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Abstract

For a conformal field theory in an arbitrary dimension, we study the general solu-
tion of the conformal Ward identities for scalar n-point function in momentum space.
As discovered by Bzowski, McFadden and Skenderis in 2019, the solution is expressed
as an integral over (n — 1)-simplices in momentum space, which we will refer to as a
simplex integral. The n vertices of the simplex correspond to the n operator insertions.
The momenta running between vertices, subject to momentum conservation at each
vertex, become the integration variables. The integrand of the integral involves an ar-
bitrary function of momentum-space cross ratios. We prove the conformal invariance
of the simplex integral using a recursive structure most clearly visible when the func-
tion of cross ratios is a monomial in the cross ratios. As an application, we derive the
simplex representation of n-point contact Witten diagrams in a holographic conformal

field theory.

keywords: Conformal Field Theory, Simplex Integral
student number: 2015-20338
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Chapter 1

INTRODUCTION

For half a century, there has been much discussion about position-space n-point func-
tions in a conformal field theory (CFT) and the form of the general n-point functions
in position space has been known for 50 years [1]. However, momentum-space n-point
functions had been not much discussed for a long time, despite the usefulness for ap-
plications, which include various areas like cosmology, condensed matter, anomalies
and the bootstrap program. One of the most remarkable applications is the connection
with the recent study of inflationary correlators, where the de-Sitter isometries act on
late-time slices as conformal transformations. So once we know the general form of
CFT n-point functions in momentum space, we can then seek to bootstrap cosmolog-
ical correlators by supplying additional physical input (e,g., no collinear singularities,
appropriate flat-space limit, etc. For a sample of works, see [2—8].).

Yet, recently, several researches have yielded rich and crucial properties of momentum-
space n-point functions and most noteworthy is the finding of the expression for the
general momentum-space n-point functions by Bzowski, McFadden and Skenderis
[9,10]. Moreover, they found the useful structure of the simplex integrals. This paper
will review and follow the discussion of them.

In this thesis, the main goals can be divided into two parts. First, we give the

general form of n-point functions of CFT in momentum space as a simplex integral,



featuring an arbitrary function of momentum-space cross ratios constructed from the
integration variables. These cross ratios is the analogue of the position-space cross
ratios but they enter only via the integration variables. Second, as an application, we
derive the simplex representation for the simplest possible holographic correlators,
contact Witten diagrams in Ads/CFT, using two independent methods: one using the
star-mesh transformation from electrical circuit theory and the other by a recursive
application of the convolution theorem. And We also discuss how do we find the spe-
cific form of the function f (@) of the momentum-space cross ratios for this specific
example.

The layout of this thesis is as follows. we first briefly review the basic concept
of CFT, including conformal algebra, conformal correlation function and conformal
block in chapter 2. In chapter 3, we introduce a concept of basic integral transform and
give the expression for conformal Ward identities in momentum space. Chapter 4 is the
main part of this paper. We present the general scalar n-point function in momentum
space as a simplex integral. We also introduce a special case of the simplex integral,
mesh integral. Actually, whenever the functions of the cross ratios f is a monomial in
the cross ratios, the simplex integral reduces to the mesh integral. We show that the
mesh integral has a remarkable recursive structure and prove the conformal invariance
of the mesh and simplex integral. In chapter 5, we derive the simplex representation

for the simplest possible holographic correlators. We conclude in chapter 6.



Chapter 2

CONFORMAL CORRELATION FUNCTIONS

2.1 Conformal Algebra

To make our discussion self-contained, we present a brief review of the conformal
algebra in d > 2 dimensions. The conformal group consists of transformations of

spacetime which leave the metric tensor invariant up to a scale:

G (@) = A @g . (2). 2.1

For simplicity, we assume that the spacetime is Euclidean. In d > 2, the Euclidean

conformal group is SO(d + 1, 1). The finite transformations are known to be

2P =t + at, (Translation)
" = (1+ a)at, (Dilation)
2.2)
ot = M', T, (Lorentz rotation)
, ot — bHg?
' (Special conformal transformation)

122+ 0222



Taking the infinitesimal transformations, we can read off the generators of the confor-

mal algebra realized as differential operators,

P, =—i0,, (Translation)

D = —iz"0,, (Dilation)
(2.3)

Ly, = —i(z,0, — x,0,), (Lorentz rotation)

K, = —i(2z,2"0, — 1%9,). (Special conformal transformation)

The conformal algebra is realized as Lie algebra among differential operators,
(D, P,] = iP,,
[D, K| = —iKy,

[Kw P = 2i(guwD — L), 2.4)

[Kp, Luw| = i(gpuKs — g K),
[Po, Ly = i((gpulo — gpuPo),
[Lyws Lpo) = i(9vp Lo + GuoLvp — GupLve — GuoLyp)-

Physicists are interested in the role of conformal symmetry in a QFT. Let £ be the
function relating the new field @’ evaluated at the transformed coordinate z’ to the old
field ® at x:

' (2") = F(®(x)). (2.5)
For example, the action of a scale transformation on the field ®(z) defines the scaling

dimension A of ®:
d(\z) = A\"20(x). (2.6)

An infinitesimal transformation can be written as

o
$/}L:x#+€af§xa,
65F (2.7)
/ N a
'(2") = P(z) + € Sea
€

The generator GG, of an infinitesimal transformation acting on a field is defined as

0P (z) = @' (2) — P(2) = —ie"G,P(x), (2.8)



so that

Sat OF
iGa® = 0, — — . 2.9)
0€ 0€

Let T, be a matrix representation of an infinitesimal transformation,
&' (2') = (1 —ie"T,)®(x) . (2.10)

Then, we can summarize the transformation rules for the field ®(z) as

@ (x) = —i0,0(x),
O(z) = —i(2"0, + A)®(x),
@2.11)
L ®(z) = i(2,0, — 2,0,)(2) + 5,,(a)
WP (7) = (ky — i22,A — 2¥S,,, — 2iz,2"0, +i2°0,)®(2),

where A is the scaling dimension and S,,,, is the matrix representation of the Lorentz

rotation.

2.2 Conformal Correlation Function

One of the most basic observables in a conformal field theory (CFT) is the correlation
function of local operators. The constraints imposed by the conformal symmetry on
the conformal correlators are expressed by the Ward identities.

Let us denote the n-point correlation function by (¢1(x1) - - - ¢ (). For simplic-
ity, we assume that the operators ¢; are scalars. The translation and rotation symmetry
can be made manifest by appropriate vector or tensor notations. The dilatation Ward

identity is slightly less trivial:

Z (‘T 6804 + A ) <¢1($1) e ¢n(33n)> - 07 (212)
j=1 J

and the special conformal Ward identity,

n

> (—xj 86 + 22" (fa + 202" ) (P1(x1) - pulzn)) =0, (2.13)

=1



where A; is the scaling dimension of the field ¢;.
It is well known to what extent conformal invariance restricts n-point correlation
functions. For n < 3, the constraints are so strong that the correlation functions are

determined up to constants.

Up to 4-point The only possibility for the one-point functions is a constant,

(P1(z1)) =C'. (2.14)

The dilatation Ward identity dictates that the value of C' can be non-zero only for the
identity operator with A = 0.
Translation, rotation and scale invariance fix the two-point functions of scalar op-

erators up to a constant as

Cr2
(¢1(x1)da(22)) = |01 — 2B HAe (2.15)
Then, special conformal symmetry imposes an orthogonality condition,
C120A, A,
== 2.16
(r(e0)a(az)) = 2o @16)

For the three-point functions, translation, dilatation and special conformal trans-

formation together demand that

f123

(d1(21)d2(22)d3(23)) = A1+A2—Ag Ao+Az—A1 Ag+A1—Ay’ (2.17)
Z12 x93 Z31

where f123 is a constant and z;; = x; — ;. It is a straightforward exercise to verify
that the 2-point function (2.15) and the 3-point function (2.17) satisfy the conformal
Ward identities (2.12) and (2.13).

