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Abstract

Honggi Jeon

Department of Physics and Astronomy

The Graduate School

Seoul National University

A quantum system quickly becomes intractable for classical comput-

ers because the required computation increases exponentially with the size of

the system. The field of quantum computing emerged in an effort to simulate

quantum systems with a computer that operates based on quantum mechanics.

Since it works in a way that is fundamentally different from the classical com-

puter, certain calculations, such as factoring a large number, has been shown

to be much faster when done by quantum algorithms.

The quantum computer can be constructed using any sufficiently stable and

highly controllable quantum system. The trapped ion quantum computer, one

of the most popular platforms, electrodynamically confines a chain of atomic

ions and uses their spin and motion for quantum information processing.

In this thesis, we demonstrate how the two-dimensional motion in a trapped

ion system can be used to generate various quantum states, including qubit

Bell states and entangled coherent states of motion. These experiments require

a very well controlled and stable system. Thus we first discuss the development

of a trapped ion experimental setup on which all the results presented here were

carried out. Each subsystem will be examined and its design will be discussed.

The basic characterization of the system, including heating rates, various
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coherence times and micromotion measurement results will be presented. A

universal quantum gate set consisting of single qubit rotations and two-qubit

entangling gates has been successfully implemented with the current setup.

We discuss their experimental realization and characterization, which will be a

valuable resource for the future experiments with the setup.

Next, the results of the experiments involving the two-dimensional motion of

the ion will be presented. The entangled coherent state, a multi-mode extension

of the cat state has been the subject of intense theoretical research in the last

few decades due to its usefulness in quantum metrology, communication and

computation. It is also relevant in the study of encoded qubits. It has been

experimentally realized with photons and superconducting circuits, but not

with trapped ions so far. In our setup, we successfully implemented entangled

coherent states with the transverse degrees of freedom of a single trapped ion

using a two-dimensional spin-dependent force and projective measurement of

the spin. The modulation of phonon number state parity has been measured

in order to observe and characterize the periodic entanglement of the motional

states. We also demonstrate that the two-dimensional force can be used to drive

Mølmer-Sørensen interaction with a chain of two ions, and experimentally verify

that it reduces the required laser power.

This work demonstrates the successful construction of a trapped ion quan-

tum computer and shows how two-dimensional motion in a trapped ion system

can be used for the generation of entangled quantum states, the two qubit Bell

state and entangled coherent state. The letter is especially of significance con-

sidering that it is equivalent to the Bell state of two qubit states encoded in

coherent states. The generation of entangled coherent states reported here can

facilitate the study and utilization of encoded qubits.
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For small creatures such as we

the vastness is bearable only through love.

Carl Sagan
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Chapter 1

Introduction

The trapped ion is a very unique system in many aspects. First, it is inherently

isolated. The large charge-to-mass ratio implies that it cannot come into close

contact with other charged particles with the same polarity, allowing us to

isolate individual atomic ions using electromagnetic fields. This enables us to

make use of their quantum coherence for an extended period of time.

The trapped ion is highly controllable at the same time. The tendency of its

valence electron to couple strongly to visible light or RF fields enables precise

manipulation of its various degrees of freedom including spin and motion. Also,

the trapped ions are identical particles. Every single trapped ion of the same

atomic number ever trapped has the same charge, mass and electronic structure.

Of course, its interaction with background fields causes perturbation effects such

as Stark shift and Zeeman shift, but for a subgroup of trapped ions with field-

insensitive clock states, such effects can be made virtually negligible with the

current technology.
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In the last few decades, there has been monumental progress in the field

of quantum computation. Owing to its long coherence time and high control-

lability, the trapped ion has been a major player in the field. In this chapter,

I will give a broad overview of trapped ion quantum computer. Afterwards, I

will talk about the entangled coherent state and its realization in our system.

1.1 Trapped Ion Quantum Computer

1.1.1 The trapped ion

In the context of quantum information experiment, the trapped ion is basically

a quantum magnet suspended in a three-dimensional harmonic oscillator in

ultra-high vacuum. Therefore, we are given a Hilbert space that is composed of

its spin and motion in three orthogonal directions, or along its principal axes.

Even before the advent of modern lasers and precision optics, the two pi-

oneers Hans Dehmelt and Wolfgang Paul [1, 2] invented devices that can trap

charged particles including atomic ions. The more popular version of the device,

named linear Paul trap after its inventor, uses four linear electrodes and two

end cap electrodes that are positioned at the two ends of the device. One might

think that applying DC voltages to the electrodes is enough to trap a charged

particle three-dimensionally, but the fact that the Laplacian of an electrostatic

potential is zero in free space (∇2V = 0, also known as Earnshaw’s theorem)

implies that this is impossible. The workaround to this problem first conceived

by Wolfgang Paul is to use an oscillating potential that forms a stable confine-

ment in one direction at one instant and in an orthogonal direction at another.

Therefore in a Paul trap, an RF voltage is applied to the linear electrodes and

it acts as a rotating transverse confinement field. The longitudinal confinement

along the geometric axis of the trap can be provided by a static potential, which
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is realized by the endcap electrodes.

A charged particle of mass m and charge e trapped by a potential of the

form U +V cosΩt is subject to the following equation of motion called Mathieu

equation:
d2xi
dτ2

+ ai − 2qi cos 2τxi = 0 (1.1)

where xi is the coordinate of the ion in the i-th axis, τ = Ωt/2, ai = αieU/mr
2
0Ω

2

and qi = −βieV/mr20Ω2. r0 is the distance from the ion to the electrode, and αi

and βi are geometric factors derived from the shape of the electrodes. Depend-

ing on the values of ai and qi, the particle is either stably trapped or ejected

from the trap. The diagram that shows the ”regions of stability” is called the

stability diagram, and an example is shown in Fig. 1.1(a). The ion is stably

confined only when the parameters are in the shaded regions, and an ion trap

should operate in a region where the ion is stable in every axis.

(a) (b)

Figure 1.1: (a) An example of the stability diagram for Mathieu equation for a
linear Paul trap [1]. (b) A chain of trapped ions. The ions are confined by DC
potential along the direction of the chain, and by RF pseudopotential in the
radial directions.

The motion of the ion following Eq. (1.1) is identical to that of a particle
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trapped in a three-dimensional harmonic potential when averaged over a time

much longer than 1/Ω, the period of the RF field oscillation.

1.1.2 171Y b+ qubit

There are many possible choices for the ion qubit, since metals with two valence

electrons such as Be,Mg, Ca and Ba end up with a single valence electron after

being first-ionized. Ytterbium, along with Calcium, is a very popular choice be-

cause it has magnetic field insensitive clock states and its transition frequencies

can be addressed by well-developed and stable laser sources.

The electronic structure of 171Y b+ is shown in Fig. 1.2. The Doppler cool-

ing is realized by a 369.5nm laser beam that drives the transition between∣∣S1/2, F = 1,mF = 0
〉
and

∣∣P1/2, F = 0
〉
, with RF sidebands for repumping pop-

ulations falling to the
∣∣S1/2, F = 0

〉
state. There is a small branching ratio to

the
∣∣D3/2

〉
state, and a 935nm laser beam is required to repump the population

and close the cooling cycle. The qubit states are the ground hyperfine states,

|F = 0,mF = 0⟩ and |F = 1,mF = 0⟩. These states are first order insensitive to

magnetic field, but their separation varies quadratically to the applied magnetic

field due to second order Zeeman shift. The control of the spin and motion is

implemented by a pulse laser at 355 nm. The pulse laser generates a frequency

comb, and we use its wide-bandwidth frequency components to drive Raman

transition.
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Figure 1.2: Electronic structure of the 171Y b+ Ion. Solid lines represent transi-
tions driven by lasers and dashed lines are spontaneous emission.
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1.1.3 The quantum computer

First conceived by Yuri Manin and Richard Feynman [3], the quantum com-

puter is the most natural solution to the problem of simulating many-body

quantum systems. As the number of quantum particles in the system increases,

the classical computer cannot keep up with the required amount of computa-

tion because the number of eigenstates of the system increases exponentially

with the number of particles. Especially, in the last decade the exponential im-

provement of the computing power of classical systems have slowed down [4],

implying that most quantum many-body systems may remain uncomputable.

Therefore, a fundamentally new way of calculating the dynamics of the quan-

tum system is needed, and the quantum computer deals with it by making the

computation system itself quantum.

Quantum computing systems have been realized in many different physical

platforms such as the trapped ion, superconducting circuit and photon [5, 6, 7,

8, 9, 10, 11]. One set of criteria for determining if a physical system is a good

platform for quantum computing is the DiVincenzo criteria [12]. The relevant

part of the criteria is as follows:

• The system has a well characterized and scalable two level system

• The qubit can be easily and effectively initialized

• The coherence time of the system is long enough

• A universal set of quantum operations can be implemented

• Each qubit’s state can be measured separately

As of 2023, the trapped ion excels in every criterion except for the first

one. In the trapped ion quantum computation system, state initialization is
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achieved by optical pumping which is virtually perfect. Coherence times longer

than an hour have been achieved [13]. Universal gate sets, such as the CNOT

gate and single qubit rotations, have been realized with high fidelities [14, 15].

The quantum state of each qubit can be measured with negligible cross-talks

by a number of means such as direct imaging of the ion chain and use of an

array of photon counting devices [16, 17, 18, 19, 20, 21]. However, scalability,

perhaps the most important of the criteria, remains an open problem. Trapping

in a single ion trap hundreds of qubits does not work well for many reasons.

There are various attempts to make the trapped ion system more scalable, such

as photon interconnects and shuttling ions [22, 23, 24, 25].

Whether or not we will achieve true scalability in the near future is not clear

and may even depend on the information-theoretic nature of the Universe [26].

However, it is likely that the efforts to realize scalable quantum computation

will not stop, since it may be our only chance at computing large quantum

many-body problems at the moment.

In this thesis, our attempts at constructing a quantum computing system

that successfully demonstrates the components of a universal quantum com-

puter is presented. We realized single qubit rotation with microwave and Raman

transition and estimated its fidelity with randomized benchmarking. Also, we

realized Molmer-Sorensen gates with a two-dimensional spin-dependent force

and measured the fidelity. The results will be presented in later chapters.
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1.2 Entangled coherent state

1.2.1 Theoretical interest

The coherent state is sometimes regarded the most classical quantum state be-

cause it is well localized and follows classical trajectory [27]. This makes the

entangled coherent state is inherently interesting because it is the quantum en-

tangled variant of the most classical state. Therefore, it has been the focus of

much theoretical research efforts in the past few decades. Its quantum nauture

can be used to probe the fundamenal aspects of quantum mechanics by study-

ing Bell’s inequality and Leggett’s inequality [28, 29]. It has also been utilized

in quantum metrological studies [30, 31]. The state has also been studied in the

context of quantum computation and communication [32, 33, 34, 35, 36]. Also,

there is a rising interest in encoded qubits, which utilize continuous variable

states such as coherent states as logical qubit states. These states offer signifi-

cant advantages in error detection and correction, and has been used in the first

experimental implementation of error correction [37]. In trapped ion systems,

similar experiments were carried out using GKP states [38]. In this context, the

generation of entangled coherent states is very important, as it can be used as

a building block for quantum computation with encoded qubits.

1.2.2 Realization

Despite the theoretical interests, the entangled coherent state had not been

experimentally realized until 2009 when Ourjoumtsev et al. succeeded in entan-

gling two cat states of light [39]. It was followed by Wang et al. who realized

the same quantum state in microwave cavities coupled to a superconducting

circuit [40, 41].
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Figure 1.3: The entangled coherent state is a multimode and entangled ver-
sion of the coherent state. Using the famous cat analogy, it can be under-
stood as the entangled state of the two cats in two separate boxes. In braket
notation, the two mode entangled even coherent state can be expressed as

1/
√
2 + 2e−2(|α|2+|β|2)(|α⟩ |β⟩+ |−α⟩ |−β⟩)(image courtesy of Wonhyeong Choi)

The motional degrees of freedom of the trapped ion system have been used

to generate various non-classical states, such as single-mode cat states or NOON

states [42, 43, 44]. However, the entangled coherent state has not been experi-

mentally realized in ion traps so far. This thesis presents the first realization of

the entangled coherent state in the trapped ion system. This is achieved by com-

bining a two-dimensional spin-dependent force with projective measurement of

spin. Details of the experiment will be discussed in the relevant chapters.

1.3 My life at SNU graduate school

My first and second years were mostly focused on course work because I did

not have a working atomic ion trap setup. However that does not mean I

did not spend any time in the lab. During these years, I worked with macro-

scopic quadrupole traps to trap micrometer sized dielectric particles and liquid
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droplets. It was quite challenging and I sometimes felt completely lost because

I did not have any seniors to help me, but at the same time it was extremely

rewarding because I got to solve physics and engineering problems on my very

own with limited human and material resources. Every time I succeeded in

something, sometimes as trivial as generating a high voltage AC by backfeed-

ing cheap transformers with a high power RF source(do not try this even at the

lab), I felt a strong sense of achievement. I still remember the moment when I

first trapped water droplets after shutting down the lab a couple of times and

blowing up about a dozen transformers. Although this project ended without

any publications, I think this experience helped me greatly for the rest of my

PhD program because I learned how to solve problems on my own and how

exciting it can be to get something to work after hours and days of failure.

At the end of my second year, I was sent to MIT to work with actual

atomic ions at the Vuletic ion lab. It was in this lab where I learned most

of my practical knowledge on atomic physics, both in theory and experiment.

The two graduate students I worked with, Joon and Ian, have since been my

good friends and teachers. They spent much time to teach me everything they

know, and I believe I reciprocated by being a deligent and resourceful junior.

The first project we embarked on after resurrecting the long-neglected ion trap

setup was observing ions tunneling through a Prandtl-Tomlinson type potential

formed by an optical lattice and the electrostatic potential of the surface trap.

It was only after I went back to Korea after over a year of attempts that they

decided that this experiment was not feasible with the current machine. The

next project, which I was lucky to be able to participate when I returned, was

measuring the isotope shifts of the narrow transitions of various even isotopes

of ytterbium. This experiment was motivated by the idea that a certain type

of hypothetical force carrier, heavy boson or dark photon as theorists call it,
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might leave an imprint on the energy levels of atoms by altering isotope shifts

in a special pattern, which is the consequence of the new particle mediating

interaction between neutrons and electrons. I learned much from this project

as well since we had to install and stabilize a new titanium-sapphire laser and

introduce a new laser beam path for the probe beams.

When I first joined the current group in the summer of 2020 after switching

my thesis advisor, I realized that I had to make my own setup almost from

scratch because the only ion trap we had back then did not and still does not

work very well due to charging-related issues. Thus, I started constructing a new

system with a blade trap that was originally assembled at SKT. Luckily there

were many talented and passionate students I could work with. We installed the

vacuum chamber on February 1st 2021, and trapped our first 171Y b+ a month

after. We saw our first Raman transition and sideband cooling in July that year,

and implemented spin-dependent force in the same year. After having to stop

the experiment for a few months to install a new pulse laser, we successfully

realized two-qubit gate with trapped ions for the first time in Korea in May

of 2022. It was 16 months after installing the vacuum chamber. I think our

progress was extremely fast, especially considering that none of us have done

this before.

1.4 Outline of thesis

This thesis is composed of three parts. The first is the construction of the

experimental setup. I will discuss the various subsystems that make up the

setup, and explain the design philosophy and decisions that were made to ensure

the stability and performance of the system.

The next is the basic characterization of the qubit and the implementation
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and analysis of basic quantum gates that constitute a universal quantum gate

set. I will discuss fundamentals of the trapped ion experiment, such as light-

atom interaction, micromotion compensation, heating rate and coherence time

measurements. This part will also include single qubit gate benchmark results,

theoretical aspects of the Molemer-Sorensen gate and its implementation and

characterization in our setup.

The third part is the experimental realization of entangled coherent states.

It is implemented by utilizing the spin and motional degrees of freedom of the

trapped ion. This is the first demonstration of the quantum state in a trapped

ion system, and is confirmed by the observation the periodic modulation of

its phonon state parity, a direct consequence of the entanglement of the two

motional states. Together with the precise control of quantum states possible

in the trapped ion system, this experiment will pave the way for interesting

possibilities.

Finally, I will outline a path towards a five-qubit trapped ion system based

on the current experimental setup. This includes an individual detection and

addressing system that is designed to accommodate up to five qubits in the

current setup.
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Chapter 2

Experimental Setup

The field of trapped ion quantum information experiment has become as much

of an engineering challenge as it is a physics experiment. The rapid progress

of the field in the past couple of decades have set the bar quite high for ”in-

teresting” or ”paper-worthy” experiments. It seems that the field is at a stage

where commercially available solutions have not quite caught up with the re-

quirements of the cutting-edge research. As a result, the researcher is required

to be a good electrical, mechanical and software engineer as well as a good

physicist.

Let us think about the prerequisites for a simple Molmer-Sorensen gate

experiment. For the gate operation to be applied correctly, the following steps

have to be taken flawlessly.

• The ions are trapped in a stable electrical potential, with an appropriate

amount of stabilized bias magnetic field and minimal micromotion.
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• They are Doppler cooled to hundreds of micro-Kelvins.

• They are sideband cooled to quantum ground state.

• A sequence of laser pulses with appropriate frequencies and amplitudes

are applied to the ion chain for a predetermined amount of time, which

is usually on the order of ∼ 10 µs. The pulses should be phase-locked for

coherent control of the wave function which is a prerequisite for quantum

computation.

Imperfection at any stage will have detrimental effects on the fidelity or

feasibility of the gate operation. For example, if the bias magnetic field is noisy,

the coherence time of the ion qubits will be affected. Also, if the intensity

of the pulse laser fluctuates, the accuracy of gate operations will suffer and

sideband cooling may not work properly, resulting in a temperature that is

higher than optimal. This will increase the sensitivity of the gate operation

to imperfection in calibration, which will reduce gate fidelity. The situation

becomes even more complicated because calibrating all the parameters used in

the steps above, such as the frequency of the motional sidebands, the correct

sideband cooling sequence and the correct gate operation parameters, takes

time. Therefore, the system should be noise-less and stable at the same time so

that the calibrated parameters do not drift away before useful operations can be

performed. This makes the construction of the trapped ion quantum computer

quite an engineering challenge that requires prowess in multiple disciplines. In

this chapter, I will go over the various subsystems of the experimental setup,

and examine their designs not only from the perspective of a physicist but also

from that of an engineer.
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2.1 Overview

Figure 2.1: The setup can be considered as the collection of its subsystems. Only
the optical system and the vacuum chamber is placed on the optical table, as
heat and acoustic noise can affect the performance of the setup by introducing
slow drifts and noises. The table itself is separated from its surroundings by an
aluminum profile system and plastic walls. The modules in the optical system
is again individually shielded by aluminum cases to protect them from the drift
of the ambient temperature and to facilitate maintenance. Each module in the
electrical system is encased in a metallic chassis.

The experimental setup can be broken down into subsystems as shown in

Fig. 2.1. The subsystems are the optical system, electrical system, trap and

vacuum chamber system, and the control software. The optical system and the

vacuum chamber are situated on the optical table, which is shielded from its

surroundings by a shelf system made of aluminum profiles and acrylic walls. The

electrical system is isolated from the two, as there are cooling fans that produce

acoustic noises and air currents which destabilize the beam paths and reduce

phase coherence of the pulse laser beams. The setup is controlled by two PC’s.
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One is connected to the wavemeter and used to control the frequencies of the

continuous-wave(CW) lasers, while the other controls everything else including

the RF system and the experiment sequence controller. The home-built control

program is resource-heavy and not very stable. Therefore the wavemeter is

controlled by a separate computer because I did not want the CW lasers to

drift away, heat up and eject the ion from the trap in case the main control

computer has to be reset due to errors.

2.2 Optical systems

2.2.1 Continuous-wave lasers

As can be seen in Fig. 1.2, two CW lasers(369.5 nm and 935 nm) are required

for the Doppler-cooling of the ion. In addition to this, we use another CW laser

with the wavelength of 399 nm to excite the electron in the neutral Yb atomic

beam. The electron is then excited again to the continuum by either the 355

nm pulse laser or the 369.5 nm laser for photoionization, which generates Y b+

ions. We trap the qubit ion, 171Y b+, by adjusting the frequencies of the CW

lasers so that they are resonant only to the transitions of the particular isotope.

A schematic diagram of the beam paths is presented in Fig. 2.2. The 399 nm

(ionizer) and 935 nm (repumper) beams enter the vacuum chamber from the

lower left viewport(when the chamber is viewed from the imaging camera) after

being combined by a shortpass dichroic mirror. The beams are focused before

they enter the chamber. Due to the large difference in the wavelength, the spot

diameter of the ionizer is about 100 µm, but the repumper is several times larger

than that. This has no detectable effect on the experiment. The repumper has a

3.07 GHz sideband created by an electro-optic modulator(EOM) to address the

hyperfine levels of the repumped level. To make the system as low-maintenance
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Figure 2.2: An overview of the beam paths viewed from the direction of the
imaging system. The 369.5 nm beam paths, which includes three AOM’s and
two EOM’s, are implemented by a watercooled fixed optical board for maximum
stability. The 355 nm beam path, which is used for quantum state manipulation,
is enclosed by aluminum walls to prevent air currents and thermal effect from
affecting the phase coherence and pointing stability of the beams.

and stable as possible, the beam path between the 935 nm laser head and the

output collimator next to the vacuum chamber is all fiber-connected. That is,

the laser exits the laser head via a fiber coupled output port, which is split

into two with 1:99 power ratio by a fiber beam splitter. The weaker beam goes

to the wavemeter, and the stronger to a fiber EOM which produces the 3.07

GHz sideband. The output port of the EOM is then connected to the final

output collimator. Also, the repumping laser is a distributed-feedback(DFB)

laser and is controlled only by temperature and current, which further simplifies

the system. As a result, it has needed little maintenance in the last two and

half years. Fiberizing every component of the beam path, including the laser

head, makes the system simple and robust.

Typically, the power of the ionizer is about 200 µW while the repumper is
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2∼3 mW. A much lower power will be sufficient if the spot size is reduced by

using a dedicated focusing lens. The ionizer can be shuttered off by a home-

made shutter activated by a TTL signal from the main field-programmable-

gate-array(FPGA) after a desired number of ions have been trapped.

