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Abstract 
  

One of the ambitions in condensed matter physics is to discover new material with a 

quantum phase, which properties are governed by quantum fluctuations and entanglement. 

The quantum spin liquid (QSL) is one of such exotic phases because of the absence of 

magnetic order and hosting long-range entanglement between spins. Among the many 

theoretical models proposed so far, the Kitaev model is probably the best to realize QSL in 

real material. The reason is that it can be precisely solvable and theoretically proposed to 

realize in real material with relatively simple conditions.  

 To realize the Kitaev model in real compounds, we need two ingredients, spin-

orbital entangled Jeff = 1/2 state and an edge-sharing network of octahedrons. The 

entanglement between spin and orbital degree of freedom makes the exchange anisotropic 

and bond-dependent. Obviously, present studies about the Kitaev model have been based 

on the 4d and 5d transition metals because they have strong spin-orbit coupling. However,  

there were some limitations in 4d and 5d compounds, such as the lack of enough candidates 

and the existence of long-range magnetic order. Therefore, we need to investigate other 

possible candidates for realizing the Kitaev model in real materials. Recent theories suggest 

that 3d transition metals, such as cobalt, can also host Jeff = 1/2 state despite small spin-

orbit coupling.  

 In my dissertation, I studied the spin dynamics of cobalt Kitaev candidates with 

two different lattices, honeycomb and triangular, using inelastic neutron scattering (INS). 

First, I examined the evidence of spin-orbital entangled states in the three cobalt 

honeycomb compounds, CoPS3, Na2Co2TeO6 (NCTO), and Na3Co2SbO6 (NCSO). 

Temperature dependence of magnetic excitations shows no signature of Jeff = 1/2 state in 

the CoPS3. However, the spin-orbit exciton, which certificates the spin-orbit entangled state, 
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was observed in other honeycomb compounds NCTO and NCSO. The absence of spin-

orbital entangled Jeff = 1/2 state indicates CoPS3 can be described by rather a simple spin S 

= 3/2 state and cannot have Kitaev-like bond-dependent anisotropy. Based on this 

observation, the spin-wave spectrum of CoPS3 was analyzed by XXZ-like Hamiltonian 

with easy-axis single-ion anisotropy. The XXZ model with anisotropy factor Jx/Jz = 0.6 is 

the best ratio to explain the observed spectrum.  

In the case of NCTO and NCSO, the spin-wave spectrum was analyzed based on 

two different Hamiltonian, XXZ model, and generalized Kitaev-Heisenberg model. Both 

compounds were well-explained by strong Kitaev interaction and other non-Kitaev 

interactions. One important feature is that the sign of the Kitaev term was positive, which 

was not discovered in present Kitaev candidates. Further magnetic phase diagram and two-

magnon density-of-states were calculated to examine these Kitaev candidates 

comprehensively.  

Second, I extended the idea of the Kitaev model to the triangular lattice, which 

gives geometrical frustration. The magnetic van der Waals cobalt triangular 

antiferromagnet CoI2 fulfilled this condition. Using the Luttinger-Tisza method, we put 

forward two potential minimal models to unveil the magnetic structure of CoI2. One of 

these models includes a Kitaev term, while the other omits it. Through INS measurements 

conducted during the paramagnetic phase, we confirmed that the minimal model 

incorporating bond-dependent anisotropy explains the characteristics of CoI2. During the 

ordered phase, the observed spin-wave spectrum displayed significant linewidth 

broadening at the borad momentum space, suggesting magnon decay. To delve deeper into 

this decay process, we conducted an analysis utilizing the density of states for two-magnon 

interactions. 
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Chapter 1 
Introduction 
 
 
 
 
1.1 Kitaev model and Jackeli–Khaliullin mechanism 
 

1.1.1 Kitaev model 
Realizing quantum phases of matter, which stabilized from the quantum fluctuations and 

long-range entanglement, has become an important topic in condensed matter physics. One 

example is a quantum spin liquid (QSL), which has no magnetic order but exhibits long-

range entanglement [Ref. 1.1]. The concept of realizing QSL was first suggested by P. 

Anderson based on a spin S = 1/2 system on a triangular lattice with isotropic 

antiferromagnetic interactions (see Fig. 1.1(a)) [Ref. 1.2]. The competition between the 

interactions of the two nearest bonds results in spin frustration because of geometry. 

Anderson suggests that the ground state of this system is the superposition of spin singlets 

and is called a resonant valence bond state [Ref. 1.2]. Although numerical calculations 

reveal that the ground state has a non-collinear 120° magnetic order, this concept was still 

examined in different geometrically frustrated lattices, such as kagome lattices or a 

triangular lattice with further interactions.   

 

Despite tremendous progress and inputs, finding such quantum phases is still challenging 

because there is no exact solution for realizing such a state in any realistic model 
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Hamiltonian. However, Kitaev reported a significant breakthrough in 2006 by suggesting 

a simple model, namely the Kitaev model [Ref. 1.3], which is a spin S = 1/2 system on a 

honeycomb lattice that can be exactly solved with a QSL ground state. The Hamiltonian of 

the Kitaev model can be expressed as follows: 

𝐻𝐻 = 𝐾𝐾 � 𝑆𝑆𝑖𝑖𝛼𝛼𝑆𝑆𝑗𝑗𝛼𝛼

<𝑖𝑖𝑗𝑗>∈𝛼𝛼

,                                                         (1.1) 

where index α = x, y, z denotes the three nearest-neighbour bonding types in a honeycomb 

lattice (see Fig. 1.1(b)). Because the Ising axes of each nearest-neighbour bond are mutually 

orthogonal, the frustration of spins is observed. The QSL state of the Kitaev model can be 

understood as a quantum-mechanical superposition of an infinite number of classical spin 

configurations [Ref. 1.3,1.4]. Each classical spin configuration consists of one ‘happy’ pair 

and two ‘unhappy’ pairs; here ‘happy’ indicates that the two nearest neighbours align with 

the same Ising axis (see Fig. 1.2(b)). The Kitaev QSL state is distinguished by a local 

conserved quantity called the Z2 flux operator W = 26𝑆𝑆1𝑧𝑧𝑆𝑆2𝑥𝑥𝑆𝑆3
𝑦𝑦𝑆𝑆4𝑧𝑧𝑆𝑆5𝑥𝑥𝑆𝑆6

𝑦𝑦 , around each 

honeycomb lattice with eigenvalues of ±1. The Kitaev model provides a unique route to 

Figure 1.1 Schematic showing comparison between (a) geometric frustration and (b) 
Kitaev model. 
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realize a QSL state—exchange interactions in the Kitaev model are highly anisotropic Ising 

interactions, rather than Heisenberg interactions, which most importantly can be exactly 

solved for any K. The analytical solution of the Kitaev model can be derived by 

fractionalizing the spin S =1/2 operator into the four flavours of Majorana fermions as 

follows: 

𝑆𝑆𝑗𝑗
𝛾𝛾 =

𝑖𝑖
2
𝑏𝑏𝑗𝑗
𝛾𝛾𝑐𝑐𝑗𝑗,                                                            (1.2) 

where 𝑏𝑏𝑗𝑗
𝛾𝛾 and cj are the four Majorana operators that satisfy the relation 𝑏𝑏𝑗𝑗𝑥𝑥𝑏𝑏𝑗𝑗

𝑦𝑦𝑏𝑏𝑗𝑗𝑧𝑧𝑐𝑐𝑗𝑗 = 1. 

This constraint equation preserves the spin 1/2 algebra and local two-dimensional Hilbert 

space. With this fractionalization, we can rewrite the Hamiltonian with the following exact 

form: 

Figure 1.2 Schematic of the Kitaev model. (a) Illustration of bond-dependent anisotropic 
interactions in the Kitaev model and Z2 flux W. (b) Examples of classical spin configuration 
of the ground state of the Kitaev model. The grey circle indicates the ‘happy’ pairs, which 
minimise the energy from Ktiaev interactions. The Kitaev QSL state is a quantum 
superposition of these configurations. (c-d) Schematic of the Kitaev model with an excited 
state and ground state (QSL) adapted from [Ref. 1.8]. 
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𝐻𝐻 =  −
𝐾𝐾
4

� 𝑢𝑢𝑖𝑖𝑗𝑗
𝛾𝛾 𝑐𝑐𝑖𝑖𝑐𝑐𝑗𝑗

<𝑖𝑖,𝑗𝑗>∈𝛾𝛾

,                                                 (1.3) 

where 𝑢𝑢𝑖𝑖𝑗𝑗
𝛾𝛾 = 𝑏𝑏𝑖𝑖

𝛾𝛾𝑏𝑏𝑗𝑗
𝛾𝛾  are the bond operators with eigenvalues ±I, and their production 

around the honeycomb determines the Z2 flux W.  

 

1.1.2 Jackeli–Khaliullin mechanism 

When proposed initially, the Kitaev model was considered just as a toy model because this 

strong Ising anisotropy is challenging to achieve in a pure spin S = ½ system. However, it 

was suggested that the model could be realized in real compounds if they satisfy a few 

necessary conditions. Jackeli and Khaliullin first microscopically verified Kitaev-like 

exchange interactions in a natural material, namely the Jackeli–Khaliullin (JK) 

mechanism [Ref. 1.5]. The first essential condition is a spin-orbital entangled state, which 

results in a common quantization axis between the spin and the orbital Hilbert space. This 

entanglement is usually attributed to spin–orbit coupling, and thus, a strong spin–orbit 

coupling is necessary to stabilize the spin-orbital entangled state [Ref. 1.5]. This condition 

can be attributed to the form of the Kitaev model because the direction of the spin must be 

specified based on the crystallographic axes. The JK mechanism requires a pseudospin jeff 

= 1/2 state, equivalent to a spin S = 1/2 doublet, except for its anisotropic spatial distribution. 

The wave function of the jeff = 1/2 state can be expressed as follows [Ref. 1.5]: 

�𝑗𝑗𝑒𝑒𝑒𝑒𝑒𝑒 =
1
2

,   𝑗𝑗𝑒𝑒𝑒𝑒𝑒𝑒𝑧𝑧 =  ±
1
2

 � =  ∓
1
√3

��𝑑𝑑𝑥𝑥𝑦𝑦, ↑↓� ± �𝑑𝑑𝑦𝑦𝑧𝑧, ↓↑� + 𝑖𝑖|𝑑𝑑𝑥𝑥𝑧𝑧, ↓↑⟩�           (1.4). 

where dxy, dyz, and dxy are the three bases in the atomic t2g orbitals. The direction of the spin 

is coupled with the orbital wave function. Therefore, this orbital dependence of the spin 

gives rise to anisotropic exchange interactions. The second condition is associated with the 

crystal structure. When the bonding angle between two ligands and a transition metal 
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becomes 90° degrees, Heisenberg interactions are eliminated because the two different 

exchange paths of the Heisenberg interactions destructively interfere (see Fig. 1.4). This 

type of geometry can be achieved using an edge-sharing network, in which two octahedrons 

are connected by their specific edges [Ref. 1.5]. 

Figure 1.3 Real-space spin configuration of a spin-orbital entangled jeff = 1/2 state with 
different quantisation axes. (a) z axis parallel to the [1, 1, 1] direction, which is useful for 
considering trigonal distortions. (b) z axis parallel to the [0, 0, 1] direction.  
 

Figure 1.4 (a) Edge-sharing metal–ligand octahedra i and j; the blue and purple spheres 
depict the transition metal and ligands, respectively. (b) Schematic of destructive 
interference in an edge-sharing network. 
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1.2 Review of the present Kitaev candidates and their limitations 
Based on the JK mechanism, numerous experimental studies have been conducted on 

Kitaev candidates, including 4d and 5d transition metal compounds. Ir4+ and Ru3+ ions 

satisfy the JK mechanism because they have a low-spin d5 configuration and exhibit a 

strong spin–orbit coupling. Indeed, Jackeli and Khaliullin suggest the prototype Na2IrO3 as 

a Kitaev candidate [Ref. 1.5,1.6]. There are several variations of Na2IrO3, because the Na+ 

ions can be replaced with Li+ or Cu+ ions [Ref. 1.4]. α-RuCl3 exhibits the JK mechanism, 

similar to Na2IrO3, which is an ideal platform for exploring Kitaev physics [Ref. 1.7]. 

Among these candidates, α-RuCl3 shows several distinct physical properties close to those 

of the Kitaev model. For example, several inelastic scattering measurements reveal the 

occurrence of fractionalized excitations in α-RuCl3 [Ref. 1.7–1.9]. Moreover, the magnetic 

order in this material can be suppressed by applying an in-plane magnetic field (7–9 T) [Ref. 

1.10]. Because of these exciting behaviours, various authors have extensively studied the 

field-induced behaviour of RuCl3 over the years. The recently demonstrated thermal Hall 

effect is a direct signature of half-quantized Kitaev QSL states [Ref. 1.11]. However, the 

half-quantized thermal Hall effect in α-RuCl3 is still a controversial phenomenon. The 

recent findings on these Kitaev candidates are summarised in this review article [Ref. 1.4].  

 

Conversely, the present Kitaev candidates exhibit several limitations. First, most of these 

candidates are magnetically ordered at a finite temperature of a few Kelvin [Ref. 1.4]. This 

magnetic order originates from non-Kitaev interactions, such as isotropic Heisenberg 
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interactions (JH) or symmetrically allowed off-diagonal interactions (Γ). Non-Kitaev 

interactions are realistic because of two primary reasons. (i) The JK mechanism simplifies 

the path of the exchange interaction [Ref. 1.5]. Natural materials exhibit super-exchange 

interactions meditated by ligands and direct exchange interactions due to orbital 

overlapping [Ref. 1.12,1.13]. This extra exchange path gives rise to finite non-Heisenberg 

interactions (See Fig. 1.5). (ii) Real materials always have non-cubic distortions, because 

of which the angle of exchange path deviates from 90º; this deviation minimizes the 

destructive interference and thus leads to Heisenberg interactions [Ref. 1.13].  

 

The second limitation is the negative sign of Kitaev interactions (i.e. ferromagnetic). In the 

pure Kitaev model, the sign of the Kitaev interaction does not affect the QSL ground state. 

Nonetheless, the robustness of the QSL state under an applied magnetic field is different 

Figure 1.5 Schematic showing the exchange process in the d-electron case. (a) Indirect d–
p–d hopping, which is considered in the JK mechanism. (b) Direct d–d hopping, which 
gives rise to Heisenberg interactions. (c) A mixture of indirect and direct hopping, which 
leads to an off-diagonal symmetric anisotropy. 
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according to the sign of Kitaev interaction [Ref. 1.14]. In the case of K < 0, the QSL state 

is only a Z2 gauge field whose stability can be easily perturbed by applying a magnetic field. 

In contrast, in the case of K > 0, the QSL state is more stable under an applied magnetic 

field. Moreover,  the type of gauge field changes from Z2 to U(1) symmetry with the 

increasing magnetic field strength. This observation implies that the antiferromagnetic 

Kitaev model is a suitable platform for controlling the gaps of the QSL phase using an 

external variable. Therefore, a new candidate is required to examine real systems that 

exhibit Kitaev model characteristics through experiments.  

 

1.3 Spin-orbital entangled Jeff = 1/2 state in cobalt compounds 
After comprehensive studies on iridium and ruthenium-based Kitaev candidates, theorists 

are now trying to overcome the limitations of these candidates. Several studies have been 

reported on realising Kitaev interactions in different systems. In 2018, two papers 

introduced new candidates for realizing Kitaev interactions [Ref. 1.15,1.16]. The new 

Figure 1.6 Phase diagrams in a unifrom magnetic field with (a) AFM Kitaev model and 
(b) FM Kitaev model. GSL incidates a gapless spin liquid, KSL is a gapped Kitaev spin 
liquid, and PL is the polarized state. The figures are adapted from [Ref. 1.14]  
 



 
 
 
 
 

Chapter 1 

9 
 
 
 
 

 

platform is a d7 high-spin configuration, which can also host a spin-orbital entangled Jeff = 

1/2 state. Under a cubic crystal electric field, the d7 configuration has the lowest 4T1 

multiplet states with an S = 3/2 high-spin configuration and an unquenched angular 

momentum L = 1, even for a weak spin–orbit coupling (see Fig. 1.7(a-b)). Therefore, spin–

orbit coupling acts on the multiplet states and stabilizes a spin-orbital entangled Jeff = 1/2 

state. The wavefunction of the lowest Jeff = 1/2 state can be expressed based on the multi-

electron picture as follows [Ref. 1.15,1.16]: 

�𝐽𝐽𝑒𝑒𝑒𝑒𝑒𝑒 = ±
1
2

 � =
1
√2

�∓1, ±
3
2
� −

1
√3

�0, ±
1
2
� +

1
√6

�±1,∓
1
2
� .              (1.5) 

where the basis is a multiplet state |𝐿𝐿, 𝑆𝑆⟩ (L and S indicate the sum of the orbital and spin 

states of 7 electrons in the d7 configuration). This Jeff = 1/2 state contains additional spin-

active eg electrons and is thus different from the normal d5 state. The presence of eg 

Figure 1.7 Spin-orbital entangled Jeff = 1/2 state in cobalt ions and exchange interactions. 
(a) Schematic of a spin-orbital entangled Jeff = 1/2 state in cobalt based on the multiplet 
basis. (b) Comparison of a single-electron basis (left) and multi-electron basis (right). (c) 
Possible exchange hopping process in a d7 high-spin configuration. (d) Exchange 
parameters for the hopping process adapted from the [Ref. 1.17].  
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electrons opens up new exchange hopping paths, such as eg–eg and t2g–eg. Theoretical 

calculations indicate that the Heisenberg interaction JH is eliminated because of the same 

magnitude and different signs of the t2g–eg and eg–eg hopping interactions (see Fig. 

1.7(d)) [Ref. 1.17]. These results prompted investigations on cobalt compounds to realize 

ideal Kitaev models, whose characteristics are better than those of the previous candidates.  

 
1.4 Outline of thesis 

This thesis covers the spin dynamics of cobalt compound-based Kitaev candidates with two 

different lattices: honeycomb and triangular lattices. This chapter explains the concept of 

the Kitaev model and its realization in real materials.  

 

Chapter 2 introduces the basic theory of spin-wave calculations using a rotational frame 

method used in Chapters 4–6. First, a general methodology to calculate spin waves in the 

non-interacting limit is described. Then, two possibilities of magnon decay in Kitaev-type 

materials are suggested. 