The four-point functions, unlike the two- and three-point functions, cannot be fully
fixed by conformal invariance. They have an arbitrary dependence on two independent

conformal cross-ratio:

4
(¢1(w1)P2(w2)d3(23)Pa(4)) = g(u,v) H T, , (2.18)

1<J



where v and v are defined by

2 .2 2 .2

_ T12T34 _ Ta3T14 2.19

- 2 2 ) v = 2 2 bl ( . )
Li3Lo4 L13Lo4

g(u,v) is an arbitrary function, and A = E?Zl A;.

General n-point function The higher point functions allow for more conformal

cross-ratio. The general form of a scalar n-point function is known to be

(Pp1(x1) -+ dn(zp)) = H xf]a”f(u), Tij = |z — xjl. (2.20)

1<i<j<n

The parameters «;; are related to the scaling dimensions by
n
Am == m=1,2,...,n. (2.21)
j=1

These conditions do not determine c;; uniquely. To avoid ambiguity, it is convenient

to make two choices,
Qi = Qi and Qg = 0. (222)

We denote the full set of parameters collectively by o = {cv b i<i<j<n.

The conformal cross-ratio are defined by

2 .2
T2, T
prgs
Ulpgrs] = —5 5 (2.23)
LpgTrs
where p,q,7,s = 1,2,...,n are distinct numbers. This construction considerably

over-counts the number of cross ratios. At most n(n — 3)/2 are independent. In suffi-
ciently high spacetime dimension, all n(n — 3)/2 are independent. In low spacetime
dimensions there can be non-trivial relations between the cross ratios. We will ignore
this subtlety.

A brief explanation of the counting of the cross ratios is as follows. The number of
distinct x;;’s is n(n — 1)/2. Define the monomial m(x; a) by

m(i; ai;) = H zj;‘f‘. (2.24)

1<i<j<n



For this monomial to be conformally invariant, the following relation is required:

i—1 n
Y aji+ > a;=0 forall i=1,...,n (2.25)
Jj=1 Jj=i+1
This gives n constraints on the monomial. So the number of independent cross ratios
is reduced to
n(n —1) n(n —3)

—n=——. 2.26
5 n 5 (2.26)

There are various ways of choosing an independent set of u. We will use

2 .2 2 .2 2,2
_ _ %4773 _ _ T34T72 _ _ Taplas
U2a = UN123a] = 2 5 > U3a = U[132a) = ~5 2 » Uab = U[2a3b] = 5 5 >
L1qT23 L1q123 TL24T3p
(2.27)
where a,b = 4,5, ...,n and a < b, so we have the right number of ratios:
(n=3)(n—4) n(n-—3)
2(n—3) + = .
We denote these independent cross ratios collectively by a vector w.
i gl



Chapter 3

INTEGRAL TRANSFORMS

3.1 Fourier Transform

We follow high energy physicists’ standard convention for Fourier transform:

dip .. - .
fa) = [ i) = fo) = [dee i@, G
Applying the same convention to an n-point correlation function is straightforward,

(61(21) - () = / (dpl,, PP (6 (1) - ()

— <¢1(p1) e ¢n<pn>> = / [d.%']n ef(ip1x1+...+pn:cn) <¢1(:C1) e ¢n(xn)> :
3.2)
To avoid clutter, we chose to suppress the dot for inner products (p - x — pz) and

introduced short-hand notations,

n

ddpz' - d
[dpln =[] i [da]y, = ] d%a; . (3.3)
i=1 i=1

A minor but important feature of the Fourier transform of the correlation functions

is that translation symmetry implies momentum conservation. To account for this, we

adopt the double-bracket notation to denote the reduced correlation function

(@1(p1) -~ du(pn)) = (27)6 (ZM) (@1(p1) -~ dnlpn)) - (3.4)
i=1



In the double-bracket, one of the momenta, say p,, is considered as a dependent vari-

able,
n—1
Pn=—) pi- (3.5)
i=1

To see the origin of the momentum-conserving delta-function explicitly, we change
the variables as
zi=yi+yn (1<i<n—1), @n=yn, (3.6)
and use the translation invariance to set
($1(z1) -+ dnl@n)) = (D1(y1 + Yn) -+ Pn—1(Yn—1 + Yn)Pn(yn))
= (¢1(y1) " Pn—1(yn—1)9n(0)) .

It is now clear that the integration over y, produces the delta-function, whereas the

3.7

integration over (y1, . .., yn—1) produces {(¢1(p1) - - &n(pn))-

As simple examples, we show explicitly the Fourier transformation of 1-point and
2-point functions. The 1-point function is simply a constant, say (¢1(x1)) = C. The
Fourier transformation gives C' x (27)%5(p1).

For the 2-point function (2.16), we should compute the integral,

(61(01)da(p2)) = / [dply €P1219252 (g (21) oy (12)

(3.8)
_ [ [ap), eimrrivare _C1208080
p2 |$1_$2’2A1.
For convenience, we set o = 0. Then using
d/29d—2A1(d=2A
dd —ip-x 1 _ T /22 § F( 2 ) 2A—d
ve T AT T(A) P
where the integral converges for 0 < 2A < d, we get
0127Td/22d—2AF(d72A) B B
(@1(p1)d2(p2)) = T(A) gt = it (3.9

where A; = Ay = A and we defined the overall constant as cy. We extracted the
Dirac delta function associated with momentum conservation and used the double-

bracket notation to denote the reduced correlation function as

(1(p1)d2(p2)) = (2m)%5(p1 + p2)(D1(p1)d2(p2))- (3.10)

10



3.2 Conformal Invariance in Momentum Space

We should import the conformal Ward identities to momentum space. Again we focus
on the n-point scalar correlators. As discussed above, translation symmetry is incor-
porated by momentum conservation and the double-bracket notation in (3.4). Rotation
symmetry requires that the correlation function be built from invariant scalar prod-
ucts. It remains to spell out the dilatation and special conformal Ward identities in
momentum space. We will discuss both the full correlation functions and the reduced
correlation functions in the sense of (3.4).

The most convenient (although less rigorous) way to find the momentum-space

expressions for the conformal Ward identity operators is to use the familiar rules:

0 0
¢ — “V‘Z% 8 o — +Zpo¢ . (311)

These rules are familiar from quantum mechanics. They can be rigorously justified
provided that the “wave-functions” behave mildly. We will not dwell on this mathe-

matical point any further.

Dilatation The dilatation Ward identity in the position space is given by (2.12):

D= &+Z%aw @:Z&. (3.12)
j=1

Applying the rules (3.11) and switching the ordering between p and 9/9p, we find

D= Ay—nd-— Zp]i (3.13)
= J

In other words, we get the following dilatation Ward identity in momentum space,

Ay —nd — Zp] (@1(p1) -+~ dn(pn)) = 0. (3.14)

In terms of the reduced correlator, the Ward identity becomes

n—1
A= (o= 1d=3 0] i (G1p1) -+ bulpa)) =0.  G.15)

11



Special conformal transformation We can follow a similar procedure to find the
expression for the special conformal Ward identity in momentum space. The Ward
identity in the position space is given by (2.13):

- 0 0
Kk __ § : K K __ . 2 K_.Q R
j=1 J J

Applying the rules (3.11) and pushing the derivatives to the right, we obtain

Kf§ = K"(Aj,pj),
82 82 o (3-17)
e 2Pa OpaOps T2AA-d)

Using these notations, we can succinctly summarize the special conformal Ward iden-

K"(A,p) =p" .

tities as

KN(A) <¢1(p1) e ¢n(pn)> =0, (3.18)

E*(A)(¢1(p1) -+~ dn(pa)) = 0, (3.19)

where the corresponding operators are

n n—1
K*(A) =) K"(Ajipy), K°(A)=> K"(Aj;p)), (3.20)
j=1 j=1

with K*(A;p) defined in (3.17). In (3.20), A denotes collectively the scaling dimen-

sions of all the operators.

3.3 Mellin-Barnes Transform

Given a function f(x), defined on the positive real axis R, its Mellin transform is

defined by
¢ls) = (MHE) = [ o ), G21)
This relation can be inverted by a line integral
@) = M@ = 55 [ a7eo)as (322

12



by an appropriate choice of the contour v in the complex plane starting at ¢ — 00 and
ending at c+ioo, with Re(s) = ¢ > 0. If the integrand of the transform (3.22) involves
products and ratios of Gamma functions, it is called a Mellin-Barnes integral.

