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Abstract

The Robinson-Schensted-Knuth (RSK) correspondence is a bijection that maps a ma-

trix of non-negative integers to a pair of semistandard tableaux of the same shape. The

correspondence has deep connections to algebraic combinatorics and representation the-

ory, serving as the combinatorial counterpart of the Howe duality on a symmetric algebra

over the space of matrices. From the viewpoint of crystal theory, the correspondence

preserves the crystal structures on the set of matrices and the set of pairs of tableaux.

Recently, Chmutov-Pylyavskyy-Yudovina extended the correspondence to affine per-

mutations using diagrammatic method which is called the matrix-ball construction. In

this thesis, we introduce an affine analogue of the RSK correspondence, which generalizes

the result of Chmutov-Pylyavskyy-Yudovina via standardization. The affine RSK maps

an affine matrix to a pair of tableaux of the same shape, where one of the pair belongs

to a tensor product of perfect crystals of level one, and the other belongs to a crystal of

a level zero extremal weight module. We prove that the affine RSK preserves the affine

crystal structures of type A. We give a brief comparison of our result with another affine

generalization of RSK introduced by Imamura-Mucciconi-Sasamoto. We also introduce a

dual affine RSK correspondence.

Key words: affine RSK correspondence, extremal weight crystals, matrix-ball construc-

tion

Student Number: 2015-20276
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Chapter 1

Introduction

1.1 Backgrounds

The Robinson-Schensted-Knuth correspondence (RSK for short) is a fundamental bijec-

tion in algebraic combinatorics and representation theory that associates a matrix of non-

negative integers with a pair of semistandard tableaux of the same shape. It has rich ap-

plications in a wide range of areas, including representation theory, geometry, and statis-

tical mechanics. In representation theory, the RSK can be regarded as the combinatorial

counterpart of the Howe duality [11]

S(Mm×n(C)) ∼=
⊕

λ

Vm(λ)⊗ Vn(λ), (1.1.1)

that decompose the symmetric algebra over the space of matrices into irreducibleGLm(C)×
GLn(C)-modules. The RSK describes the bijection between the bases of the spaces on

both sides of (1.1.1), and it preserves the crystal structures on the bases [24].

The origins of the Robinson-Schensted-Knuth correspondence can be traced back to

the work of Robinson [29], which associates a permutation with a pair of standard Young

tableaux of the same shape. This correspondence was also discovered independently

by Schensted [31], as an insertion algorithm of tableaux, which is called the Robinson-

Schensted correspondence (RS for short). It provides a combinatorial description of the

left and right cells of the symmetric group in Kazhdan-Lusztig theory [20]. By Knuth

[22], the insertion algorithm is generalized to the RSK correspondence.

Unlike the insertion algorithm, Viennot [37] introduced a diagrammatic method that

1



CHAPTER 1. INTRODUCTION

describes the RS correspondence. It naturally respects the symmetry of RS correspon-

dence. That is, if a permutation w corresponds to (P,Q), then the inverse w−1 corre-

sponds to (Q,P ). Viennot’s method works for the RSK after applying standardization,

which is called the matrix-ball construction (see [7, Chapter 4]).

An affine analogue of the RS correspondence was introduced by Shi [32, 33] in the

study of affine Kazhdan-Lusztig cells. Shi associates an affine permutation w with a

pair of tabloids (P (w), Q(w)), where each tabloid determines a left or right cell of the

Hecke algebras of affine symmetric groups. However, the map w 7→ (P (w), Q(w)) is

not injective. Recently, Chmutov-Pylyavskyy-Yudovina [5] constructed a bijection w 7→
(P (w), Q(w), ρ(w)) using an affine generalization of matrix-ball construction. Here ρ(w)

is an integral vector satisfying a condition called dominance. It is a natural question that

how to extend the affine RS correspondence for a affine matrix or an affine matrix.

1.2 Main Results

Let m and n be positive integers. Let M̂m×n be the set of matrices A = (aij)i,j∈Z of

non-negative integers such that ai+m, j+n = aij for all i, j ∈ Z, and for each j ∈ Z, aij = 0

except for finitely many i’s. Let λ be a partition with length not greater than m and n.

Let CSST[m](λ) be the set of column semistandard tableaux of shape λ with entries from

1 to m. Let Bn(λ) be the set of tableaux of shape λ with entries in Z such that each pair

of adjacent columns of the same column length is form a semistandard tableau.

The first main result of this thesis is to construct a bijection

κ : M̂m×n
//

⊔

λ∈Pm∩Pn

CSST[m](λ)×Bn(λ)

A � // (P0, Q)

, (1.2.1)

where Pn is the set of all partition with length not greater than n. The main ingredient

is the affine RS correspondence in [5], and the standardizations of matricies and tableaux.

A key observation is that the dominance condition of the vector ρ(w) is compatiable with

the description for B(λ).

Let us consider the crystal structures on both sides. If m ≥ 2, M̂m×n possess a

natural Uq(ŝlm)-crystals structure which seems to be tensor-product-like of its columns,

and CSST[m](λ) has a U
′
q(ŝlm)-crystal structure isomorphic to a tensor product of perfect

2



CHAPTER 1. INTRODUCTION

Kirillov-Reshetikhin crystals of level 1.

On the other hand, if n ≥ 2, M̂m×n again possess a natural Uq(ŝln)-crystals structure

which seems to be tensor-product-like of its rows, and Bn(λ) has a Uq(ŝln)-crystal structure

isomorhpic to the crystal base of a level zero extremal weight module. The Uq(ŝlm)-crystal

(or U ′
q(ŝlm)-crystal) on both sides are compatible with the Uq(ŝln)-crystal (or U

′
q(ŝln)-

crystal). We expect that the crystal structure of M̂m×n coincides with the ones in [25].

The second result of this thesis is that the bijection κ preserves the crystal structures

on both sides. Indeed we show that κ commutes with the Kashiwara operators except for

the ẽ0 and f̃0 for Uq(ŝlm)-crystals. As a corollary, we have an isomorphism of (Uq(slm)×
Uq(ŝln))-crystals

M̂m×n
∼=

⊕

λ∈Pn∩Pn

CSST[m](λ)×Bn(λ).

Let N̂m×n be the set of {0, 1}-matrices satisfying the similar relations. Let RSST[m](λ)

be the set of row semistandard tableaux of shape λ with entries from 1 to m. If m ≥ 1,

RSST[m](λ) has a U ′
q(ŝlm)-crystal structure isomorphic to a tensor product of perfect

Kirillov-Reshetikhin crystals of level ≥ 1. Then we have a dual analogue of (1.2.1)

κ′ : N̂m×n
//
⊔

λ∈Pn

RSST[m](λ
′)×Bn(λ)

A � // (P t
0, Q)

, (1.2.2)

where λ′ is the conjugate partition of λ, and P ′
0 is the conjugate tableau of P0. We show

also that κ′ is an isomorphism of (Uq(slm) × Uq(ŝln))-crystals. We expect that κ′ gives

a level zero analogue of the decomposition of the crystals [8, 9] associated to the higher

level q-deformed Fock space [36].

We remark that another affine generaliziation of RSK correspondence is given by

Imamura-Mucciconi-Sasamoto [13]. The algorithm uses the dynamics of Sagan-Stanley’s

skew RSK correspondence [30]. We give an expository example which compares two

algorithms. A representation theoretic interpretation of the identity corresponding to the

bijection in [13] is also recently given using representations of current Lie algebras [6].

1.3 Organization

The remainder of this thesis is organized as follows.

3



CHAPTER 1. INTRODUCTION

• Chapter 2We review preliminaries on the combinatorics of tableaux, and introduce

offset vectors and rectangular decomposition of tableaux which have crucial roles in

defining κ.

• Chapter 3 We adopt the notions and results of [3, 5] on the affine RS correspon-

dence, which is needed for the rest of our thesis.

• Chapter 4 We give a brief review on the representations of quantum groups and

crystal theory introduced by [17]. We focus on the quantum affine algebra Uq(ŝln)

and define affine crystal structure on the set of tableaux introduced in Chapter 2.

• Chapter 5 Using the ingredients give in Chapter 2-4, we construct the affine RSK

correspondence κ and show that it is a bijection. We describe the natural Uq(ŝlm)-

crystal and Uq(ŝln)-crystal structure on M̂m×n and state that κ preserves the crystal

structures.

• Chapter 6 We give a dual analogue κ′ of κ for N̂m×n.

• Chapter 7 We prove that the crystal equivalences of κ and κ′, which needs more

technical works.

4



Chapter 2

Semistandard tableaux

In this chapter, we review the definitions of tableaux and introduce rectangular semistan-

dard tableaux, which are the main objects of this thesis. Throughout this thesis, let Z≥0

denote the set of non-negative integers and [n] = { 1, 2, . . . , k } for n ≥ 1.

A partition is a weakly increasing sequence of integers λ = (λ1, λ2, . . . , λl). We call

l = ℓ(λ) the length of λ, and call |λ| = λ1+ · · ·+λl the size of λ. We identify a partition λ

with its Young diagram (cf. [7]) and we denote it by the same notation λ. We denote by

µ = (µ1, µ2, . . . , µλ1) the conjugate partition of λ where µj = #{ i |λi ≥ j }. We denote

by Pk the set of partitions of length less than or equal to k.

Let A denote either Z or [n], equipped with their usual linear orders. An A-tableau of

shape λ is a filling T of the Young diagram λ with entries taken from A. We may drop the

prefix A when there is no ambiguity on A. A tableau T of shape λ is said to be bijective

if its entries are distinct and range from 1 to |λ|.
Throughout this chapter, let n be a positive integer.

2.1 Column and row semistandard tableaux

In this section, we define column semistandard tableaux and row semistandard tableaux

with their standardizations. We also define descents and ascents for bijective tableaux.

Definition 2.1.1. Let T be a tableau of shape λ. We say that T is:

(1) column semistandard if the entries in each column are increasing from top to bottom,

(2) row semistandard if the entries in each row are weakly increasing from left to right,

5



CHAPTER 2. SEMISTANDARD TABLEAUX

(3) semistandard if it is both column semistandard and row semistandard.

We denote the set of column semistandard A-tableaux of shape λ by CSSTA(λ). When

A = [n], we denote the set of bijective semistandard tableaux of shape λ by CST[n](λ).

Similarly, we use the notations RSSTA(λ) and RST[n](λ) for row semistandard tableaux.

The content of an [n]-tableau T is α = (α1, . . . , αn) ∈ Zn
≥0 where αt is the number of

occurrences of the entry t in T .

Let T be a column semistandard tableau T with content α ∈ Zn
≥0. We define the

column standardization T st of T to be the tableau obtained by replacing each entry t ∈ [n]

in T with αt ̸= 0 by the consecutive numbers

α1 + · · ·+ αt−1 + 1, . . . , α1 + · · ·+ αt

from left to right. Here we understand the empty sum as 0. By definition, T st is a

bijective column semistandard tableau of the same shape.

Let us provide a more explicit description of the image of the column standardization.

Let S be a bijective column semistandard [k]-tableau of shape λ, where k is the size of λ.

We say that i ∈ [k] is a (column) descent of S if the entry i + 1 appears to be the right

of i in S. Let α = (α1, . . . , αn) ∈ Zn
≥0 be given with |α| = α1 + · · ·+αn = k. We say that

S is α-descending if for any t ∈ [n] and i with

α1 + · · ·+ αt−1 + 1 < i < α1 + · · ·+ αt,

i is a descent of S.

Let a partition λ and α ∈ Zn
≥0 be given with |α| = |λ|. We denote by CSST[n](λ)α the

set of column semistandard tableaux of shape λ with content α, and denote by CST[k],α(λ)

the set of α-descending bijective column semistandard tableaux of shape λ, where k is the

size of λ.

Example 2.1.2. Let λ = (3, 2, 2), n = 5, k = 7, and let

T =
2 1 4
3 4
4 5

∈ CSST[5](λ).

The content of T is α = (1, 1, 1, 3, 1). We see that the column standardization T st given

6



CHAPTER 2. SEMISTANDARD TABLEAUX

by

T st =
2 1 6
3 5
4 7

∈ CST[7](λ),

and T st is α-descending.

The following lemma can be easily checked using the definition of standardization.

Lemma 2.1.3. Under the above hypothesis, we have a bijection

CSST[n](λ)α // CST[k],α(λ)

T � // T st

.

We can similarly define the row standardization T st′ of a row semistandard tableau

T with content α ∈ Zn
≥0 to be the tableau obtained by replacing each entry t ∈ [n] in T

with αt ̸= 0 by the consecutive numbers

α1 + · · ·+ αt−1 + 1, . . . , α1 + · · ·+ αt

from the bottom row to top row, and from left to right in each row.

Let S be a bijective row semistandard [k]-tableau of shape λ. We say that i ∈ [k] is

a (row) ascent of S if the entry i + 1 does not appears below i in S. For α ∈ Zn
≥0 with

|α| = k, we say that S is α-ascending if for any t ∈ [n] and i with

α1 + · · ·+ αt−1 + 1 < i < α1 + · · ·+ αt,

i is an ascent of S. Let us denote by RSST[n](λ)α and RST[k],α(λ) for the row semistandard

tableaux similarly.

Example 2.1.4. Let λ = (3, 3, 1, 1), n = 3, k = 8, and let

T =

1 2 3
1 1 3
2
3

∈ RSST[3](λ).

7



CHAPTER 2. SEMISTANDARD TABLEAUX

The content of T is α = (3, 2, 3), and its row standardization T st′ is α-ascending as follows

T st′ =

3 5 8
1 2 7
4
5

∈ RST[8](λ),

We have the row analogous to Lemma 2.1.3

Lemma 2.1.5. Under the above hypothesis, we have a bijection

RSST[n](λ)α // RST[k],α(λ)

T � // T st′

.

2.2 Offset vectors

In this section, we introduce maps τ and τ ′ on tableaux that shift the entries in each

column and row of tableaux respectively. We define offset vectors for tableaux to be the

minimal vector that make the given tableau to be semistandard via the map τ and τ ′.

Let

Bn((1
b)) = {T ∈ CSSTZ((1

b))
∣∣∣T (b)− T (1) < n }

where T (i) denotes the entry in T at the i-th row from the top. Note that Bn((1
b)) is

empty unless b ≤ n. For T ∈ Bn((1
b)), let τn(T ) be the tableau obtained by replacing its

entries

T (1) < T (2) < · · · < T (b− 1) < T (b)

with

T (2) < T (3) < · · · < T (b) < T (1) + n.

Then τn is a bijection on Bn((1
b)). We may write simply Bn((1

b)) = B((1b)) and τn = τ if

there is no ambiguity on n. In general, for α = (α1, . . . , αa) ∈ Za, we define the bijection

τα on B((1b))a which acts on the j-th factor by ταj .

Let R = (ab) = (a, . . . , a︸ ︷︷ ︸
b

) be a Young diagram of rectangular shape. Let us regard

8



CHAPTER 2. SEMISTANDARD TABLEAUX

CSST[n](R) as the subset of B((1b))a via the embedding

CSST[n](R) // B((1b))a

T � // (T a . . . , T 1)

,

where T j is the j-th column of T from the right.

Definition 2.2.1. Let T be a column semistandard [n]-tableau of shape R = (ab) with

b ≤ n. For 1 ≤ j < a, let rj be the minimal non-negative integer such that the tableau

(T j+1, τ rj(T j))

of shape (2b) is semistandard, and let ηj = rj + rj+1 + · · · ra−1. We call (r1, . . . , ra−1) the

offset vector for T , and η = (η1, . . . , ηa−1) the symmetrized offset vector for T .

It is obvious that ηrev = (0, ηa−1, . . . , η1) is the unique vector in Za
≥0 of minimal size

such that τ ηrev(T ) is semistandard.

We can similarly define the offset vector for row semistandard tableaux. Let

B′((a)) = {T ∈ RSSTZ((a))
∣∣∣T (a)− T (1) ≤ n }

where T (j) denotes the entry in T at the j-th column from the left. We define the bijection

τ ′ on B′((a)) by τ ′(T ) to be the tableau obtained by replacing the entries

T (1) ≤ T (2) ≤ · · · ≤ T (a− 1) ≤ T (a)

of T with

T (2) ≤ T (3) ≤ · · · ≤ T (a) ≤ T (1) + n,

and define τ ′α on B′((a))b similarly for α ∈ Zb in general.

We regard RSST[n](R) as the subset of B′((a))b via the embedding

RSST[n](R) // B′((a))b

T � // (T b . . . , T 1)

,

where T i is the i-th row of T from the bottom.

We have row analogous to Definition 2.2.1.

9



CHAPTER 2. SEMISTANDARD TABLEAUX

Definition 2.2.2. Let T ∈ RSST[n](R) be given. For 1 ≤ j < a, let rj be the minimal

non-negative integer such that the tableau

(T j+1, τ ′rj(T j))

of shape (a)2 is semistandard, and let ηj = rj + rj+1 + · · · ra−1. We call (r1, . . . , ra−1) the

offset vector for T , and η = (η1, . . . , ηa−1) the symmetrized offset vector for T .

Lemma 2.2.3. Let T be a row semistandard [n]-tableau of shape R = (ab). Then the

offset vectors for T and T st′ coincide.

Example 2.2.4.

(1) Let n = 5 and let

T =
2 1 2
3 4 3
4 5 5

∈ CSST[5]((3
3)).

We have r1 = 1 since

(T 2, T 1) =
1 2
4 3
5 5

is not semistandard, while

(T 2, τ 1(T 1)) =
1 3
4 5
5 7

is semistandard. We see that the offset vector for T is (1, 1), the symmetrized offset

vector for T is η = (2, 1) so that

τ ηrev(T ) = (T 3, τ 1(T 2), τ 2(T 1)) =
2 4 5
3 5 7
4 6 10

is semistandard.

(2) Let m = 3 and let

T =
1 2 3
1 2 2
2 2 3

∈ RSST[3]((3
3)).

Then the symmetrized offset vector for T is η = (3, 2) so that

10



CHAPTER 2. SEMISTANDARD TABLEAUX

τ ′ηrev(T ) = (T 3, τ 2(T 2), τ 3(T 1)) =
1 2 3
2 4 5
5 5 6

is semistandard.

2.3 Rectangular semistandard tableaux

In this section, we introduce rectangular semistandard tableaux, which will play a crucial

role in this thesis. Let R = (ab) of rectangular shape with b ≤ n.

Definition 2.3.1. Let R = (ab) be a partition with b ≤ n. We say that a semistandard

Z-tableau T = (T a, . . . , T 1) of shape R is rectangular semistandard if T j ∈ B((1b)) for

each 1 ≤ j ≤ a where T J is the j-th column of T from the right. We denote the set of

rectangular semistandard tableaux of shape R by B(R).

Regarding B(R) as a subset of B((1b))a, we define τα on B(R) for α ∈ Za, similar to

Section 2.2. Let

B(R)0 =
{
T ∈ B(R)

∣∣∣ (T j+1, τ−1(T j)) is not semistandard for 1 ≤ j ≤ a− 1
}
.

Recall that Pa−1 is the set of partitions of length less than a. For ν = (ν1, . . . , νa−1) ∈
Pa−1, we write νrev = (0, νa−1, . . . , ν1) ∈ Za

≥0. Then we have a bijection

B(R)0 × Pa−1
// B(R)

(T, ν) � // τ νrev(T )

. (2.3.1)

Lemma 2.3.2. Let T ∈ CSST[n](R) and α = (α1, . . . , αa) ∈ Za be given and let αrev =

(αa, . . . , α1). Then τ
αrev(T ) ∈ B(R) if and only if

αa ≤ αa−1 − ηa−1 ≤ · · · ≤ α1 − η1,

where η is the symmetrized offset vector for T .

Proof. It follows immediately from that η is the unique partition of length less than a

such that τ ηrev(T ) ∈ B(R)0.

11
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By Lemma 2.3.2, we have a bijection

CSST[n](R)× Pa
// B(R)

(T, ν) � // τ νrev+ηrev(T )

, (2.3.2)

where Pa = { ν = (ν1, . . . , νa) ∈ Za | ν1 ≥ · · · ≥ νa } is the set of generalized partitions of

length a and η is the symmetrized offset vector for T .

Let

τ : B(R) // B(R)

T = (T a, . . . , T 1) � // (τ(T a), . . . , τ(T 1))

(2.3.3)

be the bijection given by applying τ to each column of the tableaux in B(R), which induces

a Z-action on B(R) and B(R)0. Let B(R)0
/
Z denote the set of equivalence classes under

this Z-action. We identify B(R)0
/
Z with the set of T ∈ B(R)0 such that the first column

of T has entries in [n]. Hence, we have another bijection

CSST[n](R) // B(R)0
/
Z

T � // [τ ηrev(T )]

, (2.3.4)

where [T ] denotes the equivalence class of T and η is the symmetrized offset vector for T .

The following lemma implies that the symmetrized offset vector of T is invariant under

standardization.

Lemma 2.3.3. Let T ∈ CSST[n](R) be given where R = (ab) ∈ Pn for some a, b ≥ 1.

