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Abstract

For a conformal field theory in an arbitrary dimension, we study the general solu-

tion of the conformal Ward identities for scalar n-point function in momentum space.

As discovered by Bzowski, McFadden and Skenderis in 2019, the solution is expressed

as an integral over (n− 1)-simplices in momentum space, which we will refer to as a

simplex integral. The n vertices of the simplex correspond to the n operator insertions.

The momenta running between vertices, subject to momentum conservation at each

vertex, become the integration variables. The integrand of the integral involves an ar-

bitrary function of momentum-space cross ratios. We prove the conformal invariance

of the simplex integral using a recursive structure most clearly visible when the func-

tion of cross ratios is a monomial in the cross ratios. As an application, we derive the

simplex representation of n-point contact Witten diagrams in a holographic conformal

field theory.

keywords: Conformal Field Theory, Simplex Integral

student number: 2015-20338
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Chapter 1

INTRODUCTION

For half a century, there has been much discussion about position-space n-point func-

tions in a conformal field theory (CFT) and the form of the general n-point functions

in position space has been known for 50 years [1]. However, momentum-space n-point

functions had been not much discussed for a long time, despite the usefulness for ap-

plications, which include various areas like cosmology, condensed matter, anomalies

and the bootstrap program. One of the most remarkable applications is the connection

with the recent study of inflationary correlators, where the de-Sitter isometries act on

late-time slices as conformal transformations. So once we know the general form of

CFT n-point functions in momentum space, we can then seek to bootstrap cosmolog-

ical correlators by supplying additional physical input (e,g., no collinear singularities,

appropriate flat-space limit, etc. For a sample of works, see [2–8].).

Yet, recently, several researches have yielded rich and crucial properties of momentum-

space n-point functions and most noteworthy is the finding of the expression for the

general momentum-space n-point functions by Bzowski, McFadden and Skenderis

[9, 10]. Moreover, they found the useful structure of the simplex integrals. This paper

will review and follow the discussion of them.

In this thesis, the main goals can be divided into two parts. First, we give the

general form of n-point functions of CFT in momentum space as a simplex integral,
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featuring an arbitrary function of momentum-space cross ratios constructed from the

integration variables. These cross ratios is the analogue of the position-space cross

ratios but they enter only via the integration variables. Second, as an application, we

derive the simplex representation for the simplest possible holographic correlators,

contact Witten diagrams in Ads/CFT, using two independent methods: one using the

star-mesh transformation from electrical circuit theory and the other by a recursive

application of the convolution theorem. And We also discuss how do we find the spe-

cific form of the function f̂(û) of the momentum-space cross ratios for this specific

example.

The layout of this thesis is as follows. we first briefly review the basic concept

of CFT, including conformal algebra, conformal correlation function and conformal

block in chapter 2. In chapter 3, we introduce a concept of basic integral transform and

give the expression for conformal Ward identities in momentum space. Chapter 4 is the

main part of this paper. We present the general scalar n-point function in momentum

space as a simplex integral. We also introduce a special case of the simplex integral,

mesh integral. Actually, whenever the functions of the cross ratios f̂ is a monomial in

the cross ratios, the simplex integral reduces to the mesh integral. We show that the

mesh integral has a remarkable recursive structure and prove the conformal invariance

of the mesh and simplex integral. In chapter 5, we derive the simplex representation

for the simplest possible holographic correlators. We conclude in chapter 6.
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Chapter 2

CONFORMAL CORRELATION FUNCTIONS

2.1 Conformal Algebra

To make our discussion self-contained, we present a brief review of the conformal

algebra in d > 2 dimensions. The conformal group consists of transformations of

spacetime which leave the metric tensor invariant up to a scale:

g′µν(x′) = e2λ(x)gµν(x). (2.1)

For simplicity, we assume that the spacetime is Euclidean. In d > 2, the Euclidean

conformal group is SO(d+ 1, 1). The finite transformations are known to be

x′µ = xµ + aµ, (Translation)

x′µ = (1 + α)xµ, (Dilation)

x′µ = Mµ
νx

ν , (Lorentz rotation)

x′µ =
xµ − bµx2

1− 2b · x+ b2x2
. (Special conformal transformation)

(2.2)
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Taking the infinitesimal transformations, we can read off the generators of the confor-

mal algebra realized as differential operators,

Pν = −i∂ν , (Translation)

D = −ixµ∂µ, (Dilation)

Lρν = −i(xν∂ρ − xρ∂ν), (Lorentz rotation)

Kρ = −i(2xρxµ∂µ − x2∂ρ). (Special conformal transformation)

(2.3)

The conformal algebra is realized as Lie algebra among differential operators,

[D,Pµ] = iPµ,

[D,Kµ] = −iKµ,

[Kµ, Pν ] = 2i(gµνD − Lµν),

[Kρ, Lµν ] = i(gρµKν − gρνKν),

[Pρ, Lµν ] = i(gρµPν − gρνPν),

[Lµν , Lρσ] = i(gνρLµσ + gµσLνρ − gµρLνσ − gνσLµρ).

(2.4)

Physicists are interested in the role of conformal symmetry in a QFT. Let F be the

function relating the new field Φ′ evaluated at the transformed coordinate x′ to the old

field Φ at x:

Φ′(x′) = F (Φ(x)) . (2.5)

For example, the action of a scale transformation on the field Φ(x) defines the scaling

dimension ∆ of Φ:

Φ(λx) = λ−∆Φ(x) . (2.6)

An infinitesimal transformation can be written as

x′µ = xµ + εa
δxµ

δεa
,

Φ′(x′) = Φ(x) + εa
δF

δεa
.

(2.7)

The generator Ga of an infinitesimal transformation acting on a field is defined as

δεΦ(x) ≡ Φ′(x)− Φ(x) ≡ −iεaGaΦ(x) , (2.8)
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so that

iGaΦ =
δxµ

δεa
∂µΦ− δF

δεa
. (2.9)

Let Ta be a matrix representation of an infinitesimal transformation,

Φ′(x′) = (1− iεaTa)Φ(x) . (2.10)

Then, we can summarize the transformation rules for the field Φ(x) as

PµΦ(x) = −i∂µΦ(x),

DΦ(x) = −i(xν∂ν + ∆)Φ(x),

LµνΦ(x) = i(xµ∂ν − xν∂µ)Φ(x) + SµνΦ(x),

KµΦ(x) = (κµ − i2xµ∆− xνSµν − 2ixµx
ν∂ν + ix2∂µ)Φ(x),

(2.11)

where ∆ is the scaling dimension and Sµν is the matrix representation of the Lorentz

rotation.

2.2 Conformal Correlation Function

One of the most basic observables in a conformal field theory (CFT) is the correlation

function of local operators. The constraints imposed by the conformal symmetry on

the conformal correlators are expressed by the Ward identities.

Let us denote the n-point correlation function by 〈φ1(x1) · · ·φn(xn)〉. For simplic-

ity, we assume that the operators φi are scalars. The translation and rotation symmetry

can be made manifest by appropriate vector or tensor notations. The dilatation Ward

identity is slightly less trivial:

n∑
j=1

(
xαj

∂

∂xαj
+ ∆j

)
〈φ1(x1) · · ·φn(xn)〉 = 0, (2.12)

and the special conformal Ward identity,

n∑
j=1

(
−x2

j

∂

∂xκj
+ 2xκj x

α
j

∂

∂xαj
+ 2∆jx

κ
j

)
〈φ1(x1) · · ·φn(xn)〉 = 0, (2.13)
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where ∆j is the scaling dimension of the field φj .

It is well known to what extent conformal invariance restricts n-point correlation

functions. For n ≤ 3, the constraints are so strong that the correlation functions are

determined up to constants.

Up to 4-point The only possibility for the one-point functions is a constant,

〈φ1(x1)〉 = C . (2.14)

The dilatation Ward identity dictates that the value of C can be non-zero only for the

identity operator with ∆ = 0.

Translation, rotation and scale invariance fix the two-point functions of scalar op-

erators up to a constant as

〈φ1(x1)φ2(x2)〉 =
C12

|x1 − x2|∆1+∆2
. (2.15)

Then, special conformal symmetry imposes an orthogonality condition,

〈φ1(x1)φ2(x2)〉 =
C12δ∆1∆2

|x1 − x2|2∆1
. (2.16)

For the three-point functions, translation, dilatation and special conformal trans-

formation together demand that

〈φ1(x1)φ2(x2)φ3(x3)〉 =
f123

x∆1+∆2−∆3
12 x∆2+∆3−∆1

23 x∆3+∆1−∆2
31

, (2.17)

where f123 is a constant and xij ≡ xi − xj . It is a straightforward exercise to verify

that the 2-point function (2.15) and the 3-point function (2.17) satisfy the conformal

Ward identities (2.12) and (2.13).

The four-point functions, unlike the two- and three-point functions, cannot be fully

fixed by conformal invariance. They have an arbitrary dependence on two independent

conformal cross-ratio:

〈φ1(x1)φ2(x2)φ3(x3)φ4(x4)〉 = g(u, v)
4∏
i<J

x
∆/3−∆i−∆j

ij , (2.18)
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where u and v are defined by

u =
x2

12x
2
34

x2
13x

2
24

, v =
x2

23x
2
14

x2
13x

2
24

, (2.19)

g(u, v) is an arbitrary function, and ∆ =
∑4

i=1 ∆i.

General n-point function The higher point functions allow for more conformal

cross-ratio. The general form of a scalar n-point function is known to be

〈φ1(x1) · · ·φn(xn)〉 =
∏

1≤i<j≤n
x

2αij

ij f(u), xij ≡ |xi − xj |. (2.20)

The parameters αij are related to the scaling dimensions by

∆m = −
n∑
j=1

αmj , m = 1, 2, . . . , n. (2.21)

These conditions do not determine αij uniquely. To avoid ambiguity, it is convenient

to make two choices,

αji = αij and αii = 0. (2.22)

We denote the full set of parameters collectively by α = {αij}1≤i<j≤n.