Let us give a simple example. The famous integral representation of the gamma

function,
(o.]
['(s) = / ¥ le™dr,  Re(s) >0, (3.23)
0
shows that I'(s) is nothing but the Mellin transform of e~*. The inversion formula
reads
c+100
e " = / x°T(s)ds, c>0, (3.24)
c—100

which provides perhaps the simplest Mellin-Barnes integral. The equivalence between
(3.23) and (3.24) can be proved easily by using Cauchy’s residue theorem. Let us
compute the right-hand side of (3.24) with the rectangular contour given in Figure 3.1.
The vertices of the contour are located at ¢ + iR (¢ > 0) and —(N + 1/2) + iR,
where N is a positive integer. The poles of I'(s) inside this contour are at s = —m

with residues (—1)™/m/! form € {0,..., N}, respectively.

Yy

~(N +3) +iR ) c+iR

A

c
- . * . €T
—(N+1) -N -2 -1 o

A

| 4 .
—(N+3)—iR c—iR

Figure 3.1: Contour for an inverse Mellin transform.Rectangular contour with the ver-

ticesc £ iR, —(N + 1) £ iR.

13



Now, Cauchy’s residue theorem implies that

N m
i, 75T (s Z 1) (3.25)
=0

2mi Jr m/!

The next step is to take R and N to infinity. Stirling’s approximation implies that the

integral on the contour minus the line joining ¢ — ¢ R and ¢ + ¢ R tends to zero. To sum

up, we have
1 c+i00 N m 0 (_1)m
— 27T (s)ds = lim =Y T =e". (326)
21 Jo—ioo N—oo &= —

The Mellin-Barnes transform enters the study of CFT through the fact that the
position-space correlators can be expressed via the Mellin-Barnes transform [11-13]

1 ciatiee - — 2745
(@ra) - ouleal) = e [ vl Mao) T[T ). - 320)

The integral measure [d-;;] is linear in each +;; but subject to constraints,
> =40 Ay=0. (3.28)

The number of independent solutions to these constraints is n(n — 3)/2. The reader
may notice that (—;;) satisfy the same conditions as «;; as in (5.73) and (2.22). We
will use this similarity in the next chapter, where we will reexamine the conformal
invariance of the correlation functions in the momentum space. In the meanwhile, it is
convenient to distinguish (—;;) from ov;;.

Here, we show that the (3.27) satisfies the conformal Ward identities in the position
space. Translation symmetry is manifest since the integral in (3.27) depends only on
the relative coordinates x;;. For the dilatation Ward identity (2.12), we observe

n

Z( gt ><¢1<w1> nra))
i=1 ’ (3.29)

(=5 + Aj) (d1(21) -+ () = 0.
1

n

J

14



Similarly, for the special conformal Ward identity (2.13),

Z <_:szaxn + 2057 o + 2Ajfb‘j> (P1(21) -~ dnlan))
J=t ’ ’ (3.30)

n

=3 (i — i +285) (b1(21) - b)) = 0.
j=1

Thus we have confirmed that (3.27) is compatible with conformal invariance.

15



Chapter 4

SIMPLEX AND MESH INTEGRALS

4.1 Simplex Integrals

We are ready to present one of the most important results of the thesis: the simplex in-
tegral representation of a scalar n-point function in momentum space, first introduced
by Bzowski, McFadden and Skenderis [9, 10].

In [9], the authors showed that the general scalar n-point function in momentum

space can be expressed as a simplex integral:

d ; n n
(Grp1) - onp)) =[] / q; QQ;d 2m)%6(p, + > _aqu). 4.1
k=1 =1

1<i<j<n

To define this integral, we introduce an oriented (n — 1)-simplex. The momenta p;
are assigned to the vertices of the simplex. The integral is defined over the “internal”
momenta g;; assigned to the edge from vertex i to j. The orientation is defined such
that ¢;; = —qj; and ¢;; = 0. We thus have n(n — 1)/2 integration variables which
we choose to be g;; with ¢ < j. The product of delta functions imposes “momentum
conservation” at each vertex as required by the translation invariance of the conformal
correlator.

Remarkably, the parameters c;; in (4.1) are the same as the ones that appeared in

the position space representation (2.20). We will elaborate on this point later in this

16



chapter. The function f is an arbitrary function of momentum-space cross ratios.

2 2
quQTS
2 27
qprqqs

ipgrs) = (4.2)

Just as in position space, only n(n — 3)/2 of these cross ratios are independent. We

will choose the set

2 2 2 2 2 2
N N 4124 A A 4139 A N 45,4
U2a = U[123a] = 1 3aa U3a = U[132q] = 13 2(1’ Uab = U[243b] = 2“73“’,
B 413 B dis Qap923
4.3)
where a,b = 4,5,...,n and a < b. We will denote the set of indices enumerating the

independent cross ratios by U, while the ratios themselves will be written collectively
as u, thus w = {t;}rey.

In momentum space, the cross ratios are subject to integration inside the simplex
integral (4.1). Putting aside one delta function for overall momentum conservation, we

will employ the double-bracket notation

<¢1 (pl) T d)n(pn 27T d5 (Z pz) ¢1 pl ¢n(pn)>> 4.4)

Overall, we have n(n — 1)/2 integrals and (n — 1) delta functions. We can now per-
form the integrals over the variables ¢;, for : = 1,2,...,n — 1 in (4.1) to remove
the remaining delta functions. This leaves us with (n — 1)(n — 2)/2 integrals still to

perform,

i
(@) o= T [5 9, 45)

dDen ) ’
1<i<j<n—1

where the denominator reads

n—1
2a;;+d
Den, (o) = H qija It % H L — D, |20t (4.6)
m=1

1<i<j<n—1

and [,,, depends only on the remaining internal momenta,

n—1
lp = =@y + P = Z dmj = Z Qjm T Z dmj- 4.7
Jj=1

j=m+1

17



Notice that we have eliminated the momentum p,, and hence all the remaining mo-
menta are independent. All sums and products now extend only up to n — 1. We will

refer to the expression (4.5) as the reduced simplex integral.

1-, 2- and 3-point function As a warm-up exercise, let us examine how the simplex
integrals works for the 1-, 2- and 3-point functions. In these cases, there are no cross
ratios and the function fn can be replaced by constant c,,.

As we discussed in the previous chapter, the 1-point function can be non-vanishing
only for the identity operator. The position-space correlator is a constant. Its Fourier
transform is proportional to the delta function §(p;). We may say, trivially, the delta
function is defined on the vertex of a zero-dimensional simplex. There is no edge to
carry any internal momentum.

For a 2-point function, the relevant simplex is a line interval. The simplex integral

(4.1) becomes

d C
)0 = [ GHE Lm0, - )y + ) (48)

d 2a19+d
(27[') q12
Pulling out the momentum conserving delta function, we have

_ d dqy e d
(91(P1)¢2(P2)) = (2m)6(p1 + P2) / an)! q2a12+d(27f) 6(P1 —q12)- (49
12

Performing the integral explicitly, we obtain

(¢1(p1)p2(pa)) = capy 2277, (4.10)

which agrees with (3.9) and (5.73).

The simplex for a 3-point function is a triangle; see Figure 4.2. After pulling out
the overall delta function and imposing momentum conservation, one internal momen-
tum remains and give a non-trivial reduced integral. Amusingly, the reduced integral
resembles (but differs from) a loop integral in Feynman diagram calculation:
diq 1

(2m) |g|*er2td|q — p, [Po15+d|g + py|2a2std”
(4.11)

(6n(p)oap2)oa(ps)) = [
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N

Figure 4.1: The 3-point function as a 2-simplex (triangle) integral.

The «;; parameters, subject to conditions (5.73) and (2.22), are given by

2a19 = 2A3 — Ay = —A1 — Ay + Az,
2013 = 209 — Ay = —A1 — Az + Ay, (4.12)
20093 = 2A1 — Ay = —Ag — Ag+ Ay
At this stage, it is not clear how to relate this loop triangle representation of the 3-point
function to the other famous integral representation (known as a triple-K integral)

whose integrand is the product of three modified Bessel K functions. We will reveal

the connection in section 5.1.