For ν ∈ Pa−1, we have

τ νrevn (T ) ∈ Bn(R)0 if and only if τ νrevk (T st) ∈ Bk(R)0,

where k = ab.

Proof. Let T = (T a, . . . , T 1) and T st = S = (Sa, . . . , S1). For 1 ≤ j ≤ a − 1, let rj

be the smallest integer satisfying (T j+1, τ
rj
n (T j)) is semistandard. It suffices to show that

(Sj+1, τ
rj
K (Sj)) is semistandard but (Sj+1, τ

rj−1
K (Sj)) is not. It is straightforward to see

from the definition of T st.

12
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Closing this section, we note that while the results of this section have row counterparts

of rectangular semistandard tableaux, they do not have interesting implications in terms

of representation or crystal theory (cf. 4.2.5). Therefore, we only focus on the column

semistandard case in the rest of the thesis.

2.4 Rectangular decomposition

Let λ be a partition. We decompose λ into its subdiagrams of rectangular shapes R(i)

defined by

R(i) = (mi, . . . ,mi︸ ︷︷ ︸
i

) (1 ≤ i ≤ l),

where mi is the number of occurrences of i in µ and l = ℓ(λ). Here we assume that R(i)

is empty when mi = 0. For example, if λ = (6, 4, 1, 1), then we see that R(1) = (1),

R(2) = (32), R(3) = ∅ and R(4) = (24) as illustrated in the following figure.

R(4)

R(2)

R(1)

For a tableau T of shape λ, we denote by T (i) the subtableau of T corresponding to

the subdiagram R(i) of λ. We call (R(1), . . . , R(l)) and (T (1), . . . , T (l)) the rectangular

decompositions of λ and T respectively.

Definition 2.4.1. Let λ be a partition of length less than or equal to n, with the rect-

angular decomposition (R(1), . . . , R(l)). We say that a tableau T of shape λ is rectangular

semistandard if T (i) ∈ B(R(i)) for each 1 ≤ i ≤ l. We denote the set of rectangular

semistandard tableaux of shape λ by B(λ).

Note that B(λ) is empty when ℓ(λ) > n. Let us identify

B(λ) = B(R(1))× · · · ×B(R(l)),

CSST[n](λ) = CSST[n](R
(1))× · · · × CSST[n](R

(l))
(2.4.1)

13
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via rectangular decompositions and define

B(λ)0 = B(R(1))0 × · · · ×B(R(l))0.

If we put P(λ) = Pml−1×· · ·×Pm2−1×Pm1−1, where we take the product over mi ≥ 1,

then we have a bijection

B(λ)0 × P(λ) // B(λ)

((
T (i)
)
1≤i≤l

, (ν(i))1≤i≤l

)
� //

(
τ ν

(i)
rev(T (i))

)
1≤i≤l

, (2.4.2)

by applying (2.3.1) to each component, where T (i) ∈ B(R(i))0 and ν(i) ∈ Pmi−1.

Similarly, if we let P(λ) = Pml
× · · · × Pm1 , where we take the product over mi ≥ 1,

and regard

CSST[n](λ) = CSST[n](R
(l))× · · · × CSST[n](R

(1)),

then by (2.3.3) we have a bijection

CSST[n](λ)× P(λ) // B(λ)

((
T (i)
)
1≤i≤l

, (ν(i))1≤i≤l

)
� //

(
τ ν

(i)
rev+η

(i)
rev(T (i))

)
1≤i≤l

, (2.4.3)

where η(i) ∈ Pmi−1 is the symmetrized offset vector for T (i)

Let

B(λ)0
/
Zl = B(R(1))0

/
Z× · · · ×B(R(l))0

/
Z,

where each B(R(i))0
/
Z is the set of equivalence classes under the Z-action (2.3.3). Then

we also have a bijection

CSST[n](λ) // B(λ)0
/
Zl

(
T (i)
)
1≤i≤l

� //
(
[τ η

(i)
rev(T (i))]

)
1≤i≤l

.

14
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Example 2.4.2. Let λ = (5, 5, 2), n = 4, and let

T =
2 1 2 1 2
3 2 3 3 3
4 4

∈ CSST[4](λ).

Then λ is decomposed into R(2) = (3, 3) and R(3) = (2, 2, 2), and the corresponding

decompositions of T are

T (2) =
2 1 2
3 3 3

, T (3) =
2 1
3 2
4 4

We see that η(2) = (1, 1), η(3) = (1) are the symmetrized offset vectors for T (2), T (3)

respectively. For ν = ((1,−1), ((2, 1, 0)) ∈ P(λ), the image of (T, ν) under the bijection

(2.4.3) is

0 4 2 5 7
2 5 3 7 10
3 6

∈ B(λ).
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Chapter 3

Affine RS correspondence and

matrix-ball construction

In this chapter, we provide a brief review of the affine RS correspondence described in [5],

while adopting the necessary notations and terminologies with slight modifications. We

refer to the statements in the literature by their precise numbers and omit their proofs.

Let k be a fixed positive integer. An (extended) affine permutation of k is a bijection

w : Z −→ Z such that

w(i+ k) = w(i) + k

for each i. We denote by Ŵk the set of affine permutations of k. If k ≥ 2, it is an

extended affine Weyl group of type A(1)k−1. We may represent an affine permutation

w ∈ Ŵk by the window notation w = [w1, . . . , wk], where wi = w(i) for each i, or by the

matrix representation w = (wij)i,j∈Z, where wij = δw(i)j and δw(i)j is the Kronecker delta.

For example, we visualize the matrix representation of w = [5, 7, 2, 8, 3, 13, 4] ∈ Ŵ7 as

follows.

16
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1
1

1
1

1
1

1
1

1
1

1
1

1
1

j

i

Here, we only draw nonzero entries in 1 ≤ i ≤ 14 and 1 ≤ j ≤ 21. Note that a

matrix representation w satisfies
∑

i∈Zwij = 1 and
∑

j∈Zwij = 1 for each i, j. Generally,

a matrix w = (wij)i,j∈Z is called a partial (extended) affine permutation of k if wij ∈ Z,
wi+k, j+k = wij,

∑
i∈Zwij ≤ 1, and

∑
j∈Zwij ≤ 1 for each i, j. We also use the window

notation w = [w1, . . . , wk] for a partial affine permutation w = (wij), where we write

wi = j if wij = 1, or wi = · if wij = 0 for all j. We denote by ∅ the empty partial

permutation.

Consider the lattice Z×Z as the set of matrix co-ordinates. An element (i, j) ∈ Z×Z
is called a cell. We use compass directional orders >NW, ≥nw and ≤ne on Z× Z as follows:

(1) c1 >NW c2 if and only if i1 < i2 and j1 < j2,

(2) c1 ≥nw c2 if and only if i1 ≤ i2 and j1 ≤ j2,

(3) c1 ≤ne c2 if and only if i1 ≥ i2 and j1 ≤ j2,

for c1 = (i1, j1), c2 = (i2, j2) ∈ Z × Z. By convention, we use N (or E, W, S) to emphasize

strict inequality, while n (or e, w, s) allows equality of the co-ordinates of cells.

Throughout this chapter, we assume that w = (wij) is a non-empty partial affine

permutation of k.

17
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3.1 Southwest channel numberings

To perform the matrix-ball construction in the affine case, a certain ordering of the posi-

tions of 1’s is required. One of the notable results of [5] is that they single out a numbering

on the positions of 1’s which exhibits desirable properties.

Let

supp(w) = { (i, j) ∈ Z× Z |wij = 1 }

be the support of w. It is invariant under the translation τ = τk,k on Z× Z given by

τ(i, j) = (i+ k, j + k) ((i, j) ∈ Z× Z).

A numbering on w is a function d : supp(w) −→ Z.

Definition 3.1.1 (cf. [5, Definition 3.1]). A numbering d on w is called proper if

(1) d(c2) < d(c1) if c2 >NW c1,

(2) for any c1 ∈ supp(w), there exists c2 ∈ supp(w) such that c2 >NW c1 and d(c2) =

d(c1)− 1.

The conditions (1) and (2) are called monotone and continuous, respectively. We remark

that any proper numbering can be shifted by any integer.

Lemma 3.1.2 (cf. [5, Proposition 3.4]).

(1) For any proper numbering d on w, there exists a positive integer ℓ, which we call

the period, such that d(τ(c)) = d(c) + ℓ for c ∈ supp(w).

(2) If ℓ and ℓ′ are the periods of any two proper numberings d and d′ on A, respectively,

then we have ℓ = ℓ′, which we call the width of w.

Definition 3.1.3 (cf. [5, Definitions 3.6, 3.20]). A stream is an infinite collection of cells

s = {ci}i∈Z, which is invariant under τ and forms a chain with respect to >NW, that is,

ci >NW ci+1 for all i. A flow of a stream s is the number ℓ such that τ(ci) = ci+ℓ for all i.

A defining data of a stream s = {ci = (ai, bi)}i∈Z of flow ℓ is a triple (a,b, r), where

(1) a = (a1+r1 , . . . , aℓ+r1) ∈ [k]l with 1 ≤ a1+r1 < · · · < aℓ+r1 ≤ k,

(2) b = (b1+r2 , . . . , bℓ+r2) ∈ [k]l with 1 ≤ b1+r2 < · · · < bℓ+r2 ≤ k,

18
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(3) r = r1 − r2.

A stream s is called a stream of w if s ⊂ supp(w). A stream s of w is called a channel of

w if its flow is maximal among the streams of w.

Let C = {ci}i∈Z be a channel of w and let c ∈ supp(w). Let m be the maximal integer

such that cm >NW c. The maximal property of channel ensures that c ≯NW cm+1. This

implies either cm+1 ≤ne c or c ≤ne cm+1. In other words, we have

supp(w) = Cne ∪ Csw,

where

Cne = { c ∈ supp(w) | c′ ≤ne c for some c′ ∈ C },
Csw = { c ∈ supp(w) | c ≤ne c

′ for some c′ ∈ C },
(3.1.1)

and Cne ∩Csw = C. Let Cw denote the set of channels of w. We define a partial order ≽sw

on Cw by

C1 ≽sw C2 if and only if C1 ⊂ (C2)sw. (3.1.2)

for C1, C2 ∈ Cw.

Proposition 3.1.4 (cf. [5, Proposition 3.14]). The set Cw has a greatest element with

respect to ≽sw, which we denote by Csw
w .

We call Csw
w the southwest channel of w.

Let C = {ci}i∈Z be a channel of w, and let d0 be the numbering on C defined by

d0(ci) = i. For c ∈ supp(w), we define

dCw(c) = sup

{
d0(c

′
k) + l

∣∣∣∣∣
c′l >NW · · · >NW c

′
0 is a chain in supp(w)

(k ≥ 0) such that c′0 = c and c′l ∈ C

}
. (3.1.3)

We call dCw the channel numbering on w with respect to C.

Proposition 3.1.5 (cf. [5, Proposition 3.10]). The numbering dCw on w is a well-defined

proper numbering. Moreover, we have dCw(c) = d0(c) for c ∈ C.

Note that the width of w or the period of the channel numbering dCw is equal to the

flow of a channel C of w.
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Definition 3.1.6. For the southwest channel Csw
w of w, we write dsww = d

Csw
w

w for short, and

call it the southwest channel numbering on w.

Example 3.1.7. Let w = [5, 7, 2, 8, 3, 13, 4] ∈ Ŵ7. The southwest channel of w is given

by

Csw
w =

{
· · · >NW τ

−1(7, 4) >NW (3, 2) >NW (5, 3) >NW (7, 4) >NW τ(3, 2) >NW · · ·
}
.

In the following diagram, we draw a ball for each c ∈ supp(w) and fill in the value of

the southwest channel numbering dsww (c) for each ball. The balls that form the southwest

channel are doubly circled.

0
1

0
2

1
3

2
3

4
3

5
4

6
5

j

i

Remark 3.1.8. Consider the southwest channel Csw
w−1 of the (partial) inverse permutation

W−1 of w. Then the channel

Cne
w = { (i, j) | (j, i) ∈ Csw

w−1 }

is the minimal element in Cw with respect to ≽sw. We call Cne
w the northeast channel of

w. Let dnew be the channel numbering on w with respect to Cne
A . Then it follows from

definition that dsww−1(j, i) = dnew (i, j) for (j, i) ∈ supp(w−1).

The following lemma gives a characterization of channel numberings (cf. [5, Remark

11.8]).
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Lemma 3.1.9. Let C be a channel of w. Let d be a proper numbering on w such that

d(c) = dCw(c) for c ∈ C. Then the following are equivalent:

(1) d = dCw,

(2) for c ∈ supp(w), there exists a chain cl >NW · · · >NW c0 in supp(w) such that c0 = c,

cl ∈ C and d(ci) = d(c)− i for 0 ≤ i ≤ l,

(3) if d′ is a proper numbering such that d′(c) = dCw(c) for c ∈ C, then we have d(c) ≤
d′(c) for every c ∈ supp(w).

Proof. Suppose that (1) holds. Let cl >NW · · · >NW c0 = c be a chain which gives the

maximum value d0(cl) + l in (3.1.3). Since d is monotone, we have

d(cl) + l ≤ d(cl−1) + l − 1 ≤ · · · ≤ d(c) = d0(cl) + l. (3.1.4)

Since cl ∈ C, we have d(cl) = d0(cl) by Proposition 3.1.5. Thus all the inequalities in

(3.1.4) are in fact equalities and hence, d(ci) = d(c)− i for 0 ≤ i ≤ l. This implies (2).

Suppose that (2) holds. For c ∈ supp(w), let cl >NW · · · >NW c0 = c be a chain satisfying

the condition in (2). Let d′ be a proper numbering such that d′ = dCw on C. Along this

chain, we have

d′(cl) + l ≤ d′(cl−1) + l − 1 ≤ · · · ≤ d′(c).

from the monotonicity of d′. Since d′(cl) = d(cl), we conclude that d(c) = d(cl) + l =

d′(cl) + k ≤ d′(c). This implies (3).

Suppose that (3) holds. Then, in particular, we have d(c) ≤ dCw(c) for c ∈ supp(w) by

letting d′ = dCw . Let cl >NW · · · >NW c0 = c be a chain which gives the maximal value dCw(c).

We have d(cl) + l ≤ d(cl−1) + l− 1 ≤ · · · ≤ d(c) from the monotonicity of d. Then we see

that dCw(c) = dCw(cl) + l = d(cl) + l ≤ d(c). Hence d(c) = dCw(c).

By Lemma 3.1.9, we regard the channel numbering dCw as the proper numbering with

minimal values among the proper numberings d which coincide with d0 on w.

3.2 Matrix-ball construction for affine permutations

Definition 3.2.1. A zig-zag is an infinite collection z = {ci}i∈Z of cells such that the

following hold:
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• for each i ∈ Z, ci+1 is the adjacent east or north cell of ci,

• ci+1 is the adjacent east cell of ci if i≫ 0,

• ci−1 is the adjacent south cell of ci if i≪ 0,

For a zig-zag z = {ci}i∈Z, we say that

• the inner corners are the cells ci such that ci−1 is located to the south and ci+1 is

located to the east of ci,

• the outer corners are the cells ci such that ci−1 is located to the west and ci+1 is

located to the north of ci,

• the back-post corner is the cell c = (ir, jl) when cl = (il, jl) and cr = (ir, jr)) are the

leftmost and the rightmost inner corners of z, respectively.

Let d be a proper numbering on a partial permutation w of k. We associate a set of

zig-zags Zd = {zi}i∈Z to d, where zi is the unique zig-zag whose inner corners form the

level set d−1(i). It is straightforward to see that {zi}i∈Z satisfies

(z.1) τ(zi) = zi+ℓ where ℓ is the period of d,

(z.2) the inner corners of each zi are contained in supp(w),

(z.3) zi’s are mutually disjoint and supp(w) ⊂ ⊔i∈Z zi,

(z.4) zi is located to the southeast of zi−1 for i ∈ Z in the sense that

for each c1 ∈ zi, there exists c2 ∈ zi−1 such that c2 >NW c1. (3.2.1)

Conversely, a set of zig-zags Z = {zi}i∈Z satisfying (z.1)-(z.4) determines a unique proper

numbering dZ on w given by

dZ(c) = i if c ∈ supp(w) ∩ zi. (3.2.2)

whose associated set of zig-zags is Z. Note that the set of back-corner posts of zi’s form

a stream of flow ℓ.
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Example 3.2.2. Let w and dsww be as in Example 3.1.7. The period of dsww is 3. The

zig-zags zk corresponding to the level sets (dsww )−1(i) for i = 1, 2, 3 are given as red lines

below.

0
1

0
2

1
3

2
3

4
3

5
4

6
5

j
z1

z2

z3

i

Let w be a non-empty partial permutation of k, and let {zi}i∈Z be the set of zig-zags

associated to dsww . We define

• w♭ : the unique partial permutation of k such that supp(w♭) consists of outer corners

of zi’s,

• s(w) : the stream consisting of the back-post corners of zi’s.

The matrix-ball construction for affine permutations can be described as follows:

• w(0) = w,

• w(t) = (w(t−1))♭,

• s(t) = s(w(t−1)),

• µt: the flow of s(t), or equivalently, the width of w(t−1),

• (at,bt, ρt): the defining data of s(t),

for t ≥ 0. It is obvious that there exists s ≥ 1 such that

w(s−1) ̸= ∅, w(s) = ∅.
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Lemma 3.2.3 (cf. [5, Proposition 3.10]). We have µ1 ≥ · · · ≥ µs > 0.

Now we let

• λ = µ′ : the conjugate partition of µ = (µ1, . . . , µs),

• P0 : the tableau of shape λ, whose t-th column from the left is at (1 ≤ t ≤ s),

• Q0 : the tableau of shape λ, whose t-th column from the left is bt (1 ≤ t ≤ s),

• ρ = (ρ1, . . . , ρs) ∈ Zs.

Note that if w is an extended affine permutation of k, then λ is a partition of k, and the

tableaux P0 and Q0 are bijective column semistandard [k]-tableaux.

Definition 3.2.4. Let w be an extended affine permutation of k. We define a map Φ on

Ŵk by

Φ : Ŵk
//
⊔

λ

CST[k](λ)× CST[k](λ)× Zλ1

w � // (P0, Q0, ρ)

, (3.2.3)

Theorem 3.2.5 (cf. [5, Theorem 5.1]). The map Φ is injective.
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Example 3.2.6. Let w be as in Example 3.1.7.

1
1

1
1

1
1

1
1

1
1

1
1

1
1

j
z1

z2

z3

i

w =

The stream consisting of the back-post corners of zk (k ∈ Z) is

s(1) = {· · · >NW (2, 3) >NW (4, 4) >NW (6, 9) >NW · · · }.

We obtain w♭ as follows:

1

1

1

1
1

1

1

1

j
z1

z2

z3

i

w[ =

Repeating this process, we see that

25



CHAPTER 3. AFFINE RS CORRESPONDENCE AND MATRIX-BALL
CONSTRUCTION

1

1

1

1
1

1

1

1

j

i

w(1) =

1

1

j

i

w(2) =

with w(3) = ∅, and

s(2) = {· · · >NW (1, 5) >NW (5, 7) >NW (7, 8) >NW · · · },
s(3) = {· · · >NW (3, 6) >NW · · · },

Then we have

P0 =
2 1 3
4 5
6 7

, Q0 =
2 1 6
3 5
4 7

, ρ = (1, 1, 0)
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3.3 Affine RS correspondence

Suppose that two stream s = {ci}i∈Z and s′ = {c′i}i∈Z of the same flow l are invariant

under the translation τk,k with 2l ≤ k. Let (a,b, ρ), (a′,b′, ρ′) be the defining data of s,

s′ respectively. We may assume that

a = (a1, . . . , al), b = (b1−ρ, . . . , bl−ρ),

a′ = (a′1, . . . , a
′
l), b′ = (b′1−ρ′ , . . . , b

′
l−ρ′).

(3.3.1)

Letm be the smallest integer such that ci ≥nw c
′
i+m for all i ∈ Z, and consider the following

two streams

t = { di = (a′i+m, bi) }i∈Z, t′ = { d′i = (ai, b
′
i+m) }i∈Z.

Then there is a partial permutation w of k such that

supp(w) = t ∪ t′. (3.3.2)

Then it is straightforward to see that l is the width of w, and t is the southwest channel

of w. Let d be a proper numbering on w defined by d(di) = d(d′i) = i for i ∈ Z.

Proposition 3.3.1 (cf. [5, Proposition 5.6]). There exists unique integer r such that

d = dsww if and only if ρ− ρ′ ≥ r.

Definition 3.3.2.

• The number r in 3.3.1 is called the offset constant of a pair (s, s′),

• A pair (s, s′) is called dominant if ρ− ρ′ ≥ r.

• More generally, for a triple (P0, Q0, ρ) ∈ CST[k](λ) × CST[k](λ) × Zλ1 , let s(t) be

the stream with defining data (at,bt, ρt), where at, bt are the t-th column of P0,

Q0 respectively. Then (P0, Q0, ρ) is called dominant if (s(t), s(t+1)) is dominant for

1 ≤ t < λ1 such that µt = µt+1.