The initial alignment between the beams were achieved by looking at the

beams after they exit the chamber through the viewport on the opposite side.

After making the beams overlap, we translate the focusing lens which is mounted

on a two-dimensional translation stage. In this step, we first look for the scat-

tering of the ionzier on the trap blades with the ion imaging CCD. The CCD

should first be aligned to the center of the trap by positioning it to look at

the middle point of the endcap electrodes. Afterwards we turn on the atomic

oven and increase the current to a relatively high value and wait for a couple

of minutes. If the ionizer is aligned correctly and set to the right frequency, a

bright cloud of neutral Yb atoms should be visible at the center of the CCD

image. The micrometer is now fine-tuned to situate the two beams at the center

of the trap.

The CW laser central to the 171Y b+ ion experiment is the 369.5 nm laser.

It is responsible for the Doppler cooling of the ion and the initialization and

detection of the qubit states. The cooling, initialization and detection beams are

prepared in a breakout board that receives a fiber coupled 369.5 nm light and

splits it into a number of beam paths. After passing through AOM’s and EOM’s,

the beams are then fiber-coupled and sent to the output couplers located to

the left of the chamber. In the cooling beam path, there is an acousto-optic

modulator(AOM) driven at 160 MHz to switch the beam on and off. There

is also an EOM driven at 7.375 GHz whose 2nd order sideband pumps out

the population in the |0⟩ =
∣∣S1/2, F = 0,mF = 0

〉
state to close the Doppler
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(a) (b)

Figure 2.3: (a) A CAD image of the breakout board. (b) A picture of the
completed setup

cooling cycle. The initialization and the detection beams have perpendicular

polarizations, although not optimal, and are coupled to the same polarization-

maintaining(PM) fiber.

To control the detection and initialization beams, we use AOM’s for each

beam. The AOM is driven at 200 MHz, 40 MHz higher than the cooling beam

AOM, because the Doppler cooling tends to work better with a few tens of MHz

red-detuned(although theoretically the lowest Doppler cooling temperature is

achieved at a detuning of half the linewidth of the cooling transition, which is 10

MHz), while the initialization and the detection beams are most efficient close

to resonance. The frequency of the EOM used for initialization is 2.105 GHz.

The cooling and Initialization-Detection beams are combined by a D-shaped

mirror right before the focusing lens. The breakout board is a watercooled fixed

optics setup which maximizes stability. The board is indeed one of the most

stable parts of the setup and its internal optics do not need any maintenance

as long as the chiller is operating properly. A picture of the breakout board is

shown in Fig. 2.3(b).
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For the 369.5 nm laser beams, the input fiber couplers are cost-efficient

singlet aspherics because the quality of the lens does not have much effect on

the coupling efficiency. However, the outgoing beams should be as Gaussian as

possible to ensure that the beam profiles at the ion match the expected size

and shape. The beam in the breakout board should be of high quality for the

same reason. Thus for the output couplers we chose high quality triplets from

Micro Laser Systems as shown in Table 2.1. There has been an issue with the

optical fiber connecting the laser head module and the breakout board where the

both ends of the fiber receive sudden optical damage, which results in reduced

transmission and defocused beam profile. We have not quite figured out why

this happens, but reducing the optical power going into the fiber seems to help.

Initially we coupled about 2 mW of power into the fiber, and the fiber tips

would last just over a month. Now we input less than 1 mW and the fiber stays

intact for as long as six months. When the fiber tips are damaged, polishing

them with a multi-step fiber polishing kit can restore them. We think it is a

different issue from solarization, which results in a slow degradation of coupling

efficiency and is also present in our system.

Product Name Vendor

Output coupler to chamber FC-5 Micro Laser Systems

Output coupler to breakout board FC-5 Micro Laser Systems

Cooling beam AOM ASM-1702B8 Intraaction

Initialization beam AOM ASM-2002B8 Intraaction

Detection beam AOM ASM-2002B8 Intraaction

Cooling beam EOM Model 4851 New Focus

Initialization beam EOM Model 4435 New Focus

Focusing lens PLCX-25.4-64.4-UV CVI Optics

Table 2.1: A list of selected items in the CW laser beam paths
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2.2.2 Pulse laser

The pulse laser is the main workhorse of the quantum part of the experiment.

The CW lasers, while necessary for trapping and Doppler cooling the ion, are

not involved in coherent operations. Thus, their optical phases do not matter

because all we need is scattering photons off the ion. However, the phase of the

pulse laser is directly imprinted on the quantum state of the qubit and needs to

be controlled precisely. The situation is made more complicated by the fact that

the Raman transition is realized by a Mach-Zehnder interferometer in which

the two Raman beams follow different beam paths. This makes the phase of the

Raman transition sensitive to the fluctuations in the beam paths in the scale

of the laser wavelength. Therefore it is necessary to enclose the space between

the pulse laser and the vacuum chamber, which we implemented by carefully

designed overlapping aluminum walls. Other materials such as acrylic or laser

blackout fabric were avoided because the strong pulse laser beams can ignite

them. A picture of the enclosed beam path is shown in Fig. 2.4.

From here on, the two beam will be called the H(horizontal) beam and the

V(vertical) beam. The V beam enters the chamber via the bottom viewport

of the vacuum chamber as the name implies. This made the aligning process

a nightmare because we could not see the beam exiting the chamber from the

opposite side as it was blocked by the ion pump assembly. Nonetheless I found

a way to align the beam reliably. The procedure is as follows. (1) Make sure

that the vertical beam is parallel to the optical table surface and aligned to go

through the point that is the projection of the center of the vacuum chamber.

(2) Place a 45 ◦ fixed folding mirror that sends the beam upward through the

center of the bottom viewport. This should be done carefully because if the

folding mirror rotates slightly, the vertical beam will be directed at an angle to
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Figure 2.4: The pulse laser beam path is shielded off with aluminum walls. The
walls are bolted to aluminum profiles, which are fixed on the optical table. The
goal is to block air currents from affecting the laser phase, so the walls are
designed to slightly overlap with each other to minimize gaps between them.
About 80 % of the beam path is shielded. The rest could not be enclosed due to
the difficulty of designing aluminum panels that fit the contours of the vacuum
chamber. In addition to the aluminum walls, the beam path is protected by a
secondary enclosure that covers all of the optical table as is usual in atomic
physics setups.

the normal vector of the optical table which will give confusing results in the

next steps. I recommend that the whole process be monitored by a properly

aligned ion imaging CCD. If the beam is aligned to go through the center of

the trap, the pulse laser will be scattered by the inner surface of the blades

and a scattering pattern will emerge on the CCD image. (3) Scan the final

focusing lens horizontally, so that the laser beam scans the trap horizontally

or in a direction perpendicular to the trap axis. Since the gap between the

neighboring blades is 460 µm, the scattering should virtually disappear while
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the lens stage traverses the same distance assuming the focus of the beam is

in the inner area of the trap. If this step produces unsatisfactory results such

as very narrow or wide range of drastically reduced scattering, go back to step

(2) and attempt to align the folding mirror again. (4) Place the beam on the

left edge(lower value for the position of the translation stage) of the trap inner

space, and scan the beam vertically. Within the scanning range, two bright

spots with large scattering should be visible. Place the beam at the center of

the two spots. A CCD image of the two spots are shown in Fig. 2.5. This will

have a large uncertainty as the spots are quite large, but it does not matter

because the neighboring area will be scanned thoroughly. (5) Scan the position

of the focusing lens two-dimensionally with sufficiently large ranges and long

probe time. While scanning, the vertical beam should be set to a frequency

that can excite Raman transition, either via co-propagating qubit flopping or

together with the H beam. Obviously, the co-propagating transition is the better

option because it does not require the alignment of the H beam. If the system

is capable of neither, one can try to detect Stark shift caused by the non-

resonant high intensity beam, but it will be a much smaller signal and requires

a well characterized microwave qubit transition [45]. The scan usually consists

of about 1000 steps, and was done automatically by running a sequence with a

fixed qubit transition time and setting as the scanned parameters the vertical

and horizontal position of the lens. Once the beam is properly aligned, the

thermal drift of the beam position over time is very small and the full 2D scan

is rarely needed. It seems that this kind of continuous operation degrades the

lubrication of the motorized stage quickly. If the motor is stuck, applying a

small amount of grease restores movement.

We use a pulse laser to drive the transition between the qubit states because

it is the best solution currently available for bridging the 12.6 GHz energy gap
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Figure 2.5: Image of the trap center acquired by a properly aligned CCD when
the V beam roughly hits the center of the trap but is not precisely aligned. The
trap axis goes from the lower left and upper right corners of the image. The
diagonal bright line is one of the inner surfaces of the blade trap, illuminated by
the V beam which is currently position to the left of the trap center. The two
bright spots that can be used for the vertical alignment of the V beam are the
two circular bright patches along the upper diagonal line. The vertical center
of the 2D scanning range is set to be the average vertical coordinate of the two
spots. The horizontal is found by finding the horizontal range with little to no
scattering, which corresponds to the gap between the blades.

between the qubit states. It is a microwave frequency, so a coherent microwave

oscillating at 12.6 GHz is able to drive the transition between the |1⟩ and |0⟩

states. However, the microwave cannot be focused tightly to individually ad-

dress single ions in an ion chain. Its coupling with the motional mode is also

very small because of the small momentum of the microwave photon. These

problems have successfully been overcome by using large near-field magnetic

field gradients, but they require precisely engineered microwave antennae that

should be integrated in the trap itself [46, 47, 48]. If we use non-counter propa-

gating laser beams, we can solve both of these problems as they can be tightly
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focused down to ∼ 1µm and impart large momenta on the ion. This scheme

requires the phase coherence of the two laser beams. It does not necessitate

the use of frequency combs, but phase-locking two laser beams that oscillate at

frequencies that are 12.6 GHz apart is not an easy task, and any imperfection

in the process would compromise the quality of qubit control. One could use an

EOM to produce a phase-locked sideband to the laser and drive Raman transi-

tion with it. However, for 171Y b+, the large qubit transition frequency implies

that the sidebands would not be very strong [49, 50]. On the other hand, the

355nm pulse laser is an off-the-shelf solution to all of the problems mentioned so

far. It even has the extra benefit of being at the magic wavelength that cancels

the differential stark shift between the qubit states [51, 52].

To drive the qubit transition with frequency combs, the qubit frequency

should be a multiple of the comb spacing, which is usually not the case. There-

fore, we give a differential offset to the combs in each leg of the interferometer

by driving the respective AOM’s at different frequencies. Also, The repetition

rate of the pulse laser changes over time due to the thermal and acoustic pertur-

bations to the laser cavity. There are two ways to compensate for this: feedback

and feedforward. In the feedback method, one modulates the position of a mov-

able mirror inside the laser cavity in a fashion that counters the repetition rate

drift measured by a high-speed photodetector. We used this method in the early

stages of the experiment when we worked with Mira HP-D because it was sup-

plied with a control port for that purpose. However Paladin, the new pulse laser,

does not support repetition rate modulation, so we had to switch to the feedfor-

ward method. In this method, the differential offset of the combs is modulated

to cancel the repetition rate drift. The rate of the drift is not straightforward

to measure, and should be downconverted by a stable RF source. Our scheme

is similar to Ref. [53] and uses digital PID control. Details of the digital control
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and RF circuit are presented in Section 2.3.1.

The feedforward frequency is applied to the V beam by changing the RF

frequency driving the AOM. It usually changes at a rate of ∼ 1000 Hz/s, and

introduces slight deflections in the beam path. Its approximate size can be

calculated as follows: ∆d = L∆θ where L is the length of the beam path

downstream and ∆θ is the deflection angle of the beam which can be calculated

using the driving frequency, wavelength and the speed of sound in the AOM.

The estimated size of beam translation at the position of the ion is in the range

of 10 ∼ 100 nm, which is close to the scale of the laser wavelength and enough to

compromise phase coherence. We have experimentally confirmed that the phase

coherence is affected by a poorly designed feedforward system. Therefore, we

built the V beam AOM in double-pass configuration which cancels out the effect

of the spatial dithering of the laser beam.

A schematic diagram of the Mach-Zehnder interferometer is shown in Fig. 2.7.

While the V beam is used to compensate for the repetition rate drift, the fre-

quency of the H beam is set to predetermined values to address different tran-

sitions, such as the red and blue sidebands. A delay stage in the H beam path

can change the beam path length by as much as 20 cm. It is calibrated to

equalize the length of the two legs of the interferometer so that the H and V

beam pulses arrive at the ion at the same moment. The typical power in each

beam at the end of the beam path is between 100 and 200 mW. The diameter

of the horizontal beam is about 13 µm while the vertical beam is 17 µm * 37

µm, longer in the direction of the trap axis. The vertical beam is intentionally

made asymmetric to help Rabi frequency balancing between the two ions in an

ion chain. The beam sizes were measured by scanning the laser stages while

driving Rabi oscillation with a fixed probe time.
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Figure 2.6: Beam path for the second-harmonic-generation(SHG) process used
in the Mira setup. It is no longer in use but included for reference.
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Figure 2.7: Beam path for the V and H beams. The V beam is controlled by a
double-pass AOM(AOM V) whose RF frequency is updated at a rate of ∼ 50
kHz to compensate for the change in the repetition rate. The H beam is mod-
ulated by a single pass AOM(AOM H). The RF drive for AOM H is set to
predetermined values during experimental sequences to address different tran-
sitions for qubit and motional control. Both beams go through beam expanders
and are focused down to appropriate sizes at the position of the ion. The delay
stage in the H beam path fine-tunes the path length, so that the H and V pulses
arrive at the ion at the same moment.
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2.2.3 Imaging system

The imaging system is composed of an imaging lens (M1), CCD, and a PMT

(photo-multiplier tube). The CCD is used to check on the condition of the

trapped ion chain (number of trapped ions, positions of the ions) and to help

with laser beam alignment by observing how the laser beams scatter off the trap

electrodes. The PMT is used for actual experiment by counting photons and

making a photon number histogram, which is used to infer the quantum state of

the qubits. While many other setups use a complex array of lenses for imaging,

we use a simple doublet system where the image of the ion is simply transferred

from the object plane to the image plane with a certain magnification factor.

M1 consists of a 2” aspheric lens(67-273, Edmund Optics) on the ion-side and

a 2” plano-convex lens(LA4782, Thorlabs) on the other side. The magnification

factor is simply the ratio of their focal lengths, and the nominal magnification

is 500mm/60.0mm = 8.33.

Both the PMT and CCD are equipped with IR block filters and bandpass

filters that pass 370nm to increase signal-to-noise ratio. The PMT also has a

pinhole to reject ambient light. In addition to this, the whole imaging system is

encased in a blackout box. These steps are necessary because even in the bright

state, |1⟩, on average only 20 photons are collected by the PMT per millisecond.

Even a small background count can ruin the detection fidelity.

29



2.3 Electrical system

Most of the modules in the electrical system of the setup, along with many

pieces of equipment in other systems, are designed following the 19” rack mount

standard. This is a natural choice because most scientific, computing and net-

work instruments, ranging from laser controllers and power supplies to ethernet

routers are designed to be mountable in 19” racks. Therefore the electrical mod-

ules built following the 19” standard can be stacked on top of each other or

other instruments. Also, they can be mounted in commercially available server

racks, which comes with many accessories that make life in the lab easier, such

as cable guides, cooling fans and sliding shelves. Table 2.2 lists all the modules

in the electrical system of our setup. Most modules are contained in its own

19” enclosure and the rest are planned to be modularized.
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Name Function

Qubit frequency reference Drives MW horn and downcon-
verts repetition rate signal

FPGA+DAC TTL’s needed for experimental
sequence. Analog voltages to con-
trol instruments

DDS1 RF frequencies for AOM’s in CW
beam paths

RAMAN A RF frequency generator for Ra-
man AOM’s

RAMAN B Repetition rate stabilization RF
circuit. Upto four RF frequencies
for Raman AOM’s

RF Switches A 6 low-frequency RF switches, 2
high-frequency RF switches and
2 VVA for RF power control

RF Switches B 5 low-frequency RF switches for
Raman AOM frequency switch-
ing

RF Amps Amplifies DDS RF signals to
drive AOM’s

Trap PID system PID for trap RF power

Table 2.2: A list of modules in electrical system
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2.3.1 RF sources for qubit control

Qubit state engineering requires an electromagnetic field that oscillates at or

slightly detuned from the transition frequency of the qubit. The coherence of

the qubit operation requires both the qubit frequency and the field frequency

to be stable, as any noise in either would result in intractable time evolution,

which means decoherence. Here, we will discuss the design of the field control

system that produces coherent RF signals to modulate the laser and microwave

radiation to control the qubit state of the trapped ion.

Figure 2.8: Inisde of DDS1 module. Three DDS boards each containing two RF
generation chips are stacked on top of each other. They are powered by a 5V
SMPS. The clock signal for the boards is supplied by an RF connector in the
front panel. It is fed to a three-way splitter and goes to each board.

Let us take a look at DDS1 as an exemplary design of the electrical module.

This module contains three PCB’s each of which contains two RF generation

chips (AD9912, Analog) that can produce RF frequencies up to 400 MHz with

power in the −10 ∼ +5 dBm range. Therefore, this module is designed to

produce six RF frequencies that can be used to drive AOM’s and other devices
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after amplification. The boards communicate with the control computer with

an FPGA(Arty-S7, Xilinx) running a custom program as the interface. We

needed a remap board that maps the output pins of the FPGA to those of

the DDS board. The chassis is grounded and the mains connector contains a

fuse for safety. All the electrical connections were meticulously covered and

mechanically fixed to guarantee robustness and prevent any accidents. We also

made sure that proper components, such as lugs, wires and connectors with the

right sizes were used. Also we avoided direct soldering as much as possible and

used commercial solutions such as euroconnectors and Wago connectors since

the mechanical strength and quality of soldered joints vary greatly depending

on the quality of equipment and soldering skills. All three boards share a clock

signal, which originates from a central Rb clock and is distributed within the

module via a three-way splitter. This is very important because the control

fields should be phase-locked in order to apply multiple gates in sequence.

The next module worth examining is the FPGA+DAC module. As the name

implies, this module contains the main FPGA which produces precisely timed

TTL signals used in experiments and a DAC board (DAC8734, TI) that out-

puts clean DC signals. The TTL’s turn on and off the RF switches used in the

experiment. The minimum time resolution of the signals is 10 ns, but is inten-

tionally limited to 100 ns on the software side for consistent operation. The

DC signals are used to set the reference voltage for trap RF power stabilization

and provide the offset voltage for the RF blades. Some are used to control the

power of the lasers via VVA’s.

Raman B contains the repetition rate stabilization circuit for the pulse laser.

The repetition is about 120.1 MHz, and we use the interference between the

1st and the 107th teeth of the frequency comb to drive Raman transition.
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A 1 Hz change in repetition rate corresponds to 107 Hz in terms of Raman

transition. Therefore, the error gain of the PID system should be sufficiently

high. If it only measured the drift of the fundamental signal which oscillates

at 120.1 MHz, its gain or signal to noise ratio would have to be excellent since

the quantum operation is about two orders of magnitude more sensitive to

the drift. Some groups [20] use the 32nd harmonics of the intensity variation

observed by the photodetector. This is probably because the bandwidth of the

RF circuit is limited and it is easier to implement division by 32 = 25 which is

a simple bit shift operation in the FPGA. We measure the 106th harmonics of

the photodetector signal and use it for repetition rate stabilization because the

bandwidth of our circuit allows for it and our PID operation is fast enough to

accommodate division operation. The details of hardware coding for the FPGA

was delegated to J. Kang. Using the 106th harmonics has the advantage of

increased error gain, which enables a longer coherence time.

A diagram of the RF circuit is shown in Fig. 2.9. The ultrafast photodetector

signal is filtered and amplified so that only the 106th harmonics of the pulsed

signal passes. It is then mixed with the reference oscillator, which is detuned

by about 100 MHz from the qubit transition. Only the lower sideband is within

the bandwidth of the circuit, thus this step effectively downconverts the signal.

The signal is then summed with external error modulation signal, which only

exists for diagnostic purposes. The signal is then mixed with a repetition rate

tracking signal which is updated by the FPGA at a rate of 50 kHz. The mixed

signal is fed to an ADC. The FPGA implements a PID circuit which modulates

the frequency of the tracking DDS so that the voltage detected by the ADC

stays at zero.

The above process can be summarized as a digital frequency following or
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phase-locked-loop(PLL) circuit for the repetition rate of the pulse laser. This

circuit has been realized using analog circuits as shown in Ref. [54]. The digital

system is much more flexible and scalable because the numerical value of the

measured repetition rate is stored in the memory of the FPGA. The value is then

used to calculate the frequencies required for various transitions. Indeed, Raman

B is capable of outputting four RF frequencies that can be used to drive AOM’s,

and the system is capable of updating all four RF frequencies simultaneously

at a rate of ∼ 50 KHz. This number is limited by the number of DDS boards

in the system, and can be increased by adding more boards, although this will

decrease the update rate. An analog system would have needed four separate

PLL’s to achieve the same result.

A potential caveat to be careful of when using digital PLL system is the

precision of floating point operations. Initially, we coded the system such that

the system updates the RF frequencies in an additive manner. It calculated

the difference between the previous repetition rate and the current one, and

added a small correction to the outgoing RF frequencies. This resulted in the

accumulation of errors in the floating point operations in every cycle. The error

in each operation is negligible, but when they compound at a rate of 50 kHz,

the deviation of the calculated RF frequencies becomes significant after a few

minutes. This problem hindered our progress for a few weeks. It was eventu-

ally fixed by changing the code to simply recalculate the outgoing frequencies

instead of calculating the required correction factor.