4-point function The cross ratios make the 4-point and higher point functions much
more complicated than the lower point functions. The reduced integral (4.5) for a 4-

point function is

diq, dlq, dq;  f(q,0)
(2r)d (2)4 (27)4 Deny(q;, i)’

(61 (P1)62(p2)d3(p3) b4 (p1)) = / (“.13)

where the denominator is given by
2a12+d 2a13+d 2a23+d
Deny(g;, pi) = g3"* g™ ™

< |py + @y — @s]* T py + @3 — @[ T ps + @) — qo* M (4.14)
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Figure 4.2: The 4-point function as a 3-simplex (tetrahedron) integral.

We simplified the labels somewhat by setting

1

The arbitrary function f (i1, v) is a function of two independent variables,

glpi+a—al® [ _alpta—al

U = 5 5
@élps + a3 — q;? @élps + a1 — q»|?

(4.16)

whose role is analogous to that of the position-space cross ratios v and v. However,
they depend on the momenta g; which are subject to the integration in (4.13).

The above examples illustrate a formal similarity between the simplex integrals
and Feynman loop integrals. The main source of the similarity is the momentum con-
servation at each vertex. But, there are also crucial differences. Most importantly, the
Feynman calculus requires sum over many allowed graphs, while there is only one

simplex integral for a given n-point function.

4.2 Mesh Integrals

In this section, we take the first step to decompose a general simplex integral into
something simpler called mesh integral. The mesh integral is a special case of the sim-

I ey 1
":l"\-_i _'-;.- ok 11
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plex integral where the position-space expression is a single monomial. It is unlikely
that a mesh integral is naturally produced by a simplex integral of a correlator in a
CFT. The reason why we study the mesh integral is that we can express an arbitrary
simplex integral as a (typically infinite) linear combination of mesh integrals. More-
over, the mesh integrals exhibit a recursive structure, which allows us to build n-point
functions in terms of (n — 1)-point functions.

An n-point mesh integral requires the «;; parameters in the defining formula:

d 4 n n
Mn(a;plv cee 7pn - H Czj / 27-‘-le Q(ng"rd (2W)d6(pk: + Z QZk)a
=1

1<i<j<n
(4.17)

7Td/22d+20éi]‘ d
= —— T = i 4.18
Ci I'(—ay;) (2 +a]> 19

is included for convenience. As above, there are n(n — 1)/2 integration variables g;;

where the coefficient

with 7 < 7 (and we extend g;; to any 4,7 by ¢;; = —gj;). So, a mesh integral is a

simplex integral with f = 1. For n = 1, it is convenient to define M; by
Mi(p) = (2m)(p) - (4.19)

Just as for simplex integral, we define the reduced mesh integrals ]\7n by pulling out

the momentum conserving delta function,
Mn(a;pla--.vpn 27T d5 (Z}%) a ph--.apn)' (420)

Up to the factors of Cj;, the reduced mesh integrals are given by (4.5) with f =1,

namely

v dlq; 1
M’N,(a;pla"‘?pn) = H Cij/ (ZW)dm’ (4.21)

1<i<j<n—1

where the denominator is given by (4.6).

Recursion The mesh integral (4.17) exhibits a remarkable recursive structure. To

show this, we pull out factors containing ¢;; and p,, and rename ¢;,, — g;. Then, the
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mesh integral can be written recursively as

Mn(a;pla s 7pn)

ot dlq; Mu_1(a;p1 — @1 Pn—1— Qn—1) d —
_ . — ’ )t - — .
B H Cln / (27T)d 20(1n+d 202n+d “ e 20&n71,n+d (27T) 5(pn + z; q])
i=i 2 Jj=

n—1

qq q
4.22)

Figure 4.3: The decomposition of the 5-point mesh Mj5. The solid internal lines on
the right-hand side of the figure represent the 4-point mesh M evaluated with ingoing

momenta p; — q;.

Fourier transform Our next task is to show that the mesh integral (4.17) is the
Fourier transform of the position-space conformal n-point function (2.20) when f is a
monomzial in the cross ratios. The n-point function (2.20) takes the form
Fulegay,...,zn) = [ 37, (4.23)
1<i<j<n
where the «;; are still a solution of (5.73). We wish to show that the Fourier transform

of (4.23) is equal to (4.17), namely
FlF(e;pyy ... p,) = /[dm]ne_izy—lxj'ijn(a;:cl, cey )
(4.24)
- Mn(aapla .. 7pn)
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We can check this explicitly for the 2-point function. The Fourier transform of F5 is

simply,

Ci2

Fla232) = (27)%(py +p2)}m, (4.25)
1

where Cj; is given in (4.18). This result matches the corresponding mesh integral,

which is, from (4.17),

d? 1
Ms(c2;p1,p2) = Cr2 / 4(27%3 2a1z+d5(p1 - q12)(27r>d5(102 + q12)
%12 . (4.26)

d 12
= (2m)%(p1 + P2) 55 1a-
912
We proceed by induction and use the recursive structure of (4.22). If we assume the
statement (4.24) holds true up to the level of the (n — 1)-point function, we can write

F, as

2001n 20000 2an—1,n

Fologxy, ..., x,) = a7, " x5, Xy 1" X Foi(egzy,. . p—1).  (4.27)

Using the Fourier transform of a single power function as in (4.25) and denoting con-

volution by *, we find

FIF
= Flainmagys a0 = FlF]

-1
(27T)d5(2?=1 pi) IIi5 Cin
2a1n+d 2a2n+d q2an71,n+d
2

« [Mya(@spr, o) @m)6(pn)]

I
| — |

a q n—1
n—1 n—1
d*q; My 1(5p1—q1,- - Pa1 = Gn1) o 4

- H C’Ln/ (27r)d QOéanl‘d 20/2n+d 20¢n—1,n+d (27T) 6 pTl + Z q‘j

i=1 q qs T Gp1 j=1
= Mn(a;pl’ ce apn) :

(4.28)
In the last step, we used the mesh recursion relation (4.22).
| |
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4.3 Proof of Conformal Invariance

In this section, we will show that the simplex integrals (4.1) are conformally invariant.
Since we showed that the mesh integrals (4.17) are direct Fourier transform of the
position-space n-point function (2.20) when f is a monomial in the cross ratios, the
conformal invariance of them is already apparent. Even so, we will prove the conformal
invariance of the mesh integrals directly using the momentum-space conformal Ward
identities, which we derived in chapter 3. As we will see, the conformal invariance of
the simplex integrals follows directly from the that of the mesh integrals.

In section 4.3.1, we will first show that the mesh integrals are the solutions of the
momentum-space conformal Ward identities. For the special conformal Ward identity,
this can be shown in two ways. One is to use the recursive structure of mesh integrals,
and the other is to show that the action of the corresponding differential on the mesh
integrals yields a total derivative. In section 4.3.2, we then prove the conformal invari-
ance of the simplex integrals. This can be shown in three ways. The first is to use a
Mellin-Barnes transformation relating the simplex integrals to the mesh integrals and
will be discussed in the first paragraph of section 4.3.2. The other two proceeds by
showing that the action of the special conformal Ward identity operator on the simplex
integrals yields a total derivative. This can be shown either indirectly or directly, as

will be discussed in the second paragraph of section 4.3.2.

4.3.1 Conformal invariance of the mesh integrals

The dilatation Ward identity is a matter of dimension counting. It is easy to verify
that the mesh integral (4.17) has the dimension A; — nd. At each edge, an integration
increases the dimension by d while a propagator decreases the dimension by 2c;; + d,

resulting in a net decrease by 2cv;;. At each vertex, the momentum-conserving delta
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functions decreases the dimension by d. Overall, we have

n
— Z aij—nd:Zaij—nd:At—nd. (4.29)
1<i<j<n i,j=1
In the last step, we used the sum of all relations in (5.73).