Theorem 3.3.3 (cf. [5, Proposition 5.12]). The image of Φ is

Φ(Ŵk) = { (P0, Q0, ρ) | (P0, Q0, ρ) is domininat }.
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Recall that we say i ∈ [k] is a descent of S ∈ CST[k](λ) if i+1 appears to be the right

of i in S. For an extended affine permutation w of k, we say that i ∈ [k] is a descent of w

if w(i) > w(i + 1). The following lemma generalizes a well-known property of the usual

RS correspondence (cf. [7, Section 1.1]).

Lemma 3.3.4 (cf. [3, Proposition 3.6]). Suppose that Φ(w) = (P0, Q0, ρ). We have

(1) i is a descent of w if and only if i is a descent of P0

(2) j is a descent of w−1 if and only if j is a descent of Q0

We can interpret the dominant condition in terms of rectangular semistand tableaux.

Lemma 3.3.5. Suppose that (P0, Q0, ρ) ∈ CSTk(λ) × CSTk(λ) × Zλ1 is given and let η

and θ be the symmetrized offset vectors for P0 and Q0, respectively. Then (P0, Q0, ρ) is

dominant if and only if

τ ρ+ηrev
k (Q0) ∈ Bk(λ)

Proof. It is enough to show when λ = (2l). Let (a,b, ρ), (a′,b′, ρ′) be the defining

data of s(1), s(2) respectively. We adopt the notation given in 3.3.1. By Lemma 2.3.2, the

condition 3.3.5 is equivalent to that

ρ′ − ρ ≥ θ − η.

Hence we claim that θ − η is the offset constant.

We observe that in order to show d = dsww , where w is given by (3.3.2), it suffices to

find i such that di >NW d
′
i+1 by the condition (2) in Lemma 3.1.9. Furthermore, di−1 >NW d

′
i

for some i is equivalent to a′i−1+m < ai since bi−1 < b′i+m is redundant by our choice of m.

The constants η and θ are the smallest integers such that

ai ≤ a′i+η, bi ≤ b′i+ρ−ρ′+θ (i ∈ Z),

respectively. By the minimality of η, θ, we have η ≤ m and θ ≤ ρ2 − ρ1 +m.

Suppose that d = dsww . Then by the above observation, there exists i with ai > a′i+m−1.

In this case, we have m− 1 < η ≤ m by the minimality of η. Hence η = m and

ρ′ − ρ ≥ θ −m = θ − η = r.
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Note that we have η ≥ ρ− ρ′ + θ, which implies that bi ≤ b′i+η.

Conversely, suppose that ρ′ − ρ ≥ θ − η. Since ρ′ − ρ+ η ≥ θ, we have

bi ≤ b′i+ρ−ρ′+(ρ′−ρ1+η) = b′i+η (i ∈ Z).

Since ai ≤ a′i+η, we have m ≤ η by the minimality of m, which implies a′i+m−1 < ai for

some i. Hence d = dsww .
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Chapter 4

Affine Crystals

In this chapter, we provide background information on quantum affine algebras, extremal

weight modules, and their crystal bases, which are essential to our study. The chapter is

structured as follows:

• In Section 4.1, we review the general theory of representations of quantum groups,

based on the work of [17, 18]. We adopt the notations introduced in [10].

• In Section 4.2, we focus on the affine case where g = ŝln. Following the results of

[1, 19], we introduce an affine crystal structure on the sets of tableaux presented in

Chapter 2.

Throughout this chapter, we assume that n is an integer greater than 1, and work

over the field of rational polynomials Q(q).

4.1 Crystals bases

4.1.1 Quantum groups and their representations

Let I be a finite index set, and let A = (aij)i,j∈I be a generalized Cartan matrix, which is

a square matrix with entries in Z that satisfies the following conditions:

(1) aii = 2 for all i ∈ I,

(2) aij ≤ 0 for all i ̸= j ∈ I,

(3) aij = 0 if and only if aji = 0 for all i, j ∈ I.
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A generalized Cartan matrix is called symmetrizable if there exists a diagonal matrix

D = diag(si)i∈I such that DA is a symmetric matrix. In this thesis, we assume that

the generalized Cartan matrix A is symmetrizable, with the diagonal entries si being

coprime integers. Let P∨ be a finitely generated abelian group which we call a dual

weight lattice, and let P = HomZ(P
∨,Z) be the weight lattice with the natural pairing

⟨ · , · ⟩ : P∨ × P −→ Z. We fix subsets Π∨ = {hi}i∈I ⊂ P∨ and Π = {αi}i∈I ⊂ P

sastisfying ⟨hi, αj⟩ = aij. The elements hi and αi are called simple coroots and simple

roots respectively. The quintuple (A,P∨, P,Π∨,Π) is called a Cartan datum associated

with A. A Cartan datum corresponds to a symmetrizable Kac-Moody algebra g (see

[15, Chapter 1] for details).

Definition 4.1.1. Let (A,P∨, P,Π∨,Π) be a Cartan datum, and let g be the correspond-

ing Kac-Moody algebra. The quantum group or quantized universal enveloping algebra

Uq(g) is an associative Q(q)-algebra with 1, generated by the symbols ei, fi (i ∈ I) and

qh (h ∈ P∨) with the following defining relations:

(1) q0 = 1, qh+h′
= qhqh

′
for h, h′ ∈ P∨,

(2) qheiq
−h = q⟨h,αi⟩ei for h ∈ P∨,

(3) qhfiq
−h = q−⟨h,αi⟩fi h ∈ P∨,

(4) eifj − fjei = δij
Ki−K−1

i

qi−q−1
i

for i, j ∈ I,

(5)
∑1−aij

k=0 (−1)ke
(1−aij−k)
i eje

(k)
i = 0 for i ̸= j,

(6)
∑1−aij

k=0 (−1)kf
(1−aij−k)
i fjf

(k)
i = 0 for i ̸= j,

where qi = qsi , Ki = qsihi , and

[k]x = (xk − x−k)/(x− x−1), [k]x! = [1]x[2]x · · · [k]x,
e
(k)
i = eki /[k]qi !, f

(k)
i = fk

i /[k]qi !.

Let ∆ : Uq(g) −→ Uq(g)⊗ Uq(g) be the Q(q)-algebra homomorphism defined by

∆(ei) = ei ⊗K−1
i + 1⊗ ei, ∆(fi) = fi ⊗ 1 +Ki ⊗ fi, ∆(qh) = qh ⊗ qh,
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for i ∈ I and h ∈ P∨. The map ∆ is called a comultiplication on Uq(g). For Uq(g)-modules

V and W , the tensor product V ⊗Q(q) W admits an Uq(g)-module structure via ∆. We

denote the resulting module by V ⊗W .

An element λ ∈ P is called a weight. Let V be a Uq(g)-module. A non-zero vector

v ∈ V is called a weight vector of weight µ ∈ P if qhv = q⟨h,µ⟩v for all h ∈ P∨. We call V

a weight module if it admits a weight space decomposition V = ⊕µ∈PVµ where

Vµ = { v ∈ V | qhv = q⟨h,µ⟩v for all h ∈ P∨ }.

A weight module V is called integrable if all ei and fi are locally nilpotent on V , i.e., for

every v ∈ V , there exists non-negative integer N such that eNi v = fN
i v = 0 for all i ∈ I.

A weight λ is called dominant if ⟨hi, λ⟩ ≥ 0 for all i ∈ I.

Definition 4.1.2. For a dominant weight λ, let V (λ) be a Uq(g)-module generated by

the single element uλ with reltations

qhuλ = q⟨h,λ⟩uλ, eiuλ = 0, f
1+⟨hi,λ⟩
i uλ = 0

for h ∈ P∨ and i ∈ I. It is known that V (λ) is irreducible and integrable. The generator

uλ is called a highest weight vector and λ is a highest weight. We call V (λ) a irreducible

highest weight module of weight λ.

4.1.2 Weyl groups and extremal weight modules

For i ∈ I, let si : P −→ P be the simple reflection defined by

si(λ) = λ− ⟨hi, λ⟩αi.

We denote by W the subgroup of GL(P ) generated by si (i ∈ I), which we call the Weyl

group of g. For w ∈ W and λ ∈ P , we simply write wλ rather than w(λ).

Let V be an integrable module and u ∈ V be a weight vector of weight λ. We call u

an extremal vector if there exists a family of vectors {uw}w∈W such that

• ue = u for the identity e ∈ W ,

• if ⟨hi, wλ⟩ ≥ 0, then eiuw = 0 and f
(⟨hi,wλ⟩)
i uw = usiw,

• if ⟨hi, wλ⟩ ≤ 0, then fiuw = 0 and e
(−⟨hi,wλ⟩)
i uw = usiw.
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Note that uw is a weight vector of weight wλ. We denote uw by Swu.

Definition 4.1.3. For λ ∈ P , let V (λ) be a Uq(g)-module generated by uλ with the

defining relations that uλ is an extremal weight vector of weight λ. We call it an extremal

weight module of weight λ.

For a dominant weight λ, the extremal weight module V (λ) is the irreducible highest

weight module of highest weight λ. Hence we use the same notation V (λ). The map

uλ 7→ Sw−1uwλ induces an Uq(g)-module isomorphism

V (λ)
∼−→ V (wλ) (4.1.1)

for any w ∈ W .

4.1.3 Crystal bases and crystal graphs

Let V be an integrable Uq(g)-module. For i ∈ I, every weight vector u ∈ V of weight λ

can be written uniquely in the form

u =
N∑

k=0

f
(k)
i uk, (4.1.2)

where N ∈ Z≥0 and uk ∈ ker ei ∩ Vλ+kαi
for k ≥ 0. Here uk ̸= 0 only if λ(hi) + k ≥ 0. We

define operators ẽi, f̃i (i ∈ I) by

ẽiu =
N∑

k=1

f
(k−1)
i uk, f̃iu =

N∑

k=0

f
(k+1)
i uk.

The operators ẽi and f̃i are called the Kashiwara operators.

Let A0 ⊂ Q(q) be the ring of regular functions at q = 0. An A0-lattice of Q(q)-module

V is an A0-submodule L of V such that Q(q)⊗A0 L = V . Let V be an Uq(g)-module. An

A0-lattice L of V is called a crystal lattice if

(1) L = ⊕µ∈PLµ, where Lµ = L ∩ Vµ,

(2) ẽiL ⊂ L, f̃iL ⊂ L for all i ∈ I.

Note that ẽi and f̃i induces Q-linear operators on L/qL, which we shall denote by the

same symbols.
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Definition 4.1.4. A crystal base of a Uq(g)-module V is a pair (L,B) such that

(1) L is a crystal lattice of V ,

(2) B is a Q-basis of L/qL,

(3) B = ∪µ∈PBµ where Bµ = B ∩ (Lµ/qLµ),

(4) ẽiB ⊂ B ∪ {0}, f̃iB ⊂ B ∪ {0} for i ∈ I where 0 is the zero vector in L/qL,

(5) for any b, b′ ∈ B and i ∈ I, we have ẽib = b′ if and only if f̃ib
′ = b.

We may call B a crystal base if (L,B) is a crystal base of a Uq(g)-module V for some

crystal lattice L of V .

Theorem 4.1.5 ([18]). For λ ∈ P , the extremal weight module V (λ) is integrable and

has a crystal basis B(λ).

We regard a crystal base B as a directed I-colored graph, which we call crystal graph,

whose arrows consist of

b
i−→ b′ if and only if f̃ib = b′

for b, b′ ∈ B and i ∈ I.

Example 4.1.6. Let A = (2) be the 1×1 Cartan matrix with I = {1}, and let P∨ = Zh,
P = ZΛ with ⟨h,Λ⟩ = 1 and α = 2Λ. Then sl2 is the Kac-Moody algebra corresponding

to the Cartan datum (A,P∨, P, {h}, {α}), and the quantum group Uq(sl2) is generated

by the symbols e, f , and q±h under the defining relations

qhq−h = q−hqh = 1, qheq−h = q2e, qhfq−h = q−2f, ef − fe =
qh − q−h

q − q−1
.

For a non-negative integer ℓ, let V (ℓ) be an (ℓ+ 1)-dimensional vector space with a basis

{u(ℓ)0 , . . . , u
(ℓ)
ℓ }. We define the Uq(sl2)-action on V (ℓ) by

eu
(ℓ)
k = [ℓ− k + 1]qu

(ℓ)
k−1, fu

(ℓ)
k = [k + 1]qu

(ℓ)
k+1, qhu

(ℓ)
k = qℓ−2ku

(ℓ)
k ,

where we understand that u
(ℓ)
−1 = u

(ℓ)
ℓ+1 = 0. It is straightforward to see that V (ℓ) is the

irreducible highest weight Uq(sl2)-module of weight ℓΛ.
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Let L(ℓ) be the A0-submodule of V (ℓ) spanned by u
(ℓ)
0 , . . . , u

(ℓ)
ℓ , and let B(ℓ) =

{u(ℓ)0 , u
(ℓ)
1 , . . . , u

(ℓ)
ℓ } where u

(ℓ)
k = u

(ℓ)
k + qL(ℓ) ∈ L(ℓ)/qL(ℓ). Then the pair (L(ℓ), B(ℓ)) is

a crystal base of V (ℓ), and the crystal graph is

u
(ℓ)
0 −→ u

(ℓ)
1 −→ · · · −→ u

(ℓ)
ℓ .

For a crystal basis B, we define wt(b) = λ for b ∈ Bλ, and define εi, φi : B −→ Z≥0

(i ∈ I) by

εi(b) = max{ k ∈ Z≥0 | ẽki b ̸= 0 }, φi(b) = max{ k ∈ Z≥0 | f̃k
i b ̸= 0 }, (4.1.3)

for b ∈ B.

Theorem 4.1.7. Let V1, V2 be Uq(g)-modules with crystal bases (L1, B1), (L2, B2), re-

spectively. We have

(1) V1 ⊕ V2 has a crystal basis (L1 ⊕ L2, B1 ⊔B2),

(2) V1 ⊗ V2 has a crystal basis (L1 ⊗A0 L2, B1 ⊗B2).

Here, we understand B1⊗B2 as the set of images of b1⊗b2 under the natural isomorphism

L1/qL1 ⊗Q L2/qL2
∼−→
(
L1 ⊗A0 L2

)
/q
(
L1 ⊗A0 L2

)

for b1 ∈ B1, b2 ∈ B2. Moreover, the action of Kashiwara operators on B1 ⊗ B2 are given

by

ẽi(b1 ⊗ b2) =




ẽib1 ⊗ b2 if φi(b1) ≥ εi(b2),

b1 ⊗ ẽib2 if φi(b1) < εi(b2),

f̃i(b1 ⊗ b2) =




f̃ib1 ⊗ b2 if φi(b1) > εi(b2),

b1 ⊗ f̃ib2 if φi(b1) ≤ εi(b2).

(4.1.4)

Hence, we have

wt(b1 ⊗ b2) = wt(b1) + wt(b2),

εi(b1 ⊗ b2) = max{εi(b1), εi(b2)− wt(b1)(hi)},
φi(b1 ⊗ b2) = max{φi(b1) + wt(b2)(hi), φi(b2)}.

(4.1.5)
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Here, we understand that 0⊗ b2 = b1 ⊗ 0 = 0.

The equations (4.1.4) and (4.1.5) together are called the tensor product rule. The

tensor product rule gives a combinatorial description of the action of Kashiwara operators

on the multifold tensor product of crystal bases. Let B1, . . . , Br be crystals bases. Let

σ = (. . . , σ−1, σ0, σ1, . . . ) be a sequence with σk ∈ {+, −, · } such that σk = · except
for finitely many k ∈ Z. We replace (σs, σt) = (+,−) with ( · , · ) if s < t and σk = ·
for s < k < t. Repeating this as far as possible, we get a reduced sequence σ̃ where no

+ precedes −. Note that σ̃ is independent on the order of the replacements, and σ̃ is a

sequence of −’s followed by +’s if we neglect · ’s. For bk ∈ Bk (k = 1, . . . , r) and i ∈ I,

let

σ = (− · · ·−︸ ︷︷ ︸
εi(b1)

, + · · ·+︸ ︷︷ ︸
φi(b1)

, · · · , − · · ·−︸ ︷︷ ︸
εi(br)

,+ · · ·+︸ ︷︷ ︸
φi(br)

).

The reduced sequence σ̃ is called the i-signature of b = b1 ⊗ · · · ⊗ br. Then ẽib and f̃ib are

given by

ẽib =




b1 ⊗ · · · ⊗ ẽibs ⊗ · · · ⊗ br

if σ̃ has − and the rightmost −
in σ̃ comes from the s-th factor,

0 otherwise,

f̃ib =




b1 ⊗ · · · ⊗ f̃ibt ⊗ · · · ⊗ br

if σ̃ has + and the leftmost +

in σ̃ comes from the t-th factor,

0 otherwise.

(4.1.6)

Example 4.1.8. Let B(4) = {u(4)0 , u
(4)
1 , u

(4)
2 , u

(4)
3 , u

(4)
4 } be the crystal base of the

Uq(sl2)-module V (4) given in Example 4.1.6. Let b = u
(4)
3 ⊗ u

(4)
1 ⊗ u

(4)
3 ∈ B(4)⊗3. We see

that

σ = (−,−,−,+,−,+,+,+,−,−,−,+),

σ̃ = (−,−,−, · , · , · , · , · , · , · , · ,+).

since ε(u
(4)
k ) = k and φ(u

(4)
k ) = 4− k. Hence we have

ẽ b = ẽ u
(4)
3 ⊗ u

(4)
1 ⊗ u

(4)
3 = u

(4)
2 ⊗ u

(4)
1 ⊗ u

(4)
3 ,

f̃ b = u
(4)
3 ⊗ u

(4)
1 ⊗ f̃ u

(4)
3 = u

(4)
3 ⊗ u

(4)
1 ⊗ u

(4)
4 .
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Let B be a crystal basis. It is straightforward to see that the maps ẽi, f̃i, εi, φi (i ∈ I)

and wt satisfy

wt(b)(hi) = φi(b)− εi(b),

εi(ẽib) = εi(b)− 1, φi(ẽib) = φi(b) + 1, wt(ẽib) = wt(b) + αi if ẽib ̸= 0,

εi(f̃ib) = εi(b) + 1, φi(f̃ib) = φi(b)− 1, wt(f̃ib) = wt(b)− αi if f̃ib ̸= 0.

We define the abstract notion of crystals by characterizing these maps.

Definition 4.1.9. Let I be a finite index set and (A,P, P∨,Π,Π∨) be a Cartan datum.

A Uq(g)-crystal is a set B together with the maps ẽi, f̃i : B −→ B ⊔ {0}, εi, φi : B −→
Z ⊔ {−∞} (i ∈ I) and wt : B −→ P satisfying

wt(b)(hi) = φi(b)− εi(b),

εi(ẽib) = εi(b)− 1, φi(ẽib) = φi(b) + 1, wt(ẽib) = wt(b) + αi if ẽib ̸= 0,

εi(f̃ib) = εi(b) + 1, φi(f̃ib) = φi(b)− 1, wt(f̃ib) = wt(b)− αi if f̃ib ̸= 0,

f̃ib = b′ if and only if b = ẽib
′,

ẽib = f̃ib = 0 if φi(b) = −∞.

for b, b′ ∈ B where 0 is a formal symbol. Here, we understand −∞+ k = −∞ for k ∈ Z.

We omit the prefix Uq(g) if there is no confusion. We regard B as a directed I-colored

graph, similar to the crystal base. Let B1 and B2 be crystals. A morphism ψ : B1 −→ B2

is a map from B1 ⊔ {0} to B2 ⊔ {0} such that

ψ(0) = 0,

wt(ψ(b)) = wt(b), εi(ψ(b)) = εi(b), φi(ψ(b)) = φi(b) if ψ(b) ̸= 0,

ψ(ẽib) = ẽiψ(b) if ψ(b) ̸= 0 and ψ(ẽib) ̸= 0,

ψ(f̃ib) = f̃iψ(b) if ψ(b) ̸= 0 and ψ(f̃ib) ̸= 0

for b ∈ B1 and i ∈ I. A morphism ψ is called embedding if ψ is injective, and is called

strict if ψ commutes with ẽi, f̃i for all i ∈ I. Here, we understand ẽi0 = f̃i0 = 0. We

call ψ a isomorphism if ψ is bijective. For b1 ∈ B1 and b2 ∈ B2, we say that b1 is crystal

equivalent to b2 if there exists an isomorphism of crystals C(b1) −→ C(B2) sending b1

to b2, where C(bk) denote the connected component of Bk containing bk for k = 1, 2.
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For example, the isomorphism (4.1.1) of Uq(g)-module from the extremal weight modules

V (λ) to V (wλ) induces the isomorphism of Uq(g)-crystals from B(λ) to B(wλ).

We remark that crystal bases of integrable Uq(g)-modules are Uq(g)-crystals indeed.

However, there exists a crystal which is not isomorphic to any crystal basis.