 

Chapter 3 illustrates the experimental techniques used during the study. This chapter is 

divided into sample synthesis and inelastic neutron scattering. The sample synthesis section 

describes the standard solid-state reaction methods for synthesizing polycrystalline samples 

and the Bridgman method for fabricating single crystals. Next, the basics of the inelastic 

neutron scattering process and the principle of time-of-flight spectroscopy are introduced. 

Finally, details of the beamlines and multiple incident energy method are presented. 

 

Chapter 4 verifies the presence of a Jeff = 1/2 state in the van der Waals antiferromagnet 

CoPS3. The temperature dependence of magnetic excitation implies that CoPS3 is far from 
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the spin-orbital entangled Jeff = 1/2 state. The spin-wave excitation is analyzed using the 

XXZ-like Hamiltonian with the spin S = 3/2 model. We found that the spin-wave spectrum 

can be explained by considering a strong XXZ anisotropy factor with α = Jx/Jz = 0.6.  

 

Chapter 5 presents the spin dynamics of the cobalt honeycomb materials Na2Co2TeO6 and 

Na3Co2SbO6. Using the inelastic neutron scattering technique, we observed a spin–orbit 

exciton at 20–30 meV in both compounds, and the presence of this exciton indicates the 

presence of Jeff = 1/2 ground states. Spin-wave analysis confirmed that both the compounds 

have finite Kitaev interactions but different signs (K > 0) compared to other reported 

candidates. We further analyzed the magnetic phase diagrams and performed two-magnon 

density-of-states (DOS) calculations to explain the magnetic nature of these compounds.   

 

In Chapter 6, we demonstrate the first realization of Kitaev interactions on a triangular 

lattice with CoI2. Using the Luttinger–Tisza method, we suggest two possible minimum 

models for explaining the magnetic structure of CoI2: one with a Kitaev term and one 

without a Kitaev term. Inelastic neutron scattering at the paramagnetic phase confirms that 

the minimal model with a bond-dependent anisotropy can explain the nature of CoI2. The 

spin-wave spectrum of the ordered phase shows significant linewidth broadening over the 

momentum space, indicating magnon decay. We further analyzed this magnon decay 

process using the two-magnon DOS.  
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Chapter 2 
Theoretical background 
  
  

  
 
2.1 General solution for the linear spin-wave theory 
Spin wave is the collective excitation in an ordered magnetic structure. Equivalently, we 

can describe the spin wave in the view of quasiparticles, known as magnon. Since the 

magnetic Hamiltonian determines all the features of magnetic properties, we can calculate 

the magnon dispersion using the magnetic Hamiltonian. General spin Hamiltonian with 

exchange interactions can be written as follows: 

𝐻𝐻� =  � 𝑆𝑆𝑚𝑚𝑚𝑚 ⋅ 𝐽𝐽𝑚𝑚𝑚𝑚,𝑛𝑛𝑛𝑛 ⋅ 𝑆𝑆𝑛𝑛𝑛𝑛
𝑚𝑚,𝑛𝑛,𝑚𝑚,𝑛𝑛

                                              (2.1)  

where m,n are the indices of the unit cell, i, j are the indices of the magnetic moments 

within the unit cell, and J is the 3 × 3 exchange matrix between Smi and Snj.  

 
2.1.1 Rotating frame method 

The standard approach for calculating magnon dispersion with a collinear magnetic 

structure is to construct a magnetic supercell. In this case, the z-axis of the local coordinates 

is parallel to the spin polarisation direction. However, this approach cannot be used for an 

incommensurate magnetic order because it needs a large magnetic supercell for 

calculations. The rotating frame method can overcome this problem and be generalized in 

collinear or non-colinear orders [Ref. 2.1]. For example, we can transform lab coordinates 

to local coordinates via a rotation matrix, which can explain the magnetic structure. The 
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rotating angle depends on the propagation vector of the magnetic order Qm and the position 

of the magnetic cell rn: 

𝜙𝜙𝑛𝑛 = 𝑸𝑸𝑚𝑚 ⋅ 𝒓𝒓𝑛𝑛                                                               (2.2) 

Therefore, the transformation between to coordinates can be written as follows: 

𝑆𝑆𝑚𝑚,𝑙𝑙𝑙𝑙𝑙𝑙 = �
𝑆𝑆𝑚𝑚𝑥𝑥0

𝑆𝑆𝑚𝑚
𝑦𝑦0

𝑆𝑆𝑚𝑚𝑧𝑧0
�

𝑙𝑙𝑙𝑙𝑙𝑙

=  𝑅𝑅�𝑚𝑚 �
𝑆𝑆𝑚𝑚𝑥𝑥

𝑆𝑆𝑚𝑚
𝑦𝑦

𝑆𝑆𝑚𝑚𝑧𝑧
�

𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙

                                          (2.3) 

𝑆𝑆𝑚𝑚,𝑙𝑙𝑙𝑙𝑙𝑙𝛼𝛼 =  �𝑅𝑅𝑚𝑚
𝛼𝛼𝛼𝛼 ⋅ 𝑆𝑆𝑚𝑚,𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙

𝛼𝛼

𝛼𝛼

                                                       (2.4) 

where 𝛼𝛼 and 𝜇𝜇 runs over the {x, y, z}. For the spiral order lying on the x-y plane, we can 

express the rotation matrix as 

𝑆𝑆𝑚𝑚 = �
𝑆𝑆𝑚𝑚𝑥𝑥0

𝑆𝑆𝑚𝑚
𝑦𝑦0

𝑆𝑆𝑚𝑚𝑧𝑧0
� =  �

0 −𝑠𝑠𝑠𝑠𝑠𝑠𝜙𝜙𝑚𝑚 𝑐𝑐𝑐𝑐𝑠𝑠𝜙𝜙𝑚𝑚
0 𝑐𝑐𝑐𝑐𝑠𝑠𝜙𝜙𝑚𝑚 𝑠𝑠𝑠𝑠𝑠𝑠𝜙𝜙𝑚𝑚
−1 0 0

��
𝑆𝑆𝑚𝑚𝑥𝑥

𝑆𝑆𝑚𝑚
𝑦𝑦

𝑆𝑆𝑚𝑚𝑧𝑧
�                          (2.5) 

 

2.1.2 Holstein–Primakoff transformation 

Spin operators can be expressed as bosonic operators using the Holstein–Primakoff 

transformation [Ref. 2.2]: 

𝑆𝑆𝑚𝑚𝑚𝑚
+ = �2𝑆𝑆 − 𝑏𝑏𝑚𝑚𝑚𝑚

† 𝑏𝑏𝑚𝑚𝑚𝑚𝑏𝑏𝑚𝑚𝑚𝑚,   𝑆𝑆𝑚𝑚𝑚𝑚
− =  𝑏𝑏𝑚𝑚𝑚𝑚

† �2𝑆𝑆 − 𝑏𝑏𝑚𝑚𝑚𝑚
† 𝑏𝑏𝑚𝑚𝑚𝑚,   𝑆𝑆𝑚𝑚𝑚𝑚

𝑧𝑧 = 𝑆𝑆 − 𝑏𝑏𝑚𝑚𝑚𝑚
† 𝑏𝑏𝑚𝑚𝑚𝑚       (2.6) 

where 𝑆𝑆𝑚𝑚𝑚𝑚
± = 𝑆𝑆𝑚𝑚𝑚𝑚

𝑥𝑥 ± 𝑠𝑠𝑆𝑆𝑚𝑚𝑚𝑚
𝑦𝑦   and 𝑏𝑏𝑚𝑚𝑚𝑚 �𝑏𝑏𝑚𝑚𝑚𝑚

† �  is a magnon annihilation (creation) operator. 

By applying Eq. 2.4 and Eq. 2.6 to Eq. 2.1, the magnetic Hamiltonian can be expanded in 

the power of 1/S as follows [Ref. 2.3]: 

𝐻𝐻 = 𝐻𝐻0 + 𝐻𝐻1 +𝐻𝐻2 +𝐻𝐻3 + 𝑂𝑂(𝑆𝑆2−�
𝑚𝑚
2 �)                                        (2.7) 

where Hm denotes the mth power of the magnon operators 𝑏𝑏𝑚𝑚 and 𝑏𝑏𝑚𝑚
†. Physically, H0 shows 
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the classical ground state energy, and H1 should vanish because it perturbs the ground state. 

The higher-order terms are expected to have a negligible effect for a large S case because 

Hm ~ O(S(2-m/2)). However, these terms become significant at the quantum limit of S = 1/2.  

 

2.1.3 Linear spin-wave theory  

Non-interacting magnon can be calculated using only the quadratic term H2 [Ref. 2.1]. In 

this case, it is useful to define two unit vectors: 

𝑧𝑧𝑚𝑚𝛼𝛼 =  𝑅𝑅𝑚𝑚𝛼𝛼𝑥𝑥 + 𝑠𝑠𝑅𝑅𝑚𝑚
𝛼𝛼𝑦𝑦                                                            (2.8) 

𝑣𝑣𝑚𝑚𝛼𝛼 = 𝑅𝑅𝑚𝑚𝛼𝛼𝑧𝑧                                                                            (2.9) 

where v is a unit vector. The spin operators can be expressed with bosonic operators as 

follows: 

𝑆𝑆𝑚𝑚𝑚𝑚
𝛼𝛼 =  �

𝑆𝑆
2 �
𝑧𝑧�̅�𝑚𝛼𝛼𝑏𝑏𝑚𝑚𝑚𝑚 + 𝑧𝑧𝑚𝑚𝛼𝛼𝑏𝑏𝑚𝑚𝑚𝑚

† � + 𝑣𝑣𝑚𝑚𝛼𝛼�𝑆𝑆 − 𝑏𝑏𝑚𝑚𝑚𝑚
† 𝑏𝑏𝑚𝑚𝑚𝑚�                             (2.10) 

Then, the Hamiltonian is given by: 

𝐻𝐻 = � ��
𝑆𝑆
2 �
𝑧𝑧�̅�𝑚𝛼𝛼𝑏𝑏𝑚𝑚𝑚𝑚 + 𝑧𝑧𝑚𝑚𝛼𝛼𝑏𝑏𝑚𝑚𝑚𝑚

† � + 𝑣𝑣𝑚𝑚𝛼𝛼�𝑆𝑆 − 𝑏𝑏𝑚𝑚𝑚𝑚
† 𝑏𝑏𝑚𝑚𝑚𝑚��

𝑚𝑚𝑛𝑛,𝑚𝑚𝑛𝑛,𝛼𝛼𝛼𝛼

𝐽𝐽𝑚𝑚𝑚𝑚,𝑛𝑛𝑛𝑛
𝛼𝛼𝛼𝛼 ��

𝑆𝑆
2
�𝑧𝑧�̅�𝑛

𝛼𝛼𝑏𝑏𝑛𝑛𝑛𝑛 + 𝑧𝑧𝑛𝑛
𝛼𝛼𝑏𝑏𝑛𝑛𝑛𝑛

† �

+ 𝑣𝑣𝑛𝑛
𝛼𝛼�𝑆𝑆 − 𝑏𝑏𝑛𝑛𝑛𝑛

† 𝑏𝑏𝑛𝑛𝑛𝑛��                                                                                     (2.11) 

After sorting to the quadratic order, 

𝐻𝐻2 = �𝑥𝑥𝑚𝑚
† ℎ𝑚𝑚𝑛𝑛𝑥𝑥𝑚𝑚

𝑚𝑚𝑛𝑛

                                                        (2.11) 

where xm is the basis vector of the magnon operator. The basis vector xm is defined as: 



 
 
 
 
 

Chapter 2 

16 
 
 
 
 

 

𝑥𝑥𝑚𝑚 =

⎣
⎢
⎢
⎢
⎢
⎢
⎡
𝑏𝑏𝑚𝑚1
⋮

𝑏𝑏𝑚𝑚𝑚𝑚

𝑏𝑏𝑚𝑚1
†

⋮
𝑏𝑏𝑚𝑚𝑚𝑚
† ⎦
⎥
⎥
⎥
⎥
⎥
⎤

, 𝑥𝑥𝑚𝑚
† = �𝑏𝑏𝑚𝑚1

† , … , 𝑏𝑏𝑚𝑚𝑚𝑚
† ,𝑏𝑏𝑚𝑚1, … , 𝑏𝑏𝑚𝑚𝑚𝑚�                            (2.12) 

where N is the number of magnetic atoms per unit cell. 

 

To diagonalize H2, one needs to express operators using reciprocal space representation 

with Fourier transform: 

𝑏𝑏𝑚𝑚𝑚𝑚 =
1
√𝐿𝐿

� 𝑏𝑏𝑚𝑚(𝑘𝑘)𝑒𝑒𝑚𝑚𝒌𝒌⋅𝒓𝒓𝑚𝑚
𝑘𝑘∈𝐵𝐵.𝑍𝑍.

                                              (2.13) 

where L is the number of sites in the system. After Fourier transformation, the quadratic 

Hamiltonian can be rewritten as: 

𝐻𝐻 =  �𝑋𝑋†(𝑘𝑘)ℎ𝑘𝑘𝑋𝑋(𝑘𝑘)
𝑘𝑘

                                                  (2.14) 

where X(k) is the Fourier transform of the magnon basis vector and is expressed as: 

𝑋𝑋(𝑘𝑘) =

⎣
⎢
⎢
⎢
⎢
⎢
⎡
𝑏𝑏1(𝑘𝑘)
⋮

𝑏𝑏𝑚𝑚(𝑘𝑘)
𝑏𝑏1
†(−𝑘𝑘)
⋮

𝑏𝑏𝑚𝑚
†(−𝑘𝑘)⎦

⎥
⎥
⎥
⎥
⎥
⎤

,𝑋𝑋†(𝑘𝑘) = �𝑏𝑏1
†(𝑘𝑘), … , 𝑏𝑏𝑚𝑚

† (𝑘𝑘),𝑏𝑏1(−𝑘𝑘), … , 𝑏𝑏𝑚𝑚(−𝑘𝑘)�       (2.15)  

We can solve this problem using the generalized Bogliubov transformation. First, we can 

define the commutation matrix g based on the property of bosonic operators: 

�𝑋𝑋,𝑋𝑋†� = 𝑋𝑋(𝑋𝑋∗)𝑇𝑇 − (𝑋𝑋∗𝑋𝑋𝑇𝑇)𝑇𝑇 = �𝐼𝐼 0
0 −𝐼𝐼�  ≡ 𝑔𝑔                  (2.16) 

where I is an N × N identity matrix. The eigenvalues d and eigenvectors V of 𝑔𝑔ℎ need to 

be calculated, where V constrains the eigenvectors as columns. The magnon dispersions 

are 𝜔𝜔 = 𝑔𝑔 ⋅ 𝑑𝑑. Further, for each magnon energy, 𝜔𝜔𝑚𝑚 belongs to a linear combination of 
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bosonic operators as 𝑏𝑏𝑚𝑚′ = ∑ 𝑆𝑆𝑚𝑚𝑛𝑛𝑏𝑏𝑛𝑛𝑛𝑛 , where S can be calculated as 

𝑆𝑆 = 𝑉𝑉 ⋅ (𝑔𝑔𝑉𝑉𝑇𝑇𝑔𝑔𝑉𝑉)−
1
2                                                 (2.17) 

This generalized solution of magnon dispersion with more than one magnetic sub-lattice 

is implemented in SpinW [Ref. 2.1], which has been widely used in the neutron scattering 

community, including this thesis.  

 

2.1.4 Bond-dependent anisotropy with a non-collinear magnetic 
order 

Interestingly, the generalized solution for the linear spin-wave theory (LSWT) simulation 

demonstrated in Chapter 2.1.3 can yield a wrong answer for some special cases. For 

instance, when the spin Hamiltonian undergoes a bond-dependent anisotropy exchange 

with the non-collinear magnetic order. However, it has been thoughtfully considered 

because most materials with bond-dependent anisotropy exchange have a collinear spin 

structure. This failure can be attributed to the assumption of periodicity in the spin 

Hamiltonian. Before we use the Fourier transform in Eq. 2.11, we assume that the exchange 

matrix Jij is periodic as  

𝐽𝐽𝑚𝑚𝑚𝑚,𝑛𝑛𝑛𝑛
𝛼𝛼𝛼𝛼 = 𝐽𝐽𝑚𝑚𝑛𝑛

𝛼𝛼𝛼𝛼(𝑑𝑑)                                                     (2.18) 

where d = rn - rm is the distance between the origin of 2 unit cells. This assumption is usually 

valid but fails in the presence of bond-dependent anisotropy. If the exchange matrix 

satisfies Eq. 2.18, then it only contains the 𝜙𝜙𝑚𝑚 − 𝜙𝜙𝑛𝑛 = 𝑄𝑄 ⋅ 𝑑𝑑  term defined in Eq. 2.2. 