Let us move on to show that the mesh integrals (4.17) also satisfy the special

conformal Ward identity (3.18). Recall that the special conformal Ward identity is
K"(A) {¢1(p1) -+~ ¢nlpn)) = 0,

where the special conformal differential operator K" (A) is given by

K"(A) = Z K"(Aj;pj)
=1 (4.30)

=\ Doy~ oo S Vo )

We denote the action of the special conformal operator on the n-point mesh integral as
EME(ApL,.. . pn) = K*(A) My (a1, ..., pn). 4.31)

This expression admits a recursive structure similar to (4.22). To see this, let us write
the scaling dimensions of the n-point function as ASJ ) and those of the (n — 1)-point

(n

function as A, _1). From (5.73), these are related by

n—1
AP == "ajn,  AL=ARTV —qn,, m=1..,n-1 (432
j=1

Thus, given n — 1 parameters o, and a set of A,(ﬁfl) satisfying (5.73) at (n — 1)
points, we can construct a solution of (5.73) at n points.
To proceed by induction, we first consider the 1-point mesh integral. We defined

the mesh integral as M (p1) = (27)%6(p1), and it is almost trivial to show that

K" (0;p1)M;(p1) = 0, (4.33)
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where A1 = 0 is enforced by dilatation invariance. The key element of the induction is
an integration by parts identity, a detailed derivation of which can be found in appendix

A.1 of [9]. The result is

EMRAM: i )

1
_”H o / d; 1
- wm
P (27m)? gRen+d2oantd | g2en-intd (4.34)

n—1
x (2m)%6 [ pp+ > g | EPTIRAM D py L paiy).
j=1

This identity clearly ensures that, if the (n—1)-point mesh integral satisfies the (n—1)-
point special conformal Ward identity, then the n-point mesh integral satisfies the n-

point special conformal Ward identity, completing the desired proof.

4.3.2 Conformal invariance of the simplex integrals

Having proved the conformal invariance of the mesh integral, we now turn to the sim-
plex integral. There exist a few different methods to prove the conformal invariance of
the simplex integrals. We will explain two of them discussed in [10].

The first method uses the Mellin-Barnes representation of conformal correlators.
A key point is that the Mellin-Barnes transformation decomposes an arbitrary sim-
plex integral as a linear combination of mesh integrals. The linear combination runs
over continuous parameters, so there can be order of limits problems. Apart from this
subtlety, the proof is conceptually simple and technically straightforward.

The second method examines a direct action of the special conformal Ward iden-
tity operator on the simplex integrals. Using the conformal invariance of the mesh
integrals, we can show that the action of the special conformal Ward identity operator
gives a total derivative inside the momentum integral. Under a mild assumption on the
convergence of the integral, the integral vanishes and proves the conformal invariance

of the simplex integral.
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Proof by Mellin-Barnes transform

Mesh integrals are special cases of simplex integrals where f is a monomial in the

cross ratios. In general, we can express the monomial f as

f=T1Ia7 (4.35)
IeUd
where we have N = n(n — 3)/2 independent cross ratios 4y, , . .., U, , and 7 is a set

of N exponents. The v exponents can be absorbed by the e exponents in the definition

of the simplex integral such that

HIEU ﬁ’}/l — 1 (436)
Denn(a) Denn(aylﬂI;N)) )
The shifted parameters agply.l_'.‘]‘NN ) — {az(zlhwl"lg)}ng j<n are given by
(71--N) =
1-YN) y

Sij,[pqrs] = 5ip5j'r + 52'(15]'5 - 6ip5j - 5ir5js .

This shift procedure shows that the simplex integral with monomial f satisfies the
same conformal Ward identities as the simplex integral with f =1.

Having established conformal invariance for an arbitrary monomial f , We can try
to proceed further. Since the conformal generators act linearly on the correlators, con-
formal invariance will continue to hold when f is an arbitrary linear combination of
monomials. Turning from discrete sums to continuous integrals, we can argue for con-
formal invariance of the simplex integral when f is given by a multiple Mellin-Barnes
transform as

R 1 c1+1i00 cN+ioco N

f(ﬁ):,/ dsl.../ dsyajt .. 0PN F(s1,...,8N), (4.38)
@)V Joy i en—ico ' N

for appropriate choice of contour cy,...,cn for which the integral converges. As

usual, this argument holds provided that switching the order of integration does not

cause a convergence issue.
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As a final ingredient of the proof, recall that the position-space correlators have a

Mellin representation,

B 1 Cq‘,j-‘riood n _2%]_1-‘ A
(P1(z1) -+ dnlzn)) = (2m)N/ [dyil M (i) [ [ ;T (i) - (4.39)

cij—ioo ’L<]
We can align ~y;; with the shifted «;; as in (4.37) by writing

N
—%ij =i+ Y YmSijip,,. (4.40)

m=1

. . —2v,j .
The Fourier transform of the monomial [ [ z, j 7 can now be evaluated as explained

in section 4.2. This yields the simplex integral representation with
R N Ccm+100 d,y n d d
~ M ~Ym — 27,5
f(a) = II‘/‘ | 5;;UZn M (i) [ 722779 T (d)2 = 7i5).  (4.41)
m=1 " m—100 i<j
Thus, given the Mellin representation for a position-space correlator, we can imme-
diately write down the Mellin representation for f . For holographic correlators, this

formula provides an alternative method of computing f (u) to those we will discuss in

chapter 5.

Proof by total derivative

The proof based on the Mellin-Barnes representation is indirect in the sense that it
involves an infinite linear combination and potentially susceptible to an order of in-
tegration problem. It would be desirable to complement it with an alternative, more
direct, proof. We present one such alternative.

The action of the special conformal Ward identity, a second-order differential op-
erator, on the integrand of the simplex integral yields the following form,

f(@)

Den, ()

K

0F() ) . TR

oa; ! 000,

Cryla), (442

]=:fﬁDC“(a)+

where C*, CT, CF; are coefficients depending on the external and internal momenta

as well as the parameters . The indices I, J indicate the independent cross ratios
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which will be summed over any repeated indices. A crucial fact is that the coefficients
C",CF, CF; are independent of the choice of f .

The equation above implies that if the simplex integrals with f (w) = 1,47, a7ty
are conformally invariant, the simplex integrals with any f () are conformally invari-
ant. For f (w) = 1,4r, trty to be conformally invariant, the right-hand side of (4.42)
must form a total derivative. It follows that that the coefficients C*, CF, CF; must

satisfy the following conditions

R n—1 9
f=1: "= ) WFZ” (4.43)
ig=T, iz i
“ oty 0
£ ~ 1
T Wl (e
ij=1, i] Gij 9%
= o1
£ o 1
f=tsa;:  Ch= Y T 50 (4.45)
ig=l iz O

Kp

for some coefficients FZ” and I'; e Since these coefficients are independent of f (w),

the following identity holds for any f():
(@) ] “ 9 [ Wi e o, Of ()
———| = g — [T () f(@) + E ' (a) . (4.406)
W 7, 15,1 ~
Den,, (cx) g/ Y dqf; |V —~ J ouy

We have shown that the action of the special conformal Ward identity operator on the

integrand of the simplex integrals yields a total derivative, which proves the conformal
invariance of the simplex integrals.

The proof by total derivatives is valid as long as the I'-coefficients exist and are
independent of f . It would be instructive to compute the coefficients by direct compu-

tation. Here, we content ourselves with a short summary of the main results:

Kl
F{W = (2 i I
1] (a> ( Ozn—i—d)X Denn(a)7
Afbg
Fzg[pqrs](a) = 2(52p5rn + 51'(15577, - 5ip5qn - 51'7“6577,) X w (447)

Den,(a) ’
(I?j (L — Pi)ﬂ
(L — Pz‘)2

The explicit computation can be found in lengthy appendices of [10].

AP = ("0 + 050k — 5255)
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Chapter 5

HOLOGRAPHIC CFTS

As an application of the methods developed in previous chapters, we attempt to rewrite
the correlators for holographic CFTs in simplex form. Diagrams for holographic cor-
relators consist of exchange diagrams and contact diagrams. We will focus on contact
diagrams. The omission of exchange diagrams is not a fatal loss, since any exchange

diagram can be decomposed into a sum of contact diagrams [14, 15].

