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Abstract

Molecular insights into microRNA
biogenesis by DICER

Young-Yoon Lee
School of Biological Sciences

The Graduate School
Seoul National University

RNA silencing relies on specific and e�cient processing of double-stranded
RNA (dsRNA) by DICER, which yields microRNAs (miRNAs) and small inter-
fering RNAs (siRNAs). However, our current knowledge of DICER’s specificity
is limited to the secondary structures of its substrates: a dsRNA of approxi-
mately 22 bp with a 2-nucleotide (nt) 3� overhang and a terminal loop. We
here found evidence pointing to an additional sequence-dependent determinant
beyond these structural properties. To systematically interrogate the features of
precursor miRNAs (pre-miRNAs), we carried out massively parallel assays with
over a million pre-miRNA variants and human DICER. Our analyses revealed a
deeply conserved cis-acting element, termed the ‘GYM’ motif (paired G, paired
pyrimidine, and mismatched C or A) near the cleavage site. The GYM motif
strongly promotes processing at a specific position and can override the previously
identified ‘ruler’-like counting mechanisms from the 5� and 3� ends of pre-miRNA.
Consistently, integrating the GYM motif into short hairpin RNA (shRNA) or
DICER substrate siRNA (DsiRNA) potentiates RNA interference. Furthermore,
we find that the C-terminal double-stranded RNA binding domain (dsRBD) of
DICER recognizes the GYM motif. Mutations in the dsRBD reduce processing
and alter cleavage sites in a motif-dependent fashion, which in turn a�ects the
miRNA repertoire in cells. In particular, the cancer-associated R1855L mutation
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in the dsRBD strongly impairs GYM motif recognition, o�ering insights into the
molecular impact of this mutation.

While the mechanism of long dsRNA cleavage has been well documented, our
understanding of pre-miRNA processing is limited due to the lack of the structure
of human DICER (hDICER) in a catalytic state. Here we report the cryo-electron
microscopy structure of hDICER bound to pre-miRNA in a dicing state, uncov-
ering the structural basis for pre-miRNA processing. hDICER undergoes large
conformational changes to achieve the cleavage-competent state. The helicase
domain becomes flexible, allowing pre-miRNA binding to the catalytic valley. The
dsRBD relocates and anchors pre-miRNA in a specific position through both
sequence-independent and sequence-specific recognition of the newly identified
GYM motif. The DICER-specific helix in the PAZ domain is also reoriented to
accommodate the RNA. Furthermore, our structure unveils a previously unchar-
acterized configuration of the 5� end of pre-miRNA inserted into a basic pocket.
In this pocket, a group of arginines recognize the 5� terminal base (disfavoring
guanine) and terminal monophosphate group, explaining hDICER’s specificity
and cleavage site determination. We identify cancer-associated mutations in the
5� pocket residues, which impair hDICER activity in vitro and miRNA biogenesis
in cells.

Taken together, this study (1) uncovers an ancient principle of substrate
recognition by metazoan DICER , (2) implicates its potential in RNA therapeutics
design, (3) explains how hDICER recognizes pre-miRNAs with stringent speci-
ficity, and (4) allows a mechanistic understanding of hDICER-related diseases.

Keywords: MicroRNA; Small RNA; DICER; High-throughput sequencing;
Cryo-EM; Gene silencing; RNA interference

Student ID: 2017-24011

ii





Contents

Abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . i
Contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iii
List of Figures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . v
List of Tables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xii
List of Abbreviations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xiii

1 Introduction 1
1.1 The function of microRNA in gene regulation . . . . . . . . . . . . 1
1.2 Metazoan microRNA biogenesis . . . . . . . . . . . . . . . . . . . . 2
1.3 Structural insights into microRNA biogenesis . . . . . . . . . . . . 7

1.3.1 Primary microRNA processing by DROSHA . . . . . . . . 7
1.3.2 Precursor microRNA processing by DICER . . . . . . . . . 11

2 Sequence determinant of small RNA production by DICER 14
2.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
2.2 Result . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

2.2.1 Massively parallel assay to identify a sequence motif . . . . 18
2.2.2 The GYM motif enhances dsRNA processing . . . . . . . . 28
2.2.3 The C-terminal dsRBD of DICER recognizes the motif . . 37
2.2.4 miRNA processing relies on the interaction between the

GYM motif and dsRBD . . . . . . . . . . . . . . . . . . . . 40
2.2.5 Evolutionary implications of the GYM motif . . . . . . . . 50
2.2.6 The GYM motif improves the design of shRNA and DsiRNA 53

2.3 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
2.4 Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

iii



3 Structure of the human DICER-pre-miRNA complex in a dicing
state 66
3.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
3.2 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

3.2.1 Structural determination . . . . . . . . . . . . . . . . . . . 67
3.2.2 Overall structure of hDICER in a dicing state . . . . . . . . 73
3.2.3 Stem recognition by dsRBD and RIIID . . . . . . . . . . . 90
3.2.4 PAZ helix reorients to accommodate RNA in a dicing state 97
3.2.5 Architecture of the 5� and 3� end pockets . . . . . . . . . 102
3.2.6 5� end recognition is disrupted in cancer-associated DICER

mutations . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106
3.2.7 Identity of the 5� end base a�ects the 5� counting mecha-

nism . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112
3.3 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116
3.4 Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121

4 Conclusion 129

Summary (in Korean) 131

Bibliography 133

iv



List of Figures

1.1 Pri-miRNA processing by DROSHA-DGCR8 complex . . . . . . . 3
1.2 Sequence motifs of pri-miRNAs that facilitate DROSHA processing 4
1.3 Pre-miRNA processing by DICER . . . . . . . . . . . . . . . . . . 6
1.4 Structure of human DROSHA . . . . . . . . . . . . . . . . . . . . . 8
1.5 Structure of human DROSHA and DGCR8 in complex with pri-

miRNA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
1.6 Structure of human DICER in complex with pre-miRNA . . . . . . 12

2.1 Illustration of the mechanism of cleavage site choice by DICER . . 15
2.2 Cleavage site decision of pre-let-7a-1 and pre-miR-324 . . . . . . . 16
2.3 In vitro processing of a pre-miR-324 variant by DICER . . . . . . 17
2.4 Schematic outline of the massively parallel assay . . . . . . . . . . 18
2.5 Massively parallel assay results from the 1st screening . . . . . . . 19
2.6 A structural model of human DICER in a dicing state . . . . . . . 19
2.7 Pre-miRNAs used in the massively parallel assay . . . . . . . . . . 20
2.8 SDS-PAGE and Size-exclusion chromatography of purified proteins 21
2.9 Distribution of the cleavage scores measured from the 2nd screening 22
2.10 Distribution of read counts and cleavage scores of variants . . . . . 22
2.11 Correlation of cleavege scores of variants between di�erent condi-

tions of varying reaction time . . . . . . . . . . . . . . . . . . . . . 23
2.12 Distribution of the cleavage scores measured from the 2nd screening

with 1-to-3 randomization . . . . . . . . . . . . . . . . . . . . . . . 24
2.13 Enrichment of sequences of the top 1% variants . . . . . . . . . . . 24
2.14 Structural impact on cleavage scores of variants (positions ≠1-to-1)

with 20% cleavage . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
2.15 Structural impact on cleavage scores of variants (positions ≠1-to-1)

with 10% or 30% cleavage . . . . . . . . . . . . . . . . . . . . . . . 25

v



2.16 Structural impact on cleavage scores of variants (positions 1-to-3)
with 10%, 20%, or 30% cleavage . . . . . . . . . . . . . . . . . . . . 26

2.17 Impact of the base combinations at position 1 on cleavage scores
with 20% cleavage . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

2.18 Impact of the base combinations at position 1 on cleavage scores
with 10%, 20%, or 30% cleavage . . . . . . . . . . . . . . . . . . . . 27

2.19 In vitro processing of pre-let-7a-1 variants by human DICER . . . 29
2.20 Time-course in vitro processing of pre-let-7a-1 variants by human

DICER . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
2.21 In vitro processing of pre-let-7a-1 variants by human DICER . . . 31
2.22 DROSHA processing assay and miRNA abundance measurement

of pre-miR-A1 variants in HEK293T cells . . . . . . . . . . . . . . 32
2.23 In vitro processing of duplex variants by human DICER . . . . . . 33
2.24 In vitro processing of duplex variants by human DICER . . . . . . 34
2.25 In vitro processing of pre-let-7a-1 variants by fly Dcr-1 . . . . . . . 34
2.26 In vitro processing of duplex variants by fly Dcr-1 . . . . . . . . . 35
2.27 In vitro processing of duplex variants with a terminal mismatch by

human DICER . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
2.28 In vitro processing of duplex variants with a terminal base-pair by

human DICER . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
2.29 A structural model of human DICER in a dicing state . . . . . . . 37
2.30 In vitro processing of pre-let-7a-1 variants by DICER �dsRBD . . 38
2.31 In vitro processing of duplex variants by either DICER �dsRBD

or R1855L mutant . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
2.32 Amino acid sequence alignment of dsRBDs of metazoan DICERs . 39
2.33 In vitro processing of duplex variants by human DICER point

mutants at the indicated position . . . . . . . . . . . . . . . . . . . 39
2.34 In vitro processing of pre-let-7a-1 variants by either DICER R1855L

or R1855A/E1859A (AA) . . . . . . . . . . . . . . . . . . . . . . . 41
2.35 In vitro processing of duplex variants by either DICER R1855L or

R1855A/E1859A (AA) . . . . . . . . . . . . . . . . . . . . . . . . . 42
2.36 Schematic outline of the rescue experiment . . . . . . . . . . . . . 42

vi



2.37 Comparison of miRNA expressions and cleavage accuracy in either
HCT116 or HEK293T . . . . . . . . . . . . . . . . . . . . . . . . . 43

2.38 Comparison of miRNA abundance . . . . . . . . . . . . . . . . . . 44
2.39 In vitro processing of variants of pre-miR-27b. . . . . . . . . . . . . 44
2.40 In vitro processing of variants of pre-miR-21. . . . . . . . . . . . . 45
2.41 In vitro processing of variants of pre-let-7d/f-1/i . . . . . . . . . . 46
2.42 Alternative processing of pre-miR-324 . . . . . . . . . . . . . . . . 47
2.43 Comparison of cleavage accuracy . . . . . . . . . . . . . . . . . . . 47
2.44 The usage of 5� ends of miRNAs in the DICER-null HCT116 cells

rescued with indicated DICER . . . . . . . . . . . . . . . . . . . . 48
2.45 GYM motif-mediated cleavage site decision of miR-34a and let-7e . 49
2.46 Distribution of the GYM motif at the indicated positions in natural

pre-miRNAs across species . . . . . . . . . . . . . . . . . . . . . . . 50
2.47 The association between the GYM score and alternative processing 51
2.48 The GYM scores at the position ≠1 of human pre-miRNAs. . . . . 52
2.49 The GYM scores at the position ≠1 of human pre-miRNAs . . . . 52
2.50 The e�ect of GYM motif in RNA interference by shRNA . . . . . . 54
2.51 The e�ect of GYM motif in RNA interference by DsiRNA . . . . . 54
2.52 A proposed model for the role of GYM motif in DICER processing 56

3.1 The sequence of pre-let-7a-1GY M used for structural determination 68
3.2 SDS-PAGE and size-exclusion chromatography of purified proteins 69
3.3 In vitro processing of pre-let-7a-1 with human DICER . . . . . . . 70
3.4 Overview of the image processing procedure for structural determi-

nation of apo-DICER . . . . . . . . . . . . . . . . . . . . . . . . . 71
3.5 Representative micrograph and 2D class averages of the apo-DICER 72
3.6 Gold standard Fourier Shell Correlation (FSC) and angular particle

distribution heatmaps of the apo-DICER . . . . . . . . . . . . . . 72
3.7 Consensus maps and local resolution analysis of apo-DICER . . . . 73
3.8 Domain organization of hDICER . . . . . . . . . . . . . . . . . . . 74
3.9 3D maps of individual domains of the apo-DICER . . . . . . . . . 75
3.10 Size-exclusion chromatography of the DICER-RNA complex . . . . 76

vii



3.11 SDS-PAGE and urea-PAGE of the DICER-RNA complex . . . . . 76
3.12 Overview of the image processing procedure for structural determi-

nation of DICER in a dicing state . . . . . . . . . . . . . . . . . . 77
3.13 Representative micrograph and 2D class averages of the DICER-

pre-let-7a-1GY M . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78
3.14 Gold standard Fourier Shell Correlation (FSC) and angular particle

distribution heatmaps of the DICER-pre-let-7a-1GY M . . . . . . . 78
3.15 Protein-RNA interactions in the dicing state at the domain level . 79
3.16 Cryo-EM map of hDICER in a dicing state overlaying that of

hDICER in an apo state . . . . . . . . . . . . . . . . . . . . . . . . 79
3.17 Overall structure of the hDICER with a pre-miRNA in a cleavage-

competent state . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80
3.18 3D maps of the pre-let-7a-1GY M . . . . . . . . . . . . . . . . . . . 81
3.19 3D maps of the individual domains of DICER-pre-let-7a-1GY M . . 81
3.20 Cryo-EM map of the catalytic site created by RIIIDa and RIIIDb 82
3.21 B-factor and Q-score plots for active site residues in the hDICER-

let-7a-1GY M complex structure . . . . . . . . . . . . . . . . . . . . 82
3.22 Overall structure of the hDICER with a pre-miRNA in a cleavage-

competent state . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83
3.23 Close-up views of the catalytic sites in RIIIDa and RIIIDb domains

and electrostatic potential surface model of the catalytic valley
along the protein-RNA interface . . . . . . . . . . . . . . . . . . . 84

3.24 Superposition of RIIID domains of hDICER and Aa RNase III . . 84
3.25 Buried surface area of hDICER in a pre-dicing state and a dicing

state . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85
3.26 RMSD of hDICER-pre-let-7a-1GY M compared to hDICER-TRBP-

pre-let-7a-1mutant . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86
3.27 Interdomain interactions in apo-hDICER . . . . . . . . . . . . . . 86
3.28 Steric clash between pre-let-7a-1GY M and apo-hDICER . . . . . . 87
3.29 Cryo-EM map of the hDICER-pre-miR-3121GY M complex in a

dicing state . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88
3.30 Selected 2D class averages and 3D maps of the helicase domain . . 89

viii



3.31 Urea-PAGE of hDICER-pre-let-7a-1GY M complex incubated with
or without MgCl2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

3.32 Selected 2D class averages and 3D maps of the helicase domain of
hDICER-pre-let-7a-1GY M complex . . . . . . . . . . . . . . . . . . 91

3.33 Conformational change in dsRBD during the transition from an
apo state to a dicing state . . . . . . . . . . . . . . . . . . . . . . . 91

3.34 Conformational changes of the dsRBD in the apo, dicing and pre-
dicing states . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

3.35 Comparison between the structures of ideal A-form dsRNA helix
and pre-let-7a-1GY M . . . . . . . . . . . . . . . . . . . . . . . . . . 92

3.36 Protein-RNA interactions near the cleavage sites in the minor groove 93
3.37 Superposition of the dsRBDs of hDICER and Arabidopsis DCL3

(AtDCL3) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94
3.38 Protein-RNA interactions in the interface between RIIID domains

and RNA backbone . . . . . . . . . . . . . . . . . . . . . . . . . . . 95
3.39 Surface charge of the dsRBD, with dsRNA-dsRBD interface in

dicing and pre-dicing states . . . . . . . . . . . . . . . . . . . . . . 95
3.40 Non-sequence-specific interactions between dsRBD and the RNA

phosphate backbone . . . . . . . . . . . . . . . . . . . . . . . . . . 96
3.41 Cryo-EM map and model of the hDICER dsRBD with dsRNA . . 96
3.42 Sequence-specific interactions between dsRBD and the C–C mis-

match of the GYM motif . . . . . . . . . . . . . . . . . . . . . . . 97
3.43 Superposition of hDICER PAZ-platform domain in the cryo-EM

structure and in the crystal structure . . . . . . . . . . . . . . . . . 98
3.44 Conformational change of the PAZ helix between a dicing state

and a pre-dicing state . . . . . . . . . . . . . . . . . . . . . . . . . 99
3.45 Changes in the position of the pre-miRNA in a dicing state and a

pre-dicing state . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99
3.46 Electrostatic interactions between the positively charged PAZ helix

and the negatively charged RNA phosphate backbone . . . . . . . 100
3.47 In vitro processing of pre-let-7a-1 with a 2-nt 3� overhang . . . . . 101
3.48 Time-course in vitro processing of pre-let-7a-1 with a 2-nt 3� overhang102

ix



3.49 In vitro processing of pre-let-7a-1 with a 1-nt 3� overhang or a 3-nt
3� overhang . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103

3.50 Schematic outline of the rescue experiment and comparison of
miRNA abundance . . . . . . . . . . . . . . . . . . . . . . . . . . . 104

3.51 Terminal ends of pre-miRNA anchored in the basic pockets in the
platform and PAZ domains . . . . . . . . . . . . . . . . . . . . . . 104

3.52 Pre-miRNA end recognition by the 5� and 3� pocket via hydrogen
bonding . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105

3.53 Cryo-EM map of the 5� pocket and 3� pocket . . . . . . . . . . . . 105
3.54 Superposition of hDICER-pre-let-7a-1GY M and Platform-PAZ-Conn-

ector Helix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106
3.55 Superposition of dsRNAs complexed with hDICER and AtDCL3 . 107
3.56 Superposition of hDICER in a dicing state and AtDCL3-pre-siRNA

complex . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107
3.57 In vitro processing of duplex RNAs with either a 2-nt overhang

and a varying sequence at the 5� end . . . . . . . . . . . . . . . . . 108
3.58 In vitro processing of duplex RNAs with either a 3-nt overhang

and a varying sequence at the 5� end . . . . . . . . . . . . . . . . . 108
3.59 In vitro DICER processing of pre-miRNA-like duplex with a 2-nt

or 3-nt 3� overhang . . . . . . . . . . . . . . . . . . . . . . . . . . . 109
3.60 The e�ect of cancer-associated 5� pocket mutations in cleavage

accuracy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110
3.61 The e�ect of 5� pocket mutations in cleavage accuracy . . . . . . . 111
3.62 DROSHA/DICER cleavage sites dictated by 5� ends of mature

miRNAs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111
3.63 Abundance change of endogenous miRNAs . . . . . . . . . . . . . . 112
3.64 Predicted structural impact of the 5� end base substitutions on the

interaction with the 5� pocket . . . . . . . . . . . . . . . . . . . . . 113
3.65 The nucleotide composition of human pre-miRNAs . . . . . . . . . 114
3.66 Examples of altered processing sites observed in the rescue experi-

ments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115
3.67 The 5�-terminal base identity of pre-miRNAs . . . . . . . . . . . . 116

x



3.68 Model of the structural transition and substrate recognition of
hDICER during the pre-miRNA processing cycle . . . . . . . . . . 117