However, with the bond-dependent anisotropy, there is also an additional phase term: 𝜙𝜙𝑚𝑚 +

𝜙𝜙𝑛𝑛 =  2𝑄𝑄 ⋅ 𝑟𝑟𝑚𝑚 + 𝑄𝑄 ⋅ 𝑑𝑑 . The position-dependent term 𝑄𝑄 ⋅ 𝑟𝑟  cannot disappear for the non-

collinear case. Therefore, Fourier transformation is required for a non-collinear magnetic 

order with bond-dependent anisotropy.  
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This is the case for CoI2, which is discussed in Chapter 6. Here, we will briefly explain the 

LSWT calculations for bond-dependent anisotropy with a non-collinear order. In CoI2, we 

can minimize the spin Hamiltonian on a triangular lattice as follows: 

𝐻𝐻 =  � �𝐽𝐽1�𝑆𝑆𝑚𝑚𝑥𝑥𝑆𝑆𝑛𝑛𝑥𝑥 + 𝑆𝑆𝑚𝑚
𝑦𝑦𝑆𝑆𝑛𝑛

𝑦𝑦 + Δ1𝑆𝑆𝑚𝑚𝑧𝑧𝑆𝑆𝑛𝑛𝑧𝑧�
𝑛𝑛=1

<𝑚𝑚,𝑛𝑛>𝑛𝑛

+ 2𝐽𝐽±±��𝑆𝑆𝑚𝑚𝑥𝑥𝑆𝑆𝑛𝑛𝑥𝑥 − 𝑆𝑆𝑚𝑚
𝑦𝑦𝑆𝑆𝑛𝑛

𝑦𝑦� cos𝜙𝜙𝛼𝛼 − �𝑆𝑆𝑚𝑚𝑥𝑥𝑆𝑆𝑛𝑛
𝑦𝑦 + 𝑆𝑆𝑚𝑚

𝑦𝑦𝑆𝑆𝑛𝑛𝑥𝑥� sin𝜙𝜙𝛼𝛼��

+ � 𝐽𝐽3�𝑆𝑆𝑚𝑚𝑥𝑥𝑆𝑆𝑛𝑛𝑥𝑥 + 𝑆𝑆𝑚𝑚
𝑦𝑦𝑆𝑆𝑛𝑛

𝑦𝑦 + Δ3𝑆𝑆𝑚𝑚𝑧𝑧𝑆𝑆𝑛𝑛𝑧𝑧�
𝑛𝑛= 3

<𝑚𝑚,𝑛𝑛>𝑛𝑛

                              (2.20) 

where 𝜙𝜙α ∈ �0, ± 2𝜋𝜋
3
� is a bond-dependent phase factor for each bond. Using the rotation 

frame method with Eq. 2.5, we can express the quadratic order H2 of the spin Hamiltonian 

as follows: 

𝐻𝐻 = � �  𝐽𝐽1 �Δ1�̃�𝑆𝑚𝑚𝑥𝑥�̃�𝑆𝑛𝑛𝑥𝑥 + cos�𝜙𝜙𝑚𝑚 − 𝜙𝜙𝑛𝑛� ��̃�𝑆𝑚𝑚𝑧𝑧�̃�𝑆𝑛𝑛𝑧𝑧 + �̃�𝑆𝑚𝑚
𝑦𝑦�̃�𝑆𝑛𝑛

𝑦𝑦��
<i,j>

+ 2𝐽𝐽±± cos�𝜙𝜙𝛼𝛼 + 𝜙𝜙𝑚𝑚 + 𝜙𝜙𝑛𝑛� ��̃�𝑆𝑚𝑚𝑧𝑧�̃�𝑆𝑛𝑛𝑧𝑧 − �̃�𝑆𝑚𝑚𝑧𝑧�̃�𝑆𝑛𝑛𝑧𝑧��

+ � 𝐽𝐽𝑛𝑛 �Δn�̃�𝑆𝑚𝑚𝑥𝑥�̃�𝑆𝑛𝑛𝑥𝑥 + cos�𝜙𝜙𝑚𝑚 − 𝜙𝜙𝑛𝑛� ��̃�𝑆𝑚𝑚𝑧𝑧�̃�𝑆𝑛𝑛𝑧𝑧 + �̃�𝑆𝑚𝑚
𝑦𝑦�̃�𝑆𝑛𝑛

𝑦𝑦��
<i,j>n

                      (2.21) 

In this case, the position-dependent phase terms become 

𝜙𝜙𝑚𝑚 − 𝜙𝜙𝑛𝑛 = (𝑸𝑸 ⋅ 𝒓𝒓 + 𝜙𝜙0) − (𝑸𝑸 ⋅ (𝒓𝒓 + Δ𝒓𝒓) + 𝜙𝜙0) = 𝑸𝑸 ⋅ Δ𝒓𝒓                                   (2.22) 

𝜙𝜙𝑚𝑚 + 𝜙𝜙𝑛𝑛 = (𝑸𝑸 ⋅ 𝒓𝒓 + 𝜙𝜙0) + (𝑸𝑸 ⋅ (𝒓𝒓 + Δ𝒓𝒓) + 𝜙𝜙0) = 2𝑸𝑸 ⋅ 𝒓𝒓 + 2𝜙𝜙0 + 𝑸𝑸 ⋅ Δ𝒓𝒓                          (2.23) 

where 𝜙𝜙0 indicates the initial position. Using the Holstein–Primakoff transformation, the 

spin Hamiltonian can be expressed as 

𝐻𝐻 =  � �𝐽𝐽 �
Δ𝑆𝑆
2
�𝐾𝐾𝑚𝑚𝑛𝑛 + 𝑃𝑃𝑚𝑚𝑛𝑛� + cos(𝑄𝑄 ⋅ Δ𝑟𝑟) �𝑆𝑆2 − 𝑏𝑏𝑚𝑚

†𝑏𝑏𝑚𝑚 − 𝑏𝑏𝑛𝑛
†𝑏𝑏𝑛𝑛 +

𝑆𝑆
2
�𝐾𝐾𝑚𝑚𝑛𝑛 − 𝑃𝑃𝑚𝑚𝑛𝑛���

<𝑚𝑚,𝑛𝑛>

+ 2𝐽𝐽±± cos�𝜙𝜙�𝑝𝑝 + 2𝑄𝑄 ⋅ 𝑟𝑟 + 𝑄𝑄 ⋅ Δ𝑟𝑟� �𝑆𝑆2 − 𝑏𝑏𝑚𝑚
†𝑏𝑏𝑚𝑚 − 𝑏𝑏𝑛𝑛

†𝑏𝑏𝑛𝑛 −
𝑆𝑆
2
�𝐾𝐾𝑚𝑚𝑛𝑛 − 𝑃𝑃𝑚𝑚𝑛𝑛���  (2.24) 
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where  𝜙𝜙�𝑝𝑝 = 𝜙𝜙𝛼𝛼 + 2𝜙𝜙0 and 𝐾𝐾ij = 𝑏𝑏𝑚𝑚𝑏𝑏𝑛𝑛
† + 𝑏𝑏𝑚𝑚

†𝑏𝑏𝑛𝑛 ,   𝑃𝑃ij = 𝑏𝑏𝑚𝑚𝑏𝑏𝑛𝑛 + 𝑏𝑏𝑚𝑚
†𝑏𝑏𝑛𝑛

†. 

 

We can obtain the quadratic form of the magnetic Hamiltonian in the momentum space via 

inverse Fourier transform. However, in this case, due to the position-dependent phase 2𝑄𝑄 ⋅

𝑟𝑟, the bosonic operators depend on both k and k ± 2Q. For example,  

� cos(2𝑄𝑄 ⋅ 𝑟𝑟) 𝑏𝑏𝑟𝑟𝑏𝑏𝑟𝑟+Δ𝑟𝑟
𝑟𝑟

=
1
𝑁𝑁
� cos(2𝑄𝑄 ⋅ 𝑟𝑟) 𝑒𝑒𝑚𝑚𝑘𝑘⋅𝑟𝑟𝑒𝑒𝑚𝑚𝑘𝑘′⋅(𝑟𝑟+Δ𝑟𝑟)

𝑟𝑟,𝑘𝑘,𝑘𝑘′
𝑏𝑏𝑘𝑘𝑏𝑏𝑘𝑘′

=  ��
1
𝑁𝑁
� cos(2𝑄𝑄 ⋅ 𝑟𝑟) 𝑒𝑒𝑚𝑚�𝑘𝑘+𝑘𝑘′�⋅𝑟𝑟
𝑟𝑟

� 𝑒𝑒𝑚𝑚𝑘𝑘′⋅Δ𝑟𝑟𝑏𝑏𝑘𝑘𝑏𝑏𝑘𝑘′

𝑘𝑘,𝑘𝑘′

=
1
2
�[𝛿𝛿(𝑘𝑘 + 𝑘𝑘′ + 2𝑄𝑄) + 𝛿𝛿(𝑘𝑘 + 𝑘𝑘′ − 2𝑄𝑄)]𝑒𝑒𝑚𝑚𝑘𝑘′⋅Δ𝑟𝑟𝑏𝑏𝑘𝑘𝑏𝑏𝑘𝑘′
𝑘𝑘,𝑘𝑘′

=
1
2
��𝑒𝑒−𝑚𝑚(𝑘𝑘+2𝑄𝑄)⋅Δ𝑟𝑟𝑏𝑏𝑘𝑘𝑏𝑏−(𝑘𝑘+2𝑄𝑄) + 𝑒𝑒−𝑚𝑚(𝑘𝑘−2𝑄𝑄)⋅Δ𝑟𝑟𝑏𝑏𝑘𝑘𝑏𝑏−(𝑘𝑘−2𝑄𝑄)�
𝑘𝑘

            (2.25) 

This dependency increases the matrix size from 2 × 2 to 6 × 6. Subsequently, the model 

Hamiltonian with quadratic terms transforms to 

𝐻𝐻2 =  �𝒙𝒙�𝒌𝒌
† 𝑯𝑯�𝒌𝒌𝒙𝒙�𝒌𝒌

𝐤𝐤

                                                            (2.26) 

where  𝒙𝒙�𝒌𝒌
† = � 𝑏𝑏𝒌𝒌+2𝑸𝑸

† ,𝑏𝑏𝒌𝒌
†, 𝑏𝑏𝒌𝒌−2𝑸𝑸

† ,𝑏𝑏−𝒌𝒌−2𝑸𝑸,𝑏𝑏−𝒌𝒌,𝑏𝑏−𝒌𝒌+2𝑸𝑸� is a vector of length 6, and 𝐻𝐻�𝑘𝑘 is a 

6 × 6 matrix with 

𝑯𝑯�𝒌𝒌 =

⎝

⎜⎜
⎜
⎛

0 𝐶𝐶2(𝒌𝒌) 0 0 𝐷𝐷1(𝒌𝒌) 0
𝐶𝐶2∗(𝒌𝒌) 𝐴𝐴(𝒌𝒌) 𝐶𝐶1(𝒌𝒌) 𝐷𝐷1∗(𝒌𝒌) 𝐵𝐵(𝒌𝒌) 𝐷𝐷2(𝒌𝒌)

0 𝐶𝐶1∗(𝒌𝒌) 0 0 𝐷𝐷2∗(𝒌𝒌) 0
0 𝐷𝐷1(𝒌𝒌) 0 0 𝐶𝐶2(𝒌𝒌) 0

𝐷𝐷1∗(𝒌𝒌) 𝐵𝐵(𝒌𝒌) 𝐷𝐷2(𝒌𝒌) 𝐶𝐶2∗(𝒌𝒌) 𝐴𝐴(𝒌𝒌) 𝐶𝐶1(𝒌𝒌)
0 𝐷𝐷2∗(𝒌𝒌) 0 0 𝐶𝐶1∗(𝒌𝒌) 0 ⎠

⎟⎟
⎟
⎞

 

𝐴𝐴(𝐤𝐤) =
𝑆𝑆
2
�𝐽𝐽Δ𝑟𝑟[𝛥𝛥n − cos(𝑸𝑸 ⋅ 𝜟𝜟𝒓𝒓)] cos(𝒌𝒌 ⋅ 𝜟𝜟𝒓𝒓)
Δr

− 𝑆𝑆�𝐽𝐽Δ𝑟𝑟 cos(𝑸𝑸 ⋅ 𝜟𝜟𝒓𝒓)
Δr
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𝐵𝐵(𝐤𝐤) =
𝑆𝑆
2
�𝐽𝐽Δr[𝛥𝛥n + cos(𝑸𝑸 ⋅ 𝜟𝜟𝒓𝒓)] cos(𝒌𝒌 ⋅ 𝜟𝜟𝒓𝒓)
Δ𝑟𝑟

 

𝐶𝐶1(𝒌𝒌) =  −
𝑆𝑆
4
�𝑒𝑒−𝑚𝑚(𝜙𝜙𝛼𝛼+2𝑸𝑸⋅𝚫𝚫𝒓𝒓) cos(𝑸𝑸 ⋅ 𝜟𝜟𝒓𝒓)
Δ𝑟𝑟

−
𝑆𝑆
8
�𝑒𝑒−𝑚𝑚(𝜙𝜙𝛼𝛼+3𝑸𝑸⋅𝚫𝚫𝒓𝒓−𝒌𝒌⋅𝚫𝚫𝚫𝚫)

Δ𝑟𝑟

 

𝐶𝐶2(𝒌𝒌) =  −
𝑆𝑆
4
�𝑒𝑒−𝑚𝑚(𝜙𝜙𝛼𝛼+2𝑸𝑸⋅𝚫𝚫𝒓𝒓) cos(𝑸𝑸 ⋅ 𝜟𝜟𝒓𝒓)
Δ𝑟𝑟

−
𝑆𝑆
8
�𝑒𝑒−𝑚𝑚(𝜙𝜙𝛼𝛼+3𝑸𝑸⋅𝚫𝚫𝒓𝒓+𝒌𝒌⋅𝚫𝚫𝚫𝚫)

Δ𝑟𝑟

 

𝐷𝐷1(𝒌𝒌) =
𝑆𝑆
8
�𝑒𝑒−𝑚𝑚(𝜙𝜙𝛼𝛼+3𝑸𝑸⋅𝚫𝚫𝒓𝒓+𝒌𝒌⋅𝚫𝚫𝒓𝒓)

Δ𝑟𝑟

,   𝐷𝐷2(𝐤𝐤) =  
𝑆𝑆
8
�𝑒𝑒−𝑚𝑚(𝜙𝜙𝛼𝛼+3𝑸𝑸⋅𝚫𝚫𝒓𝒓−𝒌𝒌⋅𝚫𝚫𝒓𝒓)

Δ𝑟𝑟

 

The eigenvectors are obtained by diagonalizing 𝒈𝒈�𝑯𝑯�𝒌𝒌  using the diagonalization method 

demonstrated in Eq. 2.17. 

 

2.2 Magnon decay due to multi-magnon Continuum 
 
2.2.1 Three-boson interaction and its origin 
During the interaction, a magnon can decay into multiple magnons or other types of 

quasiparticles. However, the decay only occurs when the magnon can satisfy a kinematic 

condition, in which both momentum and energy should be conserved. Therefore, searching 

the area where the kinematic constraint holds will guide us to the possible magnon decay 

region. Fig. 2.1 shows a schematic example of magnon decay with a multi-particle 

continuum. The area where the decay occurs is continuous in the energy–momentum space 

and is thus called a multi-particle continuum. When a magnon branch enters a continuum, 

its lifetime becomes finite, and its energy is renormalized. 

 

Considering spin-wave expansion with the Holstein–Primakoff transformation, the higher-

order terms (m > 2 in Eq. 2.7) indicate magnon decay into multiple magnon modes. For 
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example, the leading order among the higher orders is H3 and can be generalized as 

follows [Ref. 2.3]: 

𝐻𝐻3 =  �𝑉𝑉3
(1)𝑏𝑏1

†𝑏𝑏2
†𝑏𝑏3𝛿𝛿(𝑘𝑘1 + 𝑘𝑘2 − 𝑘𝑘3)

1−3

+ 𝐻𝐻. 𝑐𝑐.                       (2.27) 

where V3
(1) is the vertex function related to the decay process of one magnon into two 

magnons. This three-boson term leads to magnon decay into two magnons with kinematic 

constraints. They originate from the coupling of the local Sz and Sx(y) spin components, 

which is evident from the form of the Holstein–Primakoff transformation (Sz ~ O(b2), Sx(y) 

~ O(b)). Therefore, coupling between transverse and longitudinal spin fluctuations is 

essential to induce a spontaneous magnon decay from magnon–magnon interactions.  

 

Traditionally, a non-collinear magnetic structure is utilized to achieve the transverse–

longitudinal coupling. Based on the isotropic Heisenberg model (Eq. 2.5), the spin 

Hamiltonian can be written as follows [Ref. 2.3]: 

Figure 2.1 (a) General schematic of magnon decay due to a multi-particle continuum. (b) 
Calculated quasiparticle decay with interaction between a bare state and the continuum 
state, adapted from [Ref. 2.13]. The dashed area indicates the multi-particle continuum.  
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𝐻𝐻 = � 𝐽𝐽𝑚𝑚𝑛𝑛 �𝑆𝑆𝑚𝑚𝑥𝑥𝑆𝑆𝑛𝑛𝑥𝑥 + cos𝜙𝜙𝑚𝑚−𝑛𝑛 �𝑆𝑆𝑚𝑚𝑧𝑧𝑆𝑆𝑛𝑛𝑧𝑧 + 𝑆𝑆𝑚𝑚
𝑦𝑦𝑆𝑆𝑛𝑛

𝑦𝑦�+ sin𝜙𝜙𝑚𝑚−𝑛𝑛 �𝑆𝑆𝑚𝑚𝑧𝑧𝑆𝑆𝑛𝑛
𝑦𝑦 − 𝑆𝑆𝑚𝑚𝑧𝑧𝑆𝑆𝑛𝑛

𝑦𝑦��
<𝑚𝑚,𝑛𝑛>

   (2.28) 

where 𝜙𝜙𝑚𝑚−𝑛𝑛 =  𝜙𝜙𝑚𝑚 − 𝜙𝜙𝑛𝑛. With Holstein–Primakoff transformation, we can express this spin 

Hamiltonian in terms of bosonic operators as shown in Eq. 2.7. Then, the cubic terms (m = 

3) in this relationship can be expressed as follows [Ref. 2.3]: 

𝐻𝐻3 = 𝐽𝐽�
𝑆𝑆
2
�𝑠𝑠𝑠𝑠𝑠𝑠𝜙𝜙𝑚𝑚−𝑛𝑛�𝑏𝑏𝑚𝑚

†𝑏𝑏𝑚𝑚�𝑏𝑏𝑛𝑛
† + 𝑏𝑏𝑛𝑛� − 𝑏𝑏𝑛𝑛

†𝑏𝑏𝑛𝑛�𝑏𝑏𝑚𝑚
† + 𝑏𝑏𝑚𝑚��

𝑚𝑚,𝑛𝑛

                (2.29) 

We can find that this term becomes zero in the collinear magnetic structure because 

𝑠𝑠𝑠𝑠𝑠𝑠𝜙𝜙𝑚𝑚−𝑛𝑛 ≡ 0.  

 

Another route to coupling the two orthogonal spin fluctuations is bond-dependent 

anisotropy [Ref. 2.4–2.6]. In this case, the terms like SxSz solely originate from the low 

symmetry of the spin Hamiltonian. For example, the H3 term with the bond-dependent 

anisotropy J±± term for a triangular lattice can be expressed as follows: 

𝐻𝐻3 =  −2𝐽𝐽±±�
𝑆𝑆
2
� sin�𝜙𝜙𝛼𝛼 + 𝜙𝜙𝑚𝑚 + 𝜙𝜙𝑛𝑛� [
<𝑚𝑚,𝑛𝑛>

𝑏𝑏𝑚𝑚
†𝑏𝑏𝑚𝑚�𝑏𝑏𝑛𝑛

† + 𝑏𝑏𝑛𝑛� − 𝑏𝑏𝑛𝑛
†𝑏𝑏𝑛𝑛�𝑏𝑏𝑚𝑚

† + 𝑏𝑏𝑚𝑚�]       (2.30) 

where 𝜙𝜙α ∈ �0, ± 2𝜋𝜋
3
� is a bond-dependent phase factor for each bond. In this case, H3 

term is non-zero regardless of magnetic order, and therefore, a bond-dependent anisotropy 

allows magnon decay even in a collinear magnetic structure [Ref. 2.4–2.6].  