The conformal cross-ratio are defined by

u[pqrs] =
x2
prx

2
qs

x2
pqx

2
rs

, (2.23)

where p, q, r, s = 1, 2, . . . , n are distinct numbers. This construction considerably

over-counts the number of cross ratios. At most n(n− 3)/2 are independent. In suffi-

ciently high spacetime dimension, all n(n − 3)/2 are independent. In low spacetime

dimensions there can be non-trivial relations between the cross ratios. We will ignore

this subtlety.

A brief explanation of the counting of the cross ratios is as follows. The number of

distinct xij’s is n(n− 1)/2. Define the monomial m(x;a) by

m(xi; aij) =
∏

1≤i<j≤n
x
aij
ij . (2.24)
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For this monomial to be conformally invariant, the following relation is required:

i−1∑
j=1

aji +
n∑

j=i+1

aij = 0 for all i = 1, . . . , n. (2.25)

This gives n constraints on the monomial. So the number of independent cross ratios

is reduced to
n(n− 1)

2
− n =

n(n− 3)

2
. (2.26)

There are various ways of choosing an independent set of u. We will use

u2a = u[123a] =
x2

2ax
2
13

x2
1ax

2
23

, u3a = u[132a] =
x2

3ax
2
12

x2
1ax

2
23

, uab = u[2a3b] =
x2
abx

2
23

x2
2ax

2
3b

,

(2.27)

where a, b = 4, 5, ..., n and a < b, so we have the right number of ratios:

2(n− 3) +
(n− 3)(n− 4)

2
=
n(n− 3)

2
.

We denote these independent cross ratios collectively by a vector u.
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Chapter 3

INTEGRAL TRANSFORMS

3.1 Fourier Transform

We follow high energy physicists’ standard convention for Fourier transform:

f(x) =

∫
ddp

(2π)d
eip·xf̃(p) ⇐⇒ f̃(p) =

∫
ddxe−ip·xf(x) . (3.1)

Applying the same convention to an n-point correlation function is straightforward,

〈φ1(x1) · · ·φn(xn)〉 =

∫
[dp]n e

i(p1x1+...+pnxn) 〈φ1(p1) · · ·φn(pn)〉

⇐⇒ 〈φ1(p1) · · ·φn(pn)〉 =

∫
[dx]n e

−(ip1x1+...+pnxn) 〈φ1(x1) · · ·φn(xn)〉 .

(3.2)

To avoid clutter, we chose to suppress the dot for inner products (p · x → px) and

introduced short-hand notations,

[dp]n =
n∏
i=1

ddpi
(2π)d

, [dx]n =
n∏
i=1

ddxi . (3.3)

A minor but important feature of the Fourier transform of the correlation functions

is that translation symmetry implies momentum conservation. To account for this, we

adopt the double-bracket notation to denote the reduced correlation function

〈φ1(p1) · · ·φn(pn)〉 = (2π)dδ

(
n∑
i=1

pi

)
⟪φ1(p1) · · ·φn(pn)⟫ . (3.4)
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In the double-bracket, one of the momenta, say pn, is considered as a dependent vari-

able,

pn = −
n−1∑
i=1

pi . (3.5)

To see the origin of the momentum-conserving delta-function explicitly, we change

the variables as

xi = yi + yn (1 ≤ i ≤ n− 1) , xn = yn , (3.6)

and use the translation invariance to set

〈φ1(x1) · · ·φn(xn)〉 = 〈φ1(y1 + yn) · · ·φn−1(yn−1 + yn)φn(yn)〉

= 〈φ1(y1) · · ·φn−1(yn−1)φn(0)〉 .
(3.7)

It is now clear that the integration over yn produces the delta-function, whereas the

integration over (y1, . . . , yn−1) produces ⟪φ1(p1) · · ·φn(pn)⟫.
As simple examples, we show explicitly the Fourier transformation of 1-point and

2-point functions. The 1-point function is simply a constant, say 〈φ1(x1)〉 = C. The

Fourier transformation gives C × (2π)dδ(p1).

For the 2-point function (2.16), we should compute the integral,

〈φ1(p1)φ2(p2)〉 =

∫
[dp]2 e

ip1x1+p2x2 〈φ1(x1)φ2(x2)〉

=

∫
[dp]2 e

ip1x1+p2x2 C12δ∆1∆2

|x1 − x2|2∆1
.

(3.8)

For convenience, we set x2 = 0. Then using∫
ddxe−ip·x

1

x2∆
=
πd/22d−2∆Γ(d−2∆

2 )

Γ(∆)
p2∆−d,

where the integral converges for 0 < 2∆ < d, we get

⟪φ1(p1)φ2(p2)⟫ =
C12π

d/22d−2∆Γ(d−2∆
2 )

Γ(∆)
p2∆−d

1 = c2 p
2∆−d
1 , (3.9)

where ∆1 = ∆2 = ∆ and we defined the overall constant as c2. We extracted the

Dirac delta function associated with momentum conservation and used the double-

bracket notation to denote the reduced correlation function as

〈φ1(p1)φ2(p2)〉 = (2π)dδ(p1 + p2)⟪φ1(p1)φ2(p2)⟫. (3.10)

10



3.2 Conformal Invariance in Momentum Space

We should import the conformal Ward identities to momentum space. Again we focus

on the n-point scalar correlators. As discussed above, translation symmetry is incor-

porated by momentum conservation and the double-bracket notation in (3.4). Rotation

symmetry requires that the correlation function be built from invariant scalar prod-

ucts. It remains to spell out the dilatation and special conformal Ward identities in

momentum space. We will discuss both the full correlation functions and the reduced

correlation functions in the sense of (3.4).

The most convenient (although less rigorous) way to find the momentum-space

expressions for the conformal Ward identity operators is to use the familiar rules:

xα → +i
∂

∂pα
,

∂

∂xα
→ +ipα . (3.11)

These rules are familiar from quantum mechanics. They can be rigorously justified

provided that the “wave-functions” behave mildly. We will not dwell on this mathe-

matical point any further.

Dilatation The dilatation Ward identity in the position space is given by (2.12):

D = ∆t +
n∑
j=1

xαj
∂

∂xαj
, ∆t =

n∑
j=1

∆i . (3.12)

Applying the rules (3.11) and switching the ordering between p and ∂/∂p, we find

D = ∆t − nd−
n∑
j=1

pαj
∂

∂pαj
. (3.13)

In other words, we get the following dilatation Ward identity in momentum space,∆t − nd−
n∑
j=1

pαj
∂

∂pαj

 〈φ1(p1) · · ·φn(pn)〉 = 0. (3.14)

In terms of the reduced correlator, the Ward identity becomes∆t − (n− 1)d−
n−1∑
j=1

pαj
∂

∂pαj

 ⟪φ1(p1) · · ·φn(pn)⟫ = 0 . (3.15)

11



Special conformal transformation We can follow a similar procedure to find the

expression for the special conformal Ward identity in momentum space. The Ward

identity in the position space is given by (2.13):

Kκ =

n∑
j=1

Kκ
j , Kκ

j = −i

(
−x2

j

∂

∂xκj
+ 2xκj x

α
j

∂

∂xαj
+ 2∆jx

κ
j

)
. (3.16)

Applying the rules (3.11) and pushing the derivatives to the right, we obtain

Kκ
j = Kκ(∆j , pj) ,

Kκ(∆, p) = pκ
∂2

∂pα∂pα
− 2pα

∂2

∂pα∂pκ
+ 2(∆− d)

∂

∂pκ
.

(3.17)

Using these notations, we can succinctly summarize the special conformal Ward iden-

tities as

Kκ(∆) 〈φ1(p1) · · ·φn(pn)〉 = 0, (3.18)

K̃κ(∆)⟪φ1(p1) · · ·φn(pn)⟫ = 0, (3.19)

where the corresponding operators are

Kκ(∆) =

n∑
j=1

Kκ(∆j ; pj) , K̃κ(∆) =

n−1∑
j=1

Kκ(∆j ; pj) , (3.20)

with Kκ(∆; p) defined in (3.17). In (3.20), ∆ denotes collectively the scaling dimen-

sions of all the operators.

3.3 Mellin-Barnes Transform

Given a function f(x), defined on the positive real axis R+, its Mellin transform is

defined by

ϕ(s) = (Mf)(s) =

∫ ∞
0

xs−1f(x)dx. (3.21)

This relation can be inverted by a line integral

f(x) = (M−1ϕ)(x) =
1

2πi

∫
γ
x−sϕ(s)ds, (3.22)

12



by an appropriate choice of the contour γ in the complex plane starting at c− i∞ and

ending at c+i∞, with Re(s) = c > 0. If the integrand of the transform (3.22) involves

products and ratios of Gamma functions, it is called a Mellin-Barnes integral.

Let us give a simple example. The famous integral representation of the gamma

function,

Γ(s) =

∫ ∞
0

xs−1e−xdx, Re(s) > 0, (3.23)

shows that Γ(s) is nothing but the Mellin transform of e−x. The inversion formula

reads

e−x =

∫ c+i∞

c−i∞
x−sΓ(s)ds, c > 0, (3.24)

which provides perhaps the simplest Mellin-Barnes integral. The equivalence between

(3.23) and (3.24) can be proved easily by using Cauchy’s residue theorem. Let us

compute the right-hand side of (3.24) with the rectangular contour given in Figure 3.1.

The vertices of the contour are located at c ± iR (c > 0) and −(N + 1/2) ± iR,

where N is a positive integer. The poles of Γ(s) inside this contour are at s = −m

with residues (−1)m/m! for m ∈ {0, . . . , N}, respectively.

y

x
0−1−2−N−(N + 1)

c+ iR

c− iR

−(N + 1
2 ) + iR

−(N + 1
2 )− iR

c...