3.69 Comparison of the substrate RNA movement during DICER pro-
cessing between two small RNA pathways . . . . . . . . . . . . . . 119

3.70 A phylogenetic tree of Dicer homologs . . . . . . . . . . . . . . . . 120

xi



List of Tables

2.1 Oligonucleotides used in this study . . . . . . . . . . . . . . . . . . 64
2.2 Oligonucleotides used in this study . . . . . . . . . . . . . . . . . . 65

3.1 Cryo-EM data collection, refinement and validation statistics . . . 128

xii



List of Abbreviations

Aa Aquifex aeolicus

ADAR Adenine deaminases acting on RNA

C. elegans Caenorhabditis elegans

Cryo-EM Cryo-electron microscopy

DGCR8 DiGeorge syndrome critical region 8

dsRBD Double-stranded RNA binding domain

dsRNA Double-stranded RNA

ERH Enhancer of rudimentary homolog

HBR Heme-binding region

hDICER Human DICER

KO Knock-out

MB Mobile basic

MID Middle

miRNA MicroRNA

mRNA Messenger RNA

xiii



NMR Nuclear Magnetic Resonance

nt Nucleotide

P-rich Proline-rich

PABPC Poly(A)-binding protein

PACT Protein kinase RNA activator

Pre-miRNA Precursor microRNA

Pri-miRNA Primary microRNA

R/S-rich Arginine/Serine-rich

RISC RNA-induced silencing complex

RMSD Root-mean-square deviation

RNase Ribonuclease

SAFB Sca�old attachment factor B

shRNA Short hairpin RNA

siRNA Small interfering RNA

SRSF3 Serine/arginine-rich splicing factor

TNRC6 Trinucleotide repeat containing 6 protein

TRBP TAR-RNA binding protein

UTR Untranslated region

xiv





1. Introduction

1.1 The function of microRNA in gene regulation

MicroRNAs (miRNAs) are short non-coding RNAs that regulate the vast ma-
jority of genes, influencing essentially all developmental process and diseases.
Earlier studies have discovered the first known miRNA genes—lin-4 and let-7—in
Caenorhabditis elegans (C. elegans), revealing their function as key developmental
regulators (Lee et al., 1993; Reinhart et al., 2000). Interestingly, these genes
produced small RNAs of ~22-nt in length, both of which had partial complemen-
tarity with conserved sites within the 3� untranslated region (UTR) of messenger
RNA (mRNA) targets—leading to a model in which small RNAs can mediate
posttranscriptional repression of genes through sequencing matching (Lee et al.,
1993; Moss et al., 1997; Olsen & Ambros, 1999; Reinhart et al., 2000; Wightman
et al., 1993). It was later found that these small regulatory RNAs also exist in
humans and other animals (Pasquinelli et al., 2000). High-throughput sequencing
of small RNAs, together with stringent anotation criteria, identified that there
are hundreds of such miRNAs (Lu et al., 2005; Ruby et al., 2006; Fromm et al.,
2015). Extensive studies later found that the dominant mode of target recognition
by miRNAs occurs through the ‘seed sequence’, which is the miRNA nucleotides
2–7 (Bartel, 2009). Imperfect base-pairing with the target sites of mRNAs in
the 3� UTR recruits trinucleotide repeat containing 6 protein (TNRC6), which
interacts with the cytoplsamic poly(A)-binding protein (PABPC) to recruit two
major deadenylase complexes (PAN2–PAN3 and CCR4–NOT complexes) (Jonas
& Izaurralde, 2015). Shortening of the poly(A) tail by the deadenylase complexes
leads to mRNA destabilization through decapping and 5�-to-3� exonucleolytic
decay (Chen & Shyu, 2011). In this manner, miRNAs shape the transcriptome
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of the host, adding an important layer of posttranscriptional regulation that
complements gene regulation at transcriptional level.

1.2 Metazoan microRNA biogenesis

While the mature miRNAs are very small (~22-nt), canonical miRNAs are first
transcribed by RNA polymerase II as long primary miRNAs (pri-miRNAs). They
are usually encoded in the intronic or exonic regions of host genes and form a
long hairpin structure with a dsRNA stem of ~35 bp (Figure 1.1). This secondary
structure is preferentially recognized by DROSHA, a class II ribonuclease (RNase),
that makes staggered cuts by measuring a set distance from the basal or apical
junction of pri-miRNAs (Figure 1.1). DROSHA forms a stable complex with its
partner protein, DiGeorge syndrome critical region 8 (DGCR8), to recognize the
key structural features of pri-miRNAs. While the N-terminal proline-rich (P-rich)
and arginine/serine-rich (R/S-rich) domains are largely dispensable for pri-miRNA
processing in vitro, the central domain and double-stranded RNA binding domain
(dsRBD) are responsible for recognizing the basal junction and the dsRNA stem
of pri-miRNA, respectively. More importantly, the RNase III domains form an
intramolecular dimer, the architecture of which allows the precise processing of the
dsRNA, leaving 2-nt 3� overhang. Besides these structural features of pri-miRNAs,
there are several position-specific sequence features (Figure 1.2)—apical UGU,
mismatched GHG, basal UG, and flanking CNNC motif—that are recognized
by DROSHA-DGCR8 complex facilitating e�cient and accurate processing of
pri-miRNAs (Fang & Bartel, 2015; Auyeung et al., 2013). Pri-miRNA processing
by DROSHA-DGCR8 complex releases a much shorter hairpin, called precursor
miRNA (pre-miRNA), which is exported from the nucleus to the cytoplasm
through the action of Exportin 5.

In the cytoplasm, DICER further processes the pre-miRNAs to liberate
miRNA duplexes. (Figure 1.3). DICER utilizes its two specialized domains—basic
5� pocket (in the platform domain) and 3� pockets (in the PAZ domain)—to
recognize the 5� and 3� ends of pre-miRNAs (Figure 1.3) (Park et al., 2011).
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DROSHA

DGCR8

Pri-miRNA

~35 bp

Figure 1.1 Pri-miRNA processing by DROSHA-DGCR8 complex.

DICER then measures ~22-nt from either 5� or 3� terminus to lop o� the apical
loop of pre-miRNAs. These mechanisms are called 5� counting or 3� counting
rules (Park et al., 2011). The relative contribution of each of the end counting
rules depends on the thermodynamic stability of pre-miRNA terminus (Park et al.,
2011). That is, pre-miRNAs with unstable terminal structures (mismatch, G–U, or
A–U pair) tend to be processed by the 5� counting rule, whereas those with stable
terminal structures (G–C pair) follow the 3� counting rule. DICER also possesses
a helicase domain, which has an autoinhibitory role in pre-miRNA processing (Ma
et al., 2008). While non-essential for pre-miRNA processing, DICER also have
partner proteins, such as TAR-RNA binding protein (TRBP), protein kinase RNA
activator (PACT), and adenine deaminases acting on RNA (ADAR) proteins,
that modulate the DICER’s activity on certain pre-miRNA substrates (Kim et al.,
2014).

After pre-miRNA processing by DICER, miRNA duplexes are released and
associated with Argonaute (AGO) proteins (Khvorova et al., 2003; Schwarz et al.,
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Pri-miRNA sequence motifs

GHG motif

CNNC motifUG motif

UGUG motif

Figure 1.2 Sequence motifs of pri-miRNAs that facilitate DROSHA processing
(Auyeung et al., 2013; Fang & Bartel, 2015).
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2003). AGO proteins adopt a bilobal architecture composed of multiple protein
domains (Schirle & MacRae, 2012; Schirle et al., 2014). Through the action of
ATPase activity of molecular chaperones, miRNA duplex is loaded into AGO
proteins, where only one strand (i.e., the guide strand) remains in the AGO
proteins (Iwasaki et al., 2010). The other strand (i.e., passenger strand) is released
and degraded (Kawamata & Tomari, 2010). AGO proteins possess a basic pocket
in the middle (MID) domain that binds to the 5� monophosphate of the guide
strand (Schirle & MacRae, 2012; Schirle et al., 2014). Importantly, miRNA
strands with uridine or adenine residue at the 5� terminus are favorably selected
by the AGO proteins (Frank et al., 2010). In addition, miRNA strands with
thermodynamically unstable terminus (mismatch, G–U, or A–U pair) are more
likely to be selected by the AGO strands and become the guide strands (Khvorova
et al., 2003; Schwarz et al., 2003). AGO proteins with the guide strands then form
RNA-induced silencing complex (RISC) to post-transcriptionally repress target
mRNAs.
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3′ pocket5′ pocket

Pre-miRNA

DICER

5′ counting
(22 nt)

3′ counting
(22 nt)

(2-nt 3′ overhang)

Figure 1.3 Pre-miRNA processing by DICER. DICER recognizes the 2-nt 3�
overhang to follow 5� and 3� counting rules (Park et al., 2011).
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1.3 Structural insights into microRNA biogenesis

Structural biology is at the heart of modern biology and enables us to understand
how proteins function at atomic resolution. In the past few decades, numerous
e�orts—using Nuclear Magnetic Resonance (NMR) spectroscopy, X-ray crystal-
lography, and cryo-electron microscopy (cryo-EM)—were devoted to determining
the structure of microRNA biogenesis factors. Here I describe the structures of
DROSHA and DICER (Kwon et al., 2016; Partin et al., 2020; Jin et al., 2020;
Liu et al., 2018) that have considerably advanced the understanding of miRNA
maturation processes.

1.3.1 Primary microRNA processing by DROSHA

In 2016, the crystal structure of DROSHA in complex with the C-terminal
DROSHA-interacting fragment of DGCR8 was solved at atomic resolution (Figure
1.4) (Kwon et al., 2016). In this structure, DROSHA forms an elongated shape
with two RIIID domains intramolecularly dimerized on top of the central domain
involving the platform and ‘PAZ-like’ domain (Figure 1.4). A long –-helix connects
the RIIID dimer to the central region, hence referred to as the connector helix.
Located in the C-terminal region is the dsRBD, connected to the RIIIDb via a
hydrophilic linker, that may allow dsRBD to dissociate from RIIIDb and interact
with dsRNA upon substrate binding. The PAZ-like domain and long loops of the
central domain may form dynamic conformations at least without a pri-miRNA
substrate, preventing us from building a reliable model. The architecture of the
RIIIDa and RIIIDb dimer superimposes well onto the homodimer of Aquifex
aeolicus (Aa) RNase III, which is the bacterial prototype of RNase III enzymes
containing a single RIIID domain and a single dsRBD (Gan et al., 2006). The
main chain root-mean-square deviation (RMSD) of important catalytic residues
of DROSHA and Aa RNase III is very small (0.44 Å), suggesting that the overall
catalytic mechanism is highly conserved. On the other hand, the RIIIDa of
DROSHA has an extended insertion, predicted to form –-helices, that is highly
conserved among DROSHA orthologs. These helices, referred to as Bump helix
and mobile basic (MB) helix, may have roles in substrate binding. Interestingly,
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the structure shows that each of RIIIDa and RIIIDb domain also interacts with the
C-terminal fragment (729-750 aa) of DGCR8, whose co-expression with DROSHA
was essential to prevent heavy aggregation of DROSHA. This is in line with the
previous observation that DROSHA interacts with DGCR8 molecules in a 1:2
stoichiometry (Nguyen et al., 2015). While the structure of DROSHA answers
important questions regarding its evolutionary origin as well as the molecular
basis of DROSHA-DGCR8 assembly, the lack of structure in complex with its
RNA substrate leaves many questions unanswered as to how DROSHA interacts
with pri-miRNA.

Two cryo-EM structures of DROSHA-DGCR8 in complex with pri-miRNA
were reported in 2020 (Partin et al., 2020; Jin et al., 2020), revealing detailed
interactions between DROSHA and the pri-miRNA (Figure 1.5). While most
globular domains of RNA-bound DROSHA align well with the previous crystal
structure of apo-DROSHA, DROSHA undergoes considerable conformational
changes in some regions. For example, dsRBD shows a large conformational change
towards the lower stem of pri-miRNA, consistent with the previous observation
that DROSHA dsRBD recognizes the key sequence motif of pri-miRNA in the
lower stem—the GHG motif—to facilitate e�cient and accurate processing (Figure
1.2) (Fang & Bartel, 2015; Kwon et al., 2019). In addition, previously unresolved
regions of the central domain are visible in the structure, forming intimate contact
with pri-miRNA. These regions were referred to as ‘Belt’ and ‘Wedge’, which
are positioned near the basal junction of pri-miRNA (Partin et al., 2020; Jin
et al., 2020), revealing a mechanism by which DROSHA uses the basal junction to
determine cleavage site (Nguyen et al., 2015). The structure also gives clue to how
the basal sequence motif, the UG motif, facilitates e�cient pri-miRNA processing
(Fang & Bartel, 2015); the uridine of the UG dinucleotide flips out and is stabilized
by interaction with the MB helix previosuly described in the crystal structure of
DROSHA (Jin et al., 2020). The guanine base of the motif, on the other hand,
forms a Watson-Crick base-pair with the cytosine of the 3p strand, marking the
end of the stem (Jin et al., 2020). The structure also reveals that dsRBDs of
DGCR8 cover the upper stem region of pri-miRNA, which along with DROSHA
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measure the stem length between the basal and apical junctions. However, the
majority of DGCR8 including the heme-binding region (HBR) and the apical loop
of pri-miRNA could not be included into the model likely due to the structural
flexibility. As a result, it remains unclear how DGCR8 recognizes the apical loop
and the sequence motif embedded in it (such as the UGUG motif) (Auyeung
et al., 2013). Future studies are therefore required to uncover the role of DGCR8
in pri-miRNA recognition by stabilizing the DGCR8-RNA interaction. Using an
optimal pri-miRNA substrate would help determine the structure, as envisioned
by the authors. It also remains to be investigated the role of other DROSHA and
DGCR8 partners—such as serine/arginine-rich splicing factor (SRSF3), enhancer
of rudimentary homolog (ERH), and sca�old attachment factor B (SAFB)—in
pri-miRNA processing (Fang & Bartel, 2020; Shang et al., 2020; Kwon et al.,
2020).

1.3.2 Precursor microRNA processing by DICER

Earlier attempts to determine the structure of human DICER at atomic resolution
were confounded by the fact that metazoan Dicers are recalcitrant to overexpression
and purification (Kidwell et al., 2014; Ma et al., 2012). In 2018, Liu and his
colleagues reported the first full-length structure of human DICER-TRBP complex
(Figure 1.6) (Liu et al., 2018). In this structure, DICER forms an elongated shape
that resembles the letter ‘L’ with mostly globular domains, as previously observed
with negative staining (Lau et al., 2009; Wang et al., 2009; Lau et al., 2012). At
the bottom of the L-shaped structure is the helicase domain, which interacts with
the C-terminal dsRBD of TRBP (dsRBD3). Note that the other two dsRBDs
of TRBP are invisible in the structure due to structural flexibility. The RIIIDa
and RIIIDb intramolecularly dimerize on top of the helicase domain, creating a
processing center for pre-miRNA processing. A long connector helix connects the
RIIIDa/b to the platform and PAZ domains, which are important for recognition of
the dsRNA terminus. Like DROSHA, DICER possesses dsRBD that is connected
to the RIIIDb domain via a short flexible linker—spatial arrangement that is
very similar to that of DROSHA. Importantly, the structure of human DICER-
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TRBP complex with pre-let-7a-1 variant was also solved, providing insights into
how DICER interacts with a pre-miRNA (Liu et al., 2018). In the RNA-bound
structure, however, the pre-miRNA stem is distantly located from the catalytic
center of DICER, suggesting that the structure rather represents a ‘pre-dicing’
state. The pre-dicing state structure shows the apical loop of pre-miRNA interacts
with the helicase domain. The 3� end of pre-miRNA is inserted into the basic 3�
pocket created by the PAZ domain. However, the 5� end is exposed to the solvent
without any prominent interactions. Overall, the structure shows that protein-
RNA interactions are minimal in the pre-dicing state, leaving many questions
unanswered. The structure of human DICER in dicing and other functional
states are awaiting to be eludicated to advance our understanding of how DICER
processes pre-miRNAs.
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2. Sequence determinant of small RNA
production by DICER

2.1 Background

DICER, a multidomain RNase III, serves as a key player in RNA silencing by
cleaving dsRNA into small RNAs of 21–25 nt in length (Elbashir et al., 2001;
Hutvagner et al., 2001). Endogenous siRNAs and miRNAs are produced from long
RNA duplexes and RNA hairpins, respectively. The miRNA pathway in metazoa
involves another RNase III, DROSHA, that cleaves primary miRNA (pri-miRNA)
transcript to release pre-miRNA, a hairpin of ~70 nt with a characteristic 2-nt
3� overhang (Lee et al., 2002, 2003; Denli et al., 2004; Gregory et al., 2004; Han
et al., 2004). DICER cleaves pre-miRNA to produce a ~22-nt duplex with 2-nt
3� overhang at both ends (Hutvagner et al., 2001). After loading onto the AGO
protein, one strand of the duplex remains as a mature miRNA that functions as a
guide to base-pair with the cognate target (Khvorova et al., 2003; Schwarz et al.,
2003). Targeting specificity relies on the precision of processing because even a
small change in the processing site can alter the ‘seed’ sequence (2–7 nt region
relative to the 5� end of the guide RNA) critical for target binding (Liu et al.,
2004; Lewis et al., 2003; Bartel, 2009).

DICER is known to recognize its substrates by relying solely on their secondary
structural features, such as the 2-nt 3� overhang, a dsRNA stem of ~22-bp, and
a terminal loop (Macrae et al., 2006a,b; Park et al., 2011; Zhang et al., 2004,
2002; Gu et al., 2012; Tsutsumi et al., 2011; Feng et al., 2012; Liu et al., 2015).
According to the current model, DICER acts as a ‘molecular ruler’ that measures
22-nt from the ends of pre-miRNA (Macrae et al., 2006a,b; Park et al., 2011;
Zhang et al., 2004). The 3� end is recognized by a conserved ‘3� pocket’ in the

14



DROSHA

DGCR8

3′ pocket5′ pocket

DR A proce ing DICER proce ing

DICER

5′ counting
(22 nt)

3′ counting
(22 nt)

(2-nt 3′ overhang)

Figure 2.1 Illustration of the mechanism of cleavage site choice by DICER.

