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Abstract

The Robinson-Schensted-Knuth (RSK) correspondence is a bijection that maps a ma-
trix of non-negative integers to a pair of semistandard tableaux of the same shape. The
correspondence has deep connections to algebraic combinatorics and representation the-
ory, serving as the combinatorial counterpart of the Howe duality on a symmetric algebra
over the space of matrices. From the viewpoint of crystal theory, the correspondence
preserves the crystal structures on the set of matrices and the set of pairs of tableaux.

Recently, Chmutov-Pylyavskyy-Yudovina extended the correspondence to affine per-
mutations using diagrammatic method which is called the matrix-ball construction. In
this thesis, we introduce an affine analogue of the RSK correspondence, which generalizes
the result of Chmutov-Pylyavskyy-Yudovina via standardization. The affine RSK maps
an affine matrix to a pair of tableaux of the same shape, where one of the pair belongs
to a tensor product of perfect crystals of level one, and the other belongs to a crystal of
a level zero extremal weight module. We prove that the affine RSK preserves the affine
crystal structures of type A. We give a brief comparison of our result with another affine
generalization of RSK introduced by Imamura-Mucciconi-Sasamoto. We also introduce a

dual affine RSK correspondence.

Key words: affine RSK correspondence, extremal weight crystals, matrix-ball construc-
tion
Student Number: 2015-20276
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Chapter 1

Introduction

1.1 Backgrounds

The Robinson-Schensted-Knuth correspondence (RSK for short) is a fundamental bijec-
tion in algebraic combinatorics and representation theory that associates a matrix of non-
negative integers with a pair of semistandard tableaux of the same shape. It has rich ap-
plications in a wide range of areas, including representation theory, geometry, and statis-
tical mechanics. In representation theory, the RSK can be regarded as the combinatorial

counterpart of the Howe duality [11]

8(Mumxn(C)) = @D Vin(A) @ Vu(N), (1.1.1)

that decompose the symmetric algebra over the space of matrices into irreducible GL,,(C) x
GL,(C)-modules. The RSK describes the bijection between the bases of the spaces on
both sides of (1.1.1), and it preserves the crystal structures on the bases [24].

The origins of the Robinson-Schensted-Knuth correspondence can be traced back to
the work of Robinson [29], which associates a permutation with a pair of standard Young
tableaux of the same shape. This correspondence was also discovered independently
by Schensted [31], as an insertion algorithm of tableaux, which is called the Robinson-
Schensted correspondence (RS for short). It provides a combinatorial description of the
left and right cells of the symmetric group in Kazhdan-Lusztig theory [20]. By Knuth
[22], the insertion algorithm is generalized to the RSK correspondence.

Unlike the insertion algorithm, Viennot [37] introduced a diagrammatic method that



CHAPTER 1. INTRODUCTION

describes the RS correspondence. It naturally respects the symmetry of RS correspon-
dence. That is, if a permutation w corresponds to (P,Q), then the inverse w™! corre-
sponds to (@, P). Viennot’s method works for the RSK after applying standardization,
which is called the matrix-ball construction (see [7, Chapter 4]).

An affine analogue of the RS correspondence was introduced by Shi [32,33] in the
study of affine Kazhdan-Lusztig cells. Shi associates an affine permutation w with a
pair of tabloids (P(w),Q(w)), where each tabloid determines a left or right cell of the
Hecke algebras of affine symmetric groups. However, the map w — (P(w),Q(w)) is
not injective. Recently, Chmutov-Pylyavskyy-Yudovina [5] constructed a bijection w +
(P(w), Q(w), p(w)) using an affine generalization of matrix-ball construction. Here p(w)
is an integral vector satisfying a condition called dominance. It is a natural question that

how to extend the affine RS correspondence for a affine matrix or an affine matrix.

1.2 Main Results

Let m and n be positive integers. Let JV[mxn be the set of matrices A = (a;;); ez of
non-negative integers such that a;yn, j4n = a;; for all 4, 7 € Z, and for each j € Z, a;; =0
except for finitely many ¢’s. Let \ be a partition with length not greater than m and n.
Let C'SSTyy () be the set of column semistandard tableaux of shape A with entries from
1 to m. Let B,,(\) be the set of tableaux of shape A with entries in Z such that each pair
of adjacent columns of the same column length is form a semistandard tableau.

The first main result of this thesis is to construct a bijection

o Mpen — || CSSThm(N) x Ba(N) (1.2.1)
AEP NP,

A (P, Q)

where &7, is the set of all partition with length not greater than n. The main ingredient
is the affine RS correspondence in [5], and the standardizations of matricies and tableaux.
A key observation is that the dominance condition of the vector p(w) is compatiable with
the description for B(\).

Let us consider the crystal structures on both sides. If m > 2, J\A/[mxn possess a
natural Uq(g[m)—crystals structure which seems to be tensor-product-like of its columns,

and CSSTj)(A) has a U] (sl,,)-crystal structure isomorphic to a tensor product of perfect

3 o i
2 "':I'H-_E _'k..-_'l' |



CHAPTER 1. INTRODUCTION

Kirillov-Reshetikhin crystals of level 1.

On the other hand, if n > 2, J/V\men again possess a natural Uq(gln)—crystals structure
which seems to be tensor-product-like of its rows, and B,,(\) has a U, (sl,,)-crystal structure
isomorhpic to the crystal base of a level zero extremal weight module. The U, (;[m)—crystal
(or Ué(s?[m)—crystal) on both sides are compatible with the Uq(;[n)-crystal (or Ué(sA[n)—
crystal). We expect that the crystal structure of M, coincides with the ones in [25].

The second result of this thesis is that the bijection k preserves the crystal structures
on both sides. Indeed we show that £ commutes with the Kashiwara operators except for
the & and f, for Uq(;[m)—crystals. As a corollary, we have an isomorphism of (U,(sl,,) x
U, (sl,,))-crystals

Musn = D CSST(A) x Bu(N).
AE PP

Let Nyuxp be the set of {0, 1}-matrices satisfying the similar relations. Let RSSTjn ()
be the set of row semistandard tableaux of shape A with entries from 1 to m. If m > 1,
RSST(A) has a Ué(s?[m)—crystal structure isomorphic to a tensor product of perfect
Kirillov-Reshetikhin crystals of level > 1. Then we have a dual analogue of (1.2.1)

Kt Noxn — || RSSTj(X) x Ba(N) (1.2.2)
AEPy,
A (P, Q)

where )\ is the conjugate partition of A\, and P] is the conjugate tableau of . We show
also that «' is an isomorphism of (U,(sl,,) X Uq(;[n))—crystals. We expect that ' gives
a level zero analogue of the decomposition of the crystals [8,9] associated to the higher
level g-deformed Fock space [36].

We remark that another affine generaliziation of RSK correspondence is given by
Imamura-Mucciconi-Sasamoto [13]. The algorithm uses the dynamics of Sagan-Stanley’s
skew RSK correspondence [30]. We give an expository example which compares two
algorithms. A representation theoretic interpretation of the identity corresponding to the

bijection in [13] is also recently given using representations of current Lie algebras [6].

1.3 Organization

The remainder of this thesis is organized as follows.
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Chapter 2 We review preliminaries on the combinatorics of tableaux, and introduce
offset vectors and rectangular decomposition of tableaux which have crucial roles in

defining .

Chapter 3 We adopt the notions and results of [3,5] on the affine RS correspon-
dence, which is needed for the rest of our thesis.

Chapter 4 We give a brief review on the representations of quantum groups and
crystal theory introduced by [17]. We focus on the quantum affine algebra Uq(sAIn)

and define affine crystal structure on the set of tableaux introduced in Chapter 2.

Chapter 5 Using the ingredients give in Chapter 2-4, we construct the affine RSK
correspondence x and show that it is a bijection. We describe the natural Uq(;[m)—
crystal and U, (f?[n)—crystal structure on M, «,, and state that k preserves the crystal

structures.
Chapter 6 We give a dual analogue ' of k for J/ifmxn.

Chapter 7 We prove that the crystal equivalences of k and x’, which needs more

technical works.



Chapter 2
Semistandard tableaux

In this chapter, we review the definitions of tableaux and introduce rectangular semistan-
dard tableaux, which are the main objects of this thesis. Throughout this thesis, let Z>
denote the set of non-negative integers and [n| = {1,2,...,k} for n > 1.

A partition is a weakly increasing sequence of integers A = (A1, Ag, ..., ;). We call
[ = £(\) the length of A, and call |[A\| = Ay +- - -+ \; the size of A. We identify a partition A
with its Young diagram (cf. [7]) and we denote it by the same notation \. We denote by
o= ({1, po, - - -, pa,) the conjugate partition of A where p; = #{i|\; > j}. We denote
by & the set of partitions of length less than or equal to k.

Let A denote either Z or [n], equipped with their usual linear orders. An A-tableau of
shape A is a filling 7" of the Young diagram A with entries taken from A. We may drop the
prefix A when there is no ambiguity on A. A tableau T of shape A is said to be bijective
if its entries are distinct and range from 1 to |\|.

Throughout this chapter, let n be a positive integer.

2.1 Column and row semistandard tableaux

In this section, we define column semistandard tableaux and row semistandard tableaux

with their standardizations. We also define descents and ascents for bijective tableaux.
Definition 2.1.1. Let T be a tableau of shape A. We say that T is:
(1) column semistandard if the entries in each column are increasing from top to bottom,

(2) row semistandard if the entries in each row are weakly increasing from left to right,

5 2l



CHAPTER 2. SEMISTANDARD TABLEAUX

(3) semistandard if it is both column semistandard and row semistandard.

We denote the set of column semistandard A-tableaux of shape A\ by C'SST,4(\). When
A = [n], we denote the set of bijective semistandard tableaux of shape A by C'STj,(A).
Similarly, we use the notations RSST,4(\) and RST, () for row semistandard tableaux.

The content of an [n]-tableau T' is a = (au, ..., ) € Z%, where oy is the number of
occurrences of the entry ¢ in 7.

Let T' be a column semistandard tableau 7" with content o € Z%,. We define the
column standardization T=* of T to be the tableau obtained by replacing each entry ¢ € [n]

in T with ay # 0 by the consecutive numbers
al+"'+at—l+17"'aal+"'+at

from left to right. Here we understand the empty sum as 0. By definition, T°° is a
bijective column semistandard tableau of the same shape.

Let us provide a more explicit description of the image of the column standardization.
Let S be a bijective column semistandard [k]-tableau of shape A, where k is the size of .
We say that i € [k] is a (column) descent of S if the entry i + 1 appears to be the right
of iin S. Let a = (au,...,an) € Z%, be given with |a| = a; + - - + a;,, = k. We say that
S is a-descending if for any ¢t € [n| and ¢ with

o+ o+l <i<ap 4o+,

¢ is a descent of S.

Let a partition A and a € Z%, be given with |a| = |A|. We denote by C'SST},)(A)a the
set of column semistandard tableaux of shape A with content a, and denote by C'STj o ()
the set of a-descending bijective column semistandard tableaux of shape A, where k is the

size of \.

Example 2.1.2. Let A = (3,2,2), n =5, k =7, and let

2]1[4]
T=[3[4] € CSSTH(N).
NE

The content of T is aw = (1,1,1,3,1). We see that the column standardization 7% given
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by

6|

Tst —

w

and T°®* is a-descending.

€ CSTW] ()\),

The following lemma can be easily checked using the definition of standardization.

Lemma 2.1.3. Under the above hypothesis, we have a bijection

CS5Tyy(Na

T

We can similarly define the row standardization T of a row semistandard tableau
T with content o € Z%; to be the tableau obtained by replacing each entry ¢ € [n] in T

with ay # 0 by the consecutive numbers

Tst

()Z1+"'+()Zt_1—|—1,...,a1—|—"'

from the bottom row to top row, and from left to right in each row.
Let S be a bijective row semistandard [k]-tableau of shape A\. We say that ¢ € [k] is
a (row) ascent of S if the entry i + 1 does not appears below i in S. For a € Z%, with

la| = k, we say that S is a-ascending if for any ¢ € [n] and i with
o+t tHl<i<oar+ -4 ay,

i is an ascent of S. Let us denote by RS ST}, (\)q and RSTj . (A) for the row semistandard

tableaux similarly.

Example 2.1.4. Let A = (3,3,1,1), n =3, k = 8, and let

2

3

1

3

|| o] =] =

€ RSSTB]()\).

CSTia(A) -

&

| &1
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The content of T is o = (3,2, 3), and its row standardization 7% is a-ascending as follows

5|8
207

Tst’ _

- RST[g]()\),

EEEE

We have the row analogous to Lemma 2.1.3

Lemma 2.1.5. Under the above hypothesis, we have a bijection

RSSTy(N)a
T Tst

RSTyy () -

/

2.2 Offset vectors

In this section, we introduce maps 7 and 7’ on tableaux that shift the entries in each
column and row of tableaux respectively. We define offset vectors for tableaux to be the
minimal vector that make the given tableau to be semistandard via the map 7 and 7'.
Let
Bn((1%) = {T € CSSTy((1")) | T(b) = T(1) < n}

where T'(i) denotes the entry in T at the i-th row from the top. Note that B, ((1°)) is
empty unless b < n. For T' € B,((1%)), let 7,,(T) be the tableau obtained by replacing its

entries

T <T2)<---<Tb-1)<T()

with
T(2)<T@B)<---<TOb) <T(1)+n.

Then 7, is a bijection on B,,((1%)). We may write simply B,,((1°)) = B((1°)) and 7, = 7 if
there is no ambiguity on n. In general, for o = (ay,. .., @,) € Z%, we define the bijection
7% on B((1%))* which acts on the j-th factor by 7.
Let R = (a®) = (a,...,a) be a Young diagram of rectangular shape. Let us regard
N

b
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CSSTi(R) as the subset of B((1°))* via the embedding

CS55Tj(R) B((A%)

T (T°...,TY

where T7 is the j-th column of T" from the right.

Definition 2.2.1. Let T be a column semistandard [n]-tableau of shape R = (a’) with

b<mn. For 1 <j <a,let r; be the minimal non-negative integer such that the tableau
(T 779(T7))
of shape (2°) is semistandard, and let n; = r; + ;41 + -+ -74_1. We call (ry,...,7,1) the

offset vector for T, and n = (11, ...,1.-1) the symmetrized offset vector for T.

It is obvious that nyey = (0,74_1,...,m1) is the unique vector in 7 of minimal size
such that 7 (T') is semistandard.

We can similarly define the offset vector for row semistandard tableaux. Let
B'((a)) ={T € RSSTy((a)) | T(a) = T(1) <n}

where T'(j) denotes the entry in 7" at the j-th column from the left. We define the bijection
7" on B'((a)) by 7/(T) to be the tableau obtained by replacing the entries

T(1)<T(2)<---<T(a—1) <T(a)

of T" with
T(2) <T(3) < < T(a) < T(1) +n.

and define 7 on B’((a))’ similarly for o € Z° in general.
We regard RSSTj,(R) as the subset of B/((a))” via the embedding

RS ST (R) B'((a)

Tr—— — (T°...,TY

where T" is the i-th row of T from the bottom.

We have row analogous to Definition 2.2.1.

9 I _k'.f_]-]i =]
|2



CHAPTER 2. SEMISTANDARD TABLEAUX

Definition 2.2.2. Let T' € RSSTy,(R) be given. For 1 < j < a, let r; be the minimal
non-negative integer such that the tableau

(T4, 71 (T7))
of shape (a)? is semistandard, and let n; = 7; + 741 + - 74-1. We call (r1,...,7,-1) the

offset vector for T, and n = (91, ...,n._1) the symmetrized offset vector for T.

Lemma 2.2.3. Let T be a row semistandard [n]-tableau of shape R = (ab). Then the

offset vectors for T and T=% coincide.
Example 2.2.4.

(1) Let n =5 and let

2112
T =[3[4]3|e CSST((3).
41515
We have r; = 1 since
112
(T*,T") =43
5[5
is not semistandard, while
113
(T2, 7(T")) =[4]5
517

is semistandard. We see that the offset vector for 7" is (1, 1), the symmetrized offset
vector for T is n = (2,1) so that

21415
T (T) = (T°, 7(T%), 7(T")) = 3|5 | 7
416110
is semistandard.
(2) Let m = 3 and let
1123
T =[1[2]2]e RSSTy((3%)).
21213

Then the symmetrized offset vector for T is n = (3,2) so that

10 #;rqu _CI:I_ ]_-_]| l-j]_ =
I = L



CHAPTER 2. SEMISTANDARD TABLEAUX

T (T) = (T°,7(T7), 7 (T")) = | 2

=~
(@3

is semistandard.

2.3 Rectangular semistandard tableaux

In this section, we introduce rectangular semistandard tableaux, which will play a crucial

role in this thesis. Let R = (a®) of rectangular shape with b < n.

Definition 2.3.1. Let R = (a®) be a partition with b < n. We say that a semistandard
Z-tableau T = (T, ..., T") of shape R is rectangular semistandard if TV € B((1°)) for
each 1 < j < a where T is the j-th column of T from the right. We denote the set of
rectangular semistandard tableaux of shape R by B(R).