Example 4.1.10. For a weight λ ∈ P , the set Tλ = {tλ} with the maps

wt(tλ) = λ, εi(tλ) = φi(tλ) = −∞, ẽi(tλ) = f̃i(tλ) = 0

is a crystal. But it is not a crystal bases of a Uq(g)-module since tλ fails to satisfy (4.1.3).

A crystal B satisfying (4.1.3) is called semi-normal. For a semi-normal crystal B and

b ∈ B, let Ci(b) be the i-string containing b, that is, the set of b′ ∈ B connected to b by

i-arrows. Then Ci(b) is isomorphic to the Uq(sl2)-crystal B(ℓ), which is given in Example

4.1.6, where ℓ = φi(b) + εi(b) is the length of Ci(b).

Let B1, B2 be crystals. The disjoint union B1 ⊔B2 has a crystal structure in obvious

manner. Let B1 ⊗ B2 be the set of symbols b1 ⊗ b2 for b1 ∈ B1, b2 ∈ B2. We define a

crystal structure on B1 ⊗ B2 by the tensor product rule (4.1.4), (4.1.5). Note that, for

another crystal B3, we have

(B1 ⊗B2)⊗B3
∼= B1 ⊗ (B2 ⊗B3)

as crystals. For semi-normal crystals B1, . . . , Br, the action of the Kashiwara operators

on B1 ⊗ · · · ⊗Br enjoy the same combinatorial rule described in (4.1.6).

4.2 Crystals of quantum affine algebras

4.2.1 Quantum affine algebras

Let I = { 0, 1, . . . , n− 1 } be the index set and let (A,P∨, P,Π∨,Π) be the Cartan datum

defined as follows:
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(1) A = (aij)i,j∈I , the Cartan matrix where

aij =





2 if i = j,

−1 if i− j = ±1 (mod n > 2),

−2 if i− j = ±1 (mod n = 2),

0 otherwise,

(2) P∨ = Zh0 ⊕ · · · ⊕ Zhn−1 ⊕ Zd: the dual weight lattice,

(3) P = ZΛ0⊕ · · ·⊕ZΛn−1⊕Zδ: the weight lattice, where {Λ0, . . .Λn−1, δ } is the dual

basis of {h0, . . . , hn−1, d } with respect to ⟨ · , · ⟩,

(4) Π∨ = {hi }i∈I : the simple coroots,

(5) Π = {αj =
∑n−1

i=0 aijΛi + δj0δ }j∈I : the simple roots.

Here, δj0 is the Kronecker delta. The Kac-Moody algebra corresponding to the Cartan

datum (A,P∨, P,Π∨,Π) is the affine Lie algebra ŝln, and we call the quantum group

Uq(ŝln) a quantum affine algebra.

We call the element c = h0+ . . .+hn−1 the canonical central element. The value ⟨c, λ⟩
for λ ∈ P is called the level of λ. Note that the simple roots αi and δ have level zero. We

denote by P 0 the set of level zero weights.

Let us introduce other families of level zero weights as follows:

(1) ϵi = Λi − Λi−1 for i = 1, . . . , n− 1 and ϵn = Λ0 − Λn−1,

(2) ϖi = Λi − Λ0 for i = 1, . . . , n− 1.

We call the elements ϖi the i-th level zero fundamental weights. Then we have the

following relations:

(1) αi = ϵi − ϵi+1 for i = 1, . . . , n− 1 and α0 = ϵn − ϵ1 + δ,

(2) ϖi = ϵ1 + · · · ϵi for i = 1, . . . , n− 1 and 0 = ϵ1 + · · ·+ ϵn.

Let P∨
cl =

⊕n−1
i=0 Zhi and let P∨

fin =
⊕n−1

i=1 Zhi. Then we have the following identifica-

tions

HomZ(P
∨
cl ,Z) = cl(P ), HomZ(P

∨
fin,Z) = cl(P 0)
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where cl : P −→ P/Zδ is the canonical projection.

The subalgebra U ′
q(ŝln) of Uq(ŝln) generated by ei, fi and Ki (i = 0, . . . , n − 1) is

called also the quantum affine algebra. It is the quantum group Uq(g) corresponding to

the Cartan datum (A,P∨
cl , cl(P ),Π

∨, cl(Π)), where g is the derived subalgebra [ŝln, ŝln].

Note that cl(Π) is linearly dependent. Similarly, the subalgebra of Uq(ŝln) generated by

ei, fi and Ki (i = 1, . . . , n − 1) is the quantum group Uq(sln), which corresponds to

the Cartan datum ((aij)
n−1
i,j=1, P

∨
fin, cl(P

0), {hi}n−1
i=1 , {cl(αi)}n−1

i=1 ). Hence we have a chain of

subalgebras

Uq(sln) ⊂ U ′
q(ŝln) ⊂ Uq(ŝln),

and any Uq(ŝln)-crystals B can be regarded as U ′
q(ŝln)-crystals or Uq(sln)-crystals.

Example 4.2.1.

(1) For 1 ≤ b ≤ n, let

Bb,1 =
{
(x1, . . . , xn)

∣∣∣x1, . . . , xn ∈ {0, 1},
n∑

i=1

xi = b
}
.

with the U ′
q(ŝln)-crystal structure

ẽi(x1, . . . , xn) =




(x1, . . . , xi + 1, xi+1 − 1, . . . , xn) if xi = 0 and xi+1 = 1,

0 otherwise,

f̃i(x1, . . . , xn) =




(x1, . . . , xi − 1, xi+1 + 1, . . . , xn) if xi = 1 and xi+1 = 0,

0 otherwise,

εi(x1, . . . , xn) = max{xi+1 − xi, 0},
φi(x1, . . . , xn) = max{xi − xi+1, 0},

wt(x1, . . . , xn) =
n−1∑

i=0

xicl(ϵi),

for i ∈ I, where the indices are understood modulo n. Indeed, Bb,1 is a well-defined

semi-normal U ′
q(ŝln)-crystal. Let

W b,1 =
⊕

x∈Bb,1

Q(q)x

40



CHAPTER 4. AFFINE CRYSTALS

with the U ′
q(ŝln)-action

eix =




ẽix if ẽix ̸= 0,

0 otherwise
, fix =




f̃ix if f̃ix ̸= 0,

0 otherwise

and Kix = qxi−xi+1x. We see that W b,1 is an irreducible U ′
q(ŝln)-module and has a

crystal basis Bb,1. Note that W b,1 is a one-dimensional trivial module when b = 1.

(2) Similarly, let

B1,a =
{
(x1, . . . , xn)

∣∣∣x1, . . . , xn ∈ Z≥0,
n∑

i=1

xi = a
}
.

with the U ′
q(ŝln)-crystal structure

ẽi(x1, . . . , xn) =




(x1, . . . , xi + 1, xi+1 − 1, . . . , xn) if xi+1 > 0,

0 otherwise,

f̃i(x1, . . . , xn) =




(x1, . . . , xi − 1, xi+1 + 1, . . . , xn) if xi > 0,

0 otherwise,

εi(x1, . . . , xn) = xi+1,

φi(x1, . . . , xn) = xi,

wt(x1, . . . , xn) =
n−1∑

i=0

xicl(ϵi),

for i ∈ I and a ≥ 1. Let

W 1,a =
⊕

x∈B1,a

Q(q)x

with the U ′
q(ŝln)-actions

eix =




[xi + 1]qẽix if ẽix ̸= 0,

0 otherwise
, fix =




[xi+1 + 1]qf̃ix if f̃ix ̸= 0,

0 otherwise

and Kix = qxi−xi+1x. It is straightforward to see that W 1,a is an irreducible U ′
q(ŝln)-
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module and has a crystal base B1,a.

Note that the set the set of column semistandard tableaux CSST[n]((1
b)) can be

identified with the set Bb,1 by reading the content of a tableau. Similarly, we identify

RSST[n]((a)) with B1,a. In general, there is a falimy of finite-dimensional irreducible

U ′
q(ŝln)-module W b,a for 1 ≤ b < n and 1 ≤ a whose crystal base Bb,a can be identified

with the set of semistandard [n]-tableaux of rectangular shape (ab). The module W b,a

is called the Kirillov-Reshetikhin (KR) module and the Bb,a is called KR crystal. As a

Uq(sln)-module, W b,a is the irreducible highest weight module V (acl(ϖb)). The corre-

sponding Uq(sln)-crystal structure on Bb,a ∼= B(acl(ϖb)) is described in [21] in terms of

semistandard tableaux. Chari and Presseley [4] realized W b,a as the minimal affinization

of V (acl(ϖb)). Another realization of W b,a can be obtained from the fusion construction

[16]. It follows that the crystal basis Bb,a is a perfect crystal of level a (see [16, Definition

1.1.1.]).

Definition 4.2.2. Let λ = (λ1, . . . , λl) be a partition with l ≤ n, and let µ = (µ1, . . . , µλ1)

be the conjugate partition of λ. We define the U ′
q(ŝln)-crystal structure on CSST[n](λ) by

identifying

CSST[n](λ) // Bµλ1
,1 ⊗ · · · ⊗Bµ1,1

T � // T λ1 ⊗ · · · ⊗ T 1

,

where T j is the j-th column of T from the right. Similarly, we define the U ′
q(ŝln)-crystal

structure on RSST[n](λ) by identifying

RSST[n](λ) // B1,λ1 ⊗ · · · ⊗B1,λl

T � // T l ⊗ · · · ⊗ T 1

,

where T i is the i-th row of T from the bottom.

4.2.2 Affinization

Recall the map cl : P −→ P/Zδ is the canonical projection. We define a map aff :

cl(P ) −→ P by

aff(cl(Λi)) = Λi

for i ∈ I. Note that cl ◦ aff = idcl(P ) and aff(cl(αi)) = αi except for i = 0.

42



CHAPTER 4. AFFINE CRYSTALS

Let W be a finite-dimensional U ′
q(ŝln)-module with a crystal base B. For an indeter-

minate z, let

W aff = Q(q)[z±1]⊗Q(q) W

and define the Uq(ŝln)-actions

ei(z
t⊗v) = zt+δi0⊗eiv, fi(z

t⊗v) = zt−δi0⊗fiv, Ki(z
t⊗v) = zt⊗Kiv, qd(zt⊗v) = qtzt⊗v,

where δi0 is the Kronecker delta. Then W aff is a well-defined Uq(ŝln)-module, and has the

crystal base Baff = Z×B where the Kashiwara operators ẽi and f̃i act on (t, b) ∈ Baff by

ẽi(t, b) = (t+ δi0, ẽib), f̃i(t, b) = (t− δi0, f̃ib).

We call W aff and Baff the affinization of W and B, respectively. Let z be the automor-

phism of the U ′
q(ŝln)-module W aff given by the multiplication by z. By specializing W aff

at z = 1, we recover the U ′
q(ŝln)-module

W ∼= W aff/(z − 1)W aff .

Similarly, let z be the automorphism of U ′
q(ŝln)-crystal on B

aff defined by z(t, b) = (t+1, b).

Then we recover the crystal B by identifying

B = Baff/Z

where Baff/Z is understood as the set of orbits of z.

Let W = W b,1 be the finite-dimensional irreducible U ′
q(ŝln)-module given in Example

4.2.1 (1), with the crystal base B = Bb,1 = CSST[n]((1
b)). We define the Uq(ŝln)-crystal

structure on B((1b)) by identifying τ t(T ) ∈ B((1b)) with (−t, T ) ∈ Z × CSST[n]((1
b)) =

Baff (cf. (2.3.2))

More explicitly, let T ∈ B((1b)) be given with entries T (1) < T (2) < · · · < T (b). Then

ẽiT is given as follows:

(1) if T (k) ≡ i + 1 (mod n) and T (k − 1) < T (k) − 1 for some 2 ≤ k ≤ b, then ẽiT is

the tableau obtained by replacing T (k) with T (k)− 1,

(2) if T (1) ≡ i+ 1 (mod n) and T (b) < T (1)− 1 + n, then ẽiT is the tableau obtained

by replacing T (1) with T (1)− 1,
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(3) otherwise, ẽiT = 0.

We see that f̃iT is given in a similar manner. Note that every integer k can be uniquely

written in the form

k = sn+ r (4.2.1)

with s ∈ Z and 1 ≤ r ≤ n. Then the weight of T ∈ B((1b)) is given by

wt(T ) =
b∑

k=1

wt(T (i)),

where wt(k) = ϵr − sδ ∈ P 0 according to (4.2.1) By definition, we have the following

lemma.

Lemma 4.2.3. Let T ∈ B((1b)) be given. We have

ẽiτ(T ) = τ(ẽiT ), f̃iτ(T ) = τ(f̃iT ), wt(τ(T )) = wt(T )− δ.

We note that B((1n)) can be identified with the crystal Z whose crystal structure

given by

wt(t) = −tδ, εi(t) = φi(t) = 0, ẽit = f̃it = 0

for t ∈ Z, which corresponds to the tableau τ t(T(1n)) whose entry from the i-th row from

the top is t+ i.

Proposition 4.2.4. For b < n, the Uq(ŝln)-crystal B((1b)) is isomorphic to the crystal

base B(ϖb) of the extremal weight module V (ϖb).

Proof. Let W aff be the affinization of W = W b,1. According to the realization of W b,1

given in Example 4.2.1(1), W has a basis {z−t ⊗T | t ∈ Z, T ∈ CSST[n]((1
b)) } which can

be parametrized by τ−t(T ) ∈ B((1b)). It follows that the Uq(ŝln)-actions on W
aff is given

by

eiT =




ẽiT if ẽiT ̸= 0,

0 otherwise
, fiT =




f̃iT if f̃iT ̸= 0,

0 otherwise

for T ∈ B((1b)). In particular, we see that W aff is irreducible and is generated by the

extremal weight vector T(1b) of level zero weight ϖb, where T(1b) is the tableau whose i-th

entry from the top is i. By [19, Proposition 5.16.], W aff is isomorphic to V (ϖb) and the

assertion follows.
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Remark 4.2.5. Consider the row analogous case W = W 1,a. We see also in this case

that the affinization W aff is irreducible and is generated by the extremal weight vector

z0 ⊗ T(a) of weight aϖ1, where T(a) is the row semistandard tableau of shape (a) whose

all entries are 1. However, the extremal weight module V (aϖ1) has a proper submodule

if a > 1.

4.2.3 Crystals of level zero extremal weight modules

Let R = (ab) be a rectangular shape with b ≤ n. We identify B(R) as the subset of

B((1b))⊗ · · · ⊗B((1b)) by the embedding

B(R) // B((1b))⊗ · · · ⊗B((1b))

T � // T a ⊗ · · · ⊗ T 1

,

where T j is the j-th column of T from the right. By the following lemma, we regard B(R)

as a subcrystal of B((1b))⊗ · · · ⊗B((1b)).

Lemma 4.2.6. The subset B(R) of B((1b))⊗ · · · ⊗ B((1b)) is invariant under ẽi and f̃i

for i ∈ I.

Proof. It is enough to show that ẽiT and f̃iT are semistandard for T ∈ B(R). The proof

is similar to the case of Uq(sln)-crystal (cf. [10, Chapter 7.]).

Recall the definition of T ∈ B(R)0 is that (T
j+1, τ−1(T j)) is not semistandard for any

subtableau (T j+1, T j) of T . Let TR be the semistandard tableaux all whose entries in the

i-th row of TR from the top is i.

Proposition 4.2.7. The subset B(R)0 of B(R) is invariant under ẽi and f̃i for i ∈ I.

Moreover, B(R)0 is the connected component of B(R) containing TR if b < n.

Proof. Let T = (T a, . . . , T 1) ∈ B(R)0 be given.

Suppose that ẽiT ̸∈ B(R)0 ∪ {0} for some i. Then ẽiT = (. . . , ẽiT
j, . . .) for some 1 ≤

j ≤ a, and ẽiT
j is obtained from T j by replacing T j(k) with T j(k)−1 for some 1 ≤ k ≤ b.

Since T ∈ B(R)0 but ẽiT ̸∈ B(R)0, at least one of (ẽiT
j, τ−1(T j−1)) or (T j+1, τ−1(ẽiT

j))

is semistandard. Suppose that (ẽiT
j, τ−1(T j−1)) is semistandard. Considering ẽiT ∈

B(R), it is straightforward to see that (T j, τ−1(T j−1)) is also semistandard, which is a

contradiction. For the other cases, we have similar contradiction. By the same arguments,

we also have f̃iT ∈ B(R)0 ∪ {0}. Hence B(R)0 is closed under ẽi and f̃i for i ∈ I.
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We now claim that any T ∈ B(R)0 is connected to TR. Let t = T a(1) be the entry in the

first row of the first column of T . We first show that T ∈ B(R)0 is connected to T0 = T
(t)
R ,

where T
(t)
R is the element of B(R) such that the i-th row from the top is filled with t+ i−1

for 1 ≤ i ≤ b. Suppose that T ̸= T0. Let d(T ) =
∑a

j=1

∑b
k=1(T

j(k) − T j
0 (k)) ≥ 0. Since

T ∈ B(R)0 and B(R)0 is closed under ẽi and f̃i, we have 0 ≤ d(ẽiT ) < d(T ) for each i

such that ẽiT ̸= 0. Note that there exists at least one i such that ẽiT ̸= 0. For example,

choose the smallest k such that T 1(k) ̸= T 1
0 (k) and then i = T 1(k)− 1. By induction on

d(T ), we conclude that T is connected to T0.

Next, we have 


ẽat+b−2 . . . ẽ

a
t ẽ

a
t−1T0 = T

(t−1)
R (t > 1),

f̃a
t . . . f̃

a
t+b−2f̃

a
t+b−1T0 = T

(t+1)
R (t < 1).

Repeating this step, we conclude that T0 is connected to TR = T
(0)
R . Therefore, B(R)0 is

the connected component of B(R) containing TR.

Remark 4.2.8.

(1) Recall the bijection

B(R)0 × Pa−1
// B(R)

(T, ν) � // τ νrev(T )

, (4.2.2)

which is given in (2.3.1). If we regard Pa−1 as a Uq(ŝln)-crystal defined by

ẽiν = f̃i = 0, wt(ν) = −|ν|δ

for ν ∈ Pa−1, the bijection is a crystal isomorphism from B(R)0 ⊗ Pa−1 to B(R).

This isomorphism is also proved in [27, Theorem 2] for an affine Lie algebra g in

terms of Lakshmibai-Seshadri paths.

(2) Suppose that R = (ab) with b = n. In this case, B(R)0 = { τt(uR) | t ∈ Z } =⊕
t∈Z{ τt(uR) }, where each { τt(uR) } forms a trivial crystal of weight −atδ.

Proposition 4.2.9. For R = (ab) b < n, B(R) is isomorphic to the crystal base B(aϖb)

of the extremal weight Uq(ŝln)-module V (aϖb).

Proof. It follows from Proposition 4.2.4, Lemma 4.2.7, Remark 4.2.8 (1), and [1, Theorem

4.16(a)].
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Let λ be a partition with l = ℓ(λ) < n, and (R(1), . . . , R(l)) be the rectangular de-

composition of λ. Following the rectangular decomposition (2.4.1), we regard B(λ) as the

crystal

B(λ) = B(R(1))⊗ · · · ⊗B(R(l))

Let us define ϖλ = m1ϖ1 + · · ·mlϖl, where i is the multiplicity of i in µ.

Proposition 4.2.10. For a partition λ of length less than n, B(λ) is isomorphic to the

crystal base B(ϖλ) of the extremal weight Uq(ŝln)-module V (ϖλ).

Proof. It follows from [1, Theorem 4.16] and [19, Conjectures 13.1, 13.2] (see also

[1, Remark 4.17]).

Remark 4.2.11.

(1) In [12], another proof of Proposition 4.2.10 is given using the standard monomial

theory for semi-infinite Lakshmibai-Seshadri paths [14].

(2) Let Tλ be the tableau of shape λ all whose entries in the i-th row from the top are

i. Then B(λ)0 = B(R(1))0 ⊗ · · · ⊗ B(R(l))0 is the connected component of Tλ in

B(λ) (see [1, Remark 4.17.]). We can prove it directly using the crystal structure

described here.

(3) Suppose that the length of λ is n. We have B(λ) = B(µ) ⊗ B(R(n)), where µ =

(λ1, . . . , λn−1) (see Remark 4.2.8 (2)).
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Affine RSK correspondence

In this chapter, we use the results of Chapter 2 and 3 to get a generalization of affine RS.

Let m and n be positive integers.

5.1 Affine matrix and standardization

Let

M̂m×n =

{
A = (aij)i,j∈Z

∣∣∣∣∣
(1) aij ∈ Z≥0 and ai+mj+n = aij for all i, j ∈ Z,
(2) for each j, aij = 0 except for finitely many i’s

}
.

We call an element A ∈ M̂m×n a affine matrix or an affine matrix for short. For an affine

matrix A = (aij)i,j∈Z, we denote by

row(A) =

(∑

j∈Z

a1j, . . . ,
∑

j∈Z

amj

)
, col(A) =

(∑

i∈Z

ai1, . . . ,
∑

i∈Z

ain

)

the row and column contents of A, respectively. We also denote by

|A| =
m∑

i=1

∑

j∈Z

aij =
n∑

j=1

∑

i∈Z

aij.

the size of A.