PAZ domain of DICER. DICER homologs in the metazoan miRNA pathway also
have a ‘5� pocket’ in the platform domain to capture the 5� end (Park et al., 2011;
Tian et al., 2014; Liu et al., 2018). These pockets anchor the ends most e�ectively
when the ends are in a 2-nt 3� overhang arrangement (Macrae et al., 2006a,b; Park
et al., 2011; Heo et al., 2012). Because the catalytic center of DICER is separated
by a fixed distance from these pockets, DICER can measure a specified length
(22 nt in the case of human DICER) from the 5� end (‘5� counting rule’) and
the 3� end (‘3� counting rule’) (Macrae et al., 2006a,b; Park et al., 2011; Zhang
et al., 2004). The relative contribution of the 5� and 3� counting is influenced by
thermodynamic stability because an unstable 5� end can be readily frayed and
inserted into the 5� pocket, facilitating the 5� counting mechanism (Park et al.,
2011).

Because the termini of pre-miRNAs are created by DROSHA, DICER is
largely considered to play a passive role when it comes to the determination of
miRNA sequences (Figure 2.1). For instance, pre-let-7a-1 follows the 5� counting
rule and is cleaved essentially at a single site that is measured from the 5�
end created at the DROSHA processing step (Figure 2.2) (Park et al., 2011).
However, some pre-miRNAs do undergo alternative processing at the DICER level
(Kim et al., 2019; Chiang et al., 2010). Most notably, pre-miR-324 is uridylated
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Figure 2.2 Cleavage site decision of pre-let-7a-1 and pre-miR-324.

frequently at the 3� end, which results in a shift of the DICER cleavage site (Kim
et al., 2020).

Curiously, we noticed that the end counting rules cannot fully explain the
processing pattern of pre-miR-324 nor its variants (Figure 2.3), suggesting that
there may be a yet-unknown mechanism by which DICER engages in processing.
For example, when we used a pre-miR-324-derived substrate with a symmetric
stem and a 3-nt 3� overhang, it was cleaved at three sites (Figure 2.3, lane 3).
The 5� and 3� counting rules explained products A and B, respectively, but not
product C. Intriguingly, another variant with a mutation near the cleavage site
failed to generate product C (Figure 2.3, lane 4), suggesting that there may be
a critical element near the cleavage site. As previous studies focused only on
secondary structures outside of this region and have not investigated the substrate
specificity in a comprehensive manner, it remains unknown if and how DICER
recognizes its substrates in a sequence-specific manner.
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2.2 Result

2.2.1 Massively parallel assay to identify a sequence motif

To comprehensively interrogate the upper stem region, we implemented a massively
parallel assay which enables quantitative testing of a large number of variants
(Figure 2.4). In brief, we synthesized 1,048,576 pre-miRNA variants by random-
izing the nucleotide identities within a 5-bp window in the upper stem region
(≠1 through +3 relative to the cleavage site in the 3p strand) which is predicted
to contact DICER in our structural model (Figure 2.5–2.7). Pre-let-7a-1 was
used as a parental backbone because it is cleaved relatively homogeneously (Park
et al., 2011). After a brief incubation with purified human DICER protein (Figure
2.8), in which 5% of the substrate pool was cleaved, the uncleaved RNAs were
gel-purified and sequenced by the AQ-seq method that allows e�cient ligation of
structured RNAs (Kim et al., 2019).1 The processing e�ciency was quantified
by dividing the fraction of each variant in the input population by that of the
uncleaved reads after reaction. We refer to this metric as ‘cleavage score’.2

To identify the structural and sequence elements required for processing, we
examined the pre-miRNA variants scoring within the top 0.1%. These top variants
showed an overall tendency for base-pairing as expected (Figure 2.5, left panel).
Intriguingly, however, a mismatch was enriched at position 1. In addition to this
structural feature, we found some sequence preferences (Figure 2.5, middle and
right panels). At positions ≠1 and 0, the 5�-C–G-3� pair and 5�-G–C-3� pair were

1
AQ-seq library was generated by Dr. Haedong Kim.

2
AQ-seq analysis was done by Dr. Haedong Kim.
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Figure 2.4 Schematic outline of the massively parallel assay.
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Figure 2.8 SDS-PAGE and Size-exclusion chromatography of purified proteins.

strongly favored, respectively. At position 1, G is depleted while C is enriched on
both strands. Sequence preference was less prominent at positions 2 and 3.

These observations prompted further evaluation of the base-pairing and base
identity at each position. To increase the sequencing depth, we performed the
second round of massively parallel assays, with two 3-bp windows (randomizing
positions ≠1-to-1 and 1-to-3) to generate 4,096 variants per each window (Figure
2.7, 2.9). In addition, we employed another pre-miRNA backbone, pre-miR-374b,
that has a relatively simple structure (Figure 2.7). The cleavage reaction was done
briefly under conditions where 10%, 20%, or 30% of the substrate pool was cleaved
(Figure 2.10). Cleavage scores increased with incubation time but showed strong
correlations between conditions (Figure 2.11), indicating that the experiments
were within dynamic ranges.

The variants in the ≠1-to-1 window showed a broad distribution in their
cleavage scores (Figure 2.9). Interestingly, two di�erent pre-miRNAs showed clear
correlations, particularly among the top scoring sequences (Figure 2.9). This
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result suggests that the ≠1-to-1 region plays a significant role in the control of
pre-miRNA processing, independently of the backbone. With the other window
randomizing the 1-to-3 region, the cleavage scores of the variants did not show large
di�erences in both pre-miRNA datasets, suggesting this region is less impactful
than the ≠1-to-1 region (Figure 2.12).

In line with the initial screening data, we could identify sequence preferences
at positions ≠1, 0, and 1 (Figure 2.13). At position ≠1, the 5�-C–G-3� pair is
strongly enriched. At position 0, purines (mainly G) are enriched in the 5p strand
while pyrimidines prevail in the 3p strand, forming a base-pair. At position 1, A
or C are favored while G or U are depleted.

We also found that base-pairing is overall beneficial to processing, but a
mismatch at position 1 is associated with high cleavage scores (Figure 2.14, 2.15).
This unexpected preference for a mismatch at position 1 was also found among
the variants at positions 1-to-3 (Figure 2.16). Some base combinations at position
1 are favored over others, with the C–C mismatch generally exerting the strongest
e�ects (Figure 2.17, 2.18). These sequence/structure preferences at position 1
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were detectable in almost all contexts examined, regardless of the sliding windows,
backbones, and reaction times.

Collectively, this analysis revealed a position-dependent 3-bp motif that
strongly promotes processing: a paired G, a paired pyrimidine (Y), and a mis-
matched C or less favorably A (M) at positions ≠1, 0, and 1 on the 3p side,
respectively (with DICER cleaving between G and Y). We therefore named this
element the ‘GYM motif’. It is important to note that although there is a clear
consensus sequence for the GYM motif, the cleavage scores of the variants are
actually a continuum. Thus, the GYM motif should be perceived as a quantitative
feature (based on the cleavage scores) rather than being defined in a binary manner
(based on the sequence consensus). Therefore, we devised a metric termed the
‘GYM score’ to indicate the strength of the motif. The GYM score was assigned to
each 3-bp combination by averaging its cleavage scores measured in the contexts of
pre-let-7a-1 and pre-miR-374b with 20% cleavage, and by normalizing the average
(0–100).

2.2.2 The GYM motif enhances dsRNA processing

To validate the high-throughput data, we performed in vitro processing assays
using pre-let-7a-1 with various GYM motifs (Figure 2.19). A representative variant
with a high-score motif (‘GCm’, GYM score 94) was processed more e�ciently
than the wild-type (GYM score 43) (Figure 2.19, 2.20). We further tested a
variant with a G–C pair at position 1 (‘GCp’ scoring 38) and that with a UA
dinucleotide at positions ≠1 and 0 (‘UAm’ scoring 30) which were processed less
e�ciently than the GCm variant. Finally, the variant replacing both parts (‘UAp’
scoring 14) performed least e�ciently, indicating that both the paired ‘GY’ and
the mismatched ‘M’ parts are important and confer additive e�ects on processing.
We made similar observations in the presence of TRBP, a dsRNA binding protein
that associates with DICER, suggesting that TRBP does not influence the GYM
motif recognition by DICER (Figure 2.21).
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Next, to examine the motif’s activity in cells, the GYM variants were incor-
porated into an artificial pri-miRNA hairpin (Fang & Bartel, 2015) embedded in
the 3� UTR of a luciferase reporter construct (Figure 2.22). This construct has
been used to monitor DROSHA’s activity because the hairpin cleavage reduces
luciferase expression (Han et al., 2014). The luciferase level was not changed by
the GYM motif, indicating that the motif does not impact DROSHA processing.
In contrast, the mature miRNA levels from these constructs correlated with the
GYM score. This is consistent with the above in vitro results, and further shows
that the GYM motif operates regardless of the backbone.

We next questioned if this motif also contributes to cleavage site selection. We
designed pre-miRNA-like duplexes with the high-score GYM motif either properly
positioned or relocated by 1 bp towards the terminus. Interestingly, the relocation
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Figure 2.23 In vitro processing of duplex variants by human DICER. Cleavage
products and their corresponding cleavage sites are marked with arrowheads.

resulted in a cleavage site shift by 1 bp (Figure 2.23). The motif lacking the GC
dinucleotide (‘UAm’) also a�ected the cleavage site selection, albeit moderately.
In contrast, the motif lacking the mismatch (‘GCp’) did not significantly alter
the cleavage site. Therefore, the major impact of the GYM motif on cleavage site
selection is exerted by the mismatched M, while the GC dinucleotide reinforces
the influence of the mismatch and increases processing e�ciency (Figure 2.24).
Collectively, these results suggest that the GYM motif not only promotes e�cient
processing, but also serves as an important determinant of cleavage site.

To gain further insights into the functional relevance of the GYM motif in
other species, we examined Drosophila Dicer-1 (Dcr-1) using our substrates. Like
human DICER, Drosophila Dcr-1 exhibited a preference for the high-score GYM
motif (Figure 2.25). Consistently, repositioning the motif was su�cient to alter
the cleavage site of Dcr-1 (Figure 2.26). Thus, the GYM motif may play a deeply
conserved role in pre-miRNA processing by metazoan DICER homologs.
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The current model of dsRNA processing posits that DICER follows the ‘5�
counting’ and ‘3� counting’ rules (Macrae et al., 2006a,b; Park et al., 2011; Zhang
et al., 2004). To investigate how the GYM motif interplays with these end counting
rules, we prepared a series of RNA duplexes with a low-score GYM motif (‘UAp’),
which shows a mixture of products from 5� counting and 3� counting according
to the varying 1–3 nt 3� overhang (Figure 2.27, purple and green arrowheads,
respectively). However, in the presence of a high-score GYM motif (‘GCm’),
a single site was chosen, yielding a homogeneous product (Figure 2.27, blue
arrowheads). Similarly, another set of substrates with a terminal base-pair (so
as to promote 3� counting), the high-score GYM motif not only increased the
cleavage e�ciency but also abolished the 3� end counting mechanism (Figure
2.28) Thus, the optimal GYM motif is a dominating determinant of cleavage site
decision, overriding the 5� and 3� counting rules when in conflict.

35



1 2 3 1 2 3

G
U
A U

A
C C

G
C G

C
C

1 2 3 4 5 6

Duplex

*
3′ pocket5′ pocket

22 nt
22 nt

GCmUAp

22 nt

3′ overhang
(nt) :

Figure 2.27 In vitro processing of duplex variants with a terminal mismatch by
human DICER. The duplex had a mismatch at its terminus (marked in orange)
so that the 5� end can be incorporated readily into the 5� pocket. The duplex
RNAs have varying 3� overhang (1–3 nt).

1 2 3 1 2 3

G
U
A U

A
C C

G
C G

C
C

1 2 3 4 5 6

Duplex

*
3′ pocket

22 nt

GCmUAp

22 nt

3′ overhang
(nt) :

Figure 2.28 In vitro processing of duplex variants with a terminal base-pair by
human DICER. The duplex had a base-pair at its terminus (marked in orange) so
that the 5� end cannot be incorporated into the 5� pocket.

36



DICER

Pre-miRNA

RIIIDa

RIIIDb
dsRBD

0

R1855

E1859

R1898

dsRBD

Figure 2.29 A structural model of human DICER in a dicing state. The dsRBD
(marked in red) is in the vicinity of the GYM motif (marked in yellow).

2.2.3 The C-terminal dsRBD of DICER recognizes the motif

To gain mechanistic insights into the recognition of the GYM motif, we built
a structural model of the DICER-dsRNA complex in a dicing state. In this
predicted structure, the C-terminal dsRBD is located near the GYM motif,
suggesting a role for the dsRBD (Figure 2.29). Indeed, a DICER mutant lacking
the dsRBD (‘�dsRBD’) cannot distinguish a mismatch at position 1 (Figure 2.30).
Contrariwise, the GC dinucleotide at positions ≠1 and 0 was still favored over the
UA dinucleotide. Thus, the dsRBD has a critical role in sensing the mismatch,
while bases at positions ≠1 and/or 0 may be recognized by other domain(s).

Next, we examined cleavage site selection and found that, unlike wild-type
DICER, �dsRBD is no longer influenced by the position of the GYM motif
(Figure 2.31). These results support the role of the dsRBD in the recognition of
the GYM motif for cleavage site decision.

These results prompted a closer inspection on the dsRBD-dsRNA interface
to identify the residues responsible for the motif recognition. Among the amino
acids lining the first –-helix of the dsRBD in the minor groove of dsRNA, a
highly conserved arginine residue (R1855) is located in very close proximity to

37



20 nt

30 nt

40 nt

50 nt
60 nt
70 nt
80 nt

W
T

G
C

m

G
C

p

U
Am

U
Ap

W
T

G
C

m

G
C

p

U
Am

U
Ap

+DICER R D:

1 2 3 4 5 6 7 8 9 10

†

C eave
pro uct

GCm GCp UAm UAp
0

0.25

0.5

0.75

1 n

*** ***

Re ative c eavage

Figure 2.30 In vitro processing of pre-let-7a-1 variants by DICER �dsRBD.
Bars indicate mean ± SD (n = 3). ***p < 0.001 by two-sided Student’s t test
compared to GCm.

G
G
C
A U

G
C
C

G C

C C
U
A
A U

U
A

G C

C C
G
C
A U

G
C

G C

C C
A

G
C G

C

U

G C
Position

0

2

2

GCm GCm UAm GCp
Re ocate     p

*

G
C
m

G
C
m

U
Am

G
C
p

Relocated
R DDICER

2 3 4

Figure 2.31 In vitro processing of duplex variants by either DICER �dsRBD or
R1855L mutant. The cleavage product and its corresponding cleavage site marked
with the arrowhead are largely una�ected by the GYM motif variations, which
contrasts the result from WT DICER shown in panels b, d.
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Human VPRSPVRELLEMEPETAKFSPAERTYDG-KVRVTVEVV---GKGKFKGVGRSYRIAKSAAARRALRSLKA
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C.briggsae PPRSPIRELMELEGTKARFSKMERILESGKVRVTVDVG---NNMRFTGMGRNYRIAKATAAKRALKYLHQ
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Figure 2.32 Amino acid sequence alignment of dsRBDs of metazoan DICERs.
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Figure 2.33 In vitro processing of duplex variants by human DICER point
mutants at the indicated position. Cleavage products and their corresponding
cleavage sites are marked with arrowheads.

the base at position 1 (Figure 2.29, 2.32). Intriguingly, a point mutation in
this arginine residue to leucine (R1855L) was found in cancer based on The
Cancer Genome Atlas (TCGA) (Cerami et al., 2012; Gao et al., 2013), implying
its defective role in pre-miRNA processing. Indeed, mutations of this arginine
to leucine (‘DICERR1855L’) or alanine (‘DICERR1855A’) were both su�cient to
reduce the site-specific recognition of the mismatch in the GYM motif (Figure
2.33). We further interrogated the other two highly conserved residues—E1859
and R1898—situated near the mismatch and found that E1859 also contributes
to the motif recognition (Figure 2.29, 2.32, 2.33). The R1855L mutant as well
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as the double mutant DICERR1855A,R1859A (‘AA’) lost their ability to favor a
mismatch at position 1 (Figure 2.34, 2.35). Taken together, DICER recognizes
the mismatched ‘M’ mainly using its highly conserved R1855 and E1859 residues
of the dsRBD so as to ensure e�cient and precise processing.

2.2.4 miRNA processing relies on the interaction between the
GYM motif and dsRBD

We next asked if the GYM motif is biologically relevant in the context of en-
dogenous miRNA maturation. The wild-type or mutant DICER proteins were
ectopically expressed in DICER knockout (KO) HCT116 or HEK293T cells (Fig-
ure 2.36). Small RNAs were sequenced by the AQ-seq protocol for bias-minimized
quantification which allows reliable comparison between miRNA isoforms (isomiRs)
(Figure 2.37).

The miRNA abundance was reduced when the dsRBD was deleted or when the
R1855 and E1859 residues were mutated (DICERR1855L and DICERR1855A,R1859A

(‘AA’)) (Kim et al., 2019) (Figure 2.37, 2.38).3 Some conserved and abundant
miRNAs were strongly a�ected, prompting us to investigate whether these miRNAs
are produced in a GYM-dependent manner. In vitro processing assays showed that
mutations in the dsRBD reduced the DICER activity on pre-miR-27b, pre-miR-
21, pre-let-7d, pre-let-7f-1, and pre-let-7i, thus requiring longer incubation time
(Figure 2.39–2.41). Weakening variations in the GYM motif of the pre-miRNAs
decreased processing e�ciency, and this GYM motif e�ect was diminished when
the dsRBD was mutated. Collectively, our data demonstrate that GYM motif
recognition by the DICER dsRBD promotes processing of pre-miRNAs both in
cells and in vitro .

We also detected substantial alterations in the cleavage sites. The most
notable example was miR-324-3p which is known to be dependent on the dsRBD
of DICER in vitro (Kim et al., 2020) (Figure 2.42). In addition, we found many
miRNAs whose processing was a�ected by the dsRBD mutations (Figure 2.43,

3
AQ-seq analysis was done by Dr. Haedong Kim.
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Figure 2.34 In vitro processing of pre-let-7a-1 variants by either DICER R1855L
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Figure 2.37 Comparison of miRNA expressions and cleavage accuracy in either
HCT116 or HEK293T. Spike-ins were used for normalization. RPM, reads per
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WT sample. Then the fold change of its proportions in each sample was measured
as cleavage accuracy. Grey, unannotated strand. Bar graphs show the number of
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arrowheads. RPM, reads per million.