5.1 Star-Mesh Duality

In momentum space, the n-point contact diagram consists of n bulk-to-boundary prop-
agators interacting at a common bulk point with radial coordinate z over which we
integrate. Each propagator is constructed from a modified Bessel function, and with

the standard holographic normalization we find

1-8,

> dz 112 .
I, = <<¢1(p1) e an(pn)»contact = /0 zdil H Zd/2p§‘] Kﬁj (ij), (5.1

where 3; = A; — g. Using the Schwinger parametrization of Bessel functions as

_ 1 00 - 1 2
) Kp,(pjz) = 2zf/o dz; 2" exp [—2 (é’JZ + ZQZ])] (5.2)
J
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and doing the z integral we find

n ) n 2
=0, H/ dz; 27" | Z B P exp | - Py 53
=~ Jo — 2 J
7j=1 7=1
where
. A —d\ & 1 -
Cn = 2<"—1>d/2—ﬁt/2—1r< : ) . Li=) 7 (5.4)
2 jr:[lrwj) t ; !

At this point, we can relate the variables in (5.3) to the elements of electrical circuit
theory. If we regard the Schwinger parameters Z; as conductivities and the momentum
pj as incoming currents, then the exponent corresponds to the power dissipation in the
star-shaped electrical network as illustrated for n = 3,4 in Fig. 5.1.

A well-known result from electrical circuit theory states that this n-star network
is equivalent to a corresponding (n — 1)-simplex or ‘mesh’ network. This is called
the ‘star-mesh transform’. On the simplex side, we assign a current 7, (momentum)
flowing from vertex j to k and a conductivity (Schwinger parameter) z;; between the

vertices. The current and conductivity are subject to the conditions
’L'j]C = *ikj y Zjk = Rkj - (55)

The dual variables (i, z;;) are fixed uniquely by the original variables (py, Zy)

through the ‘star-mesh relation’:

2.2,
Zik = Zt )

1
Z(ijk —PrZj) - (5.6)

ik =
It is instructive to verify that the star-mesh duality is consistent with both Kirch-
hoff’s Current Law and Kirchhoff’s Voltage Law. The momentum conservation at each

vertex of the simplex corresponds to the current conservation as

. 1
lek = 7 <ijZk_Zj ZPk) =Dy, (5.7
k ¢ k k
where we used conservation of the external momenta. The vanishing of the voltage
drop around every closed loop requires that
Uik | Tk | by

0=k KLU kL (5.8)
Zik Rkl A
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Figure 5.1: Equivalent electrical networks of resistors under star-mesh duality. The

conductivities and currents are related as explained in the text. The external currents

flowing into the nodes and the overall power dissipation are equal.
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This condition is satisfied by the star-mesh relation (5.6) which implies that the ‘volt-

age drop’ from vertex j to k is

ik _ Pj Dy
= -, (5.9
Zik Zj Zk

Another interesting feature of the star-mesh duality is that the power dissipated in

both networks is the same:

A )
== p:+ =L — 2p; i
S x (G gt

Z]k
1
:Z E PJ E Zi | — E p;- E Dg
k#j J k=#j
1 Zy—Zj 9 | o p?
- = : 2 ) — ity 5.10
Z2 ( 7, Pt Ejjzj (5.10)

Before we move on to the next section, we give the following interesting relation

among the currents.

ij[k 'ilm] =%k b + Tjm T + T g = 0 Vi, k,l,m. (5.1

5.1.1 3-point function

We illustrate how the star-mesh duality works by applying it to the 3-point function.
To convert Z3 to 2-simplex (triangle) form, we express the star conductivities Z; in

terms of those of the triangle, 2, as follows.

L1 =—, Zo=—, 3= L, W= z12%293 + 223213 + 213212 (5.12)
223 Z13 212

By using the (5.10) and the following Jacobian factor

3
HdZ = dZudZdiZlg, (513)
212223213)
we find
Ap—Ar/2—1 izk
I3 = C4 H/ dzjpz J* k=Ae/ 12 exp —Zi . (5.14)
j<k j<k Cdk
.':l'\-\._-ii . - ] I
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Then, we introduce an internal loop current j and define
i1y = 12 + 7, iy = 193 + J, i3 =113 — J, (5.15)

which leaves all the external current the same,

S il = i =p; (5.16)
k k

Now we integrate this internal current to find

12 .
d - Uk 2219203213 | 2 ijk
j<k “7Ik H <k <<k

and, by using (5.8), the vanishing of the voltage drop around closed loops, all j - 2,

cross-terms in the expansion of the exponent vanish:

S (M )5
— 2%k 2212223213 Z12 223 213 — 22k
Jj<k i<k
9 (5.18)
14
- % Py 2J7k
212223213 i<k Zik
So, we can exchange the factor of ;~%? in (5.14) for an integral over the internal
current:
4/2.A d > A+ A —Ay/2—dj2-1 2
I3 = (2m)~ / Cg/dj H/ dzjkzjkj koo exp —Zi
j<k”0 j<k “CIE
(5.19)

By shifting the integration variable by
q=j+i2, suchthat iy, =q, d3=p,+q, f3=p;—q, (520

and then performing the integration over the zj;;, we can get the following simplex

representation of the triple- K integral,

~ dq 1
B 03/ (2m)? |g|2a2¥d|g — p, [Por5Td]g + py[2estd” G20

where
. A A
Oy = 2227 Py T Dl +d/2), = —Aj — Mg+ ?t (5.22)
i<k
This result agrees with (4.11) as expected.
:
]
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5.1.2 4-point function

We now discuss the 4-point contact diagram. The procedure follows what we have
done in the 3-point function above. First, we convert the star form to the corresponding
mesh form. We then introduce internal loop currents running around all the faces of
the tetrahedron. By integrating over these currents we can get the desired result (4.13).

Note that for n > 4, the mesh network has more resistors than the corresponding
star network, since the number of resistors in the mesh network is n(n — 1)/2, which
is larger than that of the star network, n. This means that the mapping of resistors
between them is no longer one-to-one. For n = 4, we have six resistors for each edge
of the tetrahedron, but only four of these are independent, since from (5.6) all cross
ratios of z;;, are unity. We can eliminate this freedom by choosing a parametrization
centered around a particular vertex of the tetrahedron. Taking this as the fourth vertex,

we select independent variables as the set 214, 224, 234 and
A = 212234 = 213224 = 214223 (5.23)

The remaining conductivities are then

A A A
212 =—, 213=—, Z23=—, (5.24)
234 224 214

while the conductivities of the original 4-star network are

Zy=PL g =P 1923 (5.25)
A 214224234
where
p = 2147224234 + N(214 + 224 + 234). (5.26)
Evaluating the Jacobian
4
d)\ dzi4, (5.27)
13 2(z14224234)3 H ’
K, ] LI 11
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the star form of the 4-point contact diagram (5.3) can be rewritten in the corresponding

tetrahedral form

o0 3 [e.e]
I, = Cy / dA N (H / dzi4z;i;> p~e

(5.28)
X exp [—2 <zl4+z24+234+)\223+)\213+/\212 ;
where we replaced the exponent using (5.10) and defined for convenience
A Ay d
5:§—A4—1, (51':A1‘+A4—7t+§—1~ (5.29)

Now we introduce a set of internal currents running around the faces of the tetrahedron:

./ . . . ./ . . . . . . .
tig =12 — J3 + Ja to3 =123 — J1 + Jas ti3 =123 —J2+ 4,
(5.30)
./ . . . ./ . . . ./ . . .
L1y =4 — J2 1 I3, Tog =124 — J1 1+ I3, T34 =134 —J1 T J2-
Since these currents are purely internal, all the external currents p; remain unchanged.
Then we integrate out these internal currents and obtain

3 1 3 i/2 Zka
d k4 SN2
/gd J) €Xp [—22 (%4 + T(l )k)]

k=1

3 3\ 4/2 3 2 (5-3D)
8214224234 1 Ueq  Zkdo
= <p2 exp —5 Z 7M + le )
k=1
where we introduced the shorthand notation
i1 =1do3, 2 =1i31, fi3=1i12. (5.32)

In (5.31), all the 3}, - 21y, cross-terms cancel, because each j,, is dotted with the sum of
the ‘voltage drop’ around a closed loop, which vanishes. The three Gaussian integrals
over the j,, then generate the prefactor shown above.