Let a = (aj)j∈Z be a single row matrix with aj ∈ Z≥0. If r =
∑

j∈Z aj <∞, we define
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r-row matrix a◦ = (a◦ij)i∈[r],j∈Z by

a◦ij =




1
∑∞

s=j+1 as < i ≤∑∞
s=j as,

0 otherwise.

For example, if a = (. . . , 0, 1, 0, 3, 2, 0, . . . ), then

a◦ =




· · · 0 0 0 0 1 0 · · ·
· · · 0 0 0 0 1 0 · · ·
· · · 0 0 0 1 0 0 · · ·
· · · 0 0 0 1 0 0 · · ·
· · · 0 0 0 1 0 0 · · ·
· · · 0 1 0 0 0 0 · · ·




,

For an affine matrix A = (aij)i,j∈Z, we define A◦ to be the matrix obtained from A by

replacing each row Ai = (aij)j∈Z with A◦
i for i ∈ Z. Similary, we define A◦′ with respect

to the columns of A, that is, A◦′ = ((At)◦)t, where At denotes the transpose of A. Then

we define the standardization of A to be

Ast = (A◦)◦
′
.

By definition, we have Ast = (A◦)◦
′
= (A◦′)◦. If A is non-zero, then Ast is an extended

affine permutation of k = |A|.

Remark 5.1.1. Let a = (aj)j∈Z with aj ∈ Z≥0 and assume that r =
∑

j∈Z aj < ∞. We

define r-row matrix a• = (a•ij)i∈[r],j∈Z by

a•ij =




1
∑j−1

s=−∞ as < i ≤∑j
s=−∞ as,

0 otherwise.
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For a = (. . . , 0, 1, 0, 3, 2, 0, . . . ), we have

a• =




· · · 0 1 0 0 0 0 · · ·
· · · 0 0 0 1 0 0 · · ·
· · · 0 0 0 1 0 0 · · ·
· · · 0 0 0 1 0 0 · · ·
· · · 0 0 0 0 1 0 · · ·
· · · 0 0 0 0 1 0 · · ·




,

We define A• for an affine matrix A similarly. This version of standardization will be used

in Chapter 6.

Let us describe the standardization of affine matrices more explicitly. Assume k =

|A| > 0 and write row(A) = (α1, . . . , αm), col(A) = (β1, . . . , βn). For i ∈ [m] and j ∈ [n],

let

Ii = { r ∈ [k] |α1 + · · ·+ αi−1 < r ≤ α1 + · · ·+ αi−1 + αi },
Jj = { s ∈ [k] | β1 + · · ·+ βj−1 < s ≤ β1 + · · ·+ βj−1 + βj },

where we understand the empty sum is 0, and let

Ii+tm = Ii + tk, Jj+tn = Jj + tk (t ∈ Z).

Then we have

[k] =
⊔

i∈[m]

Ii =
⊔

j∈[n]

Jj,

Z =
⊔

i∈Z

Ii =
⊔

j∈Z

Jj.
(5.1.1)

Example 5.1.2. Let m = 3, n = 4, and let A ∈ M̂3×4 be an affine matrix given by
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1 1 3
1

2
1 1 3

1
2

1 1 3
1

2

j

i

then we have

I1 = { 1, 2, 3, 4, 5 }, I2 = { 6 }, I3 = { 7, 8 },
J1 = { 1 }, J2 = { 2 }, J3 = { 3 }, J4 = { 4, 5, 6, 7, 8 },

and Ast is

1
1

1
1

1
1

1
1

1
1

1
1

1
1

1
1

1
1

1
1

1
1

1
1

j

i

I1

I2

I3

J1 J2 J3 J4
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Suppose that α ∈ Zm
+ and β ∈ Zn

+ are given with k = |α| = |β|. Let M̂m×n(α, β)

be the set of affine matrix whose row and column contents are α, β respectively. Recall

that i ∈ [k] is a descent of an affine permutation w if w(i) > w(i + 1). We say that w is

α-descending if for any t ∈ [n] and i with

α1 + · · ·+ αt−1 + 1 < i < α1 + · · ·+ αt,

i is a descent of w. Let Ŵk,(α,β) denote the set of affine permutation w of k such that w

is α-descending and w−1 is β-descending. The following lemma is the matrix counterpart

of Lemma 2.1.3

Lemma 5.1.3. Under the hypothesis, we have a bijection

M̂m×n(α, β) // Ŵk,(α,β)

A � // Ast

.

Let

supp(A) = { (i, j) ∈ Z× Z | aij ̸= 0 }

be the support of A. It is invariant under the transllation τ = τm,n on Z× Z given by

τ(i, j) = (i+m, j + n) ((i, j) ∈ Z× Z).

Remark 5.1.4. For c = (i, j) ∈ supp(A), we denote by Ast
c the matrix in MZ×Z, which is

equal to Ast at the positions of (k, l) ∈ Ii × Jj and has zero entries elsewhere. Then Ast
c

has an aij × aij block submatrix at Ii × Jj with 1 on the antidiagonal, and zero entries

elsewhere.

The following lemmas follows from the remark above immediately.

Lemma 5.1.5. Let c1, c2 ∈ supp(Ast) be given with c1 = (i1, j1) and c2 = (i2, j2).

(1) If i1 < i2 and c1, c2 ∈ Ii × Z for some i ∈ Z, then c2 ≤ne c1.

(2) If j1 < j2 and c1, c2 ∈ Z× Jj for some j ∈ Z, then c1 ≤ne c2.

Lemma 5.1.6. Let c1, c2 ∈ supp(Ast) be given with ci ∈ supp
(
Ast

c′i

)
for some c′i ∈

supp(A) (i = 1, 2). Then we have
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(1) c2 >NW c1 if and only if c′2 >NW c
′
1,

(2) c2 = τk,k(c1) implies c′2 = τm,n(c
′
1).

where k = |A|.

Following Definitions 3.1.3, 3.1.1, we define streams, channels, and proper numberings

on affine matrices.

Definition 5.1.7. A stream is an infinite collection of cells s = {ci}i∈Z, which is invariant

under τ = τm,n and forms a chain with respect to >NW. A stream s is called a stream of

A if s ⊂ supp(A). A stream s of w is called a channel of A if its flow is maximal among

the streams of A.

Definition 5.1.8. A numbering d : supp(A) −→ Z on A is called proper if

(1) d(c2) < d(c1) if c2 >NW c1,

(2) for any c1 ∈ supp(w), there exists c2 ∈ supp(w) such that c2 >NW c1 and d(c2) =

d(c1)− 1.

Let d be a numbering on A. Let dst be the numbering on supp(Ast) given by

dst(c) = d(c′) if c ∈ supp(Ast
c′ ) for some c′ ∈ supp(A).

Lemma 5.1.9. We have the following:

(1) d is a proper numbering on A if and only if dst is a proper numbering on Ast,

(2) any proper numbering on Ast is given by dst for a unique proper numbering d on A.

Proof. (1) Since no two cells corresponding to non-zero entries in Ast
c (c ∈ supp(A)) are

comparable with respect to >NW (see Remark 5.1.4), it follows from Lemma 5.1.6(1) that

d satisfies the conditions Definition 5.1.8(1) and (2) if and only if dst does so.

(2) Let d′ be a proper numbering on Ast. We claim that d′ = dst for some proper

numbering d on A. By Lemma 5.1.6(1), it suffices to show that d′ is constant on Ast
c for

each c ∈ supp(A). Suppose that it does not hold. Then there exist c1, c2 ∈ Ast
c for some

c ∈ supp(A) such that d′(c1) < d′(c2). By Definition 5.1.8(1), there exists c3 ∈ Ast
c′ for

some c′ ∈ supp(A) such that c′ >NW c and d
′(c3) = d′(c1). Since c3 >NW c1 by Lemma 5.1.6,
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it is a contradiction. This proves the claim.

Hence any proper numbering d on A enjoys properties given in Section 3.1. We denote

by dswA the unique numbering such that (dswA )st = dswAst and call it the southwest channel

numbering on A.

5.2 Matrix-ball construction for affine matrices

In this section, we define matrix-ball construction for affine matrices and construct the

bijection (1.2.1). Throughout this section, we assume that A ∈ M̂m×n is a non-zero affine

matrix.

We will define a matrix analogous of the notions given in Section 3.2

Definition 5.2.1. Let A be an affine matrix and let {zk}k∈Z be the set of zig-zags associ-

ated to dswA . Here zk is the unique zig-zag whose inner corners form the level set (dswA )−1(k).

We define

• A♭ : the matrix in M̂m×n obtained from A by

(i) subtracting one at the inner corners in zk (k ∈ Z),

(ii) adding one at the outer corners in zk (k ∈ Z).

We remark that

(Ast)♭ = (A♭)st,

in the sense that the right-hand side is obtained by removing all zero rows and

columns on the left-hand side.

• s(A) : the stream consisting of the back-post corners of zi’s,

• A(t) = (A(t−1))♭, A(0) = A,

• s(t) = s(A(t−1)),

• µt : the flow of s(t) or the width of A(t−1),

• (at,bt, ρt) : the defining data of s(t).
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for t ≥ 0. It is obvious that there exists s ≥ 1 such that

A(s−1) ̸= ∅, A(s) = ∅,

and we have µ1 ≥ · · · ≥ µs > 0.

Now we let

• λ = µ′ : the conjugate partition of µ = (µ1, . . . , µs),

• P0 : the tableau of shape λ, whose t-th column from the left is at (1 ≤ t ≤ s),

• Q0 : the tableau of shape λ, whose t-th column from the left is bt (1 ≤ t ≤ s),

• ρ = (ρ1, . . . , ρs) ∈ Zs.

We define a map κ0 on M̂m×n by

κ0 : M̂m×n
//
⊔

λ

CSST[m](λ)× CSTS[n](λ)× Zλ1

A � // (P0, Q0, ρ)

, (5.2.1)

We understand that κ0(O) = (∅,∅, 0) where O is the zero matrix, ∅ is the empty tableau

of shape (0).

It is clear that κ0 preserves contents, that is, if A ∈ M̂m×n(α, β) with κ0(A) =

(P0, Q0, ρ), then P0 ∈ CSST[m](λ)α and Q0 ∈ CSST[n](λ)β. The following proposition

shows that κ0 is a generalization of Φ via standardizations.

Proposition 5.2.2. For A ∈ M̂m×n with κ0(A) = (P0, Q0, ρ), we have

κ0(A
st) = (P st

0 , Qst
0 , ρ).

Proof. Assume that A ∈ M̂m×n(α, β) for some α ∈ Zm
≥0 and β ∈ Zn

≥0 with |α| = |β| = k.

Let κ0(A
st) = (P1, Q1, ϱ). We have

P1 ∈ CST[k],α(λ), Q1 ∈ CST[k],β(λ)

for some λ ∈ P. We claim that P0 (resp. Q0) is the image of P1 (resp. Q1) under the

inverse of the bijection in Lemma 2.1.3 and ρ = ϱ. Let { Ii × Jj }i,j∈Z be the partition
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of Z × Z associated to α and β given in (5.1.1). Let s and sst be the stream given from

the the back-post corners of the zig-zags {zt}t∈Z and {zstt }t∈Z associated to dswA and dswAst ,

respectively. Since (dswA )st = dswAst , we have (A♭)st = (Ast)♭ and the flow of s is equal

to that of sst, and s is obtained from sst by replacing each (r, s) in sst with (i, j) when

(r, s) ∈ Ii × Jj. We use induction on k to prove the claim, hence we have P st
0 = P1 and

Qst
0 = Q1.

Let κ0(A) = (P0, Q0, ρ), and let λ be the shape of P0. By the above proposition, we

see that (P st
0 , Qst

0 , ρ) is dominant. Let (R(1), . . . , R(l)) be the rectangular decomposition

of λ.

• P
(i)
0 , Q

(i)
0 : the rectangular decompositions of P0 and Q0,

• ρ(i) ∈ Zmi : the subsequence of ρ corresponding to the rectangular decomposition,

where mi is the occurrence of i in µ.

• η(i) ∈ Pmi−1 : the symmetrized offset vector of P
(i)
0 .

Then we define

Q =
(
τ ρ

(l)+η
(l)
rev(Q

(l)
0 ), . . . , τ ρ

(1)+η
(1)
rev(Q

(1)
0 )
)
=
(
Q(l), . . . , Q(1)

)
. (5.2.2)

Note that the action of τ on Q0 should be understood as τn.

Since the symmetrized offset vectors for (P
(i)
0 )st (resp. (Q

(i)
0 )st) is also η(i) (resp, θ(i)),

we have τ ρ
(i)+η

(i)
rev

k ((Q
(i)
0 )st) ∈ Bk(R

(i)) by Lemma 2.3.3. Consequently, we have Q ∈ Bn(λ)

by Lemma 3.3.5. Then we have the following bijection, which we call the affine RSK

correspondence.

Theorem 5.2.3. We have a bijection

κ : M̂m×n
//

⊔

λ∈Pm∩Pn

CSST[m](λ)×Bn(λ)

A � // (P0, Q)

, (5.2.3)

Example 5.2.4. Let A ∈ M̂4×5 be an affine matrix as follows
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1 1
1 1 2

1 1 1 1
1 1

1 1
1 1 2

1 1 1 1
1 1

1 1
1 1 2

1 1 1 1
1 1

1 1
1 1 2

1 1 1 1
1 1

j

i

The southwest channel numbering dstA on A is given by

7 3

7 3 2

6 5 2 1

1 0

4 0

4 0 1

3 2 1 2

2 3

1 3

1 3 4

0 1 4 5

5 6

2 6

2 6 7

3 4 7 8

8 9

j

z1

z2

z3

i

where zk is the zig-zag corresponding to d
st
A (k) for k = 1, 2, 3. Here we denote the negative

integers −s by s. The stream consisting of the back-post corners of zk (k ∈ Z) is

s(1) = {· · · >NW (2, 4) >NW (3, 6) >NW (4, 7) >NW · · · }.
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By subtracting one at each inner corner and adding one at each outer corner of zk, we

obtain A♭ as follows:

1 1
1 1 1

1 1 1
1

1 1
1 1 1

1 1 1
1

1 1
1 1 1

1 1 1
1

1 1
1 1 1

1 1 1
1

j

i

Repeating this process, we have

1 1
1 1 1

1 1 1
1

1 1
1 1 1

1 1 1
1

1 1
1 1 1

1 1 1
1

j

i

A(1) =

1
1 1

1 1 1

1
1 1

1 1 1

1
1 1

1 1 1

j

i

A(2) =
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1
1

1 1

1
1

1 1

1
1

1 1

j

i

A(3) =

1
1

1
1

1
1

j

i

A(4) =

with A(5) = O, and

s(2) = {· · · >NW (1, 3) >NW (2, 6) >NW (4, 7) >NW · · · },
s(3) = {· · · >NW (2, 0) >NW (3, 2) >NW · · · },
s(4) = {· · · >NW (1,−1) >NW (3, 3) >NW · · · },
s(5) = {· · · >NW (2, 3) >NW (3, 4) >NW · · · }.

Hence κ0(A) = (P0, Q0, ρ), where

P0 = 2 1 2 1 2
3 2 3 3 3
4 4

, Q0 = 1 1 2 3 3
2 2 5 4 4
4 3

, ρ = (2, 2,−1,−1, 0).

The rectangular decompositions of P0, Q0 and ρ are
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P
(2)
0 = 2 1 2

3 3 3
, Q

(2)
0 = 2 3 3

5 4 4
, ρ(2) = (−1,−1, 0),

P
(3)
0 = 2 1

3 2
4 4

, Q
(3)
0 = 1 1

2 2
4 3

, ρ(3) = (2, 2),

where R2 and R3 are the only non-trivial rectangles in this decomposition. The sym-

metrized offset vectors of P
(2)
0 and P

(3)
0 are

η(2)rev = (0, 1, 1), η(3)rev = (0, 1),

and hence

Q = 4 6 0 3 4
6 7 2 4 8
7 8

.

Remark 5.2.5. Let us give some comments on κ0 and the bijection in [13]. Let Mm×n

be the set of M =
(
M j,i(k)

)
(i ∈ [m], j ∈ [n], k ∈ Z) with M j,i(k) ∈ Z≥0 and M j,i(k) = 0

for |k| ≫ 0 [13, (2.5)] and let M+

m×n be the subset of Mm×n consisting of M such that

M j,i(k) = 0 for k < 0. For A = (aij)i,j∈Z ∈ M̂m×n, we define MA =
(
M j,i(k)

)
by

M j,i(k) = ai−km, n+1−j.

Then the map sending A to MA gives a bijection from M̂m×n to Mm×n.

Let Υ̃ denote the bijection

M+

m×n
//

⊔

λ∈Pm∩Pn

CSST[m](λ)× CSST[n](λ)×K(λ) ,

given in [13, Corollary 8.2].

Let A = (aij)i,j∈Z ∈ M̂m×n be given such that MA ∈ M+

m×n. Applying κ0 and Υ̃

directly to A and MA, respectively, do not seem to give the same result in general. This

may happen due to conventions for affine matrixs. For example, let A ∈ M̂5×6 be as

follows:
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1 1
1 1 1

1 1
1 1 1

1 1
1 1

1 1 1
1 1

1 1 1
1 1

1 1
1 1 1

1 1
1 1 1

1 1
1 1

1 1 1
1 1

1 1 1
1 1

j

i

Then we have κ0(A) = (P0, Q0, ρ), where

P0 = 1 2 2 1
4 3 4 2
5 4 5 3

, Q0 = 2 1 3 1
3 2 4 4
6 4 5 6

.

On the other hand, we have Υ̃(MA) = (V,W, ξ), where

V = 1 2 2 1
4 3 4 2
5 4 5 3

, W = 1 2 3 1
3 3 5 4
6 4 6 5

.

Hence P0 = V but Q0 ̸= W , while we observe that W j(i) = 7−Q5−j
0 (4− i) for 1 ≤ i ≤ 3

and 1 ≤ j ≤ 4. Recall that W j and Qj
0 denote the j-th columns from the right.

In general, one may expect that P0 = V and Q0 = enW , where en is an operator on

CSST[n](λ) given by

(enW )j(i) = n+ 1−W a+1−j(b+ 1− i) (1 ≤ i ≤ b, 1 ≤ j ≤ a),
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in case of a rectangular shape λ = (ab). The operator en can be viewed as a generalization

of the affine evacuation in [2]. We do not know yet a precise relation between ρ and ξ.

5.3 Affine RSK and crystals

For i, j ∈ Z, let Eij denote the elementary matrix with 1 at the (i, j)-position and 0

elsewhere and put

Êij =
∑

k∈Z

Ei+km j+kn ∈ M̂m×n.

Let us first describe an Uq(ŝlm)-crystal structure on M̂m×n for m ≥ 2. Suppose that

A = (aij)i,j∈Z ∈ M̂m×n is given. For i ∈ { 0, 1, . . . ,m − 1 }, we define ẽiA and f̃iA as

follows:

(1) Let σ be a sequence of {+,−} given by

σ = ( · · · , − · · ·−︸ ︷︷ ︸
ai+1 j

, + · · ·+︸ ︷︷ ︸
ai j

, − · · ·−︸ ︷︷ ︸
ai+1 j+1

, + · · ·+︸ ︷︷ ︸
ai j+1

, · · · ),

and let σ̃ be the reduced one, which is well-defined since σ has only finitely many

+’s and −’s.

(2) If σ̃ has at least one −, then we define

ẽiA = A+ Êij0 − Êi+1j0 ,

where j0 is the column index of A corresponding the rightmost − in σ̃. If σ̃ has no

−, then we define ẽiA = 0. Similarly, if σ̃ has at least one +, then we define

f̃iA = A− Êij1 + Êi+1j1 ,

where j1 is the column index of A corresponding the leftmost + in σ̃. If σ̃ has no

+, then we define f̃iA = 0.

Put

wt(A) =
∑

k∈Z

(
n∑

j=1

a1+km j

)
(ϵ1 − kδ) + · · ·+

∑

k∈Z

(
n∑

j=1

am+km j

)
(ϵm − kδ) ∈ P 0. (5.3.1)
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εi(A) = max{ k | ẽkiA ̸= 0 }, φi(A) = max{ k | f̃k
i A ̸= 0 }, (i ∈ I).

Both εi(A) and φi(A) are finite since σ has only finitely many +’s and −’s. Moreover, we

have

φi(A)− εi(A) =
∑

j∈Z

ai+1 j −
∑

j∈Z

aij = ⟨hi,wt(A)⟩.

Hence we have the following lemma.

Lemma 5.3.1. The set M̂m×n is a normal Uq(ŝlm)-crystal with respect to wt, ẽi, f̃i for

i ∈ { 0, 1, . . . ,m− 1 }.

Example 5.3.2. Let A be the affine matrix in Example 5.2.4. For i = 2, the associated

sequence σ and its reduced one σ̃ are

σ = (+,− ,− ,+ ,− ,+ ,+ ,− ),

σ̃ = ( · , · ,− , · , · ,+ , · , · ).