2.44). To infer the cleavage sites by DROSHA and DICER, we examined the
5� ends of 5p miRNAs (blue dots) and 3p miRNAs (red dots), respectively. For
quantification, we measured the proportion of the major 5�-isomiR (i.e., isomiRs
with the same 5� end). The DICER dsRBD mutations a�ected mainly the
DICER cleavage sites, leading to seed alterations and/or strand switches of many
miRNAs (Figure 2.43, 2.44) (Kim et al., 2020). We observed similar changes in
HEK293T cells (Figure 2.37). For validation, we performed in vitro assays with
pre-miR-34a and pre-let-7e and found that their cleavage patterns drastically
changed when the dsRBD was deleted, consistently with the sequencing data
(Figure 2.37, 2.43, 2.45). The GYM motif mutations altered processing sites in
these pre-miRNAs, confirming the importance of the GYM motif in cleavage site
choice. Importantly, these GYM variants cannot be distinguished by the �dsRBD
mutant, indicating that the dsRBD-GYM interaction is critical for the cleavage
site decision in human pre-miRNA processing. It is noteworthy that the GYM
motif seems to have di�erential e�ects on di�erent miRNAs, either increasing (e.g.,
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Figure 2.45 GYM motif-mediated cleavage site decision of miR-34a and let-7e.
The usage of 5� ends of miR-34a-3p or 3� ends of let-7e-5p and 5� ends of let-7e-3p
in the DICER-null HCT116 cells rescued with indicated DICER. The annotations
in miRBase release 21 were used as references. Corresponding positions of the
major cleavage sites are marked with arrowheads. RPM, reads per million. In
vitro processing of pre-miR-34a variants or pre-let-7e variants by either DICER
WT or �dsRBD. Major cleavage products and their corresponding cleavage sites
are marked with arrowheads. Reactions were performed with di�erent time points
as indicated because DICER �dsRBD has reduced activity.
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Figure 2.46 Distribution of the GYM motif at the indicated positions in natural
pre-miRNAs across species.

pre-miR-7-1 and pre-miR-30c) or decreasing (e.g., pre-miR-34a and pre-let-7e)
the cleavage homogeneity (Figure 2.44, 2.45), which may be because the GYM
motif cooperates or competes with the end recognition mechanisms depending on
its relative position.

2.2.5 Evolutionary implications of the GYM motif

If the GYM motif plays a significant and general role in miRNA maturation, one
would expect that GYM motifs are pronounced at position ≠1-to-1 across multiple
pre-miRNAs and various species. Indeed, in human pre-miRNAs, the GYM scores
are higher at positions ≠1-to-1 compared to those at neighboring positions (Figure
2.46, human).4 Remarkably, such position-specific enrichment was observed in
all metazoan species examined, that is, from sea anemone to human. Together
with our biochemical data that fly Dcr-1 is facilitated by the GYM motif in vitro
(Figure 2.25, 2.26), this positional conservation pattern suggests that the GYM
motif is deeply rooted in eumetazoan evolution.

Notably, homogeneously processed miRNAs show stronger positional enrich-
ment at a single site than alternatively processed miRNAs do (Figure 2.47). This
observation suggests that while GYM motifs that are ‘prominent’ relative to the

4
Analysis was done by Dr. Haedong Kim.
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neighboring positions facilitate the production of single miRNA species, ‘not-so-
prominent’ GYM motifs allow alternative processing, yielding multiple isomiRs
and diversifying miRNA functions, which possibly explains why the majority, but
not all human pre-miRNAs evolved to have prominent GYM motifs (Figure 2.48).

To experimentally test this hypothesis, we selected pre-miR-9 which is alter-
natively processed by DICER in cells to produce major 22-nt and minor 21-nt
isoforms (Figure 2.49, left panel, blue and green arrowheads, respectively). Impor-
tantly, pre-miR-9 lacks a prominent GYM motif, with comparable GYM scores
between two 3-bp sliding windows corresponding to the two isomiRs. We intro-
duced a weaker GYM variant specifically to the lower window, without altering
the GYM motif in the upper window, which in e�ect made the upper motif more
‘prominent’ without increasing its score. In this situation, pre-miR-9 was no
longer alternatively processed, indicating that the comparable GYM motifs in two
consecutive windows allowed alternative processing of pre-miR-9 (Figure 2.49).
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Thus, depending on their relative strength and position, GYM motifs can be used
to facilitate either homogeneous or alternative processing of pre-miRNAs.

2.2.6 The GYM motif improves the design of shRNA and DsiRNA

Having identified the GYM motif as a strong determinant of DICER-mediated
processing, we next sought to investigate its e�ect on RNA interference by shRNA
(short hairpin RNA) and DsiRNA (DICER-substrate siRNA) that are dependent
on cellular DICER to yield siRNAs. shRNA mimics pre-miRNA but contains a 5�
triphosphate group and a 3� overhang with 3–5 uridines originating from the RNA
polymerase III termination signal (Gao et al., 2018). This non-optimal terminal
structure impairs DICER processing, posing a drawback of shRNA-mediated
RNAi. To test if the GYM motif can override the end-dependency, we constructed
shRNAs with GYM motifs of variable scores (Figure 2.50). The shRNA with
a high-scoring GYM motif yielded the highest-level of siRNA products and the
most potent gene silencing activity.5

We also evaluated the GYM motif in the context of DsiRNA—synthetic
27-mer siRNA duplex designed to be processed by DICER to yield 22-mer siRNA
(Amarzguioui et al., 2006). DsiRNAs exhibit more potent activity than synthetic
21-mer siRNA duplexes which bypass DICER processing, suggesting a coupling
between DICER processing and AGO loading (Kim et al., 2005; Snead et al., 2013).
DsiRNAs can be designed in two di�erent configurations, in which the antisense
guide sequence is placed in either strand. Strong GYM motifs increased the
knockdown e�ciencies, regardless of whether the antisense is placed in the 5p or
3p strand (Figure 2.51). Taken together, the identified GYM motif promotes both
shRNA- and DsiRNA-mediated RNAi, allowing e�ective and rapid knockdown of
target genes.

5
shRNA experiments were performed by Dr. Haedong Kim.
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2.3 Discussion

Here we employed massively parallel assays to identify a position-dependent
sequence motif for DICER processing, namely the GYM motif. The GYM score
measured in this study o�ers a way to quantitatively define optimal substrates
of DICER. The GYM score generally peaks at positions ≠1-to-1 relative to the
cleavage site and this positional pattern is conserved throughout animal miRNAs.
Both fly Dcr-1 and human DICER show similar regulation in vitro. These findings
strongly suggest that the GYM-mediated mechanism is conserved across metazoan
species. It remains to be investigated if a similar mechanism is at work in plants
and fungi and if this also applies to siRNA-specific DICER homologs such as fly
Dcr-2. Moreover, it will be also intriguing to interrogate the remaining regions of
pre-miRNAs—the loop and the lower part of the stem—to examine additional
sequence determinants. However, it is noteworthy that because the lower part of
the stem becomes mature miRNAs, the sequence changes would be constrained
by target interaction.

Central to the GYM-mediated mechanism is the DICER dsRBD that recog-
nizes the GYM motif. The DICER dsRBD was known to play a role in dsRNA
binding and hence enhance cleavage e�ciency (Zhang et al., 2002; Gan et al.,
2006). Our study reveals how the dsRBD achieves its function by recognizing the
substrate RNA in not only sequence-independent but also sequence-dependent
manners. Furthermore, this study unveils the function of the dsRBD in the cleav-
age site decision which even can override the other domains’ function. In light of
our finding, it is noteworthy that dsRBDs of bacterial RNase III (class I RNase
III) and human DROSHA (class II RNase III) also contribute to substrate speci-
ficity by recognizing the sequence and structural features near the cleavage sites
although the positions and sequences of the motifs are di�erent (Fang & Bartel,
2015; Kwon et al., 2019; Kim et al., 2017). Therefore, together with the previous
reports, the current study expands our understanding of dsRBDs by illustrating
its high amenability conferring specificity to a wide array of sequence/structural
compositions in dsRNA.
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Figure 2.52 A proposed model for the role of GYM motif in DICER processing.

The GYM motif is a decisive factor specifying the cleavage site, which can
override the 5� and 3� end counting rules when in conflict. However, when
consistently positioned relative to the termini, the GYM motif can cooperate
with the termini to ensure accurate and homogenous processing. Taking our
results together, we propose a model for the role of the GYM motif in small RNA
biogenesis and its e�ects on RNA silencing (Figure 2.52). For a pre-miRNA with
a not-so-prominent GYM motif, the dsRBD of DICER does not form a tight
interaction at a specific position (top left model). In this scenario, the processing
accuracy is compromised, generating multiple isoforms. This mechanism can o�er
a useful basis for regulation via alternative processing that can expand and/or
alter the target repertoire by changing the seed sequence and sometimes even
switching the functional strand (a phenomenon called ‘arm switching’) as seen
with miR-9 and miR-324 (Kim et al., 2020).

In situations where there is a prominent GYM motif, the dsRBD latches
onto the GYM motif to accommodate the dsRNA in a fixed position (Figure
2.52, top right model). In this case, the impact of the end counting rule can be
negated. Thus, this study amends the previous notion that the DICER cleavage
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site is passively determined by DROSHA that generates pre-miRNA termini.
Accordingly, the GYM motif can compensate for the imprecise (alternative)
processing of pri-miRNAs by DROSHA (Kim et al., 2019; Chiang et al., 2010;
Kim et al., 2017, 2021; Bofill-De Ros et al., 2019; Wu et al., 2009; Burroughs et al.,
2010) or negate the e�ect of promiscuous end modifications (such as 3� tailing and
trimming)—which would otherwise a�ect DICER cleavage sites (Kim et al., 2019;
Chiang et al., 2010; Martin, 2011). This allows DICER to precisely process the
substrate to produce miRNAs/siRNAs with high accuracy and e�ciency, which
consequently contributes to the fidelity and potency of RNA silencing.

Altogether, our study reveals an integral and conserved mechanism of DICER’s
substrate recognition and provides a framework to understand how DICER pro-
duces small RNAs for biological and therapeutic regulations. Moreover, our finding
of a cancer-associated DICER mutation (R1855L) which disrupts the GYM motif
recognition o�ers insights into the molecular impact of this mutation.

2.4 Methods

Plasmid construction

To construct plasmids for expressing human DICER, the coding sequence of
the human DICER reference (RefSeq NM_030621) was amplified and subcloned
into the pX vector (for protein purification) containing N-terminal His10-eYFP-
SUMOstar-Strep sequence, or pCK vector (for ectopic expression in DICER
KO cells) with a PGK promoter substituted for the CMV promoter. Other
DICER constructs, including DICER �dsRBD (1–1848 aa), were generated via
site-directed mutagenesis. For the plasmid expressing human TRBP, the coding
sequence of the human TRBP reference (RefSeq NM_134323) was amplified and
subcloned into the same pX vector. For the plasmid expressing Drosophila Dcr-1,
the coding sequence of the Drosophila Dcr-1 reference (RefSeq NM_079729.3)
was amplified from Drosophila cDNA and subcloned into the same pX vector.
To construct plasmids for dual reporter luciferase assays, synthetic DNA oligos
containing the pri-miRNA sequences or the target sites of shRNAs and DsiRNAs
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were inserted into the pmirGLO vector (Promega), downstream of the firefly
luciferase gene. To construct plasmids for shRNA expression, synthetic DNA
oligos containing the shRNA sequences and pri-miR-1-1 sequence were inserted
into a vector, downstream of U6 and UbC promoters, respectively.

Protein purification

N-terminal His10-eYFP-SUMOstar-Strep tagged DICER expression plasmids
were transiently transfected into HEK293E cells, derived from human embryonic
kidneys, that were grown in suspension culture (Dulbecco’s modified Eagle’s
medium (DMEM) supplemented with 5% fetal bovine serum) in a 8% CO2

humidified shaking incubator at 37°C. At a cell density of ~7◊106 cells per mL,
each plasmid was transfected at a final concentration of 0.3 µg ml≠1 with linear
polyethylenimine (PEI) and dimethyl sulfoxide (DMSO) sequentially added at
a final concentration of 3 µg ml≠1 and 1%, respectively. Transfected cells were
incubated at 33°C for 72 hours.

All purification procedures were carried out at 4°C. Cell pellet was resuspended
in bu�er containing 100 mM Tris-HCl (pH 8.0), 150 mM NaCl, 10% glycerol, and
2 mM "mercaptoethanol (BME), supplemented with 0.1 mM phenylmethylsulfonyl
fluoride (PMSF), EDTA-free Pierce Protease Inhibitor Mini Tablets (Thermo
Fisher Scientific), 20 µl ml≠1 micrococcal nuclease, and 5 mM CaCl2 Cells were
lysed by sonication and centrifuged at 35,000 g for 1 hr. The supernatant was
applied to Ni-NTA Superflow resin (Qiagen) equilibrated with bu�er containing
100 mM Tris-HCl (pH 8.0), 150 mM NaCl, 10% glycerol, 2 mM BME, and 0.1
mM PMSF. The resin was washed with 5 column volumes of the equilibrium
bu�er supplemented with 40 mM imidazole. The bound proteins were eluted with
the equilibrium bu�er supplemented with 200 mM imidazole. For proteolytic
cleavage of the N-terminal His10-eYFP-SUMOstar tag, the sample was treated
with SUMOstar protease (LifeSensors) at 4°C for 1 hr. The sample was then
applied to Strep-Tactin Superflow (IBA Lifesciences) resin equilibrated with bu�er
containing 100 mM Tris-HCl (pH 8.0), 150 mM NaCl, 2 mM BME, and 0.1
mM PMSF. The resin was washed sequentially with 5 column volumes of the
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equilibrium bu�er containing 2 mM EDTA and no EDTA. The bound protein
was eluted with bu�er containing 100 mM Tris-HCl (pH 8.0), 150 mM NaCl, 2
mM BME, and 50 mM biotin. The eluate was applied onto Ni-NTA Superflow
resin (Qiagen) to remove uncleaved fusion protein. The unbound fraction was
concentrated to ~20 µM using an Amicon® Ultra-15 Centrifugal Filter Unit (100
kDa cuto�) and loaded onto Superose 6 Increase 5/150 GL (GE Healthcare)
equilibrated with 50 mM Tris (pH 8.0), 100 mM NaCl, 0.5 mM TCEP. The
fractions containing the protein were pooled, concentrated to ~5 µM, snap frozen
in liquid nitrogen, and stored at ≠80°C until use. All human DICER constructs
and Drosophila Dcr-1 were purified using the same purification method. Protein
concentrations were quantified by UV absorbance at 280 nm (NanoDrop), using a
molecular extinction coe�cient calculated for each protein.

Massively parallel assay to identify DICER processing determi-
nants

In order to predict the structure of dsRNA-bound human DICER, the cryo-EM
structure of human DICER in the cleavage-incompetent state was superimposed
with the crystal structure of Aqufiex aeolicus RNase III (Aa RNaseIII) bound
to dsRNA (Gan et al., 2006) using PyMol. Based on the structural model, the
dsRNA region likely to be recognized by the dsRBD was predicted (Figure 2.6).
Synthetic pre-miRNAs (Integrated DNA Technologies), pre-let-7a-1 and pre-miR-
374b, containing random bases within the specified window were denatured at
80°C for 5 min and annealed by slowly cooling the temperature down to 4°C at
a ≠1°C min≠1, rate in a bu�er containing 20 mM Tris (pH 7.5), 80 mM NaCl,
1 mM EDTA. Massively parallel assays were carried out by mixing randomized
pre-miRNA pool with purified DICER at final concentrations of 0.1 µM and 0.2
µM, respectively, in a reaction bu�er containing 50 mM Tris (pH 7.5), 100 mM
NaCl, 0.5 mM TCEP, 2 mM MgCl2. The reaction was carried out at 37°C for
predetermined time periods to achieve approximately 10, 20, or 30% cleavage of
the pre-miRNA pool. The reaction was stopped by adding an equivalent volume of
2X RNA Loading Dye (NEB) supplemented with additional 20 mM EDTA. Along
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with the input RNA, the mixture was resolved on a 15% urea-polyacrylamide
gel. The input RNA and the uncleaved pre-miRNA pool were gel-purified. The
uncleaved pre-miRNAs were subsequently subjected to AQ-seq as previously
described (Kim et al., 2019), with some modifications as follows. After 3� adapter
ligation, the ligated RNAs were purified on a 10% urea-polyacrylamide gel along
with Century-Plus RNA Markers (Thermo Fisher) as a size marker. After reverse
transcription, cDNAs were amplified with NEBNext Ultra II Q5 Master Mix
(NEB). The libraries were sequenced on the NovaSeq 6000 platform.

Sequencing reads were first pre-processed by clipping the 3� adapter using
cutadapt (Martin, 2011). Next, 4-nt degenerate sequences were further removed
with FASTX-Toolkit (http://hannonlab.cshl.edu/fastx_toolkit/) and short, low-
quality, and artifact reads were filtered out using FASTX-Toolkit. Only reads
without mutations outside the variable region were selected for subsequent analysis.
Cleavage scores of individual pre-miRNA variants were calculated by calculating
the proportion of a given variant with a pseudocount 1 and then dividing it in the
input by that in the uncleaved substrate sample. The sequences of pre-miRNAs
are listed in Table 2.1.

In vitro processing of RNA substrates

Pre-miRNA substrates were prepared by ligating two single-stranded RNA frag-
ments (Integrated DNA Technologies) as previously described (Heo et al., 2009).
For preparation of dsRNA substrates, singlestranded RNAs (Bioneer) of the 5�-
arm were 5�-end-radiolabeled with “-ATP by T4 polynucleotide kinase (Takara)
and purified using Oligo Clean & Concentrator (Zymo Research) according to
manufacturer’s instructions. Next, they were annealed to the complementary
synthetic ssRNAs of the 3�-arm in a bu�er containing 20 mM Tris (pH 7.5), 80
mM NaCl, 1 mM EDTA, by heating at 80°C for 5 min and slowly cooling the
temperature down to 4°C at a ≠1°C min≠1, rate. In vitro processing assays were
carried out by mixing the RNA substrates with the 0.5 µM purified proteins
in a reaction bu�er containing 50 mM Tris (pH 7.5), 100 mM NaCl, 0.5 mM
TCEP, 2 mM MgCl2, 5 µg ml≠1 yeast RNA. The reaction was carried out at 37°C
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and stopped by adding an equivalent volume of 2X RNA Loading Dye (NEB)
supplemented with 0.5 mg ml≠1 proteinase K (Roche). The mixture was resolved
on a 15% urea-polyacrylamide gel along with 5�-end-radiolabeled synthetic mature
miRNAs and Decade Markers System (Ambion) as size markers and visualized
by the phosphorimager, Typhoon FLA 7000 (GE Healthcare). The sequences of
synthetic oligos are listed in Table 2.1.