Figure 3.1: Contour for an inverse Mellin transform.Rectangular contour with the ver-

tices c± iR, −(N + 1
2)± iR.
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Now, Cauchy’s residue theorem implies that

1

2πi

∫
R
x−sΓ(s)ds =

N∑
m=0

(−1)m

m!
xm . (3.25)

The next step is to take R and N to infinity. Stirling’s approximation implies that the

integral on the contour minus the line joining c− iR and c+ iR tends to zero. To sum

up, we have

1

2πi

∫ c+i∞

c−i∞
x−sΓ(s)ds = lim

N→∞

N∑
m=0

(−1)m

m!
xm =

∞∑
m=0

(−1)m

m!
xm = e−x . (3.26)

The Mellin-Barnes transform enters the study of CFT through the fact that the

position-space correlators can be expressed via the Mellin-Barnes transform [11–13]

〈φ1(x1) · · ·φn(xn)〉 =
1

(2πi)N

∫ cij+i∞

cij−i∞
[dγij ]Mn(γij)

n∏
i<j

x
−2γij
ij Γ(γij). (3.27)

The integral measure [dγij ] is linear in each γij but subject to constraints,

∑
j

γij = ∆i , ∆ii = 0 . (3.28)

The number of independent solutions to these constraints is n(n − 3)/2. The reader

may notice that (−γij) satisfy the same conditions as αij as in (5.73) and (2.22). We

will use this similarity in the next chapter, where we will reexamine the conformal

invariance of the correlation functions in the momentum space. In the meanwhile, it is

convenient to distinguish (−γij) from αij .

Here, we show that the (3.27) satisfies the conformal Ward identities in the position

space. Translation symmetry is manifest since the integral in (3.27) depends only on

the relative coordinates xij . For the dilatation Ward identity (2.12), we observe

n∑
j=1

(
xαj

∂

∂xαj
+ ∆j

)
〈φ1(x1) · · ·φn(xn)〉

=
n∑
j=1

(−γij + ∆j) 〈φ1(x1) · · ·φn(xn)〉 = 0 .

(3.29)

14



Similarly, for the special conformal Ward identity (2.13),

n∑
j=1

(
−x2

j

∂

∂xκj
+ 2xκj x

α
j

∂

∂xαj
+ 2∆jx

κ
j

)
〈φ1(x1) · · ·φn(xn)〉

=
n∑
j=1

(−γij − γij + 2∆j) 〈φ1(x1) · · ·φn(xn)〉 = 0 .

(3.30)

Thus we have confirmed that (3.27) is compatible with conformal invariance.

15



Chapter 4

SIMPLEX AND MESH INTEGRALS

4.1 Simplex Integrals

We are ready to present one of the most important results of the thesis: the simplex in-

tegral representation of a scalar n-point function in momentum space, first introduced

by Bzowski, McFadden and Skenderis [9, 10].

In [9], the authors showed that the general scalar n-point function in momentum

space can be expressed as a simplex integral:

〈φ1(p1) · · ·φn(pn)〉 =
∏

1≤i<j≤n

∫
ddqij
(2π)d

f̂(û)

q
2αij+d
ij

n∏
k=1

(2π)dδ(pk +
n∑
l=1

qlk) . (4.1)

To define this integral, we introduce an oriented (n − 1)-simplex. The momenta pi

are assigned to the vertices of the simplex. The integral is defined over the “internal”

momenta qij assigned to the edge from vertex i to j. The orientation is defined such

that qij = −qji and qii = 0. We thus have n(n − 1)/2 integration variables which

we choose to be qij with i < j. The product of delta functions imposes “momentum

conservation” at each vertex as required by the translation invariance of the conformal

correlator.

Remarkably, the parameters αij in (4.1) are the same as the ones that appeared in

the position space representation (2.20). We will elaborate on this point later in this
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chapter. The function f̂ is an arbitrary function of momentum-space cross ratios.

û[pqrs] =
q2
pqq

2
rs

q2
prq

2
qs

. (4.2)

Just as in position space, only n(n − 3)/2 of these cross ratios are independent. We

will choose the set

û2a = û[123a] =
q2

12q
2
3a

q2
2aq

2
13

, û3a = û[132a] =
q2

13q
2
2a

q2
3aq

2
12

, ûab = û[2a3b] =
q2

2aq
2
3b

q2
abq

2
23

,

(4.3)

where a, b = 4, 5, . . . , n and a < b. We will denote the set of indices enumerating the

independent cross ratios by U , while the ratios themselves will be written collectively

as û, thus û = {ûI}I∈U .

In momentum space, the cross ratios are subject to integration inside the simplex

integral (4.1). Putting aside one delta function for overall momentum conservation, we

will employ the double-bracket notation

〈φ1(p1) · · ·φn(pn)〉 = (2π)dδ

(
n∑
i=1

pi

)
⟪φ1(p1) · · ·φn(pn)⟫. (4.4)

Overall, we have n(n − 1)/2 integrals and (n − 1) delta functions. We can now per-

form the integrals over the variables qin for i = 1, 2, . . . , n − 1 in (4.1) to remove

the remaining delta functions. This leaves us with (n − 1)(n − 2)/2 integrals still to

perform,

⟪φ1(p1) · · ·φn(pn)⟫ =
∏

1≤i<j≤n−1

∫
ddqij
(2π)d

f̂(û)

Denn(α)
, (4.5)

where the denominator reads

Denn(α) =
∏

1≤i<j≤n−1

q
2αij+d
ij ×

n−1∏
m=1

|lm − pm|2αmn+d (4.6)

and lm depends only on the remaining internal momenta,

lm = −qmn + pm =
n−1∑
j=1

qmj = −
m−1∑
j=1

qjm +
n−1∑

j=m+1

qmj . (4.7)
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Notice that we have eliminated the momentum pn and hence all the remaining mo-

menta are independent. All sums and products now extend only up to n − 1. We will

refer to the expression (4.5) as the reduced simplex integral.

1-, 2- and 3-point function As a warm-up exercise, let us examine how the simplex

integrals works for the 1-, 2- and 3-point functions. In these cases, there are no cross

ratios and the function f̂n can be replaced by constant cn.

As we discussed in the previous chapter, the 1-point function can be non-vanishing

only for the identity operator. The position-space correlator is a constant. Its Fourier

transform is proportional to the delta function δ(p1). We may say, trivially, the delta

function is defined on the vertex of a zero-dimensional simplex. There is no edge to

carry any internal momentum.

For a 2-point function, the relevant simplex is a line interval. The simplex integral

(4.1) becomes

〈φ1(p1)φ2(p2)〉 =

∫
ddq12

(2π)d
c2

q2α12+d
12

(2π)2dδ(p1 − q12)δ(p2 + q12). (4.8)

Pulling out the momentum conserving delta function, we have

〈φ1(p1)φ2(p2)〉 = (2π)dδ(p1 + p2)

∫
ddq12

(2π)d
c2

q2α12+d
12

(2π)dδ(p1 − q12). (4.9)

Performing the integral explicitly, we obtain

⟪φ1(p1)φ2(p2)⟫ = c2 p
−2α12−d
1 , (4.10)

which agrees with (3.9) and (5.73).

The simplex for a 3-point function is a triangle; see Figure 4.2. After pulling out

the overall delta function and imposing momentum conservation, one internal momen-

tum remains and give a non-trivial reduced integral. Amusingly, the reduced integral

resembles (but differs from) a loop integral in Feynman diagram calculation:

⟪φ1(p1)φ2(p2)φ3(p3)⟫ =

∫
ddq

(2π)d
1

|q|2α12+d|q − p1|2α13+d|q + p2|2α23+d
.

(4.11)
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p2

q + p2
p3

q − p1q

p1

Figure 4.1: The 3-point function as a 2-simplex (triangle) integral.

The αij parameters, subject to conditions (5.73) and (2.22), are given by

2α12 = 2∆3 −∆t = −∆1 −∆2 + ∆3 ,

2α13 = 2∆2 −∆t = −∆1 −∆3 + ∆2 ,

2α23 = 2∆1 −∆t = −∆2 −∆3 + ∆1 .

(4.12)

At this stage, it is not clear how to relate this loop triangle representation of the 3-point

function to the other famous integral representation (known as a triple-K integral)

whose integrand is the product of three modified Bessel K functions. We will reveal

the connection in section 5.1.

4-point function The cross ratios make the 4-point and higher point functions much

more complicated than the lower point functions. The reduced integral (4.5) for a 4-

point function is

⟪φ1(p1)φ2(p2)φ3(p3)φ4(p4)⟫ =

∫
ddq1

(2π)d
ddq2

(2π)d
ddq3

(2π)d
f̂(û, v̂)

Den4(qj ,pk)
, (4.13)

where the denominator is given by

Den4(qj ,pk) = q2α12+d
3 q2α13+d

2 q2α23+d
1

× |p1 + q2 − q3|2α14+d|p2 + q3 − q1|2α24+d|p3 + q1 − q2|2α34+d. (4.14)
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p1

q3

p2

q1

p3

p3 + q1 − q2

p4

p1 + q2 − q3

q2

p2 + q3 − q1

Figure 4.2: The 4-point function as a 3-simplex (tetrahedron) integral.

We simplified the labels somewhat by setting

qi =
1

2
εijkqjk, (i, j, k = 1, 2, 3) . (4.15)

The arbitrary function f̂(û, v̂) is a function of two independent variables,

û =
q2

1|p1 + q2 − q3|2

q2
2|p2 + q3 − q1|2

, v̂ =
q2

2|p2 + q3 − q1|2

q2
3|p3 + q1 − q2|2

, (4.16)

whose role is analogous to that of the position-space cross ratios u and v. However,

they depend on the momenta qj which are subject to the integration in (4.13).

The above examples illustrate a formal similarity between the simplex integrals

and Feynman loop integrals. The main source of the similarity is the momentum con-

servation at each vertex. But, there are also crucial differences. Most importantly, the

Feynman calculus requires sum over many allowed graphs, while there is only one

simplex integral for a given n-point function.