Hence the cell (2, 8) is the position corresponding to the leftmost + in σ̃, and f̃iA =

A− Ê2 8 + Ê3 8.

1 1
1 1 2

1 1 1 1
1 1

j

i

A =

1 1
1 1 1

1 1 1 1 1
1 1

j

i

f̃2A =

Here we present the submatrices of A and f̃2A with the row indices in [4].

Next, we define an Uq(ŝln)-crystal structure on M̂m×n for n ≥ 2, say wtt, εti, φ
t
i, ẽ

t
i, ẽ

t
i for

i ∈ { 0, 1, . . . , n− 1 }, by applying the Uq(ŝln)-crystal structure on M̂n×m to the transpose
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At of A ∈ M̂m×n

wtt(A) = wt(At),

ẽtiA = (ẽiA
t)t, f̃ t

iA = (f̃iA
t)t,

εti(A) = εi(A
t), φt

i(A) = φi(A
t).

Proposition 5.3.3. The operators ẽi and f̃i for i ∈ { 0, 1, . . . ,m − 1 } commute with ẽtj
and f̃ t

j for j ∈ { 0, 1, . . . , n− 1 } on M̂m×n ∪ {0}.

Proof. Let A ∈ M̂m×n be given. Suppose that for each 1 ≤ i ≤ m, we have aij = 0

unless 1 ≤ j ≤ n. Then A can be viewed as an m×n matrix and it is well known that the

proposition holds for A when i, j ̸= 0 (see for examples [23, Lemma 3.4] or [38, Lemma

1.4.7]). For an arbitrary A ∈ M̂m×n and i, j, we may apply the same argument.

Remark 5.3.4. We remark that ẽtj and f̃ t
j preserve wt except for j = 0, and ẽi and f̃i

preserve wtt except for i = 0. x̃i and ỹ
t
j on M̂m×n ∪ {0} are strict morphisms of Uq(ŝln)-

crystals and Uq(ŝlm)-crystals, respectively for x, y ∈ { e, f }, i ∈ { 0, 1, . . . ,m − 1 }, and
j ∈ { 0, 1, . . . , n− 1 }. In case of ẽt0, f̃

t
0, we have

wt(ẽt0A) = wt(A)− δ, wt(f̃ t
0A) = wt(A) + δ,

for A ∈ M̂m×n. The same holds for ẽi and f̃i. Hence, the we understand the set M̂m×n as

a (U ′
q(ŝlm)× U ′

q(ŝln))-crystal or (Uq(slm)× Uq(ŝln))-crystal.

Let

Tm×n =
⊔

λ∈Pm∩Pn

CSST[m](λ)×Bn(λ). (5.3.2)

We regard it as (U ′
q(ŝlm)×Uq(ŝln))-crystal with respect to ẽi, f̃i, ẽ

t
j, f̃

t
j (i ∈ { 0, 1, . . . ,m−

1 }, j ∈ { 0, 1, . . . , n− 1 }), where ẽi, f̃i are the Kashiwara operators on CSST[m](λ), and

ẽtj, f̃
t
j are the Kashiwara operators on Bn(λ).

The following is the second main result in this paper. The proof is given in Section

7.1.

Theorem 5.3.5. The bijection

κ : M̂m×n
// Tm×n
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commutes with ẽi, f̃i for i ∈ { 1, . . . ,m− 1 } and ẽtj, f̃
t
j for j ∈ { 0, 1, . . . , n− 1 }.

We remark that the map κ does not commute with ẽ0 and f̃0, but κ1 := π1 ◦ κ does,

where π1 is the projection of Tm×n along the first component (see Remark 7.1.10). Since

wt0cl(A) = wt0cl(P0), κ1 induces the following.

Corollary 5.3.6. An affine matrix A ∈ M̂m×n is Uq(ŝlm)-crystal equivalent to P0, where

κ(A) = (P0, Q).

Note that κ is does not preserve wtt. More precisely, for A ∈ M̂m×n with κ(A) =

(P0, Q), we see from the definition of κ that

wtt(A) = wt(At) = wt(Q)−
(

l∑

i=1

|η(i)|
)
δ,

where η(i) is the symmetrized offset vectors of P
(i)
0 .

So in order to have a morphism of Uq(ŝln)-crystals, we may modify the weight function

on M̂m×n by

wtt(A) = wt(At) +Hm(A)δ, (5.3.3)

where Hm(A) =
∑l

i=1 |η(i)|. Then we have the following.

Corollary 5.3.7. If we regard M̂m×n as an Uq(ŝln)-crystal with respect to wtt, then κ is

an isomorphism of (Uq(slm)×Uq(ŝln))-crystals. In particular, an affine matrix A ∈ M̂m×n

is Uq(ŝln)-crystal equivalent to Q, where κ(A) = (P0, Q).

We remark that both m and n do not need to be greater than 1 for Theorem 5.3.5 and

its corollaries. In particular, Corollary 5.3.6 holds for n = 1 and Corollary 5.3.7 holds for

m = 1.

Remark 5.3.8. The function Hm(·) in (5.3.3) is related to the intrinsic energy function

on Uq(ŝlm)-crystals with P
0
cl-weights as follows. Let T ∈ CSST[m](R) be given where R =

(ab). Let r = (r1, . . . , ra−1) be the offset vector and η = (η1, . . . , ηa−1) the symmetrized

offset vector of T . Then we have

Hm(T ) = |η| − a|r|,
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where |r| = r1+ · · ·+ ra−1 and Hm(·) is the intrinsic energy function on CSST[n](R) with

Hm(uR) = 0 (cf. [34] for its definition). Hence for A ∈ M̂m×n with κ(A) = (P0, Q), we

have

Hm(A) =
l∑

i=1

(
Hm(P

(i)
0 ) +mi|r(i)|

)
,

where Ri = (ami
i ) is the shape and r(i) is the offset vector of P

(i)
0 respectively.
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Chapter 6

Dual affine RSK correspondence

In this chapter, we construct a dual analogue of Theorem 5.2.3 and 5.3.5.

6.1 Matrix-ball construction for dual affine matrices

Let

N̂m×n =

{
B = (bij)i,j∈Z

∣∣∣∣∣
(1) bij ∈ {0, 1} and bi+mj+n = aij for all i, j ∈ Z,
(2) for each j, bij = 0 except for finitely many i’s.

}
.

We call B ∈ N̂m×n a generalized dual affine permutation or a dual affine matrix for short.

For a dual affine matrix B, we define dual standardization of B to be

Bst′ = (B•)◦
′
.

Note that we have Bst′ = (B•)◦
′
= (B◦′)• and Bst′ ∈ Ŵ|B|.

Example 6.1.1. Let B ∈ N̂3×4 be given as follows.
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1 1 1
1 1
1 1 1

1 1 1
1 1
1 1 1

1 1 1
1 1
1 1 1

j

i

Then Bst′ is

1
1

1
1

1
1

1
1

1
1

1
1

1
1

1
1

1
1

1
1

1
1

1
1

j

i

I1

I2

I3

J1 J2 J3 J4

Suppose that α ∈ Zm
+ and β ∈ Zn

+ are given with k = |α| = |β|. Let N̂m×n(α, β) be

the set of dual affine matrix whose row and column contents are α, β respectively. Let

Ŵk,[α,β] denote the set of affine permutations w such that w is α-ascending and w−1 is

β-descending.
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Lemma 6.1.2. Under the hypothesis, we have a bijection

N̂m×n(α, β) // Ŵk,[α,β]

B � // Bst′

.

We use another compass directional orders >nW, <Ne on Z× Z as follows:

(1) c1 >nW c2 if and only if i1 ≤ i2 and j1 < j2,

(2) c1 <Ne c2 if and only if i1 > i2 and j1 ≤ j2,

for c1 = (i1, j1), c2 = (i2, j2) ∈ Z× Z.
With respect to these partial orders, we have natural dual analogues of the notions

and their properties given in Section 3. The proofs are almost parallel to those in the

case of M̂m×n. Let us summarize them as follows:

Suppose that B ∈ N̂m×n is given.

• A proper numbering d on B is defined as in Definition 5.1.8 with respect to >nW

instead of >NW. Let dst
′
denote the proper numbering on Bst′ which naturally

correspond to d.

• Streams and channels B are defined in the same way as in Definition 5.1.7 with

respect to >nW.

• The southwest channel numbering dswB on B is the unique numbering such that

(dswB )st
′
= dsw

Bst′

Let d be a proper numbering on B ∈ N̂m×n. Note that each level set d−1(k) forms a

chain with respect to <Ne. Let {zk}k∈Z be the set of zig-zags associated to d, where the

inner corners of zk are the set of elements in d−1(k) maximal with respect to >nW. Then

{zk}k∈Z satisfies

(z′.1) the inner corners of each zk are contained in supp(A),

(z′.2) supp(A) ⊆ ⋃k∈Z zk,

(z′.3) zk is located to the southeast of zk−1 for k ∈ Z with respect to >nW.
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Remark 6.1.3. We should remark that no outer cell of zk belongs to supp(B), and zk’s

are not always mutually disjoint. More precisely, two horizontal lines (or line segments) in

zk and zl (k < l) may have non-trivial intersection, while vertical lines (or line segments)

in zk and zl (k < l) are always disjoint.

Suppose that a non-zero B ∈ N̂m×n is given and let

• {zk}k∈Z : the set of zig-zags associated to dswB ,

• B♭′ : the matrix obtained from B by the same rule as in B♭ with respect to {zk}k∈Z,

• B(t) : the matrices in N̂m×n defined inductively by

B(0) = B, B(t) =
(
B(t−1)

)♭′
(t ≥ 1).

Note that B(s−1) ̸= O and B(s) = O for some s ≥ 1. For 1 ≤ t ≤ s, we let

• {z(t)k }k∈Z : the set of zig-zags associated to dsw
B(t−1) ,

• s(t) = (at,bt, ρt) : the stream of the back-post corners of {z(t)k }k∈Z with flow µt,

where we can check that µ = (µ1, . . . , µs) ∈ Ps.

Now let

• P0, Q0 : the tableau of shape λ = µ′ defined as in Section 5.2,

• P t
0: the tableau of shape µ obtained by flipping P0 with respect to the main diagonal.

It follows immediately that P t
0 ∈ RSST[m](µ).

• ρ = (ρ1, . . . , ρs) ∈ Zs.

Let λ be the shape of P0, and let (R(1), . . . , R(l)) be the rectangular decomposition of λ.

• P
(i)
0 , Q

(i)
0 : the rectangular decompositions of P0 and Q0,

• ρ(i) ∈ Zmi : the subsequence of ρ corresponding to the rectangular decomposition,

where mi is the occurrence of i in µ.

• η(i) ∈ Pmi−1 : the symmetrized offset vector of (P
(i)
0 )t.
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Then we define

Q =
(
τ ρ

(l)+η
(l)
rev(Q

(l)
0 ), . . . , τ ρ

(1)+η
(1)
rev(Q

(1)
0 )
)
=
(
Q(l), . . . , Q(1)

)
. (6.1.1)

The following is a dual analogue of Theorem 5.2.3.

Theorem 6.1.4. We have a bijection

κ′ : N̂m×n
//

⊔

λ∈∩Pn

RSST[m](λ)×Bn(λ)

B � // (P t
0, Q)

, (6.1.2)

Example 6.1.5. Let B be the dual affine matrix given in Example 6.1.1. Then

1 1 1

1 1

1 1 1

1 1 1

1 1

1 1 1

1 1 1

1 1

1 1 1

j

i

B(0) =

1 1

1

1 1

1 1

1

1 1

1 1

1

1 1

j

i

B(1) =
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1

1

1

1

1

1

j

i

B(2) =

1

1

1

j

i

B(3) =

where the red lines denote the zig-zags associated to dsw
B(t−1) for 1 ≤ t ≤ 4, and

P t
0 = 1 2 3

1 1 3
2
3

, Q0 = 1 1 2 3
2 2
4 3

, ρ = (2, 1, 0, 0).

In this case, R1 and R3 are the only non-trivial rectangles in the decomposition of the

shape of P0 and Q0. It is easy to see that η
(3)
rev = (0, 2), η

(1)
rev = (0, 0), and hence

Q = 4 5 2 3
5 6
6 7

.

6.2 Dual affine RSK and crystals

Let us describe an Uq(ŝlm)-crystal structure, and Uq(ŝln)-crystal structure on N̂m×n for

m ≥ 2.

Suppose that B = (bij)i,j∈Z ∈ N̂m×n is given. For i ∈ { 0, 1, . . . ,m− 1 }, we define ẽiB
and f̃iB as follows:
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(1) Let σ be a sequence of {+,−} given by

σ = ( · · · , +︸︷︷︸
bi j+1

, −︸︷︷︸
bi+1 j+1

, +︸︷︷︸
bi j

, −︸︷︷︸
bi+1 j

, · · · ),

and let σ̃ be the reduced one, which is well-defined since σ has only finitely many

+’s and −’s.

(2) If σ̃ has at least one −, then we define

ẽiB = B + Êij0 − Êi+1j0 ,

where j0 is the column index of B corresponding the rightmost − in σ̃. If σ̃ has no

−, then we define ẽiB = 0. Similarly, if σ̃ has at least one +, then we define

f̃iB = B − Êij1 + Êi+1j1 ,

where j1 is the column index of B corresponding the leftmost + in σ̃. If σ̃ has no

+, then we define f̃iB = 0.

Similarly, we define ẽtjB and f̃ t
jB as follows for j ∈ { 0, 1, . . . , n− 1 }:

(1) Let σ be a sequence of {+,−} given by

σ′ = ( · · · , +︸︷︷︸
bi j

, −︸︷︷︸
bi j+1

, +︸︷︷︸
bi+1 j

, −︸︷︷︸
bi+1 j+1

, · · · ).

and let σ̃′ be the reduced one, which is well-defined since σ has only finitely many

+’s and −’s.

(2) If σ̃ has at least one −, then we define

ẽtjB = B + Êi0 j − Êi0 j+1,

where i0 is the row index of B corresponding the rightmost − in σ̃′. If σ̃′ has no −,

then we define ẽtjB = 0. Similarly, if σ̃′ has at least one +, then we define

f̃ t
jB = B − Êi1 j + Êi1 j+1,
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where i1 is the row index of B corresponding the leftmost + in σ̃′. If σ̃′ has no +,

then we define f̃ t
jB = 0.

Note that ẽtj, f̃
t
j are not defined in the transpose of matrices for dual case.

Proposition 6.2.1. The operators ẽi and f̃i for i ∈ { 0, 1, . . . ,m − 1 } commute with ẽtj
and f̃ t

j for j ∈ { 0, 1, . . . , n− 1 } on N̂m×n ∪ {0}.
Let

Sm×n =
⊔

λ∈Pn

RSST[m](λ
′)×Bn(λ).

We regard it as (U ′
q(ŝlm)×Uq(ŝln))-crystal with respect to ẽi, f̃i, ẽ

t
j, f̃

t
j (i ∈ { 0, 1, . . . ,m−

1 }, j ∈ { 0, 1, . . . , n− 1 }), where ẽi, f̃i are the Kashiwara operators on RSST[m](λ), and

ẽtj, f̃
t
j are the Kashiwara operators on Bn(λ).

Theorem 6.2.2. The bijection

κ′ : N̂m×n
// Sm×n

commutes with ẽi, f̃i for i ∈ { 1, . . . ,m− 1 } and ẽtj, f̃
t
j for j ∈ { 0, 1, . . . , n− 1 }.

Let κ′1 = π1 ◦ κ′, where π1 is the projection of Sm×n along the first component. Then

κ′1 commutes with ẽi and f̃i for i ∈ { 0, 1, . . . ,m− 1 }, and preserves wtcl. Hence we have

the following.

Corollary 6.2.3. A dual affine matrix B ∈ N̂m×n is Uq(ŝlm)-crystal equivalent to P t
0,

where κ(A) = (P t
0, Q).

Moreover, if we define wtt on N̂m×n in the same way as in (5.3.3) with respect to κ′,

then we have the following analogue of Corollary 5.3.7.

Corollary 6.2.4. If we regard N̂m×n as an Uq(ŝln)-crystal with respect to wtt, then κ′

is an isomorphism of (Uq(slm) × Uq(ŝln))-crystals. In particular, a dual affine matrix

B ∈ N̂m×n is Uq(ŝln)-crystal equivalent to Q, where κ
′(B) = (P t

0, Q).

We remark that both m and n do not need to be greater than 1 for Theorem 5.3.5

and its corollaries. In particular, when m = 1 we have the following multiplicity-free

decomposition

N̂1×n
∼=
⊕

λ∈Pn

Bn(λ),

since RSST[1](λ
′) consists of single element for all λ ∈ Pn.
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Proofs

In this chapter, we prove the main results Theorem 5.3.5 and 6.2.2, namely:

κ(x̃iA) = x̃iκ(A), κ(ỹtjA) = ỹtjκ(A) (7.0.1)

κ′(x̃iA) = x̃iκ
′(B), κ′(ỹtjB) = ỹtjκ

′(B) (7.0.2)

for A ∈ M̂m×n, B ∈ N̂m×n, i ∈ { 1, . . . ,m− 1 }, j ∈ { 0, 1, . . . , n− 1 } and x, y ∈ { e, f }.

7.1 Theorem 5.3.5

7.1.1 Augmented affine matrices

Let s be a stream of flow l with defining data (a,b, r). We regard s as an element of Tm×n

in (5.3.2) as

s = (a, τ rb) ∈ CSST[m]((1
l))×Bn((1

l)) ⊂ Tm×n.

Generally, let s(1), . . . , s(s) be the streams corresponding to an affine matrix A ∈ M̂m×n in

Section 5.2. We identify κ(A) with s(s) ⊗ · · · ⊗ s(1) as a tensor product of crystals.

Define a map

Ψ : M̂m×n
//
⊔

l≥0

M̂m×n ⊗
(
CSST[m]((1

l))×Bn((1
l))
)

A � // A♭ ⊗ s(1)

. (7.1.1)
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Since

(
(Ψ⊗ id⊗s−1) ◦ · · · ◦ (Ψ⊗ id) ◦Ψ

)
(A) = O⊗ s(s) ⊗ · · · ⊗ s(1) = O⊗ κ(A), (7.1.2)

where id is the identity morphism, it suffices to show that Ψ commutes with x̃i and ỹ
t
j for

the proof of (7.0.1).

In order to simplify the description of x̃i and ỹ
t
j on A

♭⊗s (see (7.1.6)), let us introduce

some additional notations and conventions. Let Z∗ = Z∪{∞}, where we understand that

a <∞ and a+∞ = ∞ for a ∈ Z. Let A ∈ M̂m×n be given. Let Ψ(A) = A♭ ⊗ s(1), where

A♭ = (a♭ij)i,j∈Z. We define A∗ = (a∗ij)i,j∈Z∗ by

a∗ij =





a♭ij if (i, j) ∈ Z× Z,

1 if i = ∞ and (k, j) ∈ s(1) for some k ∈ Z,

1 if j = ∞ and (i, k) ∈ s(1) for some k ∈ Z,

0 otherwise.

In other words, A∗ is an augmented matrix obtained from A♭ by

A∗ = A♭ +
∑

(i,j)∈s(1)
(Ei∞ + E∞j).

Note that A∗ satisfies a∗i+mj+n = a∗ij for (i, j) ∈ Z∗ × Z∗.

Let z be a zig-zag of A with the back-post corner (i, j). Let z∗ = z ∪ {(∞, j), (i,∞)}
and regard (∞, j) and (i,∞) as outer corners of z∗. Then we may understand Ψ(A) = A∗

as a Z∗ × Z∗-matrix obtained by

• identifying A = (aij)i,j∈Z with (aij)i,j∈Z∗ where a∞j = ai∞ = 0 for i, j ∈ Z∗,

• applying the same rules for ♭ in Section 5.2 to A along z∗k instead of zk,

where {zk}k∈Z is the set of zig-zags associated to dswA . Note that we can recover A♭ and

s(1) from A∗ and {z∗k}k∈Z. From now on, we assume that a matrix is a Z∗ × Z∗-matrix

and a zig-zag is of the form z∗.