DICER rescue experiment and data analysis

DICER KO HCT116 and HEK293T cells were maintained in DMEM and Mc-
Coy’s 5A media (WELGENE), respectively, supplemented with 10% fetal bovine
serum (WELGENE) (Kim et al., 2016; Bogerd et al., 2014). Both cell lines
were authenticated using the ATCC short tandem repeat profiling. DICER KO
HCT116 and HEK293T cells were transiently transfected with DICER expression
plasmids using FuGENE HD (Promega) or Lipofectamine 3000 (Thermo Fisher),
respectively. Total RNAs were extracted using TRIzol (Thermo Fisher) 48 hrs
post-transfection and subjected to AQ-seq (Kim et al., 2019) except that 100 µg
of total RNAs were used for library construction, and that cDNAs were amplified
with NEBNext Ultra II Q5 Master Mix (NEB). The libraries were sequenced on
the NovaSeq 6000 platform.

Data processing was performed as previously described (Kim et al., 2019).
Briefly, the 3� adapter and 4-nt degenerate sequences were removed from the reads
using cutadapt (Martin, 2011) and FASTX-Toolkit (http://hannonlab.cshl.edu/fast
xtoolkit/), respectively. Next, short, low-quality, and artifact reads were filtered
out using FASTX-Toolkit. The output reads were first mapped to the spike-in
sequences and then unmapped reads were aligned to the human genome (hg38)
using BWA (Li & Durbin, 2009a). Corresponding miRNA annotations were
found with miRBase release 21 using the intersect tool in BEDTools (Kozomara
& Gri�ths-Jones, 2014a; Quinlan & Hall, 2010). For the analysis of miRNA
abundance, read counts of miRNAs were normalized with the average of read
counts of spike-ins. For the analysis of processing accuracy, we first identified the
most abundant 5�-isomiR for a given mature miRNA in WT DICER-expressing
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samples. Then the proportions of the 5�-isomiR were measured for all of the
samples. Fold changes of the proportions between samples were calculated to
examine processing accuracy defects. In order to reduce the influence of decay
intermediates, 5�-isomiRs with 5� ends within a range of ≠5 to 5 positions relative
to the annotated one and miRNAs with a position where more than 20% of reads
account for were used for subsequent analyses.

Analysis on the GYM motif of natural miRNAs

Representative animal miRNAs from diverse species have been used in the primary
miRNA motif conservation analysis (Fang & Bartel, 2015; Fromm et al., 2020).
We adopted the curated lists (Fang & Bartel, 2015; Fromm et al., 2020) for our
analysis and further curated as follows: 1) miRNA annotations and sequences
were manually curated based on miRBase release 22 (Kozomara & Gri�ths-
Jones, 2014a). 2) Pre-miRNA sequences were retrieved based on their 5p and
3p annotations in miRBase release 22 and added to the lists. 3) Pre-miRNA
sequences from miRGeneDB release 2.0 were added to the lists (Auyeung et al.,
2013). 4) 3p sequences from miRBase release 22 and miRGeneDB release 2.0 were
added to the lists. 5) Starting positions of 3p miRNAs were identified for each
miRNA if 3p sequences were available. If not, 3p sequences and starting positions
were manually curated based on its orthologs in close species.

Pre-miRNA secondary structures were obtained using Fold in RNAstructure
version 6.3 with default settings (Bellaousov et al., 2013). Based on the predicted
structure for a given miRNA, 3-bp composition of each position relative to the
starting position of 3p was identified (Fig. 3g). Next, its corresponding cleavage
score was obtained by calculating average GYM scores of the 3-bp measured in the
massively parallel assay of two pre-miRNA backbones with ≠1-to-1 randomization
performed under the condition where approximately 20% of substrates were
cleaved. Pre-miRNA sequences were referred to those of miRGeneDB, miRBase,
and to those listed by Fang and Bartel, in order of priority. 3p positions were
referred to those of miRGeneDB, miRBase, and our manual curation, in order of
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priority. If there was a bulge or mismatch for a given position, the position was
excluded. If there was no available 3p position, the miRNA was excluded.

Dual luciferase reporter assay for gene silencing activity

For shRNA, HEK293T cells were co-transfected with pmirGLO vector containing
a target site of shRNA-3p along with a plasmid encoding both shRNA and
pri-miR-1-1 under the control of independent promoters using Lipofectamine
3000 reagent (Thermo Fisher). shRNAs were optimally designed following the
published guidelines (Bofill-De Ros & Gu, 2016). For DsiRNA, HEK293T cells
were cotransfected with pmirGLO containing a target site of DsiRNA along
with DsiRNA (Integrated DNA Technologies) using Lipofectamine 2000 reagent
(Thermo Fisher). Cells were harvested at di�erent time points post-transfection
and the luciferase signals were measured by DualLuciferase Reporter Assay System
according to the manufacturer’s instructions (Promega) on Spark Multimode
Microplate Reader (TECAN). The sequences of DsiRNAs are listed in Table 2.1.

Quantitative real-time PCR (RT-qPCR)

HEK293T cells were transfected as described above. RNAs were isolated at
di�erent time points post-transfection using TRIzol (Thermo Fisher) and Direct-zol
RNA Miniprep Kit (Zymo Research) according to the manufacturer’s instructions.
cDNAs were synthesized using the TaqMan miRNA Reverse Transcription Kit
(Applied Biosystems) and subjected to quantitative real-time PCR with the
TaqMan MicroRNA Assay (Applied Biosystems) on StepOnePlus RealTime PCR
System (Thermo Fisher). Given that miR-1-3p is little expressed in HEK293T (~8
RPM in the AQ-seq result) (Kim et al., 2019), miR-1-3p was used as an internal
control.
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3. Structure of the human
DICER-pre-miRNA complex in a dicing state

3.1 Background

Small regulatory RNAs serve as guide molecules in RNA interference (RNAi)
by inducing translational repression and destabilization of the cognate mRNAs
(Hutvagner & Zamore, 2002; Mourelatos et al., 2002; MacRae et al., 2007). Central
to the pathway is the ribonuclease (RNase) III enzyme Dicer that cleaves long
double-stranded RNAs (dsRNAs) or short hairpin RNAs to generate small RNAs
in length of 21-25 nucleotides (nt) (Elbashir et al., 2001; Hutvagner et al., 2001)
Dicer homologs are found throughout eukaryotes and show substantial diversity in
their substrate specificity and action mechanism. Some Dicer proteins are specific
to long dsRNAs as observed in the structural and biochemical studies on Giardia
Dicer, plant Dicer-like proteins, and fly Dicer2 (Macrae et al., 2006a; MacRae
et al., 2007; Xie et al., 2004; Mosher et al., 2008; Ronemus et al., 2006; Vazquez
et al., 2004; Zhang et al., 2007; Wang et al., 2021; Sinha et al., 2018; Su et al.,
2022; Welker et al., 2011; Cenik et al., 2011; Lee et al., 2004). In contrast, other
homologs such as fly Dicer-1 are highly selective to hairpin-shaped pre-miRNAs
(Lee et al., 2004; Tsutsumi et al., 2011). Human DICER (hDICER) can cleave
both types of substrates, with a clear preference for short hairpins over long
dsRNAs (Ma et al., 2008; Chakravarthy et al., 2010)

hDICER recognizes several features of its substrates: a dsRNA stem with
approximately 22 bp, a 2-nt 3� overhang, and a flexible loop next to the cleavage
site (Macrae et al., 2006a,b; Park et al., 2011; Zhang et al., 2002; Gu et al.,
2012; Feng et al., 2012). The flexible loop is known to be sensed by the helicase
domain19,20, while the 5� phosphorylated end and the 3� overhang are recognized
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by basic pockets in the platform and PAZ domains, respectively (Park et al., 2011;
Zhang et al., 2002). By anchoring the termini, DICER can act as a ‘molecular
ruler’ to measure ~22 nt away from the 5� end (‘5� counting rule’) and 3� end
(‘3� counting rule’) of the substrate (Macrae et al., 2006a,b; Park et al., 2011;
Zhang et al., 2002). In addition, a newly identified ‘GYM’ motif at the cleavage
site enables precise determination of the cleavage site. However, the structural
basis of the substrate specificity of hDICER remains largely unknown due to the
lack of an active state structure.

Early electron microscopic (EM) analyses of hDICER revealed its overall
L-like shape (Lau et al., 2009; Wang et al., 2009; Lau et al., 2012). Crystal
structures of a partial fragment containing the platform-PAZ domain showed the
5� and 3� pockets which recognize the respective ends of a small RNA duplex
(Tian et al., 2014). A more recent cryo-electron microscopy (cryo-EM) study
displayed the overall topology of full-length hDICER in apo and RNA-bound
states (Liu et al., 2018). However, in this structure, the pre-miRNA is situated
distant from the catalytic valley, likely representing a ‘pre-dicing’ state. Thus, we
still lack the structural understanding of how hDICER recognizes pre-miRNAs in
an active state.

Here, we aimed to determine the cryo-EM structure of hDICER with pre-
miRNA in a cleavage-competent state. The structure reveals dynamic spatial
rearrangements of multiple domains of hDICER during the transition to a catalytic
state and explains how hDICER selects its substrates with specificity.

3.2 Results

3.2.1 Structural determination

To reconstitute the enzyme-substrate complex, we employed mono-uridylated
pre-let-7a-1, which has an optimal 2-nt 3� overhang, stem length and terminal
loop. Meanwhile, in our concurrent study, we carried out massively parallel
assays using over a million pre-miRNAs with random sequences near the cleavage
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Figure 3.1 The sequence of pre-let-7a-1GY M used for structural determination.

sites. Analysis of the top variants revealed that nucleotide sequences at positions
≠1, 0, and 1 relative to the 3p DICER cleavage site are enriched with a paired
guanine (G), a paired pyrimidine (Y), and a mismatched cytosine or adenine (M),
respectively. We therefore termed this motif the ‘GYM’ motif. The GYM motif
robustly enhances dsRNA processing at a specific site, suggesting its role in the
catalytic step. The mismatched ‘M’ is particularly important for cleavage site
decision. In order to design an optimal substrate for structural determination as
well as to obtain the mechanistic insights into the GYM motif-mediated processing,
we incorporated the highest-scoring GYM motif (5�-CGC/GCC-3�) into pre-let-
7a-1 (Figure 3.1), which substantially increased the processing rate compared to
the wild-type sequence.

We overexpressed and purified the full-length hDICER protein, which cleaved
the pre-let- 7a-1GY M precisely, yielding the expected 22-nt fragment (Figure 3.2,
3.3). Previous cryo-EM structures of hDICER were determined with its accessory
protein, TRBP, which exhibits flexible and heterogenous conformations (Liu et al.,
2018). Since the vast majority of human miRNAs including let-7 do not require
TRBP both in vitro and in cells (Macrae et al., 2006b; Kim et al., 2014; Wilson
et al., 2015), we set out to determine the cryo-EM structure of hDICER alone so
as to reduce the structural heterogeneity.

We first validated the architecture of the purified apo-hDICER at 4.0 Å
resolution by cryo-EM (Figure 3.4–3.7, Table 3.1).1 This structure exhibits a

1
Cryo-EM experiments and analyses were performed by Dr. Hansol Lee.
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Figure 3.3 In vitro processing of pre-let-7a-1 with human DICER.

compact ‘hatchet-like’ (or L-shaped) architecture (Lau et al., 2009; Wang et al.,
2009; Lau et al., 2012) with mostly globular domains, as observed in the previous
cryo-EM structure of the hDICER-TRBP complex (Liu et al., 2018) Our map
clearly displays overall domains with defined helical features (Figure 3.8, 3.9).
Notably, the helicase domain shows lower local resolution suggesting its intrinsically
flexible behavior (Figure 3.7). Next, to build a model of apo-hDICER, we docked
the cryo-EM model of hDICER from hDICER-TRBP into our map and refined it
by flexible fitting (Liu et al., 2018). Our model covers the 3D position of most
folded domains and partial interdomain loops including DUF283 linker (D-linker)
that connects DUF283 to platform (Figure 3.8, 3.9). Notably, D-linker which
was mostly undetermined in the previous hDICER-TRBP structure forms a short
beta sheet with the N-terminal region of RIIIDa.

Next, we reconstituted the hDICER-pre-miRNA complex (Figure 3.10, 3.11,
Table 3.1) and were able to reconstruct the map of the complex at 3.0 Å resolution
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3,997 micrographs

5,416 movies collected

Patch based motion correction
Patch based CTF estimation
Curate exposures

2D class averages

Select 2D averages

128,635 particles

Homogeneous 3D refinement

Non-uniform refinement

4.04 Å map/128,635 particles

apo-DICER

Mannual particle picking (template)
Template based particle picking
Particle extraction

Ab initio reconstruction
(initial model) 

5.9 Å map
Global CTF refinement

Figure 3.4 Overview of the image processing procedure for structural determina-
tion of apo-DICER.

71



apo-DICER

Figure 3.5 Representative micrograph and 2D class averages of the apo-DICER.
Scale bar represents 50 nm.
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Figure 3.6 Gold standard Fourier Shell Correlation (FSC) and angular particle
distribution heatmaps of the apo-DICER.
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Consensus cryo-EM maps Local resolution analysis

( )2.5 7.54 5 6

Figure 3.7 Consensus maps and local resolution analysis of apo-DICER. Each
domain is indicated in di�erent colors.

using a cryo-EM dataset of ~1,210K particle images.2 In this map, hDICER
embraces the helix of pre-miRNA within the catalytic center of the enzyme
through an extensive surface contact (Figure 3.12–3.14). Our map displays the
side chain details of the platform, PAZ, RIIIDa/b domains and the secondary
structural features for the dsRBD and interdomain linkers while we could not
identify the featured densities from helicase (residues 1–564), DUF283 (residues
590–714) and several loops in RIIID domains (residues 1392–1545 and 1595–1684)
(Figure 3.15, 3.16). We referenced the model of apo-hDICER and pre-let-7a-1
structures and built an atomic model of hDICER-pre-let-7a-1GY M (Figure 3.8,
3.9).

3.2.2 Overall structure of hDICER in a dicing state

The structure of the hDICER-pre-let-7a-1GY M complex shows that the pre-miRNA
is fully docked and poised for cleavage within the catalytic center formed by
intramolecular dimerization of RIIIDa and RIIIDb (Figure 3.17). The catalytic
center has two clusters of conserved acidic amino acid residues in the RIIIDa

2
Cryo-EM experiments and analyses were performed by Dr. Hansol Lee.
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Figure 3.8 Domain organization of hDICER. Schematics for the apo state shows
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Figure 3.9 3D maps of individual domains of the apo-DICER.
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Figure 3.10 Size-exclusion chromatography of the DICER-RNA complex.
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Figure 3.11 SDS-PAGE and urea-PAGE of the DICER-RNA complex.
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Figure 3.12 Overview of the image processing procedure for structural determi-
nation of DICER in a dicing state.
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DICER-pre-let-7a-1GYM

Figure 3.13 Representative micrograph and 2D class averages of the DICER-
pre-let-7a-1GY M . Scale bar represents 50 nm.
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Figure 3.14 Gold standard Fourier Shell Correlation (FSC) and angular particle
distribution heatmaps of the DICER-pre-let-7a-1GY M .
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Figure 3.15 Protein-RNA interactions in the dicing state at the domain level.
Sequences of pre-let-7a-1GY M that are not included in the model are not shown.
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Figure 3.16 Cryo-EM map of hDICER in a dicing state (color, 3.0 Å) overlaying
that of hDICER in an apo state (grey, 4.0 Å).
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Figure 3.18 3D maps of the pre-let-7a-1GY M .
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Figure 3.19 3D maps of the individual domains of DICER-pre-let-7a-1GY M .

(E1316, D1320, D1561, E1564) and RIIIDb (E1705, D1709, D1810, E1813) (Figure
3.18–3.21). Our map also displays extra densities in the catalytic core, which are
attributed to calcium ions used to substitute magnesium ions to prevent hydrolysis
(Provost et al., 2002). The calcium ions are situated near the oxygen atoms of
the scissile phosphodiester bonds in the 5p strand (between U22 and U23) and
3p strand (between 51G and 52C) (Figure 3.22, 3.23), whose position coincides
with the actual cleavage sites of pre-let-7a-1. This spatial arrangement is highly
homologous to that of other RNase III type enzymes including human DROSHA
and Aquifex aeolicus RNase III (Aa RNase III) (Figure 3.24) (Partin et al., 2020;
Jin et al., 2020; Gan et al., 2006).
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Figure 3.20 Cryo-EM map of the catalytic site created by RIIIDa and RIIIDb.
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7a-1GY M complex structure. Q-scores for each residue were derived from MapQ
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Figure 3.22 Overall structure of the hDICER with a pre-miRNA in a cleavage-
competent state. Black arrowheads point to the DICER cleavage sites.
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and electrostatic potential surface model of the catalytic valley along the protein-
RNA interface.
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Figure 3.24 Superposition of RIIID domains of hDICER and Aa RNase III (left)
and active sites of hDICER and Aa RNase III (right).
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Figure 3.25 Buried surface area of hDICER in a pre-dicing state and a dicing
state.

We could build the 3D model for the majority of the pre-miRNA, including
the stem region and the additional 4-nt and 6-nt beyond the cleavage sites in the
5p and 3p strands, respectively (Figure 3.15, 3.16). The rest of the terminal loop
could not be modeled, a�rming the flexible nature of the terminal loop. Our
structure shows considerable contacts between hDICER and pre-miRNA, with the
total buried surface area of 10,290.8 Å2 (Figure 3.25). The RMSD between the
apo and dicing states was 2.9 Å, mostly accounting for di�erences in the dsRBD
and PAZ domain, with RMSDs of 17.7 Å and 13.6 Å, respectively (Figure 3.26).
Compared to the pre-dicing state (Liu et al., 2018), the dicing state structure
shows large di�erences both in protein domain organization and RNA interaction.
Note that in the pre-dicing state, there is only limited interaction with pre-miRNA
mainly through its termini and loop (with total buried surface area of 3,206.9 Å2).