4.2 Mesh Integrals

In this section, we take the first step to decompose a general simplex integral into

something simpler called mesh integral. The mesh integral is a special case of the sim-
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plex integral where the position-space expression is a single monomial. It is unlikely

that a mesh integral is naturally produced by a simplex integral of a correlator in a

CFT. The reason why we study the mesh integral is that we can express an arbitrary

simplex integral as a (typically infinite) linear combination of mesh integrals. More-

over, the mesh integrals exhibit a recursive structure, which allows us to build n-point

functions in terms of (n− 1)-point functions.

An n-point mesh integral requires the αij parameters in the defining formula:

Mn(α;p1, . . . ,pn) =
∏

1≤i<j≤n
Cij

∫
ddqij
(2π)d

1

q
2αij+d
ij

n∏
k=1

(2π)dδ(pk +
n∑
l=1

qlk),

(4.17)

where the coefficient

Cij =
πd/22d+2αij

Γ(−αij)
Γ

(
d

2
+ αij

)
(4.18)

is included for convenience. As above, there are n(n − 1)/2 integration variables qij

with i < j (and we extend qij to any i, j by qij = −qji). So, a mesh integral is a

simplex integral with f̂ = 1. For n = 1, it is convenient to define M1 by

M1(p) = (2π)dδ(p) . (4.19)

Just as for simplex integral, we define the reduced mesh integrals M̃n by pulling out

the momentum conserving delta function,

Mn(α;p1, . . . ,pn) = (2π)dδ

(
n∑
i=1

pi

)
M̃n(α;p1, . . . ,pn). (4.20)

Up to the factors of Cij , the reduced mesh integrals are given by (4.5) with f̂ = 1,

namely

M̃n(α;p1, . . . ,pn) =
∏

1≤i<j≤n−1

Cij

∫
ddqij
(2π)d

1

Denn(α)
, (4.21)

where the denominator is given by (4.6).

Recursion The mesh integral (4.17) exhibits a remarkable recursive structure. To

show this, we pull out factors containing qij and pn and rename qin 7→ qi. Then, the
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mesh integral can be written recursively as

M̃n(α;p1, . . . ,pn)

=
n−1∏
i=i

Cin

∫
ddqi

(2π)d
Mn−1(α; p1 − q1, . . . , pn−1 − qn−1)

q2α1n+d
1 q2α2n+d

2 · · · q2αn−1,n+d
n−1

(2π)dδ(pn +
n−1∑
j=1

qj).

(4.22)

q1

q2

q4

q3
pn

p1

p2

p3

p4

Figure 4.3: The decomposition of the 5-point mesh M5. The solid internal lines on

the right-hand side of the figure represent the 4-point mesh M4 evaluated with ingoing

momenta pj − qj .

Fourier transform Our next task is to show that the mesh integral (4.17) is the

Fourier transform of the position-space conformal n-point function (2.20) when f is a

monomial in the cross ratios. The n-point function (2.20) takes the form

Fn(α;x1, . . . , xn) =
∏

1≤i<j≤n
x

2αij

ij , (4.23)

where the αij are still a solution of (5.73). We wish to show that the Fourier transform

of (4.23) is equal to (4.17), namely

F [Fn](α;p1, . . . ,pn) =

∫
[dx]ne

−i
∑n

j=1 xj ·pjFn(α;x1, . . . , xn)

= Mn(α; p1, . . . , pn).

(4.24)
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We can check this explicitly for the 2-point function. The Fourier transform of F2 is

simply,

F [x2α12
12 ] = (2π)dδ(p1 + p2)

C12

p2α12+d
1

, (4.25)

where Cij is given in (4.18). This result matches the corresponding mesh integral,

which is, from (4.17),

M2(α12; p1, p2) = C12

∫
ddq12

(2π)d
1

q2α12+d
12

δ(p1 − q12)(2π)dδ(p2 + q12)

= (2π)dδ(p1 + p2)
C12

q2α12+d
12

.

(4.26)

We proceed by induction and use the recursive structure of (4.22). If we assume the

statement (4.24) holds true up to the level of the (n− 1)-point function, we can write

Fn as

Fn(α;x1, . . . , xn) = x2α1n
1n x2α2n

2n · · ·x2αn−1,n

n−1,n × Fn−1(α;x1, . . . , xn−1). (4.27)

Using the Fourier transform of a single power function as in (4.25) and denoting con-

volution by ∗, we find

F [Fn]

= F [x2α1n
1n x2α2n

2n · · ·x2αn−1,n

n−1,n ] ∗ F [Fn−1]

=

[
(2π)dδ(

∑n
j=1 pj)

∏n−1
i=1 Cin

q2α1n+d
1 q2α2n+d

2 · · · q2αn−1,n+d
n−1

]
∗
[
Mn−1(α; p1, . . . , pn−1)(2π)dδ(pn)

]

=
n−1∏
i=1

Cin

∫
ddqi

(2π)d
Mn−1(α; p1 − q1, . . . , pn−1 − qn−1)

q2α1n+d
1 q2α2n+d

2 · · · q2αn−1,n+d
n−1

(2π)dδ

pn +
n−1∑
j=1

qj


= Mn(α;p1, . . . ,pn) .

(4.28)

In the last step, we used the mesh recursion relation (4.22).
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4.3 Proof of Conformal Invariance

In this section, we will show that the simplex integrals (4.1) are conformally invariant.

Since we showed that the mesh integrals (4.17) are direct Fourier transform of the

position-space n-point function (2.20) when f is a monomial in the cross ratios, the

conformal invariance of them is already apparent. Even so, we will prove the conformal

invariance of the mesh integrals directly using the momentum-space conformal Ward

identities, which we derived in chapter 3. As we will see, the conformal invariance of

the simplex integrals follows directly from the that of the mesh integrals.

In section 4.3.1, we will first show that the mesh integrals are the solutions of the

momentum-space conformal Ward identities. For the special conformal Ward identity,

this can be shown in two ways. One is to use the recursive structure of mesh integrals,

and the other is to show that the action of the corresponding differential on the mesh

integrals yields a total derivative. In section 4.3.2, we then prove the conformal invari-

ance of the simplex integrals. This can be shown in three ways. The first is to use a

Mellin-Barnes transformation relating the simplex integrals to the mesh integrals and

will be discussed in the first paragraph of section 4.3.2. The other two proceeds by

showing that the action of the special conformal Ward identity operator on the simplex

integrals yields a total derivative. This can be shown either indirectly or directly, as

will be discussed in the second paragraph of section 4.3.2.

4.3.1 Conformal invariance of the mesh integrals

The dilatation Ward identity is a matter of dimension counting. It is easy to verify

that the mesh integral (4.17) has the dimension ∆t − nd. At each edge, an integration

increases the dimension by d while a propagator decreases the dimension by 2αij + d,

resulting in a net decrease by 2αij . At each vertex, the momentum-conserving delta
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functions decreases the dimension by d. Overall, we have

−
∑

1≤i<j≤n
αij − nd =

n∑
i,j=1

αij − nd = ∆t − nd . (4.29)

In the last step, we used the sum of all relations in (5.73).

Let us move on to show that the mesh integrals (4.17) also satisfy the special

conformal Ward identity (3.18). Recall that the special conformal Ward identity is

Kκ(∆) 〈φ1(p1) · · ·φn(pn)〉 = 0,

where the special conformal differential operator Kκ(∆) is given by

Kκ(∆) =
n∑
j=1

Kκ(∆j ; pj)

Kκ(∆j ; pj) =

(
pκj

∂2

∂pαj ∂p
α
j

− 2pαj
∂2

∂pαj ∂p
κ
j

+ 2(∆j − d)
∂

∂pκj

)
.

(4.30)

We denote the action of the special conformal operator on the n-point mesh integral as

E(n)κ(∆; p1, . . . , pn) = Kκ(∆)Mn(α; p1, . . . , pn). (4.31)

This expression admits a recursive structure similar to (4.22). To see this, let us write

the scaling dimensions of the n-point function as ∆
(n)
m and those of the (n− 1)-point

function as ∆
(n−1)
m . From (5.73), these are related by

∆(n)
n = −

n−1∑
j=1

αjn, ∆n
m = ∆(n−1)

m − αmn, m = 1, . . . , n− 1. (4.32)

Thus, given n − 1 parameters αmn and a set of ∆
(n−1)
m satisfying (5.73) at (n − 1)

points, we can construct a solution of (5.73) at n points.

To proceed by induction, we first consider the 1-point mesh integral. We defined

the mesh integral as M1(p1) = (2π)dδ(p1), and it is almost trivial to show that

Kκ(0; p1)M1(p1) = 0, (4.33)
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where ∆1 = 0 is enforced by dilatation invariance. The key element of the induction is

an integration by parts identity, a detailed derivation of which can be found in appendix

A.1 of [9]. The result is

E(n)κ(∆(n); p1, . . . , pn)

=
n−1∏
i=1

Cin

∫
ddqi

(2π)d
1

q2α1n+d
1 q2α2n+d

2 . . . q
2αn−1,n+d
n−1

× (2π)dδ

pn +
n−1∑
j=1

qj

 E(n−1)κ(∆(n−1); p1, . . . , pn−1).

(4.34)

This identity clearly ensures that, if the (n−1)-point mesh integral satisfies the (n−1)-

point special conformal Ward identity, then the n-point mesh integral satisfies the n-

point special conformal Ward identity, completing the desired proof.

4.3.2 Conformal invariance of the simplex integrals

Having proved the conformal invariance of the mesh integral, we now turn to the sim-

plex integral. There exist a few different methods to prove the conformal invariance of

the simplex integrals. We will explain two of them discussed in [10].

The first method uses the Mellin-Barnes representation of conformal correlators.

A key point is that the Mellin-Barnes transformation decomposes an arbitrary sim-

plex integral as a linear combination of mesh integrals. The linear combination runs

over continuous parameters, so there can be order of limits problems. Apart from this

subtlety, the proof is conceptually simple and technically straightforward.