We can use these partial results to replace p~¢ in (5.28) by an integration over

internal currents:

[e.9] 3 o0
7, =(2m) 32, / A5/ (H / dj; / dsz;‘d”)
0 i=1 0

(%, 5 % sap | weap | 734
X e R N R Rl =45 2345 . (533
exp[ 2<214+224+234+ A223+ )\113+ )\112 ( )

36



We can further simplify the integral by shifting the currents as
q, =123 — J1 + Js
qs = —t13— Jo + J4, (5.34)
g3 =t12 — J3 + Ja

which leads to

o0 3 o0
I, = (2m) 7220,y / dA X0 —34/2 (H / d’q; / dsz;‘d/?)
0 1 0

1/ 1 , 1 , 1 )
Xexp | —5 ZT4|P1+‘12—‘13| +724|P2+Q3—Q1| +734’P3+Q1—Q2|

214 224 234
e S )|

(5.35)

The remaining procedures to reach the desired simplex representation are straightfor-
ward. The first is to generate the denominator (4.14) and the second is to verify that
the rest of the integral depends only on the momentum-space cross ratios in (5.61). To

achieve both, first we simply rescale 224 and replace A as follows

204 — 224|P9 + q3 — q14], (5.36)

A= g3lp, +ps — q1]/7° (5.37)

Then by performing the z;4 integrals using (5.2), we obtain

3
Ty = 24(27r)73d/26«4 (H/ddq> q¢1114—a23q2—2@24—4a13q3—0434—40412
=1

X Pyt @y — 5[ T Py + g — @[T T py gy — gy 2T

X/o A2 2K o (V) Koy (2) Kagpans (2/VE), (5.38)

where we replaced the 9; with

A
201 = ?t — A=A, (5.39)
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which is a solution of (5.73). Compared with the form of a simplex integral (4.1),

(5.38) has the form a simplex integral as

7 / d'q, d'qy d'qs  f(a.0)
(2m)? (2m)? (2m)4 Dena(q;, px)’

where the momentum running each edge of the tetrahedron is as illustrated in Fig. 4.1

(5.40)

and the denominator is given in (4.14). The function of momentum-space cross ratios
f(a,0)is
ﬁ) (a124aszs+d)/2

[o@)
/0 dz izt dLR (V) Koy a0y (2) Kans—an (2/V5),
(5.41)

where

614 — 24(27T)3d/2é4 — 23d*At/2+3ﬂ.3d/21’\ ( ) H (542)

- d/2

This is the specific function of momentum-space cross ratios appearing in the sim-
plex representation for the 4-point contact Witten diagram. This f (u, ) involves the
same integral of three Bessel functions, the triple- K integral, as appears in the 3-point

function Z3, though the arguments and parameters are now different. Specifically,

. _ Aa12+d/2 1
f(u’ U) = C4WI3(0412+0¢34+61) 1,{a23—a14,013—24,012— a34}(\f7 L, %)

(5.43)
where the triple- K integral [16] is

Lo (81,82,85) (P1, P2, P3) = / dzz® Hpﬁ 'K, (pjz) (5.44)
0

5.2 Recursive Convolutions for n-point Functions

In this subsection, we will evaluate the general n-point contact diagram to calculate
the specific function of momentum-space cross ratios appearing in the simplex repre-

sentation (4.1) for this diagram.
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In position space, the n-point contact diagram is given by
Ay

I, —/ d+1/ddm0HCA <22+$ ) : (5.45)

where x;; = x; — x; and the holographic normalization is

['(A;)
T HPT(A, — d)2)

Ch (5.46)

By using Schwinger parametrization, we can parametrize all denominators and per-

/ dSZ‘SEAi_l)>

X sgd At)/z/ddazo exp (— Zsix?0> .

form the z integral. This gives

wegr () (11

2
(5.47)

i

Then we complete the square as

2
1 1
; (Z S¢m¢> — Z Sil'? ; Z S@'(Si — St)l’? +2 Z 8i8;&i  Tj
t X X t
i i

i i<j

1
=1 E sis;j(x2 + ZL’?) +2 g $iSjx; - X;
¢ i<j i<j

=T § :S”LSJ Lij-

1<j
(5.48)

By performing the x( integral, we find
, 1
(H/ ds;s; Fl) —Ad/2 exp “ Z 55T 22] (5.49)
1<j

where

42 (A —d\ {1 C
s t A
Cp = r - 5.50
"2 ( 2 ) 1w (20
By using the Symanzik trick, we can make the replacement

n n
St=3 85— > Kisi, (5.51)
=1 =1
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without changing the value of the integral (5.49), for any arbitrary set of x; > 0 not
all zero. We use this trick to replace s; — s1 so that the integrand of (5.49) becomes a

product of exponential factors with a recursive structure:

T, =Cp, (H/ dsisiA”) sT g, (5.52)
i=1"0

where

H exp< Ve 2>—gn 1><Hexp( 2i%n 2). (5.53)

1<i<y

Since we performed the replacement s; — si, the integrand g,,—; has no dependence
on either x,, or s,. By Fourier transforming, the recursive product (5.53) becomes a

convolution

Floal(pr.- o) = (Floni](27)6(pn)) # F [rf exp ( —ta} )] L (554)
i=1

where the d(py,) arises since g,,—1 is independent of x,,. Expressing explicitly, we find

n d
F[gn](PL cee 7pn) = <H / é;l)k;l> ‘F[gn—l](pl —q1,---,Pp_1 — qnfl)
k=1

; . n n—1 TS d/2 Slqu
x (2m)0(py — q) 2" a) [T () exp(—)
j::l ]:1 noy “n

:ﬁ /ddqm - d/zex S
Pl (2m)e \ sps; P 455

X (27()d5 P, + Z an }-[gnfl](pl —dips---sPn-1— qnfl,n)'

(5.55)
In the second equation, note that the integration variables are the momenta q;,, running

from the vertex ¢ to vertex n. By using the recursive structure, for g; = 1,

Flail(py) = 2m)?%(py),

dd d/2 2
Flgal(p1,p2) :/(27‘:)13 <§2> exp <—SZZ;2> (5.56)

x (2m)%65(py + qo1)(2m)0(py + q12)
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repeating n times,
]:[gn](pla ce 7pn)

ddqij UES d/2 Slq” n n
B H / (27T)d <Si8j> exp 4323] 1;[ pr + ;qm .

(5.57)

If we restore the Schwinger integration from (5.52), we get the momentum-space con-

tact diagram Z,, which has the expected structure of a simplex integral (4.1) with

fn(@)

n 0o n d/2 2
— ™8 514, .
=0, (l | / dSkSAk 1) 51 B/ I I <S.Sl.) exp <_48';]'> q?]fll]“‘d’
0 . i 155

J

(5.58)

where «;; satisfies (5.73). Before we show this result is indeed a function of only
the momentum-space cross ratios @, we transform further by substituting s; = 1/t;

yielding

~

fn(@)

n d/2 At .2
_ it titjqi; \ 20:;+d
digty M) ¢80/ G T ) et
( / ’ > ' H 31 P at, ) %

1<i<y
(5.59)

Now we will show that this f (@) is indeed a function of only the momentum-space
cross ratios . For this purpose, we select new independent variables corresponding to

the subset of n legs shown in figure 5.2. This parametrization corresponds to

2
2192 A1i
12213 Q33 ti:%’ i=2,...,n (5.60)

t1 = 5 92
223 Q12973 4ay;

and introduce the n(n — 3)/2 independent momentum-space cross ratios

2 9 2 9 2 2
. 45,49 N 43,49 A q.p921
g = Bl Bl g, (s,
414923 9144923 42443y
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3

Figure 5.2: Change of integration variables. In (5.60), we exchange the Schwinger
parameters t; where ¢ = 1,...,n for a new set consisting of z93 and zy; for ¢+ =
2,...,n. These correspond to the solid legs on the diagram above, shown for the case

n = 5.

where a,b = 4, ..., n and in the last equation a < b with no sum implied. Converting

(5.59) into these new variables, we find

—A;+(n—-1)d/2
f (’ﬁ,) c, 7rn(n 1)d/4 H q2akl+d (H/ dz1; (Z;z) H yaf >

z .
1<k<l Li \ 4

A¢/2—A1—(n—1)(n—2)d/4
X/‘X’ dzo3 <Z12213 q§3 > o/ 1= (v 1)(n=2)d/
0?23 223 CJ%Q%?,