2.3.2 DC voltage system

The trap needs several DC voltage sources to operate properly. It needs two

radial compensation voltages that translate the position of the DC null in the
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radial directions. It also needs a DC offset for the RF blades in order to change

the separation of the two radial modes and tilt the principal axes. Lastly, it

needs a voltage for the endcaps. The electric fields generated by these DC

voltages directly interact with the atomic ion. Therefore, the motion of the ion

is extremely sensitive to the condition of the applied voltages. Any noise or

RF pickup will be a source of decoherence. We designed the lowpass circuit

presented in Fig. 2.10 to reduce noise and RF pickup in DC electrodes. It

is a simple circuit, but has very peculiar requirements, so it was not easy to

design it properly. The circuit should have the following qualities: (1) strong

suppression of non-DC components, (2) very good rejection of ∼ 10 MHz RF

signals because the DC electrodes are only a few millimeters apart from the RF

blade, (3) operational voltages up to a few kV which is required for micromotion

compensation and sufficiently strong axial confinement. There are a handful

number of capacitors that satisfy all of these requirements, with some of them

being discontinued in the near future. We used 2220Y2K00104KXTWS3 and

222521K00122JQTAF9LM from Knowles Syfer as the first and second stage

capacitors. The expected low-pass cutoff frequency is 15.9 Hz.

Finding the right capacitor is not the only issue. The routes and pads have

to be round and separated as much as possible to prevent arcing. The PCB

itself can also cause problems as the high-voltage DC can short following the

surface of the printed circuit board. This is well known in the electrical en-

gineering community and called surface creepage. Interestingly, this effect has

to be considered when designing a surface trap for trapped ion experiments

to avoid shorting or arcing between the microfabricated electrodes [55]. The

surface creepage is currently the limiting factor of our DC electrode voltages.

There are potential benefits of higher endcap voltage, but the current version

of the low-pass filter shorts out at around 2000 V after about an hour probably
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(a) (b)

Figure 2.10: (a) Schematic of the low-pass filter. (b) Picture of the actual circuit.

due to surface creepage. We tried sonicating the surface of the PCB because

surface contaminants are known to exacerbate this effect, but there was no im-

provement. We settled on a maximum of 1300 V for the endcap to be on the

safe side.

2.3.3 RF voltage system for trapping potential

We put much effort in stabilizing the RF trapping potential because it is utilized

in the coherent control of motion which is necessary for non-classical motion

generation and Molmer-Sorensen gate. We actively stabilize the amplitude of

the trapping RF voltage. It is measured by a capacitive divider located on the

inner surface of the helical resonator which is the small blue PCB in Fig. 2.11(a).

The divider samples about 1/30 of the voltage, which is then rectified by a diode

circuit. The voltage is reduced by another factor of 30 when rectified [56, 57].

The resulting DC voltage is an indicator of the amplitude of the RF voltage

through PID control. It is then stabilized by an analog PID controller to a
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reference voltage coming from the FPGA+DAC module. One can try to control

the RF amplitude by directly controlling the RF source using such functions as

amplitude modulation which is available in any function generator. However,

its bandwidth depends on the internal circuitry of the function generator, which

is usually not optimized for speed. Another option is to use a VVA, but this

has the risk of introducing additional noise to the system because most VVA’s

require a power source. The amount of attenuation depends on the supply

voltage, making the output vulnerable to power source noise. Therefore, we

modulate the RF amplitude with an RF mixer. When the DC control voltage

is applied to one of the input ports, it effectively becomes a wide-bandwidth

RF amplitude controller [58].

Currently, the coherence time of the quantum motion of the ion is 4 ∼ 5

ms. For high fidelity entangling gates and precise control and analysis of non-

classical motion, it needs to be increased. There is actually a large room for

improvement because much longer coherence times have been reported in a

similar setup [14]. The signal to noise ratio of the PID error signal is about

1000/2 mV, with the majority of the noise coming from 60 Hz ground loops.

Better electrical isolation and higher error gain can improve the sensitivity of

the PID control and improve the coherence time of the trap.

The long term stability of the RF amplitude is also crucial for ion trap ex-

periments because drift of calibrated secular frequency deteriorates the quality

of quantum state control. Despite best efforts, the secular frequency drifts at a

rate of approximately 1 kHz/hr at worst. The rate of drift tends to be higher

when there are more people in the lab and is lowest at night. It is most likely

due to the thermal drift of the components that constitute the RF amplitude

compensation system. The worst offender is likely to be the RF power sampling
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and rectifying system, as the capacitors used in them have bad temperature

ratings. Future systems should use C0G ceramic capacitors whose tempera-

ture coefficient is zero. The stability of the reference voltage should also be

considered. The output of DAC’s are known to be susceptible to temperature

changes. It can be improved by using temperature controlled DAC modules

such as LMP2066 from Texas Instruments.

We float the main coil of the helical resonator using a pi-filter, which is

basically a bias-Tee as shown in Fig. 2.11(b). This is because a DC offset to

the RF electrodes can be used to tune the spacing between the radial modes

by breaking the symmetry of the trapping field. We chose to add the DC offset

directly to the RF voltage by using the pi-filter since the ground blades are

directly connected to the electrical ground inside the vacuum chamber and

cannot be controlled from outside.
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(a) (b)

Figure 2.11: (a) The RF voltage at the end of the main coil is sampled by a
capacitive divider, which is the tiny blue PCB in the picture. The output of
the divider goes to the SMA connector next to it and then is rectified by a
rectifying circuit connected to the helical resonator on the outside. (b) The pi-
filter consists of a high frequency inductor between two capacitors. It works as
a symmetric bias-tee, and enables us to apply DC offset to the RF electrodes.
It is on the ground side of the coil, and therefore not subject to the high voltage
RF which is formed at the end of the main coil.
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2.4 Trap and vacuum chamber

2.4.1 Blade trap

Our trap assembly follows the blade trap geometry first conceived by Rainer

Blatt’s group at University of Innsbruck [59]. Its electrodes are tapered towards

the center of the trap to increase the field strength, which results in a tighter

confinement for the ion. The trap geometry is shown in Fig. 2.12 and Fig. 2.13.

Figure 2.12: (Upper right) transversal cross section of the trap (Bottom Left)
The trap electrodes and the direction of the pulse laser beams [60].
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(a) (b)

Figure 2.13: (a) A CAD image of the trap assembly. The trap is viewed from the
backside flange(hidden) to which it is mounted. Gray cylindrical rods are the
compensation rods, and the pair of electrodes on the left and right with a disk
shaped feature in the middle are the endcap electrodes. The distance between
them is 6.0 mm. The colored parts are MACOR blade holders. (b) A picture
of the actual trap assembly before being installed in the vacuum chamber. The
ovens are installed in the ceramic pillars on the left and right. Atom beams
emitted from the ovens enter the holes in the endcap electrodes and reach the
trap center.
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In the transverse plane, the distance between neighboring electrodes is 460

µm and electrode-to-ion distance is 325 µm. The shortest distance between the

endcap electrodes is 6 mm, which has been a major obstacle in multi-ion oper-

ations. The resulting axial confinement is too weak, leading to a weak coulomb

interaction between the trapped ions. In most of the experiments presented in

this thesis, the endcap electrodes were kept at 1300 V, and the axial secular

frequency was (2π)120 kHz. At (2π)1.2 MHz of radial secular frequency, the

transverse cm and tilt modes were only 6 kHz apart which forced us to use

both modes simultaneously.

2.4.2 Vacuum chamber

The trap assembly and the vacuum chamber were built by Dr. Kwon at SKT.

Not much information about the trap and chamber is available to us apart from

a CAD file from which I was able to find the trap dimensions. The vacuum

chamber consists of 3.75” viewports, electrical feedthroughs for DC and RF

voltage supply, and a large recessed viewport for imaging. The DC voltages

for the DC electrodes are supplied via SHV connectors which are rated for

5000 V and 5 A, although we have not used voltages higher than 2 kV because

breakdown and arcing might occur within the vacuum chamber or the DC low-

pass filters.

The ground electrodes are directly connected to the chamber ground within

the vacuum chamber. This is a sub-optimal design as it forces us to use the

RF blades for both the DC offset and RF voltage. The wires connecting the

DC electrodes and the SHV feedthroughs are neither shielded nor equipped

with bypass capacitors. It may have contributed to the erratic behavior of the

micromotion where the DC voltage required for compensation increases almost
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linearly with the secular frequency. We were eventually able to suppress the mi-

cromotion sideband to about 1/10 of the carrier transition, but the DC electrode

connections are poorly designed and should be improved in the next iteration

of the blade trap setup.

The RF electrodes are connected to the signal pin of one of the SHV con-

nectors in the backside flange. It can be improved as well since we have to

somehow connect the main coil of the helical resonator to the SHV connector.

I had to make an intermediate connector for this purpose by soldering thick

copper wires to the exterior and signal pin of an SHV connector. It required

significant crafting skills because the voltage carrying copper wire would short

out when too close to the SHV connector or the grounded wire. I had to cut out

a sizable portion of the connector to prevent shorting and wasted about a dozen

of them before making a functioning one. I also designed and installed a shield

for the area between the SHV connector and the helical resonator because the

design of the feedthrough exposes the two tips of the main coil. A picture of

the helical resonator and the neighboring area is shown in Fig. 2.15(a). The Q

factor and resonance frequency of the helical resonator are measured by a spec-

trum analyzer which feeds the circuit with RF signals of varying frequencies

and measures the reflected signal. The Q factor is 176 and resonance frequency

is 15.0 MHz. The resonance frequency may change slightly when a strong RF

power is applied due to thermal effects and should be fine-tuned in-situ in ac-

tual experimental conditions. The resonator actually heats up noticeably after

applying a few watts of RF power for a few minutes.
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Figure 2.14: The vacuum chamber is viewed from direction of the imaging
lens(hidden). The bias B field and ion imaging direction is out of the page.
The ion pump is connected to the top of the image. Ports A and E cannot be
used because they are blocked by the trap holders. Port G is used for Microwave
Antenna, while D and F are used for the pulse laser beams. Through B enters
the 369.5 nm beams(cooling, initialization and detection). C is for the repumper
and ionizer beams. The compensation coils are installed on A and G, and the
main coil for the bias B-field is wound around the recessed viewport(imaging
viewport)
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(a) (b)

Figure 2.15: (a) The helical resonator is connected to the vacuum chamber via
an SHV connector in the backside flange. The area in between is shielded. (b)
The resonance frequency and quality factor of the helical resonator.

Due to the lack of documentation, we had not known which of the 2.75”

viewports had AR coatings until we tested them out. The diagonal viewports(A,

C, E and G in Fig. 2.14) are not AR coated, and reflect 370 nm and 399 nm

strongly. We initially tried to use C for the initialization and detection beam,

but could not because the reflection from G was too strong and made its way

to the PMT, which greatly reduced the signal to noise ratio of photon counting.

Currently C is used for the repumper and the ionizer. The ionizer is also strongly

reflected by viewport G, but the atomic beam fluorescence can still be imaged

when an EMCCD is used.
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2.5 Control software

The experimental control system was virtually non-existent when I first joined

the lab, so I had to develop it from scratch. There was a crude system for running

experimental sequences based on a custom python wrapper for the custom

FPGA program. However, it was not very intuitive and too much of basic

FPGA operations was left to the end user, making the system very complicated.

Luckily, I was able to muster a small crew of talented and passionate students

with background in computer science, and the development of the new control

program progressed very quickly once I decided on the requirements and basic

structure. The details and design patterns of the control program pertaining to

software engineering were decided with the help of Hoon Hur and Jiyong Kang,

whose expertise in software development has been invaluable.

Its design is inspired by the custom control program for the Vuletić trapped

ion lab which was written in C# and various sub-GUI’s were integrated in a

single program using tabs. Our new control program was built using Python,

an obvious choice considering its versatility, wide range of existent libraries and

ease of use. It was designed with the following principles.

• Modularity: The program, although it appears to be a single program, is

actually a collection of several programs. Each program can be modified,

added and removed separately. They are only held together by the main

control program which enables communication between each module.

• Simplicity: We hid information irrelevant to the end user as much as

possible. This is especially true for the experimental sequencer. There

are many steps that can be specified by the user, such as the number of

FPGA clock cycles required to realize a branching operation. We decided
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that controlling all these steps offered little advantage while making the

sequencer GUI excessively complicated. Therefore we chose to limit the

minimum time resolution of the experimental sequence to 100 ns, although

the hard-coded minimum time step of the FPGA program is 10 ns. During

the 100 ns, every extra operation such as resetting the TTL signals and

branching operations are taken care of. We made sure we simplified the

GUI in a consistent and knowable way so that the sequencer would not

behave in unexpected and mysterious ways.

• Reliability: We tried to make the system as fool-proof as possible. This

means that the peripherals such as the RF sources and the motorized

stages operated strictly within given parameters. Fool-proofing is needed

as the end user can physically damage the setup simply by sending the

wrong commend. For example, they can destroy the RF amplifier for the

trap RF by setting the output amplitude of the RF source to a value that

exceeds the damage threshold of the amplifier. Although it is physically

protected by an RF attenuator installed before the amp, we also protect

it by limiting the output of the RF source on the software side. This is

realized in multiple layers including the API that controls the RF source

and the GUI used for setting its parameters.

• Connectedness: One of the reasons why we integrated the various mod-

ules in a single GUI was because the communication between them was

essential in the experiments. Almost all of our experiments can be un-

derstood as scanning certain parameters of the system and observing its

response which in our case is the number of photons scattered by the ions.

Therefore, subsystems such as the RF sources, motorized stages, AOM’s

and the PMT have to be controlled simultaneously.
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The modules in the control program can be summarized as follows.

• Experimental Sequencer: This module allows the user to compose ex-

perimental sequences by using a time table which specifies the duration

and TTL output pattern in each of the subsection of the experimental

sequence. It can also repeat subsets of the sequence and scan various ex-

perimental parameters such as DDS frequencies by communicating with

the other modules of the control program.

• Data Reader: It displays the photon counting result of the experiment

with some postprocessing. It can be configured to show the total photon

counts, average photon counts in each shot of the experiment, or the qubit

state of the ion calculated from the threshold method. It can also show

two qubit populations using histogram fitting when the basis histograms

are provided. Basic analysis of the data such as fitting to a sinusoidal

function is also possible with in the GUI.

• RF Source Controllers: RF sources such as the DDS and signal generators

can be controlled with the GUI. This is the first module that was devel-

oped in an object-oriented manner, where the various types of RF sources

were implemented as classes. Their instances are created when the con-

trol program loads configuration files which contain device information

such as RF amplitude, frequency, phase and limits for these values. This

module is also the first to be designed in client-server architecture. The

server retains all information on the current state of the RF controllers

regardless of whether the GUI is running or not. The GUI communicates

as a client with the server via TCP/IP protocol, and merely acts as an

interface to retrieve and control the parameters stored in the server. It

was an attempt at separating the GUI from the actual control system,
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which is the recommended design pattern for instrument control systems.

It has worked flawlessly and we intend to redesign every module in client-

server architecture. We expect the next iteration of the control system to

replace the current one in the next few months.

• Others: The other modules include the motorized stage controller and the

Raman transition controller. They have been essential in the calibration of

the Molmer-Sorensen gate because it requires a precise and reliable control

of the beam position and frequency. The photon correlation measurement

module has also been integrated into the control program, although it is

no longer used since we now measure the size of the micromotion sideband

to detect micromotion.

Development of the control software, although it seems trivial, is just as

important as that of other systems such as optics. In a sense, it can be the

limiting factor for the capabilities of the experimental setup because the ability

to run certain experimental sequences quickly increases the amount of informa-

tion that can be gained in a given time. In other words, it defines the speed

at which we characterize the setup. As an example, when we first observed the

time evolution of the spin-dependent force, it was very difficult to get a repro-

ducible result because the trap frequency was not stabilized and the detuning

for the force drifted quite quickly. We were only able to understand the situation

correctly after seeing the ion’s frequency domain response by using a ”zipped

scan” of the red and blue sideband frequencies in which they were scanned as

a list of paired variables.

The control program will only become more important as we move on from

two qubits to more qubits. We will have to run more complicated and longer

sequences, and calibrate the system more frequently because there are more
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normal modes and more types of entangling gates that have to be performed. As

a consequence, running complex quantum circuits will almost certainly require

a periodic recalibration system, which keeps track of and stabilizes the normal

mode frequencies, adjusts the position of the laser beams and measure the qubit

frequencies of the ion qubits. Doing all this manually with a five qubit system

will take too much time.

Along these lines, a network of sensors that monitor the environmental

parameters can be beneficial for the stability of the system. Such a system

has already been implemented in a Bose-Einstein condensate setup [61]. In this

paper, the authors were able to significantly reduce the atom number fluctuation

in the quantum gas sample by identifying its correlation with the variation in

environmental parameters and applying control loops to reduce it. A similar

system for our setup which monitors such variables as the temperatures of

the instruments, magnetic field, laser power and pointing stability, and photon

counts can be used to improve the stability and characterization of the setup.

The current control program certainly has its limits, and we intend to move

on to a new system that addresses them. This will include a unified client-server

architecture for all modules, and a complete redesign of the sequence generator

based on the ARTIQ hardware [62].
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Chapter 3

Basic Ion Manipulation and Qubit
Characterization

The fact that we can control individual atoms in ways that preserve their fragile

quantumness still amazes me. It is in part enabled by the modern electrical

and optical engineering introduced in the previous chapter, but it is also made

possible by the theory of electromagnetism and quantum mechanics. In this

chapter, I will introduce some of the basic concepts in trapped ion physics.

The interaction between light and atom will be discussed, and topics specific to

the trapped ion such as micromotion, motional heating and coherence will be

presented together with relevant experimental results.

3.1 Cooling

Trapping requires not only a confining potential but also a dissipative force. For

trapped ions, it is usually provided by lasers. The first tool we use to reduce
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the temperature of the ion is Doppler cooling. Deriving its name from Doppler

effect, it can be understood as a sort of feedback system based on velocity-

dependent scattering of photons. It is realized by a laser that is nearly resonant

and slightly red detuned from an atomic transition. When the atom moves

towards the laser, the frequency of the laser is increased in the frame of the

atom due to Doppler effect, which results in increased scattering and loss of

momentum as shown in Eq. (3.1) where δ = ω− ω0 + kv is the Doppler shifted

detuning between the laser and the atom, Ω is the Rabi frequency and Γ is the

linewidth of the transition [63].

Rs =
Γ

2

Ω2/2

δ2 +Ω2/2 + Γ2/4
(3.1)

Conversely, the scattering rate decreases when the atom moves away from

the laser. These two effects reduce the temperature of the atom to a level that

is proportional to the linewidth of the transition, which defines the sensitivity

of the velocity-dependent photon scattering. This temperature is called the

Doppler limit and defined as Td = ℏΓ/2kb where kb is the Boltzmann constant.

This limit is achieved when δ = Γ/2. A plot of Td as a function of the detuning

for 171Y b+ is shown in Fig. 3.1. In this case, the optimal detuning is about

-10 MHz, and the corresponding temperature is ∼500 µK. This is equivalent to

about 9 phonons in a trap whose secular frequency is (2π)1.2 MHz.

In other atomic physics setups such as magneto-optical traps, the cooling

beams come from all three directions. However, only a single beam is usually

sufficient in a trapped ion experiment because the confinement is provided solely

by the electric potential of the electrodes and the laser beam is only used for

dissipation.

When we initially trap ions, we do not set the detuning at half the linewidth,
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Figure 3.1: The lowest temperature is achieved at half the linewidth, which is
about -10 MHz. When the detuning becomes positive, the laser heats up the
ion.

which gives us the lowest equilibrium temperature. Instead, we detune it by at

least -100 MHz. This is because the initial speed of the atoms in the atom

beam is hundreds of meters per second, and at this speed the Doppler shift

is significant, meaning that the cooling beam may actually be blue-shifted so

much that it heats up the ion or barely interact with it. Either way the ion is

not cooled down, and we experimentally determined that about -100 MHz of

detuning cools down the ions efficiently and yields high trapping rates. After

the ion is trapped and sufficiently cooled, we change the detuning to a value

closer to resonance. The exact detuning does not affect the experiment because

ground state cooling is achieved by sideband cooling anyway and the Doppler

limit temperature does not strongly depend on the detuning.

The next step is the resolved sideband cooling, which is achieved by using
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(a) (b)

Figure 3.2: (a) Schematic diagram of various transitions for an ion qubit trapped
in a harmonic potential with secular frequency ωx. Carrier transition flips
qubit state without affecting motion, RSB(red sideband) transition subtracts a
phonon from the motion and BSB(blue sideband) adds one to the motion. (b)
Resolved sideband cooling works by removing one or more phonons by a RSB
π pulse, initializing the spin state and repeating these two steps until the ion
reaches the dark state which is the motional ground state.

the pulse laser. Taking advantage of the narrow linewidth of Raman transition,

we can resolve motional sidebands. That is, we can selectively drive Rabi os-

cillations where the laser field exchanges with the motion of the ion a chosen

number of phonons. Some of them are shown in Fig. 3.2(a). These transitions

form the basis of trapped ion motion control, but we will focus on the first red

sideband transition which we use for ground state cooling.

The Rabi frequency for transitions involving phonon exchange is given by

the Fock state representation of the motional part of the laser field, which is as

follows [64]:

Ωn′,n = Ω0|
〈
n′
∣∣ eiη(â†+â) |n⟩ | = Ω0e

−η2/2η|n
′−n|

√
n<!

n>!
L|n′−n|
n<

(η2) (3.2)
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where Ω0 is the carrier transition Rabi frequency and η is the Lamb-Dicke

factor defined as η =
√
ωrecoil/ωtrap. n<(n>) is the smaller(larger) of n′ and

n, and L
|n′−n|
n< (η2) is the associated Laguerre polynomial. Due to the η|n

′−n|

term, transitions involving change of phonons are exponentially suppressed as

the number of exchanged phonons is increased.