The second method examines a direct action of the special conformal Ward iden-

tity operator on the simplex integrals. Using the conformal invariance of the mesh

integrals, we can show that the action of the special conformal Ward identity operator

gives a total derivative inside the momentum integral. Under a mild assumption on the

convergence of the integral, the integral vanishes and proves the conformal invariance

of the simplex integral.
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Proof by Mellin-Barnes transform

Mesh integrals are special cases of simplex integrals where f̂ is a monomial in the

cross ratios. In general, we can express the monomial f̂ as

f̂ =
∏
I∈U

ûγII , (4.35)

where we have N = n(n− 3)/2 independent cross ratios ûI1 , . . . , ûIN , and γI is a set

of N exponents. The γ exponents can be absorbed by the α exponents in the definition

of the simplex integral such that∏
I∈U ûγII

Denn(α)
=

1

Denn(α
(γ1...γN )
I1...IN

)
, (4.36)

The shifted parameters α(γ1...γN )
I1...IN

= {α(γ1...γN )
ij,I1...IN

)}1≤i<j≤n are given by

α
(γ1...γN )
I1...IN

= αij +
N∑
m=1

γmSij,Im ,

Sij,[pqrs] = δipδjr + δiqδjs − δipδjq − δirδjs .

(4.37)

This shift procedure shows that the simplex integral with monomial f̂ satisfies the

same conformal Ward identities as the simplex integral with f̂ = 1.

Having established conformal invariance for an arbitrary monomial f̂ , we can try

to proceed further. Since the conformal generators act linearly on the correlators, con-

formal invariance will continue to hold when f̂ is an arbitrary linear combination of

monomials. Turning from discrete sums to continuous integrals, we can argue for con-

formal invariance of the simplex integral when f̂ is given by a multiple Mellin-Barnes

transform as

f̂(û) =
1

(2πi)N

∫ c1+i∞

c1−i∞
ds1 . . .

∫ cN+i∞

cN−i∞
dsN û

s1
I1
. . . ûsNIN F̂ (s1, . . . , sN ), (4.38)

for appropriate choice of contour c1, . . . , cN for which the integral converges. As

usual, this argument holds provided that switching the order of integration does not

cause a convergence issue.
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As a final ingredient of the proof, recall that the position-space correlators have a

Mellin representation,

〈φ1(x1) · · ·φn(xn)〉 =
1

(2πi)N

∫ cij+i∞

cij−i∞
[dγij ]Mn(γij)

n∏
i<j

x
−2γij
ij Γ(γij) . (4.39)

We can align γij with the shifted αij as in (4.37) by writing

− γij = αij +

N∑
m=1

γmSij,Im . (4.40)

The Fourier transform of the monomial
∏
x
−2γij
ij can now be evaluated as explained

in section 4.2. This yields the simplex integral representation with

f̂(û) =

(
N∏
m=1

∫ cm+i∞

cm−i∞

dγm
2πi

ûγmIm

)
Mn(γij)

n∏
i<j

πd/22d−2γijΓ(d/2− γij). (4.41)

Thus, given the Mellin representation for a position-space correlator, we can imme-

diately write down the Mellin representation for f̂ . For holographic correlators, this

formula provides an alternative method of computing f̂(û) to those we will discuss in

chapter 5.

Proof by total derivative

The proof based on the Mellin-Barnes representation is indirect in the sense that it

involves an infinite linear combination and potentially susceptible to an order of in-

tegration problem. It would be desirable to complement it with an alternative, more

direct, proof. We present one such alternative.

The action of the special conformal Ward identity, a second-order differential op-

erator, on the integrand of the simplex integral yields the following form,

K̃κ
[

f̂(û)

Denn(α)

]
= f̂(û)Cκ(α) +

∂f̂(û)

∂ûI
CκI (α) +

∂2f̂(û)

∂ûI∂ûJ
CκIJ(α), (4.42)

where Cκ, CκI , C
κ
IJ are coefficients depending on the external and internal momenta

as well as the parameters α. The indices I, J indicate the independent cross ratios
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which will be summed over any repeated indices. A crucial fact is that the coefficients

Cκ, CκI , C
κ
IJ are independent of the choice of f̂ .

The equation above implies that if the simplex integrals with f̂(û) = 1, ûI , ûI ûJ

are conformally invariant, the simplex integrals with any f̂(û) are conformally invari-

ant. For f̂(û) = 1, ûI , ûI ûJ to be conformally invariant, the right-hand side of (4.42)

must form a total derivative. It follows that that the coefficients Cκ, CκI , C
κ
IJ must

satisfy the following conditions

f̂ = 1 : Cκ =

n−1∑
i,j=1, i 6=j

∂

∂qµij
Γκµij (4.43)

f̂ = ûI : CκI =
n−1∑

i,j=1, i 6=j

(
Γκµij

∂ûI
∂qµij

+
∂

∂qµij
Γκµij,I

)
(4.44)

f̂ = ûI ûJ : CκIJ =
n−1∑

i,j=1, i 6=j
Γκµij,J

∂ûI
∂qµij

(4.45)

for some coefficients Γκµij and Γκµij,I . Since these coefficients are independent of f̂(û),

the following identity holds for any f̂(û):

K̃

[
f̂(û)

Denn(α)

]
=

n−1∑
i,j=1, i 6=j

∂

∂qµij

[
Γκµij (α)f̂(û) +

∑
I∈U

Γκµij,I(α)
∂f̂(û)

∂ûI

]
. (4.46)

We have shown that the action of the special conformal Ward identity operator on the

integrand of the simplex integrals yields a total derivative, which proves the conformal

invariance of the simplex integrals.

The proof by total derivatives is valid as long as the Γ-coefficients exist and are

independent of f̂ . It would be instructive to compute the coefficients by direct compu-

tation. Here, we content ourselves with a short summary of the main results:

Γκµij (α) = (2αin + d)×
Aκµij

Denn(α)
,

Γκµij,[pqrs](α) = 2(δipδrn + δiqδsn − δipδqn − δirδsn)×
Aκµij û[pqrs]

Denn(α)
,

Aκµij = (δκµδαβ + δκβδ
µ
α − δκαδ

µ
β)
qαij (li − pi)

β

(li − pi)
2 .

(4.47)

The explicit computation can be found in lengthy appendices of [10].

29



Chapter 5

HOLOGRAPHIC CFTS

As an application of the methods developed in previous chapters, we attempt to rewrite

the correlators for holographic CFTs in simplex form. Diagrams for holographic cor-

relators consist of exchange diagrams and contact diagrams. We will focus on contact

diagrams. The omission of exchange diagrams is not a fatal loss, since any exchange

diagram can be decomposed into a sum of contact diagrams [14, 15].

5.1 Star-Mesh Duality

In momentum space, the n-point contact diagram consists of n bulk-to-boundary prop-

agators interacting at a common bulk point with radial coordinate z over which we

integrate. Each propagator is constructed from a modified Bessel function, and with

the standard holographic normalization we find

In ≡ ⟪φ1(p1) · · ·φn(pn)⟫contact =

∫ ∞
0

dz

zd+1

n∏
j=1

21−βj

Γ(βj)
zd/2p

βj
j Kβj (pjz), (5.1)

where βj = ∆j − d
2 . Using the Schwinger parametrization of Bessel functions as

p
βj
j Kβj (pjz) =

1

2
zβj

∫ ∞
0

dZjZ
βj−1
j exp

[
−1

2

(
pj

2

2Zj
+ z2Zj

)]
(5.2)
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and doing the z integral we find

I = Ĉn

 n∏
j=1

∫ ∞
0

dZjZ
βj−1
j

Z
(d−∆t)/2
t exp

− n∑
j=1

p2
j

2Zj

 , (5.3)

where

Ĉn = 2(n−1)d/2−∆t/2−1Γ

(
∆t − d

2

) n∏
j=1

1

Γ(βj)
, Zt =

n∑
j=1

Zj . (5.4)

At this point, we can relate the variables in (5.3) to the elements of electrical circuit

theory. If we regard the Schwinger parameters Zj as conductivities and the momentum

pj as incoming currents, then the exponent corresponds to the power dissipation in the

star-shaped electrical network as illustrated for n = 3, 4 in Fig. 5.1.

A well-known result from electrical circuit theory states that this n-star network

is equivalent to a corresponding (n − 1)-simplex or ‘mesh’ network. This is called

the ‘star-mesh transform’. On the simplex side, we assign a current ijk (momentum)

flowing from vertex j to k and a conductivity (Schwinger parameter) zjk between the

vertices. The current and conductivity are subject to the conditions

ijk = −ikj , zjk = zkj . (5.5)

The dual variables (ijk, zjk) are fixed uniquely by the original variables (pk, Zk)

through the ‘star-mesh relation’:

zjk =
ZjZk
Zt

, ijk =
1

Zt
(pjZk − pkZj) . (5.6)

It is instructive to verify that the star-mesh duality is consistent with both Kirch-

hoff’s Current Law and Kirchhoff’s Voltage Law. The momentum conservation at each

vertex of the simplex corresponds to the current conservation as∑
k

ijk =
1

Zt

(
pj
∑
k

Zk − Zj
∑
k

pk

)
= pj , (5.7)

where we used conservation of the external momenta. The vanishing of the voltage

drop around every closed loop requires that

0 =
ijk
zjk

+
ikl
zkl

+
ilj
zlj
, ∀j, k, l . (5.8)
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Z1

Z2Z3
≡

z13

z23

z12

Z1

Z2Z3

Z4 ≡ z34

z13

z23

z24

z14

z12

Figure 5.1: Equivalent electrical networks of resistors under star-mesh duality. The

conductivities and currents are related as explained in the text. The external currents

flowing into the nodes and the overall power dissipation are equal.
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This condition is satisfied by the star-mesh relation (5.6) which implies that the ‘volt-

age drop’ from vertex j to k is

ijk
zjk

=
pj
Zj
− pk
Zk

. (5.9)

Another interesting feature of the star-mesh duality is that the power dissipated in

both networks is the same:∑
j<k

i2jk
zjk

=
1

Zt

∑
j<k

(
Zk
Zj
p2
j +

Zj
Zk
p2
k − 2pj · pk

)

=
1

Zt

∑
t

1

Zj
p2
j

∑
k 6=j

Zk

−∑
j

pj ·

∑
k= 6=j

pk


=

1

Zt

∑
j

(
Zt − Zj
Zj

p2
j + p2

j

)
=
∑
j

p2
j

Zj
. (5.10)

Before we move on to the next section, we give the following interesting relation

among the currents.

ij[k · ilm] = ijk · ilm + ijm · ikl + ijl · imk = 0 ∀j, k, l,m. (5.11)

5.1.1 3-point function

We illustrate how the star-mesh duality works by applying it to the 3-point function.