One of the prominent changes observed during the transition between apo
and dicing states was the fade-out of the density of helicase domain. In the apo-
state structure, there appears to be interdomain interactions among the helicase
domain, dsRBD, and RIIIDb (Figure 3.27). These interactions likely support the
overall architecture of these domains in a stable “closed” conformation. However,
superposition of the apo-hDICER structure, for which the helicase domain could
be modeled into, shows a steric clash between the helicase domain and the pre-
miRNA loop (Figure 3.28). Consistently, the N-terminal helicase-DUF283 domain
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Figure 3.26 RMSD of hDICER-pre-let-7a-1GY M (this study) compared to
hDICER-TRBP-pre-let-7a-1mutant (PDB: 5ZAL). Residues not resolved in the
dicing state are colored in grey.
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Figure 3.27 Interdomain interactions in apo-hDICER.
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Figure 3.28 Steric clash between pre-let-7a-1GY M and apo-hDICER.

exhibits significant flexibility in a dicing state in our analysis (Figure 3.16). We
observed the same result with pre-miR-3121GY M that has a small loop (11 nt),
suggesting that the helicase domain becomes flexible generally during the dicing
step regardless of the terminal loop size (Figure 3.29). Further in-depth particle
classification of ~4,000 particles revealed the extended map of the helicase domain,
dislocated from other domains (Figure 3.30). To test whether this missing density
is due to chemical integrity, we performed another cryo-EM imaging of the same
specimens, after incubating with 2 mM MgCl2 which allowed cleavage reaction
(Figure 3.31). We obtained particles at multiple structural states including dicing-
state (25%), some intermediates (51%) and apo-like structures (34%) (Figure
3.32). This structural analysis indicates that the helicase domain is chemically
intact and that the structural heterogeneity of the helicase domain is induced
transiently in the dicing state. After the cleavage reaction, the protein returns
to the original apo-state conformation. Collectively, these analyses suggest that
the conformational change in the helicase domain is required to allow productive
interaction with the substrate. These observations contrast to the recent structures
of fly Dcr-2—specialized in the siRNA pathway—that showed a fixed orientation
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DICER-pre-miR-3121GYM

Figure 3.29 Cryo-EM map of the hDICER-pre-miR-3121GY M complex in a
dicing state.
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Figure 3.30 Selected 2D class averages and 3D maps showing heterogeneity
in the helicase domain. White arrowhead indicates the location of the helicase
domain in 2D averages. Bound RNA density is indicated in orange color.
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Figure 3.31 Urea-PAGE of hDICER-pre-let-7a-1GY M complex incubated with
or without MgCl2 for 10 min at RT, visualized by SYBR gold staining.

of the helicase domain which is engaged in a ATP-dependent translocation of the
long dsRNA (Su et al., 2022).

3.2.3 Stem recognition by dsRBD and RIIID

Near the catalytic sites in the upper stem of pre-miRNA, we observed a pronounced
movement of the C-terminal dsRBD (Figure 3.33), mediated by the flexible linker
that connects to the RIIIDb. This RNA-induced conformational switching orients
the dsRBD away from the inner core of the catalytic valley and relieves the
steric clash between dsRBD and dsRNA (Figure 3.34) so as to permit dsRNA
recognition. With respect to its original position in the apo and pre-dicing states,
the dsRBD swings about 12.6 Å and 16.5 Å, respectively (Figure 3.33, 3.34).

Intriguingly, close to the dsRBD-dsRNA interface, we observed a large change
in the helical structure of dsRNA, which deviates from the ideal A-form dsRNA
structure (Figure 3.35). This conformational distortion expands the width of
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Figure 3.32 Selected 2D class averages and 3D maps showing heterogeneity of
the helicase domain of hDICER-pre-let-7a-1GY M complex.
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Figure 3.33 Conformational change in dsRBD during the transition from an apo
state to a dicing state. Black arrowheads indicate cleavage sites.
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Figure 3.34 Conformational changes of the dsRBD in the apo, dicing and
pre-dicing states (PDB: 5ZAL).
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Figure 3.35 Comparison between the structures of ideal A-form dsRNA helix
and pre-let-7a-1GY M .
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Figure 3.36 Protein-RNA interactions near the cleavage sites in the minor groove.

the major groove of pre-let-7a-1GY M to 15.6 Å, compared to 8.0 Å in the ideal
A-form RNA. The successive major and minor grooves across the region are
sandwiched between dsRBD and RIIIDa, and form extensive interactions with
both domains (Figure 3.36), suggesting a possible basis for the local distortion
in the dsRNA structure. Similar observations were made in the high-resolution
cryo-EM structure of Arabidopsis DCL-3 (AtDCL3), in complex with a pre-siRNA
(Wang et al., 2021) (Figure 3.37), implying that the conformational distortion in
dsRNA helix is not specific to pre-let-7a-1 sequence, but induced by protein-RNA
interactions unique to a certain group of Dicer homologs.

In addition to the dsRBD, the RIIIDa/b domains wrap around the RNA,
forming extensive electrostatic interactions with the upper stem region of the
pre-miRNA. Besides the contacts at the catalytic core of the DICER cleavage
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Figure 3.37 Superposition of the dsRBDs of hDICER and Arabidopsis DCL3
(AtDCL3) (PDB: 7VG2).

sites, the RIIIDa, situated on the opposite face to the dsRBD-binding site, makes
tight interactions with the RNA in the minor groove (Figure 3.36). We observed
that the –-helix 2 and 3 of RIIIDa potentially interact with the ribose sugars and
internucleotide phosphate groups (Figure 3.38, left panel). The symmetrically
located –-helix 2 and 3 in the RIIIDb may also participate in dsRNA recognition
(Figure 3.38, right panel).

Interacting with the distorted dsRNA, the dsRBD adopts a canonical –———–

topology to cover the dsRNA across the minor and major grooves (Figure 3.36).
Basically, the reoriented dsRBD interacts with RNA backbone via its mostly
basic patch on the surface (Figure 3.39). For instance, in the major groove, the
positively charged residues contact with RNA backbone near 19C (Figure 3.40,
3.41). In the minor groove, however, we observed a sequence-specific interaction
between the dsRBD and the RNA. The –-helix 1 of the dsRBD is situated in
the vicinity of the GYM motif (Figure 3.36, 3.42), the cis-acting element that
significantly improves the fidelity of processing. An arginine (R1855) in the –-helix
1 protrudes into the minor groove and may form hydrogen bonds with the C–C
mismatch (Figure 3.42). This is consistent with the observation that mutating this
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Figure 3.38 Protein-RNA interactions in the interface between RIIID domains
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Figure 3.39 Surface charge of the dsRBD, with dsRNA-dsRBD interface in
dicing and pre-dicing states (PDB: 5ZAL).
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Figure 3.40 Non-sequence-specific interactions between dsRBD and the RNA
phosphate backbone.
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Figure 3.41 Cryo-EM map and model of the hDICER dsRBD with dsRNA.
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Figure 3.42 Sequence-specific interactions between dsRBD and the C–C mismatch
of the GYM motif.

arginine residue abolishes the e�ect exerted by the mismatch. Thus, in contrast
to the previous papers claiming the auxiliary function of the hDICER dsRBD
(Ma et al., 2012; Zhang et al., 2004), our structure provides the structural basis
for its predominant role in cleavage site selection, overriding the e�ects of 5�
and 3� counting mechanisms. Taken altogether, the dsRBD and the RIIIDa/b
domains anchor the upper region of the pre-miRNA and induce local distortion of
the RNA, facilitating the recognition of not only the RNA backbone but also the
GYM motif.

3.2.4 PAZ helix reorients to accommodate RNA in a dicing state

An earlier structural study on a hDICER fragment containing the platform-PAZ
domain showed a knob-like protrusion with a small alpha helical segment within
the PAZ domain, which is specifically found in DICER (Tian et al., 2014). This
‘PAZ helix’ (also known as hDICER-specific helix) separates the 5� and 3� pockets
and orients the bound RNA away from the surface of hDICER, which is thought to
occur in product-release state and/or pre-dicing state (Tian et al., 2014) (Figure
3.43, middle panel). This helix, however, may be dynamic given that an additional
‘melted’ conformation of the PAZ helix was observed in the platform-PAZ-small
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Figure 3.43 Superposition of hDICER PAZ-platform domain in the cryo-EM
structure and in the crystal structure (PDB: 4NHA, grey).

RNA duplex complex (Tian et al., 2014) (Figure 3.43, right panel). Indeed, we
found a large conformational change in the PAZ helix resulting in a tilt angle
of ~54° from its position in the pre-dicing state (Figure 3.44). The PAZ helix
is consequently located near the lower stem region of pre-miRNA (Figure 3.44).
Superposition with the structure in a pre-dicing state showed that the pre-miRNA
moves ~30° towards the catalytic valley during the transition to a dicing state
(Figure 3.45). Taken together, the spatial rearrangement of the PAZ helix is
necessary to allow the pre-miRNA to be aligned parallel to the catalytic valley
for subsequent cleavage.

In addition, this conformational change puts the short stretch of positively
charged amino acids (1019KRKAK1023) in the vicinity of the negatively charged
backbone of the 3p strand (Figure 3.46). To assess the significance of the observed
interaction between the PAZ helix and the dsRNA, we introduced mutations by
replacing the positively charged residues with five glutamate (‘E5’) or alanine
(‘A5’) residues, or by deleting the helix (‘�PAZh’) (Figure 3.47). The PAZ helix
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Figure 3.44 Conformational change of the PAZ helix between a dicing state and
a pre-dicing state.
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Figure 3.45 Changes in the position of the pre-miRNA in a dicing state and a
pre-dicing state.
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Figure 3.46 Electrostatic interactions between the positively charged PAZ helix
and the negatively charged RNA phosphate backbone.

mutant proteins were purified (Figure 3.2) and incubated with pre-let-7a-1 to
quantitatively measure their e�ects on the cleavage e�ciency in vitro. The mutant
proteins showed reduced cleavage e�ciencies, regardless of the 3� overhang lengths
(Figure 3.47–3.49). PAZ helixE5, showed a more severe e�ect compared to PAZ
helixA5, presumably due to the electrostatic repulsive forces created between the
PAZ helix and the RNA backbone. Intriguingly, the deletion of the PAZ helix led
to a modest but significant reduction in cleavage e�ciency. This result, with the
structural observations, implies that the PAZ helix may have an autoinhibitory
e�ect on the transition to a dicing state besides its contribution to RNA binding
a�nity, once the dicing state is achieved.

We next sought to investigate the role of the PAZ helix in miRNA biogenesis
by transiently expressing the mutant DICER in DICER KO HCT116 cells, and
then performed AQ-seq for accurate quantification of miRNAs (Figure 3.50) (Kim
et al., 2019).3 The mutations resulted in a global reduction in the abundance of
miRNAs (Figure 3.50), corroborating the in vitro results. Our data collectively

3
AQ-seq analysis was done by Dr. Haedong Kim.
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Figure 3.47 In vitro processing of pre-let-7a-1 with a 2-nt 3� overhang. Points
and bars indicate mean ± SD (n = 2). Relative cleavage was calculated by
quantifying the band intensity (1≠uncleaved/input).
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Figure 3.48 Time-course in vitro processing of pre-let-7a-1 with a 2-nt 3�
overhang.

suggest that the conformational change in the PAZ helix and its subsequent
interaction with the RNA backbone are important for pre-miRNA processing.

3.2.5 Architecture of the 5� and 3� end pockets

Consistent with the idea that hDICER recognizes the pre-miRNA termini for
accurate processing, our structure illustrates both 5� and 3� ends stably anchored
within the platform and PAZ domains, respectively (Figure 3.51–3.53). In the 3�
pocket, the last phosphodiester linkage makes close interactions with a cluster
of four conserved tyrosine residues (Y936, Y971, Y972, Y976) and an arginine
residue (R937) through potential hydrogen bonding, which is in line with previous
literatures (Tian et al., 2014; Liu et al., 2018) (Figure 3.52).

The 5� end of pre-miRNA is in a unique kinked conformation (Figure 3.51),
which is very di�erent from the previous structures of hDICER with small RNA
duplexes or in the pre-dicing state or the other Dicer homologs in the dicing state
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3� overhang. Points and bars indicate mean ± SD (n = 2). Relative cleavage was
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pockets in the platform and PAZ domains, respectively.
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Figure 3.52 Pre-miRNA end recognition by the 5� and 3� pocket via hydrogen
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Figure 3.53 Cryo-EM map of the 5� pocket (left) and 3� pocket (right).
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Figure 3.54 Superposition of hDICER-pre-let-7a-1GY M and Platform-PAZ-
Connector Helix (Tian et al., 2014).

(Wang et al., 2021; Tian et al., 2014; Liu et al., 2018; Nagano et al., 2014) (Figure
3.54–3.56). The conformation in our structure allows the 5� monophosphate to
be inserted into the 5� pocket and possibly interact via hydrogen bonds with
the main chain amide and the amine group of two arginine residues, R996 and
R1003, respectively (Figure 3.52, 3.53). In addition, the 5� base unexpectedly
flips out to interact with a cluster of three arginine residues—R788, R790, and
R821—that make hydrogen bonds with the base (Figure 3.52). These results
collectively suggest that the 3� pocket is conserved while the 5� pocket may
have emerged more recently to meet the needs of individual Dicer homologs with
di�erent substrate types.

3.2.6 5� end recognition is disrupted in cancer-associated DICER
mutations

The ‘5� counting’ is important for miRNA biogenesis because it ensures accurate
and e�cient processing regardless of the frequent 3� end trimming and tailing
in cells (Park et al., 2011). Interestingly, three amino acids in the 5� pocket are
found to be mutated in diverse cancer types according to the cancer databases
including The Cancer Genome Atlas (TCGA): R790Q (in colon adenocarcinoma),
R821H (in colorectal adenocarcinoma), and R1003Q (in uterine endometrioid
carcinoma and rectal adenocarcinoma) (Cerami et al., 2012; Gao et al., 2013).
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Figure 3.57 In vitro processing of duplex RNAs with either a 2-nt overhang and
a varying sequence at the 5� end. The nucleotide in the 3p strand opposite to the
varying sequence is A.
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Figure 3.58 In vitro processing of duplex RNAs with either a 3-nt overhang and
a varying sequence at the 5� end. The nucleotide in the 3p strand opposite to the
varying sequence is A.

In vitro, the R821H and R1003Q mutants show defects in cleavage site selection;
they produced multiple products (21–23 nt) from dsRNA with a canonical 2-nt
3� overhang (Figure 3.57). Note that wild-type hDICER cleaves this substrate
homogeneously because the 5� and 3� counting mechanisms corroborate to ensure
the generation of a 22-nt product (Figure 3.57). To di�erentiate the 5� counting
and 3� counting mechanisms more clearly, we next used dsRNA with a 3-nt
3� overhang (Figure 3.58, lanes 9–16). In this assay, all three mutants showed
significant reduction of the 5� counting capability, validating our structural
observation that these residues are in close contact with the 5� end of RNA. The
R821H mutation as well as two other mutations on R821 (R821E and R821A)
resulted in a complete loss of 5� counting (Figure 3.58, 3.59).
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Figure 3.60 The e�ect of cancer-associated 5� pocket mutations in cleavage
accuracy. Changes in cleavage accuracy was estimated with the fold change of
the proportion of the major 5�-isomiR. For a given miRNA, the most abundant
5�-isomiR was identified in the WT sample. Grey, unannotated strand.

To interrogate the impact on miRNA biogenesis, we performed rescue exper-
iments with wild-type and mutant hDICER proteins (Figure 3.60, 3.61).4 We
observed dramatic alterations in the DICER cleavage sites of many miRNAs
(Figure 3.60, 3.61) as indicated by the 5� end of 3p miRNAs, which is determined
at the DICER processing step (Figure 3.62). The DROSHA processing sites (5�
ends of 5p mature miRNAs) were largely una�ected, as expected. The most
notable examples are let-7-3p and miR-324-3p which were previously shown to be
dependent on the recognition by the 5� pocket (Figure 3.60, 3.61) (Park et al.,
2011; Kim et al., 2020). Other 3p miRNAs (such as miR-29a, miR-92a, miR-140,
miR-142, and miR-203a) also showed substantial changes in the processing sites
(Figure 3.60, 3.61), which alter the miRNA isoform landscape and their target
repertoire.

Moreover, abundance of many miRNAs was decreased by the mutations
(Figure 3.63). Notably, the mutations led to a significant reduction in the levels
of tumor-suppressive let-7 family members—let-7a, let-7d, let-7e, let-7f, let-7i,
and miR-98—which were shown to be downregulated in various cancers (Figure

4
AQ-seq analysis was done by Dr. Haedong Kim.

110



Abundance in WT (log2RPM)

3

2

0

1

5 10 15

R821A / WT

3p
5p

miR-2 3a-3p
miR- 2-3p

miR-32 -3p
et- -3p

miR- -3p

miR- 2a-3p
miR-2 a-3p

miR- -3p
miR-3 a-3p
et- i-3p

miR- -3p

Fo
ld

 c
ha

ng
e 

of
 th

e
pr

op
or

tio
n 

o
 th

e 
m

a
or

 5
′ e

n
o

 m
at

ur
e 

m
iR

N
A 

(o
g 2)

5 10 15
3

2

0

1

R821E / WT

3p
5p

miR-32 -3p
et- i-3pet- -3p

miR- -3p miR-2 3a-3p

miR-2 a-3p
miR- 2a-3p

miR- -3p

miR- -3p

Abundance in WT (log2RPM)

Figure 3.61 The e�ect of 5� pocket mutations in cleavage accuracy. Changes in
cleavage accuracy was estimated with the fold change of the proportion of the
major 5�-isomiR. For a given miRNA, the most abundant 5�-isomiR was identified
in the WT sample. Grey, unannotated strand.

5p 3p

5′ 3′

Determined by
5′ en  o  3p  DICER

5′ en  o  5p  DR A
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Figure 3.63 Abundance change of endogenous miRNAs. Spike-ins were used for
normalization.

3.63) (Takamizawa et al., 2004; Sampson et al., 2007; Johnson et al., 2005; Frank
et al., 2010). Our results indicate the significance of the 5� end recognition and
implicates the oncogenic potential of the 5� pocket mutations.

3.2.7 Identity of the 5� end base a�ects the 5� counting mecha-
nism

In the 5� pocket, we noticed that R821 potentially forms hydrogen bonds with
the O2 carbonyl of the 5� terminal uracil (Figure 3.52), hinting at a previously
unknown base specificity. To examine the base specificity, we modeled other
bases—cytosine, adenine, and guanine—into the corresponding position within
the 5� pocket structure (Figure 3.64). The guanine, unlike other bases, has a 2-
amino group that sterically overlaps with the guanidino group of R821, prompting
us to experimentally test the e�ect of the 5� terminal sequence on the 5� counting
rule.