An illustration of the sideband cooling process is shown in Fig. 3.2(b). In

the first step, an RSB π pulse is applied, which extracts one phonon from the

motion. The initialization beam returns the qubit state to |↓⟩ to close the cooling

cycle. This process is repeated multiple times, about 50 times in our setup,

before the motion is cooled to the ground state. It sounds straight forward, but

the dynamics of sideband cooling is made complicated by the fact that the RSB

Rabi frequency changes as a function of phonon number as shown in Eq. (3.2)

and graphically represented in Fig. 3.3(a). This means that the optimal π time

of the RSB pulse changes as the ion’s temperature is lowered, and for some n’s,

the transition is prohibited due to the zero crossing of the associated Laguerre

function. This is usually not an issue because the zero crossing occurs at 100 < n

for the range of Lamb-Dicke factors used in trapped ion quantum information

experiments. The cooling process we currently use consists of three sets of 1st

order RSB pulses with different durations. We settled with it by trial and error

but we note that the cooling sequence can be optimized numerically as done in

[65].
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(a)

(b)

Figure 3.3: (a) First red sideband Rabi frequency(n′ = n − 1) as a function
of the initial phonon number. The red curve assumes a secular frequency of
1.3 MHz and matches our setup. In this case, the red sideband transition is
prohibited for n = 125. (b) Experimentally measured mean phonon number of
a motional mode of the ion as a function of applied cooling pulses.
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3.2 Ion manipulation with pulse saser

As mentioned in the previous chapter, the 355 nm pulse laser is a simple solu-

tion to the problem of individually controlling the 171Y b+ ion. It can be tightly

focused, bridges the qubit energy gap in a coherent manner, and has the ex-

tra benefit of being at the magic wavelength where the differential stark shift

between the qubit states is minimized.

For most purposes, the interaction between the ion and the frequency comb

formed by the pulse laser is almost identical to that between the ion and a pair of

monochromatic CW laser beams whose frequency differences equal the Raman

detuning. A detailed semi-classical analysis of the interaction is presented in

[66]. Here, we will focus on the its conceptual understanding.

3.2.1 Understanding the frequency comb picture

In the frequency space, the pulse laser forms a frequency comb whose teeth are

separated by the repetition rate, ωrep. When the qubit frequency is an integer

multiple of ωrep, we can drive the qubit transition simply by irradiating the ion

with the pulse laser because the required frequencies are already present in the

comb. However this is rarely the case since we cannot continuously tune ωrep.

It is also not desirable because even a very weak scattered beam can affect the

qubit state. Therefore, ωrep is chosen such that ωqubit ≃ (N +1/2± 1/4)ωrep to

prevent single comb qubit transition.

We make another copy of the comb by using a beam splitter and control

their frequencies separately with AOM’s in their respective beam paths, which

enables us to set an arbitrary Raman detuning between them. The scheme is

illustrated in Fig. 3.4. From here we will assume that the ion absorbs a photon
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(a) (b)

Figure 3.4: (a) The virtual state used in the Raman transition is +33 THz de-
tuned from the

∣∣P1/2

〉
state and -66 THz from the

∣∣P3/2

〉
state. (b) A continuous

tuning of the Raman detuning is enabled by splitting the frequency comb into
two and adding differential frequency offsets to them.

from Beam 2(controlled by AOM2) and emits one to Beam 1(controlled by

AOM1). The offset frequencies required for the qubit transition can be found

as follows:

ωqubit = Nωrep + ω2 − ω1 (3.3)

where ω2(1) is the frequency shift from AOM2(1). Our job now is to find the

solution of the variables we can control (N,ω1, ω2) that satisfy Eq. (3.3). There

are multiple solutions as shown in Fig. 3.5. An appropriate solution is chosen

based on factors such as the resonance frequency of the AOM’s and possibility of

exciting other transitions such as micromotion and Zeeman sidebands. In most

of our experiments, we use the comb spacing N = 107. In this configuration, the

ion absorbs a photon from a doublepass AOM and emits energy to the beam
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controlled by a single pass AOM. This means that the momentum transfer

vector is defined as ∆k⃗ = ∆k⃗double − ∆k⃗single. We can do the opposite and

flip the sign of the vector if we choose to use N = 104, but we use N =

107 because the required AOM frequencies are closer to the resonance of the

AOM’s, which is 200.0 MHz. When realizing spin-dependent force, we drive the

red and blue sideband transitions simultaneously with the same comb spacing

and this realizes a ”phase-sensitive” configuration [49]. However, one can drive

the red and the blue sidebands with different comb spacings and the opposite

momentum vectors. In this case, the total momentum transfer for the spin-

dependent force is nearly zero and the transition becomes ’phase-insensitive’,

which means that the phase of the force is insensitive to the phase fluctuation of

the Raman beams [49]. This distinction becomes important when we implement

an actual quantum circuit in which the phase of the spin-dependent force or

the Bell state resulting from Molmer-Sorensen gate is important. In the phase-

sensitive scheme, the phase of the Bell state is sensitive to the beam path

fluctuation and has to be measured relative to the phase-sensitive π/2 gate.

In the phase-insensitive case, the phase of the Bell state is not affected by the

beam path fluctuation and can be measured by microwave π/2 gates because

the microwave field phase is not affected by air currents or acoustic noises due

to its long wavelength.

3.2.2 Control of spin and motion

We have the following Hamiltonian for a trapped ion in a one-dimensional

harmonic oscillator with a secular frequency ωx and subject to a pair of Raman

beams with frequency ω0,1 and phase ϕ0,1 [64]:
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Figure 3.5: Raman detuning from the qubit transition for various comb spac-
ings. For the red circles, ωrep = 120.1MHz, ω1 = 190.0MHz, ω2 = 400.0MHz,
and the comb spacing we use is N = 104. For the blue diamonds, ωrep =
120.1MHz, ω1 = 400.0MHz, ω2 = 190.0MHz, and the comb spacing we use
is N = 107. The Raman detunings can be made zero by tuning the AOM fre-
quencies.

Ĥ = ℏωqubit
σ̂z
2

+ ℏωX(â†X âX +
1

2
)

+
ℏ
2
Ω0(|e⟩ ⟨0|+ |0⟩ ⟨e|)ei(kx̂−ω0t+ϕ0) +

ℏ
2
Ω1(|e⟩ ⟨0|+ |0⟩ ⟨e|)ei(kx̂−ω1t+ϕ1)

(3.4)

In the interaction picture, the effective Hamiltonian becomes:

Ĥ =
ℏ
2
Ωσ̂+(e

iηX(â†Xe
iωXt+âXe

−iωXt))e−iδt + h.c. (3.5)

where ηX = kx0 = k
√

ℏ/(2mωX) is the Lamb-Dicke factor, Ω is Raman

transition Rabi frequency, δ = ωL−ωqubit and ωL is the frequency of the Raman

beams defined as the frequency difference between the comb teeth of interest
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in each arm of the Mach-Zehnder interferometer.

In the Lamb-Dicke limit where ηX < 1, Eq. (3.5) can be linearized as follows:

Ĥ =
ℏ
2
Ωσ̂+(1 + iηX(â

†
Xe

iωX t + âXe
−iωX t))e−iδt + h.c. (3.6)

It can be seen from Eq. (3.6) that when δ = 0, that is when the Raman

detuning is set to be resonant with the qubit transition, the transition between

the two qubit states is driven. When δ = ωX , the Raman beams drive the

blue sideband (Ĥb ∼ σ̂+â
†) transition and when δ = −ωX , the red sideband

(Ĥb ∼ σ̂+â) transition. The blue sideband transition flips the spin from down

to up, while adding a single phonon to the motional mode. The red sideband

does the same to the spin but subtracts a phonon from the quantum motion.

We note that it is possible to drive higher order transitions with detunings that

are multiples of the trap frequency. These transitions are regularly used by re-

searchers for sideband cooling or to realize quantum states of motion such as

the squeezed state. We stop at the first order transitions because in the exper-

iments presented in this thesis we do not use these second order transitions,

although they can be readily used in our setup.

3.3 Micromotion

Micromotion is an inevitable consequence of the dynamic nature of the Paul

trap. It is basically a driven motion of the trapped ion that is caused by the

oscillating trapping field. Mathematically, the motion of the ion in a harmonic

potential with secular frequency ω and RF trapping field frequency ΩRF can

be expressed as follows [67]:
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u(t) = (u0 + u1 cosωt(1 +
q

2
cosΩRF t)) (3.7)

In the above equation, u0 is the difference between the stable point of the

pseudopotential and that of the total electric potential that additionally takes

into account the DC potentials. u1 is the amplitude of the secular motion which

is a function of temperature. q is the q-parameter in Eq. (1.1). The part that

oscillates at ω±ΩRF is called the intrinsic micromotion(IMM) in the sense that

it cannot be made zero by fine-tuning the DC compensation voltages. However,

its size is proportional to u1∗q/2 and usually q << 1. Thus, its size is at least an

order of magnitude smaller than the other oscillating term, u0 cosΩRF t. This

term is called the excess micromotion(EMM). Its size is proportional to u0,

and can be made arbitrarily small by an appropriate choice of compensation

voltages.

The voltages are calibrated by observing the size of EMM at different volt-

ages. Our trap has two sets of compensation electrodes, and they are optimized

using different methods. As shown in Fig. 3.6, the RF field responsible for

micromotion is perpendicular to the compensation field directions. The Y mi-

cromotion is compensated by changing the voltage of the X electrode and vice

versa.

The X-electrode, which pushes the ion along the direction of the momentum

vector of the Raman transition, is optimized by observing how the ion’s position

shifts as we lower or raise the trapping RF voltage. When the RF trap is weak,

the equilibrium position formed by the linear DC potential and the quadratic

RF potential is moved in favor of the DC potential. Therefore, one can minimize

u0 by minimizing the change in the position of the ion when the strength of

the RF trap is changed. For now, this is the only method available for us to
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Figure 3.6: Simplified RF field lines(red) and position of compensation elec-
trodes. The Y electrodes push the ion along the Y axis, which changes the
magnitude of the X micromotion. The X electrodes move the ion along the X
axis and change the Y micromotion. The X micromotion is parallel to the pulse
laser momentum vector and can be detected by observing qubit transitions by
the Bessel sidebands. The Y micromotion is optimized by minimizing ion posi-
tion change when the RF trap power is lowered.

minimize the Y micromotion because our lasers, both CW and pulse lasers, do

not interact with it.

The X micromotion is parallel to the laser momentum vector, ∆k⃗, and can

thus be measured using Raman transitions. Just like in an EOM, micromotion

along ∆k⃗ modulates the electric field phase of the laser when measured in the

frame of the trapped ion, which results in n-th order Bessel sidebands, Jn(β),

where β = ∆k⃗ · V⃗0/ΩRF is the phase modulation index with ∆V⃗0 being the

amplitude and direction of the micromotion. We can drive qubit transitions

using the Bessel sidebands by setting the Raman detuning to equal ±ΩRF .

The Rabi frequency of these transitions, Ω±1 is proportional to the size of the

micromotion in the direction of ∆k⃗. It is known that Ω±1

Ω0
≃ β/2 [67]. Therefore,

the size of micromotion can be estimated by comparing the Rabi frequencies

of the Bessel sidebands to that of the carrier. We typically find that the Bessel
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sidebands are about an order of magnitude slower at optimal compensation

voltage, which implies β ∼ 0.1.

When scanning for the best compensation voltage for the first time, we

were quite confused because there seems to be multiple values of compensation

voltages where Ω±1/Ω0 is minimized. This was to be expected because the

Bessel function has many extrema, and J0(β) and J±1(β) oscillate out of phase

as shown in Fig. 3.7. A better method is to observe the 2nd sideeband as well.

This is done by setting the Raman detuning to ±2ΩRF . The 2nd sideband

oscillates out of phase with the 1st sideband and the carrier, but at β = 0, both

of the sidebands are minimized while the carrier is maximized. Therefore, we

found the optimal voltage by observing all three curves and finding the value of

the voltage where the sidebands are simultaneously suppressed but the carrier

is maximized.

Figure 3.7: Evolution of zero-th, first and second order Bessel functions [68]
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Figure 3.8: Experimentally measured values of the Bessel function. Here, the
probe time was fixed while scanning the value of the Y electrode voltage. Also
note that this data set was taken at Vendcap = 500V as opposed to the usual
operating condition of Vendcap = 1300V . The ∆Vdc values are absolute values,
and their actual values range from 0V to −1300V [68].
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In a well-designed trap, the primary source of EMM is the presence of stray

charges that adhere to trap surfaces. Therefore, minimizing EMM is achieved

by finding the right combination of DC electrode voltages that counters the

effect of stray charges on the electric potential landscape. In our setup, EMM

compensation rarely needs to be recalibrated. We believe it is because the elec-

trodes are entirely made of conductor and the ion is relatively far away from

them.

We note that probably due to the misalignment of the trap electrodes or RF

pickup by the DC electrodes, there are significant couplings between the RF

power, endcap voltage, and the Y compensation voltage. For example, the data

in Fig. 3.8 was taken with Vendcap = 500V which is much lower than the endcap

voltage we usually use, 1300V . At 1300V , the compensation voltage is −1270V

instead of ∼ −700 V as shown in the figure. There is also a weaker dependence

on the trap RF power, although it does not change much between powers cor-

responding to radial secular secular frequencies (2π)1000kHz ∼ (2π)1400kHz.

Also, there is probably a small axial micromotion, which is present in most

linear Paul traps due to the finite length of the RF electrodes. We currently

neither have the ability to detect nor correct it, and believe that it does not

affect the experimental results. However, if we change direction of the pulse

laser beams and change the direction of ∆k⃗, we will be affected by the axial

micromotion. This could be problematic because the two endcap electrodes are

electrically shorted in the vacuum chamber, and therefore we currently do not

have any means to cancel out axial micromotion.
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3.4 Motional heating and decoherence

The stability of the motional quantum state is essential because most trapped

ion experiments utilize it to some degree. Therefore, we should correctly char-

acterize the heating rate and the motional coherence time.

3.4.1 Heating rate measurements

The heating rate for the motional modes can be measured as follows. First, we

cool the motion to the quantum ground state using sideband cooling. Second,

we wait for a certain amount of time, Twait, with all the lasers turned off so that

the ion’s motion exchanges energy only with the environment, which includes

the noises in the electric potential of the trap and collision with the background

gas. Finally, we measure the strength of the red and blue sideband transitions.

They are functions of phonon number as shown in Eq. (3.2), so with some math

we can convert them into the mean phonon number of a Boltzmann distribution,

which corresponds to the temperature of the ion [65, 69]:

n̄ =
Pr/Pb

1− Pr/Pb
(3.8)

where n̄ is the mean phonon number, and Pr and Pb are the red and blue

sideband excitation probabilities with the same probe beam intensity and probe

time. The results are shown in Fig. 3.9 and Fig. 3.10.

The heating rate for the X mode is 34.26 ± 27.16 phonons/s, and for the

Y mode 6.97 ± 3.95 phonons/s. Note that because theses are calculated in

terms of phonons/s, they will change when the secular frequencies change. The

heating rate is significantly smaller for the Y mode even after considering the

difference in secular frequency. This was an unexpected results, because our
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(a)

(b)

Figure 3.9: (a) Red and blue sideband scan results of the radial X mode. (b)
Red and blue sideband scan results of the radial Y mode. The vertical axes are
qubit excitation probability, and the horizontal axes are absolute values of the
Raman detuning in kHz. Red and blue lines are fits to a Lorentzian model for
the red and blue sideband transitions.
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Figure 3.10: The heating rates for the X and Y modes are estimated by linear
regression to the mean phonon numbers measured after waiting for Twait. The
X mode gains about 34 phonons per second while the Y mode heats up by 7
phonons per second. The uncertainties represent 95% confidence intervals.

trap has cylindrical symmetry and therefore the two transverse axes should

be subject to the same magnitudes of electrical noises. It could be due to the

misalignment of the trap electrodes, which might position the ion closer to an

electrode along the X axis. It is known that the heating rates typically scale

as d−k where d is the distance between the ion and the electrode surface and

2 ≲ k ≲ 4 [70, 71]. Therefore, an anisotropy in the ion-electrode distance could

result in anisotropic heating rates. It has not been verified in our setup, as we

do not have the ability to measure d precisely. Also, we note that the heating

rate measurements were done with the X and Y modes separated by about

300 kHz. This is achieved by adding a few volts of DC offset voltage to the

RF electrodes. It has the side-effect of rotating the principal axes, and in this

case the angles between ∆k⃗ and the two axes, θX and θY , are 45◦. In most
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of our experiments we set the DC offset to a lower value which rotates the

principal axes and changes θX and θY by about 20◦. Thus, the heating rates in

these experiments are expected to be slightly different from the values shown

in Fig. 3.10. Numerical simulations which will be introduced in the remaining

chapters indicate that in all experiments heating rates of the same order of

magnitude as the measured values do not affect the experimental results.

3.4.2 Motional state coherence time measurements

We measure the coherence time of the motional states by observing the Ramsey

fringes of a superposition of the motional ground state and the first excited

state. The procedure is as follows. First, we cool the motional states to the

ground state using sideband cooling. Second, we apply a blue sideband(BSB)

π/2 pulse that results in |ψ⟩ = 1/
√
2(|↓⟩ |0⟩ + |↑⟩ |1⟩) where the first mode

indicates the spin state and the second the number of phonons in the motional

mode. This puts the state vector on the equator of the Bloch sphere formed

by |↓⟩ |0⟩ and |↑⟩ |1⟩. Next, we wait for a variable amount of time, Twait during

which the state vector evolves either coherently due to the detuning of the

Raman pulses or incoherently due to fluctuations in the secular frequency. The

sequence ends with another BSB π/2 pulse. In an ideal situation where the BSB

pulses are exactly on resonance and the trap is perfectly stable, the qubit state

is |↑⟩. Any deviation from |↑⟩ indicates a non-zero detuning or decoherence.

How the coherence of the quantum state changes with time can be quantified

in several ways. In the ’phase Ramsey’ scheme, one drives the BSB π/2 pulse

precisely on resonance with the motional mode of interest. This removes the

precession of the state vector on the Bloch sphere due to detuning. After waiting

for Twait, a second π/2 pulse is applied with a relative phase ϕ to the first one.
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When we measure the qubit state while ϕ is scanned from 0 to 2π, we observe a

sinusoidal oscillation. Its amplitude is recorded and we move on to the next value

of Twait and repeat the same measurement. The results from a representative

data set is shown in Fig. 3.11.

In the ’time Ramsey’ scheme, we intentionally detune the BSB pulses, by

δ. The state vector precesses at a rate of δ, and this produces a phase differ-

ence between the first and second BSB π/2 pulses. As a result, we observe an

oscillation in the |↑⟩ population as a function of Twait with a frequency of δ. If

decoherence is significant, the amplitude of the oscillation will decay, resulting

in a damped oscillation of the form P↑(Twait) = 1/2(1 − cos(δTwait)e
−Twait/τ )

where τ is the coherence time.

Representative data for the time Ramsey experiments are shown in Fig. 3.12.

Note that in Fig. 3.12, the sideband cooling sequence was not optimized and

therefore the maximum amplitude of the oscillation is not unity. Also note

that both the time and phase Ramsey results were obtained with the trap RF

stabilizing PID system engaged. The coherence time was on the order of a few

100 µs without PID.

The results for the phase Ramsey and time Ramsey experiments differ,

with the coherence times estimated by phase scanning being about half that

estimated by applying detuned Ramsey pulses. The stability of the trap poten-

tials may have degraded over time because the phase Ramsey experiment was

done a few months after the time Ramsey experiment. Also, the phase Ramsey

experiment was done with near degenerate transverse modes that are separated

by 27.8 kHz. The BSB pulses may have slightly excited the other transverse

mode that is not being measured. The bump at around 6 ms present in both

the X and Y data might have been caused by the interaction of the X and Y
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(a) X mode phase Ramsey results

(b) Y mode phase Ramsey results

Figure 3.11: (a) Ramsey sequence with BSB pulses resonant to the X mode. Co-
herence time estimated from fitting the individual data to sinusoidal oscillation
and then fitting the oscillation amplitudes to an exponential decay curve of the
form A ∗ exp(−t/τ) + C where τ corresponds to the motional state coherence
time. (b) Ramsey sequence with BSB pulses resonant to the Y mode.
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(a) X mode time Ramsey results

(b) Y mode time Ramsey results

Figure 3.12: (a) Ramsey sequence with a ∼ 3 kHz detuning for the X axis.
Coherence time estimated from fitting the data to damped sinusoidal oscillation
is 1/(329.51Hz) ≃ 3.0ms (b) Ramsey sequence for the Y mode with a detuning
of ∼ 1.5 kHz. Estimated coherence time is 1/(194.1 Hz) ≃ 5.2 ms
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mode as well.

3.5 Qubit state coherence time and magnetic field cal-

ibration

3.5.1 Magnetic field calibration

We have three sets of coils that independently produce magnetic fields in three

orthogonal directions. They are wound around the viewports of the vacuum

chamber as explained in Fig. 2.14. We calibrate them by tracking the Zeeman

sublevels (
∣∣S1/2, F = 0,mF = 0

〉
→
∣∣S1/2, F = 1,mF = ±1

〉
) as a function of

the applied current for the bias coil. The results are shown in Fig. 3.13.

The data were fitted to a formula that takes both the ambient field and the

applied field into account. The size of the Zeeman shift is proportional to the

magnitude of the B field. Therefore, if we define the magnitude of the B field as

|B⃗| =
√

(Bx +Bax)2 + (By +Bay)2 + (Bz +Baz)2 where a indicates ambient,

the observed Zeeman splitting should be ωzeeman = µB|B⃗| (µB = 1.4 MHz/G).

If we fix two of the applied B fields and scan the other, the Zeeman splitting

should be minimized when the applied B field cancels the ambient B field in its

direction. For example, we can assume that ωzeeman = µB
√

(kxIx +Bax)2 + C

where kx is the ratio of the applied current and the B field, Ix is the applied

current for the X coil, and C is the sum of the ambient and applied fields in

the other directions. By fitting the data in Fig. 3.13 to this model, we can find

the ambient field components and the coil proportionality constant in a single

fit. The results of the fit are presented in Fig. 3.13. Currently, the Y coil is used

to provide the bias field in the direction of the imaging system, and the X and

Z coils are used to cancel ambient fields. The coil calibration experiment was

mainly carried out by Jiyong Yu.
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(a)

(b)

(c)

Figure 3.13: The data points in each plot were obtained by scanning the current
of the coil of interest while the other two are fixed. The coil constants in G/A
are as follows: kx = 0.557, ky = 0.133, kz = 0.175. The ambient fields are:
|Bax| = 0.133G, |Bay| = 0.886G, |Baz| = −0.255G
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3.5.2 Qubit state coherence time measurement

Ramsey interferometry is an essential tool for characterizing the stability of the

setup because it allows us to probe the coherence time of the system without

continuously applying control fields such as the laser or microwave fields. In

this section, we utilize it to characterize the coherence time of the qubit states.