Regarding B(R) as a subset of B((1°))%, we define 7® on B(R) for a € Z¢, similar to
Section 2.2. Let

B(R)y = {T € B(R) ‘ (79 771(T7)) is not semistandard for 1 < j <a —1 } :

Recall that &2, ; is the set of partitions of length less than a. For v = (v4,...,v,1) €

Py1, We Write Vrey = (0,V4-1,...,v1) € Z%,. Then we have a bijection

B(R)o X P, B(R) . (2.3.1)

(T,v) —— 717 (T)

Lemma 2.3.2. Let T' € CSST,(R) and a = (o, ..., 0aq) € Z* be given and let 0oy =
(g, ..., a1). Then 7= (T") € B(R) if and only if

Qg < Qgq —Ng—1 < -0 <o — 1),

where 1 is the symmetrized offset vector for T

Proof. It follows immediately from that 7 is the unique partition of length less than a
such that 7 (T") € B(R)o. O

11 :_'E L=
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By Lemma 2.3.2, we have a bijection

CSST[H] (R) X ipa

B(R) (2.3.2)
(7—'7 V) _ TVrev+7]rev (T)
where P, ={v = (v1,...,1,) € Z*|vy > -+ > 1, } is the set of generalized partitions of

length a and 7 is the symmetrized offset vector for T'.
Let

T: B(R) B(R) (2.3.3)
T=(T%...,T") —— (r(T%),...,7(T")

be the bijection given by applying 7 to each column of the tableaux in B(R), which induces
a Z-action on B(R) and B(R)y. Let B(R)y/Z denote the set of equivalence classes under
this Z-action. We identify B(R)o/Z with the set of T € B(R), such that the first column
of T has entries in [n|. Hence, we have another bijection

C ST (R)

B(R)o/Z , (2.3.4)
T————— [r"=(T)]
where [T] denotes the equivalence class of T and 7 is the symmetrized offset vector for T

The following lemma implies that the symmetrized offset vector of T is invariant under
standardization.

Lemma 2.3.3. Let T € CSST},(R) be given where R = (a°) € P, for some a,b > 1.
Forve P, 1, we have

7 (T) € Bo(R)o if and only if 7, (T°%) € Br(R)o,

where k = ab.

Proof. Let T = (T%,...,T") and T°* = S = (S°,...,S"). For 1 < j <a—1, let r;
be the smallest integer satisfying (7741, 7,7 (T7)) is semistandard. It suffices to show that
(S92, 773 (57)) is semistandard but (S7+!, 772 71(S7)) is not. It is straightforward to see
from the definition of T*. ]

12 ¥ | : 1_]| =]



CHAPTER 2. SEMISTANDARD TABLEAUX

Closing this section, we note that while the results of this section have row counterparts
of rectangular semistandard tableaux, they do not have interesting implications in terms
of representation or crystal theory (cf. 4.2.5). Therefore, we only focus on the column

semistandard case in the rest of the thesis.

2.4 Rectangular decomposition

Let X\ be a partition. We decompose A into its subdiagrams of rectangular shapes R®
defined by
RY = (my,...,m;) (1<i<l),
\_i,_/
where m; is the number of occurrences of 7 in p and [ = ¢()\). Here we assume that R
is empty when m; = 0. For example, if A\ = (6,4, 1,1), then we see that R = (1),
R® = (3%), R® = () and R® = (2%) as illustrated in the following figure.

R(#)

For a tableau T of shape A\, we denote by T the subtableau of T corresponding to
the subdiagram R® of A\. We call (R, ..., R®) and (TW,... T®) the rectangular
decompositions of A and T respectively.

Definition 2.4.1. Let X\ be a partition of length less than or equal to n, with the rect-
angular decomposition (R, ..., RW). We say that a tableau T of shape A is rectangular
semistandard if T € B(R(i)) for each 1 < ¢ < [. We denote the set of rectangular
semistandard tableaux of shape A by B(\).

Note that B(A) is empty when £(A\) > n. Let us identify

B(\) = B(RY) x --- x B(RY),

(2.4.1)
CSSTi(N) = CSSTyy(RY) x - -+ x CSSTy(RY)

13 -] 2 1]



CHAPTER 2. SEMISTANDARD TABLEAUX
via rectangular decompositions and define
BN = B(RM)g x --- x B(RV),.

If we put Z(\) = Pryy1 X+ - X Pppy—1 X Py -1, where we take the product over m; > 1,

then we have a bijection

B(N)o x P(N) B(\) , (2.4.2)

. . (1) ;
((T(Z))lgigl’(V(Z))lﬁiﬁl) — <T”““(T(Z))>

1<i<l

by applying (2.3.1) to each component, where T®) € B(R®), and v € &, _;.
Similarly, if we let P(\) = P,,, X -+ x P,,,, where we take the product over m; > 1,

and regard
C'SSTi(A) = CSST(RV) x - x CSSTyy(RW),

then by (2.3.3) we have a bijection

CSST(N) x P(N) B()N) , (2.4.3)

((T(i))lgigl , (V(i))lgi§l> L (Tur(i’v+n§?v (T(i)))

where n € &2, is the symmetrized offset vector for T¢)
Let
B(N)o/Z' = B(RW)/Z x -+ x B(R"),/Z,

where each B(R"),/Z is the set of equivalence classes under the Z-action (2.3.3). Then

we also have a bijection

B(N)o/Z

1<l

14 &



CHAPTER 2. SEMISTANDARD TABLEAUX

Example 2.4.2. Let A = (5,5,2), n =4, and let

2[1]2]1]2
T =[312]3]3]3]|€ CSST\).
1[4

Then A is decomposed into R® = (3,3) and R® = (2,2,2), and the corresponding

decompositions of T are

271
7@ _ z ;) z TG _[373
14

We see that n® = (1,1), n® = (1) are the symmetrized offset vectors for 7 T®)
respectively. For v = ((1,—1),((2,1,0)) € P()), the image of (T, v) under the bijection
(2.4.3) is

0141257 € B(N).

N}
ot
w
EN|
—
=]
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Chapter 3

Affine RS correspondence and

matrix-ball construction

In this chapter, we provide a brief review of the affine RS correspondence described in [5],
while adopting the necessary notations and terminologies with slight modifications. We
refer to the statements in the literature by their precise numbers and omit their proofs.
Let k be a fixed positive integer. An (extended) affine permutation of k is a bijection
w : Z — 7 such that
w(i+k)=w(i)+k

for each i. We denote by \/A\?k the set of affine permutations of k. If £k > 2, it is an
extended affine Weyl group of type A(1), ;. We may represent an affine permutation

w € Wy by the window notation w = [wy, ..., wy], where w; = w(i) for each i, or by the
matriz representation w = (Wi )i jez, Where w; = dy(;); and dy(;; is the Kronecker delta.
For example, we visualize the matrix representation of w = [5,7,2,8,3,13,4] € W; as
follows.

b Fa 1| g
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Here, we only draw nonzero entries in 1 < ¢ < 14 and 1 < 57 < 21. Note that a
matrix representation w satisfies ., w;; = 1 and ) jez Wij = 1 for each 4, j. Generally,
a matrix w = (w;;); jez is called a partial (extended) affine permutation of k if w;; € Z,
Wik, j+k = Wijs D ep Wi < 1, and ZjeZ w;; < 1 for each 4, j. We also use the window
notation w = [wy,...,w;] for a partial affine permutation w = (w;;), where we write
w;, = j if w;; =1, or w; = - if w;; = 0 for all j. We denote by @ the empty partial
permutation.

Consider the lattice Z x Z as the set of matrix co-ordinates. An element (i,7) € Z X Z

is called a cell. We use compass directional orders >y, >pn, and <,, on Z x Z as follows:
(1) ¢ >w ¢2 if and only if iy < ip and j; < jo,
(2) ¢1 >y o if and only if i3 < iy and 77 < jo,
(3) 1 <pe o if and only if i; > iy and j; < jo,

for ¢; = (i1,71),c2 = (i2,j2) € Z X Z. By convention, we use N (or E,W,S) to emphasize
strict inequality, while n (or e,w, s) allows equality of the co-ordinates of cells.

Throughout this chapter, we assume that w = (w;;) is a non-empty partial affine
permutation of k.

g SERE
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3.1 Southwest channel numberings

To perform the matrix-ball construction in the affine case, a certain ordering of the posi-
tions of 1’s is required. One of the notable results of [5] is that they single out a numbering
on the positions of 1’s which exhibits desirable properties.
Let
supp(w) ={(4,j) € Z X Z|w;; =1}

be the support of w. It is invariant under the translation 7 = 75, on Z x Z given by
7(i,j) =G+ k,j+k) ((1,5) €ZXZ).
A numbering on w is a function d : supp(w) — Z.
Definition 3.1.1 (cf. [5, Definition 3.1]). A numbering d on w is called proper if
(1) d(ea) < d(cq) if eg >yy c1,

(2) for any ¢; € supp(w), there exists ¢y € supp(w) such that ¢y >y ¢; and d(c) =
d(Cl) — 1.

The conditions (1) and (2) are called monotone and continuous, respectively. We remark

that any proper numbering can be shifted by any integer.
Lemma 3.1.2 (cf. [5, Proposition 3.4]).

(1) For any proper numbering d on w, there exists a positive integer {, which we call
the period, such that d(7(c)) = d(c) + £ for ¢ € supp(w).

(2) If £ and €' are the periods of any two proper numberings d and d' on A, respectively,
then we have £ = (', which we call the width of w.

Definition 3.1.3 (cf. [5, Definitions 3.6, 3.20]). A stream is an infinite collection of cells
s = {¢;}iez, which is invariant under 7 and forms a chain with respect to >y, that is,
¢; >w Cip1 for all i. A flow of a stream s is the number ¢ such that 7(¢;) = ¢;4 for all i.

A defining data of a stream s = {¢; = (a;, b;) }icz of flow £ is a triple (a, b, ), where
(1) a= (a1ur,- - a0r) € K] with 1 < ay iy <+ < apyy <k,

(2) b = (b1+r2> .. ,bg.,.m) S [k‘]l with 1 <byyp, <+ <bpyp, <k,

18 i—-'i O
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(3) r=ri—rs.

A stream s is called a stream of w if s C supp(w). A stream s of w is called a channel of

w if its flow is maximal among the streams of w.

Let C' = {¢; }iez be a channel of w and let ¢ € supp(w). Let m be the maximal integer
such that ¢,, >y ¢. The maximal property of channel ensures that ¢ #w ¢ny1. This

implies either ¢,,11 <ue ¢ Or ¢ <ye Cpy1. In other words, we have
supp(w) = Cye U Cyy,

where

Cre = { ¢ € supp(w) | ¢ <ge ¢ for some ¢’ € C'}, (3.1.1)
Cew = {c € supp(w) | ¢ <pe ¢ for some ¢ € C'}, a

and Che NCg, = C. Let @G, denote the set of channels of w. We define a partial order =g,
on G, by
C1 zsw Co if and only if C; C (Cy)gy. (3.1.2)

for Cl,CQ € Cyp.

Proposition 3.1.4 (cf. [5, Proposition 3.14]). The set C, has a greatest element with

respect to =gy, which we denote by C.

We call C5F the southwest channel of w.
Let C = {c¢;}iez be a channel of w, and let dy be the numbering on C' defined by
do(c;) =i. For ¢ € supp(w), we define

d%(c) = sup { do(cy,) +1 (3.1.3)

¢ > -+ > ¢ is a chain in supp(w)
(k > 0) such that ¢f, = cand ¢, € C

We call dS the channel numbering on w with respect to C.

Proposition 3.1.5 (cf. [5, Proposition 3.10]). The numbering d5 on w is a well-defined

proper numbering. Moreover, we have d<(c) = dy(c) for c € C.

Note that the width of w or the period of the channel numbering d¢ is equal to the

flow of a channel C of w.
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Definition 3.1.6. For the southwest channel C7¥ of w, we write d5 = dS¥ for short, and

call it the southwest channel numbering on w.

Example 3.1.7. Let w = [5,7,2,8,3,13,4] € W,. The southwest channel of w is given
by

Cor={->wt 7,4) >w (3,2) >w (5,3) >w (7,4) >w 7(3,2) >y -~ } .

In the following diagram, we draw a ball for each ¢ € supp(w) and fill in the value of
the southwest channel numbering d%¥(c) for each ball. The balls that form the southwest

channel are doubly circled.

Remark 3.1.8. Consider the southwest channel C®%, of the (partial) inverse permutation
W= of w. Then the channel

Co ={06:5)10,7) € O34 }

is the minimal element in C,, with respect to =g,. We call C}® the northeast channel of
w. Let di¢ be the channel numbering on w with respect to C%°. Then it follows from
definition that d®",(j,7) = d2(4,7) for (j,i) € supp(w™!).

The following lemma gives a characterization of channel numberings (cf. [5, Remark
11.8)).
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Lemma 3.1.9. Let C be a channel of w. Let d be a proper numbering on w such that
d(c) = dS(c) for c € C. Then the following are equivalent:

(1) d=dg,

(2) for c € supp(w), there exists a chain ¢; >yy -+ >w Co n supp(w) such that ¢y = c,
¢ € C and d(¢;) =d(c) —i for 0 <i <,

(3) if d' is a proper numbering such that d'(c) = dS(c) for ¢ € C, then we have d(c) <
d'(c) for every c € supp(w).

Proof. Suppose that (1) holds. Let ¢; >yy -+ >w ¢o = ¢ be a chain which gives the

maximum value do(¢;) + [ in (3.1.3). Since d is monotone, we have
da)+1<d(g_1)+1—-1<---<d(c) =do(c) + L. (3.1.4)

Since ¢ € C, we have d(¢;) = do(¢;) by Proposition 3.1.5. Thus all the inequalities in
(3.1.4) are in fact equalities and hence, d(¢;) = d(c¢) — i for 0 < i <[. This implies (2).
Suppose that (2) holds. For ¢ € supp(w), let ¢; >y - -+ >w co = ¢ be a chain satisfying
the condition in (2). Let d’ be a proper numbering such that d’ = d on C. Along this
chain, we have
de)+1<d(gq)+1—-1<---<d(c).

from the monotonicity of d’. Since d'(¢;) = d(¢;), we conclude that d(c) = d(¢) + 1 =
d'(¢;) + k < d'(c). This implies (3).

Suppose that (3) holds. Then, in particular, we have d(c) < d(c) for ¢ € supp(w) by
letting d’ = d<. Let ¢; >yy - -+ >w co = ¢ be a chain which gives the maximal value dS(c).
We have d(¢;) +1 < d(¢—1) +1—1<--- <d(c) from the monotonicity of d. Then we see
that dS(c) = d%(¢;) +1 = d(c;) + 1 < d(c). Hence d(c) = dS(c). O

By Lemma 3.1.9, we regard the channel numbering dS as the proper numbering with

minimal values among the proper numberings d which coincide with dy on w.

3.2 Matrix-ball construction for affine permutations

Definition 3.2.1. A zig-zag is an infinite collection z = {c¢;}icz of cells such that the

following hold:
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e for each i € Z, ¢;11 is the adjacent east or north cell of ¢;,
e ¢, is the adjacent east cell of ¢; if i > 0,
e ¢; 1 is the adjacent south cell of ¢; if 1 < 0,

For a zig-zag z = {¢; }icz, we say that

e the inner corners are the cells ¢; such that ¢;_; is located to the south and c¢;;; is
located to the east of ¢;,

e the outer corners are the cells ¢; such that ¢;_; is located to the west and ¢;;4 is
located to the north of ¢;,

e the back-post corneris the cell ¢ = (i, j;) when ¢; = (4}, ;) and ¢, = (i,, j.)) are the

leftmost and the rightmost inner corners of z, respectively.

Let d be a proper numbering on a partial permutation w of k. We associate a set of
zig-zags Zq = {2z;}icz to d, where z; is the unique zig-zag whose inner corners form the
level set d=1(i). Tt is straightforward to see that {z;};cz satisfies

(z.1) 7(2z;) = z;1¢ where ¢ is the period of d,
(z.2) the inner corners of each z; are contained in supp(w),
z.3) z;'s are mutually disjoint and supp(w) C | |.., z;,

1€EZL

(z.4) 2, is located to the southeast of z;_; for i € Z in the sense that

for each ¢; € z;, there exists ¢y € z;_1 such that ¢y >y c;. (3.2.1)

Conversely, a set of zig-zags Z = {z; };ez satisfying (z.1)-(z.4) determines a unique proper

numbering d? on w given by
d?(c) =i if c € supp(w) N z;. (3.2.2)

whose associated set of zig-zags is Z. Note that the set of back-corner posts of z;’s form
a stream of flow /.
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Example 3.2.2. Let w and df be as in Example 3.1.7. The period of di' is 3. The

zig-zags z), corresponding to the level sets (d5%)71(i) for i = 1,2,3 are given as red lines

below.
0 "
Z
)
@ z2
9 Zs3
% ¥
@
®
@
©
| ®

Let w be a non-empty partial permutation of k, and let {z;};cz be the set of zig-zags

associated to df¥. We define

e w’ : the unique partial permutation of k such that supp(w”) consists of outer corners

of z;’s,
e s(w) : the stream consisting of the back-post corners of z;’s.
The matrix-ball construction for affine permutations can be described as follows:
o w0 =,
o w®) = (WD),
o s = g(wlD),
1),

e 1, the flow of s® or equivalently, the width of w!

e (a;, by, p;): the defining data of s,

for t > 0. It is obvious that there exists s > 1 such that
wt Y £ g w® =g
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Lemma 3.2.3 (cf. [5, Proposition 3.10]). We have g > -+ > ps > 0.
Now we let
e )\ =/ : the conjugate partition of u = (p1,. .., i),
e Py : the tableau of shape A, whose t-th column from the left is a; (1 <t < 's),
e () : the tableau of shape A, whose t-th column from the left is by (1 <t < s),

e p=1(p1,...,ps) EZ°.