 

With Fourier transform, the general three-boson terms can be expressed in the momentum 

space as [Ref. 2.3,2.7]: 

𝐻𝐻3 = �(
1
2!
Γ1(𝐪𝐪,𝐤𝐤 − 𝐪𝐪;𝐤𝐤)

𝐤𝐤,𝐪𝐪

𝑏𝑏𝐪𝐪
†𝑏𝑏𝐤𝐤−𝐪𝐪

† 𝑏𝑏𝐤𝐤 +
1
3!
Γ2(𝐪𝐪,−𝐤𝐤 − 𝐪𝐪,𝐤𝐤)𝑏𝑏𝐪𝐪

†𝑏𝑏−𝐤𝐤−𝐪𝐪
† 𝑏𝑏𝐤𝐤

† + H. c. ),   (2.31) 
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where Γ1 and Γ2 are the magnon decay and source vertices, respectively, which are derived 

from the eigenvector components of the non-interacting magnons (Sij in Eq. 2.17; a 

complete description of these vertices is reported in [Ref. 2.3]. These vertices contribute to 

magnon self-energy, whose imaginary (real) part describes the decay (renormalization) of 

non-interacting magnons. Fig. 2.2(b),(c) show the LSWT calculation results and magnon 

self-energy of an S = 1/2 triangular lattice antiferromagnet (TLAF), with a magnetic order 

of 120° [Ref. 2.3], and the Kitaev material RuCl3 [Ref. 2.4]. As expected, the calculated 

Figure 2.2 (a) Feynman diagrams of two vertices in H3, magnon ‘decay’ (left upper) and 
‘source’; the lower part shows the magnon self-energy from a pair of decay vertex. (b) 
Energy renormalisation (upper) and decay rate (lower) of magnons in an S = 1/2 TLAF, 
with a magnetic order of 120°, calculated using the 1/S correction. (c) Energy calculated 
using the LSWT and decay rate of magnons in the Kitaev material RuCl3 based on the 
constant matrix element iDE approximation. Each colour coding in the decay rate is the 
same as that for the magnon energy. (b)-(c) are adapted from [Ref. 2.3,2.4]. 
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dynamical structure factor reveals a broadening of magnon intensity in both systems, as 

shown in Fig. 2.3 [Ref. 2.5,2.8]. 

 
2.2.2 Continuum of the two-magnon density of states  

In Chapter 2.2.1, it is evident that calculating the decay rates of magnons resulting from 

two-magnon processes requires complex computations, even though the concept is 

straightforward. In contrast, the density of states (DOS) of a two-magnon continuum offers 

a simple yet effective measure for comprehending the characteristics of the 

Continuum [Ref. 2.9–2.12]. For example, the two-magnon Continuum DOS (Dm) at (q, E) 

can be calculated using the following expressions: 

𝐷𝐷𝑚𝑚(𝐪𝐪,𝐸𝐸) =
1
𝑁𝑁
��𝛿𝛿(𝐸𝐸 − 𝐸𝐸𝐤𝐤,𝑚𝑚 − 𝐸𝐸𝐪𝐪−𝐤𝐤,j)

𝐤𝐤𝑚𝑚,𝑛𝑛

,                                (2.31) 

Figure 2.3 (a) Intensity of the dynamical structure factors of S = 1/2 (upper) and S = 3/2 
(lower) TLAFs with a magnetic order of 120°, calculated using the 1/S correction. (b) 
Dynamical structure factor of RuCl3 calculated using LSWT (upper) and including magnon 
decay (lower). The figures are adapted from [Ref. 2.5,2.8]  
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where Ek,i and 𝜖𝜖𝐤𝐤,𝑛𝑛 denote the energy of the ith magnon modes, k is a three-dimensional 

momentum grid over the first Brillouin zone, and N is the normalization constant. Fig. 2.4 

demonstrates that the Continuum DOS for each channel corresponds to the number of 

decay channels that fulfil the kinematic condition at (q, E). Hence, this quantity is relevant 

to the decay rate and is employed for comparing magnon damping. Such a quantity plays 

an essential role in explaining the magnon damping in Na3Co2SbO6, Na2Co2TeO6 (Ch. 5) 

and CoI2 (Ch. 6) because calculating the decay rates for these compounds need tremendous 

theoretical inputs. 
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Chapter 3 
Experimental techniques 
  
  
  
  
3.1 Sample synthesis 

Material synthesis is the primary step towards investigating new materials. This section 

introduces the methods for synthesizing polycrystalline CoPS3, Na2Co2TeO6, Na3Co2SbO6, 

and single-crystal CoI2. 

 
3.1.1 Solid-state reaction method 

The solid-state reaction is the most widely used method for preparing polycrystalline solids 

from a mixture of solid starting materials [Ref. 3.1]. First, raw chemicals must be prepared 

to match the chemical formula and stoichiometry. An excess amount of raw materials is 

required if the chemical is volatile. These chemicals are evenly mixed and ground by agate 

mortar, usually at a rate of 30 min per gram. After grounding, the mixed chemicals are 

pressed into pellets. This pelletization is crucial because it reduces the distance between the 

chemicals and boosts the reaction during sintering. Depending on the chemical, the pressed 

pellet should be used with an appropriate crucible (aluminium or platinum) due to the 

possible reaction between the pellet and the crucible. Finally, the pellet is heated at a high 

temperature for a couple of days to form the target materials. After sintering, the sintered 

pellets are ground into powder or broken into small pieces for characterization. Usually, a 

mono-phase sample is obtained after several sintering processes. In this study, three high-

quality polycrystalline samples, CoPS3, Na3Co2SbO6, and Na2Co2TeO6 (see Fig. 3.1 for the 
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picture of samples), were prepared. 

 

Polycrystalline samples of CoPS3 were synthesized with stoichiometric quantities of cobalt, 

phosphorus, and sulphur. These chemicals were placed in a quartz ampoule inside a glove 

box under an Ar atmosphere. The total mass of the chemicals was 2 g, and their purity was 

better than 99.99 %. The ampoule was sealed under 5 Torr of argon gas. After sealing, the 

sealed ampoule was heated in a tube furnace. The temperature was raised to 530 °C in 6 h 

and held at this value for two days.  

 

Polycrystalline Na2Co2TeO6 was prepared by a solid-state reaction method. First, Na2CO3 

(Alfa, 99.997 %), Co3O4 (Alfa, 99.7 %), and TeO2 (Alfa, 99.99 %) were mixed in a 

stoichiometric molar ratio with 5 % excess Na2CO3 and fully ground; afterwards the 

mixture was loaded in an alumina crucible and sintered at 850 °C for 40 h in air.  

 

The polycrystalline Na3Co2SbO6 sample was prepared by a conventional two-step solid-

Figure 3.1 Picture of prepared polycrystalline samples. Left side is CoPS3; right side is 
Na3Co2SbO6. 
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state reaction. First, stoichiometric amounts of Sb2O3 (99.6 %, Alfa Aesar), Co3O4 (99.9 %, 

Sigma Aldrich), and 5 % excess of Na2CO3 (99.9 %, Merck) were ground together and 

annealed at 800 °C for 15 h in air. After cooling to room temperature, the mixture was 

ground again, pressed into a pellet, and annealed at 980 °C for 40 h in air, followed by 

quenching in air. 

 

Figure 3.2 Illustration of the Bridgman technique. (a) Schematic of the Bridgman method. 
(b) Customised Bridgman furnace for CoI2 synthesis. (c) Single crystal of CoI2 prepared 
using a Bridgman furnace.  
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3.1.2 Bridgman method 

Bridgman method (or Bridgman–Stockbarger method) is a crystal growth method used to 

produce large single crystals with controlled compositions and a high crystalline 

quality [Ref. 3.1]. Fig. 3.2 illustrates the Bridgman technique, which involves melting a 

precursor material in a crucible and slowly pulling it out of a temperature gradient furnace 

while maintaining a constant temperature gradient. As the crucible is slowly withdrawn, 

the molten material solidifies into a single crystal along the withdrawal direction. For 

growing a high-crystalline sample, one needs to prepare a quartz ampoule with a sharp end, 

which can act as a seed.  

 

Single crystals of CoI2 were synthesized using a customized Bridgman furnace, and 5 g of 

anhydrous CoI2 powder (Alfa Aesar, 99.999 % purity) was used as the starting material. 

The CoI2 powder was sealed in an evacuated silica tube (14 mm diameter, 1 mm wall 

thickness) under a pressure of ~10-4 Torr. The sealed tube was then heated to 535 °C for 6 

h and held at 535 °C for 110 h. The tube was pulled down at 535 °C with a growth rate of 

0.5 mm·h-1. The resulting single crystal was 2–30 mm long and 14 mm in diameter with a 

shiny black colour.  

 

3.2 Inelastic neutron scattering 

In condensed matter experiments, the focus is on measuring the four fundamental degrees 

of freedom: lattice, charge, spin, and orbital. Each of these degrees of freedom is studied 

using various experimental techniques. Among these techniques, (inelastic) neutron 

scattering is arguably the most powerful method for investigating the spin degree of 

freedom, specifically magnetism. This section introduces the experimental and theoretical 

foundations of (inelastic) neutron scattering. 
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3.2.1 Basic principle 

Inelastic neutron scattering (INS) is a novel technique used for examining the physical 

properties of a material by detecting the neutrons scattered from it. Since neutron has spin, 

we can probe the spin degrees of freedom via the dipole–dipole interactions between the 

magnetic moments of the material and those of the neutrons [Ref. 3.2]. Moreover, neutron 

scattering can also probe phonons because neutrons can penetrate solids and approach close 

to the nuclei.  

 

The general neutron scattering process with a direct geometry is shown in Fig. 3. 3(a). A 

monochromatic beam with fixed incident energy (Ei) and momentum (ki) is scattered by a 

target sample. After the scattering process, the neutron with final energy (Ef) and 

Figure 3.3 Basic of the neutron scattering process. (a) A general geometry of a neutron 
scattering measurement set-up, including illustration of how neutrons interact with 
magnons. (b) Energy–momentum convergence of the INS technique and comparison with 
other experimental techniques adapted from [Ref. 3.15].  
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momentum (kf) is detected by an array of detector tubes filled with 3He gas [Ref. 3.2]. 

During the scattering process, both energy and momentum conservation laws must be 

satisfied as follows: 

𝑸𝑸 = 𝒌𝒌𝑓𝑓 − 𝒌𝒌𝑖𝑖, 

𝐸𝐸𝑓𝑓 − 𝐸𝐸𝑖𝑖 = ℏ𝜔𝜔 =
ℏ2

2𝑚𝑚𝑛𝑛
�𝒌𝒌𝑓𝑓2 − 𝒌𝒌𝑖𝑖2�, 

where mn is the mass of the neutron. Thus, we can observe the dynamical magnetic response 

of a sample with transferred neutrons (E, Q) using the INS technique.  

 

The neutron scattering cross-section can be theoretically expressed using Fermi’s golden 

rule [Ref. 3.2]: 

𝑑𝑑2𝜎𝜎
𝑑𝑑𝑑𝑑𝑑𝑑𝐸𝐸

 = �
m

2𝜋𝜋ℏ2
�
2 |kf|

|𝑘𝑘𝑖𝑖|
� � 𝑝𝑝𝜆𝜆𝑖𝑖𝑝𝑝𝜎𝜎𝑖𝑖��𝐤𝐤𝑓𝑓 ,𝝈𝝈𝑓𝑓 , 𝜆𝜆𝑓𝑓�𝑈𝑈��𝐤𝐤𝑖𝑖,𝝈𝝈𝑖𝑖, 𝜆𝜆𝑖𝑖��

2𝛿𝛿�𝐸𝐸 + 𝐸𝐸𝑖𝑖 − 𝐸𝐸𝑓𝑓�,
𝜆𝜆𝑓𝑓,𝜎𝜎𝑓𝑓𝜆𝜆𝑖𝑖,𝜎𝜎𝑖𝑖

 (3.3) 

where 𝑝𝑝𝛼𝛼 is the thermal population factor of a state |𝛼𝛼⟩, and U is the interaction operator 

between the neutron and the sample, depending on the specific scattering process. If we 

change U as a dipole–dipole interaction, then we can rewrite the differential cross-section 

as follows: 

𝑑𝑑2𝜎𝜎
𝑑𝑑Ω𝑑𝑑𝜔𝜔

= (𝛾𝛾𝑟𝑟0)2
𝑘𝑘′

𝑘𝑘
𝑁𝑁 �

1
2
𝑔𝑔𝐹𝐹𝑚𝑚𝑎𝑎𝑔𝑔(𝑄𝑄)�

2

𝑒𝑒−2𝑊𝑊��𝛿𝛿𝛼𝛼𝛼𝛼 − 𝑄𝑄�𝛼𝛼𝑄𝑄�𝛼𝛼�𝑆𝑆𝛼𝛼𝛼𝛼(𝑄𝑄,𝜔𝜔)
𝛼𝛼,𝛼𝛼

 

where 𝛾𝛾 is the gyromagnetic ratio; r0 is the classical electron radius; N is the number of 

unit cells in the crystal; g is the Lande splitting factor; Fmag(Q) is the magnetic form factor, 

i.e. the Fourier transform of the magnetization distribution of a single magnetic atom; and 

𝑆𝑆𝛼𝛼𝛼𝛼(𝑄𝑄,𝜔𝜔) is the dynamical structure factor, which provides information on the spin–spin 

correlation in the momentum and energy space. Therefore, we can directly observe the 

correlation of the spins in a sample by counting the scattered neutrons [Ref. 3.2]. 
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Fig. 3. 3(b) compares the measurable area between the INS and other techniques in both 

momentum and energy ranges. Usually, optical techniques (infrared or Raman 

spectroscopy) can only be used to measure the inelastic signal with nearly zero momentum 

transfer. However, because of a large detector in real space, the INS method can be 

employed to measure the inelastic signal with a wide momentum range. Because of the 

recent developments in inelastic X-ray scattering, this method can now be used to observe 

a magnetic signal similar to the INS technique; however, observing the excitations with the 

exact resolution obtained using the INS method is still a considerable challenge. Therefore, 

INS is the best technique to explore the magnetic response of condensed matter with a 

comprehensive energy and momentum space.  

 

3.2.2 Time-of-flight (ToF) technique 

As highlighted in the previous section, the INS method facilitates the observation of 

elementary quasiparticles in a high resolution with a broad momentum and energy (Q, E) 

range. This study employed a time-of-flight (ToF) spectrometer for the INS experiment. 

Fig. 3.4 shows a schematic of the ToF spectrometer [Ref. 3.2]. Because the velocities of 

the neutrons used in a scattering experiment are typical of the order of a few hundred or 

thousand metres per second, their energy can be determined by measuring their flight time 

(t) over a distance (d ~ few metres). First, the neutron beam pulse originating from a 

spallation source travels through a guide and is then monochromatized by a disc chopper 

or a Fermi chopper [Ref. 3.3]; this monochromatization process allows us to select the 

desired incident energy. Then, the energy transfer (𝑄𝑄,𝐸𝐸) and momentum of the detected 
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neutron can be determined as follows. 

𝐸𝐸𝑓𝑓 − 𝐸𝐸𝑖𝑖 = ℏ𝜔𝜔 =
𝑚𝑚𝑛𝑛

2
𝑑𝑑2
𝑡𝑡2 − 𝑡𝑡02

𝑡𝑡2𝑡𝑡02
  

𝑄𝑄 =
𝑚𝑚𝑛𝑛

ℏ
𝑑𝑑�

𝑡𝑡2 + 𝑡𝑡𝑜𝑜2 − 2𝑡𝑡0𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡(2𝜃𝜃)
𝑡𝑡02𝑡𝑡2

 

where d is the distance between the sample position and the detector array, and t0 and t are 

the ToF of the scattered neutrons with Ei and Ef, respectively. Without energy loss, we can 

detect the static spin–spin correlations. Therefore, the ToF technique facilitates neutron 

diffraction (elastic, diffuse) and inelastic measurements. After the measurements, we obtain 

a massive amount of four-dimensional (one for energy, three for momentum space) datasets 

over a wide range; the dataset size is usually a few hundred gigabytes. For the analysis, we 

used specialized software, such as Mantid [Ref. 3.4], Horace [Ref. 3.5], and Utusemi [Ref. 

3.6].  

Figure 3.4 Schematic of the ToF INS measurement set-up 
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3.2.3 INS experiment at the HRC, J-PARC  

To measure the spin-wave spectra of three materials, viz. CoPS3, Na3Co2SbO6, and 

Na2Co2TeO6, we used the HRC ToF spectrometer installed in the Japan Proton Accelerator 

Research Complex (J-PARC), Japan [Ref. 3.7]. The HRC spectrometer is designed to 

deliver high-resolution and relatively high-energy neutrons. It covers a wide energy transfer 

range (Ei) from 1 meV to 2 eV and shows a high resolution with Δ𝐸𝐸
𝐸𝐸𝑖𝑖

= 1– 2 %. The overall 

schematic of the HRC is displayed in Fig. 3.5. Because the target incident energy of the 

HRC is significantly large, the HRC spectrometer uses a curved Fermi chopper to 

monochromatize fast neutrons [Ref. 3.8].  

 

For CoPS3 measurement, we placed 2 g of this polycrystalline sample on an aluminium 

holder. We measured the INS data at temperatures of 8, 35, 60, 85, 110, and 200 K. An 

incident energy of Ei = 71.3 and 30.4 meV with a Fermi chopper frequency of f = 200 Hz 

was used. We also measured the background at room temperature for performing 

background subtraction at each incident energy.  

 

In the case of Na3Co2SbO6 and Na2Co2TeO6, these polycrystalline samples were also placed 

in aluminium holders. The INS data of Na3Co2SbO6 were measured at T = 3, 15, and 50 K 

with incident energies of Ei = 7.14, 12.19, 16.54, 35.61, 50.9, and 122.6 meV. In contrast, 

the INS data of Na2Co2TeO6 were measured at T = 3, 10, 20, 30, 50, and 95 K with Ei = 

11.44, 16.54, 50.9, and 122.6 meV.  

