knowledge distillation (Hinton, Vinyals & Dean, 2015), may work. The future 

work aims to address those issue and testing the proof of concept to invasive 

data. 
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설명가능한 인공지능과 인공 신경망을 통한 

대뇌의 운동 처리 규명에 관한 연구 
 

 

 

 

인간의 운동은 근육과 관절의 동작과 힘, 특히나 가속도, 속도, 위치로 표현되는 

운동학적 변인과 같이 운동을 구성하는 다양한 요소들로 구성되어 있다. 인간의 

뇌가 이러한 운동 요소들 처리하는 기전을 이해하는 것은 신경과학 연구에서도 

중요한 관심사 중 하나이다. 이러한 기전을 밝히는 것은 사지의 운동을 

예측하며 동작하는 뇌-기계 인터페이스(Brain-Computer interface, BCI)의 

개발과 발전에 대해서도 실용적인 활용이 가능하기에 중요하다. 

대뇌 신경세포의 활동을 관찰했던 단일-뉴런 기반의 고전적인 

연구들은 개별 뉴런들과 그 집합들의 활동과 운동의 속도, 위치, 그리고 가속 

간의 상관이 있음을 밝혔다. 하지만 각각의 운동학적 변인들이 요하는 운동적 

특징이 다르고, 피질 단위에서 선호하는 뉴런이 비율이 다른 점으로 보아 대뇌 

피질 전반에 걸쳐서 그 표상이 다르게 나타남을 예측할 수 있으나, 고전적인 

접근 방법은 측정 범위의 한계가 있어 운동학적 변인에 따라 나타나는 대뇌 

전반의 표상을 알 수 없었다. 뇌자도(MEG) 및 뇌전도(EEG)와 같은 비침습적 

방법론으로 측정한 가속도, 그리고 속력과의 상관 관계는 이러한 표상을 

어느정도 제시하나, 피질 영역에 따라 처리하는 변인을 알기에는 측정가능한 

면적 대비 공간적 해상도가 낮아 상호간에 중첩되어 보이는 문제가 있다. 

최근, 인공 신경망 기반 모델링을 통해 뇌 신호로부터 운동을 예측 
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가능하게 됨으로써, 본 연구에서는 운동학적 변인에 따른 신경 특징 또는 

표상을 고성능 인공신경망 모델 및 설명가능한 인공지능 (Explainable AI, XAI) 

방법론을 통해 식별할 수 있을 것으로 가정했다. 따라서 본 연구는 

심층신경망(Deep neural network, DNN)모델과 XAI 기술을 활용하여 대뇌가 

운동학적 변인들을 처리하는 기전을 식별하는 방법론을 제시하는 것을 목표로 

한다. 이를 위해 하기의 연구들을 진행하였고 그 결과를 제시하였다. 

먼저, 첫번째 실험 연구에서는 순환 신경망(Recurrent neural network, 

RNN)기반의 DNN 모델을 개발하여 네 개의 대상을 향한 팔 뻗기 운동에 

대한 운동학적 변인들의 시계열 궤적을, 운동 중에 측정한 MEG 신호에서 

추정된 피질 전파원 신호로부터 해독하였다. 본 연구의 결과로, DNN 모델은 

전파원 신호로부터 팔 뻗기 운동의 가속도, 속도, 그리고 위치에 대한 시계열 

궤적을 정확하게 예측하였으며, 그 결과는 통계적으로 유의하였다 (r > .811, p 

< .001).  

두번째 실험 연구에서는 XAI 기술을 사용하여 상기 연구에서 쓰인 

DNN 모델을 해석하여 각 피질 영역들이 각각의 운동학적 변인들을 

예측하는데 기여한 정도를 수치로 표현하는 새로운 접근법을 제시하였다. 

이러한 접근을 통해 하나의 피질 활동 지도로부터 가속도, 속도, 위치를 

처리하기 위한 기능적 영역들을 분리할 수 있었다. 본 연구의 결과로 운동의 

가속, 속도, 그리고 위치를 처리하기 위해 기여한 대뇌 피질 영역 별 기여도가 

서로 다르게 나타났다. 각각의 운동학적 변인들의 처리에 관여하는 것으로 

나타난 피질 영역들을 집합으로 묶었을 때, 모든 경우에서 유의했던 공유영역과 

특정 변인에서만 유의했던 지배 영역으로 식별되었다. 공유영역은 주로 

양반구의 연상회(supramarginal gyrus, SMG)와 대측 각회(angular gyrus, AG) 
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영역으로 이루어져 있으며, 운동 연구에서 운동을 위한 다중 감각 정보를 

통합하고 운동의 목표를 설정하는 인지 기능을 담당하는 것으로 알려져 있다. 

반면, 운동학적 변인에 따른 지배 영역들은 상호 배타적인 집합에 속하며, 서로 

다른 기능적 영역을 포함했다 (가속 영역-힘 및 근육 제어를 위한 대측 운동 

피질; 위치 영역-공간 처리 및 안구 동작 제어를 위한 시각-운동영역; 속도-

운동 정보 처리 및 운동 제어를 위한 두정-전두 네트워크). 이러한 영역들은 

운동학적 변인의 처리를 위한 운동의 성격을 명확히 반영하고 있었다. 

전반적인 연구들의 함의는 인간의 운동은 다양한 운동 요소들의 계산

을 통해 만들어지며, 이를 처리하는 피질 영역이 있음을 밝혔다. 이러한 영역들

의 활동으로 인해 다양한 운동 변인들이 분산되어 처리되기에 인간의 운동이 

매끄럽게 이루어질 수 있는 것이라 생각한다. 또한 BCI 개발에 있어서 본 연구

가 가지는 의미는, 다양한 운동 요소들을 예측하기 위해서는 대뇌 전반이 아니

라 특정 영역에서 특정한 정보를 얻어서 계산한다면 효율적인 BCI 개발로 이어

질 수 있다는 것이다. 이는 좁고 정해진 영역에서 고해상도의 신호를 측정할 수 

있는 침습적 BCI 시스템을 만드는데 있어 중요하게 활용할 수 있겠으나, 필요

한 영역의 신호를 얻지 못하면 그 정보 역시 얻을 수 없음을 의미하기도 한다. 

나는 이러한 한계를 극복하는 방법으로써, 인공지능 생성 모델 중 하나인 적대

적 생성 신경망 (Generative Adversarial Network, GAN)을 통해 운동 피질의 

신호의 시간주파수성 특징을 운동 관련 영역으로부터 추론하는 방법을 통해 해

결할 수 있을 것이라 생각하였고, 이에 대한 개념적 증명을 뒷받침 할 수 있는 

증거들을 제시하였다.  

 

주요어: 뇌-컴퓨터 인터페이스, 인공신경망, 신경 영상, 설명가능한 인공지능 
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