To convert I3 to 2-simplex (triangle) form, we express the star conductivities Zj in

terms of those of the triangle, zjk, as follows.

Z1 =
µ

z23
, Z2 =

µ

z13
, Z3 =

µ

z12
, µ = z12z23 + z23z13 + z13z12. (5.12)

By using the (5.10) and the following Jacobian factor

3∏
j=1

dZj =
µ3

(z12z23z13)2
dz12dz23dz13, (5.13)

we find

I3 = Ĉ3

∏
j<k

∫ ∞
0

dzjkz
∆j+∆k−∆t/2−1
jk

µ−d/2 exp

−∑
j<k

i2jk
2zjk

 . (5.14)
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Then, we introduce an internal loop current j and define

i′12 = i12 + j, i′23 = i23 + j, i′13 = i13 − j, (5.15)

which leaves all the external current the same,∑
k

i′jk =
∑
k

ijk = pj . (5.16)

Now we integrate this internal current to find∫
ddj exp

−∑
j<k

i
′2
jk

2zjk

 =

(
2πz12z23z13

µ

)d/2
exp

−∑
j<k

i2jk
2zjk

 (5.17)

and, by using (5.8), the vanishing of the voltage drop around closed loops, all j · ijk
cross-terms in the expansion of the exponent vanish:∑

j<k

(i′jk)
2

2zjk
=

µ

2z12z23z13
j2 + j ·

(
i12

z12
+
i23

z23
− i13

z13

)
+
∑
j<k

i2jk
2zjk

=
µ

2z12z23z13
j2 +

∑
j<k

i2jk
2zjk

.

(5.18)

So, we can exchange the factor of µ−d/2 in (5.14) for an integral over the internal

current:

I3 = (2π)−d/2Ĉ3

∫
ddj

∏
j<k

∫ ∞
0

dzjkz
∆j+∆k−∆t/2−d/2−1
jk

 exp

−∑
j<k

i2jk
2zjk

 .

(5.19)

By shifting the integration variable by

q = j + i12, such that i′12 = q , i′23 = p2 + q , i′13 = p1 − q , (5.20)

and then performing the integration over the zjk, we can get the following simplex

representation of the triple-K integral,

I3 = C̃3

∫
ddq

(2π)d
1

|q|2α12+d|q − p1|2α13+d|q + p2|2α23+d
, (5.21)

where

C̃3 = 22d−∆tπd/2
Ĉ3

∏
j<k

Γ(αjk + d/2), αjk = −∆j −∆k +
∆t

2
. (5.22)

This result agrees with (4.11) as expected.
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5.1.2 4-point function

We now discuss the 4-point contact diagram. The procedure follows what we have

done in the 3-point function above. First, we convert the star form to the corresponding

mesh form. We then introduce internal loop currents running around all the faces of

the tetrahedron. By integrating over these currents we can get the desired result (4.13).

Note that for n ≥ 4, the mesh network has more resistors than the corresponding

star network, since the number of resistors in the mesh network is n(n− 1)/2, which

is larger than that of the star network, n. This means that the mapping of resistors

between them is no longer one-to-one. For n = 4, we have six resistors for each edge

of the tetrahedron, but only four of these are independent, since from (5.6) all cross

ratios of zjk are unity. We can eliminate this freedom by choosing a parametrization

centered around a particular vertex of the tetrahedron. Taking this as the fourth vertex,

we select independent variables as the set z14, z24, z34 and

λ = z12z34 = z13z24 = z14z23. (5.23)

The remaining conductivities are then

z12 =
λ

z34
, z13 =

λ

z24
, z23 =

λ

z14
, (5.24)

while the conductivities of the original 4-star network are

Z4 =
ρ

λ
, Zi =

ρzi4
z14z24z34

, i = 1, 2, 3, (5.25)

where

ρ = z14z24z34 + λ(z14 + z24 + z34). (5.26)

Evaluating the Jacobian

4∏
j=1

dZj =
ρ4

λ2(z14z24z34)3
dλ

3∏
i=1

dzi4, (5.27)
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the star form of the 4-point contact diagram (5.3) can be rewritten in the corresponding

tetrahedral form

I4 = Ĉ4

∫ ∞
0

dλλδ

(
3∏
i=1

∫ ∞
0

dzi4z
δi
i4

)
ρ−d

× exp

[
−1

2

(
i214

z14
+
i224

z24
+
i234

z34
+
z14

λ
i223 +

z24

λ
i213 +

z34

λ
i212

)]
,

(5.28)

where we replaced the exponent using (5.10) and defined for convenience

δ =
∆t

2
−∆4 − 1, δi = ∆i + ∆4 −

∆t

2
+
d

2
− 1. (5.29)

Now we introduce a set of internal currents running around the faces of the tetrahedron:

i′12 = i12 − j3 + j4, i′23 = i23 − j1 + j4, i′13 = i13 − j2 + j4 ,

i′14 = i14 − j2 + j3, i′24 = i24 − j1 + j3, i′34 = i34 − j1 + j2 .
(5.30)

Since these currents are purely internal, all the external currents pj remain unchanged.

Then we integrate out these internal currents and obtain∫ 3∏
k=1

ddjk exp

[
−1

2

3∑
k=1

(
i′2k4

zk4
+
zk4

λ
(̂i′)2

k

)]

=

(
8π3z14z24z34λ

3

ρ2

)d/2
exp

[
−1

2

3∑
k=1

(
i2k4

zk4
+
zk4

λ
î2k

)]
,

(5.31)

where we introduced the shorthand notation

î1 = i23 , î2 = i31 , î3 = i12 . (5.32)

In (5.31), all the jk · ilm cross-terms cancel, because each jk is dotted with the sum of

the ‘voltage drop’ around a closed loop, which vanishes. The three Gaussian integrals

over the jk then generate the prefactor shown above.

We can use these partial results to replace ρ−d in (5.28) by an integration over

internal currents:

I4 =(2π)−3d/2Ĉ4

∫ ∞
0

dλλδ−3d/2

(
3∏
i=1

∫
ddji

∫ ∞
0

dzi4z
δi−d/2
i4

)

× exp

[
−1

2

(
i′214

z14
+
i′224

z24
+
i′234

z34
+
z14

λ
i′

2
23 +

z24

λ
i′

2
13 +

z34

λ
i′

2
12

)]
. (5.33)
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We can further simplify the integral by shifting the currents as

q1 = i23 − j1 + j4,

q2 = −i13 − j2 + j4,

q3 = i12 − j3 + j4,

(5.34)

which leads to

I4 = (2π)−3d/2Ĉ4

∫ ∞
0

dλλδ−3d/2

(
3∏
i=1

∫
ddqi

∫ ∞
0

dzi4z
δi−d/2
i4

)

×exp

[
−1

2

(
1

z14
|p1 + q2 − q3|2 +

1

z24
|p2 + q3 − q1|2 +

1

z34
|p3 + q1 − q2|2

+
z14

λ
q2

1 +
z24

λ
q2

2 +
z34

λ
q2

3

)]
.

(5.35)

The remaining procedures to reach the desired simplex representation are straightfor-

ward. The first is to generate the denominator (4.14) and the second is to verify that

the rest of the integral depends only on the momentum-space cross ratios in (5.61). To

achieve both, first we simply rescale z24 and replace λ as follows

z24 → z24|p2 + q3 − q1|, (5.36)

λ = q2
2|p2 + p3 − q1|/z2. (5.37)

Then by performing the zi4 integrals using (5.2), we obtain

I4 = 24(2π)−3d/2Ĉ4

(
3∏
i=1

∫
ddq

)
qα14−α23

1 q−2α24−4α13
2 q−α34−4α12

3

× |p1 + q2 − q3|α23−α14 |p2 + q3 − q1|−2α13−4α24−3d|p3 + q1 − q2|α12−α34

×
∫ ∞

0
dzz3d−∆/2−1Kα23−α14(z

√
û)Kα13−α24(z)Kα12−α14(z/

√
v̂), (5.38)

where we replaced the δi with

2αij =
∆t

3
−∆i −∆j , (5.39)
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which is a solution of (5.73). Compared with the form of a simplex integral (4.1),

(5.38) has the form a simplex integral as

I4 =

∫
ddq1

(2π)d
ddq2

(2π)d
ddq3

(2π)d
f̂(û, v̂)

Den4(qj ,pk)
, (5.40)

where the momentum running each edge of the tetrahedron is as illustrated in Fig. 4.1

and the denominator is given in (4.14). The function of momentum-space cross ratios

f̂(û, v̂) is

f̂(û, v̂) = C̃4

(
û

v̂

)(α12+α34+d)/2

×
∫ ∞

0
dzz3(α12+α34+d)−1Kα23−α14(z

√
û)Kα13−α24(z)Kα12−α34(z/

√
v̂),

(5.41)

where

C̃4 = 24(2π)3d/2Ĉ4 = 23d−∆t/2+3π3d/2Γ

(
∆t − d

2

) 4∏
j=1

1

Γ(∆j − d/2)
. (5.42)

This is the specific function of momentum-space cross ratios appearing in the sim-

plex representation for the 4-point contact Witten diagram. This f̂(û, v̂) involves the

same integral of three Bessel functions, the triple-K integral, as appears in the 3-point

function I3, though the arguments and parameters are now different. Specifically,

f̂(û, v̂) = C̃4
ûα12+d/2

v̂α34+d/2
I3(α12+α34+d)−1,{α23−α14,α13−α24,α12−α34}(

√
û, 1,

1√
v̂

)

(5.43)

where the triple-K integral [16] is

Iα,{β1,β2,β3}(p1, p2, p3) =

∫ ∞
0

dzzα
3∏
j=1

p
βj
j Kβj (pjz). (5.44)

5.2 Recursive Convolutions for n-point Functions

In this subsection, we will evaluate the general n-point contact diagram to calculate

the specific function of momentum-space cross ratios appearing in the simplex repre-

sentation (4.1) for this diagram.
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In position space, the n-point contact diagram is given by

In =

∫
dz

zd+1

∫
ddx0

n∏
i=1

C∆i

(
z

z2 + x2
i0

)∆i

, (5.45)

where xij = xi − xj and the holographic normalization is

C∆i =
Γ(∆i)

πd/2Γ(∆i − d/2)
(5.46)

By using Schwinger parametrization, we can parametrize all denominators and per-

form the z integral. This gives

In =
1

2
Γ

(
∆t − d

2

)( n∏
i=1

C∆i

Γ(∆i)

∫ ∞
0

dsis
(∆i−1)
i

)

× s(d−∆t)/2
t

∫
ddx0 exp

(
−
∑
i

six
2
i0

)
.