In in vitro processing assays (Figure 3.58, lanes 1–4), dsRNAs with 5�-U,
5�-C, and 5�-A base are cleaved predominantly by the 5� counting mechanism,
while the substrate with 5�-G is cleaved mainly by the 3� counting mechanism .
Even in the presence of a 2-nt 3� overhang, the dsRNA substrate with 5�-G was
imprecisely cleaved, yielding 21–22 nt products (Figure 3.57, lanes 1–4), which
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Figure 3.64 Predicted structural impact of the 5� end base substitutions on the
interaction with the 5� pocket.

is consistent with earlier observation that defects in the 5� counting mechanism
give rise to multiple products (Park et al., 2011). Of note, these observations are
not explained by the previous notion that pre-miRNAs with high thermodynamic
stability at the 5� terminus do not follow the 5� counting rule, because among our
substrates, only the dsRNA starting with 5�-U forms a base-pair at the terminus.
Taken together, 5�-G may be ine�ciently inserted to the 5� pocket compared to
other bases, compromising the 5�-end recognition.

To investigate whether R821 is involved in the recognition of the 5� end, we
performed the same in vitro processing assays with R821 mutants (Figure 3.2).
The R821 mutants completely lost the 5� counting capability, and were no longer
influenced by the 5� terminal base regardless of the 3� overhang length (Figure
3.57–3.59). Thus, R821 plays a key role in recognizing the 5� terminal sequence,
disfavoring 5�-G.

To further inquire about the 5� terminal base identity, we examined the
sequences of human pre-miRNAs. We found a significant enrichment of uridine
and adenine—bases known to facilitate AGO loading (Figure 3.65) (Frank et al.,
2010; Suzuki et al., 2015). Intriguingly, we found a marked depletion of guanine
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Figure 3.65 The nucleotide composition of human pre-miRNAs. The proportion
of each base at the indicated position relative to the 5� end of pre-miRNAs is
shown. miRNAs whose 5p is registered in miRGeneDB (n = 502) were included
in this analysis.

compared to cytosine at the 5� end relative to other neighboring positions (Figure
3.65), despite the fact that both bases are equally disfavored by the AGO protein.
This suggests an evolutionary pressure against the 5�-G in natural pre-miRNAs.

Finally, by examining miRNAs that are significantly a�ected by the R821
mutations (Figure 3.60, 3.61, 3.66), we found that the G base is completely
depleted at the 5� end of a�ected miRNAs, in contrast to those una�ected (Figure
3.67). This is in line with the structural prediction (Figure 3.64) that U, C, or A
can be inserted into the 5� pocket while G is incompatible with R821 in the 5�
pocket. Thus, owing to the structural restriction posed by R821, hDICER has a
nucleotide preference for H (any base but G) at the 5� terminal position for the
recognition of the 5� end.

114



0 2

let-7d-3p

3 2 0

R 2 A 2
R 2 A 
R 2 E 2
R 2 E 

 2
 

miR-324-3p

0 2

miR-30a-3p

2 0

miR-29a-3p

0 2

miR-98-3p

25%
50%
75%

Spike-in-norm
alized

a
un

ance (og
2 R
PM

)

0

5

0

5

20

0 2

miR- 3 -3p

0 2

miR-203a-3p

0 2

miR- 2-3p

0 2

miR- -3p

R 2 A 2
R 2 A 
R 2 E 2
R 2 E 

 2
 

0 2

miR-92a-3p

2 0

miR- -3p

Po ition o  the 5′ en  o  miRNA re ative to the annotate  5′ en  (5′-to-3′)

0 2

let-7i-3p

R 2  2
R 2  

 2
 

R 2  2
R 2  

 2
 

et
 

et
 2

et
 

et
 2

Figure 3.66 Examples of altered processing sites observed in the rescue experi-
ments. Note that the DICER cleavage sites can be inferred from the 5� end of 3p
miRNAs. miRNA isoforms beginning at the indicated position are plotted with
circles, with the size of the circle reflecting the proportion of the cleavage site
usage at the given position.

115



1000 20 40 60 80
Proportion (%)

R
82

1E

Affected
by mutation
UnaffectedR

82
1A

Affected
by mutation
Unaffected

GCAU

38 31 31
44 34 14 8

42 33 25
45 31 15 9

Affected
by mutation
UnaffectedR

82
1H

Figure 3.67 The 5�-terminal base identity of pre-miRNAs. Compare the miRNA
groups whose major 5�-isomiRs were a�ected by the R821 mutation with those
that are una�ected. Note that G is not found among the pre-miRNAs a�ected by
R821 mutations. A�ected miRNAs (p < 0.05, log2 fold change > 0.6 or < ≠0.6);
Una�ected miRNAs (p > 0.05).

3.3 Discussion

We here captured the cryo-EM structure of hDICER-pre-let-7a-1GY M in a cleavage-
competent state. Our structure reveals how hDICER can achieve its substrate
specificity via extensive contacts (Figure 3.68). Most notably, we discover the
frayed 5� terminal nucleotide other than G (‘5�-H’) is inserted into the 5� pocket
in the platform domain. Thermodynamically unstable 5�-H contributes to e�cient
and accurate processing. We also find that the dsRBD not only interacts with
the RNA backbone but also actively engages in a sequence-specific interaction by
recognizing the mismatch of the GYM motif. The dsRBD, via the flexible linker,
may scan the upper stem of dsRNA, locate the motif, and facilitate the cleavage
2-nt away from the mismatch.

Combined with the apo and pre-dicing states (Liu et al., 2018), our dicing-
state structure completes the structural landscape of the pre-miRNA processing
cycle (Figure 3.68 for a cartoon model). In the apo state, hDICER exhibits a
compact architecture in which the helicase domain, the PAZ helix, and the dsRBD
limit the access of RNA to the catalytic valley. During the transition to pre-dicing
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Figure 3.68 Model of the structural transition and substrate recognition of
hDICER during the pre-miRNA processing cycle. In the apo state (this study,
PDB: 5ZAK16), the N-terminal helicase domain, the PAZ helix, and the C-terminal
dsRBD are in confor mations that block the entrance of the pre-miRNA substrate.
In the pre-dicing state (PDB: 5ZAL), the 3� end of the pre-miRNA is stably
inserted into the 3� pocket and the terminal loop contacts the helicase domain
while no major conformational changes occur, limiting the access of RNA to the
catalytic center. In transition to the dicing state, three major conformational
changes occur, with the helicase domain in highly flexible conformations, the PAZ
helix reorienting to allow a simultaneous recognition of the 5� and 3� termini,
and the dsRBD swinging out to accommodate pre-miRNA in the catalytic center.
After cleavage, the product (miRNA duplex) is released and the enzyme returns
to the original closed conformation. Note that the cis-elements are recognized by
the specific domains of hDICER to allow RNA binding and dictate cleavage sites:
the GYM motif by the dsRBD and RIIIDa, the thermo dynamically unstable H
by the 5� pocket, and the 2-nt 3� overhang by the 3� pocket.
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state, the protein conformation remains largely unchanged, creating only limited
protein-RNA contacts through the 3� pocket, the outer surface of the dsRBD, and
the helicase domain (Liu et al., 2018). Next, the transition from the pre-dicing to
dicing state induces major changes in the helicase domain, the PAZ helix, and the
dsRBD to fully dock and poise pre-miRNA for cleavage within the catalytic center.
After cleavage, the product is subsequently released from DICER, and transferred
to AGO. Understanding of the AGO loading step and the role of TRBP in the
process warrants further structural investigation.

Comparison between Dicer homologs provide valuable insights into the mecha-
nism and evolution of eukaryotic small RNA pathways. Some primitive homologs
such as Giardia Dicer do not have the helicase, the PAZ helix, or the dsRBD,
implying that these domains may have emerged relatively recently for regulatory
purposes. The helicase domains of Dicer homologs seem to be particularly diverse
even among higher eukaryotes. Our structure shows that the helicase domain
of hDICER becomes largely flexible in a dicing state, potentially serving as the
regulatory barrier that contributes to substrate specificity. The helicase domain is
also known to interact with TRBP, but the mutations or deletions of the helicase
domain do not impair or even enhance the dicing activity, suggesting an autoin-
hibitory function (Ma et al., 2008; Soifer et al., 2008). Unlike Dicer homologs
processively cleaving long dsRNAs using an ATP-dependent translocation by
the helicase domain, such as Drosophila Dicer-2 and plant Dicer-like proteins
(Zamore et al., 2000; Nykanen et al., 2001) animal Dicer whose main substrates
are short hairpin-shaped pre-miRNAs, do not require ATP and cannot perform
processive dicing on long dsRNAs (Zhang et al., 2002; Feng et al., 2012) (Figure
3.69). Based on sequence similarity, vertebrate Dicer proteins form a separate
group from the other Dicer homologs in the miRNA pathway (such as fly Dcr-1)
as well as those in the long dsRNA pathway (including fly Dcr-2), suggesting
their unique properties (Figure 3.70). hDICER prefers hairpins with a flexible
terminal loop but it can also process long dsRNAs unlike fly Dcr-1 which is
highly specialized in pre-miRNA processing (Tsutsumi et al., 2011; Gu et al.,
2012; Nguyen et al., 2022; Zapletal et al., 2022). Together with these earlier
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Figure 3.69 Comparison of the substrate RNA movement during DICER process-
ing between two small RNA pathways. In the miRNA pathway, a hairpin-shaped
small RNA (pre-miRNA) is bound to DICER by the helicase and PAZ domains.
For cleavage, the helicase domain becomes flexible to accomodate the pre-miRNA
into the catalytic center. In contrast, in the siRNA pathway, a long dsRNA
comes into DICER by passing through the helicase domain. The ATP-dependent
translocation by the helicase domain leads to processive cleavage of long dsRNAs.
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Figure 3.70 A phylogenetic tree of Dicer homologs. The scale bar indicates the
length for the indicated frequency of amino acid variation.

observations, our current structure suggests that the helicase domain of hDICER
may contribute to processing by interacting with a single-stranded RNA region at
the initial binding step, but is not required for the catalytic step and needs to
move flexibly to transit to an open conformation. Also supporting this evidence
is the recent structure of oocyte-specific mouse �HEL1 Dicer isoform in a dicing
state, whose helicase and DUF283 domains were di�cult to be modeled due to
flexibility (Zapletal et al., 2022). Recent structures of Drosophila Dcr-1 and its
partner Loqs-PB (Jouravleva et al., 2022) shows an overall similar configuration
to that of hDICER, but the helicase part seems to be more rigid and it is unclear
if there is any base-specificity in RNA recognition. Together, these structures
suggest conserved yet unique features of vertebrate Dicer proteins which have
evolved to act mainly in the miRNA pathway while still maintaining a role in the
siRNA pathway.

Collectively, our work on hDICER will provide practical benefits to the
rational design of shRNAs and Dicer substrate RNAs (DsiRNAs) to improve
RNA interference (Paddison et al., 2002; Amarzguioui et al., 2006; Kim et al.,
2005). Moreover, our structure o�ers a molecular framework for understanding
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of DICER-related diseases in humans. Based on the structure, we identified
hDICER mutations in the 5� pocket, which had not been characterized previously.
These mutations, R821H and R1003Q, reduce well-known tumor suppressive
miRNAs (e.g. let-7 members, miR-324, and miR-142). Given that various DICER
mutations have been described in cancers and in a genetic disorder called DICER1
syndrome (Hill et al., 2009; Witkowski et al., 2013; Wu et al., 2013; Seki et al.,
2014; Rakheja et al., 2014; Torrezan et al., 2014), functional analyses based on the
structure will help us understand how the mutations in various parts of hDICER
di�erentially a�ect the miRNA population and shape the transcriptome in favor
of tumorigenesis.

3.4 Methods

Plasmid construction

The DNA encoding human DICER (RefSeq NM_030621) was PCR-amplified by a
human cDNA library and subcloned into either pX vector (for protein purification)
containing N-terminal His10-eYFP-SUMOstar-Strep or pCK vector (for ectopic
expression in DICER KO cells) with its original CMV promoter replaced with
PGK promoter. Site-directed mutagenesis was performed to introduce mutations
for functional studies.

Cell culture, protein expression and purification

Suspension HEK293E cells were subcultured in a 37°C shaking incubator with hu-
midified atmosphere of 8% CO2, in Dulbecco’s modified Eagle’s medium (DMEM,
WELEGENE) supplemented with 5% fetal bovine serum (FBS, WELEGENE).
For a half-liter culture, 0.15 mg of the plasmid encoding the full-length human
DICER, N-terminally tagged with His10-eYFP-SUMOstar-Strep tag, was tran-
siently transfected using 1.5 mg of linear polyethylenimine (PEI) and 1% DMSO.
After transfection, the cells were incubated at 33°C.

The entire protein purification steps were carried out at 4°C. The cells were
collected after 72 hours, washed with cold PBS, and resuspended in bu�er A (100
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mM Tris-HCl (pH 8.0), 150 mM NaCl, 10% glycerol, 2 mM "-mercaptoethanol
(BME), 0.1 mM phenylmethylsulfonyl fluoride (PMSF)) supplemented with EDTA-
free Pierce Protease Inhibitor Mini Tablets (Thermo Fisher Scientific), 20 µg
mL≠1 micrococcal nuclease, and 5 mM CaCl2. Cells were subsequently sonicated
and the lysate was clarified by centrifugation at 35,000 g for an hour. Clarified
lysate was loaded onto a column packed with Ni-NTA Superflow resin (Qiagen)
that was pre-equilibrated with bu�er A. The resin with the bound protein was
washed with 5 column volumes of bu�er A supplemented with 40 mM imidazole.
The protein was eluted with bu�er A supplemented with 200 mM imidazole and
incubated with SUMOstar protease (LifeSensors) at 4°C to cleave the N-terminal
tag. The cleavage was confirmed by SDS-PAGE. The protein was loaded onto
a column packed with Strep-Tactin Superflow (IBA Lifesciences) resin that was
pre-equilibrated with bu�er A. The resin was then washed with 5 column volumes
of bu�er A with 2 mM EDTA and subsequently with 5 column volumes of bu�er
A without EDTA. The protein was eluted with bu�er A with 50 mM biotin. To
remove uncleaved fusion protein, the eluate was loaded onto Ni-NTA Superflow
resin (Qiagen). The unbound protein was concentrated in a 100 K molecular
weight cut o� Amicon Ultra-15 Centrifugal Filter Unit (Merck). The concentrated
protein was subjected to size-exclusion chromatography on a Superose 6 Increase
5/150 GL (GE Healthcare) pre-equilibrated with 50 mM Tris (pH 8.0), 100 mM
NaCl, 0.5 mM TCEP. For the apo structure, the protein was concentrated to
~1 mg ml≠1, snap frozen in liquid nitrogen, and stored at ≠80°C. The same
purification method was used for mutant DICER proteins.

In vitro reconstitution of DICER and pre-miRNA complex

Synthetic pre-let-7a-1GY M (Integrated DNA Technologies) (5�-UGAGGUAGUAG
GUUGUAUCGCUUUAGGGUCACACCCACCACUGGGAGAUAGCCAUACAA
UCUACUGUCUUUCU- 3�) was resuspended in 20 mM Tris (pH 7.5), 80 mM
NaCl, 1 mM EDTA. The RNA was heated at 80°C for 5 min and annealed by
slowly decreasing the temperature to 4°C at a rate of ≠1°C min≠1, Complex
formation was carried out by mixing DICER and RNA at final concentrations
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of 15 µM and 45 µM, respectively, in a bu�er containing 50 mM Tris-HCl (pH
8.0), 100 mM NaCl, 0.5 mM TCEP, 3 mM CaCl2. The mixture was incubated on
ice for 30 min and loaded onto a Superose 6 Increase 5/150 GL (GE Healthcare)
pre-equilibrated with 50 mM Tris (pH 8.0), 100 mM NaCl, 0.5 mM TCEP, 2 mM
CaCl2 The fractions containing the complex were pooled, snap frozen in liquid
nitrogen, and stored at ≠80°C. The concentration of the complex was evaluated
on a SDS-PAGE gel and 15% urea-polyacrylamide gel.

Cryo-EM specimen preparation and data collection

Apo-hDICER: An aliquot (2.5 µl) of ~1.6 µM apo-hDICER sample was applied
to glow discharged 300-mesh UltraAuFoil R1.2/1.3 holey-gold grids (Quantifoil),
blotted for 2s with blot force 5 at 15 °C in 100% humidity and vitrified using
Vitrobot Mark IV (Thermo Fisher Scientific) at Center for Macromolecular and
Cell imaging (CMCI) in Seoul National University (SNU). Total 5,416 movies
(1,390 movies at 1.1 Å/pixel and 4,026 movies at 0.87 Å/pixel) were collected in
electron-event representation (EER) mode with a defocus range of ≠1.0 to ≠2.75
µm on a 200 kV Glacios (Thermo Fisher Scientific, CMCI in SNU) equipped
with a Falcon 4 direct electron camera. The movies at 0.87 Å/pixel were then
resampled into 1.1 Å/pixel and combined for further process.

hDICER-pre-let-7a-1GY M : An aliquot (2.5 µl) of ~1.0 µM DICER-pre-let-
7a-1GY M complex sample was applied to glow-discharged 300-mesh UltraAuFoil
R1.2/1.3 holey-gold grids, blotted for 2s with blot force 5 at 15 °C in 100%
humidity and vitrified using Vitrobot Mark IV in SNU CMCI. A total of 5,964
micrographs were collected at a magnification of ◊105,000 (corresponding to a
calibrated pixel size of 0.849 Å) and a defocus range of ≠0.9 to ≠2.2 µm on a
300kV Titan Krios (Thermo Fisher Scientific, Institute of Basic Science, Daejeon,
Korea) equipped with a Gatan K3 BioQuantum (Gatan) detector.

hDICER-pre-let-7a-1GY M + Mg2+: ~1.0 µM DICER-pre-let-7a-1GY M com-
plex was incubated with MgCl2 added at a final concentration of 2 mM for >10
min at room temperature. The cryo grid was prepared as described above for
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hDICER-pre-let-7a-1GY M . Total 2,882 movies at at 1.1 Å/pixel were collected in
electron-event representation (EER) mode with a defocus range of ≠1.1 to ≠2.3
µm on a 200 kV Glacios (Thermo Fisher Scientific, CMCI in SNU) equipped with
a Falcon 4 direct electron camera.

Data processing and 3D refinement

All image processing was done in cryoSPARC v3.2 (Punjani et al., 2017). Com-
puting resources were utilized in CMCI at SNU.