 

3.2.4 INS experiment at AMATERAS, J-PARC 
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The INS measurements of single-crystal CoI2 were performed using the AMATERAS ToF 

spectrometer in J-PARC, Japan (see Fig. 3.6) [Ref. 3.9]. AMATERAS is a disc-chopper-

type spectrometer designed for achieving high-intensity and high-energy resolution at low 

Figure 3.5 Details of the HRC spectrometer. (a) Schematic of the HRC spectrometer. (b) 
Picture of a typical Fermi chopper used in ISIS, UK [Ref. 3.16]. (c) Curved Fermi chopper 
installed in the HRC beamline [Ref. 3.17]. The bottom picture shows the slit set installed 
in both the Fermi choppers. 
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incident energies. Moreover, the AMATERAS beamline provides a high resolution and 

beams with multiple incident energies and high-resolution profiles in a single measurement.  

 

We prepared a CoI2 single crystal weighing 5 g for the experiment. Because CoI2 is 

exceptionally hygroscopic, the sample has to be coated with the hydrogen-free glue 

Figure 3.6 Details of the AMATERAS spectrometer. (a) Schematic view of AMATERAS. 
(b) Installed disc (left) and inside view (right) of the third fast disc chopper (used for 
monochromatisation) in AMATERAS [Ref. 3.17]. 
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CYTOP to prevent degradation due to air exposure. The crystal was then securely mounted 

onto an aluminium holder and sealed using an aluminium can and indium wires for 

protection. The a-b plane of the crystal was oriented parallel to the horizontal scattering 

plane. Subsequently, the sample was cooled in a closed-circle refrigerator capable of 

bottom-loading for measurements at 4 and 13 K (ordered and paramagnetic phases of the 

sample, respectively). We used three different incident beam energies at the given 

temperature: Ei = 52.43, 17.26, and 8.48 meV. Our experimental data were obtained using 

two different configurations: for the 4 K data, and the sample was rotated from -90° to 90° 

in steps of 0.5°, whereas the angular coverage for the 13 K data was reduced from -90° to 

30° in steps of 0.5°. To estimate the broadened magnon energy linewidth and accurately 

capture the quasi-elastic peaks' characteristics, we performed magnon peak fitting using a 

Lorentzian function convolved with a Gaussian function. 

 

3.2.5 Multi-Ei measurements at J-PARC beamlines 

One problem in the ToF spectrometer with a pulsed neutron source is time inefficiency. 

Because the frequency of the chopper rotation (fch) is usually 100 to 600 Hz, it is typically 

much faster than the pulsed neutron source fp = 25 Hz in the J-PARC facility [Ref. 3.10]. 

Therefore, if we measure a single incident energy, then the utilized ToF region of the INS 

measurement will be less than 10 % of the period of the pulse source. To overcome this 

dead-time problem, neutron scientists developed a novel measurement technique called the 

repetition rate method (RRM) [Ref. 3.11] or Multi-Ei method [Ref. 3.10]. All the ToF 

spectrometers in J-PARC use this multiple incident energy method to measure multiple 

incident energies in a single measurement. Notably, the RRM and Multi-Ei methods are 

slightly different [Ref. 3.10]; in the case of the RRM, more than two choppers are required 

to prevent contamination of slow neutrons and produce a symmetric pulse shape. The RRM 
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is widely used in several ToF beamlines, such as the HRC, AMATERAS, and others in 

ISIS, UK [Ref. 3.12]. Conversely, the Multi-Ei method uses only one Fermi chopper with 

straight and wide slits. This remodelled Fermi chopper can exhibit a high transmission of 

Figure 3.7 Schematic of the RRM set-up in the HRC and AMATERAS. (a) RRM set-up 
in the HRC using a Fermi chopper. (b) RRM set-up in the AMATERAS using a multiple 
disc chopper.  
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neutrons with a wide Ei range compared to the typical curved ones. This Multi-Ei set-up is 

installed in the 4SEASONS spectrometer in J-PARC, Japan [Ref. 3.10,3.13].  

 

The RRM set-ups in the HRC and AMATERAS are shown in Fig. 3.7. Because the type of 

choppers in both the beamlines is different, the ToF diagram for the RRM is also different 

for these two beamlines. In the case of the HRC, the condition of multiple incident energy 

is controlled by the frequency ratio of a T0 chopper and the Fermi chopper. Usually, a T0 

chopper is used to remove high-speed neutrons after the neutron pulse is generated. In the 

HRC, the T0 chopper also works as a stopper for slow neutrons and aids in achieving 

multiple incident energies [Ref. 3.7]. In the AMATERAS, three fast disc choppers and two 

slow disc choppers cooperate to generate beams with multiple incident energies and high-

resolution profiles [Ref. 3.12]. The main disc chopper is the third fast disc chopper, which 

monochromatizes the neutrons. The other two fast discs, i.e. the first and second discs, 

work as pulse shapers and tail removers. Slow disc choppers are usually used to prevent 

frame overlapping or band definition. The possible combinations of incident energies can 

be simulated at the homepage of each spectrometer [Ref. 3.14].  
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Chapter 4 
Magnetic excitation of van der Waals XXZ-type cobalt 
honeycomb antiferromagnet CoPS3 
  
 
 
 
4.1 Introduction 
The TMPS3 family, comprising Mn, Fe, Co and Ni, has drawn particular attention as a class 

of antiferromagnetic two-dimensional van der Waals (vdW) materials [Ref. 4.1]. In this 

family, 2+ covalent transition metal ions form a layered honeycomb lattice with sulphur 

ligand ions. All the elements have the same monoclinic structure with the space group C 

2/m, where layers on the ab-plane are weakly coupled along the c-axis [Ref. 4.1,4.2]. 

Owing to the dependence of the magnetic structure and exchange interactions on transition 

metal (TM) elements, this family offers an excellent platform to experimentally validate 

the spin dynamics theory in low dimensions [Ref. 4.3]. For example, FePS3 is an ideal Ising 

antiferromagnet [Ref. 4.4,4.5], while MnPS3 and NiPS3 are examples of the Heisenberg 

model [Ref. 4.4,4.6,4.7]. Among these materials, NiPS3 exhibits a magnetic order close to 

the XY-type [Ref. 4.8]. Furthermore, extensive research has been conducted on the 

influence of their thickness on their physical and magnetic properties [Ref. 4.9]. 

 

Compared to other TMPS3 materials, CoPS3 has received less attention due to challenges 

in synthesizing high-purity samples [Ref. 4.10]. Below the Néel temperature (TN) of 120 K, 

CoPS3 exhibits antiferromagnetic order and a zig-zag magnetic structure with the 

propagation vector Qm = (0,1,0), as depicted in Fig. 4.1. The spins of the Co sites are 
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primarily aligned along the a-axis with a slight canting towards the c-axis [Ref. 4.10]. The 

magnetic susceptibility of CoPS3 exhibits a difference between H//ab and H//c in the 

paramagnetic region, demonstrating XY-like anisotropy and signifying the presence of 

anisotropic magnetic interactions that depend on the magnetic moment direction [Ref. 

4.10].  

 

The underlying spin Hamiltonian needs to be analyzed to understand the magnetism in 

CoPS3 comprehensively. Although the magnetic structure provides some information about 

the spin Hamiltonian, it is insufficient for accurately determining it. For example, the 

magnetic ground states of the XY model (Jx = Jy, Jz = 0) and the isotropic Heisenberg model 

(Jx = Jy = Jz) with easy-plane anisotropy can be the same. However, their magnon spectra 

cannot be assumed identical, as their Hamiltonians have different symmetries. To determine 

the type of spin Hamiltonian and the strength of the exchange interactions, inelastic neutron 

scattering (INS) is the most powerful technique for measuring spin dynamics. Using INS, 

the existence of the spin-orbital entangled Jeff = 1/2 state can be determined by observing 

Figure 4.1 (a) Magnetic structure of CoPS3. Red arrows indicate the spin of Co2+ ion. (b) 
Exchange interaction path of Co2+ ions in CoPS3.  
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the excitation from the Jeff = 1/2 to Jeff = 3/2 states; it should appear around 20–30 meV and 

is considered as the characteristic signature of the Jeff = 1/2 ground state in cobalt 

compounds [Ref. 4.11–4.13]. 

 

4.2 Magnetic excitations of CoPS3 

4.2.1 Absence of spin-orbit exciton 

Fig. 4.2 displays the temperature-dependent magnon dispersion with an incident neutron 

energy of Ei = 71.3 meV. The phonon contamination was removed from the data using the 

technique used to analyze the 8 K data. As illustrated in Fig. 4.2(a–f), the intensity of the 

magnon modes gradually decreases with increasing temperature and dramatically decreases 

near the Néel temperature TN = 120 K. However, no other excitations above the Néel 

temperature were observed in our data, such as the dispersionless spin-orbit excitons 

corresponding to the transition from the Jeff = 1/2 state to the Jeff = 3/2 state. This excitation 

Figure 4.2 (a–f) Temperature dependence of the magnetic excitation in CoPS3. (g) 
Integrated intensity of magnetic excitations over the momentum range of Q = [0.3, 4] Å−1 
with temperature. (h) Overall integrated magnon intensity and (0,1,0) elastic peak for the 
given temperatures. The blue triangles depict the integrated intensity of the (0,1,0) 
magnetic peak in [Ref. 4.10], the red circles depict the magnon spectrum, and the green 
squares depict the (0,1,0) magnetic peak of our data.  
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stems from crystal field splitting, so it should remain above the Neel temperature. The 

absence of such excitations indicates that CoPS3 has a spin S = 3/2 ground state instead of 

the spin-orbital entangled Jeff = 1/2 ground state. Thus, the interaction between spin waves 

and spin-orbit coupling, such as the multi-level spin-wave theory, typically employed to 

mix spin-orbit levels or Kitaev interaction, does not apply to this system. Therefore, in the 

subsequent analysis, CoPS3 is considered as a spin S = 3/2 state in the conventional linear 

spin-wave theory calculation. 

 

4.2.2 Spin-wave spectrum 
 

Fig 4.3 presents the spin waves observed at 8 K using an incident neutron energy of Ei = 

71.3 meV and the corresponding linear spin-wave theory calculations. The experimental 

data demonstrate dispersive magnons with a significant spin gap of approximately 13 meV. 

Additionally, another gap is present around 25 meV, leading to two magnon modes: a flat 

upper band and a lower dispersive band. 

Previous studies on honeycomb lattice systems have predominantly employed 

isotropic Heisenberg models. However, for CoPS3, this model is inadequate, and thus, an 

XXZ-type (anisotropic Heisenberg) Hamiltonian with a single-ion anisotropy is employed 

in this study: 

H = �𝐽𝐽𝑛𝑛

3

𝑛𝑛=1

� �𝑺𝑺𝑖𝑖𝑥𝑥𝑺𝑺𝑗𝑗𝑥𝑥 + 𝑺𝑺𝑖𝑖
𝑦𝑦𝑺𝑺𝑗𝑗

𝑦𝑦 + 𝛼𝛼𝑺𝑺𝑖𝑖𝑧𝑧𝑺𝑺𝑗𝑗𝑧𝑧�
<𝑖𝑖,𝑗𝑗>𝑛𝑛

+ 𝐾𝐾�(𝑥𝑥� ∙ 𝑺𝑺𝑖𝑖)2
𝑖𝑖

,      (1) 

where α ∈ [0,1] is an anisotropy factor that spans from the XY model (α = 0) to the isotropic 

Heisenberg model (α = 1), K is the easy-axis single-ion anisotropy, and Jn is the strength of 

the exchange interaction till the third nearest neighbours. The inter-layer interaction is 

neglected in the analysis due to the weak vdW force. To determine the spin-wave dispersion 
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and powder-averaged neutron cross-section, both the SpinW package and our own 

analytical solutions are employed. The analysis is limited to the data up to Q = 2.5 Å−1, and 

the elastic scattering below E = 8 meV is excluded. The particle swarm optimization 

algorithm is used to obtain the best fit, which is well suited for searching the global minima 

in large parameter spaces. 

 

The simulated powder-averaged INS cross-section for the XXZ-type and isotropic 

Heisenberg models are presented in Fig. 4.3(a) and 4.3(c), using the best-fit parameters and 

convoluting with an instrumental resolution of 3 meV. The best-fit parameters of the XXZ-

type Heisenberg model signify the ferromagnetic exchange interactions for the first and 

second nearest neighbours, J1 = −2.08 meV and J2 = −0.26 meV, respectively, and a 

significant antiferromagnetic third nearest neighbour exchange interaction, J3 = 4.21 meV. 

In addition, a strong easy-axis single-ion anisotropy K = −2.06 meV and a planar-type spin 

anisotropy factor α = Jz/Jx (0.6) are necessary to account for the large lower spin gap 

observed in the experiments. Moreover, the best-fit parameters of the isotropic Heisenberg 

model exhibit the same sign for the exchange parameters as the XXZ model but with 

Figure 4.3 (a) Best-fit powder-averaged spin-wave spectrum with the XXZ model. (b) 
Experimental INS data of CoPS3 (c) Best-fit magnon spectra with the isotropic Heisenberg 
model.  
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slightly different values: J1 = −2, J2 = −0.65, J3 = 3.51 and K = −3.62 meV. The other key 

difference is the expression of the spin gaps at the zone centre. The spin gaps for the 

isotropic Heisenberg model (Eiso) and the XXZ-like model (EXXZ) are as follows: 

𝐸𝐸𝑖𝑖𝑖𝑖𝑖𝑖 = 2𝑆𝑆�−𝐾𝐾(−𝐾𝐾 + 𝐽𝐽1 + 4𝐽𝐽2 + 3𝐽𝐽3),         

𝐸𝐸𝑋𝑋𝑋𝑋𝑋𝑋 = 2𝑆𝑆�−𝐾𝐾 �−𝐾𝐾 +
3𝛼𝛼 − 1

2
𝐽𝐽1 + (3𝛼𝛼 + 1)𝐽𝐽2 +

3𝛼𝛼 + 3
2

𝐽𝐽3�, 

Fig. 4.4 comprehensively compares the XXZ-type and isotropic Heisenberg models by 

plotting the constant momentum and energy cuts integrated over specific ranges. As shown 

in Fig. 4.4(a) and 4.4(b), the isotropic Heisenberg model does not match the observed low 

energy gap and the additional gapped spectra at 24–27 meV. The best-fit single-ion 

anisotropy parameter of K = −3.62 meV overestimates the low energy gap for the isotropic 

Figure 4.4 (a,b) Constant momentum cut in the range of Q = [1.7 1.8] and Q = [2.2 2.3] 
Å−1 for the measured data with the best fit simulations. (c,d) Constant energy cut in the 
range of E = [13 16] and E = [24 27] meV.  
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model. This inconsistency is further highlighted in Fig. 4.4(c), wherein the isotropic 

Heisenberg model predicts a very low intensity in the energy range from 13 to 16 meV 

around Q = 1.7 and 2.2 Å−1. In contrast, it predicts significant intensity between 24 and 27 

meV. In contrast, the INS and the simulation data from the XXZ model exhibit the gapped 

feature in the same energy range. 

 

A considerable fraction of the initial spectral weights persists above the Neel temperature 

due to over-damped spin waves from the critical fluctuations, as depicted in Fig. 4.2(a–f). 

To better illustrate this observation, the temperature dependence of the integrated intensity 

is displayed across the extensive range of Q = 0.3–4 Å−1 in Fig. 4.2(g and h), wherein the 

contributions arising from the high-temperature spin fluctuations are depicted as the shaded 

area. 

 

4.3 Discussion 

Fig. 4.5 illustrates the anticipated dispersion of CoPS3 spin waves with the high symmetry 

directions in the Brillouin zone using the most suitable parameters for the isotropic 

Heisenberg and XXZ models obtained through the best-fit approach. Due to the spin 

anisotropy, the magnon branches in the XXZ model are split more than those in the 

isotropic Heisenberg model. Additionally, most magnon modes in the XXZ model are 

divided into two parts, yielding a different spin gap at 24–27 meV, as shown in Fig. 4.3(a). 

Furthermore, except for C–Y, the number of magnon branches over the high symmetry 

lines in the XXZ model is double, indicating the absence of mode degeneracy for most 

positions in the momentum space. The non-degenerated magnon branch with the lowest 

energy at 14 meV well corresponds to the measured low-energy gap. 
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Table 4.1 summarises the magnetic exchange parameters experimentally measured for the 

TMPS3 family like CoPS3, using the self-consistent method defined in Eq. (1) [Ref. 4.5–

4.7]. Although the TMPS3 family has the same crystal structure and similar 

antiferromagnetic order, the parameters significantly vary depending on the magnetic TM 

ion. Additionally, the second nearest neighbour exchange interaction is generally small for 

all TMPS3, consistent with the density functional theory calculations [Ref. 4.14]. 

 

Next, the best-fit parameters are examined by considering the magnetic properties. Using 

the mean-field theory, the Neel temperature TN and the Curie–Weiss temperature ΘCW are 

estimated as follows: 

Figure 4.5 The spin-wave dispersion of the isotropic Heisenberg model and the XXZ 
model, indicating the high-symmetric points of the Brillouin zone. The spin-wave 
trajectories are displayed for the crystallographic unit cell, while the relevant positions and 
the Brillouin zone are presented in the insert. 
 



 
 
 
 
 

Chapter 4 

50 
 
 
 
 

 

𝑘𝑘B𝛩𝛩CW = −
1
3
𝑆𝑆(𝑆𝑆 + 1)(3𝐽𝐽1 + 6𝐽𝐽2 + 3𝐽𝐽3), 

𝑘𝑘B𝑇𝑇N = −
1
3
𝑆𝑆(𝑆𝑆 + 1)(𝐽𝐽1 − 2𝐽𝐽2 − 3𝐽𝐽3). 

The temperatures obtained using our best-fit parameters are ΘCW = −43.5 K and TN = 188.5 

K. Considering the overestimation of TN from the mean-field theory in a low-dimensional 

system, these values are in good agreement with the reported value of ΘCW = −35.4 K [Ref. 

4.10] and TN = 120 K. Moreover, this parameter set also stabilizes the zig-zag magnetic 

order. Hence, the obtained results further verify that the obtained parameters are rational 

and consistent with the magnetic properties of the bulk sample. 