The Ramsey sequence is identical to that of motional state coherence mea-

surement. However, we drive the carrier transition to change only the qubit state

and leave the motional states in their initial states. Fig. 3.14 shows the coher-

ence time for the qubit states measured by two control fields, microwave and

co-propagating pulse laser beams. They are ideal for measuring the relatively

long coherence time of the qubit itself. They are not affected by control field

phase fluctuations during the Ramsey wait time because of their relatively long

wavelength of about two centimeters. If we try to measure the qubit coherence

time with pulse laser beams in perpendicular geometry, the phase fluctuation

between the two beams will scramble the phase difference between the first and

second Ramsey pulses. The measured coherence time would show the coherence

of the interfering fields rather than the qubit states.

The qubit coherence time measured from these experiments are 242 ms for

the microwave and 275.2± 34.5 ms for the pulse laser. The result from the mi-

crowave experiment was obtained before we were able to sufficiently characterize

the setup, but we present the data for reference. The measured coherence time

is of the same order of magnitude as other trapped ion systems with 171Y b+

ion qubits, perhaps closer to the shorter end [72, 5]. Nonetheless, our coherent

manipulation sequence is typically 2∼3 ms at maximum. Therefore a coherence

time close to 300 ms is enough for all the experiments presented in this thesis.

We believe the qubit coherence time is currently limited by the stability of
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(a) Time Ramsey result for the qubit states with microwave
π/2 pulses.

(b) Phase Ramsey result for the qubit states with co-
propagating pulse laser π/2 pulses

Figure 3.14: (a) Coherence time measurement for the qubit state with slightly
detuned microwave pulses. (b) Qubit state coherence time measurement with
co-propagating pulse laser beams. Since the two beams used for the Raman
transition physically overlap, beam path fluctuation and the resulting phase
noise can be ignored. Note that the horizontal axes are in log scale.
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the magnetic fields generated by copper wire coils. A commercial power supply

(Keithley, 2230G) drives the coil currents, and currently we do not have any

stabilizing mechanism. Due to second order Zeeman effect, the qubit frequency

changes as a function of the bias magnetic field as fqubit = 12.642812118.5 +

(310.8)B2 Hz where B is the magnitude of the bias field in Gauss [72]. Therefore,

we can infer the stability of the qubit frequency from the output current stability

of the power supply δI.

δfqubit/δI = (δf/δB) ∗ δB/δI = (310.8Hz)2Bk (3.9)

In Eq. (3.9), k is the B field generated per unit current. I = 4.3 A but 0.767

A is used to cancel ambient field, so the effective current is 3.532 A. Also, by

measuring the position of the Zeeman sidebands we have found that k = 1.154

G/A. The magnitude of the bias field is 4.076 G. Therefore, δf = 2924 Hz/A ∗

δI. According to the data sheet for the power supply, the current noise is 5

mArms, which implies δI ≃ 5 mA, and a qubit frequency noise amplitude of

δfqubit ≃ 14.6 Hz or 68.5 ms which is of the same order of magnitude as the

experimentally measured coherence time. The B field can be further stabilized

by using a current PID system and improving the power supply stability [38],

or substituting the coils with a permanent magnet [73].
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Chapter 4

Quantum Gates

Digital or gate-based quantum computing is a paradigm for quantum compu-

tation in which complex quantum circuits are reduced to a combination of a

few types of quantum operations, just like a classical computer that carries out

every calculation by combining simple logic gates. Such sets of quantum oper-

ations are called universal gate sets and Solovay and Kitaev proved that such

sets indeed exist [74, 75]. Single qubit rotations and CNOT operation comprise

one such set.

Experimentally realizing and then increasing fidelity of such gate sets have

been the focus of the field of experimental quantum computation in the past

few decades. In the trapped ion system, the components of the universal gate

set can be realized by implementing Rabi oscillations with various phases to

generate single qubit rotations, and combining Molmer-Sorensen interaction

with single qubit rotation on select qubits to realize the CNOT gate. Therefore,

the requirement for the universal quantum computer is conceptually simplified
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Figure 4.1: The quantum state of a single qubit, |ψ⟩ = cos(θ/2) |0⟩ +
eiϕ sin(θ/2) |1⟩ can be faithfully represented as a point on the Bloch sphere
with its azimuthal angle ϕ representing the phase between |0⟩ and |1⟩ and alti-
tude corresponding to cos(θ/2).

to phase-locked Rabi oscillation and Molmer-Sorensen interaction. These are

sometimes called ’native gates’ [5].

In this chapter, I will show how they are implemented in our setup. Single

qubit operations will be covered first, and then the experimental realization of

Molmer-Sorensen interaction and entangling gate operation will be presented.

4.1 Single qubit gates

In a trapped ion system, single qubit gates can be relatively easily implemented

because they do not use the motional degree of freedom. They only require

that your qubit and control field is of high quality, and the first is basically

guaranteed by choosing good qubit states such as the hyperfine clock states. The

second is not as trivial, but the modern microwave technology is surprisingly

well developed, and one can purchase very stable phase-locked commercial RF
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sources that can drive qubit transitions with high fidelity.

In this section, we will focus on single qubit gates with microwave as the con-

trol field. The pulse laser can also drive single qubit Rabi oscillation. However,

when we obtained interesting results on single qubit gates, the pulse laser system

was not ready. Thus most of the results in this section were achieved with mi-

crowave. Microwave single qubit gates can be combined with Molmer-Sorensen

gates implemented with pulse laser beams when it is in the phase-insensitive

configuration [49].

Rabi oscillation can be derived from the spin term of the interaction Hamil-

tonian in Eq. (3.6):

Ĥint = −ℏΩ
2
(σ̂+e

−i(δt+ϕ) + σ̂−e
i(δt+ϕ)) (4.1)

where ϕ is the phase of the control field, δ is the detuning from the qubit

transition. On resonance, δ = 0 and the above equation becomes Ĥint =

−ℏΩ/2σ̂ϕ and the time evolution operator is

Ûint(t) = e−i
Ωt
2
σ̂ϕ = e−i

Ωt
2
n̂ϕ·σ⃗

=

∞∑
k=0

ik[Ωt/2n̂ϕ · σ⃗]k

k!
= σ̂I cos(

Ω

2
t) + iσ̂ϕ sin(

Ω

2
t)

= σ̂I cos(
Ω

2
t) + iσ̂x sin(

Ω

2
t) + iσ̂y sin(

Ω

2
t)

=

 cos(θ/2) −i sin(θ/2)e−iϕ

−i sin(θ/2)eiϕ cos(θ/2)


(4.2)

In the last line we set θ = Ωt, and the resulting matrix can be interpreted as

Rϕ(θ), which is a rotation by θ around an axis on the equator defined by ϕ [76].

Therefore, we can fully control rotation of the state vector on the Bloch sphere
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by controlling Ωt, the strength or duration of the resonant pulse, and ϕ, the

phase of the laser. We realized Rx,y(π/2), Rx,y(π) by calibrating the pulse du-

ration and relative phase of the RF sources used to modulate the control fields.

Rz(θ), azimuthal rotation, is virtually implemented by shifting the reference

phase [77] or decomposing it to a combination of Rx and Ry.

In order to implement a quantum circuit consisting of multiple gate oper-

ations, we should be able to switch the phase of the control fields during the

sequence. This is done by either installing a phase shifter or switching between

phase-locked RF sources with identical frequencies but different phases. We

used both methods, the phase shifter for the microwave gates and the switch-

ing method for the pulse laser gates. The digital phase shifter(G.T. Microwave,

) is controlled by a dedicated FPGA, which output the control bitstrings de-

pending on a 3-bit TTL input. This enables us to switch between Rx and Ry

by a TTL signal emitted from the main FPGA.

We calibrated the pulse length required for π and π/2 gates by observing

single qubit oscillations as shown in Fig. 4.2. It should be noted that in the

current setup, the co-propagting pulse laser transition is prohibited because we

are using a lin-perp-lin configuration of polarization. Installing the individual

addressing setup will enable us to send a laser beam parallel to the bias B field,

and then we will be able to drive co-propagating transitions again.

With the single qubit gates ready, we carried out a randomized benchmark-

ing experiment to estimate single qubit gate fidelity [79, 80]. We generated

random gate sequences each consisting of a few tens of single qubit gates. They

were constrained such that the resulting qubit state after every N gates is the

|1⟩ state. We truncate the randomized sequence so that its length is a mul-

tiple of N . This means that we should always observe |1⟩ at the end of each
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(a) Microwave Rabi oscillation

(b) Co-propagating pulse laser Rabi oscillation

Figure 4.2: Note that the co-propagating pulse laser single qubit rotation ex-
periment was done with the same trap but in the previous lab in 2019, and does
not represent the current condition of the setup.

85



Figure 4.3: Randomized sequences of microwave single qubit gates were applied,
and the qubit state at the end was compared with the theoretically expected
one. By measuring how the success probability changes with gate lengths, one
can measure per gate error independent of SPAM errors. We ran the benchmark
four times with different randomized sequences. The per gate errors range from
0.212 % to 0.079 % depending on the sequences used.

truncated sequence, and any deviation from that is either due to SPAM er-

rors or gate infidelities. By increasing the length of the truncated sequence, we

add more gate operations and accumulate gate errors. In the end, the success

rate(or error rate) is plotted against the number of gates, and fitting it to a

compounding error model, (1 − p)n where p is the per gate error rate, allows

us to extract gate error rates. The results are shown in Fig. 4.3 and Fig. 4.4,

each for microwave and pulse laser gates. The estimated gate error rates are

between 0.079 % and 0.212 % for the microwave experiment, and 0.4 ± 0.2%

for the pulse laser experiment.
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Figure 4.4: Randomized sequences of single qubit gates with co-propagating
pulse laser beams were executed, and the qubit state at the end was compared
with the theoretically expected one [78]. The shaded area represents the stan-
dard deviation of the 14 iterations of the benchmark. The dashed line is a linear
fit to the data points and yields 0.4±0.2 % of per gate error. The Y axis is error
rate, not success rate as in Fig. 4.3 Note that this was done with the same trap
but in the previous lab in 2019, and does not represent the current condition
of the setup.

4.2 Two qubit gates

In trapped ion systems, two qubit gate are usually implemented by Molmer-

Sorensen interaction [81, 6]. It uses spin-dependent force(SDF) to adiabatically

drive the collective wave packet of two ions in phase space. The motion in phase

space generates geometric phase. Assuming that the individual ions see the same

laser phase, the eigenstates of a two qubit system with a net spin of zero, |01⟩

and |10⟩ stay at the origin. The other eigenstates, |11⟩ and |00⟩, are subject to

the SDF and acquire geometric phase. This makes the composite wave function

inseparable, which means that the two qubit states are entangled.
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4.2.1 Spin-dependent force

The spin-dependent force is the main work horse of motional state manipulation

in trapped ion experiments. It is realized by a balanced bichromatic drive that

drives both the first red and blue sidebands of a motional mode simultaneously.

When they are driven with a symmetric detuning of δ = −δr = δb, we can

derive the spin-dependent force Hamiltonian from Eq. (3.6).

ĤSDF (t) =
ℏηΩ
2
σ̂ϕ(â

†e−i(δt+ϕ
′) + âei(δt+ϕ

′)) (4.3)

In the above equation, σ̂ϕ is the spin operator in the direction defined by

ϕ = (ϕr + ϕb + π)/2 and the i in the coefficient of Eq. (3.6) is absorbed into

it. ϕ′ = (ϕb − ϕr)/2 is the phase offset for the SDF, and is determined by the

phase of the red and blue sideband beams. We can control them precisely by

changing the phase of the DDS.

The time dependent force Hamiltonian can be represented as the sum of

the raising and lowering operator for the quantum harmonic oscillator the ion

is confined in.

Ĥforce(t) = −x0(Fc(t)â† + F ∗
c (t)â) (4.4)

where Fc(t) = (F0/2)e
−i((ω−δ)t+ϕ′) is the complex form of the force which

satisfies Fc(t) + F ∗
c (t) = F (t) = F0 cos((ω − δ)t + ϕ′). F (t) is the classical

oscillation force that drives the ion at a frequency of ω − δ, and ϕ′ is the

phase offset of the force. Eq. (4.4) can be directly derived by assuming a force

Hamiltonian of the form −xF (t)− pG(t) [82].

When we compare Eq. (4.3) and Eq. (4.4), it is evident that Eq. (4.3)
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produces a force oscillating at δ with magnitude proportional to ηΩσ̂ϕ. The

time evolution operator for Eq. (4.3) is in fact a displacement operator in phase

space. It can be shown using Magnus expansion:

ÛSDF (t) = e−iĤSDF (t)t/ℏ = eΣ
∞
k=1Mk(t) (4.5)

M1(t) = − i

ℏ

∫ t

0
ĤSDF (t1)dt1

= − iηΩ
2
σ̂ϕ

∫ t

0
(â†e−i(δt1+ϕ

′) + âei(δt1+ϕ
′)dt1

=
ηΩ

2

(
(
e−iδt − 1

δ
)e−iϕ

′
â† − (

eiδt − 1

δ
)eiϕ

′
â

) (4.6)

M2(t) =
1

2!

(
−i
ℏ

)2 ∫ t

0

∫ t1

0
[ĤSDF (t1), ĤSDF (t2)]dt2dt1

= − 1

2ℏ2

(
ℏηΩ
2

)2 ∫ t

0

∫ t1

0
σ2ϕ([â, â

†]e−iδ(t1−t2) − [â, â†]eiδ(t1−t2))dt2dt1

= − 1

2ℏ2

(
ℏηΩ
2

)2 ∫ t

0

∫ t1

0
σ̂2ϕ2i sin(δ(t1 − t2))dt2dt1

= − 1

2ℏ2

(
ℏηΩ
2

)2 2i

δ2
(δt− sin(δt))

= −iσ̂2ϕ
(
ηΩ

2δ

)2

(δt− sin(δt))

(4.7)

The first term, eM1(t) is a displacement operator D(α(t)) = exp(α(t)â† −

α∗(t)â) with the displacement defined as α(t) = (ηΩ/2)(e−iδt − 1)/δe−iϕ
′
. The

second term is a spin-dependent geometric phase term, exp(iσ̂2ϕΦ(t)) where

Φ(t) = (ηΩ/(2δ))2(δt−sin(δt)). The first and second terms commute. Therefore,

ÛSDF (t) = D̂(α(t))exp(iσ̂2ϕΦ(t)). The effect of the time-dependent Hamiltonian

in Eq. (4.3) is to entangle spin and motion and imbue the spin eigenstates
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with corresponding geometric phases. The first is used to generate spin-motion

entanglement, and the second is used to entangle the spin states in the MS gate.

Higher order terms vanish because [[ĤSDF (t1), ĤSDF (t2)], ĤSDF (t3)] = 0.

Before moving on to two-qubit gate experiment, we first characterized spin-

motion entanglement in our setup by trapping a single ion and observing the

time evolution of its spin state under the time evolution operator Eq. (4.5). Since

we only have a single ion, the geometric phase, while mathematically present,

cannot be measured because it is a global phase. Thus the observed physics

will be a bipartite entanglement of the spin and one-dimensional motion. For a

non-zero δ, the entanglement will form and disappear periodically. We applied

the SDF with a few KHz of detuning because it allows us to extract information

such as coherence time.

We first initialize the qubit state to |0⟩ via optical pumping. Since |0⟩ =

1/
√
2(|+⟩+ eiϕ |−⟩) where |±⟩ are the eigenstates of the σ̂ϕ operator, the wave

function under the SDF evolves as 1/
√
2(|+⟩ |α(t)⟩+ |−⟩ |−α(t)⟩), which corre-

sponds to the superposition of two separate wave packets in the phase space.

After a variable amount of time evolution, we measure only the spin state, so

the measured spin excitation probability is expected start from 0 but approach

0.5 as the spin wave packets move away from each other in the phase space

because we trace out the motional degree of freedom. When the periodic SDF

returns the wave packets to the origin, the spin and motion disentangle and the

initial qubit state, |0⟩, is recovered. This is illustrated in Fig. 4.5(a). In (a), the

spin state is initialized to |0⟩ = 1/
√
2(|+⟩+ eiϕ |−⟩). In (b), the SDF displaces

the two spin states in opposite directions. Because the spin and motion are

entangled, measuring the spin state in this situation should give a mixed state.

(c) corresponds to t = 2π/δ. Here, the wave packets return to the origin and
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we again have a pure spin state |0⟩.

(a) (b)

Figure 4.5: (a) The wave packets split and move along a circular trajectory in
phase space. The area enclosed by the trajectory corresponds to the geometric
phase. (b) Time evolution of the spin state under spin-dependent force with
δ ≃ (2π)10 kHz. The spin state is modulated with a period of 2π/δ as it is
periodically entangled with the motional state. The dashed lines are fits to
the theoretical model which takes into account the mean phonon number and
coherence time.

The results are shown in (b) for the application of the SDF after Doppler

cooling and ground state cooling. The experimental data were fitted to a theo-

retical model of the following form:

P1(t) =
1

2
(1− e(n+1/2)|α(t)|2e−t/τ ) (4.8)

where n is the initial mean phonon number and τ is the coherence time

of the wave packet [49]. We observe that due to the effect of decoherence and

imperfect experimental parameters such as change in the trap secular frequency

during time evolution, the spin state does not fully return to |0⟩. Such effects

are detrimental to the fidelity of entangling gates because residual entanglement

of spin and motion at the end of a gate pulse results in a partially mixed spin
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state.

Minimization of residual spin-motion entanglement has been intensely stud-

ied in the last few years, especially because it becomes increasingly difficult to

disentangle all the motional modes in a long ion chain [83, 84, 85, 86, 87]. Most

of the techniques developed so far modulate the power, phase or frequency of the

control fields used to drive the SDF. One of the simplest forms of pulse shaping

is the Walsh gate, which is basically making an ’echo’ in phase space [88]. In

this scheme, the wave packet is driven in the opposite direction after completing

a single circular trajectory. Any offset from the origin in phase space is can-

celed in the second trajectory. This can be repeated multiple times by making

2N loops in phase space, in which case the gate infidelity due to incomplete

motional disentanglement is suppressed as ∼ O(∆δ2n+2). ∆δ = 2π/tg− δ is the

effective detuning mismatch parameter defined as the difference of the actual

and expected detunings from the motional mode. It quantifies the offset from

the origin at the end of gate pulse.

We have experimentally verified its effect in our setup, and the results are

presented in Fig. 4.6. This time, we fixed the duration of time evolution under

the SDF Hamiltonian and scanned the detuning. We applied the SDF pulse for

TSDF = 40µs, which results in a modulation of the spin excitation probability

with a period of 1/(TSDF ) ≃ 25 kHz. After completing the first loop in phase

space, we flipped the direction of the force by switching the phase of the DDS.

This changes the laser phase and therefor the direction of SDF. We applied

the flipped SDF for another 40 µs and measured the spin state. The data were

fitted to the theoretical curves which can be obtained by plugging the following

forms of displacement into Eq. (4.8):
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αunmod.(t) =
ηΩ

2δ
(1− eiδt) +

∆δ

δ

αmod.(t) =
ηΩ

2δ
(2− eiδt − e−iδt) +

∆δ

δ

(4.9)

Figure 4.6: Red data points are the unmodulated SDF detuning scan results.
Blue data points are obtained by applying the 1st order Walsh gate where we
make two loops in phase space with opposite phases. In both experiments, each
SDF pulse were applied for 40 µs. The dashed lines are fits to theory.

The blue data points, obtained by applying Walsh SDF pulses, are closer to

P1 = 0 as expected. The inset clearly shows the effect of Walsh pulse modula-

tion. The value of the effective detuning mismatch ∆δ estimated from the fits

are 3.09 kHz for the native SDF and 0.05 kHz for the Walsh SDF, almost two

orders of magnitude smaller.

One notable feature of this curve is that at δ = 0 for the Walsh SDF, the

wave packet follows a linear trajectory for 40 µs and then comes straight back

to the origin during the second SDF evolution of the same duration. Ideally,
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this results in the wave packet at the origin and the disentanglement of spin

and motion. This effect is observed in the data, although the spin only partially

returns to |0⟩. This could be due to imperfection in phase calibration for the

second SDF. Any deviation from π of the phase difference between the first and

second SDF results in a proportional offset from the origin at the end of the

pulses.

4.2.2 Molmer-Sorensen gate theory

The theory of spin-dependent force should be slightly expanded to describe

the generation of entangled qubit states by Molmer-Sorensen interaction. First,

let us examine how the time evolution operator of Eq. (4.7) acts on the |00⟩

state by expressing σ̂2ϕ in the two-qubit basis. Since σϕ = eiϕσ− − e−iϕσ+,

σ2ϕ = σ2−e
i2ϕ − σ2+e

−i2ϕ − σ+σ− − σ−σ+. Also, σ
2
± = σ

(1)
± ⊗ σ

(2)
± where the

number in parenthesis indicates the which ion in the chain the operator acts

on. We know from the arithmetics of angular momentum ladder operators that

σ+σ− + σ−σ+ = 2(σ2x + σ2y). Thus, σ
2
ϕ expressed in the two qubit basis is:

σ̂2ϕ =


−2 0 0 2e2iϕ

0 −2 −2 0

0 −2 −2 0

2e−2iϕ 0 0 −2

 (4.10)

where each column represents to |00⟩ , |01⟩ , |10⟩ and |11⟩ from the left. Decom-

posing the initialized two-qubit state into the eigenstates of σ̂2ϕ yields |00⟩ =

|e1⟩ + |e2⟩ = 1/
√
2(|00⟩ + e−2iϕ |11⟩) + 1/

√
2(|00⟩ − e−2iϕ |11⟩) where |e1,2⟩ are

two of the eigenstate of σ̂ϕ. Therefore, ÛSDF (tg) |00⟩ = 1/
√
2(cos 2Φ(t) |00⟩ −

i sin 2Φ(t) |11⟩). Here we can see that as the geometric phase increases, the two-
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qubit state oscillates between |00⟩ and |11⟩. A Bell state of the form |00⟩− i |11⟩

is created when Φ = π/8 which is satisfied when Ω = δ/(2η) and δtg = 2π.