Note that if w is an extended affine permutation of k, then \ is a partition of k, and the

tableaux Py and @)y are bijective column semistandard [k]-tableaux.

Definition 3.2.4. Let w be an extended affine permutation of k. We define a map ® on
Wk by

d: W, | |CSTyy(N) x CSTyy(N) x 2, (3.2.3)
A

w (Po, Qo, p)

Theorem 3.2.5 (cf. [5, Theorem 5.1]). The map ® is injective.
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Example 3.2.6. Let w be as in Example 3.1.7.

1 T
z
1
Z3
| ”
w =
1
1
1
1
1
3 |
i
The stream consisting of the back-post corners of z;, (k € Z) is
S(l) = { c >NW (2,3) >N (4,4) >N (6,9) >Nw ot }
We obtain w” as follows:
1 T
o Rttt Ot S Sttt B Z1
|
: *********************************** Zo
mmmmane 1
i : I e z3
I i |
’u}b _= i : :’*1
T 1
N !

Repeating this process, we see that

25
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with w® = @, and

S(Q) — { .. >Nw (
s® = { > (
Then we have
2[1]3]
PO =415
6|7

1,5) >y (5,7) >w (7,8) > -+ },
37 6) >Nt }a
2|1]6]
) QO— 3 5 ) p:(17170)
417
26
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3.3 Affine RS correspondence

Suppose that two stream s = {¢;}iez and 8" = {c}};ez of the same flow [ are invariant
under the translation 7, with 20 < k. Let (a, b, p), (a’,b’, p') be the defining data of s,

s’ respectively. We may assume that

a=(a,...,aq;), b= b1_p,...,0_,),

a/:<a//1,...,a;;), b/:(bll_p/7..., E_p/).

(3.3.1)

Let m be the smallest integer such that ¢; >p, c;,, for all ¢ € Z, and consider the following

two streams
t = {di = (ai1n, i) Yicz, t' ={d; = (a;,b}},,) bicz-

Then there is a partial permutation w of k such that
supp(w) =t Ut (3.3.2)

Then it is straightforward to see that [ is the width of w, and t is the southwest channel

of w. Let d be a proper numbering on w defined by d(d;) = d(d;) =i for i € Z.

Proposition 3.3.1 (cf. [5, Proposition 5.6]). There exists unique integer r such that
d=d¥ if and only if p—p' > 7.

Definition 3.3.2.
e The number r in 3.3.1 is called the offset constant of a pair (s,s’),
e A pair (s,s') is called dominant if p— p' > r.

e More generally, for a triple (P, Qo,p) € CST(N) x CSTiy(N) x Z*, let s® be
the stream with defining data (a;, by, p;), where a;, b, are the t-th column of F,
Qo respectively. Then (P, Qq, p) is called dominant if (s®),s(+1)) is dominant for
1 <t < A such that g, = pgeq.

Theorem 3.3.3 (cf. [5, Proposition 5.12]). The image of ® is

@(Wk) ={(Py,Qo,p) | (P, Qo,p) is domininat }.
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Recall that we say i € [k] is a descent of S € CSTjy () if i + 1 appears to be the right
of i in S. For an extended affine permutation w of k, we say that i € [k] is a descent of w
if w(i) > w(i 4+ 1). The following lemma generalizes a well-known property of the usual

RS correspondence (cf. [7, Section 1.1]).
Lemma 3.3.4 (cf. [3, Proposition 3.6]). Suppose that ®(w) = (Py, Qo, p). We have
(1) i is a descent of w if and only if i is a descent of Py
(2) j is a descent of w=t if and only if j is a descent of Qy
We can interpret the dominant condition in terms of rectangular semistand tableaux.

Lemma 3.3.5. Suppose that (Py, Qo, p) € CSTr(\) x CST(N\) x Z* is given and let n
and 0 be the symmetrized offset vectors for Py and @, respectively. Then (Py, Qo, p) is

dominant if and only if
T;f+nrev(QO> c Bk()\)

Proof. It is enough to show when A\ = (2!). Let (a,b,p), (a’,b/,p’) be the defining
data of s, s® respectively. We adopt the notation given in 3.3.1. By Lemma 2.3.2, the

condition 3.3.5 is equivalent to that

pPr—p>60—n

Hence we claim that 6 — 7 is the offset constant.
We observe that in order to show d = d3¥, where w is given by (3.3.2), it suffices to

w )

find 4 such that d; >y d;, by the condition (2) in Lemma 3.1.9. Furthermore, d;_; >y d;

/

for some 4 is equivalent to a;_,_,, < a; since b,_; < b, is redundant by our choice of m.

The constants 1 and 6 are the smallest integers such that

/ / .
a; < @iy b; < bi+pfp’+9 (Z S Z)a

respectively. By the minimality of 7, 6, we have n < m and 0 < py — p; + m.
Suppose that d = d5. Then by the above observation, there exists i with a; > aj_,, ;.

In this case, we have m — 1 < n < m by the minimality of 1. Hence n = m and

p—p>0—m=0-n=r.

3 y 1 | s
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Note that we have n > p — p’ + 6, which implies that b; < b;,.
Conversely, suppose that o' — p > 60 —n. Since p' — p+n > 0, we have
b; < U, =10

i+p—p'+(p'—p1+n) i+n

(teZ).

s /
Since a; < a; s

some 7. Hence d = di7.

29
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Chapter 4

Affine Crystals

In this chapter, we provide background information on quantum affine algebras, extremal
weight modules, and their crystal bases, which are essential to our study. The chapter is

structured as follows:

e In Section 4.1, we review the general theory of representations of quantum groups,
based on the work of [17,18]. We adopt the notations introduced in [10].

e In Section 4.2, we focus on the affine case where g = s?[n. Following the results of
[1,19], we introduce an affine crystal structure on the sets of tableaux presented in
Chapter 2.

Throughout this chapter, we assume that n is an integer greater than 1, and work

over the field of rational polynomials Q(q).

4.1 Crystals bases

4.1.1 Quantum groups and their representations

Let I be a finite index set, and let A = (a;;); jer be a generalized Cartan matrix, which is

a square matrix with entries in Z that satisfies the following conditions:
(1) a; =2forallie I,
(2) ajj <Oforalli##jel,

(3) a;; =01if and only if a;; =0 for all ¢, 5 € I.

30 21l &)



CHAPTER 4. AFFINE CRYSTALS

A generalized Cartan matrix is called symmetrizable if there exists a diagonal matrix
D = diag(s;)ier such that DA is a symmetric matrix. In this thesis, we assume that
the generalized Cartan matrix A is symmetrizable, with the diagonal entries s; being
coprime integers. Let PV be a finitely generated abelian group which we call a dual
weight lattice, and let P = Homg(PY,Z) be the weight lattice with the natural pairing
(+,-): PYx P — Z. We fix subsets IIV = {h;}ie; € PY and II = {a;}ie;r C P
sastisfying (h;, ;) = a;;. The elements h; and «; are called simple coroots and simple
roots respectively. The quintuple (A, PV, P, 11V 1) is called a Cartan datum associated
with A. A Cartan datum corresponds to a symmetrizable Kac-Moody algebra g (see
[15, Chapter 1] for details).

Definition 4.1.1. Let (A, PV, P, 11V, 1I) be a Cartan datum, and let g be the correspond-
ing Kac-Moody algebra. The quantum group or quantized universal enveloping algebra
U,(g) is an associative Q(g)-algebra with 1, generated by the symbols e;, f; (i € I) and
¢" (h € PVY) with the following defining relations:

(1) ¢ =1, ¢"" = ¢"¢" for h,n' € PV,
(2) ¢ eig™" = ¢!heide; for h € PV,

(3) ¢"fig™" =q " fi h e PY,

Ki—K" o
(4) eifj — fje,» = 6ij qi—qi_l for 1,] € ],

(5) STz (—1)kel ™M e e ®) — 0 for i £ j,

(6) Soht(— 1)k p f®) g for £ 5,

where ¢; = ¢, K; = ¢*", and

[Kle = (¢ —27%)/(z — 271, [kt = [1a[2]s - - - [Kla,
el = ek [k, F® = £5 k],

Let A : U,(g) — U,(g9) @ Uy(g) be the Q(g)-algebra homomorphism defined by

Ale;) = €i®Kfl+1®€i, Afi)=fi®1+K;® fi, A(qh) =q¢"®q",
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fori € I and h € PY. The map A is called a comultiplication on U,(g). For U,(g)-modules
V and W, the tensor product V ®q) W admits an Uy(g)-module structure via A. We
denote the resulting module by V & W.

An element A € P is called a weight. Let V be a U,(g)-module. A non-zero vector
v €V is called a weight vector of weight u € P if ¢"v = ¢™*v for all h € PY. We call V

a weight module if it admits a weight space decomposition V = @,cpV,, where
V,={veV|¢v=q¢""vforalhecP"}.

A weight module V' is called integrable if all e; and f; are locally nilpotent on V| i.e., for
every v € V, there exists non-negative integer N such that eMv = fNv =0 for all i € I.
A weight A is called dominant if (h;, A\) > 0 for all i € I.

Definition 4.1.2. For a dominant weight A, let V() be a U,(g)-module generated by

the single element u) with reltations

My, ey =0, fiT Ny =0

¢"uy = q ;

for h € PV and i € I. It is known that V()) is irreducible and integrable. The generator
uy is called a highest weight vector and A is a highest weight. We call V(\) a irreducible
highest weight module of weight .

4.1.2 Weyl groups and extremal weight modules

For i € I, let s; : P — P be the simple reflection defined by

We denote by W the subgroup of GL(P) generated by s; (i € I), which we call the Weyl
group of g. For w € W and A € P, we simply write wA rather than w(\).
Let V be an integrable module and u € V' be a weight vector of weight A\. We call u

an extremal vector if there exists a family of vectors {uy, },ew such that

e u, = u for the identity e € W,

o if (h;,w\) > 0, then e;u,, = 0 and fi“hi’w’\»uw = Us,u)

o if (h;,w\) <0, then fju, =0 and el(-_(hi’wmuw = Ugop-
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Note that u,, is a weight vector of weight w\. We denote u,, by S, u.
Definition 4.1.3. For A € P, let V(\) be a U,(g)-module generated by u, with the

defining relations that u, is an extremal weight vector of weight A. We call it an extremal

weight module of weight .

For a dominant weight A, the extremal weight module V() is the irreducible highest
weight module of highest weight A. Hence we use the same notation V(A). The map

uy — Sy-1Uyy induces an U, (g)-module isomorphism
V(A — V(w\) (4.1.1)

for any w € W.

4.1.3 Crystal bases and crystal graphs

Let V be an integrable U,(g)-module. For ¢ € I, every weight vector u € V of weight A
can be written uniquely in the form

u = Z fi(k)uk, (4.1.2)

where N € Z>0 and uy, € ker e; N V) ka, for k£ > 0. Here uy, # 0 only if A(h;) +k > 0. We
define operators ¢;, f; (i €I) by

N N
Eiu = Z fi(kfl)uk’ fu= Z fi(k“)uk-
k=1 k=0

The operators e; and ]71 are called the Kashiwara operators.

Let Ag C Q(q) be the ring of regular functions at ¢ = 0. An Ag-lattice of Q(q)-module
V' is an Ag-submodule L of V' such that Q(¢) ®a, L = V. Let V be an U,(g)-module. An
Ay-lattice L of V' is called a crystal lattice if

(1) L = ®uepL,, where L, = LNV,
(2) &L C L, fiLC Lforalliel.

Note that e; and ﬁ induces Q-linear operators on L/qL, which we shall denote by the

same symbols.
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Definition 4.1.4. A crystal base of a U,(g)-module V' is a pair (L, B) such that
(1) L is a crystal lattice of V|
(2) B is a Q-basis of L/qL,
(3) B =U,epB, where B, = BN (L,/qL,),
(4) &B c BU{0}, f;B C BU{0} for i € I where 0 is the zero vector in L/qL,
(5) for any b,b' € B and i € I, we have ¢;b = b’ if and only if £t = b.

We may call B a crystal base if (L, B) is a crystal base of a U,(g)-module V' for some
crystal lattice L of V.

Theorem 4.1.5 ([18]). For A\ € P, the extremal weight module V() is integrable and
has a crystal basis B(\).

We regard a crystal base B as a directed I-colored graph, which we call crystal graph,
whose arrows consist of
b—5b ifandonlyif fib=1"V

for b,/ € B and i € I.

Example 4.1.6. Let A = (2) be the 1 x 1 Cartan matrix with / = {1}, and let PV = Zh,
P =7ZA with (h,A) =1 and o = 2A. Then sl, is the Kac-Moody algebra corresponding
to the Cartan datum (A, PY, P,{h},{a}), and the quantum group U,(sl;) is generated
by the symbols e, f, and ¢™" under the defining relations

h_ ~h
_ — _ - - q —q
" =q"" =1, e = fq"=q7F ef—fezﬁ-
For a non-negative integer ¢, let V(¢) be an (¢ + 1)-dimensional vector space with a basis

{u((f), . ,uy) }. We define the U,(sl;)-action on V(¢) by
¢ ¢ ¢ ¢ ¢ —2k, (¢
eué) =/—k+ 1]qu5€21, fU/(C) = [k + 1]qu§cJ)rl’ qhu;) =q 2kul(c)7

where we understand that u(_e)1 = uﬁl = 0. It is straightforward to see that V' (¢) is the
irreducible highest weight U, (sly)-module of weight ¢A.
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Let L(E) be the Ag-submodule of V(¢) spanned by u”,... u\", and let B(() =
{E((f), ... ,ﬂéﬁ) } where El(f) = u,(f) +qL(¢) € L(¢)/qL(¢). Then the pair (L({), B(¢)) is
a crystal base of V(¢), and the crystal graph is

() =0

ol (0

— =Ty

For a crystal basis B, we define wt(b) = A for b € B,, and define €;,p; : B — Z>
(1€ 1) by

ei(b) = max{k € Zso| &b £ 0}, ¢;(b) =max{k € Zso| ffb#0}, (4.1.3)

for b € B.

Theorem 4.1.7. Let Vi, Va be U,(g)-modules with crystal bases (L1, By), (L2, B2), Te-
spectively. We have

(1) Vi & Vs has a crystal basis (L1 @ Lo, By U Bs),
(2) Vi @ Vo has a crystal basis (L1 @a, Lo, By @ Bs).

Here, we understand B, ® By as the set of images of by @by under the natural isomorphism
Ly/qLy ®@g La/qLy — (L1 ®a, L2) /q(L1 ®a, L2)

for by € By, by € By. Moreover, the action of Kashiwara operators on B1 ® By are given
by

By @ by) — eib1 ® by if 0i(b1) > €i(b2),

b1 ® €;by if pi(b1) < €i(b2)

_ (4.1.4)
Filby @ by) = fib1 @ib2 Z.fﬁoi(bl) > gi(ba),

b1 ® fibs if pi(b1) < €i(ba).

Hence, we have

Wt(bl X bg) = Wt(bl) + Wt(bg),
&Ti(bl X bg) = max{ai(bl), 8@((72) — Wt(bl)(hz>}, (415)
i(b1 ® by) = max{pi(b1) + wt(b2)(hi), pi(b2)}-

35 ,324! _CI:I_ 1_]|



CHAPTER 4. AFFINE CRYSTALS

Here, we understand that 0 ® b, = b; ® 0 = 0.