The electronic ground state of CoPS3 is an interesting aspect to consider. While 

many cobalt compounds exhibit a flat-like spin-orbit exciton, CoPS3 does not [Ref. 4.11–

4.13]. The local environment of Co2+ in CoPS3 is a distorted octahedron, similar to that of 

other cobalt compounds. The main difference between CoPS3 and other cobalt compounds 

Table 4.1 Summary of the magnetic exchange parameters of the magnetic vdW TMPS3 
(TM = Mn, Fe, Co, Ni) family. The angle between the c* axis and the vector that joins the 
TM ion and sulphur ligand is defined as θ. θ is 54.7° for an ideal octahedron. 
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is the type of ligand used, which for CoPS3 is sulphur. Therefore, the absence of the spin-

orbital entangled state in CoPS3 could be due to the physical effect of sulphur, such as the 

charge-transfer effect [Ref. 4.15]. Notably, in NiPS3, different charge-transfer physics have 

been found to yield novel phenomena called spin-charge coupling and quantum-entangled 

magnetic exciton [Ref. 4.15,4.16]. 

 

The planar type of spin anisotropy in CoPS3 stems from the electronic configuration of 

Co2+ within a trigonally distorted octahedron. Table 4.1 shows that each TMPS3 compound 

has a distinct spin-anisotropy factor α. However, the angle θ, denoting the strength of 

trigonal distortion in the TMPS3 family, remains relatively consistent at 51°. The only 

difference is the type of TM element present, which leads to variations in the electronic 

configuration and occupancy of orbital states. These factors influence the super-exchange 

process between TMs, thereby impacting the origin of the easy-plane spin anisotropy, which 

is closely tied to the electronic configuration of Co2+ and the orbital splitting induced by 

the trigonal distortion. 

 

4.4 Summary 

Powder INS was used to determine the magnetic exchange parameters and the single-ion 

anisotropy of CoPS3. The results show that Co2+ in CoPS3 possesses a spin S = 3/2 state 

rather than a spin-orbital entangled Jeff = 1/2 ground state. The anisotropic XXZ-type J1–

J2–J3 Heisenberg Hamiltonian was used to fit the magnon spectra, which signified a 

significant easy-axis single-ion anisotropy of the S = 3/2 state. Our best-fit analysis 

demonstrated the presence of the ferromagnetic exchange interactions J1 and J2 and an 

antiferromagnetic J3 exchange interaction for the first, second and third nearest neighbours 

in the XXZ model. Moreover, an XXZ-type interaction was observed in a honeycomb 
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lattice with an easy-plane spin anisotropy of α = 0.6, which signifies that CoPS3 is an XXZ-

type honeycomb antiferromagnet. The analysis also showed a large spin gap of ~13 meV, 

which requires a sizable single-ion anisotropy of K = −2.06 meV. Overall, CoPS3 presents 

an excellent opportunity for exploring low-dimensional magnetism with magnetic vdW 

materials. 
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Chapter 5 
Spin dynamics of cobalt Kitaev honeycomb candidates 
Na3Co2SbO6 and Na2Co2TeO6 
  
 
 
5.1 Introduction 
Bond-dependent anisotropic interactions rely on the entanglement of the spin and orbital 

sectors. Therefore, most research has been dedicated to the 4d- and 5d-electron systems 

with strong spin-orbit coupling (SOC), such as Na2IrO3 [Ref. 5.1]and α-RuCl3 [Ref. 5.2], 

which exhibit ferromagnetic (FM) Kitaev interactions. However, realising Kitaev quantum 

spin liquids (KQSLs) has been challenging. This is because a long-range magnetic order 

inevitably emerges at higher temperatures due to non-negligible Heisenberg interactions 

for all candidates. Furthermore, although several systems with FM Kitaev interactions have 

been experimentally discovered [Ref. 5.2,5.3], no antiferromagnetic (AFM) Kitaev 

systems have been reported. Of further interest, recent theories predict that AFM Kitaev 

materials can stabilise new classes of KQSL owing to the U(1) gauge field. FM Kitaev 

systems only have the usual Z2 gauge field [Ref. 5.4]. Therefore, it is essential to find AFM 

Kitaev materials. 

 

Na3Co2SbO6 (NCSO) and Na2Co2TeO6 (NCTO) are honeycomb-layered cobaltates that 

have been theoretically proposed as KQSL candidates [Ref. 5.5,5.6]. NCSO and NCTO 

possess a honeycomb layer of edge-sharing CoO6 octahedra with SbO6 and TeO6 octahedra 

located at the honeycomb centre, respectively (Fig. 5.1). Both materials exhibit zig-zag 

magnetic ordering, with NCSO having a Neel temperature of TN = 8 K and a magnetic 
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propagation vector of Qm = (1/2, 1/2, 0) [Ref. 5.6,5.7] and NCTO having TN = 27 K and Qm 

= (1/2, 0, 0) [Ref. 5.5,5.8]. To experimentally verify the theoretically proposed KQSL, the 

strength and sign of the Kitaev coupling and non-Kitaev interactions need to be determined. 

This information will enable the exploration of novel ways for realising the KQSL phase 

by tuning external parameters. 

 
5.2 Magnetic excitations of NCSO and NCTO 
5.2.1 Spin-orbit exciton 

Figure 5.1 (a–b) Crystal structure of Na3Co2SbO6 and its magnetic structure. (c–d) Crystal 
structure of Na2Co2TeO6 and its magnetic structure   
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Spin-orbit excitons, excitation between the Jeff = 1/2 ground state and excited states, are 

commonly observed for cobalt compounds supporting the spin-orbit-entangled state for 

Co2+ ions [Ref. 5.9,5.10]. In the presence of a trigonal distortion of octahedra, the excited 

Jeff = 3/2 state splits into two levels, and the lowest exciton energy stems from the interplay 

Figure 5.2 The spin-orbit exciton of (a-c) Na3Co2SbO6 and (d-f) Na2Co2TeO6 with respect 
to the temperature. Constant-Q cuts in (c,f) is integrated intensity of grey boxes in (a,b,d,e). 
(g) Deviation of the spin-orbital entangled states by trigonal distortion and magnetic order. 
(h) Splitting of crystal field levels with function of trigonal distortion (black) and finite 
effective zeeman field from magnetic order (red). 



 
 
 
 
 

Chapter 5 

56 
 
 
 
 

 

between SOC (λ) and trigonal crystal field (Δ). The temperature-dependent behaviour of 

spin-orbit excitons in NCSO and NCTO is shown in Fig. 5.2. The energy of the exciton for 

NCSO is observed to be 28.1 meV (above TN), and its position slightly increases by 1.1 

meV below TN. Similarly, for NCTO, the energy of the exciton is located at 23.1 meV and 

shifts to 25.3 meV upon entering the magnetic ordering. The energy shift of the spin-orbit 

exciton through TN can be attributed to the Zeeman splitting caused by the molecular field 

of the magnetic order, as illustrated in Fig. 5.2(g). The data obtained at Ei = 50 and 100 

meV are used to determine the exciton energy, as shown in Fig. 5.3. To accurately 

understand the shift of this spin-orbit excitation, the following single-ion Hamiltonian is 

used: 

𝐻𝐻 = 𝐻𝐻SO + 𝐻𝐻tri +𝐻𝐻𝑀𝑀𝑀𝑀 = λ𝐿𝐿 ∙ 𝑆𝑆 + Δ �𝐿𝐿𝑛𝑛�2 −
2
3
� + ℎmf𝑆𝑆𝑏𝑏�  ,  

where λ indicates the SOC strength, Δ is the crystal electric field from the trigonal distortion, 

and hmf denotes the effective Zeeman field from the zig-zag magnetic order. Note that the 

Figure 5.3 Peak profiles of the spin-orbit excitons. The parameter set from fitting was used 
for the crystal field analysis.  
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𝑛𝑛� vector is given along the [1 1 1] direction for the local frame. The parameters in the 

Hamiltonian can be experimentally determined by measuring various crystal field 

excitations, as shown in Fig. 5.3. A magnetic ordering induces a change in the transition 

energy through the molecular magnetic field, exhibiting a clear difference based on the Δ 

sign. Specifically, for Δ > 0, the energy of the lowest spin-orbit exciton increases upon the 

onset of magnetic ordering. Conversely, for Δ < 0, it splits into two modes, with the lower 

one slightly shifting towards lower energies (Fig. 5.2(h)). The positive energy shift 

observed in the data indicates that both our samples have a positive sign of trigonal 

distortion. The optimal fitting of the observed energy shift can be achieved with λ = 25 

meV, Δ = 12 meV and hmf = 0.4 meV for NCSO and λ = 21 meV, Δ = 13 meV and hmf = 0.6 

meV for NCTO. 

 
5.2.2 Spin-wave spectrum 
The magnon spectra of NCSO and NCTO are measured at T = 3 K with a neutron incident 

energy of Ei = 16.54 meV; the results are shown in Fig. 5.4(a–b). To eliminate the effect of 

the background and phonon contamination, the high-temperature data obtained well above 

TN are employed: 50 K for NCSO and 95 K for NCTO. Although NCSO and NCTO have 

similar atomic and magnetic structures, their magnon dispersions exhibit striking 

differences. In NCSO, a pronounced upturn-shaped dispersion is observed at low Q < 1 Å−1 

and E ~ 1–3 meV, accompanied by a small gap of 0.6 meV. In contrast, the high energy 

data display a weak arch-shaped dispersion that persists up to 8 meV. Conversely, NCTO 

exhibits a flat excitation at ~7 meV and strong triangular-like dispersions below ~3 meV 

with a gap of 0.4 meV. 

To explain the spin-wave spectrum, the generalised Kitaev–Heisenberg (GKH) 

Hamiltonian with pseudospin a �̃�𝑆 = 1/2 is used: 
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𝐻𝐻 = � 𝐽𝐽𝑛𝑛 � 𝑺𝑺𝒊𝒊� ∙ 𝑺𝑺𝒋𝒋�
<𝑖𝑖,𝑗𝑗>𝑛𝑛𝑛𝑛=1,3

+ � �𝐾𝐾�̃�𝑆𝑖𝑖
𝛾𝛾�̃�𝑆𝑗𝑗

𝛾𝛾 + 𝛤𝛤 ��̃�𝑆𝑖𝑖𝛼𝛼�̃�𝑆𝑗𝑗
𝛽𝛽 + �̃�𝑆𝑖𝑖

𝛽𝛽�̃�𝑆𝑗𝑗𝛼𝛼�
<𝑖𝑖,𝑗𝑗>∈𝛼𝛼𝛽𝛽(𝛾𝛾)

+ 𝛤𝛤′ ��̃�𝑆𝑖𝑖𝛼𝛼�̃�𝑆𝑗𝑗
𝛾𝛾 + �̃�𝑆𝑖𝑖

𝛾𝛾�̃�𝑆𝑗𝑗𝛼𝛼 + �̃�𝑆𝑖𝑖
𝛽𝛽�̃�𝑆𝑗𝑗

𝛾𝛾 + �̃�𝑆𝑖𝑖
𝛾𝛾�̃�𝑆𝑗𝑗

𝛽𝛽�� ,       . . . (1) 

where Jn is a Heisenberg interaction between the nth nearest neighbours, K is a Kitaev 

interaction, and Γ/Γ’ denotes a symmetrically allowed off-diagonal interaction. For the first 

nearest neighbour bonding, an easy-axis γ can be distinguished, with the bond labelled αβ(γ). 

In the analysis, only the first and third nearest-neighbour Heisenberg interactions are 

considered since it is widely acknowledged that the second nearest-neighbour interaction 

is generally small in honeycomb compounds. 

To validate the GKH model, comparisons are performed with a simple anisotropic 

Heisenberg (XXZ) model. The XXZ model is frequently utilised to describe the spin 

dynamics of cobalt honeycomb compounds. For consistency with the reported magnetic 

Figure 5.4 (a–b) Spin-wave spectrum of NCSO and NCTO at T = 3.2 K. (c–d) Simulated 
powder-averaged spectrum with the generalized Kitaev–Heisenberg model. (e–f) 
Simulated with the XXZ model. (g–h) Constant Q cuts with left grey boxes in (a–f). (i–j) 
Constant Q cuts with right grey boxes in (a–f)  
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structure and spin gap, ‘phenomenological’ single-ion anisotropy is introduced to the XXZ 

model to ensure the alignment of spins orthogonal to the propagation vector. The XXZ 

model used herein is  

H = � 𝐽𝐽𝑛𝑛
𝑛𝑛=1,3

� �𝑺𝑺𝑖𝑖𝑥𝑥𝑺𝑺𝑗𝑗𝑥𝑥 + 𝑺𝑺𝑖𝑖
𝑦𝑦𝑺𝑺𝑗𝑗

𝑦𝑦 + 𝛼𝛼𝑺𝑺𝑖𝑖𝑧𝑧𝑺𝑺𝑗𝑗𝑧𝑧�
<𝑖𝑖,𝑗𝑗>𝑛𝑛

+ 𝐷𝐷�(�̂�𝑒 ∙ 𝑺𝑺𝑖𝑖)2
𝑖𝑖

  , 

where α∈[0, 1] is the anisotropy factor between the in-plane and out-of-plane directions, 

D is the easy-axis single-ion anisotropy, and Jn is the Heisenberg interaction with the first 

and third nearest neighbours. �̂�𝑒 is a unit vector orthogonal to the propagation vector. The 

best-fitting parameters are as follows: for NCSO J1 = −3.6, J3 = 1.9, α = 0.8 and D = −0.7 

meV; for NCTO J1 = −2.1, J3 = 2.1, α = 0.95 and D = −0.1 meV.  

 

The optimal parameters for our models are determined by conducting an extensive search 

in the parameter space, as summarised in Table 5.1. The resulting powder-averaged magnon 

spectra, calculated using Eq. (1) with the optimal parameters, are shown in Fig. 5.4(c and 

d) for NCSO and NCTO, respectively. The optimal parameters for the anisotropic 

Heisenberg (XXZ) Hamiltonian with a single-ion anisotropy term are also determined, 

which support the reported magnetic structure and the magnon gap, as shown in Fig. 5.4(e 

and f). A detailed comparison between the two models is conducted by employing constant 

Q cuts integrated over the Q range, as indicated by the vertical boxes in Fig. 5.4(a–d). As 

depicted in Fig. 5.4(g–j), the GKH model exhibits the best agreement with an AFM Kitaev 

coupling of several meV. Although the simpler XXZ model reproduces some of the basic 

shapes of the measured dispersions, it lacks consistency in the detailed features. Thus, the 

GKH model is the most suitable for both systems. 
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Based on recent theoretical predictions [Ref. 5.11,5.12], the possibility of an FM 

Kitaev coupling (K<0) as an alternative model is investigated for the observed spin-wave 

spectra. Fig. 5.5 illustrates the computed powder-averaged spin-wave spectra and the 

optimised magnetic structures using the best-fitting FM Kitaev parameters for NCSO and 

NCTO. 

Although the FM Kitaev model seems to provide a similar degree of agreement 

Figure 5.5 Comparison of the measured spin-wave (left) and simulated powder-averaged 
spectrum with the AFM and FM Kitaev models (right).  
 

Table 5.1 Best parameter set with the GKH model  
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with the data as the AFM Kitaev model, the magnetic structures optimised for each model 

within the spin-wave calculations differ, particularly in the direction of the magnetic 

moments. For NCTO, the optimised magnetic structures of the AFM and FM Kitaev models 

do not precisely match the reported data. Still, the magnetic structures obtained with the 

AFM Kitaev model are much closer to the reported data than that obtained with the FM 

Kitaev model [Ref. 5.5]. On the other hand, for NCSO, the calculated magnetic structure 

of our parameter set exhibits excellent agreement with the reported neutron diffraction 

data [Ref. 5.7]. However, the optimised magnetic structure of our parameter set with NCTO 

has an additional out-of-plane canting, which is absent in the reported neutron diffraction 

data.  

 
5.2.3 Magnon damping effect 
Although the AFM Kitaev model employed herein captures the essential characteristics of 

the measured magnon spectra, it overestimates the intensity at high energies. Furthermore, 

a similar phenomenon of damped magnon dispersions is observed at high energies for α-

RuCl3 [Ref. 5.13,5.14]. According to a widely accepted view, the damping effect can be 

attributed to a two-magnon process and the renormalisation effect of the Kitaev interaction. 

To qualitatively test this hypothesis, a custom-built code tailored to the GKH model with 

the best-fitting parameters is used to calculate the two-magnon density of state (DOS). 

To evaluate the magnon decay, the two-magnon DOS is calculated using 

D(q,𝐸𝐸) =
1
𝑁𝑁
��𝛿𝛿(𝐸𝐸 − 𝐸𝐸𝑘𝑘,𝑖𝑖 − 𝐸𝐸𝑞𝑞−𝑘𝑘,𝑗𝑗)

𝑘𝑘𝑖𝑖,𝑗𝑗

 ,  
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where k is the equally spaced q point over the first Brillouin zone, Ek,i is the ith magnon 

energy dispersion, and N is a normalisation factor. The number of possible decay channels, 

D(q, Eq), denotes the decay of a single magnon at (q, Eq) into two magnons with the 

constraint of Eq = Ek − Ek-q. Additionally, D(q, Eq) is a good approximation for the damping. 

Fig 5.6 displays the two-magnon DOS for NCSO and NCTO along the high symmetry lines. 

The strong two-magnon DOS overlaps with the upper modes of the single magnons for 

NCSO, accurately describing the highly damped high-energy spectra between 4 and 8 meV 

in our data. In contrast, for NCTO, the two-magnon DOS is present at 5–6 meV, which is 

just below the flat spectra close to 7 meV. These results show that the high-energy damping 

observed in the magnon spectra stems from the two-magnon decay process. Similar 

behaviour has been observed in systems with a strong anisotropic exchange, such as the 

Kitaev coupling and off-diagonal symmetric anisotropy terms [Ref. 5.13,5.14]. 