(5.47)

Then we complete the square as

1

st

(∑
i

sixi

)2

−
∑
i

six
2
i =

1

st

∑
i

si(si − st)x2
i + 2

∑
i<j

sisjxi · xj


=

1

st

−∑
i<j

sisj(x
2
i + x2

j ) + 2
∑
i<j

sisjxi · xj


= − 1

st

∑
i<j

sisjx
2
ij .

(5.48)

By performing the x0 integral, we find

In = Cn

(
n∏
i=1

∫ ∞
0

dsis
∆i−1
i

)
s
−∆t/2
t exp

− 1

st

∑
i<j

sisjx
2
ij

 (5.49)

where

Cn =
πd/2

2
Γ

(
∆t − d

2

) n∏
i=1

C∆i

Γ(∆i)
(5.50)

By using the Symanzik trick, we can make the replacement

st =

n∑
i=1

si →
n∑
i=1

κisi, (5.51)
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without changing the value of the integral (5.49), for any arbitrary set of κi ≥ 0 not

all zero. We use this trick to replace st → s1 so that the integrand of (5.49) becomes a

product of exponential factors with a recursive structure:

In = Cn

(
n∏
i=1

∫ ∞
0

dsis
∆i−1
i

)
s
−∆t/2
1 gn (5.52)

where

gn =

n∏
1≤i<j

exp

(
−sisj
s1

x2
ij

)
= gn−1 ×

n−1∏
i=1

exp

(
−sisn

s1
x2
in

)
. (5.53)

Since we performed the replacement st → s1, the integrand gn−1 has no dependence

on either xn or sn. By Fourier transforming, the recursive product (5.53) becomes a

convolution

F [gn](p1, . . . ,pn) =
(
F [gn−1](2π)dδ(pn)

)
∗ F

[
n−1∏
i=1

exp

(
−sisn

s1
x2
in

)]
, (5.54)

where the δ(pn) arises since gn−1 is independent of xn. Expressing explicitly, we find

F [gn](p1, . . . ,pn) =

(
n∏
k=1

∫
ddqk
(2π)d

)
F [gn−1](p1 − q1, . . . ,pn−1 − qn−1)

× (2π)dδ(pn − qn)(2π)dδ(
n∑
j=1

qj)
n−1∏
j=1

(
πs1

snsi

)d/2
exp(− s1q

2
i

4sisn
)

=
n−1∏
i=1

(∫
ddqin
(2π)d

(
πs1

snsi

)d/2
exp

(
− s1q

2
in

4sisn

))

× (2π)dδ

pn +

n−1∑
j=1

qjn

F [gn−1](p1 − q1n, . . . ,pn−1 − qn−1,n).

(5.55)

In the second equation, note that the integration variables are the momenta qin running

from the vertex i to vertex n. By using the recursive structure, for g1 = 1,

F [g1](p1) = (2π)dδ(p1),

F [g2](p1,p2) =

∫
ddq12

(2π)d

(
π

s2

)d/2
exp

(
−s1q

2
12

4s2

)
× (2π)dδ(p1 + q21)(2π)dδ(p2 + q12)

(5.56)
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repeating n times,

F [gn](p1, . . . ,pn)

=

 ∏
1≤i<j

∫
ddqij

(2π)d

(
πs1

sisj

)d/2
exp

(
−
s1q

2
ij

4sisj

) n∏
k=1

(2π)dδ

(
pk +

n∑
l=1

qlk

)
.

(5.57)

If we restore the Schwinger integration from (5.52), we get the momentum-space con-

tact diagram In which has the expected structure of a simplex integral (4.1) with

f̂n(û)

= Cn

(
n∏
k=1

∫ ∞
0

dsks
∆k−1
k

)
s
−∆t/2
1

n∏
1≤i<j

(
πs1

sisj

)d/2
exp

(
−
s1q

2
ij

4sisj

)
q

2αij+d
ij ,

(5.58)

where αij satisfies (5.73). Before we show this result is indeed a function of only

the momentum-space cross ratios û, we transform further by substituting si = 1/ti

yielding

f̂n(û)

= Cn

(
n∏
k=1

∫ ∞
0

dtkt
−∆k−1
k

)
t
∆t/2
1

n∏
1≤i<j

(
πtitj
t1

)d/2
exp

(
−
titjq

2
ij

4t1

)
q

2αij+d
ij .

(5.59)

Now we will show that this f̂(û) is indeed a function of only the momentum-space

cross ratios û. For this purpose, we select new independent variables corresponding to

the subset of n legs shown in figure 5.2. This parametrization corresponds to

t1 =
z12z13

z23

q2
23

q2
12q

2
13

, ti =
z1i

q2
1i

, i = 2, . . . , n (5.60)

and introduce the n(n− 3)/2 independent momentum-space cross ratios

û2a =
q2

2aq
2
13

q2
1aq

2
23

, û3a =
q2

3aq
2
12

q2
1aq

2
23

, ûab =
q2
abq

2
23

q2
2aq

2
3b

(5.61)
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1

2

3

Figure 5.2: Change of integration variables. In (5.60), we exchange the Schwinger

parameters ti where i = 1, . . . , n for a new set consisting of z23 and z1i for i =

2, . . . , n. These correspond to the solid legs on the diagram above, shown for the case

n = 5.

where a, b = 4, . . . , n and in the last equation a < b with no sum implied. Converting

(5.59) into these new variables, we find

f̂n(û) = Cnπ
n(n−1)d/4

 n∏
1≤k<l

q2αkl+d
kl

( n∏
i=2

∫ ∞
0

dz1i

z1i

(
z1i

q2
1i

)−∆i+(n−1)d/2
)

×
∫ ∞

0

dz23

z23

(
z12z13

z23

q2
23

q2
12q

2
13

)∆t/2−∆1−(n−1)(n−2)d/4

exp

[
− 1

4

(
z12 + z23 + z13 +

n∑
a=4

z1a(1 +
z23

z13
û2a +

z23

z12
û3a)

+
n∑

4≤a<b

z1az1bz23

z12z13
ûabû2aû3b

)]
. (5.62)
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Then, the remaining q2
ij can be canceled by choosing α

α12 = −∆1 −∆2 +
∆t

2
− (n− 2)(n− 3)

d

4
,

α13 = −∆1 −∆3 +
∆t

2
− (n− 2)(n− 3)

d

4
,

α23 = ∆1 −
∆t

2
+ n(n− 3)

d

4
,

α1a = −∆a + (n− 2)
d

4
,

α2a = α3a = −d
2
,

αab = −d
2
,

(5.63)

and the same goes for a, b = 4, . . . , n and a < b. Actually, this choice satisfies the

constraint (5.73). So finally we get the following expression for f̂(û) as a function of

the momentum-space cross ratios only,

f̂n(û) = Cnπ
n(n−1)/4

(
n∏
i=2

∫ ∞
0

dz1iz
α1i+d/2−1

1i

)∫ ∞
0

dz23z
α23+d/2−1

23

× exp

[
− 1

4

(
z12 + z23 + z13 +

n∑
a=4

z1a(1 +
z23

z13
û2a +

z23

z12
û3a)

+
n∑

4≤a<b

z1az1bz23

z12z13
ûabû2aû3b

)]
. (5.64)

We can simplify this expression further by evaluating the z23 integral as

f̂n(û) = Cn2α23+dπn(n−1)d/4Γ(α23 +
d

2
)

×

(
n∏
i=2

∫ ∞
0

dz1iz
α1i+d/2−1e

−z1i/4

1i

)
(z12z13)α23+d/2

×

z12z13 +

n∑
a=4

z1a(z12û2a + z13û3a) +

n∑
4≤a<b

z1az1bûabû2aû3b

−α23−d/2

.

(5.65)
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Now we set as

z1i = σy1i, for i = 2, . . . , n, (5.66)

with constraint
n∑
i=2

y1i = 1, (5.67)

so that the exponential reduces to e−σ/4. By evaluating the Jacobian as discussed in

appendix B of [10] and performing the σ integral, we get

f̂n(û) = Ĉn

(
n∏
i=2

∫ 1

0
dy1iy

α1i+d/2−1

1i

)
(y12y13)α23+d/2δ

(
1−

n∑
i=2

y1i

)

×

y12y13 +

n∑
a=4

y1a(y12û2a + y13û3a) +

n∑
4≤a<b

y1ay1bûabû2aû3b

−α23−d/2

,

(5.68)

where the αij are given by (5.63). The normalization is

Ĉn = Cnπ
n(n−1)d/44nd/2+α23−∆1Γ

(
α23 +

d

2

)
Γ

(
(n− 1)

d

2
−∆1

)
, (5.69)

where (5.73) was used to replace
∑n

i=2 α1i = −∆1. If the overall delta function is

removed in (5.68), only (n − 2) integrations remain. This seems to be the optimal

representation for f̂n(û). For comparison, the Mellin-Barnes representation obtained

following Symanzik’s procedure in [17] has n(n − 3)/2 Mellin integrations which is

larger than n− 2 for any n > 4.