The equations (4.1.4) and (4.1.5) together are called the tensor product rule. The
tensor product rule gives a combinatorial description of the action of Kashiwara operators
on the multifold tensor product of crystal bases. Let By,..., B, be crystals bases. Let
o= (..,0.1,00,01,...) be a sequence with o, € {4+, —, - } such that o, = - except
for finitely many k € Z. We replace (o5,01) = (+,—) with (-, -) if s < ¢ and o = -

for s < k < t. Repeating this as far as possible, we get a reduced sequence o where no

+ precedes —. Note that ¢ is independent on the order of the replacements, and o is a
sequence of —’s followed by +’s if we neglect -’s. For b, € By (k=1,...,r)and i € I,
let
o= (_..._’ e _..._7_|_..._|_)‘
—— — ——
&i(b1) @i (b1) &i(br) @i (br)

The reduced sequence ¢ is called the i-signature of b =b; ® - - - ® b,.. Then ¢€;b and ﬁb are

given by
( ~ if o has — and the rightmost —
~ by @ Rebs @+ @b, . &
eb = in o comes from the s-th factor,
\0 otherwise,
-~ 4.1.6
( ~ if & has + and the leftmost + ( )
~ hh® - ® fibh®--- @b, L~
fib = in o comes from the ¢-th factor,
0 otherwise.

\

Example 4.1.8. Let B(4) = {ﬂ[()4), ﬂ§4), ﬂ§4), ﬂ(4 _4 } be the crystal base of the
U,(sly)-module V' (4) given in Example 4.1.6. Let b = ) ®u (4) ®T 4) € B(4)®3. We see
that

since 5(@,&4)) =k and go(ﬂ,(f)) =4 — k. Hence we have
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Let B be a crystal basis. It is straightforward to see that the maps ¢;, f;-, gi,pi (1 €1)
and wt satisfy

wi(b)(hi) = ¢i(b) — €i(b),
gi(€b) =€;(b) =1, i(€b) = pi(b) +1, wt(e;b) = wt(b) +a; if e;b# 0,
eilfib) = i) + 1, @il fib) = ulb) = 1, wh(fib) = wt(b) —; if fib £ 0.

We define the abstract notion of crystals by characterizing these maps.

Definition 4.1.9. Let I be a finite index set and (A, P, PY,II,IT1V) be a Cartan datum.
A U,(g)-crystal is a set B together with the maps ¢, ﬁ :B— BU{0}, g,9, : B—
Z U {—o0} (i € I) and wt : B — P satisfying

wt(b)(hi) = @i(b) — &i(b),

ei(eib) = ei(b) =1,  @i(€b) = pi(b) + 1, wt(e;b) = wt(b) +a; if ;b #0,
ei(fib) =cib) + 1, @i(fib) = @i(b) — 1, wt(fib) = wt(b) —a; if fib #0,
fib="V ifand only if b= ¢,

eb=fib=0 if ;(b) = —o0.
for b,' € B where 0 is a formal symbol. Here, we understand —oo + k = —oo for k € Z.

We omit the prefix U,(g) if there is no confusion. We regard B as a directed I-colored
graph, similar to the crystal base. Let B; and By be crystals. A morphism 1 : By — By
is a map from By U {0} to By LI {0} such that

¥(0)
wit(¥(b)) = wt(b), ei(1p(b)) = €i(b),  wi(1p(b)) = wi(b) if (b) # 0
v(eb) = 6z¢(b) if ¢(b) # 0 and ¥ (€;b) # 0,
G(fib) = fp(b) i (b) # 0 and ¥ (f;b) # O

for b € By and ¢ € I. A morphism v is called embedding if v is injective, and is called

strict if ¢ commutes with €;, fz for all 7 € I. Here, we understand ¢;0 = f;O = 0. We
call ¥ a isomorphism if v is bijective. For b; € B; and by, € By, we say that by is crystal

07
) =

equivalent to by if there exists an isomorphism of crystals C'(b;) — C(Bz) sending b;

to be, where C(by) denote the connected component of By containing by for k = 1, 2.

T 1 . I
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For example, the isomorphism (4.1.1) of U,(g)-module from the extremal weight modules
V(M) to V(wA) induces the isomorphism of U,(g)-crystals from B(A) to B(wA).
We remark that crystal bases of integrable U,(g)-modules are U,(g)-crystals indeed.

However, there exists a crystal which is not isomorphic to any crystal basis.

Example 4.1.10. For a weight A\ € P, the set Ty = {t,} with the maps
wi(th) = A, &i(ta) = @illa) = =00, &(ty) = fi(th) =0
is a crystal. But it is not a crystal bases of a U,(g)-module since ¢, fails to satisfy (4.1.3).

A crystal B satisfying (4.1.3) is called semi-normal. For a semi-normal crystal B and
b € B, let C;(b) be the i-string containing b, that is, the set of ¥ € B connected to b by
i-arrows. Then C;(b) is isomorphic to the U,(sly)-crystal B(¢), which is given in Example
4.1.6, where ¢ = ¢;(b) 4 ¢;(b) is the length of C;(b).

Let By, By be crystals. The disjoint union B; LI By has a crystal structure in obvious
manner. Let By ® By be the set of symbols b; ® by for by € By, by € By. We define a
crystal structure on By ® By by the tensor product rule (4.1.4), (4.1.5). Note that, for

another crystal Bz, we have
(Bl X BQ) ® Bg = B1 ® (BQ ® B3)

as crystals. For semi-normal crystals By, ..., B,, the action of the Kashiwara operators

on B; ® --- ® B, enjoy the same combinatorial rule described in (4.1.6).

4.2 Crystals of quantum affine algebras

4.2.1 Quantum affine algebras

Let I ={0,1,...,n—1} be the index set and let (A, PV, P,1IV,II) be the Cartan datum

defined as follows:
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(1) A = (aij)ijer, the Cartan matrix where

2 ifi=j,
-1 ifi—j==+1 (modn > 2),
2 ifi—j=+1 (modn=2),

0 otherwise,

(2) PV =Zhy® -+ ® Zh, 1 ® Zd: the dual weight lattice,

(3) P=ZAo® - - BZLN,, 1 DZ0: the weight lattice, where { Ag, ... A, _1,d } is the dual
basis of { hq, ..., h,_1,d} with respect to (-, - ),

(4) TIY = { h; }ier: the simple coroots,
(5) = {a; =31 aijA;i + 6,00 }er: the simple roots.

Here, 9,9 is the Kronecker delta. The Kac-Moody algebra corresponding to the Cartan
datum (A, PY, P11V, 1I) is the affine Lie algebra ;[n, and we call the quantum group
Uq(sA[n) a quantum affine algebra.

We call the element ¢ = hg+. ..+ h,—1 the canonical central element. The value (c, \)
for A € P is called the level of A. Note that the simple roots «; and ¢ have level zero. We
denote by P the set of level zero weights.

Let us introduce other families of level zero weights as follows:
(1) =N —N; 1 fori=1,...,n—1and e, =Ag—A,_1,
(2) wi=A—ANofori=1,...,n—1.

We call the elements w; the i-th level zero fundamental weights. Then we have the

following relations:
(1) vy =€, — €y fori=1,...,n—1and ag = €, — €1 + 0,
(2) wi=e€e+-gfori=1....n—land 0 =€+ -+ €,.

Let PY = @~ Zh; and let Py, = @}~ Zh;. Then we have the following identifica-
tions

Homy(Py,Z) = cl(P), Homg(Py,,Z) = cl(P°)

cl»
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where cl: P — P/Z46 is the canonical projection.

The subalgebra Ué(;[n) of Uq(sA[n) generated by e;, f; and K; (i = 0,...,n —1) is
called also the quantum affine algebra. It is the quantum group U,(g) corresponding to
the Cartan datum (A, Py, cl(P),IIY, cl(II)), where g is the derived subalgebra [sl,,, 5L,
Note that cl(IT) is linearly dependent. Similarly, the subalgebra of Uq(sAIn) generated by
ei, fiand K; (i = 1,...,n — 1) is the quantum group U,(sl,,), which corresponds to
the Cartan datum ((a;;)7";2;, Py, cl(P°), {hi}i=, {cl(a;)}7'). Hence we have a chain of
subalgebras

Uy(sl) C Up(sh) C Uy(sly),

and any Uq(g[n)—crystals B can be regarded as U;(;[n)—crystals or U, (sl,)-crystals.
Example 4.2.1.

(1) For 1 <b<mn, let
Bb’lz{(xl,...,xn) T1, ..., 2, € 40,1} in:b}.
i=1

with the Ug (sl,,)-crystal structure

iz ) = (1, + Lo — 1,00 2y) if 2, = 0 and ;41 = 1,

i\T1,y..., =

o : 0 otherwise,

f(x ) = (1,2 — L +1,...,2p) if 2, = 1 and ;41 = 0,
i\T1, ... =

R 0 otherwise,

51‘(I1, s 7xn) - maX{l’H_l — xi70}7

901'(371, cee 7xn) - rnax{xl- — Tit1, O},

n—1
Wt(xla s 7-1'71) = incl(ei)a
=0

for i € I, where the indices are understood modulo n. Indeed, B*! is a well-defined

semi-normal Ué(;[n)—crystal. Let

wh = B Q(q)z

x€Bb1
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with the U;(f/;\[n)—action

cx  ifex #£0, fix if fw £0,
€l = , Jir=
0 otherwise 0 otherwise

and K;z = ¢% "+z. We see that W is an irreducible Ué(s:\[n)-module and has a

crystal basis B*!. Note that W"! is a one-dimensional trivial module when b = 1.

(2) Similarly, let

n
Bl = {(xl,...,xn) X1, .., &y € L>p, Zmi:a}.

i=1
with the U (sl,,)-crystal structure
~ (lL‘l,...,JZi‘I—l,I'i_g_l—1,..-,$n) ifxi+1>07
€i(.fC1, e ,xn) =
0 otherwise,
~ (Il,...,l’i—17fL’Z‘+1+1,...,ZL‘n) lf.l’z>0,
fi(xl,...,xn): )
0 otherwise,
Ei(l‘l, e ,(L’n) = Ti+1,
(pi(.ibl, e ,xn) = Ty,
n—1
wt(x, ..., x,) = Z zicl(e;),
i=0
forte ] and a > 1. Let
whe = B Qg)z
zeBLa
with the Ué(;[n)—actions
[z; + 1],62  if ez #0, [T + 1 fir  if fix 40,
e = . fiw=
0 otherwise 0 otherwise

and K;r = g% %i+1x. It is straightforward to see that W1 is an irreducible Ué(g[n)—
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module and has a crystal base B¢,

Note that the set the set of column semistandard tableaux CSSTj,((1%)) can be
identified with the set B”! by reading the content of a tableau. Similarly, we identify
RSST((a)) with BY*. In general, there is a falimy of finite-dimensional irreducible
U;(g[n)—module Wbhe for 1 < b < n and 1 < a whose crystal base B»® can be identified
with the set of semistandard [n]-tableaux of rectangular shape (a®). The module W
is called the Kirillov-Reshetikhin (KR) module and the B>® is called KR crystal. As a
U,(sl,)-module, W% is the irreducible highest weight module V (acl(w;)). The corre-
sponding U,(sl,)-crystal structure on B*® 2 B(acl(wy)) is described in [21] in terms of
semistandard tableaux. Chari and Presseley [4] realized W%® as the minimal affinization
of V(acl(wy)). Another realization of W can be obtained from the fusion construction
[16]. Tt follows that the crystal basis B*® is a perfect crystal of level a (see [16, Definition
1.1.1)).

Definition 4.2.2. Let A = (A, ..., \;) be a partition with | < n, and let = (1, ..., pr,)
be the conjugate partition of \. We define the U, (gln)—crystal structure on C'SSTy, () by
identifying

CSST[H](/\) Bl ... @ Brol 7

T | ™ Q.- -T!

where T is the j-th column of 7" from the right. Similarly, we define the U;(gln)—crystal
structure on RSSTj,(A) by identifying

Bl,)q ® e ® Bl,)\l ,

RSSTjp(A)

T TR - - QT

where T is the i-th row of T from the bottom.

4.2.2 Affinization

Recall the map cl : P — P/ZJ is the canonical projection. We define a map aff :
cl(P) — P by

for i € I. Note that cl o aff = ida(py and aff(cl(c;)) = oy except for i = 0.
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Let W be a finite-dimensional U;(s:\[n)—module with a crystal base B. For an indeter-
minate z, let

W = Q(q)[z""] ®qq W

and define the Uq(g[n)—actions
ei(Z'@v) = 2 M0Rew,  fi(Zov) = T fv,  Ki(Fov) = oK, ¢(Zev) = ¢ e,

where ;9 is the Kronecker delta. Then W2 is a well-defined U, (g[n)—module, and has the
crystal base B*T = Z x B where the Kashiwara operators ¢; and f; act on (¢,b) € B by

gi<t7 b) = (t + (Si(];gib)v ﬁ(t7 b) = (t - 5i0; ﬁb)

We call W2t and B*! the affinization of W and B, respectively. Let z be the automor-
phism of the Ué(;[n)—module W given by the multiplication by z. By specializing W?

at z = 1, we recover the U;(;[n)—module
W= W)z — Dy,

Similarly, let z be the automorphism of U, (;In)-crystal on B defined by z(t,b) = (t+1,b).
Then we recover the crystal B by identifying

B =Bz

where B /7 is understood as the set of orbits of 2.

Let W = W"! be the finite-dimensional irreducible U(;(E/l\[n)-mOdUIG given in Example
4.2.1 (1), with the crystal base B = B = C'SSTy,((1°)). We define the Uq(;[n)—crystal
structure on B((1°)) by identifying 7/(T') € B((1%)) with (—t,T) € Z x CSST,((1%)) =
B (cf. (2.3.2))

More explicitly, let T € B((1%)) be given with entries T'(1) < T(2) < --- < T(b). Then

e; T is given as follows:

(1) if T(k)=i+1 (mod n) and T'(k — 1) < T'(k) — 1 for some 2 < k < b, then ¢;T is
the tableau obtained by replacing T'(k) with T'(k) — 1,

(2) if T(1) =i+ 1 (mod n) and T'(b) < T(1) — 1 4+ n, then ¢;T" is the tableau obtained
by replacing T'(1) with 7'(1) — 1,
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(3) otherwise, €;T" = 0.

We see that ﬁT is given in a similar manner. Note that every integer k can be uniquely
written in the form
k=sn+r (4.2.1)

with s € Z and 1 <7 < n. Then the weight of T € B((1%)) is given by

where wt(k) = €, — s§ € P° according to (4.2.1) By definition, we have the following

lemma.

Lemma 4.2.3. Let T € B((1%)) be given. We have
&r(T) =7@&T), fir(T) =7(fT), wi(r(T)) = wi(T) = 4.

We note that B((1")) can be identified with the crystal Z whose crystal structure
given by
wit(t) = —t6, &(t)=pi(t) =0, é&t=fit=0

for ¢ € Z, which corresponds to the tableau 7(T(1»)) whose entry from the i-th row from
the top is ¢t + 1.

Proposition 4.2.4. For b < n, the Uq(g[n)-crystal B((1%)) is isomorphic to the crystal
base B(wy) of the extremal weight module V (o).

Proof. Let W be the affinization of W = W', According to the realization of %!
given in Example 4.2.1(1), W has a basis {z '@ T |t € Z, T € CSST},((1°)) } which can
be parametrized by 7¢(T) € B((1%)). It follows that the Uq(;[n)—actions on W2t is given
by

eT  ifeT +#0, T if ;T #0,

0 otherwise 0 otherwise
for T € B((1%)). In particular, we see that W2 is irreducible and is generated by the
extremal weight vector T(ysy of level zero weight @, where T{+) is the tableau whose i-th
entry from the top is i. By [19, Proposition 5.16.], W is isomorphic to V() and the

assertion follows. O
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Remark 4.2.5. Consider the row analogous case W = W12 We see also in this case
that the affinization W2 is irreducible and is generated by the extremal weight vector
2" ® T(q) of weight awwy, where T{, is the row semistandard tableau of shape (a) whose
all entries are 1. However, the extremal weight module V' (aww;) has a proper submodule
ifa>1.

4.2.3 Crystals of level zero extremal weight modules

Let R = (a’) be a rectangular shape with b < n. We identify B(R) as the subset of
B((1%)) @ - -- ® B((1%)) by the embedding

B(R) B((1") @ --- @ B((1"),

Th— > T'®...-QT!

where TV is the j-th column of T' from the right. By the following lemma, we regard B(R)
as a subcrystal of B((1%)) @ --- @ B((1%)).

Lemma 4.2.6. The subset B(R) of B((1)) ® - - @ B((1%)) is invariant under ¢ and f;
forie 1.

Proof. It is enough to show that &7 and f;T are semistandard for T’ € B(R). The proof
is similar to the case of U,(sl,)-crystal (cf. [10, Chapter 7.]). O

Recall the definition of T' € B(R), is that (77, 771(T7)) is not semistandard for any
subtableau (77!, T7) of T. Let Tx be the semistandard tableaux all whose entries in the

i-th row of Tk from the top is 7.

Proposition 4.2.7. The subset B(R), of B(R) is invariant under & and f; fori € I.
Moreover, B(R)o is the connected component of B(R) containing Tr if b < n.

Proof. Let T = (T°,...,T") € B(R)q be given.