Figure 5.6 Two-magnon DOS calculation based on our best-fitting parameters. The one-
magnon dispersion εk,m (black line) is displayed with the two-magnon DOS. The lower 
bound of the two-magnon continuum is indicated by a red dashed line. 
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5.3. Discussion 
5.3.1 Magnetic phase diagram with GKH model 
To verify the direction of the magnetic moment in the GKH model, the matrix 

diagonalisation is calculated for both the FM and AFM Kitaev interaction models. With 

zig-zag magnetic order, the direction of the magnetic moment is only determined by the 

anisotropic interactions corresponding to the eigenvector of the matrix M [Ref. 5.1]: 

M =  �
2𝐾𝐾 −Γ + 2Γ′ Γ

−Γ + 2Γ′ 2𝐾𝐾 Γ
Γ Γ 0

� 

With diagonalisation, the following eigenvalues are obtained: 

Ep = Γ − 2Γ′ + 2K 

E± = Γ′ −
Γ
2

+ 𝐾𝐾 ±
𝐴𝐴
2

 

where 𝐴𝐴 =   �9Γ2 + 4Γ2 + 4𝐾𝐾2 − 4ΓΓ′ − 4𝐾𝐾Γ + 8𝐾𝐾Γ′ 

In the monoclinic frame, the eigenfunction of each eigenvalue is given as follows: 

vp = (0,1,0) 

v± = �−
√2
8

7Γ + 2Γ′ + 2𝐾𝐾 ± 3𝐴𝐴
Γ′ − Γ + 𝐾𝐾

 ,0,1� 

If the minimal eigenvalue is Ep, the magnetic moments are aligned along the bond direction 

and lie on the ab-plane. For E±, the magnetic moments are aligned orthogonal to the bond 

direction and can align in the out-of-plane direction (Fig. 5.7).  
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Fig. 5.8 displays the out-of-plane angle of the magnetic moment in the K–Γ–Γ’ parameter 

space. In the figure, the white area represents a magnetic structure with moments parallel 

to the bond direction. In contrast,the coloured area represents a magnetic structure with 

Figure 5.8 Phase diagram of the angle of out-of-plane magnetic moment in the K–Γ–Γ’ 
space. For NCSO, (a) is the best parameter set with AFM Kitaev, (c) FM Kitaev and (e) 
parameter set from Ref. For NCTO, (b) is our best parameter set with AFM Kitaev, (d) FM 
Kitaev and (f) parameter set from [Ref. 5.15] 
 

Figure 5.7 Optimized magnetic structures of zig-zag order with GKH model. (a) Eigenstate 
of E±, wherein spins are aligned orthogonal to the bond direction. (b) Eigenstate of Ep, 
wherein spins are aligned along the bond direction.   
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spin orthogonal to the bond direction. The analysis shows that the AFM Kitaev interaction 

easily accesses the in-plane moment configuration. In contrast, the magnetic moment is 

mostly canted to the c-axis with the FM Kitaev interaction. The spin configurations of 

previous studies are primarily situated on the ab-plane. Thus, the counteractive trend 

observed with regard to the Kitaev interaction’s sign implies that the AFM Kitaev model is 

better suited than the FM Kitaev models for elucidating the magnetic structure and spin-

wave behaviour of NCSO and NCTO.  

The calculated magnetic structure of our best-fitted model is located in the phase 

diagram of Fig. 5.8. However, although the angles of the magnetic moment of the proposed 

AFM Kitaev model and M. Songvilay’s FM Kitaev model [Ref. 5.15] are similar, but the 

signs of the angles are different. Additionally, recent research suggests that the magnetic 

structure of NCTO may be a triple-Q zig-zag order rather than a simple single-Q zig-zag 

order with three equivalent domains [Ref. 5.16]. The conflicting reports on the magnetic 

ground state of NCTO highlight the need for further investigation to establish a reliable 

magnetic Hamiltonian. 

 
5.3.2 Comparison with single-crystal data  
To compare the spin waves of various models, the magnon dispersion curves for NCSO 

and NCTO are computed using the reported parameters and the potential impact of the 

domain structures on the observed spin waves is considered. Fig. 5.9 presents the spin-

wave spectra of NCSO and NCTO along the high-symmetry line of the Brillouin zone for 

different models, with three magnetic domains indicated by different colours. For NCTO, 

the most striking feature of the AFM Kitaev model is the absence of any band crossing 

between the lower and higher magnon branches, whereas other models display such 

crossing through the high-symmetry lines. 
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Notably, the gapped-like feature of the spin wave manifests differently in NCSO. 

Specifically, NCSO’s two-magnon parts are very close to each other with the AFM Kitaev 

model, while the branches are gapped with the FM Kitaev model [Ref. 5.15]. This 

characteristic gapped feature provides valuable insights and assists in selecting the 

appropriate magnetic Hamiltonian when analysing the single-crystal data. 

 
5.4 Summary 

This study utilised inelastic neutron scattering to measure the magnetic excitations in two 

Figure 5.9 Calculated spin-wave dispersion along the high-symmetric points at the 
Brillouin Zone. The different color of dispersion indicates possible domains with 120° 
rotation.  
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potential KQSL candidates, NCSO and NCTO, containing Co ions. The temperature-

dependent spin-orbit exciton observed in both compounds was attributed to the crystal field 

excitation between the SOE Jeff = 1/2 ground state and Jeff = 3/2 excited state, which stems 

from a positive trigonal distortion. A considerable AFM Kitaev interaction was identified 

using both the spin-wave spectrum and magnetic structure, with the size of Heisenberg and 

off-diagonal anisotropy exchange interactions. Additionally, strong magnon decay was 

found in the high-energy spectra, which was interpreted as the two-magnon process being 

enhanced by anisotropic exchanges. These results provide experimental evidence for AFM 

Kitaev interactions in real materials and pave the way for further exploration towards 

KQSL in practical applications. 
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Chapter 6 
Magnon breakdown in the cobalt Kitaev triangular 
antiferromagnet CoI2 
  
  
 
6.1 Introduction 
Quantum spin liquids are a unique form of magnetic matter, proposed initially by Anderson 

for a triangular-lattice network of quantum spins. However, discovering materials that meet 

Anderson’s criteria remains a considerable challenge. One successful approach uses 

geometrical frustration from non-bipartite lattices like triangular, Kagome, and pyrochlore 

spin networks [Ref. 6.1]. Another recent strategy involves utilizing bond-dependent 

anisotropic exchange, also known as ‘exchange frustration’. [Ref. 6.2]. Kitaev's ground-

breaking work demonstrated that when such interactions are applied to a honeycomb 

structure, it becomes exactly solvable. This solution leads to a quantum spin liquid that 

hosts both fractional Majorana and gauge field excitations, representing a new field of 

magnetism. Since the discovery of the Kitaev model and its unique properties, researchers 

have continuously endeavoured to realize such a model in real materials. One promising 

approach involves utilizing spin-orbital entangled Jeff = 1/2 magnetic moments in an edge-

sharing network of ligand octahedrons [Ref. 6.3]. 

The manifestation of Kitaev physics in geometrically frustrated systems, such as 

triangular-lattice antiferromagnets (TLAFs) and pyrochlore-lattice systems, has received 

less attention, but we decided to choose it as the focus of this research for the following 

reasons. Although a few 5d compounds, such as triangular-lattice Ba3IrTi2O9 [Ref. 6.4]and 
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pyrochlore-lattice La2(Mg/Zn)IrO6 [Ref. 6.5], have been proposed for realizing this physics, 

they lack the edge-sharing network of ligands, a characteristic of Kitaev materials. As a 

result, synthesizing single crystals of such 5d compounds for spectroscopic probes remains 

a challenging task. Thus, identifying a genuine example of Kitaev physics in geometrically 

frustrated lattices is crucial. 

 

The non-collinear magnetic order and quantum fluctuations of TLAFs are expected to 

generate significant quantum effects on magnetic excitations. One such effect is magnon 

decay, wherein magnons can break down into multiple magnons or other types of 

quasiparticles [Ref. 6.6]. While this effect typically results in spectral line broadening, in 

the strong interaction limit, magnons can undergo avoided decay transitions [Ref. 6.7,6.8] 

Figure 6.1 (a) Single-ion picture of Co2+ ions in CoI2. (b) Schematic of Kitaev interactions 
in a triangular lattice. (c) Magnetic structure of CoI2 (d) Crystal structure of CoI2 and the 
path of magnetic exchange interaction. The red arrows indicate intra-layer coupling, and 
the yellow arrows indicate inter-layer coupling. 
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or be deconfined into spinons [Ref. 6.9]. Although only a few experimental observations 

of such spontaneous quasiparticle breakdown have been reported to date (e.g. Ba3CoSb2O9, 

BiCu2PO6) [Ref. 6.7–6.11], it is crucial to determine the spin dynamics in the case of the 

exotic S = 1/2 Kitaev system with a triangular lattice. 

 

Here, we introduce the spin dynamics of the first ever reported example of a triangular-

lattice Kitaev system—CoI2, which is a member of the van der Waals triangular lattice 

TMX2 (TM = Transition metal, X = Halide) family [Ref. 6.12]. CoI2 comprises layers of 

CoI6 octahedrons that are connected in an edge-sharing network and form a triangular 

lattice (Fig. 6.1b) and is thus an ideal starting system to search for Kitaev interactions. Our 

inelastic neutron scattering data show a distinct signature of a spin–orbit exciton at 35.4 

meV, corresponding to a transition between the Jeff = 3/2 and 1/2 multiplets of the spin–

orbit entangled 3d7 manifold (See Fig. 6. 2). The large gap between these excitations 

indicates that we can model the Jeff = 1/2 states without considering the higher-J states in 

Figure 6.2 (a) Spin–orbit exciton at room temperature. The power-averaged data were 
measured using the incident energy Ei = 52 meV. (b) Constant-momentum cut of power-
averaged data. The data were integrated using: Q = [1, 4] Å-1  
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the low-energy Hamiltonian. CoI2 orders antiferromagnetically at TN = 9 K, where the Jeff 

= 1/2 moments form a long-period commensurate spiral order in the ab plane and are 

coupled antiferromagnetically between the planes with a propagation vector Qm = (1/8, 0, 

1/2) (Fig. 6.1(c)) [Ref. 6.12]. 

 
6.2 Minimal Hamiltonian for CoI2 

Before verifying the nature of CoI2, we need to minimize the magnetic Hamiltonian based 

on the observed magnetic structure. We first redraw the magnetic phase diagram of the J1–

J2–J3 model using the classical Luttinger–Tisza (LT) method [Ref. 6.13]. This model was 

suggested in a previous study in which ferromagnetic J1 was used [Ref. 6.12]. This phase 

diagram shows the competition between the further nearest neighbour interactions and 

yields various types of magnetically ordered phases. In this model, the observed 

propagation vector Qm = (1/8, 0, 0) is stabilized with the following constraints: 2√2𝐽𝐽3 +

�1 + √2�𝐽𝐽2 + 𝐽𝐽1 = 0 , which further requires a comparable size of antiferromagnetic J2 

with respect to J1. However, this scenario is in stark contrast to the results obtained in most 

experimental studies on cobalt edge-sharing materials, which show a small or negligible J2 

and sizable third-nearest neighbour interaction J3 [Ref. 6.14,6.15].  

 

To resolve this inconsistency, we used another simplified model with a bond-dependent 

anisotropy, i.e. the J1–J±±–J3 model. Because CoI2 satisfies the condition for realizing a 

bond-dependent anisotropy, which is allowed by crystal symmetry, the implication of this 

model is reasonable. Based on the symmetry analysis [Ref. 6.16,6.17], we can use the 

magnetic Hamiltonian as follows: 
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𝐻𝐻 =  � �𝐽𝐽1�𝑆𝑆𝑖𝑖𝑥𝑥𝑆𝑆𝑗𝑗𝑥𝑥 + 𝑆𝑆𝑖𝑖
𝑦𝑦𝑆𝑆𝑗𝑗

𝑦𝑦 + Δ1𝑆𝑆𝑖𝑖𝑧𝑧𝑆𝑆𝑗𝑗𝑧𝑧�
𝑛𝑛=1

<𝑖𝑖,𝑗𝑗>𝑛𝑛

+ 2𝐽𝐽±± ��𝑆𝑆𝑖𝑖𝑥𝑥𝑆𝑆𝑗𝑗𝑥𝑥 − 𝑆𝑆𝑖𝑖
𝑦𝑦𝑆𝑆𝑗𝑗

𝑦𝑦� cos𝜙𝜙𝛼𝛼 − �𝑆𝑆𝑖𝑖𝑥𝑥𝑆𝑆𝑗𝑗
𝑦𝑦 + 𝑆𝑆𝑖𝑖

𝑦𝑦𝑆𝑆𝑗𝑗𝑥𝑥� sin𝜙𝜙𝛼𝛼�

+ 𝐽𝐽𝑧𝑧±��𝑆𝑆𝑖𝑖
𝑦𝑦𝑆𝑆𝑗𝑗𝑧𝑧 + 𝑆𝑆𝑖𝑖

𝑦𝑦𝑆𝑆𝑗𝑗𝑧𝑧� cos𝜙𝜙𝛼𝛼 − �𝑆𝑆𝑖𝑖𝑥𝑥𝑆𝑆𝑗𝑗𝑧𝑧 + 𝑆𝑆𝑖𝑖𝑧𝑧𝑆𝑆𝑗𝑗𝑥𝑥� sin𝜙𝜙𝛼𝛼��

+ � 𝐽𝐽3�𝑆𝑆𝑖𝑖𝑥𝑥𝑆𝑆𝑗𝑗𝑥𝑥 + 𝑆𝑆𝑖𝑖
𝑦𝑦𝑆𝑆𝑗𝑗

𝑦𝑦 + Δ3𝑆𝑆𝑖𝑖𝑧𝑧𝑆𝑆𝑗𝑗𝑧𝑧�
𝑛𝑛= 3

<𝑖𝑖,𝑗𝑗>𝑛𝑛

+ � 𝐽𝐽𝑛𝑛�𝑆𝑆𝑖𝑖𝑥𝑥𝑆𝑆𝑗𝑗𝑥𝑥 + 𝑆𝑆𝑖𝑖
𝑦𝑦𝑆𝑆𝑗𝑗

𝑦𝑦 + 𝑆𝑆𝑖𝑖𝑧𝑧𝑆𝑆𝑗𝑗𝑧𝑧�
𝑛𝑛=2,𝑐𝑐1,𝑐𝑐2

<𝑖𝑖,𝑗𝑗>𝑛𝑛

,  

with the bond-dependent phase factor 𝜙𝜙𝛼𝛼 ∈ �0, 2𝜋𝜋
3

,−2𝜋𝜋
3
�, and each phase factor represents 

the X-, Y-, and Z-bonds (Fig. 6.1(b) and (d)). In the following, we neglect the allowed Jz± 

anisotropy because the magnetic moments in CoI2 are aligned in the ab-plane [Ref. 6.12]. 

Figure 6.3 (a-c) Magnetic phase diagram of the J1–J2–J3 model with a finite second nearest 
neighbour intra-layer coupling Jc2. (d-f) Magnetic phase diagram of the J1–J±±–J3 model 
with a finite Jc2. The coloured map in the figure indicates the length of the magnetic 
propagation vector Qm. 
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We also neglect the inter-layer coupling and anisotropic factor ∆3 for simplicity. Using the 

LT method with the J1–J±±–J3 model, we find that the J±± term is essential to stabilize the 

observed propagation vector (see Fig. 6.3). This implies that a bond-dependent anisotropy 

is crucial for explaining the magnetic order of CoI2. In the general case, we can stabilize 

the observed magnetic order using a single equation: 2√2𝐽𝐽3 + �1 + √2�𝐽𝐽2 + �𝐽𝐽±±� + 𝐽𝐽1 −

2𝐽𝐽𝑐𝑐2 = 0. 

 

6.3 Magnetic excitations of CoI2 
6.3.1 Paramagnetic excitation 
To gain insight into the exchange constants of CoI2, we analyze the magnetic scattering 

data obtained in the paramagnetic regime, where magnetic order is absent and only short-

Figure 6.4 (a) Paramagnetic inelastic neutron signal measured at T = 13 K by integrating 
the energy transfer E = [1, 7] meV and that measured along the L-direction with L = [-0.7, 
0.7] r.l.u. (b) Comparison of the J1–J±±–J3 and J1–J2–J3 (dominant) models using the LLD 
(c-d) Comparison of the constant-E cuts between the experimental data and LLD simulation 
of J1–J±±–J3 at E = [1, 3] meV and [4, 7] meV for (c), (d), respectively. (e) Energy–
momentum resolved scattering intensity along the high-symmetric points in the BZ with Ei 
= 17 meV and comparison with model data. The data were integrated with 0.2 Å-1 for the 
L direction and 0.036 Å-1 for the in-plane direction.  
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range correlations are present. This approach facilitates a more reliable estimation of the 

exchange parameters because the influence of quantum fluctuations is expected to be 

minimal in the paramagnetic state and thus result in a semi-classical behaviour of the spin 

dynamics. Fig. 6.4 illustrates the diffuse scattering pattern of CoI2 at a temperature of 13 K 

in the paramagnetic state. The energy-integrated diffuse scattering pattern has a hexagonal 

shape, which is aligned with the boundaries of the Brillouin Zone (BZ), and the hexagons 

at the K points in the BZ are connected by lines. An analysis of the energy and momentum-

resolved cuts along the high-symmetry momentum directions of the BZ reveals highly 

dispersive signals of paramagnetic scattering just above the Néel temperature (Fig. 6.4e). 

This observation is consistent with our expectations of pronounced magnetic correlations 

and fluctuations in this system. 

 

Identifying an appropriate exchange model becomes crucial when examining the energy-

resolved paramagnetic excitations. Accordingly, we utilized the Landau–Lifshitz dynamics 

(LLD) [Ref. 6.18] to simulate the paramagnetic excitations for two minimal intra-layer 

coupling models: the J1–J2–J3 and J1–J±±–J3 models. For the J1–J2–J3 model, we utilized 

the following parameter values, which were derived from the bandwidth of the 

paramagnetic excitation and constraints based on the LT method: J1 = -3.8 meV, J2 = 1.52 

meV, J3 = -0.32 meV, Jc1 = -0.38 meV, Jc2 = 0.38 meV, and Δ1 = 0.93. In contrast, for the 

J1–J±±–J3 model, we adjusted the parameters as follows: J1 = -2.73 meV, J±± = -0.41 meV, 

J3 = 1.01 meV, Jc1 = 0.27 meV, Jc2 = 0.27 meV, and Δ1 = 0.95. Fig. 6.4 displays the 

discrepancies between the energy-integrated scattering signatures obtained from the two 

models, particularly regarding the shape and intensity of the hexagonal patterns. Notably, 
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the scattering signature primarily originates from J2 and J3 (refer to Fig. 6. 5). Furthermore, 

when these two models are compared based on the energy-resolved data through cuts along 

the high-symmetry directions, significant distinctions emerge along the Γ–K direction, 

where only the J1–J±±–J3 model exhibits a flat-dispersion-like behaviour. This finding again 

underscores the importance of bond-dependent exchange anisotropy in CoI2, ultimately 

giving rise to the observed non-collinear spiral order. 