The above derivation can be extended to consider more than a single mo-

tional mode by modifying the expression for Φ. In our system, due to the close

spacing of the cm and tilt modes, at least two motional modes have to be taken

into account. It should also be noted that the tilt mode acquires a negative

geometric phase owing to the out-of-phase nature of the motion while the cm

mode acquires a positive one. Considering this, we can derive the following time

evolution of the spin population [60]:

P01(t) = P10(t) =
1

8

(
2− e−8(n1+

1
2
)|α1(t)|2 − e−8(n2+

1
2
)|α2(t)|2

)
P00(t) =

1

8
(2 + e−8(n1+

1
2
)|α1(t)|2 + e−8(n2+

1
2
)|α2(t)|2

+4 cos(4Φ(t))e−2((n1+
1
2
)|α1(t)|2+(n2+

1
2
)|α2(t)|2))

P11(t) =
1

8
(2 + e−8(n1+

1
2
)|α1(t)|2 + e−8(n2+

1
2
)|α2(t)|2

−4 cos(4Φ(t))e−2((n1+
1
2
)|α1(t)|2+(n2+

1
2
)|α2(t)|2))

(4.11)

where the subscripts 1 and 2 each indicate the center-of-mass and tilt mode.

4.2.3 Two qubit state measurement

So far, we have relied on the threshold discrimination technique to determine

the spin population of the ion. However, this method cannot be easily applied

to two or more qubits because the photon distribution profiles of |10⟩ or |01⟩

and |11⟩ overlap significantly, due to their Poissonian nature. Thus, a number

of novel techniques have been developed for the measurement of multi-qubit

states.
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EMCCD’s have been utilized for multi-qubit detection in which the image of

the ion chain is analyzed to obtain the photon statistics for each qubit separately

[16, 17, 18]. Also, PMT arrays have been aligned to the ion chain so that the

photons from each ion impinge on fibers that individually connect to each of

the PMT’s. They register the photon counts from each ion, and the resulting

histograms are analyzed by the conventional threshold method [19, 20, 21].

These methods are scalable in that they can accomodate a large number of

ions. However, they need specialized equipment such as an EMCCD or a fiber

array. Neither were readily available to us, so we decided to take an alternative

approach which is to collect the fluorescence from two qubits with the same

PMT, and decompose it to the histograms of the three possible qubit states:

|11⟩ , |00⟩ and |01⟩ or |10⟩ [89, 90]. This is done by assuming the following

relation between the aggregate photon counts from the PMT and the population

of each of the three qubit states:

ψ⃗ = P00A⃗00 + P01+10A⃗01+10 + P11A⃗11 (4.12)

where |ψ⟩ is the observed histogram, Pij is the population of the qubit state

|ij⟩ , i, j = 0, 1, and A⃗ij is the measured basis histogram for the qubit state |ij⟩.

The n-th element of each of the histogram vectors in Eq. (4.12) is the normal-

ized number of events for detecting n photons in a single shot. We note that the

A⃗01+10 basis histogram was obtained by detecting the fluorescence of a single

qubit in the |1⟩ state. The difference between A⃗01+10 and A⃗1 was considered to

be minimal because the mean photon number of A⃗1 is close to half of that of

A⃗11. Also, the histogram fitting method was tested with the microwave Rabi os-

cillation of two qubits. Since the microwave pulse drives independent qubit tran-

sitions on the ions, the expected population is 1/2(cos(θ/2) |0⟩+sin(θ/2) |1⟩)⊗
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(cos(θ/2) |0⟩+sin(θ/2) |1⟩) = 1/2(cos2(θ/2) |00⟩+cos(θ/2) sin(θ/2)(|01⟩+|10⟩)+

sin2(θ/2) |11⟩). The results are displayed in Fig. 4.7(b) and shows the expected

pattern.
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(a)

(b)

Figure 4.7: (a) Basis histograms for the three possible qubit states. Each con-
tain approximately 104 shots of measurement. (b) Two-qubit microwave Rabi
oscillation with populations inferred by histogram fitting method. Error bar
represents standard error of the fitted population.

98



4.2.4 Gate parameter calibration

An MS gate sequence has to be calibrated meticulously to satisfy the following

two conditions. First, the motional wave packets should return to the origin at

gate time tg in all phase spaces involved. Second, the geometric phase Φ at tg

should equal the desired value. For |00⟩+ |11⟩, Φ = π/8.

Since Φ ∼ Ω2, the size of the geometric phase can be easily optimized in a

single scan of the pulse laser intensity. The gate time tg can also be optimized in

a single scan by fixing the gate detuning δ and scanning the duration of the MS

gate pulse, and finding the t where P01+10 equals zero [6, 14]. However, in our

system, due to the weak axial potential, the center-of-mass(cm) mode and the

tilt mode are very close. This prohibits us from using only one of the motional

modes. That means that we have to find a laser frequency that satisfies δtilt =

N±1δcm because only under this condition do the two modes simultaneously

return to the origin at the same time. The situation is schematically represented

in Fig. 4.8. Here, we separate the X and Y modes by about 300 kHz by applying

a few Volts of DC offset voltage to the RF electrodes. We choose the Y mode

for entangling gate operation, because it has a lower heating rate and longer

coherence time as discussed in Fig. 3.10 and Fig. 3.12.

The first step of the calibration is balancing the Rabi frequencies at each ion.

Since we do not individually address the ions or detect their individual states, we

check their balance by driving the carrier transition. If Rabi oscillation for each

qubit occurs at the same rate, the observed brightness of the two ions should

evolve sinusoidally with a single frequency. However, if there is an imbalance in

Rabi frequency between the two ions, their Rabi oscillations will eventually go

out of phase and the total brightness will evolve with multiple frequencies. We

observe more than 10 periods of Rabi oscillation, which allows us to balance
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Figure 4.8: Two ion spectThe dashed vertical lines indicate detuning at which
δcm/δtilt = N or δtilt/δcm = N . The red dashed line is the detuning where
the two-qubit operations results presented in this section were obtained. Here,
δYtilt/δYcm = 2 The x modes are located at around (2π)1000 kHz and are not
visible in this figure.

the beam intensities to better than 10%. The ratios of the Rabi frequencies

can tuned by moving the horizontal and vertical Raman beams with motorized

stages. The diameters of the beams are between 10 ∼ 20 µm, so steps as small

as 2 µm are needed. It would be nice to be able to use smaller steps, but we

are currently limited by the repeatability of the motorized stage. An example

of Rabi frequency balancing is presented in Fig. 4.9.

We first set the gate time to the inverse of ωtilt − ωcm and scan the gate

detuning. The result is shown in Fig. 4.10. We set the Raman detuning to a

value such that δcm ≃ −(2π)6.0 kHz and δtilt ≃ −(2π)12.0. This means that

for gate pulse duration of tg = 167µs, the wave packet makes a single loop

in the tilt phase space, while in the cm phase space the wave packet makes

two loops. The optimal tg and δ are correlated because tg = 2π/δ should be

satisfied. Therefore the detuning scan is repeated at different values of tg, and

we settle with δ and tg that gives the lowest odd state population. We further

optimize the gate parameters by fine-tuning the frequencies of the BSB and

RSB transitions to account for AC Stark shift. The intensities of the BSB and
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(a)

(b)

Figure 4.9: (a) Two ion Rabi oscillation when the horizontal beam is 4 µm away
from the center of the ion chain. The spin states of the two ions evolve with
different rates, resulting in the revival and decay of the collective spin state. (b)
When the Rabi frequencies are well-balanced, the collective spin state evolves
in phase, resulting in a simple sinusoidal time evolution.

RSB are also separately scanned, with the goal of minimizing the odd state

population after executing the entangling gate.

The time evolution of the qubit state population is shown in Fig. 4.11. Here,

we see an excellent agreement with the experiment and theory. The theoretical

curves are as defined in Eq. (4.11), except for a phenomenological decoherence

factor e−t/τ that is multiplied to each exponential term of the form e|α(t)|
2
.
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Figure 4.10: MS gate detuning scan with an expected gate time of tg = 2π/δ ≃
167µs
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(a)

(b)

Figure 4.11: (a) The time evolution of the spin eigenstates under MS interaction.
The optimal gate time tg is indicated with a dashed vertical line. The lines
are fits to Eq. (4.11) which is modified to include an exponential decoherence
factors. (b) Parity oscillation of the spin states and population measurement.
Parity oscillation is observed by the application of a phase-locked π/2 pulse
with relative phase ϕ. When ϕ is scanned, the even states oscillate in phase
while the odd states oscillate out of phase as expected [60].
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4.2.5 Fidelity measurement

Characterizing a quantum state is not as simple as measuring its population

distribution. Its full characterization is only achieved by measuring every ele-

ment of its density matrix, or equivalently obtaining quantum state tomogra-

phy with quasi-probability distributions such as Wigner function or Q function

[91, 92, 43]. It is usually a time consuming and difficult task because it requires

a very large amount of measurements. Luckily, while full tomography is more

complicated, the fidelity of the two-qubit state can be easily measured by ob-

serving the oscillation of the spin parity defined as the difference between the

even and odd spin population, Π = P00+P11−P01−P10. Fidelity is a measure

of how similar two qubit states are and is defined as F = | ⟨ϕ| ρ |ϕ⟩ | where

ρ = |ψ⟩ ⟨ψ| is the density matrix of the experimentally created quantum state

and |ϕ⟩ is the target state.

When the target state is a Bell state of the form |00⟩ + |11⟩, F can be

decomposed into diagonal and off-diagonal terms as follows [6, 93]:

F =
1

2
(ρ00,00 + ρ11,11) + Im(ρ00,11)

=
1

2
(P00 + P11) +

1

2
Aϕ

(4.13)

The first term is obtained by measuring the sum of the |00⟩ and |11⟩ state

population. The second term is proportional to the amplitude of the qubit

state parity oscillation, Aϕ, which is realized by applying an individual Rϕ(π/2)

gate to the entangled qubits and scanning ϕ. The results for the population

measurement and parity oscillation experiment is shown in Fig. 4.11(b). From

the measurements, Aϕ = 0.887(9) and P00 + P11 = 0.977(8), which yield a

fidelity of 0.932(6). About half of the infidelity originates from miscalibration of
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gate parameters such as gate detuning, gate time and Rabi frequency. The other

factors include histogram fitting errors, motional state decoherence and beam

pointing instability. Their contributions are quantified via numerical simulation

in the next section.

4.2.6 Error analysis

In this section, we will first discuss the factors that decrease fidelity, and present

numerical simulation result which shows how much infidelity they account for.

The first source of error to be examined is the accuracy of two-qubit state

histogram fitting. This is quantified by fitting each of the basis histogram data

to the histogram fitting model itself. It is known that imperfect measurement

of a perfect Bell state, |00⟩+ |11⟩, results in an infidelity of 3/2(ϵ0+ϵ1) where ϵ0

and ϵ1 are the detection error probability for the |0⟩ and |1⟩ states, respectively

[94]. ϵ0 and ϵ1 can be deduced from two-qubit state detection error rates ϵ00 and

ϵ11 [94]. We estimate ϵ0 and ϵ1 using ϵ0,1 = 1/2(1 −
√
1− 2P01+10). When we

prepared the |00⟩ state, P01+10 = 0.0058, and ϵ0 = 0.0029. For the |11⟩ state,

P01+10 = 0.012 and ϵ1 = 0.0064. Therefore, detection error explains 0.014 or

1.4% of the 6.8 % of measured infidelity.

Heating rate and motional decoherence were quantified in Fig. 3.10 and

Fig. 3.12. The coherence time for the qubit state was measured in Fig. 3.14(b).

We identify another source of qubit state decoherence that probably results

from the combination of 4-th order Stark shift [45] and beam pointing and phase

fluctuation. We observe this type of decoherence when we carry out microwave

Ramsey experiment with the pulse laser beams turned on but set to an off

resonant frequency so that it does not drive any transition.

The presence of the pulse laser beams significantly shorten the coherence
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time measured by microwave gates and shifts the qubit frequency. We observed

the amount of qubit frequency shift and decoherence rate at various values for

the geometric mean of the powers of the two Raman beams. The pulse laser

frequencies were bichromatic and symmetrically detuned, which emulates the

situation during a MS gate sequence. The results are shown in Fig. 4.12.

We discovered that the qubit frequency shift is quadratic to the geometric

mean of the two Raman beam powers which is basically the Raman Rabi fre-

quency. Non-linear Stark shift is a characteristic of the 4-th order Stark shift

[45]. It originates from the interaction of the atomic transitions and the two

frequency combs that interfere at the location of the ion. Its scale changes sig-

nificantly at different repetition rates or comb spacings of the pulse laser, and

have been minimized in other groups by adjusting the repetition rate [95].

We also found that the microwave Ramsey curves that we took are not very

consistent, with spurious jumps in the observed qubit state. This is very notice-

able as shown in Fig. 4.13 and gets worse for longer wait time. The presented

data is the average of five runs of the same Ramsey sequence, which were taken

over a period of 2 ∼ 3 minutes. The vertical error bars result from run-to-run de-

viation of the measured qubit state, which should not be present under a static

Stark shift. The rather slow rate at which the size of the Stark shift changes is

roughly in the same time scale as the beam pointing or phase fluctuation due

to air current. We think the 4-th order Stark shift changes the qubit frequency,

and its magnitude changes in time due to beam path fluctuation which may

affect how the frequency combs interfere.

We do not have a definitive proof for this yet, but measuring how a co-

propagating pair of Raman beams affect the qubit coherence will be useful in

determining its cause. In this configuration, the two beam physically overlap
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and phase fluctuation is canceled out. If co-propagating 4-th order Stark shift

turns out to be much more consistent, that we can conclude that making the

beam phases more stable by means such as high-power UV fibers for pulse laser

will lower the decoherence rate.

In order to estimate how much the heating rate, motional decoherence and

Stark shift fluctuation contributes to the observed gate infidelity, we ran a nu-

merical simulation of the qubit state time evolution under MS Hamiltonian. We

used QuTip(Quantum Toolbox in Python), specifically its mesolve() method,

to solve the Lindblad master equation. We first verified that the simulation ad-

equately explains the system by comparing a single qubit time evolution under

SDF to its simulation. We compared the measured qubit state to the simulation

at t = N ∗ 2π/δ, multiples of the time it takes for the ion to make a single loop

in phase space. At these values of t, the ideal spin state is |0⟩ because the wave

packet periodically returns to the origin. Also, we varied the coherence time

of the motional state by changing the gain of the trap power PID system, and

the numerical simulation was run with different motional decoherence rates.

The results are shown in Fig. 4.14 and shows excellent agreement between ex-

periment and numerical simulation. The difference between the experimentally

measured residual spin-motion entanglement values(excess |1⟩ population) and

their numerical simulation is 0.49 % on average and 1.82 % at maximum. We

also ran simulations with 25 % underestimated and overestimated motional de-

coherence rates and confirmed that the residual entanglement is overestimated

and underestimated accordingly.

After confirming that the Lindblad master equation with the known sources

of decoherence correctly explains the experimental imperfections, we moved on

to simulate MS interaction. The simulation takes a much longer time because
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the dimension of the Hilbert space increases by at least 20 times. This is because

we have to take into account another spin(2x) and another motional mode with

up to 10 phonons(10x). As a result, the size of the matrix increases by 202.

Each simulation takes between 1 ∼ 2 hours even after optimization. The results

are summarized in Table 4.1.

Value Contribution

Heating Rate 6.97±3.95Hz 0.00%

Motional Decoherence 194.1±34.85Hz 0.70%

I2 Decoherence 330Hz 1.30%

Average readout error (0.29%+0.65%)/2=0.47% 1.41%

Gate parameter error Ωion1,Ωion2, tg, δg, tπ/2 3.39%

Table 4.1: Identified sources of MS gate infidelity

The biggest offender revealed by MS gate error analysis is gate parameter

error. Its contribution to infidelity is calculated by subtracting errors due to

known sources from the total infidelity. The rather high contribution can be

understood as a consequence of the fact that we have to drive both the cm and

tilt modes simultaneously. When only a single mode is excited, the gate time

is given as tg = 2π/δ, and can be found by a single scan. This corresponds to

choosing any point on a line in the parameter space of gate time and detuning.

However, in our case we have to search for the right point in it. Finding the

right gate parameters can be made easier by the use of pulse modulation as it

will make the gate operation less sensitive to gate parameters. We note that the

MS gate results presented here was obtained only by unmodulated, constant

gate pulses. Utilizing even the simplest form of pulse shaping such as Walsh

pulses may increase gate fidelity significantly.

The second largest contribution to infidelity comes from readout error. The

detection laser is currently locked to a wavemeter with software PID control.
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Naturally, the bandwidth of the PID loop is very low, and the laser frequency

fluctuates between ±10 MHz of the lock point. Also, its intensity is not stabi-

lized. The fluctuation in frequency and intensity of the detection laser decreases

the accuracy of histogram fitting. Therefore locking the laser to a ULE cavity

and employing intensity stabilization will help. Also, we think we can get a

slightly improved result by moving on to a PMT array detection system where

we can use threshold method with each qubit instead of histogram fitting.

The third biggest contribution comes from ”I2” decoherence which is prob-

ably due to fluctuating 4-th order Stark shift. It can be reduced by improving

beam path shielding or sending the pulse lasers through a UV fiber. One can

also consider modifying the pulse laser so that we can control the repetition

rate, which can then tuned to minimize 4-th order Stark shift.
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(a)

(b)

Figure 4.12: (a) The change in the qubit frequency in the presence of off reso-
nant, bichromatic pulse laser beams. Horizontal error bars are calculated from
the accuracy of the power meter we used to measure beam powers. The blue
dashed line is a fit to a quadratic model, while the green is a fit to a linear
model. We observe a quadratic dependence of the Stark shift to the geometric
mean of the beam powers, which hints that it is a 4-th order Stark shift. (b)
The decoherence rate of the qubit state as a function of the beam power. It is
also quadratic to the applied beam power. Vertical error bars are the standard
errors in decoherence rate estimated from fitting the Ramsey data.
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Figure 4.13: The microwave is set to be resonant with the qubit transition, and
a Ramsey sequence was run with the detuned pulse laser beams turned on.
The qubit frequency is shifted due to Stark shift. Its magnitude fluctuates over
time, which causes decoherence. The blue dashed line is a fit to an exponentially
decaying sine model.
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(a)

(b)

Figure 4.14: (a) The difference between the measured excess |1⟩ population and
numerical simulation with decoherence. The green data points are the differ-
ence between the correct master equation simulation and the experiment, while
the red and blue data points use overestimated and underestimated motional
decoherence rates for comparison. The error bars are the standard deviation of
the data points produced from experiments with different motional decoherence
rates. (b) Residual entanglement values that are experimentally measured and
numerically simulated. We see an excellent agreement between experiment and
simulation across a wide range of motional state coherence time.
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Chapter 5

Generation and Characterization
of Entangled Coherent States

The coherent state has been the focus of intense research both theoretically

and experimentally because it is the most classical of quantum states. Its wave

packet follows the trajectory of a classical harmonic oscillator, and its quadra-

ture variables, such as position and momentum, have the smallest dispersion

in phase space allowed by the uncertainty principle, making it as classical as

possible within the boundaries of quantum mechanics. In this chapter, we will

discuss its bipartite version, the two-mode entangled coherent state. We will

present a brief overview of the quantum state, and show how it can be gen-

erated in our system with two-dimensional SDF that acts on both of the two

radial modes of a single trapped ion and projective measurement of the spin

state. Also, experimental results for its basic characterization will be discussed.

Finally, we will show that two-dimensional SDF can be used to realize MS

interaction with a reduced Rabi frequency requirement.
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5.1 Introduction

The coherent state is a quantum analog of a classical harmonic oscillator. Its

quantum superposition, the cat state, is a very interesting quantum state in

that it is the quantum superposition of the most classical quantum state. Even

its name originates from the famous thought experiment that highlights the

paradoxical nature of quantum mechanics. The cat state has been created in

various platforms such as trapped ion [42, 96, 43], and photons [97, 98, 99].

Its multipartite extension, the entangled coherent state or ECS, has also

been investigated theoretically in various field including quantum sensing [31],

fundamental studies of quantum mechanics [28, 29], quantum information pro-

cessing [34, 33, 100, 101, 36], and quantum communication [32, 35]. The ECS

plays an important role in the context of continuous variable quantum com-

puting(CVQC) because the coherent state can be used as a continuous variable

equivalent of a qubit state. Coherent states with opposite phases, |α⟩ and |−α⟩,

become virtually orthogonal when 1 << α, since their overlap diminishes expo-

nentially. This kind of ”encoded” qubit states have the advantage of facilitating

error detection and correction, as experimentally shown in the first demon-

stration of quantum error correction [37] where the authors achieved a 20 fold

increase in qubit lifetime by using logical qubits encoded in coherent states and

applying real time error correction. In trapped ion systems, quantum informa-

tion has been encoded in a motional state called the GKP state, and its error

correction protocols have been realized [38, 102]. Other examples of CVQC in

trapped ion system involve number states of motion and their boson sampling

[103].

In this line of research, the ECS can be seen as the entangled state of

two qubits encoded in coherent states and its realization will pave the way for
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expanding CVQC to higher dimensions. Entangled coherent states have been

experimentally realized in photons [39] and microwave cavities coupled with

a superconducting circuit [41, 40]. Although the trapped ion has often been

used in experiments involving single mode cat states, the ECS has not been

implemented with a trapped ion. We realized the ECS in our system by using

a two-dimensional SDF and projecting the spin of the resulting state. In the

remainder of this chapter, details of the experiment will be presented.