Suppose that ;T & B(R)o U {0} for some i. Then &1 = (...,&17,...) for some 1 <
J < a, and &;T7 is obtained from T” by replacing T (k) with T7 (k) —1 for some 1 < k < b.
Since T' € B(R)o but &;T & B(R)y, at least one of (¢;T7, 771 (T771)) or (T9F, 771 (&;T7))
is semistandard. Suppose that (&77,77*(7771)) is semistandard. Considering ¢&;T €
B(R), it is straightforward to see that (77,77 1(T7!)) is also semistandard, which is a

contradiction. For the other cases, we have similar contradiction. By the same arguments,
we also have f;T € B(R)yU {0}. Hence B(R), is closed under ¢; and f; for i € 1.
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CHAPTER 4. AFFINE CRYSTALS

We now claim that any 7' € B(R), is connected to Tg. Let t = T%(1) be the entry in the
first row of the first column of 7. We first show that 7" € B(R)y is connected to Ty = Tg ),
where T’ g ) is the element of B(R) such that the i-th row from the top is filled with ¢t +i—1
for 1 <4 <b. Suppose that T' # Tp. Let d(T) = 377, S _(T9(k) — T3 (k)) > 0. Since
T € B(R)y and B(R) is closed under ¢; and f;, we have 0 < d(e;T") < d(T') for each i
such that €;T # 0. Note that there exists at least one i such that €;7 # 0. For example,
choose the smallest k such that T (k) # T,/ (k) and then i = T" (k) — 1. By induction on
d(T), we conclude that T is connected to Tj.

Next, we have

>a Sasa t—1
&y g B Ty =TS (t>1),

N(l Na ~a, 1
fi e o [ To = Tg+ ) (t<1).

Repeating this step, we conclude that Ty is connected to T = T ,(%0). Therefore, B(R)y is
the connected component of B(R) containing Tg. O

Remark 4.2.8.
(1) Recall the bijection

B(R)y X Pys

B(R) | (4.2.2)

(T,v) ——— 7%=(T)
which is given in (2.3.1). If we regard &,_; as a Uq(sA[n)—crystal defined by
ev="/ =0, wtv)=—|v|s

for v € &,_4, the bijection is a crystal isomorphism from B(R)y ® Z,_1 to B(R).
This isomorphism is also proved in [27, Theorem 2] for an affine Lie algebra g in
terms of Lakshmibai-Seshadri paths.

(2) Suppose that R = (a’) with b = n. In this case, B(R)y = {t'(ug)|t € Z} =
@D,z { T (ur) }, where each { T (ug) } forms a trivial crystal of weight —at0.

Proposition 4.2.9. For R = (a®) b < n, B(R) is isomorphic to the crystal base B(awy)
of the extremal weight Uq(;[n)-module V(awy).

Proof. It follows from Proposition 4.2.4, Lemma 4.2.7, Remark 4.2.8 (1), and [1, Theorem
4.16(a)]. ]
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Let A be a partition with [ = ¢(\) < n, and (R, ..., RY) be the rectangular de-
composition of A. Following the rectangular decomposition (2.4.1), we regard B(\) as the

crystal
B(A) = B(RY) @ --- @ B(RY)

Let us define wy = myw; + - - - mywo;, where i is the multiplicity of ¢ in p.

Proposition 4.2.10. For a partition A of length less than n, B(X) is isomorphic to the
crystal base B(wy) of the extremal weight Uq(;[n)—module V(wy).

Proof. It follows from [1, Theorem 4.16] and [19, Conjectures 13.1, 13.2] (see also
[1, Remark 4.17]). O

Remark 4.2.11.

(1) In [12], another proof of Proposition 4.2.10 is given using the standard monomial

theory for semi-infinite Lakshmibai-Seshadri paths [14].

(2) Let T be the tableau of shape A all whose entries in the i-th row from the top are
i. Then B(\)y = B(RM)y ® --- ® B(RW), is the connected component of Ty in
B(A) (see [1, Remark 4.17.]). We can prove it directly using the crystal structure
described here.

(3) Suppose that the length of A is n. We have B(\) = B(u) ® B(R™), where pu =
(A1, ..y An—1) (see Remark 4.2.8 (2)).
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Chapter 5
Affine RSK correspondence

In this chapter, we use the results of Chapter 2 and 3 to get a generalization of affine RS.

Let m and n be positive integers.

5.1 Affine matrix and standardization

Let

(1) Qg5 & Zzo and Qipmj+n = Qij for all Z,j € Z, }

Jg/\[m n — A= A5 )i 5
- { (ig)iez (2) for each j, a;; = 0 except for finitely many i’s

We call an element A € J/v\[:mxn a affine matrixz or an affine matrix for short. For an affine

matrix A = (a;;); jez, we denote by
row(A) = ( Zalj’ - Zamj) , col(A) = ( Zaﬂ, e Zam>
JEL JEZ i€Z i€
the row and column contents of A, respectively. We also denote by
Al=2 ai =2 ) e
i=1 jez j=1 i€Z

the size of A.

Let a = (a;)jez be a single row matrix with a; € Zso. If r = )., a; < 0o, we define
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CHAPTER 5. AFFINE RSK CORRESPONDENCE
r-row matrix a° = (ag;)icir) jez by

00 . ]
o 1 Zs:j—i—l as <1 S Zs:j Qs,

0 otherwise.

For example, if a = (...,0,1,0,3,2,0,...), then

IS

I
o O O O o O
_ O O O O O
O O O O O O
O R R R O O
S OO O =
O O O O o O

For an affine matrix A = (a;;)i jez, we define A° to be the matrix obtained from A by
replacing each row A; = (a;;);ez with AS for i € Z. Similary, we define A° with respect
to the columns of A, that is, A” = ((A")°)!, where A’ denotes the transpose of A. Then
we define the standardization of A to be

Ast — (Ao)o"

By definition, we have A%t = (A°)° = (A°)°. If A is non-zero, then A® is an extended
affine permutation of k = |A].

Remark 5.1.1. Let a = (a;)jez with a; € Z>( and assume that r = ., a; < co. We

define r-row matrix a® = (ay;)ic|r) jez by

1 Y aa<i <Y a,,

0 otherwise.

[ JR—
az; =
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Fora=(...,0,1,0,3,2,0,...), we have

o O O O o O
o O O O O O
_— =0 O O O
o O O O o O

O O O O O =
O O R~ = O

We define A*® for an affine matrix A similarly. This version of standardization will be used
in Chapter 6.

Let us describe the standardization of affine matrices more explicitly. Assume k =
|A| > 0 and write row(A4) = (v, ..., Qp), col(A) = (B1,...,5,). Fori € [m] and j € [n],
let

[@':{'I"E [kHOél‘F"‘—i‘Oéifl <r§a1—|—~--—|—ai,1+ai},
Ji={selk]|pi+ - +Bj1<s<Pi+-+Bj1+ 5},

where we understand the empty sum is 0, and let
[i+tm = [1 + tk, Jj+tn - Jj + tk (t < Z)

Then we have

k=] 5n=1]7%

i1€[m] jJE€[n]

z=| =]

1€Z JjE€Z

(5.1.1)

Example 5.1.2. Let m =3, n =4, and let A € J\A/[3X4 be an affine matrix given by

T 1 . I
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then we have

11:{172737475}7 -[2:{6}7 132{778}7
Jl:{1}7 J2:{2}7 J3:{3}7 ']4:{47‘5767778}7

and AS* is
1
1
1
1
1
1
1
1 _J
1
1
1 I,
1
1
1 I
1 : I
1
1
1
1
1
1
1
————t
i JyJo Js Jy
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Suppose that o € Z7' and € Z7 are given with k = |o| = |B|. Let J\A/[mxn(a,ﬁ)
be the set of affine matrix whose row and column contents are «, f respectively. Recall
that ¢ € [k] is a descent of an affine permutation w if w(i) > w(i + 1). We say that w is

a-descending if for any ¢ € [n] and ¢ with
o+t tFl<i<oar+ -4 oy,

1 is a descent of w. Let Wk,(a,ﬂ) denote the set of affine permutation w of k such that w

1

is a-descending and w™" is #-descending. The following lemma is the matrix counterpart

of Lemma 2.1.3
Lemma 5.1.3. Under the hypothesis, we have a bijection
men(aaﬂ) - Wk,(a,ﬁ) .
Ar—ms A5t

Let
supp(A) ={(i,j) € Zx Z|a;; #0}

be the support of A. It is invariant under the transllation 7 = 7,,,, on Z x Z given by
m(i,5) = (i+m,j+n) ((G,j) €ZxZL).

Remark 5.1.4. For ¢ = (i,7) € supp(A), we denote by A%* the matrix in Mz, which is
equal to A% at the positions of (k,1) € I; x J; and has zero entries elsewhere. Then A%*
has an a;; X a;; block submatrix at I; x J; with 1 on the antidiagonal, and zero entries

elsewhere.
The following lemmas follows from the remark above immediately.
Lemma 5.1.5. Let ¢1, ¢ € supp(A®) be given with ¢; = (i1, j1) and ¢y = (ia, j2).
(1) If iy < iy and c1,co € I; X Z for some i € Z, then ¢y <pe 1.
(2) If j1 < jo and c1,c2 € Z X J; for some j € Z, then ¢; <pe Ca.

Lemma 5.1.6. Let ¢i,co € supp(A°*) be given with ¢; € supp (Aif‘) for some ¢, €
supp(4) (i = 1,2). Then we have
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CHAPTER 5. AFFINE RSK CORRESPONDENCE

(1) co >w 1 if and only if ¢y >wy ¢},
(2) co = T i(c1) implies ¢y = Tpn(Ch).
where k = |Al.

Following Definitions 3.1.3, 3.1.1, we define streams, channels, and proper numberings

on affine matrices.

Definition 5.1.7. A stream is an infinite collection of cells s = {¢; };ez, which is invariant
under 7 = 7,,,, and forms a chain with respect to >y;. A stream s is called a stream of
Aif s C supp(A). A stream s of w is called a channel of A if its flow is maximal among

the streams of A.
Definition 5.1.8. A numbering d : supp(A) — Z on A is called proper if
(1) d(Cg) < d(Cl) if Co >y C1,

(2) for any ¢; € supp(w), there exists ¢o € supp(w) such that co >y ¢ and d(cz) =
d(Cl) — 1.

Let d be a numbering on A. Let d* be the numbering on supp(A3*) given by
d**(c) = d(c') if ¢ € supp(AY) for some ¢’ € supp(A).

Lemma 5.1.9. We have the following:
(1) d is a proper numbering on A if and only if d°° is a proper numbering on A*,
(2) any proper numbering on AS* is given by d** for a unique proper numbering d on A.

Proof. (1) Since no two cells corresponding to non-zero entries in A%* (¢ € supp(A)) are
comparable with respect to >y, (see Remark 5.1.4), it follows from Lemma 5.1.6(1) that
d satisfies the conditions Definition 5.1.8(1) and (2) if and only if d** does so.

(2) Let d’ be a proper numbering on A%*. We claim that d’ = d** for some proper
numbering d on A. By Lemma 5.1.6(1), it suffices to show that d’ is constant on AS* for
each ¢ € supp(A). Suppose that it does not hold. Then there exist ¢;, ¢y € AS* for some
¢ € supp(A) such that d'(c;) < d'(¢2). By Definition 5.1.8(1), there exists ¢3 € ASF for
some ¢ € supp(A) such that ¢ >y ¢ and d'(c3) = d'(¢1). Since ¢z >y ¢; by Lemma 5.1.6,
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it is a contradiction. This proves the claim. O]

Hence any proper numbering d on A enjoys properties given in Section 3.1. We denote
by d% the unique numbering such that (d%)ss = d5% and call it the southwest channel

numbering on A.

5.2 Matrix-ball construction for affine matrices

In this section, we define matrix-ball construction for affine matrices and construct the
bijection (1.2.1). Throughout this section, we assume that A € M,,,, is a non-zero affine
matrix.

We will define a matrix analogous of the notions given in Section 3.2

Definition 5.2.1. Let A be an affine matrix and let {z; }xez be the set of zig-zags associ-
ated to d5. Here 2z is the unique zig-zag whose inner corners form the level set (d5) (k).
We define
e A’ : the matrix in J/\;[mxn obtained from A by
(i) subtracting one at the inner corners in z; (k € Z),
(ii) adding one at the outer corners in z; (k € Z).
We remark that
(Ast)b _ (Ab)St,
in the sense that the right-hand side is obtained by removing all zero rows and

columns on the left-hand side.

e s(A) : the stream consisting of the back-post corners of z;’s,

o A1) = (A1 A0 = A

)

Y S(t) — S(A(t_l))7

e 4, : the flow of s or the width of A1,

(a;, by, p) : the defining data of s®.
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for ¢ > 0. It is obvious that there exists s > 1 such that
Als=1) £ @, AB) = &,

and we have p; > -+ > ugs > 0.
Now we let

e )\ =/ : the conjugate partition of u = (p1,. .., fs),
e P, : the tableau of shape A, whose ¢-th column from the left is a; (1 <t < 's),

e (o : the tableau of shape A, whose t-th column from the left is by (1 <t < s),

o p=1(p1,...,ps) € Z°
We define a map kg on J%mxn by

~

Ko : Moxn

| |CSSTh(X) x CST Sy (A) x ZM (5.2.1)
A

A (Po, Qo, p)

We understand that xo(0Q) = (&, &, 0) where O is the zero matrix, & is the empty tableau
of shape (0).

It is clear that ko preserves contents, that is, if A € ﬁmxn(a,ﬁ) with ko(A) =
(Po,Qo, p), then Py € CSSTjy,(N)a and Qo € CSST,(AN)s. The following proposition
shows that kg is a generalization of ® via standardizations.

Proposition 5.2.2. For A € My with ko(A) = (P, Qo, p), we have

Ko(A%) = (F5%, @5, p).

Proof. Assume that A € J\A/[mxn(oz,ﬁ) for some o € ZZ, and B € Z%, with |a| = ] = k.
Let ko(A%*) = (P1, Q1, 0). We have

Py € CSTyya(N), Q1€ CSTyyp(N)

for some A € &. We claim that Py (resp. Qo) is the image of P, (resp. (1) under the
inverse of the bijection in Lemma 2.1.3 and p = p. Let {I; x J; }; jez be the partition

& =
L |  §
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of Z x 7 associated to o and f given in (5.1.1). Let s and s°* be the stream given from
the the back-post corners of the zig-zags {z;}1ez and {z* }cz associated to d% and d¥i.,
respectively. Since (d%)* = d%i., we have (4°)** = (A®*)” and the flow of s is equal
to that of s°%, and s is obtained from s°* by replacing each (r,s) in s** with (4, j) when

(r,s) € I; x J;. We use induction on k to prove the claim, hence we have P§* = P; and
st
o = Q1. [l

Let ko(A) = (Fy, Qo, p), and let A be the shape of Fy. By the above proposition, we
see that (P5t, Qg%, p) is dominant. Let (RM,... R®) be the rectangular decomposition
of \.

° Péi), Q(()i) . the rectangular decompositions of Fy and @)y,

e p() € Z™ : the subsequence of p corresponding to the rectangular decomposition,

where m; is the occurrence of ¢ in p.

e ) c P, | : the symmetrized offset vector of P()(i).

Then we define

Q= <7—p(l)+771£le)v(Q((]l))7 o ’Tp“)wﬁi@ (Q[()l))> _ (Q(l), o ,Q(l)) ‘ (5.2.2)

Note that the action of 7 on () should be understood as 7,.

Since the symmetrized offset vectors for (Po(i))St (resp. (Q(()i))“) is also n® (resp, ),
we have r,g’“””g)v((Qé“)st) € Bx(R®) by Lemma 2.3.3. Consequently, we have Q € B,,()\)
by Lemma 3.3.5. Then we have the following bijection, which we call the affine RSK

correspondence.