Example 7.1.1. Let A be the affine matrix in Example 5.2.4. We regard A as a Z∗ ×Z∗

matrix as follows:
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1 1
1 1 2

1 1 1 1
1 1

1 1
1 1 2

1 1 1 1
1 1

1 1
1 1 2

1 1 1 1
1 1

1 1
1 1 2

1 1 1 1
1 1

j = ∞

i = ∞

A =

where the red lines denote the zig-zags z1, z2, z3 associated to dswA . Then A∗ is given as

follows.
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1 1
1 1 1 1

1 1 1 1
1 1

1 1
1 1 1 1

1 1 1 1
1 1

1 1
1 1 1 1

1 1 1 1
1 1

1 1
1 1 1 1

1 1 1 1
1 1

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

j = ∞

i = ∞

A∗ =

7.1.2 Tensor product rule

From now on, we fix A ∈ M̂m×n and j ∈ [n]. If there is no confusion, let us write f̃j, εj,

and φj instead of f̃ t
j , ε

t
j, and φ

t
j for simplicity. In the remaining of this section, we will

focus on the proof of

f̃jΨ(A) = Ψ(f̃jA). (7.1.3)

Let

σ = (· · · , − · · ·−︸ ︷︷ ︸
ai−1j+1

, + · · ·+︸ ︷︷ ︸
ai−1j

, − · · ·−︸ ︷︷ ︸
aij+1

, + · · ·+︸ ︷︷ ︸
aij

, · · · ),

σ∗ = (· · · , − · · ·−︸ ︷︷ ︸
a∗i−1j+1

, + · · ·+︸ ︷︷ ︸
a∗i−1j

, − · · ·−︸ ︷︷ ︸
a∗ij+1

, + · · ·+︸ ︷︷ ︸
a∗ij

, · · · ) · ( +︸︷︷︸
a∗∞,j

, −︸︷︷︸
a∗∞j+1

),
(7.1.4)
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where σ∗ is a concatenation of two sequences. By tensor product rule (4.1.4), we see that

f̃j
(
A♭ ⊗ s

)
=





A♭ ⊗ f̃js if the leftmost + in σ̃∗ corresponds to (∞, j),(
f̃jA

♭
)
⊗ s if the leftmost + in σ̃∗ corresponds to (i, j) for some i <∞,

0 if σ̃∗ has no +.

(7.1.5)

In terms of A∗, this can be simplified as

f̃jA
∗ =




A∗ − Êij + Êij+1 if the leftmost + in σ̃∗ corresponds to (i, j),

0 if σ̃∗ has no +,
(7.1.6)

where we assume that Ê∞j =
∑

k∈ZE∞ j+kn.

Lemma 7.1.2. We have f̃jA ̸= 0 if and only if f̃jΨ(A) ̸= 0.

Proof. We may assume that there exists a non-zero cell in the j-th column. Otherwise,

we have f̃jA = f̃jΨ(A) = 0.

Let {zk}k∈Z be the set of zig-zags associated to dswA . Let k0 (resp. k1) be the minimal

(resp. maximal) value of dswA in the j-th column. For k0 ≤ k ≤ k1, let ik be the minimal

row index with (ik, j) ∈ zk. Note that (ik, j + 1) ∈ zk.

Put

σk = (+ · · ·+︸ ︷︷ ︸
aik j

, − · · ·−︸ ︷︷ ︸
aik+1 j+1

, · · · , + · · ·+︸ ︷︷ ︸
aik+1−1 j

, − · · ·−︸ ︷︷ ︸
aik+1 j+1

),

σ∗
k = (+ · · ·+︸ ︷︷ ︸

a∗ik j

, − · · ·−︸ ︷︷ ︸
a∗ik+1 j+1

, · · · , + · · ·+︸ ︷︷ ︸
a∗ik+1−1 j

, − · · ·−︸ ︷︷ ︸
a∗ik+1 j+1

),

for k0 ≤ k < k1, and

σ−∞ = (· · · , − · · ·−︸ ︷︷ ︸
aik0−1j+1

, − · · ·−︸ ︷︷ ︸
aik0 j+1

), σ∞ = (+ · · ·+︸ ︷︷ ︸
aik1 j

, − · · ·−︸ ︷︷ ︸
aik1+1j+1

, · · · ),

σ∗
−∞ = (· · · , − · · ·−︸ ︷︷ ︸

a∗ik0−1 j+1

, − · · ·−︸ ︷︷ ︸
a∗ik0 j+1

), σ∗
∞ = (+ · · ·+︸ ︷︷ ︸

a∗ik1 j

, − · · ·−︸ ︷︷ ︸
a∗ik1+1 j+1

, · · · ) · ( +︸︷︷︸
a∗∞ j

, −︸︷︷︸
a∗∞ j+1

).
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Then σ and σ∗ in (7.1.4) decompose as follows:

σ = σ−∞ · σk0 · · · · · σk1−1 · σ∞,
σ∗ = σ∗

−∞ · σ∗
k0
· · · · · σ∗

k1−1 · σ∗
∞.

Suppose that k is given with k0 ≤ k < k1. Let u be the maximal row index with

(u, j) ∈ zk, and let v be the minimal row index with (v, j + 1) ∈ zk+1. Note that ik ≤ u

and v ≤ ik+1. Suppose first that u < v. Then we have

σk = (+ · · ·+︸ ︷︷ ︸
aik j

, + · · ·+, + · · ·+︸ ︷︷ ︸
au j

, − · · ·−︸ ︷︷ ︸
av j+1

, − · · ·−, − · · ·−︸ ︷︷ ︸
aik+1 j+1

),

σ∗
k = (+ · · ·+︸ ︷︷ ︸

aik j−1

, + · · ·+, + · · ·+︸ ︷︷ ︸
au j+1

, − · · ·−︸ ︷︷ ︸
av j+1−1

, − · · ·−, − · · ·−︸ ︷︷ ︸
aik+1 j+1+1

) = σk,

and hence σ̃k = σ̃∗
k.

Next, suppose that u ≥ v. In this case, we have ik < v ≤ u < ik+1. Therefore, (ik, j),

(v, j + 1) are inner corners, and (u, j), (ik+1, j + 1) are outer corners. Then we have

σk = (+ · · ·+︸ ︷︷ ︸
aik j

, + · · ·+, − · · ·−︸ ︷︷ ︸
av j+1

, · · · , + · · ·+︸ ︷︷ ︸
au j

, − · · ·−, − · · ·−︸ ︷︷ ︸
aik+1 j+1

),

σ∗
k = (+ · · ·+︸ ︷︷ ︸

aik j−1

, + · · ·+, − · · ·−︸ ︷︷ ︸
av j+1−1

, · · · , + · · ·+︸ ︷︷ ︸
au j+1

, − · · ·−, − · · ·−︸ ︷︷ ︸
aik+1 j+1+1

).

Since one cancelling pair (+,−) of σk in

(+ · · ·+︸ ︷︷ ︸
aik j

, + · · ·+, − · · ·−︸ ︷︷ ︸
av j+1

)

is moved to a pair (+,−) of σ∗
k in

(+ · · ·+︸ ︷︷ ︸
au j+1

, − · · ·−, − · · ·−︸ ︷︷ ︸
aik+1 j+1+1

),

we conclude that σ̃k = σ̃∗
k. By similar argument, we see that (σ±∞)∼ = (σ∗

±∞)∼.

Hence we have

σ̃k = σ̃∗
k (−∞ ≤ k ≤ ∞). (7.1.7)
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Since reducing a sequence does not depend on the order of cancelling (+,−), we have

σ̃ = (σ−∞ · · · · · σ∞)∼ = ((σ−∞)∼ · · · · · (σ∞)∼)∼

= ((σ∗
−∞)∼ · · · · · (σ∗

∞)∼)∼ = (σ∗
−∞ · · · · · σ∗

∞)∼ = σ̃∗.

This shows that φj(A) = φj(Ψ(A)) and εj(A) = εj(Ψ(A)), and hence the lemma fol-

lows.

From now on, we assume that f̃jA ̸= 0 and f̃jΨ(A) ̸= 0. We also assume the following

notations:

• u : the row index corresponding to the leftmost + in σ̃,

• u∗ : the row index corresponding to the leftmost + in σ̃∗,

• s = dswA (u, j),

• Ã = f̃jA = (ãij)i,j∈Z∗ .

We have

Ã = f̃jA = A− Êuj + Êuj+1, f̃jA
∗ = A∗ − Êu∗j + Êu∗j+1. (7.1.8)

Note that the leftmost + in σ̃∗ also appears in (σ∗
s)

∼ by (7.1.7). More explicitly, u∗ is

the minimal row index such that u ≤ u∗ and a∗u∗j ̸= 0. In particular, we have




u < u∗ if (u, j) is an inner corner of zs with auj = 1,

u = u∗ otherwise.

7.1.3 Southwest channel numberings on A and Ã

In this subsection, we discuss the relation between the southwest channel numberings on

A and Ã.

For (x, y) ∈ Z2, let (x, y)∧ = { τ k(x, y) | k ∈ Z }. We have

supp(Ã)− supp(A) ⊆ (u, j + 1)∧, supp(A)− supp(Ã) ⊆ (u, j)∧,

where the equalities hold when auj+1 = 0 and auj = 1 respectively.
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We first give an example, where a proper numbering on Ã is induced by a proper

numbering on A.

Example 7.1.3. Let A be the affine matrix given in Example 5.2.4. It is easily checked

that f̃ t
2A = A − Ê5 2 + Ê5 3. Consider the set of zig-zags Z = {zk}k∈Z corresponding to

the southwest channel numbering dstA on A. If we draw the zig-zags z1, z2 and z3 over

f̃ t
2A as follows;

1 1
1 1 2

1 1 1 1
1 1

1 1
1 1 2

1 1 1 1
1 1

1 1
1 1 2

1 1 1 1
1 1

1 1
1 1 2

1 1 1 1
1 1

j
z1
z2
z3

i

then one can see that Z satisfies the conditions (z.1)-(z.3) in Section 3.2 with respect to

f̃ t
2A. Here, the dashed and solid circles are the positions where f̃ t

2A differs from A. We

conclude that Z induces a proper numbering on f̃ t
2A.

It is also easily checked that f̃ t
3f̃

t
2A = f̃ t

2A − Ê2 3 + Ê2 4. However, Z does not give a

proper numbering on f̃ t
3f̃

t
2A, since an inner corner (2, 3) of z3 is not a non-zero cell of f̃

t
3f̃

t
2A.

If we modify a segment (9, 8), (8, 8), (7.8).(6.8).(6.9) of z3 by (9, 8), (9, 9), (8, 9), (7, 9), (6, 9)

(see below), it remedies the failure of the condition (z.1). The modified zig-zag, which is

denoted by z′3, does not intersect with z4 as follow,
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1 1
1 1 2

1 1 1 1
1 1

1 1
1 1 2

1 1 1 1
1 1

1 1
1 1 2

1 1 1 1
1 1

1 1
1 1 2

1 1 1 1
1 1

j
z1
z2
z′3

z4

i

where dashed red line is the original part of z3, and the dashed circle and solid circle

are the positions where f̃ t
3f̃

t
2A differs from f̃ t

2A. Hence the modified set of zig-zags Z ′ =

{ · · · , z′0, z1, z2, z′3, z4, · · · } give a proper numbering on f̃ t
3f̃

t
2A.

In the remainder of this section, we will see that the induced numberings on f̃ t
2A and

f̃ t
3f̃

t
2A are, in fact, the southwest channel numberings.

The following lemma describes how to construct a proper numbering on Ã from a

given numbering d on A in general.

Lemma 7.1.4. We have the following.

(1) Let d be a proper numbering on A with the associated zig-zags Z = {zk}k∈Z and

d(u, j) = s. Then there exists a proper numbering d− on Ã satisfying

d−(c) = d(c) if c ∈ supp(A) ∩ supp(Ã),

d−(u, j + 1) =




d(u, j) if u is minimal such that (u, j) ∈ zs,

d(u, j) + 1 otherwise.

(2) Let d be a proper numbering on Ã with the associated zig-zags Z = {zk}k∈Z and
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d(u, j + 1) = t. Then there exists a proper numbering d+ on A satisfying

d+(c) = d(c) if c ∈ supp(A) ∩ supp(Ã),

d+(u, j) =




d(u, j)− 1 if (u, j) ∈ zt−1,

d(u, j) otherwise.

In particular, the widths of A and Ã are the same.

Proof. (1) We construct a set of zig-zags Z− (by adjusting Z) which satisfies the condi-

tions (z.1)-(z.3) in Section 3.2 with respect to Ã and hence gives a proper numbering d−

on Ã.

Let is be the minimal row index with (is, j) ∈ zs. If is = u, then (u, j + 1) ∈ zs

by definition of zig-zag. Suppose that is < u. Then (is, j) is an inner corner of zs, and

ais j > 0. Consider a subsequence of σ in (7.1.4)

(+ · · ·+︸ ︷︷ ︸
aisj

, − · · ·−︸ ︷︷ ︸
ais+1 j+1

, · · · , + · · ·+︸ ︷︷ ︸
au−1 j

, − · · ·−︸ ︷︷ ︸
au j+1

).
(7.1.9)

Since (u, j) is the cell corresponding to the leftmost + in σ̃, there exists no + in the

reduced form of (7.1.9). This implies that there exists some av j+1 > 0 for some v with

is < v ≤ u so that + in the cell (is, j) is paired with − in (v, j + 1). It is easy to see that

d(v, j + 1) = s+ 1, and hence (u, j + 1) ∈ zs+1.

Hence we see that supp(Ã) ⊆ ⊔k∈Z zk and Z satisfies the conditions in (z.2) and (z.3)

for Ã. Note that the condition (z.1) fails if and only if (u, j) is an inner corner of zs with

auj = 1.

Case 1. Suppose that (u, j) is not an inner corner of zs or (u, j) is an inner corner of zs

with auj > 1. Then Z− := Z satisfies the condition (z.1), and induces a proper numbering

d− on Ã as given in (3.2.2). Hence d− satisfies

d−(u, j + 1) =




s if u = is,

s+ 1 if is < u,

and d−(c) = d(c) for c ∈ supp(A) ∩ supp(Ã).

Case 2. Suppose that (u, j) is an inner corner of zs with auj = 1. In this case, the
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condition (z.1) fails since the inner corner (u, j) of zs does not lie in supp(Ã). Now let us

modify zs as follows: Let (v, j) be an outer corner of zs and let

w = min{ i ∈ Z |u < i ≤ v and aij > 0 }.

Note that w = u∗ when d = dswA . Consider a subsequence of σ

( +︸︷︷︸
auj

, − · · ·−︸ ︷︷ ︸
au+1 j+1

, · · · + · · ·+︸ ︷︷ ︸
aw−1 j

, − · · ·−︸ ︷︷ ︸
aw j+1

).
(7.1.10)

We see that aij = 0 for u < i ≤ w − 1 by definition of w, and moreover aij+1 = 0 for

u < i ≤ w since the reduced form of (7.1.10) is (+). Indeed the sequence in (7.1.10) is

(+). According to this observation, we define a zig-zag z−s by replacing the cells

(w − 1, j), · · · , (u+ 1, j), (u, j)

in zs with the following cells

(w, j + 1), (w − 1, j + 1), · · · , (u+ 1, j + 1).

Then each inner corner of z−s lies in supp(Ã).

Let Z− be the set of zig-zags obtained from Z by replacing { τ kzs | k ∈ Z } with

{ τ kz−s | k ∈ Z }. Then Z− satisfies the conditions (z.1)-(z.3) for Ã, and hence induces a

proper numbering d− on Ã. It is easy to see that d−(u, j + 1) = s since u = is, and that

d−(c) = d(c) for c ∈ supp(A) ∩ supp(Ã).

By definition, the proper numberings d and d− have the same flow, which implies that

A and Ã have the same width. This proves (1).

(2) As in (1), we construct a set of zig-zags from Z to which a proper numbering d+

on A is associated.

Case 1. Suppose first that (u, j) ∈ zt−1. Then there exists an inner corner (v, j) of zt−1

and an inner corner (w, j + 1) of zt with v < w ≤ u. In particular, we have ãvj > 0.

Consider a subsequence of σ

(+ · · ·+︸ ︷︷ ︸
ãvj

, − · · ·−︸ ︷︷ ︸
ãv−1 j+1

, · · · , + · · ·+︸ ︷︷ ︸
ãu−1 j

, − · · ·−︸ ︷︷ ︸
ãu j+1

).
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Since ãvj > 0 and (u, j + 1) is the cell corresponding to the rightmost −, we have

ãw j+1 + ãw+1 j+1 + · · ·+ ãu j+1 ≥ 2.

This shows that w < u and the inner corner (w, j + 1) of zt lies in supp(A). Hence

Z+ := Z satisfies the conditions (z.1)-(z.3), and it induces a proper numbering d+ on A.

It is obvious that d+(u, j) = t− 1 and d+(c) = d(c) for c ∈ supp(A) ∩ supp(Ã).

Case 2. Suppose that (u, j) /∈ zt−1. Let it be the maximal row index with (it, j + 1) ∈ zt.

Since (u, j) /∈ zt−1, we have ãij = 0 for u ≤ i < it. Consider a subsequence of σ

(− · · ·−︸ ︷︷ ︸
ãu j+1

, + · · ·+︸ ︷︷ ︸
ãuj

, · · · , − · · ·−︸ ︷︷ ︸
ãit j+1

) = (− · · ·−︸ ︷︷ ︸
ãu j+1

, · · · , − · · ·−︸ ︷︷ ︸
ãit j+1

).
(7.1.11)

Since the rightmost − in σ̃ corresponding to position (u, j + 1) is the one in (7.1.11), we

see that ãi j+1 = 0 for u < i ≤ it. We define z+t to be a zig-zag by replacing the cells

(it, j + 1), (it − 1, j + 1), · · · , (u+ 1, j + 1)

in zt with the following cells

(it − 1, j), · · · , (u− 1, j), (u, j).

Then (u, j) is an inner corner of z+t , and (u, j) ∈ supp(A). Let Z+ be the set of zig-zags

obtained from Z by replacing { τ kzt | k ∈ Z } with { τ kz+t | k ∈ Z }. Then Z+ satisfies

the conditions (z.1)-(z.3) for A, and it induces a proper numbering d+ on A. We have

d+(u, j) = t and d+(c) = d(c) for c ∈ supp(A) ∩ supp(Ã). This proves (2).

Remark 7.1.5. Let d1 be a proper numbering on A. If follows from the construction of

d± in the proof of Lemma 7.1.4 that

(1) (d−1 )
+ = d1,

(2) if d2 is another proper numbering on A such that d1(c) ≤ d2(c) for c ∈ supp(A),

then d−1 (c) ≤ d−2 (c) for c ∈ supp(Ã).

The similar properties hold for a proper numbering on Ã.

Lemma 7.1.6. We have the following.
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(1) Let C be a channel of A. Then there exists a channel C− of Ã given by





(
C − (u, j)∧

)
∪ (u, j + 1)∧ if (u, j) ∈ C, auj = 1 and (i, j + 1) ̸∈ C for all i,

(
C − (u, j)∧

)
∪ (v, j)∧ if (u, j) ∈ C, auj = 1 and (i, j + 1) ∈ C for some i,

C otherwise,

where v is the minimal row index such that u < v and avj > 0 if it exists.

(2) Let C be a channel of Ã. Then there exists a channel C+ of A given by





(
C − (u, j + 1)∧

)
∪ (u, j)∧ if (u, j + 1) ∈ C, au j+1 = 1 and (i, j) ̸∈ C for all i,

(
C − (u, j + 1)∧

)
∪ (w, j + 1)∧ if (u, j + 1) ∈ C, au j+1 = 1 and (i, j) ∈ C for some i,

C otherwise,

where w is the maximal row index such that w < u and aw j+1 > 0 if it exists.

Proof. Let us prove (1) only, since the proof of (2) is similar.

First, suppose (u, j) /∈ C or auj > 1. Then C ⊆ supp(Ã) and C is a channel of Ã. We

put C− = C in this case.

Now suppose that (u, j) ∈ C and auj = 1. Then we have C ⊈ supp(Ã). Let us write

C = {· · · >NW cs−1 >NW cs >NW cs+1 >NW · · · }

with cs = (u, j). We have two cases.

Case 1. Suppose that (i, j + 1) ̸∈ C for all i. Let C− be a set obtained from C by

replacing c∧s = (u, j)∧ ⊂ C with (u, j+1)∧, which is clearly a stream of Ã by assumption.

Case 2. Suppose that (i, j + 1) ∈ C for some i. Then we have cs+1 = (u′, j + 1) for some

u′ > u. Consider a subsequence of σ in (7.1.4)

( +︸︷︷︸
auj

, − · · ·−︸ ︷︷ ︸
au+1 j+1

, · · · , + · · ·+︸ ︷︷ ︸
au′−1 j

, − · · ·−︸ ︷︷ ︸
au′ j+1

).
(7.1.12)

Since − in cs+1 is paired with + in (7.1.12) other than + in cs = (u, j), we have aij > 0

87



CHAPTER 7. PROOFS

for some u < i < u′. Let v be the minimal such one. Then we have

cs−1 >NW (v, j + 1) >NW cs+1. (7.1.13)

Let C− be a set obtained from C by replacing c∧s = (u, j)∧ ⊂ C with (v, j + 1)∧, which is

a stream of Ã by (7.1.13).

By definition, C− has the same flow as C. Since A and Ã have the same width by

Lemma 7.1.4, C− is a stream of maximal flow, and hence a channel of Ã

Remark 7.1.7. Let C be channel of A. Under the above hypothesis, we have

(C−)+ − C =





(v, j) if (u, j) ∈ C, auj = 1 and (i, j + 1) ∈ C for some i,

(u, j + 1) if (u, j) ∈ C, auj = 1, au j+1 > 0 and (i, j + 1) /∈ C for all i,

∅ otherwise.