5.2 Two-dimensional spin-dependent force

Let us start by considering a two-dimensional version of the spin-dependent

Hamiltonian of Eq. (4.3) in which the SDF acts on the two transverse axes, X

and Y, simultaneously with different detunings:

ĤSDF (t) =
ℏηXΩ

2
σ̂ϕ(âX

†e−i(δX t+ϕ
′) + âXe

i(δX t+ϕ
′))

+
ℏηY Ω
2

σ̂ϕ(âY
†e−i(δY t+ϕ

′) + âY e
i(δY t+ϕ

′))

(5.1)

where ηX,Y , δX,Y , and âX,Y each represent the Lamb-Dicke parameter, sym-

metric detuning, and annihilation operator for the X and Y axes. In this chapter,

we will use the notation |s⟩ |a⟩ |b⟩ to specify the quantum state of the system,

where s denotes the qubit state of the ion chain with possible values of ↑ and

↓ for a single ion and their tensor product for a chain of two ions. We switch

from 0 and 1 to ↓ and ↑ for specifying the spin state to avoid confusion with

the number states of motion.

Time evolution operator for Eq. (5.1) is Û(t) = |+⟩ ⟨+| D̂X(α(t))D̂Y (β(t))+

|−⟩ ⟨−| D̂X(−α(t))D̂Y (−β(t)) where D̂X(α(t)) and D̂Y (β(t)) are the displace-

ment operators defined as eα(t)â
†
X−α(t)∗âX and eβ(t)â

†
Y −β(t)∗âY . |±⟩ are the eigen-
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states of σ̂ϕ. Applying this to the initial state of the ion after sideband cooling

in both the X and Y axis yields:

|ψ(t)⟩ = 1√
2
(|+⟩ |α(t)⟩ |β(t)⟩+ |−⟩ |−α(t)⟩ |−β(t)⟩) (5.2)

The wavefunction evolves into a tripartite entangled state of the X and

Y motion and the qubit. When we measure the qubit state of Eq. (5.2), the

population of the |↑⟩ state, P↑, will be modulated at δX and δY as the motional

wave packet periodically returns to the origin in each phase space and the spin-

motion entanglement disappears. Therefore, P↑(t) can be expressed as follows:

P↑ (t) =
1

2

(
1− e−(n̄X+ 1

2)|2α(t)|
2−(n̄Y + 1

2)|2β(t)|
2

e−t/τ
)

(5.3)

In the above equation, nX,Y represent the mean phonon number of each

mode, and τ corresponds to the phenomenological decoherence time scale. We

observed the time evolution of the qubit state as it is periodically entangled

with the X and Y modes. This experiment was repeated at various ratios of X

and Y detunings, defined as R = δX/δY . Fig. 5.1 shows four data sets, each

corresponding to a different value of R. We set the detuning to be between the

X and Y mode frequencies, thus R < 0. The red and blue vertical lines each

represent moments when the Y and X mode return to the origin. When only

a single mode has returned, the spin is still entangled with the other mode

and this results in a non-zero but decreased P↑. When both motional modes

disentangle from the spin, it fully returns to its original state |↓⟩. Blue curves

are fits to Eq. (5.3), and it aligns with the data points nicely.
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Figure 5.1: Red lines represent when the Y mode returns to the origin in its
phase space. Blue dashed lines are when the X mode motion returns to the
origin. Since δX ̸= δY , the X and Y modes entangle and disentangle with the
spin at different periods. When they are both disentangled, the spin returns to
its original state, |↓⟩. Titles of each subfigure shows R measured by fitting and
its standard error. Error bars are quantum projection noise. The bottom row
shows a schematic diagram of how the wavepackets evolve in time in each phase
space.
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While Eq. (5.3) explains the experimental results in Fig. 5.1, the generated

quantum state is a tripartite entangled state where the qubit is entangled with

the X and Y motion. We turn on the detection beam for 500 µs and then post-

selected data sets with photon counts less than 2. This projects the qubit to

|↓⟩, so that the wave function becomes:

|ψECS(t)⟩ = |↓⟩ |α(t)⟩ |β(t)⟩+ |−α(t)⟩ |−β(t)⟩√
2 + 2e−2(|α(t)|2+|β(t)|2)

(5.4)

The detection time and threshold was chosen to select the |↓⟩ state with high

fidelity; the longer you shine the detection beam and the lower your threshold is,

the less likely the |↑⟩ is selected. Eq. (5.4) is an entangled coherent state of the

X and Y motion, with the now disentangled spin in the |↓⟩ state. If we chose to

project the spin state to |↑⟩, we would end up with an odd cat state. However,

the resulting wave function is heavily decohered because it had scattered many

photons.

Figure 5.2: The ion’s quantum state is initialized to |↓⟩ |0⟩ |0⟩ by optical pumping
and ground state cooling. The SDF(1D or 2D) is applied for tSDF . We then
detect the spin state, and post-select |↓⟩. We drive the blue sideband Rabi
oscillation on the Y mode. We use Eq. (5.5) to obtain Y mode population
distribution.
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5.3 Population extraction with blue sideband Rabi os-

cillation

(a)

(b)

Figure 5.3: (a) Blue sideband Rabi oscillation after applying Y mode SDF for
varying amounts of time. The revival of Rabi oscillation occurs later when the
SDF is applied for a longer amount of time. Solid lines are generated by fitting
the data to Eq. (5.5). (b) Population distribution inferred from (a). The orange
bars represent the expected population for an ideal 1D even cat state. The
blue bars are the experimentally measured population, and they show good
agreement.
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We characterize the generated state by observing how the phonon number

distribution in the Y mode changes with tSDF , duration of the two-dimensional

spin-dependent force. This is done by driving the Y mode blue sideband tran-

sition [43, 91, 104, 44]. The blue sideband Rabi frequency is given as Ωn+1,n =

Ω0,0 ⟨n+ 1| eiηY (â†Y +âY ) |n⟩ = Ω0,0exp
(
−η2Y /2

)
ηY /

√
n+ 1 L1

n(η
2
Y ), which is a

function of the starting phonon number n. Ω0,0 is the carrier transition Rabi

frequency. Therefore, one can fit the observed blue sideband Rabi oscillation

to the following model to extract phonon number distribution of the generated

state:

P↑ (tBSB) =
N∑
n=0

pY,n(tSDF )

2

(
1− cos (Ωn+1,ntBSB) e

−tBSB/τ
)

(5.5)

We first applied the blue sideband spectroscopy to a single mode cat state,

which is created by a projective spin measurement of a spin-motion entangled

state [43]. The results are shown in Fig. 5.3.

Fig. 5.3(a) shows the blue sideband Rabi oscillation results for various tSDF .

The data matches Eq. (5.5), and we can clearly see that the revival of Rabi os-

cillation is pushed back as tSDF , hence the magnitude of displacement, becomes

larger. Fig. 5.3(b) shows the population distribution extracted from each of the

blue sideband Rabi oscillation data. Almost all population is concentrated in

the even states, as expected of a single mode even cat state [43]. The evenness

and oddness of the population distribution can be characterized by its parity

which is defined as Π (t) =
∑

n (−1)n pY,n(t). For an even number cat state such

as the one presented in Fig. 5.3, Π ≃ 1.

We can observe the blue sideband Rabi oscillation of the X mode, but since
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ηY is about twice as large as ηX , at displacement the Y mode couples to spin

strongly and affects the blue sideband oscillation of the X mode. The interfer-

ence between the two modes can be suppressed by reducing the Rabi frequency,

but that makes the probe time longer. Due to our limited motional coherence

time ( 5 ms in the ground state), reducing the Rabi frequency enough to ob-

serve the X mode was not possible. Also, reduced Rabi frequency means that

our measurement results are more susceptible to secular frequency drift, which

causes the fitting algorithm to mistakenly identify high phonon number pop-

ulations. A more stable secular frequency and longer motional coherence time

will enable such measurements.

5.4 Phonon distribution of entangled coherent state

If we measure the single mode phonon number parity of an entangled coherent

state, the result will be less than unity because it is entangled with another

mode and the single mode density matrix will be that of a mixed state. It is

shown calculating the population distribution as follows:

pY,n(t) = Tr({|↓⟩ ⟨↓| ⊗ ÎX ⊗ |n⟩ ⟨n|} |ψECS⟩ ⟨ψECS |)

=
e−|β(t)|2(|β (t) |2n/n!)
1 + e−2(|α(t)|2+|β(t)|2)

(1 + (−1)n e−2|α(t)|2)
(5.6)

where α(t) and β(t) denote the displacement of the X and Y mode at time t,

respectively. When α = 0, the wave function in Eq. (5.4) is reduced to a single-

mode cat state of the Y mode (|ψY (t)⟩ = |↓⟩ (|β(t)⟩+ |−β(t)⟩)/
√
2 + 2e−2|β(t)|2)

and the phonon population is expected to be only in the even number states.

However, for a non-zero α, the interference between the two coherent states

with opposite phases in the Y phase space, |β⟩ and |−β⟩, is suppressed by the
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motion in the X-axis, |α⟩ and |−α⟩. Consequently, the parity of the Y mode

population is modulated as the size of the displacement in the X mode changes.

The effect of non-zero temperatures should be considered as well because it

directly affects the observed parity. For example, if we have some population

left in the |1⟩ state of the Y mode, pY,1, the parity will decrease by 2pY,1 since

the |1⟩ is an odd state. We construct our model to be a weighted sum of the

following three cases.

• |1⟩X |0⟩Y with probability of pX,1 (1− pY,1)

• |0⟩X |1⟩Y with probability of (1− pX,1) pY,1

• |0⟩X |0⟩Y with probability (1− pX,1) (1− pY,1)

The |1⟩ |1⟩ state will not be considered since its probability is much lower

than the three cases above. For the first case, the population distribution of the

Y mode, pY,n, can be expressed using the number state representation of the

displacement operator, dαmn = ⟨m| ˆD(α) |n⟩, as follows:

pY,n (t) =
1(

1 + e−2(|α(t)|2+|β(t)|2)
)e−|β(t)|2 |β (t)|

2n

n!

×

(
1 + (−1)n

(
d−2α
11 + d2α11

)
2

) (5.7)

For the second case with the initial quantum state of |0⟩X |1⟩Y , the popu-

lation distribution is given as:

pY,n (t) =
1

2
(
1 + e−2(|α(t)|2+|β(t)|2)

)
×(
∣∣∣dβn1∣∣∣2 + ∣∣∣d−βn1 ∣∣∣2 + ((dβn1)∗ d−βn1 + dβn1(d

−β
n1 )

∗)
e−2|α|2)

(5.8)
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dαmn is calculated by referring to [105].

The third case results in a population distribution given by Eq. (5.6). We use

the weighted sum of the three distributions with weights given by the respective

probabilities to fit the parity modulation data with Ω, pX,1 and pY,1 as floated

parameters.

We demonstrate the generation of entangled coherent states at two values

of R = δX/δY . The left figure in Fig. 5.4(a) corresponds to R = −2, where the

ion is periodically displaced in the X axis at a frequency which is twice of the

frequency of the periodic displacement in the Y axis. Therefore, according to

Eq. (5.6), the parity of the phonon distribution of the Y motion is expected to

be modulated at half the period of its periodic displacement.

We repeat the same experiment with R = −2/3 as shown in the right panel

of the same figure. In this case, the parity modulation pattern is expected to

span three periods of the Y displacement. The observed variation in phonon

number parity is in good agreement with the theoretical model, and is a di-

rect consequence of the entanglement of the two motional modes. The plots in

Fig. 5.4(b) are the two representative phonon distributions. The Y mode dis-

placement is maximum for both, but the phonon number parity is 0.89 ± 0.09

for the left panel and 0.22±0.06 for the right. Also, the right panel shows a clear

deviation from the single-mode cat state phonon distribution with a significant

population in the |1⟩Y and |3⟩Y states. In Fig. 5.4(a), we also plotted the time

evolution of the mean phonon numbers of the Y mode, which approximately

corresponds to the square of the absolute value of the displacement in the Y

mode phase space. The theoretical curves for the mean phonon numbers of the

X and Y modes are calculated by using the Rabi frequency and 1-phonon state

population of each mode inferred by fitting the phonon number parity data.
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(a)

(b)

Figure 5.4: (b) Change in Y mode parity as a function of tSDF . The SDF
detuning ratio R = δX/δY = 2. The black data points represent Y mode parity,
while the red data points show the mean phonon numbers, both obtained from
the population distribution. The black lines are fits to the ECS parity model,
constructed by combining Eq. (5.6), Eq. (5.8) and Eq. (5.7). The red and blue
lines are the X and Y mode mean phonon numbers expected from the parity fit
and not fitted values themselves. Error bars are calculated from the standard
errors in population fitting. (a) Y mode population distribution at two values
of tSDF with R = −2/3 indicated as (i) and (ii) in Fig. 5.4(a). The orange bars
are the expected population for a single mode cat state, and the blue bars are
the experimentally extracted population. The insets show the blue sideband
Rabi oscillation for each population distribution.
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We use the near-degeneracy of the radial modes of linear Paul trap to drive

the two motional modes of a single ion simultaneously with detuned SDF. It

does not require second order interactions as proposed in [106, 107], and is

therefore advantageous in terms of interaction strength. After generating en-

tangled coherent states, we observed a periodic modulation in phonon number

parity. This is a direct consequence of the entanglement between the two phonon

modes and nicely agrees with theoretical expectations. The periodic reduction

in parity is analogous to the decoherence of the spin state in a spin-motion

entangled system [49].

The size of the displacements generated in the experiment is mainly limited

by two factors. The first is the large Rabi frequency needed to generate a strong

SDF in both X and Y modes. For a SDF with non-zero detuning, the maxi-

mum displacement is limited because the phase space trajectory forms a circle

whose radius is proportional to the inverse of the detuning. Thus, the maximum

displacement can be increased by making the radial mode frequencies closer.

Another solution is to apply a SDF resonant to both the X and Y modes, which

can be realized by a tetrachromatic laser beam [108]. With this scheme, the size

of the displacement will increase linearly with tSDF and the coupling of the laser

to each mode. The other factor limiting the size of displacement is the difficulty

of characterizing motional states with large displacements. States with larger

displacement magnitude are harder to probe because the coherence time of a

cat state scales inversely with the square of magnitude of displacement [109].

The creation of an entangled coherent state with opposite phase, |↓⟩ (|α⟩ |β⟩−

|−α⟩ |−β⟩), is possible with a π-pulse phase-locked to the SDF preceding the

spin state measurement [43]. Also, we note that the phase between the two

terms in Eq. (5.4) can be set to an arbitrary value ψ by setting the initial
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qubit state to |+⟩ + eiψ |−⟩ prior to the application of the two-dimensional

SDF. Additionally, using our scheme, up to 3N modes can be entangled for an

N-ion chain when all the principal axes of the trapping potential are utilized.

Especially, the generation of a tripartite entangled coherent state of the X, Y

and Z modes, combined with a beam splitter interaction between the phonon

modes [44, 110, 111], will enable the quantum teleportation protocol in Ref.

[35] with a single trapped ion. Also, entangling coherent states with opposite

phases is equivalent to a two qubit gate for qubit states encoded in coherent

states [38, 37]. Therefore it can be used as a building block for digital quantum

computation with encoded qubits.

There have been proposals and experiments of a Ramsey-type matter-wave

rotation sensor [112, 113], Rabi-type sensor [114] and Rashba and Dresselhaus-

type spin-orbit coupling for quantum simulation of topological insulators and

Majorana fermions in which a single ion is coherently manipulated in two or

more orthogonal spatial modes [115]. The coherent control of two-dimensional

motion of a trapped ion demonstrated in this work can be applied to realize

such experiments.

Lastly, we note that a full quantum state tomography(QST) or its equivalent

is needed for the complete characterization of the entangled coherent state

generated using our scheme. A full QST should take place in a four-dimensional

space spanned by the X and Y displacements α′ and β′ [39, 41], but takes a

prohibitively long time due to the slow quantum operations in trapped ions.

Additionally, the reconstruction of Wigner function, which is a prerequisite for

QST, requires the implementation of a joint parity operator which measures

the parity of the joint phonon number distribution. It basically corresponds

to calculating phonon number parity without discriminating the two entangled
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modes. The authors of the microwave cavity experiment presented in [41] were

able to implement it, but to the best of our knowledge no such operation was

realized with trapped ions. A less complete characterization may be possible by

creating interference between the X and Y mode with beam splitter interaction

[44, 110].

5.5 Molmer-Sorensen gate with two-dimensional spin-

dependent force

In a related experiment, we trap two ions in a linear chain and drive two-

dimensional SDF with their collective motional modes. Here, we interact with

four closely spaced motional modes instead of two, as shown in Fig. 5.5

First, we observe the time evolution of two-qubit states when subjected to

a two-dimensional Mølmer–Sørensen interaction. We set the detuning and Rabi

Figure 5.5: Blue sideband spectrum of a two ion chain. Due to the close spacing
between the X and Y modes, all of the four transverse modes can be driven
by a single laser frequency. A constant pulse MS gate can be implemented by
positioning the laser detuning at the black dashed lines. At these detunings,
we can find a time at which the wave packets in all four modes return to the
origin. The red line indicates the detuning where the X modes and Y modes
contribute equally to the required geometric phase.
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(a) (b)

Figure 5.6: (a) Geometric phase contribution of each principal axis. The dashed
line indicates the detuning when R = δXcm/δYtilt = −1/3. (b) Time evolution
of the two-qubit states under two-dimensional MS interaction when R = −1/3.
The gate time we used for the Bell state generation and fidelity measurement
is indicated with an arrow. It is slightly different from the minimum of odd
population because we iteratively optimized gate parameters after observing
time evolution. Curves are obtained by fitting the data to Eq. (5.9)

frequency for the generation a Bell state of the form (1/
√
2(|⇈⟩ + |⇊⟩)). We

implemented the MS gate at R = −1/3, which is now defined as δXcm/δYtilt .

The position of the laser detuning for R = −1/3 is shown as the red line in

Fig. 5.5. We chose to demonstrate the two-dimensional MS gate at R = −1/3

because at this value the X and Y modes contribute to the required geometric

phase almost equally and the two-dimensional nature of the operation is most

pronounced. The time evolution of the two-qubit states are shown in Fig. 5.6(b).

Subsequently, we estimated the fidelity of the resulting state by examining the

oscillation of qubit state parity. For this measurement, we followed the standard

protocol and applied a π/2-pulse on both qubits and varied its phase. In these

experiments, we have more phase space trajectories to close, and we are more

constrained in our choice of gate parameters. We optimized factors such as the

spacing between motional modes by fine-tuning various trap electrode voltages.
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The populations of the qubit states in a two-ion chain evolve under Mølmer–Sørensen

interaction with four motional states as follows [60]:

P↓↑(t) = P↑↓(t) =
1

8
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2
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(5.9)

The geometric phase is:

Φ (t) =
4∑
i=1

ηi1ηi2
(2di)2

(dit− sin (dit)) Ω
2
0 (5.10)

In the above equations, i = 1, 2, 3 and 4 is the index for the motional

modes participating in the interaction corresponding to Xtilt, Xcm, Ytilt and Ycm

mode, respectively. αi(t) is the phase space displacement of the i-th motional

mode at time t, ηik is the Lamb-Dicke factor for the i-th mode and the k-th

ion, di is the laser detuning, ni is the mean phonon number, and Ω0 is the

Rabi frequency. The above formulae were derived by following the calculations

presented in [116]. These equations were used to analyze and derive the results

about Mølmer–Sørensen interaction in Fig. 5.6(b).

We estimated a gate fidelity of 89.7 ± 0.6 % from the spin parity oscilla-

tion and separate population measurement. It is comparable to our single axis

Mølmer–Sørensen gate fidelity, 93.2±0.6 %. This indicates that Mølmer–Sørensen

interaction can be expanded into multiple dimensions naturally. We attribute
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Figure 5.7: Parity oscillation of Bell state generated by two-dimensional MS
interaction. The inset shows population measurement results. The estimated
fidelity is 89.7± 0.6 %

the extra infidelity of about 3 % to residual spin-motion coupling that originates

from the need to calibrate the mode spacing and gate parameters with four mo-

tional modes. We were unable to run numerical simulations to estimate error

budget as was done in Table 4.1 because the computing time was prohibitively

large. Now that we have to deal with four motional modes, the dimension of

the matricies increases by a factor of 100, resulting in a significant increase in

computing time. Perhaps a more analytic approach such as presented in [14]

can be used for error estimation.

Also, we experimentally prove that the gate Rabi frequency is reduced com-

pared to the single axis case, because more phase spaces contribute to the

geometric phase as can be seen in Fig. 5.6(a). At R = −1/3, this effect becomes

most pronounced because the geometric phase contribution is similar for both

axes. As a consequence, required Rabi frequency is decreased approximately

by a factor of ≃ 1/
√
2. The required Rabi frequency when using both axes is
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estimated to be2π × 81.3 ± 0.6 kHz from fitting Fig. 5.6(b) to the theoretical

time evolution formulae in Eq. (5.9). This is 28.3% lower compared to the X

mode MS gate, and 30.1% lower compared to using only the Y axis, assuming

the same gate time and gate detuning.

Using multiple principal axes for Molmer-Sorensen gate has several advan-

tages. First, the required Rabi frequency is reduced. Using weak laser beams is

preferable for a number of technical reasons, such as decrease Stark shift, ease

of using fibers, and less charging of the trap. The last is a serious issue in surface

traps due to the proximity of the ion to the trap surface [117, 118, 119]. Ad-

ditionally, in other setups significant efforts are dedicated so as to prevent the

control laser from interacting with more than one axis. This is done by either

making the trap geometry highly anisotropic so that the secular frequencies are

very degenerate [120], or by setting up the qubit control beam direction to be

orthogonal to one of the principal axes. One can also rotate the principal axes

by applying additional DC fields, but in most cases this requires a surface trap

with an array of electrodes. Macroscopic traps such as ours do not have this

capability. Therefore, utilizing interaction with multiple axes can be beneficial

for minimizing the setup which may be necessary for the commercialization and

scaling up of trapped ion quantum computation systems [121].
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Chapter 6

Outlook

In this chapter, I will first discuss a list of upgrades that are being prepared

or planned in order to scale the system up to five qubits. It includes individual

detection with a fiber array, individual addressing of the ions with a pair of

acousto-optic deflectors(AOD’s). These elements are necessary for the imple-

mentation of quantum algorithms in our system.