Theorem 5.2.3. We have a bijection

Ko Mun — || OSSTi(N) x Ba(N) (5.2.3)
AEP NPy,

A (P, Q)

Example 5.2.4. Let A € J/\\/[4X 5 be an affine matrix as follows
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1 1
1 1 2
1 1 1 1
1 1 .
1 1 J
1 1 2
1 1 1 1
1 1
1 1
1 1 2
1 1 1 1
1 1
1 1
1 1 2
1 1 1 1
1 1
1
The southwest channel numbering d5 on A is given by
@ ®
@ ® ®
® ©) @
D ® i
(© j
@ z1
® @ (B @ z2
@, €, 23
@J ©) ©)
@
| ©

where zy, is the zig-zag corresponding to d5F (k) for k = 1,2, 3. Here we denote the negative

integers —s by 5. The stream consisting of the back-post corners of z; (k € Z) is

s = {0 > (2,4) > (3,6) >y (4,7) >y -+
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By subtracting one at each inner corner and adding one at each outer corner of z;, we

obtain A’ as follows:

1 1
1 1 1
1 1 1
1 >
1 1 o
1 1 o Wttt ol ol B e i
1 1 s Bl e o
R St S8 sttt s et ol
1 |
1 IR 1
110 1
| P 1
? 1 1
s O 1 1
IR 1 1
} Lo 1
\ | L
)
Repeating this process, we have
1 T =
1 1| 1
1 1 | f
\ b
1 \ 1
1 | 1
A(l) e ‘l—J 1
1
| 1
\ 1 1
\ 1 1 1
\ 1
\J | |
7
1 "
1 1T
1
AR — 1 1 1
1
1 1
1 1 1
v |
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AB) — 11

with A® = Q, and

S(2) — {- . >NW
S(3) — {. .. >NW
5(4) — {- .. >Nw

S(5) — {- . >Nw

Hence ko(A) = (P, Qo, p), where

p=[2[12]1]2] g, =[11[2[3]3], ,=(2.2,—1,
3[2[3]3]3 2[2]5[4[4
44 i3

The rectangular decompositions of Fy, ()y and p are
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P _[2]1]2] o® =[2[3]3], oD (~1,-1,0),
0 3133 * [5(4a[4 ( )
Pé3): 211 ) Qég): L1 ) 0(3):(272)7

372

11 13

where R; and Rj3 are the only non-trivial rectangles in this decomposition. The sym-

metrized offset vectors of Pég) and PO(S) are

77@; - (O’ L, 1)7 771(;21 - (O’ 1)7

and hence

o —[A]6]0]3]4]
6l7(2[4]3
718

Remark 5.2.5. Let us give some comments on kg and the bijection in [13]. Let M,
be the set Ofﬂ = (M]J(k’)) (Z € [m], ] € [TL], ke Z) with ijl(k) € ZZO and MJJ(/{?) =0
for |k| > 0 [13, (2.5)] and let M . be the subset of M., consisting of M such that

mxXn

Mﬂ(k) =0 for k < 0. For A = (a;j)ijez € ﬁmxn, we define M 4 = (Mﬂ(k:)) by

sz(/f) = Qj—km,n+1—j-

Then the map sending A to M 4 gives a bijection from J\A/[mxn to M, xp,.
Let T denote the bijection

~—+
mxXn

—— || 88N x CSSTy (M) x K(N) |
AP NP,

given in [13, Corollary 8.2].
Let A = (a)ijez € j\\/[mxn be given such that M4 € M:rnx

directly to A and M 4, respectively, do not seem to give the same result in general. This

Applying k¢ and T

n*

may happen due to conventions for affine matrixs. For example, let A € ﬁ5xﬁ be as

follows:

60 . f,ﬂ k._l 1_'_” 'cﬁ]l_ T



CHAPTER 5. AFFINE RSK CORRESPONDENCE

1 1
1 11
1 1
1 11
1 1 .
1 1
1 11
1 1
1 11
1 1
1 1
1 11
1 1
1 11

1 1 1
1 1
;
Then we have ro(A) = (P, Qo, p), where
R =[1[2[2]1] ¢, =[2[1]3[1
4131412 312144
51453 614516
On the other hand, we have T(MA) = (V, W, &), where
yo[I2]2[1]  w[1]2]3]1],
4131412 31354
5(415]3 61465

Hence Py = V but Qy # W, while we observe that Wi (i) =7 — Q5 /(4 —i) for 1 <i <3
and 1 < j < 4. Recall that W/ and Qé denote the j-th columns from the right.

In general, one may expect that Py =V and Qg = e,W, where e, is an operator on

CSSTi(A) given by

(e W)Y (i)=n+1-WN9b+1-i) (1<i<b1<j<a),
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in case of a rectangular shape A = (a®). The operator e,, can be viewed as a generalization

of the affine evacuation in [2]. We do not know yet a precise relation between p and &.

5.3 Affine RSK and crystals

For i,j € Z, let E;; denote the elementary matrix with 1 at the (¢, j)-position and 0
elsewhere and put
Eij = Z Eiikmjikn € J/\/\men-
keZ
Let us first describe an Uq(g[m)—crystal structure on J/\;[mxn for m > 2. Suppose that
A = (aij)ijez € M, iS given. For i € {0,1,...,m — 1}, we define €;A and ﬁ-A as

follows:

(1) Let o be a sequence of { 4+, —} given by

U:(---,—---—,—I—--~+,—~--—,—|—--~+,---),
—— N e N——
Ajt1j a; j Qi+l j+1 aij+1

and let ¢ be the reduced one, which is well-defined since ¢ has only finitely many

+’s and —’s.

(2) If o has at least one —, then we define
eA=A+ Ez‘jo - Ei+1joa

where jo is the column index of A corresponding the rightmost — in ¢. If ¢ has no

—, then we define ¢;A = 0. Similarly, if o has at least one +, then we define
EA =A- Eijl + Ei+1j1,

where 7; is the column index of A corresponding the leftmost + in o. If ¢ has no
+, then we define f;A = 0.

Put

wt(A) = Z <zn: a1+kmj> (€1 — kb)) + -+ Z <zn: am+kmj) (em — k6) € P°. (5.3.1)

keZ \j=1 keZ \j=1
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ei(A) =max{k|*FA£0}, ©i(A) =max{k|fFA#0}, (iel).

Both ¢;(A) and ¢;(A) are finite since o has only finitely many +’s and —’s. Moreover, we

wi(A) — (A ZaZHJ ZGU_ hi, wt(A)).

JEZL JEZL

have

Hence we have the following lemma.

Lemma 5.3.1. The set J\A/[mxn 18 a normal Uq(f/;\[m)-crystal with respect to wt, e;, ﬁ for
i€f{0,1,...,m—1}

Example 5.3.2. Let A be the affine matrix in Example 5.2.4. For ¢ = 2, the associated

sequence o and its reduced one ¢ are

U:(+7_7_7+7_7+7+7_)7
5:(', T T Ty '7+7 T )

Hence the cell (2,8) is the position corresponding to the leftmost + in &, and };A =
A — FEyg + Ess.

|
1 1 g
1 1 2
A= 1 1 1 1
1 1
)
| .
1 1 i
N 1 1 1
foA = 1 1 1 11
1 1

Here we present the submatrices of A and fA with the row indices in [4].

Next, we define an U, (sA[ )-crystal structure on Man forn > 2, say wtt el ot et et for

i€{0,1,...,n—1}, by applying the U, (5[ )-crystal structure on M, xm to the transpose
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At of A€ M,,on

th(A) = Wt(At),
GA= (@AY, flA= (LAY,

1

ei(A) =ei(A),  @i(4) = @i(A").

Proposition 5.3.3. The operators ¢; and f; fori € {0,1,...,m — 1} commute with €
andf}forj €e{0,1,...,n—1} onJ/\;[anU{O}.

Proof. Let A € J/\/\[mxn be given. Suppose that for each 1 < ¢ < m, we have a;; = 0
unless 1 < j7 < n. Then A can be viewed as an m X n matrix and it is well known that the
proposition holds for A when i,7 # 0 (see for examples [23, Lemma 3.4] or [38, Lemma
1.4.7]). For an arbitrary A € J\A/men and 17, j, we may apply the same argument. H

Remark 5.3.4. We remark that ?5; and ]AC} preserve wt except for j = 0, and ¢; and ﬁ
preserve wt! except for ¢ = 0. 7; and gAjJt on M,,«n, U {0} are strict morphisms of U, (g[n)—
crystals and U, (sl,,)-crystals, respectively for x,y € {e, f}, i € {0,1,...,m — 1}, and

7€{0,1,...,n—1}. In case of €, f}, we have
wh(@hA) = wt(A) — 6, wt(fIA) = wt(A) + 0,

for A € ﬁ[mm. The same holds for e; and f; Hence, the we understand the set JV[mxn as
a (Ué(;[m) X U;(E:\[n))—crystal or (U,(sl,,) x Uq(;[n))—crystal.

Let
Toxn = ||  CSSTim(A) x B(N). (5.3.2)
AEPmNPn,
We regard it as (Ué(sA[m) X Uq(ﬁA[n))-Crystal with respect to ¢, fi, e, f;t (1€{0,1,..., m—
1},7€{0,1,...,n—1}), where ¢, f: are the Kashiwara operators on C’SST[m](/\), and
e, E are the Kashiwara operators on B,, ().

The following is the second main result in this paper. The proof is given in Section
7.1.

Theorem 5.3.5. The bijection

K Moxn

men
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commutes withgi,ﬁforie{l,..‘,m—l} and €, f}forje{(),l,.‘.,n—l}.

We remark that the map s does not commute with ¢y and ﬁ), but k1 := m o k does,
where 7 is the projection of T, along the first component (see Remark 7.1.10). Since

wt (A) = wt(FR), k1 induces the following.

Corollary 5.3.6. An affine matriz A € J\%mm 18 Uq(f/;\[m)-crystal equivalent to Py, where
K(A) = (Fo, Q).

Note that x is does not preserve wtt. More precisely, for A € J\A/[mxn with k(A) =
(P, @), we see from the definition of x that

wt'(A) = wt(A') = wt(Q) — (Z |77(i)|) 0,

=1

where 1) is the symmetrized offset vectors of Péi).
So in order to have a morphism of U, (fjln)—crystals, we may modify the weight function
on J/\\/[mxn by
wtf(A) = wt(A") + H,,(A)J, (5.3.3)

where H,,(A) = S, [n®|. Then we have the following.
Corollary 5.3.7. If we regard JV[mxn as an Uq(;[n)-crystal with respect to wt', then k is

an isomorphism of (U, (sl,,) X Uq(g[n))-crystals. In particular, an affine matriz A € Monsn
is Uq(gln)—crystal equivalent to Q, where k(A) = (P, Q).

We remark that both m and n do not need to be greater than 1 for Theorem 5.3.5 and
its corollaries. In particular, Corollary 5.3.6 holds for n = 1 and Corollary 5.3.7 holds for

m = 1.

Remark 5.3.8. The function H,,(-) in (5.3.3) is related to the intrinsic energy function
on U, (sl,,)-crystals with PY-weights as follows. Let T' € C'SST,,,(R) be given where R =
(a®). Let r = (r1,...,74_1) be the offset vector and n = (n1,...,m,_1) the symmetrized

offset vector of T. Then we have

Hon(T) = Inl = alr|,
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where |r| =ry+- - +74-1 and 3, (-) is the intrinsic energy function on CSST},(R) with
Hon(ugr) = 0 (cf. [34] for its definition). Hence for A € Mopxn With k(A) = (R, Q), we

have
!

Hyn(A) = 3 (96u (P + mifr 1),

=1

mg
i

where R; = (a]") is the shape and r(®) is the offset vector of Péi) respectively.
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Chapter 6

Dual affine RSK correspondence

In this chapter, we construct a dual analogue of Theorem 5.2.3 and 5.3.5.

6.1 Matrix-ball construction for dual affine matrices

Let

-~

N - {B - (b) - (1) bi]’ € {O, 1} and bi+mj+n = Qy4j for all Z,j € Z, }
mxn - 1) )1,)€ .

(2) for each j, bj; = 0 except for finitely many i’s.

We call B € j/\\fmxn a generalized dual affine permutation or a dual affine matriz for short.

For a dual affine matrix B, we define dual standardization of B to be

Bst’ _ (Bo)o’.
Note that we have B%* = (B*)* = (B°)* and B%* ¢ \/A\?|B|.

Example 6.1.1. Let B € j/\\f3><4 be given as follows.
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Then BsY is

7

3

S U N —
Ji Ja Js Js

J
_J
I
Iy
I3
1

Suppose that o € Z7' and § € Z7} are given with k = |a| = |5]. Let ﬂmxn(a,ﬁ) be

the set of dual affine matrix whose row and column contents are «, [ respectively. Let

Wk,[aﬁ] denote the set of affine permutations w such that w is a-ascending and w™? is

B-descending.

;H "‘._’T 1_'_” 'aj}
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Lemma 6.1.2. Under the hypothesis, we have a bijection
Nosn(@, ) —— Wijag)
B+—> B
We use another compass directional orders >y, <y on Z X Z as follows:
(1) ¢ > 2 if and only if iy < iy and j; < jo,
(2) ¢1 <ye ¢2 if and only if iy > iy and j; < jo,

for ¢; = (i1, 1), c2 = (ia, j2) € Z X Z.

With respect to these partial orders, we have natural dual analogues of the notions
and their properties given in Section 3. The proofs are almost parallel to those in the
case of J/\\lmxn. Let us summarize them as follows:

Suppose that B € ﬂmxn is given.

e A proper numbering d on B is defined as in Definition 5.1.8 with respect to >y
instead of >y. Let d®¥ denote the proper numbering on B®* which naturally

correspond to d.

e Streams and channels B are defined in the same way as in Definition 5.1.7 with

respect to >py.

e The southwest channel numbering d3 on B is the unique numbering such that

(dgﬂ)st’ — 5

Bst’

Let d be a proper numbering on B € ffmxn. Note that each level set d~!(k) forms a
chain with respect to <y.. Let {z}rez be the set of zig-zags associated to d, where the
inner corners of z;, are the set of elements in d~'(k) maximal with respect to >,y. Then

{21, } ez satisfies

(z'.1) the inner corners of each z; are contained in supp(A),

(7'.2) supp(A) C Upez 2

(7'.3) zy is located to the southeast of z;_; for k € Z with respect to >py.
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Remark 6.1.3. We should remark that no outer cell of z; belongs to supp(B), and z;’s
are not always mutually disjoint. More precisely, two horizontal lines (or line segments) in
z, and z; (k < [) may have non-trivial intersection, while vertical lines (or line segments)

in z, and z; (k <) are always disjoint.
Suppose that a non-zero B € ﬂmxn is given and let
o {zZp}rez : the set of zig-zags associated to d,
e B : the matrix obtained from B by the same rule as in B’ with respect to {2} ez,

e B® : the matrices in ﬁmm defined inductively by

B(o) = B, B® — (B(t—1))b/ (t > 1>‘

Note that B®~Y #£ O and B® = O for some s > 1. For 1 <t < s, we let
. {Zg)}kez : the set of zig-zags associated to d3,_,),
e s = (a,, by, p;) : the stream of the back-post corners of {ZS)}keZ with flow p,

where we can check that p = (uy,...,us) € &s.
Now let

e Py, (o : the tableau of shape A\ = ' defined as in Section 5.2,

e P(: the tableau of shape u obtained by flipping Py with respect to the main diagonal.
It follows immediately that P} € RSSTy, ().

e p=1(p1,...,ps) EZ°.
Let A be the shape of Py, and let (R, ..., R®) be the rectangular decomposition of .
° Péi), Q(()i) . the rectangular decompositions of Fy and ),

o p(V € 7™ . the subsequence of p corresponding to the rectangular decomposition,

where m; is the occurrence of 7 in pu.

e ) € P, 1 : the symmetrized offset vector of (Po(i))t.
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Then we define

OE0) 1) L)
Q= (Tpl +nrev(Q(()l))’ TP +nrev(Qél))> _ (Q(l), o ,Q(l)) ) (6.1.1)

The following is a dual analogue of Theorem 5.2.3.

Theorem 6.1.4. We have a bijection

~

Ko Nown — || RSST(A) x Ba(N), (6.1.2)

AENPy,

B (F5, Q)

Example 6.1.5. Let B be the dual affine matrix given in Example 6.1.1. Then

1 1 |1
1 1
1 1 1 -
1 1 1 —j
(0) — : J
B = Lo | —
1
1
1 1
v Nn
11
1
1 1 N
1 —
B — ‘Ii .
+
11
1
1 1
v LD
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B®) —

where the red lines denote the zig-zags associated to d5 for 1 <t <4, and

B(t—1)
pt=[1]2]3] Q:112|3|, = (2,1,0,0).
0 ABRE 0 515 p ( )

i 413
3]

In this case, R; and Rj3 are the only non-trivial rectangles in the decomposition of the
shape of Py and Q. It is easy to see that nf;l, =(0,2), 7]&2, = (0,0), and hence

o =[4]5]12]3],

ot
D

6.2 Dual affine RSK and crystals

Let us describe an Uq(;[m)—crystal structure, and Uq(g[n)—crystal structure on ffmxn for
m > 2.

Suppose that B = (b;;)i jez € ﬁmm is given. For i € {0,1,...,m — 1}, we define ¢;B
and EB as follows:
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(1) Let o be a sequence of {4+, — } given by

o = ( e + , i , _.l_ , — v
~— =~ =~ =~
bij+1 bit1j+1  bij  bitaj

and let ¢ be the reduced one, which is well-defined since ¢ has only finitely many

+’s and —’s.
(2) If o has at least one —, then we define
¢;B =B+ Ez‘jo - EiJrljm

where jj is the column index of B corresponding the rightmost — in . If ¢ has no

—, then we define ¢; B = 0. Similarly, if ¢ has at least one +, then we define
fiB = B — Eyj, + Eiyj,,

where 7; is the column index of B corresponding the leftmost + in ¢. If ¢ has no
+, then we define f;B = 0.

Similarly, we define ;B and ]?}B as follows for j € {0,1,...,n—1}:

(1) Let o be a sequence of {+, — } given by

/
0:(...7 + ., =, +, _7...)'
N N N~
b; bijr1 bir1; birij+1

and let o’ be the reduced one, which is well-defined since ¢ has only finitely many

+’s and —’s.