Note that there exists no cell in supp(A) between (u, j) and (v, j) and between (u, j) and

(u, j + 1). Hence it follows that

C ≽sw (C
−)+ or (C−)+ ≽sw C,

and there exists no other channel between C and (C−)+. It is also easy to check that if

C ′ is another channel of A with C≽swC
′, then we have

C− ≽sw (C
′)−. (7.1.14)

The similar properties also hold with respect to channels of Ã.

Lemma 7.1.8. We have the following.

(1) Let C be a channel of A. If d is the channel numbering on A associated to C, then

d− is the channel numbering on Ã associated to C−.

(2) Let C be a channel of Ã. If d is the channel numbering on Ã associated to C, then

d+ is the channel numbering on A associated to C+.

Proof. Let us prove (1) only since the proof of (2) is similar.

Let d′ be the channel numbering on Ã associated to C−. Since the widths of A and

Ã coincide, we may assume that d− coincides with d′ on the channel C− by adding a
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constant to d−. Hence we have d′ ≤ d− by Lemma 3.1.9, and (d′)+ ≤ (d−)+ = d by

Remark 7.1.5.

Let ℓ be the common width of A and Ã. If ℓ > 1, then we see from Lemma 7.1.6(1)

that there exists c ∈ C ∩ C− such that c ∈ supp(A) ∩ supp(Ã). We have

d(c) = d−(c) = d′(c) = (d′)+(c).

So (d′)+ and d also coincide on C (cf. Remark 7.1.7), and d ≤ (d′)+ by Lemma 3.1.9.

Therefore, we have d = (d′)+, and d− = d′ by Remark 7.1.5.

If ℓ = 1, then it is not possible to have d−(u, j+1) = d(u, j)+1 or C− =
(
C−(u, j)∧

)
∪

(v, j)∧ since we must have another cell (i, j+1) with (u, j) >NW (i, j+1) >NW (u, j)+(m,n).

Hence we see directly that (d′)+(u, j) = d(u, j) = d−(u, j + 1) = d′(u, j + 1). By similar

arguments as in the above case, we conclude that d− = d′.

Now we can describe the southwest channel numbering on Ã in terms of the one on

A.

Proposition 7.1.9. Let d be the southwest channel numbering on A. Then d− is the

southwest channel numbering on Ã. Equivalently, let d be the southwest channel number-

ing on Ã. Then d+ is the southwest channel numbering on A.

Proof. Let C1 = Csw
A and C2 = Csw

Ã
. Let d′ be the southwest channel numbering on Ã.

By Lemma 7.1.8, we have

d− = d
C−

1

Ã
, (d′)+ = d

C+
2

A .

Thus it suffices to show that either C1 = C+
2 or C−

1 = C2, which implies that d = (d′)+

or d− = d′, respectively (see also Remark 7.1.5).

Since C1 and C2 are the southwest channels, we have

C1 ≽sw C
+
2 , C2 ≽sw C

−
1 . (7.1.15)

By Remark 7.1.7 (cf. (7.1.14)), we get from (7.1.15)

C1 ≽sw C
+
2 ≽sw (C

−
1 )

+, C2 ≽sw C
−
1 ≽sw (C

+
2 )

−. (7.1.16)

We claim that C1 = C+
2 if C2 ≻sw C

−
1 . By (7.1.16), we have C2 ≻sw (C+

2 )
−. By
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Remark 7.1.7, we see that C2 ≻sw (C
+
2 )

− occurs only when

C+
2 =

(
C2 − (u, j + 1)∧

)
∪ (w, j + 1)∧.

Then we have C+
2 = (C+

2 )
−.

On the other hand, we have C−
1 = (C+

2 )
− since there is no other channel between C2

and (C+
2 )

−. Hence we get C−
1 = (C+

2 )
− = C+

2 , and in particular (w, j + 1) ∈ C−
1 . Since

we have (u, j) /∈ C1 by Lemma 7.1.6(1), it follows that C1 = C−
1 = C+

2 . This proves the

claim.

7.1.4 Proof of (7.1.3)

Now we are in a position to prove (7.1.3). Let d = dswA and let Z = {zk}k∈Z be the set of

zig-zags associated to d. Let Z− be the set of zig-zags associated to d− (see the proof of

Lemma 7.1.4(1)). Note that d− = dsw
Ã

by Proposition 7.1.9.

Case 1. Suppose that (u, j) is not an inner corner of zs or (u, j) is an inner corner of

zs with auj > 1. Since Z = Z− and the cells corresponding the leftmost + in A and A∗

coincide in this case, we have Ã∗ = (Ã)∗.

Case 2. Suppose that (u, j) is an inner corner of zs with auj = 1.

Let us first compare zs with the modified zig-zag z−s . Let (v0, j) be an outer corner

of zs and let v1 be the minimal row index with (v1, j + 1) ∈ zs. Note that the inner and

outer corners of Z and Z− always coincide other than the following cells (more precisely,

their orbits under τ±1):

(u, j), (u∗, j), (v0, j), (v1, j + 1), (u, j + 1), (u∗, j + 1), (7.1.17)

where v1 ≤ u < u∗ ≤ v0 ≤ ∞. For the reader’s convenience, we summarize the positions

of the cells in (7.1.17) as follows:
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zs z−s
(u, j) inner corner

(u∗, j) outer corner if u∗ = v0 inner corner if u∗ < v0

(v0, j) outer corner outer corner if u∗ < v0

(v1, j + 1) inner corner if v1 < u inner corner

(u, j + 1) outer corner if v1 < u inner corner if v1 = u

(u∗, j + 1) outer corner

Hence we may write

A∗ = A− Êuj + Êv0j − Êv1 j+1 + Êu j+1 +B,

(Ã)∗ = Ã− Êu∗j + Êv0j − Êv1 j+1 + Êu∗ j+1 +B,
(7.1.18)

where B is a finite linear combination of Êkl’s over the cells (k, l) not belonging to (7.1.17).

Combining (7.1.8) and (7.1.18), we have

Ã∗ = A∗ − Êu∗j + Êu∗ j+1

=
(
A− Êuj + Êv0j − Êv1 j+1 + Êu j+1 +B

)
− Êu∗j + Êu∗ j+1

=
(
A− Êuj + Êu j+1

)
− Êu∗j + Êv0j − Êv1 j+1 + Êu∗ j+1 +B

= Ã− Êu∗j + Êv0j − Êv1 j+1 + Êu∗ j+1 +B

= (Ã)∗.

By Case 1 and Case 2, we have Ã∗ = (Ã)∗. Let us write Ψ(f̃jA) = (f̃jA)
♭ ⊗ s′. From

Ã∗ = (Ã)∗ and Proposition 7.1.9, we see that

(f̃jA)
♭ ⊗ s′ =




A♭ ⊗ f̃js if u∗ = ∞,

(f̃jA
♭)⊗ s if u∗ <∞.

Comparing this with (7.1.5), we have (7.1.3).

By (7.1.1), κ commutes with f̃j, and hence κ commutes with ẽj for j ∈ { 0, 1, . . . , n−1 }.
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7.1.5 Proof of Theorem 5.3.5

We have proved that κ commutes with ẽtj and f̃
t
j for j ∈ { 0, 1, . . . , n−1 }. Let us finish the

proof of Theorem 5.3.5 by showing that κ commutes with ẽi and f̃i for i ∈ { 1, . . . ,m−1 }.
First, it is not difficult to see that Proposition 7.1.9 still holds if we replace the south-

west channel numberings with the northeast channel numberings. Hence by the same

arguments as Section 7.1.4 we have

x̃iA
∗ = (x̃iA)

∗ (7.1.19)

for i ∈ { 0, 1, . . . ,m − 1 } and x ∈ { e, f }. This implies that Ψ commutes with ẽi and f̃i

for i ∈ { 1, . . . ,m − 1 } (see Remark 7.1.10 for i = 0). Hence κ commutes with ẽi and f̃i

for i ∈ { 1, . . . ,m− 1 }. This completes the proof of Theorem 5.3.5.

Remark 7.1.10. We should remark that ẽ0 and f̃0 may not commute with Ψ. Let

A ∈ M̂m×n be given such that x̃0A ̸= 0 for x ∈ {e, f}. Suppose that Ψ(A) = A♭ ⊗ s and

s = (a,b, r).

If x̃0(A
♭ ⊗ s) = A♭ ⊗ x̃0s, then it follows from (7.1.19) that Ψ(x̃0A) = A♭ ⊗ s′ and

s′ = (x̃0a,b, r
′), where r′ = r + 1 (resp. r − 1) if x = e (resp. x = f). Since x̃0s =

(x̃0a,b, r) ̸= s′, we have Ψ(x̃0A) ̸= x̃0Ψ(A). If κ(A) = (P0, Q), then by applying Ψ

repeatedly we have

κ(x̃0A) = (x̃0P0, Q
′),

for some Q′ ∈ Bn(λ) with Q
′ ̸= Q.

7.2 Theorem 6.2.2

Let B ∈ N̂m×n be given, and let

κ′(B) = (P t
0, Q).

In this section, we show that

x̃iB = x̃iP
t
0, (i ∈ { 0, . . . ,m− 1 } (7.2.1)

and

ỹtjB = ỹjQ, (j ∈ { 0, . . . , n− 1 } (7.2.2)
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for x, y ∈ {e, f}. We denote by s(1), . . . , s(s) the streams corresponding to B given in

Section 6.1.

7.2.1 Proof of (7.2.2)

Ψ′ : N̂m×n
//
⊔

l≥0

N̂m×n ⊗
(
RSST[m]((l))×Bn((1

l))
)

B � // B♭′ ⊗ s(1)

.

It is enough to see that ỹtj is compatible with Ψ′. Consider the dual row standardization

B 7−→ B•. According to the crystal structures of M̂m×n and N̂m×n, we see that the map

• :
⊔

m≥0

N̂m×n
//
⊔

m≥0

M̂m×n

B � // B•

.

is an Uq(ŝln)-crystal embedding. Hence the composition Ψ(B•) is compatible with ỹtj on

B. Meanwhile, it is easy to see that

Ψ(B•) = (B♭′)• ⊗ (s(1))•

where (s(1))• is the stream whose row indices are standardized from s(1) according to B.

In particular, we have κ′(B) = (P st
0 , Q) where κ(B•) = (P0, Q). Thus κ

′ commutes with

ỹtj.

7.2.2 Proof of (7.2.1)

Recall that the order of tensor product on RSST[m](λ) is defined from the top row to the

bottom. Define a map

ψ′ : N̂m×n
//
⊔

l≥0

(
RSST[m]((l))×Bn((1

l))
)
⊗ N̂m×n

B � // s(1) ⊗B♭′

As in Section 7.1, we let B∗ = s(1) ⊗B♭′ , and regard it as an augmented matrix.
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For the nonational convenience, let B̃ = f̃iB. Let

σ =(. . . , +︸︷︷︸
bi,j+1

, −︸︷︷︸
bi+1,j+1

, +︸︷︷︸
bi,j

, −︸︷︷︸
bi+1,j

, . . . ),

σ∗ =(− · · ·−︸ ︷︷ ︸
b∗i+1,∞

, + · · ·+︸ ︷︷ ︸
b∗i,∞

) · (. . . , +︸︷︷︸
b∗i,j+1

, −︸︷︷︸
b∗i+1,j+1

, +︸︷︷︸
b∗i,j

, −︸︷︷︸
b∗i+1,j

, . . . ),

where B = (bij) and B
∗ = (b∗ij). Let zk be a zig-zags associated to the southwest channel

numbering d = dswB . Since each zk has at most one non-zero cell (i, j), we lable each + in

σ or σ∗ by +k if (i, j) ∈ zk with bij = 1. We also lable each − in σ or σ∗ by −k similarly.

The following lemma is dual analogue to Lemma 7.1.2.

Lemma 7.2.1. We have f̃iB ̸= 0 if and only if f̃iψ
′(B) ̸= 0.

Proof. Since the length of σ and σ∗ are equal, it suffice to show that the number of

cancelling pair (+,−) in σ and σ∗ are the same. Let τ = (. . . , τk+1, τk, . . . ) be a sequence

defined by

τk =





· if zk has both nonzero cell (i, j) and (i+ 1, j′) for some j and j′,

+ if zk has nonzero cell (i, j) for some j and has no nonzero cell (i+ 1, j′) for all j′,

− if zk has nonzero cell (i+ 1, j′) for some j′ and has no nonzero cell (i, j) for all j.

We claim that (+k,−t) is a cancelling pair in σ if and only if τk = + is cancelled in τ

with for some τt′ = − or τk = ·.
Suppose first that τk = ·. In σ, +k precedes −k. If +k is not cancelled, there must be

+k′ between +k and −k in σ with k′ < k. Note that for such k′, we have τk′ = ·. Therefore
we have another −k′ in σ such that +k precedes it. Repeating this argument concludes

that we have infinitely many nonzero cells in i and i+ 1 row, which is contradiction.

Suppose now that τk = + and (τk, τt) is a cancelling pair in τ . We see that the number

of τk′ = + with t < k′ < k is equal to the number of τk′ = − with t < k′ < k. That

is, the number of +k′ with t < k′ < k is equal to the number of −k′ with t < k′ < k.

Hence, if +k is not cancelled in σ, there must be +k′′ between +k and −t in σ with k′′ < t.

This leads a contradiction in a similar way described in the last paragraph. Conversely,

suppose τk = + and (+k,−t) is a cancelling pair in σ. Note that t < k since τk = +.

Since +k is cancelled with −t, there must be eqully many + and − between +k and −t

in σ. In particular, the number of +k′ with t < k′ < k is not greater than the number of
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−k′ with t < k′ < k. Hence τk is cancelled with τk′′ = − for some t ≤ k′′ < k and this

completes the claim.

In a similar argument, we can show that (+k,−t) is a cancelling pair in σ∗ if and only

if τt = − is cancelled in τ or τt = ·. Hence both the numbers of cancelling pair in σ and

σ∗ are equal to the number of cancelling pair in τ plus the number of · in τ .
Let u

(0)
k (resp. u

(1)
k ) be the minimal (resp. maximal) column indices with (i, u

(0)
k ) ∈ zk

(resp. (i, u
(1)
k ) ∈ zk) and let v

(0)
k be the minimal column indices with (i + 1, v

(0)
k ) ∈ zk.

Note that if u
(0)
k < u

(1)
k , then (i, u

(0)
k ) is an inner corner and (i, u

(1)
k ) is an outer corner of

zk: in particular, b
i,u

(0)
k

= 1 and b∗
i,u

(1)
k

= 1.

Suppose that f̃iB = B − Êiu + Êi+1u and let d(i, j) = s. Let s0 ≥ s be the minimal

number such that u
(1)
s0 < u

(0)
s0+1.

Lemma 7.2.2. Under the above hypothesis, we have

f̃i(B
∗) = B∗ − Ê

iu
(1)
s0

+ Ê
i+1u

(1)
s0

.

Proof. For a sign S ∈ {+,−, ·} in σ, we label it as Sk when the cell (i, j) corresponding

to S is numbered k by d. Consider a connected subsequence (· · · ,+s) of σ. If +s is the

first sign in σ, it is trivial that s = s0 and +s is the first non matched + in σ∗. So suppose

that +s is not the first sign. Then the sign just before +s in σ is −t with t > s. If t > s+1,

it is also trivial since the zig-zag zs+1 divide σ vertically. Let t = s + 1. Consider three

cases as follows.

(case 1) +t doesn’t exists in σ,

(case 2) +t exists and u
(1)
s < u

(0)
t ,

(case 3) +t exists and u
(1)
s ≥ u

(0)
t ,

Note that (case 1) implies u
(1)
s < u

(0)
t . Since u

(1)
t is the column index of the position of −t

in σ∗, (case 1) and (case 2) implies s = s0 and −t is the sign just before +s in σ
∗. Hence

we are done in these case. In (case 3), +s precedes −t in σ
∗. Then we repeat the above

reasoning for t = s+1 and t′, instead of s and t. If (case 1) and (case 2), s0 = t and +t is

the first non cancelled + in σ∗. If (case 3), we repeat for t+1, and so on. This procedure

will terminates.
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Next, we compare the southwest channel numbering on B with those on B̃. We keep

the notation u
(0)
k , u

(1)
k and s0. Define d

− on B̃ by

d−(c) =





d(i, u) if c = (i+ 1, u),

d(c)− 1 if c = (i, j) for some j with s < d(c) ≤ s0,

d(c) otherwise.

(7.2.3)

Similarly, let d′ be any proper numbering on B̃ and define d′+ on B by

d′+(c) =





d′(i+ 1, u) if c = (i, u),

d′(c) + 1 if c = (i, j) for some j with s ≤ d′(c) < s′0,

d′(c) otherwise.

(7.2.4)

Lemma 7.2.3. d−, d′+ is well defined proper numbering.

Proof. For d−, since +s is not cancelled, there is no −s as in the proof of Lemma 2.2.

And there is such s0 also as in Lemma 2.2. Hence the definition of d− is valid. Then it

is easy to see that the level set of d− forms zig-zags satisfying the conditions of zig-zags

formed by a proper numbering.

For d′+, by similar reasoning, there is no +s and there is such s′0. Then it is easy to

see that d′+ is a proper numbering

Moreover, (d−)+ = d. And if d2 is another numbering on B such that d2(i, u) = 2 and

d2 ≥ d, then s0 of d2 is smaller than that of d, so d−2 ≥ d−.

Let C = {· · · >nW c0 >nW · · · >nW cl = c0 + (m,n) >nW · · · } be a channel of B with

c0 = (i, u) Let r ≥ 0 be the maximal number such that c0, . . . , cr is in i-th row. Let

c−0 = (i + 1, u). Note that the length r nW-chain between c0 and cr+1 has length at most

r, by the maximality of channel. With the signature rules, we conclude that there exists

a chain c0 >nW c
−
1 >nW · · · >nW c

−
r >nW cr+1. with c

−
1 , · · · , c−r is in i+ 1-th row. Therefore,

C− = {· · · >nW c
−
0 >nW · · · >nW c

−
r >nW cr+1 >nW · · · >nW cl−1 >nW c

−
l = c−0 + (m,n) >nW · · · }

is a channel of B̃.

Similarly, for a channel C ′ of B̃, we may define C ′+ of B by

C ′+ = {· · · >nW c
′+
0 >nW c

′
1 >nW · · · >nW c

′
l−r+1 >nW c

′+
l−r >nW · · · >nW c

′+
l = c′+0 +(m,n) >nW · · · }
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Note that we modify the cell before c′0 in C ′+ case.

In this case, + and − preserves ordering on channels, but there is gap between C and

(C−)+. However, we always have (i, u) ∈ C ∩ (C−)+ and (i+ 1, u) ∈ C ′ ∩ (C ′+)−.

Together with subsection 2.1. The lemma 6.6 in the paper also hold for dual case:

d− = d′

Let C,C ′ be the southwest channels of B and B̃. In this case, C− differs only by (i, u)

from C. Hence, C ≥sw C ′+ ≥sw (C−)+ = C so C = C ′+. Thus d− = d′ or equivalently

d′+ = d.

Even though d− is modified several zig-zags from d, the set of inner and outer corners

are differ by one for each corner. More precisely, the inner corner (i, u) of zs of B moves

to (i + 1, u) and and outer corner (i, u
(1)
s0 ) moves to (i + 1, u

(1)
s0 ). This amounts exactly

that f̃i moves a cell (i, u
(1)
s0 ) of B

∗ one row down.

The remaining part of the proof follows from that (dswB )′ is the southwest channel

numbering on B̃, which can be proved in similar manner described in Section 7.1.3.
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국문초록

Robinson-Schensted-Knuth (RSK) 대응은 음이 아닌 정수 계수를 갖는 행렬을 같은 모양

의 반표준 타블로 쌍에 대응시키는 전단사 함수이다. 이 대응은 대수적 조합론, 표현론과

깊은 관련이 있으며, 행렬 공간 위의 대칭대수의 하우 쌍대성을 조합적으로 설명한다. 결

정이론적 관점에서 RSK 대응은 행렬집합과 타블로 쌍들의 집합위에 정의된 결정구조를

보존한다.

최근 Chmutov-Pylyavskyy-Yudovina의 연구에서 행렬-공 구성이라 불리는 도형적 방

법으로 RSK 대응을 아핀 순열로까지 확장하였다. 본 학위논문에서는 이들의 결과에 표

준화를 사용하여 아핀 행렬로 확장된 아핀 RSK 대응을 소개한다. 이 아핀 RSK는 아핀

행렬을 같은 모양의 타블로 쌍에 대응시키는데, 이 중 하나는 레벨 1 완전 결정의 텐서곱의

원소이고, 다른 하나는 레벨 0 극단 무게 가군 결정의 원소이다. 이 때, 아핀 RSK 대응이

A형 결정 구조를 보존함을 증명하고, Immamura-Mucciconi-Sasamoto가 소개한 또다른 아

핀 일반화된 RSK 대응과의 간략한 비교를 제시한다. 끝으로 쌍대 아핀 RSK 대응 또한

소개한다.

주요어휘: 아핀 RSK 대응, 극단 무게 결정, 행렬-공 구성

학번: 2015-20276
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