I will also discuss a possible experiment to directly observe the coherent

interaction between the two components of the entangled coherent state. This

experiment will be based on the beam splitter interaction between the two

modes, but we will employ a stroboscopic probe beam to track the time depen-

dent phase between the two coherent states.
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6.1 Individual detection

For individual detection with minimal crosstalk, we need a high quality imaging

system that is capable of producing an image of the ion chain at the position

of the imaging device, such as an EMCCD or a fiber array. We are going to use

a linear array of fibers from Fibertech-Optica. Several groups have used fiber

arrays for individual detection of ion qubits [19, 20, 21]. These fibers are then

connected to individual PMT’s. The design of the new imaging system is shown

in Fig. 6.1.

Figure 6.1: Ion chain is imaged by the first stage(M1) of the imaging system
with magnification of 8. The image is transferred again to the plane of the fiber
array with a variable magnification (M2).

The final image of the ion is nearly diffraction limited, and base on Zemax

simulation we expect more than 99.5 % of the image of a single ion will fall onto

the corresponding fiber core. This means less than 0.1 % of crosstalk between

ions. The ion spacing in the final image can be continuously tuned because the

second imaging stage has a tunable beam expander. This will allow us to use

the same imaging setup without modification should the ion spacing changes.

The design is expected to be able to accommodate up to five ions with less

than 0.1 % of detection crosstalk with the current ion spacing which is 13.8

µm. The individual detection system was designed by Jaeun Kim under my

supervision.

The Fig. 6.2(a) is the actual ion chain observed by a CCD camera with a
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(a) (b)

Figure 6.2: (a)A 3-ion chain is imaged by a CCD after being magnified by the
two stage imaging system. The magnification of the beam expander is 1.25, and
the resulting ion image spacing is about 126µm, almost identical to the smaller
pitch of the fiber array. (b) Over 99.5 % of the optical power emitted by a single
ion anywhere in a five ion chain arrives at corresponding multimode fiber of the
fiber array.

pixel size of 7.5µm by 7.5µm (Sentech, STC-MB33USB) after M2. The image

of the ion has a Gaussian radius of about two pixels, which corresponds to

10 ∼ 20µm. When the beam expander is set to a magnification of 1.25, the ion

spacing in the image is about 126µm. This matches the smaller pitch of the

custom fiber array, and we expect the ions to be individually imaged by each

fiber core.
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Figure 6.3: Fluorescence of a single ion was measured as the fiber array is
scanned horizontally. The PMT is connected to the third fiber, which is at the
center of the 127 µm spacing fiber array region. The radius of the ion image
can be directly inferred by deconvoluting the measured fluorescence change.
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Fig. 6.3 is the result of measuring the fluorescence of a single trapped ion

with the PMT connected to fiber core 3. Since only the photons that fall into

the fiber core, whose radius is R = 50µm, are collected, we can think of the

situation as the convolution of the Gaussian intensity distribution of the ion

image and a circular well with radius R. However, the two-dimensional integral

does not have a known definite integral. Therefore, we approximate the situation

to one dimension and calculate the following integral:

N(x,A, σ) =

∫ R

−R
rect(

x′ − x

2R
)

A

σ
√
2π
e−(x′−x)2/2σ2

=
A√
π
[erf(

x+R√
2σ

)− erf(
x−R√

2σ
)]

(6.1)

where x,A and σ are the position of the center of the fiber core, maximum

value of photon counts, and the spread of the ion image on the fiber surface

plane assuming a Gaussian distribution. By fitting the fluorescence scan results

to Eq. (6.1), we can estimate the size of the ion image. We see that the ion’s

image is smallest when z = 1.5 mm, which corresponds to the value of the

micrometer stage along the optical axis of the imaging system. We note that

this analysis reduces the problem to a single dimension, an approximation which

is valid when σ << R.

6.2 Individual addressing

Two popular solutions for individual ion addressing have been implemented by

various groups. The first is the multichannel AOM. As the name implies, it is

a linear array of AOM’s that can be individually controlled [5, 20]. While it

allows for a simultaneous operation of multiple qubits, the beams cannot be

steered and therefore one has to align the ions to the location of the beams.
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Our trap lacks the precise potential shaping capability, so we chose to use a pair

of acousto-optic deflectors(AOD)(Brimrose, CQD-150-100-355) for individual

control of qubits [122].

Figure 6.4: Pulse laser beam enters from the left and exits to the right where
the ion chains are located.

One thing that should be considered when using AOD’s for individual ad-

dressing is that the frequency of the laser beam changes as a function of its

position in the ion chain. This is compensated either by a precompensation

AOM or putting two AOD’s in series but in an orthogonal direction, and ap-

plying the same RF frequency to them. When we use the 1st order deflection

in the first AOD and the negative 1st order in the second AOD, the position

dependent frequency shift is canceled, but the beam can still be steered.

Figure 6.5: Pulse laser enters the module via a high power UV fiber. It then
goes through a pair of lenses for beam size optimization and is modulated by a
series of AOD’s. A translatable focusing lens focuses the beam on the imaging
plane of M1. M1 then images the laser beam to the ion chain.

A schematic representation of the system is presented in Fig. 6.4. The beam
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will be reflected by a long-pass dichroic mirror that will be situated between M1

and M2 in the individual detection system. Zemax simulation shows that the

expected spot radius is 5.5 µm at the position of the ion chain, and this value

is maintained throughout the ±35µm of required steering range for a five ion

chain. This corresponds to a 10−5 level of crosstalk between neighboring ions

when the ion spacing is 13.8 µm. The small spot size implies that the system

will be very vulnerable to the thermal drift of its optomechanical components.

Therefore we have designed a fixed optics module which is watercooled and

maintained at a stable temperature, similar to the 369.5 nm laser breakout

board. Its preliminary CAD design is shown below. The individual addressing

system was designed by Jaeun Kim under my supervision.

6.3 Stroboscopic interaction and controlled interfer-

ence between two motional modes

The entangled coherent state has a major drawback that it cannot easily inter-

act coherently with the conventional tools of trapped ion experiment. This is

because the state involves two phase spaces, and in each wave packet rotates at

their respective secular frequency. For the interaction between a quantum state

and the laser to be coherent, their relative phase should remain constant over

the duration of the experiment. In a single mode cat state, this is easily realized

by setting the Raman transition to be resonant to the motional sidebands of

the mode of interest. The same cannot be done for the ECS because we now

have at least two modes.

Let us consider a bilinear blue sideband Rabi oscillation which is realized

by driving qubit transitions simultaneously at two frequencies, ωX and ωY . The

resulting Hamiltonian, derived from Eq. (3.6) is:

138



ĤX+Y =
ℏΩ
2
σ̂+(ηX â

†
X + ηY e

iψâ†Y ) + h.c. (6.2)

where ψ is the phase difference between the X mode BSB laser and Y

mode BSB laser which can be set by the DDS. Here, we assume that the X

and Y modes are sufficiently far apart, which enables us to eliminate the cross

coupling terms that oscillate at e±i(ωX−ωY )t. This Hamiltonian was utilized

by the authors of [44] to observe parity oscillation of a NOON state, which is

created with two motional modes of a trapped ion. They were able to coherently

probe the state with Eq. (6.2) because the number state does not have dynamic

phase unlike the coherent state.

Now, imagine that we apply Eq. (6.2) for a very short amount of time in a

single shot experiment. In this case there should be a well define phase relation

between each of mode of the ECS and the probe beams. The phase information

is only erased when we average over multiple shots because the evolution of

the dynamic phase of the coherent states is much faster than the experimental

time scale. We may be able to overcome this issue if we shine the probe laser

beams for a very short amount of time at a frequency of ωY − ωX just like

a stroboscope. This fixes the phase relation between the ion’s motion and the

probe lasers, and in each stroboscopic cycle the wave function will evolve by a

small amount in a coherent manner.

Of course, stroboscopic interaction reduces the duty cycle, D = τON/(ωY −

ωX), of the probe operation, and the overall duration of experiment will increase

by a factor of 1/D. Thus, it will require a longer coherence time for the motional

states or an increase Rabi frequency for the probe pulse. While the former re-

quires a significant modification of the trap RF stabilization system, the latter

can be achieved by moving to a wider radial mode spacing and slightly modi-
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fying the pulse laser optics and RF system so that each motional mode can be

separately excited. Currently, we limit the Rabi frequency for the probe pulse

to under 5 kHz to prevent it from exciting the unprobed mode because the X

and Y modes are very close. A non-zero τON inevitably results in the smearing

of the relative phase between the probe beam and the coherent states, thus we

will need to optimize between reducing the duty cycle and increasing the phase

coherence of the stroboscopic interaction.

Extracting phonon number distribution in the ψ basis is analogous to count-

ing photon numbers in one of the output ports of a beam splitter where one of

the input ports has a phase shifter which shifts the phase of the incoming mode

by ψ. In this sense, Eq. (6.3) can be used to realize the joint parity operator,

which is required for quantum state tomography [41].

ĤBS =
ℏΩηXηY

2
σ̂ϕ(â

†
X âY e

iψ + âX â
†
Y e

−iψ) (6.3)

We can also consider a second order interaction such as Eq. (6.3). It is the

beam splitter Hamiltonian, and can be realized by setting the Raman detun-

ing to ωX − ωY and driving a bichromatic interaction [110]. The Hamiltonian

rotates at the same rate as the phase difference between the X and Y mode

coherent states, ωX − ωY . Therefore, we can expect the Hamiltonian to act on

the entangled coherent state with a well defined phase relation, enabling us to

drive a beam splitter interaction with controllable phase.

This scheme also requires increasing the separation between the X and Y

mode secular frequencies since at the current separation(2π∗28 kHz), the beam

splitter transition cannot be excited without driving the carrier transition which

is much stronger.
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초록

고전컴퓨터를이용해양자계를모사할경우,양자계의크기가증가함에따라

필요한 계산의 양이 지수함수적으로 증가한다. 따라서 고전 컴퓨터를 이용한 양

자계의 모사는 양자계가 아주 작을 때만 가능하다. 양자 컴퓨터는 이러한 문제를

해결하기 위해 양자적으로 작동하는 시스템으로 양자계를 좀 더 쉽게 모사하려

는 시도이다. 또한 양자 컴퓨터는 고전 컴퓨터와 완전히 다른 방식으로 작동하기

때문에, 큰 수의 소인수 분해처럼 양자역학과 상관없는 몇몇 문제에 대해서도 우

위를 가짐이 알려져 있어, 양자역학과 관계없는 여러 계산에도 상당한 이점을 줄

것이 기대된다. 양자컴퓨터는 안정적이고 쉽게 조작되는 양자계를 이용해 구현할

수 있다. 이온트랩은 가장 많이 사용되는 양자컴퓨터 플랫폼 중 하나이며, 포획된

이온의 스핀과 운동을 이용해 양자정보를 처리한다.

이 학위논문에서는 포획된 이온의 이차원 운동으로 벨 상태와 얽힌 결맞는

상태와 같은 다양한 양자 상태를 만드는 방법을 탐구한다. 이러한 양자상태의 구

현에는 매우 안정적이고 정확히 조작되는 실험 셋업이 필요하므로, 먼저 우리가

실험에서 사용한 양자 컴퓨터 셋업의 개발에 대해 논의한다. 이온트랩 양자 컴퓨

터를 이루는 진공장치, 광학계 등 각 부분에 대한 설명과 그 설계 과정이 논의될

것이다. 그 다음, 가열 속도, 다양한 종류의 결맞음 시간 같은 포획된 이온의 기

본적 특성을 측정하고 분석한다. 또한 이 셋업을 이용해 보편적 양자 게이트 집합

(universal quantum gate set)을 성공적으로 구현하고 그 특성에 대해 논의한다.

다음으로 이온의 이차원 운동을 양자적으로 조작하는 실험에 대해 설명한다.

슈뢰딩거의고양이상태를다차원으로확장한것인얽힌결맞는상태는양자측정,

양자컴퓨팅,양자통신등의분야에서연구되어왔으며,부호화된큐비트(encoded

qubit)의 연구에도 직접적인 관련이 있다. 이 양자상태는 광자와 초전도체를 이용

한 실험에서 구현되었지만, 이온트랩에서는 아직까지 구현되지 않았다. 우리는

이차원 스핀 의존 힘(spin-dependent force)과 스핀상태의 측정을 통해 이온의
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운동으로 이루어진 얽힌 결맞는 상태를 성공적으로 구현했다. 이후 시간에 따라

포논수의 홀짝성(phonon number parity)이 변하는 것을 관찰했고, 이를 통해 두

운동모드의 주기적 양자 얽힘에 대한 기초적 측정을 할 수 있었다.

마지막으로 우리는 이차원 스핀 의존 힘을 이용해 몰머-소렌슨 상호작용을

구현하고, 두 이온 큐비트로 벨 상태를 구현할 수 있다는 것을 보이며, 필요한

라비진동수가 줄어든다는 것을 실험적으로 증명한다.

이 연구에서는 이온트랩 양자컴퓨터를 구축하고, 이 시스템을 이용해 포획된

이온의 이차원 운동을 양자적으로 제어함으로서 큐비트 벨 상태와 얽힌 결맞은

상태를구현할수있다는것을보였다.특히얽힌결맞는상태의구현은,이양자상

태가 결맞는 상태로 부호화 된 큐비트 상태의 벨 상태라는 점을 생각했을 때 더욱

중요해지며 이 연구의 결과는 부호화된 큐비트의 응용에 중요한 역할을 할 것으로

기대된다.

주요어: 포획된 이온, 양자컴퓨터, 양자계산, 얽힌 결맞는 상태, 2큐비트 게이트, 1

큐비트 게이트

학번: 2015-20351
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[28] M. Stobińska, H. Jeong, and T. C. Ralph, Phys. Rev. A 75, 052105 (2007).

145

https://doi.org/10.1109/TQE.2021.3096480
https://doi.org/10.1109/TQE.2021.3096480
https://doi.org/10.1038/s41598-022-27193-9
https://doi.org/10.1038/s41534-022-00579-3
https://doi.org/10.1103/PhysRevX.12.011032
https://doi.org/10.1103/PhysRevLett.109.080501
https://doi.org/10.1103/PhysRevLett.109.080501
https://doi.org/10.1116/1.5126186
https://doi.org/10.1116/1.5126186
https://doi.org/10.48550/arXiv.quant-ph/0703041
https://doi.org/10.48550/arXiv.quant-ph/0703041
https://doi.org/10.1103/RevModPhys.62.867
https://doi.org/10.1103/RevModPhys.62.867
https://doi.org/10.1103/PhysRevA.75.052105


[29] C.-W. Lee, M. Paternostro, and H. Jeong, Phys. Rev. A 83, 022102 (2011).

[30] J. Joo, W. J. Munro, and T. P. Spiller, Phys. Rev. Lett. 107, 083601

(2011).

[31] J. Joo, K. Park, H. Jeong, W. J. Munro, K. Nemoto, and T. P. Spiller,

Phys. Rev. A 86, 043828 (2012).

[32] X. Wang, Phys. Rev. A 64, 022302 (2001).

[33] H. Jeong and M. S. Kim, Phys. Rev. A 65, 042305 (2002).

[34] H. Jeong, M. S. Kim, and J. Lee, Phys. Rev. A 64, 052308 (2001).

[35] S. J. van Enk and O. Hirota, Phys. Rev. A 64, 022313 (2001).

[36] S.-W. Lee and H. Jeong, Phys. Rev. A 87, 022326 (2013).

[37] N. Ofek, A. Petrenko, R. Heeres, P. Reinhold, Z. Leghtas, B. Vlastakis,

Y. Liu, L. Frunzio, S. M. Girvin, L. Jiang, M. Mirrahimi, M. H. Devoret,

and R. J. Schoelkopf, Nature 536, 441 (2016).

[38] C. Flühmann, T. L. Nguyen, M. Marinelli, V. Negnevitsky, K. Mehta,

and J. P. Home, Nature 566, 513 (2019).

[39] A. Ourjoumtsev, F. Ferreyrol, R. Tualle-Brouri, and P. Grangier, Nature

Phys 5, 189 (2009).

[40] Z. Wang, Z. Bao, Y. Wu, Y. Li, W. Cai, W. Wang, Y. Ma, T. Cai, X. Han,

J. Wang, Y. Song, L. Sun, H. Zhang, and L. Duan, Science Advances 8,

eabn1778 (2022).

[41] C. Wang, Y. Y. Gao, P. Reinhold, R. W. Heeres, N. Ofek, K. Chou,

C. Axline, M. Reagor, J. Blumoff, K. M. Sliwa, L. Frunzio, S. M. Girvin,

146

https://doi.org/10.1103/PhysRevA.83.022102
https://doi.org/10.1103/PhysRevLett.107.083601
https://doi.org/10.1103/PhysRevLett.107.083601
https://doi.org/10.1103/PhysRevA.86.043828
https://doi.org/10.1103/PhysRevA.64.022302
https://doi.org/10.1103/PhysRevA.65.042305
https://doi.org/10.1103/PhysRevA.64.052308
https://doi.org/10.1103/PhysRevA.64.022313
https://doi.org/10.1103/PhysRevA.87.022326
https://doi.org/10.1038/nature18949
https://doi.org/10.1038/s41586-019-0960-6
https://doi.org/10.1038/nphys1199
https://doi.org/10.1038/nphys1199
https://doi.org/10.1126/sciadv.abn1778
https://doi.org/10.1126/sciadv.abn1778


L. Jiang, M. Mirrahimi, M. H. Devoret, and R. J. Schoelkopf, Science

352, 1087 (2016).

[42] C. Monroe, D. M. Meekhof, B. E. King, and D. J. Wineland, Science 272,

1131 (1996).

[43] D. Kienzler, C. Flühmann, V. Negnevitsky, H.-Y. Lo, M. Marinelli,

D. Nadlinger, and J. Home, Phys. Rev. Lett. 116, 140402 (2016).

[44] J. Zhang, M. Um, D. Lv, J.-N. Zhang, L.-M. Duan, and K. Kim, Phys.

Rev. Lett. 121, 160502 (2018).

[45] A. C. Lee, J. Smith, P. Richerme, B. Neyenhuis, P. W. Hess, J. Zhang,

and C. Monroe, Phys. Rev. A 94, 042308 (2016).

[46] S. Weidt, J. Randall, S. Webster, E. Standing, A. Rodriguez, A. Webb,

B. Lekitsch, and W. Hensinger, Phys. Rev. Lett. 115, 013002 (2015).

[47] S. Weidt, J. Randall, S. Webster, K. Lake, A. Webb, I. Cohen, T. Nav-

ickas, B. Lekitsch, A. Retzker, and W. Hensinger, Phys. Rev. Lett. 117,

220501 (2016).

[48] K. Lake, S. Weidt, J. Randall, E. D. Standing, S. C. Webster, and W. K.

Hensinger, Phys. Rev. A 91, 012319 (2015).

[49] P. C. Haljan, K.-A. Brickman, L. Deslauriers, P. J. Lee, and C. Monroe,

Phys. Rev. Lett. 94, 153602 (2005).

[50] B. Blinov, Physics 3, 30 (2010).

[51] W. C. Campbell, J. Mizrahi, Q. Quraishi, C. Senko, D. Hayes, D. Hucul,

D. N. Matsukevich, P. Maunz, and C. Monroe, Phys. Rev. Lett. 105,

090502 (2010).

147

https://doi.org/10.1126/science.aaf2941
https://doi.org/10.1126/science.aaf2941
https://doi.org/10.1126/science.272.5265.1131
https://doi.org/10.1126/science.272.5265.1131
https://doi.org/10.1103/PhysRevLett.116.140402
https://doi.org/10.1103/PhysRevLett.121.160502
https://doi.org/10.1103/PhysRevLett.121.160502
https://doi.org/10.1103/PhysRevA.94.042308
https://doi.org/10.1103/PhysRevLett.115.013002
https://doi.org/10.1103/PhysRevLett.117.220501
https://doi.org/10.1103/PhysRevLett.117.220501
https://doi.org/10.1103/PhysRevA.91.012319
https://doi.org/10.1103/PhysRevLett.94.153602
https://doi.org/10.1103/PhysRevLett.104.140501
https://doi.org/10.1103/PhysRevLett.105.090502
https://doi.org/10.1103/PhysRevLett.105.090502


[52] R. Islam, E. E. Edwards, K. Kim, S. Korenblit, C. Noh, H. Carmichael, G.-

D. Lin, L.-M. Duan, C.-C. Joseph Wang, J. K. Freericks, and C. Monroe,

Nat Commun 2, 377 (2011).

[53] E. Mount, D. Gaultney, G. Vrijsen, M. Adams, S.-Y. Baek, K. Hudek,

L. Isabella, S. Crain, A. van Rynbach, P. Maunz, and J. Kim, Quantum

Inf Process 15, 5281 (2016).

[54] R. Islam, W. C. Campbell, T. Choi, S. M. Clark, C. W. S. Conover,

S. Debnath, E. E. Edwards, B. Fields, D. Hayes, D. Hucul, I. V. Inlek,

K. G. Johnson, S. Korenblit, A. Lee, K. W. Lee, T. A. Manning, D. N.

Matsukevich, J. Mizrahi, Q. Quraishi, C. Senko, J. Smith, and C. Monroe,

Opt. Lett., OL 39, 3238 (2014).

[55] R. C. Sterling, H. Rattanasonti, S. Weidt, K. Lake, P. Srinivasan, S. C.

Webster, M. Kraft, and W. K. Hensinger, Nat Commun 5, 3637 (2014).

[56] Y. Park, C. Jung, M. Seong, M. Lee, D. D. Cho, and T. Kim, Sensors 21,

1143 (2021).

[57] K. G. Johnson, J. D. Wong-Campos, A. Restelli, K. A. Landsman,

B. Neyenhuis, J. Mizrahi, and C. Monroe, Review of Scientific Instru-

ments 87, 053110 (2016).

[58] Y. Shen, Quantum chemistry simulation with trapped ion device, Ph.D.

thesis, Tsinghua University (2018).
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J. Fekete, F. Oručević, and P. Krüger, Quantum Sci. Technol. 7, 025001

(2022).

[62] G. Kasprowicz, P. Kulik, M. Gaska, T. Przywozki, K. Pozniak, J. Jarosin-

ski, J. W. Britton, T. Harty, C. Balance, W. Zhang, D. Nadlinger,

D. Slichter, D. Allcock, S. Bourdeauducq, R. Jördens, and K. Pozniak,
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