1 - 223 . 223 .
exp | — — 212+223+213+221a 1+* 24 + ——U3q)
4 o 213 212

n
21a”1b”23 ~ A
+ > s uabuQQU3b>]. (5.62)
4<a<h 12713
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Then, the remaining q?j can be canceled by choosing o

A d
Q1 = —Al —Ag—l-ft — (n—2)(n—3)1,

2
A d
a3 = —Ap — Ag + 7'5 ~(n=2)(n-3),
A d
Q93 = Al — ?t +n(n - 3)1,
d (5.63)
Algq = A + (n 2) 1’
d
Q2q = Q3q = 5
d
Qap = _53
and the same goes for a,b = 4,...,n and a < b. Actually, this choice satisfies the

constraint (5.73). So finally we get the following expression for f (@) as a function of

the momentum-space cross ratios only,

n %) e%e]
PPN ~1)/4 Xli4d/2—1 A234d/2—1
fn(u):Cnﬂ"(" )/ (1_[/0 dz1i%y; / )/0 dz93%93 /
=2

1 Z23 . 223 .
X exp |: - Z <Z]_2 + Z93 + Z13 + Z Z]_a 1 + zu% + leuga)
a=4

21a”1b%23 ~
+ Z ; uabuQaung. (5.64)
4<a<b 212413

We can simplify this expression further by evaluating the z93 integral as
£ ([ ag3+d,_n(n—1)d/4 d
fn(u) =(Cp2 7T F(Oégg + 5)

a e —z21;/4 .
(H/ dziz 1z+d/2 1 )(212213)04234-61/2

—ag3—d/2
" azz—d/
x| 212213+ Y z1a(2120i20 + 213830) + > Z1aZ158aplizatisy
a=4 4<a<bd
(5.65)
] 1]
H
= -1
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Now we set as

215 = O0Yi4, for = 2, B N (566)
n

with constraint Zyu =1, (5.67)
i=2

so that the exponential reduces to e~ /4. By evaluating the Jacobian as discussed in

appendix B of [10] and performing the ¢ integral, we get

n 1 n
fa(@) = Cy (H/ dylz‘yimd/%l) (1n2913)™2 /% (1 - ZW)
i=270 i=2

—a3—d/2

n n
| yiavis + Y y1a(yrztiza + y1stisa) + > Y1ayislapiizatiay ;
a=4 4<a<b

(5.68)

where the «;; are given by (5.63). The normalization is

Cp, = Cpr = Dd/Aynd/2+azs=Aap <a23 + ;i) r <(n - 1)% - A1> . (5.69)
where (5.73) was used to replace 2?22 a1; = —A7. If the overall delta function is
removed in (5.68), only (n — 2) integrations remain. This seems to be the optimal
representation for fn(ﬁ) For comparison, the Mellin-Barnes representation obtained
following Symanzik’s procedure in [17] has n(n — 3)/2 Mellin integrations which is
larger than n — 2 for any n > 4.

For the 4-point function, (5.68) reduces to

fa(a) = Cy /1 dyrayfy2 oz tat /1 dyyzyfgetozstat /1 dyrays T
0 0 0

% 6(1 = y12 — 113 — y14) (Y1213 + Y12y1atios + Yisyratisd) "2 Y2 (5.70)

This is reminiscent of the Feynman parametrization of the 1-loop triangle integral
(see, appendix A.3 of [16]), with the difference that the momentum-space cross ratios
uo4 and us4 take the place of ratios of the squared external momenta. This is not

coincidence, since in section 5.1.1 we showed that the 1-loop triangle is equivalent
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to a triple-K integral and from (5.41) we know that f4('&) can be written as a triple-
K integral where the arguments are given by the momentum-space cross ratios. (5.70)
and (5.41) are exactly same and this can be verified by using equation (A.3.23) of [16].

In short, we showed that the n-point contact diagram can be written as a simplex
integral and (5.68) expresses f, (@) as an (n — 2)-fold Feynman parametric integral
over a quadratic denominator. Before finishing this chapter, we present some remark-
able connections between this result and other Feynman integrals.

Firstly, equation (5.68), the function fn('&) of momentum-space cross ratios ap-
pearing in the simplex representation, has a close similarity with the corresponding
representation for f,(u), ordinary cross ratios describing the contact diagram in posi-
tion space.

To see this, we start from (5.49) and repeat the above steps from (5.60) to (5.68).

We then find the position-space contact diagram is

—2a;—d
o= ][] =, “falw), (5.71)
1<i<j<n
where f,,(u) is given by exactly the right-hand side of (5.68). The ;; are now given

by (5.63) after making the following replacements:

Instead of (5.73), these new «;; satisfy
= d
Am:—z<amj+2>, m=1,2,...,n, (5.73)
7j=1
with a;; = «j; and o; = 0. In addition, by sending qu — a:?j in (5.61), we replace

~

Cp — CuI (AT (a23 + d/2), @ — u. (5.74)

Thus, with these replacements, both f,, (@) and f;, () have exactly the same parametriza-
tion (5.68). That is, the function fn('&) of momentum-space cross ratios appearing in
the simplex representation has the same form as the function f,(u) of ordinary cross

ratios describing the contact diagram in position space.
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This equivalence is not a coincidence, as can be seen by comparing (5.49) with
(5.68). The Fourier transform of a product of Gaussians is a convolution of Gaussians.
If we rewrite this convolution as a simplex, the resulting fn(ﬁ) in (5.68) is identical to

our starting point (5.49) up to a change of parameters.
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Chapter 6

CONCLUSION

In this thesis, we found the general solution of the conformal Ward identities in mo-
mentum space, the scalar correlators. The general CFT scalar n-point function can be
written as a simplex integral. It involves an arbitrary function f (@) of the momentum-
space cross ratios which play a same role as the cross ratios in position space. But in
momentum space, the cross ratios are subject to integration inside the simplex integral.

Then we discussed how we can find the form of f (u) for particular correlators
in holographic theory. We saw for the contact diagram we can use the trick for elec-
trical circuit theory. This is the star-mesh transformation to rewrite a contact diagram
which has a star topology as a mesh integral which has a simplex topology. And we
introduced another useful trick which is just using the convolution theorem and the
recursive structure of these simplex integrals. These two methods can be applicable
to a wider class of examples. For the star-mesh transformation trick, whenever cor-
relators have a bulk vertex which is integrated over in Witten diagram, that becomes
a sort of internal node in electrical circuit which is integrated out. So this method is
very generally applicable. And for a recursive application of the convolution theorem,
we can use this method whenever the correlators exhibit a recursive product structure
in space. We can generally transform the correlators into the recursive form through a

suitable Schwinger of Feynman parametrization.
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For further investigation, one can consider the simplex representation for a wider
range of diagrams like exchange Witten diagrams, loops, particularly those with cos-
mological relevance etc.

Other very interesting topic is to understand the singularities of these simplex inte-
grals. Because these simplex integrals are generic Feynman integrals, we have all the
standard tools to extract the singularities of these correlators. The singularities give
a lot of information. The flat-space limit takes us from CFT correlators to scattering
amplitudes. We need to find the energy poles in the correlators and extract residue
for the general simplex integral. And we would like to understand how these arbitrary
function of cross ratios f () relate to the scattering amplitudes we obtain in the flat-
space limit. Also there are special values of the operator and space-time dimension for
which divergences occur and we need to renormalize the correlators. So there would be
anomalies and beta functions associated with this. Therefore, to know the singularity
structure is very interesting topic. The cases for 3-point [16] and 4-point function [9]
was studied but the detailed structure of anomalies and the renormalization of higher-
point function remains to be explored.

Next, understanding how to find the simplex representation for more general cor-
relators involving tensorial external operators is also an open question. The case for
3-point functions was studied in [16] and 4-point functions in [18-21].

Another key area of interest of this simplex representation is to do the confor-
mal bootstrap in momentum space. There has been a lot of progress on understanding
bootstrap conditions in CFT in position space. But if we can do something similar in
momentum space, in particular tensorial correlators, there could be a progress in un-
derstanding conformal bootstrap in momentum space. And the simplex representation

would be a good way for this.
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