 
6.3.2 Spin-wave spectrum  
Fig. 6.6. shows the spin-wave spectrum of CoI2 in the magnetically ordered state at T = 4 

K. The energy-resolved data are cut along the in-plane high-symmetric points at L = -1/2 

with the two-neutron incident energy. Along the (H, 0, 0) direction, we observe a gapless 

excitation originating from the spiral magnetic order with Qm = (1/8, 0, 1/2). This gapless 

excitation can be explained using the J1–J2–J3 and J1–J±±–J3 models, given the emergent 

continuous symmetry of the latter. Although the low-energy magnon is distinct and sharp, 

Figure 6.5 (a) Theoretical paramagnetic scattering intensity of the J1–J±±–J3 model 
compared with that of the J1–J2–J3 model. (b-d) Calculated paramagnetic intensity of the 
J1–J2–J3 model with J1 = -2.1 meV, and J3 is determined from the constraint equation: 
2√2𝐽𝐽3 + 𝐽𝐽1 + �1 + √2�𝐽𝐽2 = 0. 
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a significant linewidth broadening of the magnon is observed at the BZ boundaries, 

especially along the Γ–K direction. In the 8-meV data, complex magnon band splitting 

appears beneath the magnon decay as the K point approaches.  

 

We compared the data with the linear spin-wave theory (LSWT) simulation with exchange 

interactions from the paramagnetic phase to understand the measured spin-wave spectrum. 

We considered all three possible symmetrically equivalent magnetic domains in our 

calculations. Although the overall spectrum, such as the magnon bandwidth, is well-

matched with the simulated spectrum, a significant deviation is evident between the 

experimental and LSWT-simulated spectra. For example, with the convolution of the 

instrumental resolution, the high-energy magnon branch becomes considerably broader 

than its simulated counterpart, especially at the BZ boundary. Moreover, an extra magnon 

Figure 6.6 Comparison of inelastic scattering cross-section between the data (left) and 
theoretical calculation (right) at T = 4 K. The upper (lower) row data were measured with 
the incident energy Ei = 17(8) meV, and the data were integrated with 0.2 Å-1 for the L 
direction and 0.036 Å-1 for the in-plane direction. We convoluted the LSWT solution with 
an experimental resolution of FWHM = 0.3(0.15) meV for each incident energy.  
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branch, split from the dispersion, appears near 1.5 meV along the Γ–K direction; however, 

the LSWT cannot capture this split branch.  

 
6.4 Magnon damping in CoI2 
To explain the origin of the significant magnon linewidth broadening in CoI2, we calculated 

the two-magnon density-of-states (DOS) using our best-performing model. Fig 6.7 (a) 

shows the calculated two-magnon DOS with the corresponding INS data. The two-magnon 

DOS simulation predicts the spontaneous one-magnon decay via three boson terms [Ref. 

6.6]. The two-magnon DOS is calculated using the same method presented in Chapter 5. 

The one-magnon branches are overlapped with the two-magnon DOS at the high-energy 

Figure 6.7 (a) Calculated two-magnon DOS based on LSWT result. The upper (lower) 
column shows the different energy cut-offs with E = 12 (6) meV. The white dashed lines 
represent one-magnon dispersion from a single magnetic domain, and the colour scale is 
the number of two-magnon DOS. (b) Real data compared to the kinematic extent of the 
two-magnon continuum. The dotted line indicates the two-magnon continuum boundary, 
and the dashed lines represent the magnon dispersion predicted by LSWT. The upper 
(lower) column data were measured with an incident energy Ei = 17(8) meV.  
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region, consistent with the observed linewidth broadening region. We conducted a 

linewidth analysis of the magnon modes along the Γ–K direction, as shown in Fig. 6.8 (a) 

(corresponding to the same direction as that shown in Fig. 6.7 (a)-(b)). Interestingly, we 

observed a notable increase in the full width at half maxima (FWHM) of the magnon modes 

when the one-magnon branches entered the LSWT-calculated two-magnon continuum. 

Furthermore, we found that the FWHM in the decay region exceeds the instrumental 

resolution (0.3 meV for Ei = 17 meV, 0.15 meV for Ei = 8 meV). This significant overlap 

between the magnon modes and the continuum is a distinctive characteristic of CoI2. It can 

be primarily attributed to gapless Goldstone modes in the anisotropic model. It is worth 

noting that such behaviour is uncommon, as anisotropic exchange interactions typically 

Figure 6.8 (a) Fitted FWHM of the magnon modes along the Γ–K line in Fig. 6. 7(b). The 
instrumental resolution of each incident energy is indicated by black dashed lines. (b) 
Constant-Q cut for comparison between real and theoretical data with Ei = 8 meV. Each 
momentum slice was cut along the same direction in (a). The red lines indicate the LSWT 
result, and the grey shaded area shows the two-magnon DOS. The green triangle indicates 
the avoided decay mode shown in Fig. 6.7(b). 
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open an energy gap in other systems [Ref. 6.15,6.19]. 

 

We also observed that the magnon mode around 1.5 meV exists well below the region 

where a significant two-magnon DOS is observed (green triangle in Fig. 6.7 (b) & 6. 8(b)). 

However, our LSWT simulation results indicate that even the lowest-energy magnon 

branch largely overlaps with the two-magnon DOS as the momentum transfer approaches 

the K point. This observed phenomenon can be attributed to the substantial renormalization 

of the lowest magnon branch in the LSWT simulations; this renormalization allows it to 

avoid the two-magnon continuum and appear as a distinct branch, as indicated by the green 

triangle in Fig. 6.7 (b). Such an avoided crossing naturally arises from the strong 

interactions between the quasiparticles [Ref. 6.7,6.10], and as a result, both decay and 

avoided decay modes coexist in the spin dynamics of CoI2. 

 

In the theoretical framework, a spin-1/2 TLAF system exhibits magnon decay and 

renormalization effects, represented by three boson terms. As a result, a magnon can decay 

into two magnons with specific kinematic constraints (as discussed in Chapter 2). Typically, 

this type of coupling is achieved in non-collinear magnetic structures, and to date, this 

mechanism has been demonstrated in a few real systems in some reported studies [Ref. 

6.20]. However, recent research has indicated that a transverse-to-longitudinal coupling can 

also occur with bond-dependent anisotropy, even in collinear magnetic structures, as 

observed in α-RuCl3 [Ref. 6.21]. Interestingly, CoI2 exhibits both possibilities, potentially 

leading to a more pronounced magnon decay than in other systems, which exhibit only one 

mechanism. Furthermore, the non-collinear spiral order observed in CoI2 is stabilized by 

the J±± interactions, and we propose that the bond-dependent anisotropy plays a crucial role 

in this system. 
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6.5 Summary 
The results of this study unveiled a complex and diverse range of spin dynamics in a cobalt 

Kitaev triangular lattice, exemplified by the non-collinear antiferromagnet CoI2. The bond-

dependent exchange anisotropy plays a pivotal role in forming a non-collinear magnetic 

order in CoI2. Our investigation also revealed a substantial magnon decay, successfully 

selectively avoided over a large momentum space. We attribute these phenomena to strong 

interactions between magnons induced by the bond-dependent anisotropy and non-

collinear magnetic order. Therefore, our findings are crucial for comprehending the 

intricate interplay between bond-dependent anisotropy and non-collinear magnetic order in 

quantum magnets. 
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Chapter 7  
Summary and Outlook 
  
  
  
  
7.1 Summary 
Through this thesis, I have presented my research on the spin dynamics of Kitaev 

candidates in cobalt compounds. First, I examined the existence of the spin-orbital 

entangled Jeff = 1/2 state in the van der Waals antiferromagnet CoPS3. Using inelastic 

neutron scattering (INS), I measured the temperature dependence of magnetic excitation in 

polycrystalline CoPS3. The absence of an excitation signal at 20–30 meV above the Néel 

temperature implies that CoPS3 is closer to the spin S = 3/2 state than the Jeff = 1/2 state. 

Based on this observation, the spin-wave spectrum was analysed using the XXZ 

Heisenberg model. The XXZ Heisenberg model with anisotropy factor α = Jx/Jz = 0.6 

explained the observed spectrum better than the isotropic Heisenberg model. Therefore, I 

concluded CoPS3 was in the spin S = 3/2 state with a strong XXZ Heisenberg model.  

 

Second, I investigated the spin dynamics of the cobalt honeycomb materials Na2Co2TeO6 

(NCTO) and Na3Co2SbO6 (NCSO). By employing the INS technique with polycrystalline 

samples, we observed a spin-orbit exciton within the 20–30 meV energy range in both 

compounds. The presence of this exciton provides supporting evidence for the existence of 

Jeff = 1/2 ground states. Our analysis of spin waves confirmed the presence of finite Kitaev 

interactions in both compounds, albeit with a different sign (K > 0) than previously reported 

candidates. To comprehend the magnetic properties of these materials, we conducted a 
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comprehensive examination of the magnetic phase diagrams and calculated the density of 

states (DOS) for two-magnon processes. 

 

Lastly, we presented the first-ever realisation of Kitaev interactions on a triangular lattice 

in CoI2. By employing the Luttinger–Tisza method, we proposed two potential minimal 

models to elucidate the magnetic structure of CoI2: one incorporating a Kitaev term and the 

other excluding it. INS measurements conducted during the paramagnetic phase validated 

the suitability of the minimal model with bond-dependent anisotropy in explaining the 

characteristics of CoI2. The spin-wave spectrum observed during the ordered phase 

exhibited large linewidth broadening across different momentum values, indicating 

magnon decay. To further investigate this decay process, we performed an analysis using 

the density of states for two-magnon interactions. 

 
7.2 Outlook  

First, recent theoretical studies [Ref. 7.1–7.3], including my review paper [Ref. 7.4], have 

found that previous theoretical studies were misleading in their final statement because they 

neglected the hopping process. Recent studies suggest instead that the Kitaev interaction in 

the cobalt compounds is antiferromagnetic and small compared with the isotropic 

Heisenberg interaction [Ref. 7.1,7.2]. These recent theories are also consistent with my 

results for NCTO and NCSO. Thus, an in-depth experiment is needed to confirm the ratio 

between the Kitaev and Heisenberg interactions. However, it would also be interesting to 

investigate the J1-J3 FM-AFM quantum phase diagram. Several theoretical studies found 

that the S=1/2 J1-J3 FM-AFM XXZ model shows novel magnetic phases, such as double 

zig-zag order, Ising AFM order, and spin-liquid, via quantum fluctuations [Ref. 7.5–7.7]. 

As the current experiments confirm that most cobalt Kitaev candidates use the J1-J3 FM-
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AFM XXZ model, the cobalt honeycomb materials are an ideal platform to search for a 

novel magnetic phase stabilised by quantum fluctuations. Indeed, the other cobalt Kitaev 

honeycomb candidate BaCo2(AsO4)2 shows a double zig-zag order [Ref. 7.8]. Other cobalt 

honeycombs such as A3Co2SbO6 (A = Cu, Ag) [Ref. 7.9,7.10] can also be an example of 

this model.  

 

Changing the subject, measuring quantum entanglement in a many-body system using INS 

[Ref. 7.11–7.14] is an interesting topic related to these cobalt Kitaev systems. Recent 

single-crystal measurements of cobalt Kitaev candidates (NCTO, BaCo2(AsO4)2) cannot be 

fully explained by the linear spin-wave theory, especially the broad magnetic excitation 

features [Ref. 7.15,7.16]. This inconsistency between theory and experiment can be 

acceptable because they have effective spin S = 1/2 systems, so non-linear effects such as 

1/S become significant. Alternatively, we can understand these broad features as the 

signature of the entanglement based on the quantum Fisher information [Ref. 7.12,7.13]. 

There are some good examples of measuring the entanglement of quantum materials using 

INS. Although fully quantum mechanical calculations, such as a density matrix 

renormalisation group or an exact diagonalisation, are needed to compare the data, I believe 

a quantitative INS data analysis on the cobalt Kitaev candidates would be an interesting 

approach to measuring entanglement in quantum materials.  

 

Finally, the transition metal diiodide TMI2 family (TM = V, Mn, Fe, Co, Ni) [Ref. 7.17] 

offers interesting new potential for exploring the Kitaev physics of the triangular lattice. 

This family was discovered and reported in the 1960s and 70s, but its spin dynamics are 

poorly studied and need urgent systematic study. Except for FeI2, the TMI2 family have 

helical magnetic order with multiferroicity [Ref. 7.17]. TM = Fe, Co already proved that 
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they have significant Kitaev interaction [Ref. 7.18]. Although I did not cover it in my thesis, 

I also suspect NiI2 can host the Kitaev interaction, as theoretically predicted [Ref. 

7.19,7.20]. I also think the strong spin-orbit coupling of iodine plays an important role in 

hosting the Kitaev interaction, even for transition metals without a spin-orbital entangled 

state. Therefore, I believe investigating the spin dynamics of two other compounds, VI2 

[Ref. 7.21] and MnI2 [Ref. 7.22], using INS would also be interesting.  
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국문초록 

 

코발트 화합물에서의 스핀-궤도 얽힘 
상태와 키타에프 상호작용에 관한 연구 

 
김채빈 

물리천문학부 물리학전공 
서울대학교 대학원 

 
응집 물질 물리학의 중요한 목표 중 하나는 양자 변동과 얽힘이 강하게 

존재하는 양자 위상을 가진 새로운 물질을 발견하는 것입니다. 양자 스핀 

액상 (QSL)은 자기 질서가 없고 스핀간 강한 얽힘이 존재하기 때문에 

이러한 이국적인 양자 위상 중 하나라고 할 수 있습니다. 지금까지 제안된 

많은 이론 모델 중에서 키타에프 모델은 아마도 실제 물질에서 양자 스핀 

액상 상태를 구현할 수 있는 가장 가능성 높은 모델일 것입니다. 그 이유는 

이 모델이 해석적으로 해를 구할 수 있으며 비교적 간단한 조건으로 실제 

물질에서 재현 될 수 있음이 이론적으로 밝혀졌기 때문입니다. 

 실제 화합물에서 키타에프 모델을 구현하려면 스핀-궤도 얽힘 Jeff = 

1/2 상태와 팔면체의 모서리 공유 결합이라는 두가지 성분이 필요합니다. 

스핀과 궤도의 자유도의 얽힘은 스핀 간의 교환을 비등방적이고 결합 방향에 

의존하게 만들 수 있습니다. 당연하게도, 키타에프 모델에 대한 현재까지의 

연구는 강한 스핀-궤도 결합을 가지고 있는 4주기나 5주기 원소들에 대해서 

진행되어 왔습니다. 하지만 4주기 및 5주기 원소 기반 화합물들에는 충분한 

후보 물질이 부족하고 자성 상전이를 가지고 있는 한계점들이 존재했습니다. 
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따라서 실제 물질에서 키타에프 모델을 구현하기 위해서는 더 많은 후보들을 

탐색해야 합니다. 최근 이론에 따르면 코발트와 같은 3주기 전이 금속에서도 

작은 스핀-궤도 결합에도 불구하고 Jeff = 1/2 상태를 가질 수 있는 것이 

알려졌습니다. 

 본 학위논문에서 저는 비탄성 중성자 산란 기법(INS)을 사용하여 

벌집형과 삼각형의 두 가지 격자를 가진 코발트 키타예프 후보들의 스핀 

동역학을 연구했습니다. 먼저, 저는 세 가지 코발트 벌집 화합물인 CoPS3, 

Na2Co2TeO6(NCTO) 및 Na3Co2SbO6(NCSO)에서 스핀-궤도 얽힘 상태의 

증거를 조사했습니다. 자기 여기의 온도 의존성을 통해 저는 CoPS3에서 Jeff 

= 1/2 상태가 존재하지 않음을 확인했습니다. 그러나 스핀-궤도 얽힘 상태를 

증명하는 스핀-궤도 들뜸은 다른 벌집 화합물 NCTO와 NCSO에서 

관찰되었습니다. 스핀-궤도 얽힘 Jeff = 1/2 상태가 없다는 것은 CoPS3가 

간단한 스핀 S = 3/2 상태로 설명될 수 있고, 키타에프 상호작용와 같은 결합 

의존적 이방성을 가질 수 없음을 나타냅니다. 이 관찰을 바탕으로 CoPS3의 

스핀파 스펙트럼은 단일 이온 이방성을 가진 XXZ 타입의 해밀토니안에 의해 

분석되었습니다. XXZ 모델의 이방성 비율 Jx/Jz = 0.6일 때 관측된 스핀파를 

잘 설명할 수 있었습니다. 

NCTO와 NCSO의 경우, 스핀파 스펙트럼은 두 가지 다른 해밀토니안, 

XXZ 모델 및 일반화된 키타예프-하이젠버그 모델을 기반으로 

분석되었습니다. 두 화합물의 스핀파 모두 강한 키타예프 상호 작용과 다른 

비 키타예프 상호 작용에 의해 잘 설명되었습니다. 여기서 발견한 한 가지 

중요한 특징은 키타에프 상호작용의 부호가 양수라는 것인데, 이는 현재의 

키타예프 후보들과는 다른 부호입니다. 두 키타에프 후보를 종합적으로 

검토하기 위해 추가적으로 자기 상전이 도표와 2-마그논 상태 밀도가 

계산되었습니다. 

둘째, 저는 키타에프 모델의 아이디어를 기하학적 쩔쩔맴을 주는 삼각 
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격자로 확장하여 연구를 진행하였습니다. 자기 반데르발스 코발트 삼각형 

반강자석 CoI2는 이러한 조건들을 충족하는 물질이였습니다. Luttinger-

Tisza 방법을 사용하여 CoI2의 자기 구조를 밝히기 위해 두 가지 최소 

모델을 제시했습니다. 이 모델 중 하나는 키타에프 항을 포함하고 다른 

모델은 이를 생략합니다. 자성 상전이 위의 온도에서 측정된 자기 들뜸을 

통해 결합 의존적 이방성을 포함하는 최소 모델이 CoI2의 특성을 설명한다는 

것을 확인했습니다. 자성 상전이 상태에서 관찰된 스핀파 스펙트럼은 넓은 

운동량 공간에서 상당한 선폭 넓어지는 것을 보여 마그논 붕괴를 

시사했습니다. 이 붕괴 과정을 더 깊이 조사하기 위해 마그논-마그논 상호 

작용에 대한 상태 밀도를 활용한 분석을 수행했습니다. 

 

주요어: 양자 자성, 스핀-궤도 얽힘 상태, 키타에프 모델, 비탄성 중성자 산란, 

마그논 붕괴 
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