For the 4-point function, (5.68) reduces to

f̂4(û) = Ĉ4

∫ 1

0
dy12y

α12+α23+d−1
12

∫ 1

0
dy13y

α13+α23+d−1
13

∫ 1

0
dy14y

α14+d/2−1
14

× δ(1− y12 − y13 − y14) (y12y13 + y12y14û24 + y13y14û34)−α23−d/2 . (5.70)

This is reminiscent of the Feynman parametrization of the 1-loop triangle integral

(see, appendix A.3 of [16]), with the difference that the momentum-space cross ratios

û24 and û34 take the place of ratios of the squared external momenta. This is not

coincidence, since in section 5.1.1 we showed that the 1-loop triangle is equivalent
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to a triple-K integral and from (5.41) we know that f̂4(û) can be written as a triple-

K integral where the arguments are given by the momentum-space cross ratios. (5.70)

and (5.41) are exactly same and this can be verified by using equation (A.3.23) of [16].

In short, we showed that the n-point contact diagram can be written as a simplex

integral and (5.68) expresses f̂n(û) as an (n − 2)-fold Feynman parametric integral

over a quadratic denominator. Before finishing this chapter, we present some remark-

able connections between this result and other Feynman integrals.

Firstly, equation (5.68), the function f̂n(û) of momentum-space cross ratios ap-

pearing in the simplex representation, has a close similarity with the corresponding

representation for fn(u), ordinary cross ratios describing the contact diagram in posi-

tion space.

To see this, we start from (5.49) and repeat the above steps from (5.60) to (5.68).

We then find the position-space contact diagram is

In =
∏

1≤i<j<n
x
−2αij−d
ij fn(u), (5.71)

where fn(u) is given by exactly the right-hand side of (5.68). The αij are now given

by (5.63) after making the following replacements:

∆i → −∆i, n→ 1. (5.72)

Instead of (5.73), these new αij satisfy

∆m = −
n∑
j=1

(
αmj +

d

2

)
, m = 1, 2, . . . , n, (5.73)

with αij = αji and αii = 0. In addition, by sending q2
ij → x2

ij in (5.61), we replace

Ĉn → CnΓ(∆1)Γ(α23 + d/2), û→ u. (5.74)

Thus, with these replacements, both f̂n(û) and fn(u) have exactly the same parametriza-

tion (5.68). That is, the function f̂n(û) of momentum-space cross ratios appearing in

the simplex representation has the same form as the function fn(u) of ordinary cross

ratios describing the contact diagram in position space.
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This equivalence is not a coincidence, as can be seen by comparing (5.49) with

(5.68). The Fourier transform of a product of Gaussians is a convolution of Gaussians.

If we rewrite this convolution as a simplex, the resulting f̂n(û) in (5.68) is identical to

our starting point (5.49) up to a change of parameters.
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Chapter 6

CONCLUSION

In this thesis, we found the general solution of the conformal Ward identities in mo-

mentum space, the scalar correlators. The general CFT scalar n-point function can be

written as a simplex integral. It involves an arbitrary function f̂(û) of the momentum-

space cross ratios which play a same role as the cross ratios in position space. But in

momentum space, the cross ratios are subject to integration inside the simplex integral.

Then we discussed how we can find the form of f̂(û) for particular correlators

in holographic theory. We saw for the contact diagram we can use the trick for elec-

trical circuit theory. This is the star-mesh transformation to rewrite a contact diagram

which has a star topology as a mesh integral which has a simplex topology. And we

introduced another useful trick which is just using the convolution theorem and the

recursive structure of these simplex integrals. These two methods can be applicable

to a wider class of examples. For the star-mesh transformation trick, whenever cor-

relators have a bulk vertex which is integrated over in Witten diagram, that becomes

a sort of internal node in electrical circuit which is integrated out. So this method is

very generally applicable. And for a recursive application of the convolution theorem,

we can use this method whenever the correlators exhibit a recursive product structure

in space. We can generally transform the correlators into the recursive form through a

suitable Schwinger of Feynman parametrization.
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For further investigation, one can consider the simplex representation for a wider

range of diagrams like exchange Witten diagrams, loops, particularly those with cos-

mological relevance etc.

Other very interesting topic is to understand the singularities of these simplex inte-

grals. Because these simplex integrals are generic Feynman integrals, we have all the

standard tools to extract the singularities of these correlators. The singularities give

a lot of information. The flat-space limit takes us from CFT correlators to scattering

amplitudes. We need to find the energy poles in the correlators and extract residue

for the general simplex integral. And we would like to understand how these arbitrary

function of cross ratios f̂(û) relate to the scattering amplitudes we obtain in the flat-

space limit. Also there are special values of the operator and space-time dimension for

which divergences occur and we need to renormalize the correlators. So there would be

anomalies and beta functions associated with this. Therefore, to know the singularity

structure is very interesting topic. The cases for 3-point [16] and 4-point function [9]

was studied but the detailed structure of anomalies and the renormalization of higher-

point function remains to be explored.

Next, understanding how to find the simplex representation for more general cor-

relators involving tensorial external operators is also an open question. The case for

3-point functions was studied in [16] and 4-point functions in [18–21].

Another key area of interest of this simplex representation is to do the confor-

mal bootstrap in momentum space. There has been a lot of progress on understanding

bootstrap conditions in CFT in position space. But if we can do something similar in

momentum space, in particular tensorial correlators, there could be a progress in un-

derstanding conformal bootstrap in momentum space. And the simplex representation

would be a good way for this.

48



Bibliography

[1] Alexander M. Polyakov. Conformal symmetry of critical fluctuations. JETP

Lett., 12:381–383, 1970.

[2] Nima Arkani-Hamed and Juan Maldacena. Cosmological Collider Physics. 3

2015.

[3] Nima Arkani-Hamed, Daniel Baumann, Hayden Lee, and Guilherme L. Pi-

mentel. The Cosmological Bootstrap: Inflationary Correlators from Symmetries

and Singularities. JHEP, 04:105, 2020.

[4] Daniel Baumann, Carlos Duaso Pueyo, Austin Joyce, Hayden Lee, and Guil-

herme L. Pimentel. The cosmological bootstrap: weight-shifting operators and

scalar seeds. JHEP, 12:204, 2020.

[5] Daniel Baumann, Carlos Duaso Pueyo, Austin Joyce, Hayden Lee, and Guil-

herme L. Pimentel. The Cosmological Bootstrap: Spinning Correlators from

Symmetries and Factorization. SciPost Phys., 11:071, 2021.

[6] Charlotte Sleight. A Mellin Space Approach to Cosmological Correlators. JHEP,

01:090, 2020.

[7] Charlotte Sleight and Massimo Taronna. Bootstrapping Inflationary Correlators

in Mellin Space. JHEP, 02:098, 2020.

49



[8] Charlotte Sleight and Massimo Taronna. From AdS to dS exchanges: Spectral

representation, Mellin amplitudes, and crossing. Phys. Rev. D, 104(8):L081902,

2021.

[9] Adam Bzowski, Paul McFadden, and Kostas Skenderis. Conformal n-point func-

tions in momentum space. Phys. Rev. Lett., 124(13):131602, 2020.

[10] Adam Bzowski, Paul McFadden, and Kostas Skenderis. Conformal correlators

as simplex integrals in momentum space. JHEP, 01:192, 2021.

[11] Gerhard Mack. D-independent representation of Conformal Field Theories in

D dimensions via transformation to auxiliary Dual Resonance Models. Scalar

amplitudes, 2009. arXiv:0907.2407.

[12] Joao Penedones. Writing CFT correlation functions as AdS scattering ampli-

tudes. JHEP, 03:025, 2011.

[13] A. Liam Fitzpatrick, Jared Kaplan, Joao Penedones, Suvrat Raju, and Balt C. van

Rees. A Natural Language for AdS/CFT Correlators. JHEP, 11:095, 2011.

[14] Eric D’Hoker, Daniel Z. Freedman, and Leonardo Rastelli. AdS / CFT four point

functions: How to succeed at z integrals without really trying. Nucl. Phys. B,

562:395–411, 1999.

[15] Eric D’Hoker, Daniel Z. Freedman, Samir D. Mathur, Alec Matusis, and

Leonardo Rastelli. Graviton exchange and complete four point functions in the

AdS / CFT correspondence. Nucl. Phys. B, 562:353–394, 1999.

[16] Adam Bzowski, Paul McFadden, and Kostas Skenderis. Implications of confor-

mal invariance in momentum space. JHEP, 03:111, 2014.

[17] K. Symanzik. On Calculations in conformal invariant field theories. Lett. Nuovo

Cim., 3:734–738, 1972.

50



[18] Anatoly Dymarsky. On the four-point function of the stress-energy tensors in a

CFT. JHEP, 10:075, 2015.
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초록

이논문은임의의차원에서등각장론의스칼라 n점함수에대한등각워드항등식의

일반해를 운동량 공간에서 다룬다. 2019년에 Bzowski, McFadden, Skenderis는 일

반해가 운동량 공간에서 단순체 적분이라 불리는, (n-1)단순체에 대한 적분으로 표

현됨을발견하였다.이때단순체의 n개의꼭짓점은 n개의연산자삽입에대응된다.

꼭짓점 사이를 움직이는 운동량들이 적분 변수가 되며, 각각의 꼭짓점에서 운동량

보존을 만족해야 한다. 적분의 피적분함수는 운동량 공간에서의 교차비들에 대한

임의의함수를포함한다.우리는단순체적분의등각불변성을,교차비들의함수가

교차비들의 단항식으로 이루어져 있을 때 가장 명확하게 보이는 재귀 구조를 이용

하여 증명한다. 이러한 논의를 적용하여, 우리는 홀로그래피 등각 장론에서의 n점

접촉위튼다이어그램의단순체표현을유도한다.

주요어:등각장론,단순체적분

학번: 2015-20338
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