(2) If o has at least one —, then we define
€;B =B+ Eiy; — Eiyj1,

where i is the row index of B corresponding the rightmost — in o'. If o/ has no -,

then we define E;B = 0. Similarly, if o' has at least one +, then we define
fiB=B—Ei;+E;jn,
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where 71 is the row index of B corresponding the leftmost + in o’. If ¢ has no +,
then we define f;B = 0.

Note that g;, f? are not defined in the transpose of matrices for dual case.

Proposition 6.2.1. The operators ¢; and f; forie {0,1,...,m —1} commute with ¢}
and fj for j€{0,1,...,n—1} on Nopxn U {0}
Let

Sim = |_| RSSTm(N) x B ().
AEPn
We regard it as (Ué(sA[m) x U, (sl,))-crystal with respect to &, f;, e, f? (ie€{0,1,...,m—
1},7€{0,1,....,n—1}), where ¢, ﬁ are the Kashiwara operators on RSSTj,,(A), and

e, f; are the Kashiwara operators on B,, ().

Theorem 6.2.2. The bijection
K0 Nosn —— S

commutes withé},ﬁforie{l,...,m—l} and €, f}forje{(),l,...,n—l}.

Let x| = m o k', where m; is the projection of 8,,«, along the first component. Then
k} commutes with €; and f; for i € {0,1,...,m — 1}, and preserves wt.. Hence we have

the following.
Corollary 6.2.3. A dual affine matriz B € Nouscn 48 Uq(;[m)—crystal equivalent to P},
where k(A) = (P, Q).

Moreover, if we define wt! on j/\\fmxn in the same way as in (5.3.3) with respect to &/,

then we have the following analogue of Corollary 5.3.7.

Corollary 6.2.4. If we regard ﬂmxn as an Uq(;[n)—crystal with respect to wt', then k/
is an isomorphism of (U,(sl,,) X Uq(;[n))—crystals. In particular, a dual affine matriz
B € Nyuxn 18 Uq(g[n)-crystal equivalent to Q, where k'(B) = (P, Q).

We remark that both m and n do not need to be greater than 1 for Theorem 5.3.5
and its corollaries. In particular, when m = 1 we have the following multiplicity-free

decomposition

since RSSTp (') consists of single element for all A € &7,,.

b y 1 | s
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Chapter 7

Proofs

In this chapter, we prove the main results Theorem 5.3.5 and 6.2.2, namely:

Tk(A) (7.0.1)

J

k(T;A) = 1;k(A), /{@?A) =
= @;M(B) (7.0.2)

K (T;A) = Tir'(B),  K'(U;B)

forAEJV[meBeﬂmxn,ie{1,...,m—1},j€{O,l,...,n—l}andx,ye{af}.

7.1 Theorem 5.3.5

7.1.1 Augmented affine matrices

Let s be a stream of flow [ with defining data (a, b, r). We regard s as an element of T,
in (5.3.2) as
s=(a,7'b) € CSST[m]((ll)) X Bn((ll)) C Toxn-

Generally, let s, ... s be the streams corresponding to an affine matrix A € JT/[mxn in
Section 5.2. We identify x(A) with s®® @ --- ® s as a tensor product of crystals.
Define a map

U M —— || Minsn @ (CSSThy (1) x B((1)) - (7.1.1)

>0
A f Ab X S(l)
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Since
(P®id* o o (T®id)o¥) (4) =0 s .@sV) =0k, (712

where id is the identity morphism, it suffices to show that ¥ commutes with z; and gAjjt for
the proof of (7.0.1).

In order to simplify the description of Z; and 7 on A’ ®s (see (7.1.6)), let us introduce
some additional notations and conventions. Let Z* = ZU{oo}, where we understand that
a<ooanda+oo=o00foracZ. Let Ae J\A/[mxn be given. Let U(A) = A’ ® sV, where
A = (a%)mez. We define A* = (aj;) jez- by

> if (i,§) €EZ X Z,

i
if i = oo and (k,j) € sV for some k € Z,

(a

1

1 if j =00 and (i, k) € s for some k € Z,
L0

otherwise.

In other words, A* is an augmented matrix obtained from A” by

A=A+ Y (Bio+Exy).

(i,5)esD)

Note that A* satisfies a;,,,:,, = a;j; for (i,j) € Z* x Z*.
Let z be a zig-zag of A with the back-post corner (i, 7). Let z* = z U {(oc0, j), (i,00)}
and regard (oo, 7) and (i, 00) as outer corners of z*. Then we may understand W(A) = A*

as a Z* x Z*-matrix obtained by
e identifying A = (a;j); jez With (ai;)i jezr Where as; = 00 = 0 for i, j € Z*,
e applying the same rules for b in Section 5.2 to A along z; instead of zy,

where {z;}rez is the set of zig-zags associated to d%¥. Note that we can recover A’ and
s from A* and {z}}rez. From now on, we assume that a matrix is a Z* x Z*-matrix
and a zig-zag is of the form z*.

Example 7.1.1. Let A be the affine matrix in Example 5.2.4. We regard A as a Z* x Z*

matrix as follows:
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jZOO
1 1
1 1 2
1 1 1 1
1 1 - o
1 1 :
1 1 2
T,
. it am
E: £
1
A= 1 2
1 1 1
1 1
1
J%j 1 2
1 1 1
1 1
A

where the red lines denote the zig-zags z,, 29, z3 associated to d%'. Then A* is given as

follows.
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|
—_

A*

7.1.2 Tensor product rule

From now on, we fix A € Jﬁmxn and j € [n]. If there is no confusion, let us write E, £,

and ¢; instead of fj, eb, and ¢ for simplicity. In the remaining of this section, we will

focus on the proof of

F0U(A) = U(f;A).

Let
0—:< R e a S SR S
— —— —— ——
Qj—1j+1 a;—1j Q541 Qij
g*:<.. T S SRR S S
—_—— ) ——— ——
“;‘lljﬂ a?—lj afjﬂ a%}-

78

(7.1.3)
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where o* is a concatenation of two sequences. By tensor product rule (4.1.4), we see that

A ® ]};s if the leftmost + in o* corresponds to (0o, 7),
f]' (Ab ® S) = (EAb) ®s if the leftmost + in o* corresponds to (4, 7) for some i < oo,

0 if o* has no +.
(7.1.5)
In terms of A*, this can be simplified as
~ Af — Ez + EZ if the leftmost + in ¢* corresponds to (4, j),
fiAT = s P (0:9) (7.1.6)

0 if o* has no +,

where we assume that E\Ooj = pez Eoojtin-
Lemma 7.1.2. We have EA # 0 if and only if E\II(A) # 0.

Proof. We may assume that there exists a non-zero cell in the j-th column. Otherwise,
we have EA = E\IJ(A) =0.

Let {zx}rez be the set of zig-zags associated to d%. Let ko (resp. ki) be the minimal
(resp. maximal) value of d% in the j-th column. For ky < k < ky, let i be the minimal

row index with (i, j) € zg. Note that (ix,j + 1) € z.

Put
Uk:(+“'+,_"'_7"',‘l’"“f“,_"'_);
—— —— —— —
iy j @iy 41541 Qig g1 —15  Gig g+l
gZ:(+...+7_..._’...’+..._|_7_..._)7
— —_—
* * * *
@iy i 41541 Cipr1—17  Figyq g+l
for ko < k < ki, and
O—*OO:( N N _)7 O—OO:(+"'+,5 _ ) )7
aik0—1j+1 aik0j+1 Gig, g @ig) +15+1
* — *
O-ioo_(...’_..._7_..._)7 Uoo—(+"'+=_"'_7"')'<+> — )
al al al af a*_ . a*
gy —15+1 iy 1 iky J iy H1i+1 o0 j oo j+1
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Then o and ¢* in (7.1.4) decompose as follows:

0 = U—OO O—ICO ..... Ukl—l 0—007
* * * * *
o = U—oo . Uko ..... Uk1—1 . Goo'

Suppose that k is given with ky < k < ky. Let u be the maximal row index with
(u,j) € zk, and let v be the minimal row index with (v,j + 1) € zg;. Note that i, < u
and v < ig,q. Suppose first that © < v. Then we have

Ok = (+ +, Fe A Fo Tt & ) R _)a
~—— —— — ——

Qi 5 Ay, j Ay j+1 aik+1 j+1
UZ:(+"'+a+"'+>+"'+a_"'_7_"'_7 _"'—):Uk,
—— —_— S——
aj j—1 ay i+l ayjp1—1 @ip g g1t

and hence g, = UN,’;.
Next, suppose that u > v. In this case, we have iy < v < u < ix, 1. Therefore, (ix, ),

(v,7 + 1) are inner corners, and (u, j), (ix+1,j + 1) are outer corners. Then we have

Uk:(+ +, ot = X sy e, — =, = _)7
—_—— —— —— ——
@iy j Ay jt1 Qu j Qigyq j+1
UZ:(—{_ +, T = ) S — _)
—_—— —— —— ——
aikjfl ayj+1—1 ay j+1 aik+1j+1+1

Since one cancelling pair (+, —) of o} in

<_|_..._|_7 + _..._)
~—— S~——

@iy, j Gy jy1

is moved to a pair (+, —) of o} in

(_‘_..._h_..._’ _..._)7
—— S——
Ay j+1 aik+1j+1+1

we conclude that o, = UN;;. By similar argument, we see that (01.0)~ = (07,)""

Hence we have
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Since reducing a sequence does not depend on the order of cancelling (+, —), we have

0= (0-c Oos)” = ((0-00)™ -+ - (00)™)"™
= ((O-ioo)w """ (U;O)N)N - (O-ioo """ O-;O)N = 0’:((
This shows that ¢;(A) = ¢;(V(A)) and ¢;(A) = ¢;(¥(A)), and hence the lemma fol-
lows. O

From now on, we assume that EA # 0 and E\I/(A) # 0. We also assume the following

notations:
e 1 : the row index corresponding to the leftmost + in &,
e u* : the row index corresponding to the leftmost + in o*,
o s =di(u,j),
o A= fi A= (ai)ijez-

We have
A:fjA:A—Euj+Euj+1, f]A* = A* —Eu*j+Eu*j+1’ (718)
Note that the leftmost + in ¢* also appears in (%)~ by (7.1.7). More explicitly, u* is

the minimal row index such that v < " and a;,.; # 0. In particular, we have

u <u* if (u,j) is an inner corner of z, with a,; = 1,

*

u =u* otherwise.

7.1.3 Southwest channel numberings on A and A

In this subsection, we discuss the relation between the southwest channel numberings on
A and A.
For (z,y) € Z?, let (z,y)" = {7*(z,y) |k € Z}. We have

supp(A) — supp(A) C (u,j +1)",  supp(A) — supp(A) C (u, )",

where the equalities hold when a,;+1 = 0 and a,; = 1 respectively.

3 y 1 | s
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We first give an example, where a proper numbering on A is induced by a proper

numbering on A.

Example 7.1.3. Let A be the affine matrix given in Example 5.2.4. It is easily checked
that fiA = A — Eg,g + Eg,g. Consider the set of zig-zags Z = {2z }rez corresponding to
the southwest channel numbering d%f on A. If we draw the zig-zags z,, z, and z3 over

A%A as follows;

1 1
1 1 2
1 1 1 1
1 1 R
1 1 J
1 1 2 Z
1 1 T 1 Z2
T 1+ Z3
1
1 2
1 1 1

1 1
o) 1

J 1 2
T 1 1 1
|| 1 1

then one can see that Z satisfies the conditions (z.1)-(z.3) in Section 3.2 with respect to
EA. Here, the dashed and solid circles are the positions where f;tA differs from A. We
conclude that Z induces a proper numbering on EA.

It is also easily checked that ]@BA = EA — B3+ Fy4. However, Z does not give a
proper numbering on ﬁ,’ng, since an inner corner (2, 3) of z3 is not a non-zero cell of EEA
If we modify a segment (9, 8), (8, 8), (7.8).(6.8).(6.9) of z3 by (9, 8), (9,9), (8,9), (7,9), (6,9)
(see below), it remedies the failure of the condition (z.1). The modified zig-zag, which is

denoted by zj, does not intersect with z4 as follow,
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1 1
1 1 2
11 1 1
1 1 R
1 1 j
1 1 2 z
11 f | 2
I z3

1
1 i - 2 Z4
1 | — 1
| 1 1

- 1 2
- 1 1
ﬁ 1 1
|

where dashed red line is the original part of z3, and the dashed circle and solid circle
are the positions where j:;fj:%A differs from EA. Hence the modified set of zig-zags 7' =
{-+,24,21,22,2%,24, -+ } give a proper numbering on f;f;A

In the remainder of this section, we will see that the induced numberings on EA and

f;f EA are, in fact, the southwest channel numberings.

The following lemma describes how to construct a proper numbering on A from a

given numbering d on A in general.
Lemma 7.1.4. We have the following.

(1) Let d be a proper numbering on A with the associated zig-zags Z = {zy}rez and
d(u,j) =s. Then there exists a proper numbering d— on A satisfying

d”(c) =d(c) if c €supp(A) Nsupp(A),

d(u, j if u is minimal such that (u, j) € zg,
(1) = (u, ) f (u, )
d(u,j)+1 otherwise.

(2) Let d be a proper numbering on A with the associated zig-zags Z = {zy}rez, and
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d(u,j+ 1) =t. Then there exists a proper numbering d* on A satisfying

d*(c) =d(c) ifce€supp(A)N supp(ﬁ),
0+ (u, ) = d(u,j:) —1 f (u,j). € 71,
d(u, j) otherwise.

In particular, the widths of A and A are the same.

Proof. (1) We construct a set of zig-zags Z~ (by adjusting Z) which satisfies the condi-
tions (z.1)-(z.3) in Section 3.2 with respect to A and hence gives a proper numbering d~
on A.

Let is be the minimal row index with (is,j) € zs. If iy = u, then (u,j + 1) € 2z
by definition of zig-zag. Suppose that iy < u. Then (i, 7) is an inner corner of z4, and

a;,; > 0. Consider a subsequence of ¢ in (7.1.4)

(_|_...+’_..._7...’_|_..._|_’_..._)' (7.1.9>
Qjgj Qig+1j+1 Ay—13j Ay j+1

Since (u,j) is the cell corresponding to the leftmost + in o, there exists no + in the
reduced form of (7.1.9). This implies that there exists some a, ;11 > 0 for some v with
is < v < u so that + in the cell (i, j) is paired with — in (v,j +1). It is easy to see that
d(v,j7+1)=s+1, and hence (u,j+ 1) € zsy1.

Hence we see that supp(A) C | |;c7 2x and Z satisfies the conditions in (z.2) and (z.3)
for A. Note that the condition (z.1) fails if and only if (u, j) is an inner corner of z, with

Qyy = 1.

Case 1. Suppose that (u,j) is not an inner corner of zs or (u, j) is an inner corner of z
with a,; > 1. Then Z~ := Z satisfies the condition (z.1), and induces a proper numbering

d~ on A as given in (3.2.2). Hence d~ satisfies

- S if u =1,
d”(u,j+1) =
s+1 ifig <u,

and d~(c) = d(c) for ¢ € supp(A) Nsupp(A).

Case 2. Suppose that (u,j) is an inner corner of z, with a,; = 1. In this case, the
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condition (z.1) fails since the inner corner (u, j) of z; does not lie in supp(A). Now let us

modify z; as follows: Let (v, j) be an outer corner of zs and let
w=min{i € Z|u<i<vanda; >0}

Note that w = u* when d = d%'. Consider a subsequence of o

(_|_7_..._7... _|_..._|_7_..._)_ (7.1.1())
(29 Ay+1 541 Qyw—13j Qo j+1

We see that a;; = 0 for u < 7 < w — 1 by definition of w, and moreover a;;1; = 0 for
u < i < w since the reduced form of (7.1.10) is (+). Indeed the sequence in (7.1.10) is

(4). According to this observation, we define a zig-zag z, by replacing the cells

(U} - 17j>7 Tty (U+ 17j>7 (uaj)
in z; with the following cells

(w, g+ 1), (w—1,74+1), -, (u+1,7+1).

Then each inner corner of z; lies in supp(A).

Let Z~ be the set of zig-zags obtained from Z by replacing { 7%z, |k € Z} with
{7*z; |k € Z}. Then Z~ satisfies the conditions (z.1)-(z.3) for A, and hence induces a
proper numbering d~ on A Ttis easy to see that d~(u,j + 1) = s since u = i,, and that
d=(c) = d(c) for ¢ € supp(A) Nsupp(A).

By definition, the proper numberings d and d~ have the same flow, which implies that
A and A have the same width. This proves (1).

(2) As in (1), we construct a set of zig-zags from Z to which a proper numbering d*

on A is associated.

Case 1. Suppose first that (u,j) € z;—;. Then there exists an inner corner (v,j) of z;;
and an inner corner (w,j + 1) of z; with v < w < u. In particular, we have a,; > 0.