Apo-hDICER: Movies were aligned in 5 x 5 patches in MotionCor2 (Zheng
et al., 2017), and CTF parameters were estimated with GCTF (Zhang, 2016)
Utilizing template-based autopicking in cryoSPARC, raw particles were initially
picked and extracted. After 2D classification and removing bad particles, 128,635
particles were subjected to 3D heterogeneous refinement using ab initio model
in cryoSPARC. After further 3D classification, global CTF refinements and non-
uniform refinement were performed using 128,635 particles yielding a 4.04 Å map
of apo-hDICER based on the gold-standard Fourier shell correlation (FSC) at
0.143.

hDICER-pre-let-7a-1GY M : Motion correction and CTF estimation was per-
formed in the same process of apo-hDICER. For further automated particle-picking
process, an initial particle template was roughly generated based on manually
picked 189 particles. Using 3,762,043 particles from an initial template-based
picking method, 2D classification and 2D selection was performed. After excluding
bad particles and a heterogeneous portion especially containing partial flexible
helicase domains, 1,386,301 particles were used for ab initio modeling and 3D
classification yielding a homogeneous particle population. Using non-uniform
refinement and local refinement, hDICERpre-let-7a-1 was reconstructed at a
resolution of 3.04 Å map based on the gold-standard FSC at 0.143.

hDICER-pre-let-7a-1GY M + Mg2+: Motion correction and CTF estimation
was performed in the same process of hDICER-pre-let-7a-1GY M . An initial parti-
cle template was roughly generated based on manually picked 87 particles, and
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2,857,379 particles were automatedly picked by Blob tuner with blob diameter of
30 Å to 300 Å. For further automated particle-picking process, an initial particle
template was roughly generated based on the manually picked 189 particles. After
excluding bad particles and a heterogeneous portion especially containing partial
flexible helicase domains through 2D classification and 2D selection, 279,763 parti-
cles were used for ab initio modeling and 3D classification yielding a homogeneous
particle population. Further subclassification was performed by Hetero refinement
based on 3D templates generated with structural models of apo-like and dicing
state-like DICER in this study.

Model building

Apo-hDICER: Model-building started from an initial protein model from the
previously reported hDICER-TRBP structure (PDB: 5ZAK) (Liu et al., 2018).
The initial model was fitted into the density map by Dock in map tool from
Phenix v1.18.1 and manually refined in Coot (Liebschner et al., 2019; Emsley
et al., 2010.) Then, the model was refined on the Namdinator server using MDFF
and Phenix real space refinement default options (Kidmose et al., 2019). After
a few rounds, the model was further corrected using Phenix and Coot (Afonine
et al., 2018).

hDICER-pre-let-7a-1GY M : An initial protein model from our apo-hDICER
structure and an initial pre-let-7a-1 model from previously reported hDICER struc-
ture (PDB: 5ZAL) (Liu et al., 2018) were rigidly fit into the density by rigid body
fitting with Fit in Map tool from Chimera v1.14. This fitted model was inspected
and manually adjusted in Coot. Further refined with phenix.real_space_refine in
Phenix, ISOLDE v1.1.0.

All models were validated by phenix.validation_cryoem (Afonine et al., 2018).
All figures in the manuscripts were illustrated by ChimeraX (Goddard et al., 2018)
and PyMol (Schrödinger, LCC). For the residual validation analysis, Q-scores for
each residue were derived from MapQ of Segger tool (Pintilie et al., 2020) plugged
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in Chimera v1.15. B-factor values were derived from real space refinement in
Phenix ISOLDE v1.1.0.

in vitro DICER processing assay

All of the RNA oligos described below were chemically synthesized (Integrated
DNA Technologies) and gel-purified before use. To prepare pre-miRNA substrates
with 1-nt, 2-nt and 3-nt 3� overhang lengths, RNA oligos (5�-UGAGGUAGUAGG
UUGUAUAGUUUUAGGGUCACACCCACCACUGGGAGAUAACUAUACAAU
CUACUGUCUUUC(U)(U)-3�) were radiolabeled at their 5� ends with “-ATP
by T4 polynucleotide kinase (Takara). The RNA oligos were then purified
using Oligo Clean & Concentrator (Zymo Research) according to the manufac-
turer’s instructions. The eluted RNAs were annealed in a bu�er containing
20 mM Tris (pH 7.5), 80 mM NaCl, 1 mM EDTA, by slowly decreasing the
temperature to 4°C at a rate of ≠1°C min≠1. To prepare pre-miRNA-like du-
plex RNA substrates, RNA oligos of the 5�-arm with varying 5� terminal base
(5�-(N)GAGGUAGUAGGUUGUAAGUAGAAAGGACA AAGAG-3�) were ra-
diolabeled, purified, and annealed to the complementary RNA oligos of the
3�-arm (5�-CUCUUUGUCCAAACUACUUACAACCUACUACCUUAUU(U)-3�
as described above.

The RNA substrates were cleaved with the purified DICER proteins added at a
final concentration of 0.5 µM, in a bu�er containing 50 mM Tris (pH 7.5), 100 mM
NaCl, 0.5 mM TCEP, 2 mM MgCl2 5 µg ml≠1 yeast RNA. After incubation at 37°C,
the reaction was halted by addition of an equivalent volume of 2X RNA Loading
Dye (NEB) supplemented with 0.5 mg ml≠1 proteinase K (Roche). The RNA was
then resolved on a 15% urea-polyacrylamide gel, along with 5�-end-radiolabeled
synthetic miRNAs and Decade Markers System (Ambion). The product was
visualized by phosphorimaging with Typhoon FLA 7000 (GE Healthcare).

DICER rescue experiments and data analysis

DICER KO HCT116 was cultured in McCoy’s 5A media (WELGENE), supple-
mented with 10% FBS (WELGENE) (Kim et al., 2016). Cells were authenticated
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by short tandem repeat profiling (ATCC). To ectopically express DICER proteins,
the cells were transiently transfected with DICER-expressing vectors using Fu-
GENE HD (Promega). The cells were treated with TRIzol (Thermo Fisher) 24/48
hrs post-transfection to extract total RNAs. For library construction, AQ-seq was
performed following the protocol (Kim et al., 2019), except that 100 µg of total
RNAs were used and that NEBNext Ultra II Q5 Master Mix (NEB) was used to
amplify the cDNAs. The libraries were sequenced on the NovaSeq 6000 platform.

Data was preprocessed as previously described (Kim et al., 2019). Briefly,
the 3� adapter with 5� 4-nt degenerate sequences was removed using cutadapt75
and FASTX-Toolkit (http://hannonlab.cshl. edu/fastx toolkit/). Next, short,
low-quality, and artifact reads were filtered out using FASTX-Toolkit. The output
reads were mapped to the spike-in reference first and then the unmapped reads
were aligned to the human genome (hg38) using BWA (Li & Durbin, 2009b).
miRNA annotations corresponding to each alignment were retrieved with miRBase
release 21 using the intersect tool in BEDTools (Kozomara & Gri�ths-Jones,
2014b).
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 #1 apo-hDICER 

(EMDB -33490) 
(PDB 7XW3) 

#2 hDICER-let7a-1GYM 
(EMDB -33489) 
(PDB 7XW2) 

Data  collection  and processing    
Magni�cation    120,000  105,000  
Voltage (kV) 200 300 
Electron exposure (e–/Å2) 44.163  40 
Defocus range (�m) -1.0 ~ -2.75 -0.9 ~ -2.2 
Pixel size (Å) 1.102 0.849 
Symmetry imposed C1 C1 
Initial particle images (no.) 189,908  1,386,301  
Final  particle images (no.) 128,635  1,210,874  
Map resolution (Å) 
    FSC threshold 

4.04 
0.143 

3.04 
0.143 

Map resolution range (Å) 3.0-10.0 2.5-7.5 
   
Re�nement    
Initial model used (PDB code) 5ZAK  7XW3 
Model resolution (Å) 
    FSC threshold 

4.04 
0.143 

4.03 
0.143 

Model resolution range (Å) 3.0-10.0 2.5-7.5 
Map sharpening B factor (Å2) -120.8  -157.2  
Model composition 
    Non-hydrogen atoms 
    Protein residues 
    Nucleotides 
    Ligands 

 
12087 
1502 
- 
-- 

 
6997 
725 
54 (RNA)  
2 (Ca) 

B factors (Å2) 
    Protein 
    Nucleotides 

Ligands 

 
98.43 
-- 
-- 

 
74.38 
83.33 (RNA)  
30.00 (Ca) 

R.m.s.  deviations 
    Bond lengths (Å) 
    Bond angles (°) 

 
0.009 
1.238 

 
0.007 
1.058 

 Validation 
    MolProbity score 
    Clashscore 
    Poor rotamers (%)    

 
2.49 
15.50 
2.44 

 
1.77 
7.50 
0.92 

 Ramachandran plot 
    Favored (%) 
    Allowed (%) 
    Disallowed (%) 

 
91.54 
8.39 
0.07 

 
95.10 
4.90 
0.00 

 
Table 3.1 Cryo-EM data collection, refinement and validation statistics.
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4. Conclusion

This study uniquely o�ers mechanistic insights into how metazoan DICER achieves
stringent substrate specificity towards pre-miRNAs and contributes to miRNA
biogenesis. Previous studies focused on the role of secondary features of pre-
miRNAs in DICER processing, leading to the prevailing notion that DICER
relies primariliy on the 2-nt 3� overhang to measure ~22-nt from the terminal
end created by DROSHA to determine cleavage sites. The sequence of a miRNA
was hence thought to be predetermined at the DROSHA processing step, with
DICER simply playing a passive role. However, we found evidence suggesting
that there is yet unknown mechanism by which DICER determines cleavage sites.
By massively parallel assays of randomized pre-miRNA variants, we revealed that
DICER recognizes another cis-acting element, named the GYM motif, which can
play a dominant role in terms of both cleavage e�ciency and accuracy. This newly
identified mechanism of DICER is functionally important as it can compensate
the imprecise cleavage of pri-miRNAs by DROSHA and 3� terminal modifications
of pre-miRNAs by enzymes (either nucleotidyl addition or trimming)—which
alter the terminal structures of pre-miRNAs the end counting rules rely on.
Our findings show that DICER actively engages in cleavage site determination
mediated by the GYM motif, which adds an additional layer of miRNA biogenesis
that shapes the seed and strand seletion of miRNAs—exerting a profound e�ect
on target recognition. The GYM motif is recognized by DICER dsRBD and
more specifically by an arginine residue (R1855). Accordingly, deletion of dsRBD
and R1855 a�ects many miRNAs in terms of both abundance and accuracy in a
GYM-motif-dependent fashion. We also found that more than 2/3 of endogenous
miRNAs benefit from the ’prominent’ GYM motif in human and other eumetazoan
species, suggesting that the GYM motif is deeply rooted in eumetazoan evolution.
Importantly, newly identified principles apply not only to miRNA but also to other
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small RNAs such as shRNA and siRNA that are widely used for loss-of-function
studies and RNA therapeutics. Taken together, our study unveils a dominant
mechanism that DICER utilizes for miRNA production, which is deeply rooted in
metazoan lineage.

This study also reports the first active-state structure of human DICER in
complex with pre-miRNA. The high-resolution structure allows detailed inspection
of RNA-DICER interaction for the first time. We found that DICER undergoes
large conformational changes to accommodate pre-miRNA in a fixed position.
Importantly, it revealed that R1855 of DICER dsRBD recognizes the newly
identified GYM motif via hydrogen bonding interactions. The PAZ helix of
DICER also plays an important role in pre-miRNA processing through electrostatic
interactions. Our structure also reveals that the architecture of the 5� pocket
allows accomodation of all bases except for guanine. Consistently, 5�-guanine
impairs 5� counting mechanism by DICER. Our study also show sthat cancer-
associated mutations in the 5� pocket significantly a�ects miRNA biogenesis in
cells. This study provides a framework for the design of RNAi therapeutics and
for an understanding of cancers and genetic disorders caused by mutations in the
human DICER gene.
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m8�]

‰t⌧X »tl\RNA ›i1– �\ Ñê›<Y�
l

»tl\ RNAî 8Ï¥X DàÌ RNA ⌘–⌧ƒ �• Á@ RNA \⌧ ⌅9 RNA
– ¸0⌧Ù πt�<\ ∞iXÏ  ⌅ê ⌧⌅D p�Xî D⇠�x Ì`D ⇠âX

î RNAÖ»‰. DICERî »tl\ RNA| ›1Xî p ‰∞ ⌘î\ ®å\⌧,
»tl\ RNA⌅l¥|} 22⌧X¸0⌧Ù\®(�t‡�UX‡�ËXî0•
D �¿‡ àµ»‰. DICERî »tl\RNAX –Ë¸ ⇡@ 2(lp– XtXÏ
�Ë⌅X| ∞�\‰‡ L$8 àµ»‰.X¿Ã \¸ l–⌧ DICER� 2( lp
–Ã D»| »tl\RNA⌅0X lp, ¸0⌧ÙD πt�<\ x¿XÏ �Ë`
�•1D ÙXµ»‰. t| ’<\ ¯ l–⌧î DICER� »tl\ RNAX
¥†\ ¸0⌧Ù¸ lp| πt�<\ x¿Xî¿ Ñê�x ⇠�–⌧ ¸ƒ t�

Xå LDÙ‡ê �©… (8� ¸0⌧Ù Ñ�D t©X�µ»‰. t| t©XÏ
DICERX lp ✏ ⌧Ù πt� »tl\RNA�Ë 0ëD ‹ÖX�µ»‰. t π
t� ⌧ÙD ‘GYM’ ®⌅|‡ ÖÖX�‡, lp ®x¡¸ ›TY� ‰ÿ, ¯¨‡
8Ï‰ÿD µt⌧ t⌘ �ÂRNA@ ∞iXî DICERX ƒTx (dsRBD)¸ GYM
®⌅X ∞it »tl\RNA �Ë ®(¸ ��1– ‰∞ ⌘î\ Ì`D \‰î
ÉD L ⇠ à»µ»‰. tÏ\ 0ë@ ƒ�ƒ›Ÿ<–⌧ Jå Ùt⇠¥ àLD L
⇠ àµ»‰. ⇣\ GYM®⌅�  ⌅ê ⌧⌅ µ⌧ 0 \ ¨©⇠‡ àî short
hairpin RNA@ Dicer-substrate siRNA– Q© ⇠ àLD ÙÏ¸»µ»‰.

‰L<\, DICER�¥†\0ë<\»tl\ RNAX¸0⌧ÙDπt�<\
x¿XÏ�ËXî¿–lp�l�‰∞ÄqX‡, 0|⌧TXê–⌧�0⇠î
DICERX  ⌅� ¿t� ¥†\ ¡8ë© D µt ⌧Ï¸ »— ÒX ›Ö ⌅¡–
�•D ¯Xî¿– �\ l� ∞Ï⇠¥ à¥, DICER@ »tl\ RNA ıi¥
X lp| ��(⌅ê⌅¯Ω<\ ‹ÖX�µ»‰. í@ t¡ƒX lp\ RNA@
DICERX ¡8ë©D t�à p¨X�‡, DICER� »tl\ RNA ⌅l¥| �Ë
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X0⌅t⌧î ÏÏ ƒTxX ¿¡Ñt Ÿ⇠⇠¥| \‰î ¨‰D L ⇠ à»µ»‰.
¯ ⌘–⌧ƒ dsRBD� GYM ®⌅ ¸ò– ⌅XXÏ ⇠å∞iD XÏ �Ë ⌅

X| ∞�` ⇠ àLD �0X�µ»‰. ⌘îXåƒ, DICER� »tl\RNAX
5� –ËD ⌧Ù πt�<\ x¿hD L ⇠ à»‡, πà 5� –Ët lDÃ| L
�Ë ��ƒ� ®¥¿î ÉD ⌧¨X�µ»‰. t⌥å 5� –ËX ⌧ÙD x¿Xî
D¯x∞t TXê–å⌧ �0⌧‰î ¨‰D L ⇠ à»‡, tî 8Ï¥–⌧ ⌅⇠
�x »tl\ RNA ›i1– lå �•D ⌅ –Ã D»|, Tµ⌧–⌧ 0•\‰‡
L$8 àî ⌘î\ »tl\RNAX ëD lå ⌅x‰î ¨‰D L ⇠ à»µ»‰.

ÖiXt, ¯ lî DICER� »tl\ RNA| GYM ®⌅| t©XÏ �

Ë ⌅X| ∞�t, »tl\ RNA 0•D �Xîp p Ì`D \‰î ÉD L ⇠
à»µ»‰. ⇣\ DICER@ »tl\ RNAX ıi¥X ‡t¡ƒ lp| µt, »
må ⌧¨⌧ 0ëX ⌘î1¸ DICERX ¿t� ¥ªå TD  ⌧` ⇠ àî ¿|
�µ»‰.
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Œt � tŸt@X Œ@ †`@ �X l| ‰ë\ ‹�–⌧ |¸ ⇠ àå t

¸»‡, l‰ �–⌧X ‹⌅ƒ �–å ¿⌘\ îµÖ»‰. πà tŸt@ ⇡t
P l| ⇠âX‡ 1ı�<\ »4¨` ⇠ à»X Ét ãXµ»‰. Y⌅ ¸�
ŸH lî ⇡t X¿ ªà¿Ã, �@ Œ@ ‹⌅D ⇡t Ù∏ ÖXtƒ Y⌅ ¸�D
ò »4¨` ⇠ à»X –Ÿ%Ö»‰. l– m¡ \ D ‰X‡ ¸––ƒ ÙÏà
lXî ÖXtX ®µt ¯¨∏ É ⇡µ»‰. ¯ x–ƒ �| m¡ ƒÏ<\ Q–
t�⇠ƒ⌅ò, �Ä �¨ÿƒ ⌧Y⌅ ¸� ŸHp òD ¸»µ»‰. ⇣\, »\¥
Ñ|–⌧ `tå �QX‡ ∞�¨ÿ, MS ⌅8� Ö∞, ‰ÿ¸ Ñ�D Ÿ‹– t
¥î ⌧», ‰ÿXî ¥%t �Ë\ 1\t@ ƒ|t, Ñ�D ò t¥î ⌧�t@
Ë1» �⌧| åh ò t¥î ¸�tî ¯�D ⇣t Œ@ ŸÃÖ»‰.

¯x–ƒ‰ÿ¿–Dt¸‡¿⌧⌅ò, 8⌅ò, @¿⌅ò, ‰@⌅ò,  �
 ›ÿ¸ â�� 1¯¸ ‰•ÿ, @¸  ›ÿ, ®ƒ  ›ÿÿƒ - ⇣¨X‰î –�
⌅X‡ ˆµ»‰.

»¿…<\,m¡�|Q–t¸‡,⌧�îlXîÉD∑�ht��q¸π¯
⌅ò–å ⇣¨X –�D ⌅i»‰. tÑ‰t ∆»‰t �î t ‹⇣– à¿ ªàD
ÉÖ»‰.

t |8D µt �@ ®‡ ƒ¿¸ ¿¿– ⇣¨X x¨| ⌅i»‰.
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