Consider a subsequence of o

(_|_..._|_7 — e e e _..._).
—_—— —— —_—— ——
Ay Ay—1j+41 Ay—1; oy 41

T 1 y
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Since a,; > 0 and (u,j + 1) is the cell corresponding to the rightmost —, we have
Qujt1 + Q141+ F Qujp1 > 2.

This shows that w < u and the inner corner (w,j + 1) of z; lies in supp(A). Hence
ZT .= Z satisfies the conditions (z.1)-(z.3), and it induces a proper numbering d* on A.

It is obvious that d*(u,j) =t — 1 and d*(c) = d(c) for ¢ € supp(A) Nsupp(A).

Case 2. Suppose that (u,7) ¢ z;_1. Let i; be the maximal row index with (i;, j + 1) € z.

Since (u, j) ¢ z+—1, we have @;; = 0 for u < ¢ < i;. Consider a subsequence of &

(

S (7.1.11)

iy 41 Gy j41 @iy i1

— =,

Gy j41 Quj

_l__‘_’ Sy

Since the rightmost — in ¢ corresponding to position (u, j + 1) is the one in (7.1.11), we

see that @; ;11 = 0 for u < i < ;. We define z; to be a zig-zag by replacing the cells
(it7j+ 1)7 (Zt - ]-)] + 1)7 T (u+ 17]+ ]‘)
in z; with the following cells

(it_ 17j)7 T (u_ 17j)7 (u7]>

Then (u,j) is an inner corner of z;7, and (u,j) € supp(4). Let Z be the set of zig-zags
obtained from Z by replacing { 7%z; |k € Z} with {7%z |k € Z}. Then ZT satisfies

the conditions (z.1)-(z.3) for A, and it induces a proper numbering d* on A. We have

d*(u,j) =t and d*(c) = d(c) for ¢ € supp(A) Nsupp(A). This proves (2). O

Remark 7.1.5. Let d; be a proper numbering on A. If follows from the construction of
d* in the proof of Lemma 7.1.4 that

(1) (d)" = dy,

(2) if dy is another proper numbering on A such that d;(c) < dy(c) for ¢ € supp(A),

then d; (¢) < d5 (c) for ¢ € supp(A).
The similar properties hold for a proper numbering on A.

Lemma 7.1.6. We have the following.

1 & =
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(1) Let C be a channel of A. Then there ezists a channel C~ ofg given by

(C—(u,)")U(u,j+1)" if (w,j) €C, ayy=1 and (i,j+ 1) ¢ C for all i,
(C = (u, )") U (v, )" if (u,7) € C, ay; =1 and (i,j + 1) € C for some 1,
C otherwise,

where v is the minimal row index such that u < v and a,; > 0 if it exists.

(2) Let C' be a channel of A. Then there exists a channel C* of A given by

(C = (u,j+1)") U (u, )" if (u,j+1)€C, ayj+1 =1 and (i,7) & C for all i,
(C—=(u,j+ )M U(w,j+1)" if (u,j+1)€C, ayjs1 =1 and (i,5) € C for some i,

C otherwise,

where w 1s the mazimal row index such that w < w and a, ;41 > 0 if it exists.

Proof. Let us prove (1) only, since the proof of (2) is similar.

First, suppose (u, j) ¢ C or a,; > 1. Then C' C supp(g) and C is a channel of A. We
put C~ = C' in this case.

Now suppose that (u,j) € C and a,; = 1. Then we have C' ¢ supp(A). Let us write
C={" >wcCs—1>wCs >m Csy1 >wi - }

with ¢; = (u, 7). We have two cases.

Case 1. Suppose that (i,7+1) ¢ C for all i. Let C~ be a set obtained from C' by
replacing ¢ = (u, 7)" C C with (u, j + 1)", which is clearly a stream of A by assumption.

Case 2. Suppose that (i,j+ 1) € C for some i. Then we have ¢s; = (v, j + 1) for some

v’ > u. Consider a subsequence of ¢ in (7.1.4)

(_|_,_..._,...7_}_...4_7_..._). (7'1'12)
Auj Qu+1j+1 Ayl —15 Ayl 41

Since — in ¢44q is paired with + in (7.1.12) other than + in ¢; = (u, j), we have a;; > 0
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for some u < ¢ < u'. Let v be the minimal such one. Then we have
Cs—1 W (U,j + 1) >Nw Cs+1- (7113)

Let C~ be a set obtained from C' by replacing ¢} = (u,7)" C C with (v, 7+ 1)", which is
a stream of A by (7.1.13).
By definition, C'~ has the same flow as C. Since A and A have the same width by

Lemma 7.1.4, C™ is a stream of maximal flow, and hence a channel of A O

Remark 7.1.7. Let C' be channel of A. Under the above hypothesis, we have

(v,7) if (u,j) € C, ay; =1 and (4,5 + 1) € C for some 1,
(C) =C=R(u,j+1) if (u,5) €C, ay; =1, ayjr1 > 0and (5,5 + 1) ¢ C for all i,
0 otherwise.

Note that there exists no cell in supp(A) between (u, j) and (v, j) and between (u, j) and
(u,7 +1). Hence it follows that

C e (CT)T or (C7)F =g C,

and there exists no other channel between C' and (C~)*. It is also easy to check that if
C" is another channel of A with C'=4,C’, then we have

C™ = (). (7.1.14)

The similar properties also hold with respect to channels of A.
Lemma 7.1.8. We have the following.

(1) Let C be a channel of A. If d is the channel numbering on A associated to C, then

d~ 1s the channel numbering on A associated to C~.

(2) Let C be a channel of A. If d 1s the channel numbering on A associated to C, then

d* is the channel numbering on A associated to C™.

Proof. Let us prove (1) only since the proof of (2) is similar.
Let d’ be the channel numbering on A associated to C~. Since the widths of A and

A coincide, we may assume that d~ coincides with d’ on the channel C'~ by adding a

& =
L |  §
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constant to d~. Hence we have d < d~ by Lemma 3.1.9, and (d)* < (d7)" = d by
Remark 7.1.5.
Let ¢ be the common width of A and A. If £ > 1, then we see from Lemma 7.1.6(1)

that there exists ¢ € C'NC~ such that ¢ € supp(A) Nsupp(A). We have
d(c) = d"(c) = d'(c) = (d)"(c).

So (d')* and d also coincide on C' (cf. Remark 7.1.7), and d < (d')* by Lemma 3.1.9.
Therefore, we have d = (d')*, and d~ = d’ by Remark 7.1.5.

If ¢ = 1, then it is not possible to have d~(u, j+1) = d(u,j)+1 or C~ = (C—(u, j)")U
(v, )" since we must have another cell (7, j+1) with (u, j) >w (¢, 74+1) >w (u, j)+(m,n).
Hence we see directly that (d')"(u,j) = d(u,j) =d (u,j + 1) = d'(u,j + 1). By similar

arguments as in the above case, we conclude that d= = d'. O

Now we can describe the southwest channel numbering on A in terms of the one on

A.

Proposition 7.1.9. Let d be the southwest channel numbering on A. Then d~ is the
southwest channel numbering on A. Equivalently, let d be the southwest channel number-

mg on A. Then d* is the southwest channel numbering on A.

Proof. Let C; = C% and C; = C’%". Let d’ be the southwest channel numbering on A.
By Lemma 7.1.8, we have
_ Cr Cc
d- = dgl , (d)T=d2.

Thus it suffices to show that either C} = Cf or C] = Cy, which implies that d = (d')"
or d- = d', respectively (see also Remark 7.1.5).

Since (' and Cy are the southwest channels, we have
Cimen O, Coirew O (7.1.15)
By Remark 7.1.7 (cf. (7.1.14)), we get from (7.1.15)
Cr an O e (C7)F, Co e OF e (G5 (7.1.16)

We claim that O} = Cf if Cy =4 C;. By (7.1.16), we have Cy =, (CJ)~. By
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Remark 7.1.7, we see that Cy =, (C5)~ occurs only when
C3 = (C2— (u.j +1)") U (w5 + 1™

Then we have Cyf = (C))~.

On the other hand, we have C; = (C )~ since there is no other channel between Cl
and (C5)~. Hence we get C; = (Cy )~ = CJ, and in particular (w,j + 1) € C] . Since
we have (u,j) ¢ C; by Lemma 7.1.6(1), it follows that C; = C; = C5. This proves the

claim. 0

7.1.4 Proof of (7.1.3)

Now we are in a position to prove (7.1.3). Let d = d% and let Z = {2z }recz be the set of
zig-zags associated to d. Let Z~ be the set of zig-zags associated to d~ (see the proof of
Lemma 7.1.4(1)). Note that d~ = d¥ by Proposition 7.1.9.

Case 1. Suppose that (u,j) is not an inner corner of z; or (u,j) is an inner corner of
zs with a,; > 1. Since Z = Z~ and the cells corresponding the leftmost + in A and A*

coincide in this case, we have A* = (A)*.

Case 2. Suppose that (u,j) is an inner corner of z, with a,; = 1.

Let us first compare z; with the modified zig-zag z,. Let (vo,j) be an outer corner
of zs and let v; be the minimal row index with (vy,j + 1) € z,. Note that the inner and
outer corners of Z and Z~ always coincide other than the following cells (more precisely,

their orbits under 7+1):

(u, 7), (u*,5), (vo,4), (v1,5 +1), (u,j +1), (u", 5 +1), (7.1.17)

where 11 < u < u* < vy < 0o. For the reader’s convenience, we summarize the positions
of the cells in (7.1.17) as follows:
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Zs z;
(u,j) inner corner
(u*,7) outer corner if u* = vy | inner corner if u* < vy
(vo, J) outer corner outer corner if u* < vy
(v1,j+ 1) | inner corner if v; < u inner corner
(u,j+1) | outer corner if vy < w | inner corner if v; =u
(u*,j+1) outer corner

Hence we may write

~

vj — Evyj+1 + Buj + B,
v j+1 T By 1 + B,

A" = A

Fui (7.1.18)
(A = A~ Byej + Eyyy —

where B is a finite linear combination of Ejy,’s over the cells (k,1) not belonging to (7.1.17).
Combining (7.1.8) and (7.1.18), we have

;F = A" — E\u*j + u* j+1
= (A — E\uj E\voj - Em j+1 + E\uj-i—l + B) - E\U*j + E\U* Jj+1

~ ~

+
B (A — B+ Euj“) — Euj+ Buj — By ju1 + B jn + B
+ By = vyt + B jia + B

By Case 1 and Case 2, we have A* = (A)*. Let us write \II(}’;A) = (EA)b ® s’. From
A = (A)* and Proposition 7.1.9, we see that

Ab®f;~s if u* = oo,

fiAY @' ={
i) @s (fiA)®s if u* < oo.

Comparing this with (7.1.5), we have (7.1.3).
By (7.1.1), k commutes with f;, and hence x commutes with ¢; for j € {0,1,...,n—1}.
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7.1.5 Proof of Theorem 5.3.5

We have proved that x commutes with €} and f} forj € {0,1,...,n—1}. Let us finish the
proof of Theorem 5.3.5 by showing that x commutes with ¢; and f; fori € {1,... ,m—1}.

First, it is not difficult to see that Proposition 7.1.9 still holds if we replace the south-
west channel numberings with the northeast channel numberings. Hence by the same

arguments as Section 7.1.4 we have

fori € {0,1,...,m —1} and = € {e, f}. This implies that ¥ commutes with ¢; and ﬁ
fori e {1,...,m—1} (see Remark 7.1.10 for i = 0). Hence x commutes with & and f;
forie€ {1,...,m —1}. This completes the proof of Theorem 5.3.5. O

Remark 7.1.10. We should remark that ey and fé may not commute with W. Let
A € My be given such that ZoA # 0 for z € {e, f}. Suppose that W(A) = A’ ® s and

s = (a,b,7).
If 7o(A* ® s) = A’ ® Tgs, then it follows from (7.1.19) that ¥(7pA4) = A’ ® s’ and
s’ = (Zoa,b,r’), where " = r + 1 (resp. 7 — 1) if x = e (resp. = = f). Since ZTps =

(Zoa,b,r) # &', we have U(zgA) # ZgV(A). If kK(A) = (Fy,Q), then by applying ¥
repeatedly we have
K(T0A) = (701, Q'),

for some Q' € B,,(\) with Q" # Q.

7.2 Theorem 6.2.2
Let B € ﬁmm be given, and let
K(B) = (P, Q)
In this section, we show that
,B=3,P, (i€{0,....m—1} (7.2.1)

and
@';B:%Q, (je€{0,...,n—1} (7.2.2)
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for x,y € {e, f}. We denote by sV ... s® the streams corresponding to B given in
Section 6.1.

7.2.1 Proof of (7.2.2)

UV Non —— || Nonsn @ (RSSTy (1)) x B (1)) -

>0
B f Bbl ® S(l)

It is enough to see that 375 is compatible with ¥’. Consider the dual row standardization

B —— B*. According to the crystal structures of j\\/[mxn and J/\\fmxn, we see that the map

o | | Noww —— || My -
m>0 m>0

B B*

is an Uq(;[n)—crystal embedding. Hence the composition W(B*) is compatible with 7 on

B. Meanwhile, it is easy to see that
V(B*) = (B") @ (s)°

where (s(V)* is the stream whose row indices are standardized from s(!) according to B.
In particular, we have x'(B) = (F5*, Q) where xk(B*) = (Fp, Q). Thus ' commutes with

o
7.2.2 Proof of (7.2.1)
Recall that the order of tensor product on RSST,, () is defined from the top row to the

bottom. Define a map

U Nen —— || (RSSTi((1)) % Bu((1))) @ N

>0
B i sV @ B”

As in Section 7.1, we let B* = s @ B”, and regard it as an augmented matrix.
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For the nonational convenience, let B= ﬁB . Let

c )

o=(.., +, — + , -
~— vv
bij+1 bitij+1 bij  biyi

0 = k)

* *
bi+1,oo bi,oo b;

‘+, ,_,7,+,7,_,a"')7
Tir1 Yipige Y bl

where B = (b;;) and B* = (b};). Let z;, be a zig-zags associated to the southwest channel
numbering d = d§y. Since each z, has at most one non-zero cell (i, j), we lable each + in
o or o* by +y, if (4, j) € z; with b;; = 1. We also lable each — in ¢ or ¢* by — similarly.

The following lemma is dual analogue to Lemma 7.1.2.
Lemma 7.2.1. We have f;B # 0 if and only if ﬁ@b’(B) #0.

Proof. Since the length of ¢ and ¢* are equal, it suffice to show that the number of

cancelling pair (+, —) in o and ¢* are the same. Let 7 = (..., 7441, 7k, .. . ) be a sequence

defined by

if z;, has both nonzero cell (7, j) and (i + 1, ;') for some j and 7',

Tk = 4 + if zx has nonzero cell (7, j) for some j and has no nonzero cell (i + 1, 5") for all j/,

— if z; has nonzero cell (i + 1, j") for some j’ and has no nonzero cell (i, j) for all j.

We claim that (4, —;) is a cancelling pair in ¢ if and only if 7, = + is cancelled in 7

with for some 7 = — or 7, =
Suppose first that 7, = -. In o, + precedes —,. If + is not cancelled, there must be
+ between +;, and —, in ¢ with &’ < k. Note that for such &', we have 7, = -. Therefore

we have another —;, in ¢ such that 4, precedes it. Repeating this argument concludes
that we have infinitely many nonzero cells in ¢ and 7 + 1 row, which is contradiction.
Suppose now that 7, = + and (7%, 7y) is a cancelling pair in 7. We see that the number
of v = + with t < k' < k is equal to the number of 7, = — with t < ¥’ < k. That
is, the number of 4+, with ¢ < k¥’ < k is equal to the number of —;, with ¢t < k' < k.
Hence, if +, is not cancelled in o, there must be +» between +; and —; in o with £” < t.
This leads a contradiction in a similar way described in the last paragraph. Conversely,
suppose 7, = + and (4, —;) is a cancelling pair in 0. Note that ¢ < k since 7, = +.
Since 4+, is cancelled with —;, there must be eqully many + and — between +; and —

in 0. In particular, the number of +;, with ¢ < k&’ < k is not greater than the number of
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—w with t < k¥ < k. Hence 7, is cancelled with 7,» = — for some ¢t < k" < k and this
completes the claim.

In a similar argument, we can show that (+, —;) is a cancelling pair in ¢* if and only
if » = — is cancelled in 7 or 7, = -. Hence both the numbers of cancelling pair in ¢ and
o* are equal to the number of cancelling pair in 7 plus the number of - in 7. O

Let ul(CO) (resp. u,(gl)) be the minimal (resp. maximal) column indices with (i, u,go)) € zy

(resp. (i,ug)) € z;) and let vgj) be the minimal column indices with (i + 1,v,(€0)) € 7.

Note that if u,io) < u,(:), then (1, u,(co)) is an inner corner and (4, u,gl)) is an outer corner of
Zj: in particular, bi Lo =1 and b* 4, = 1.
~7 k ~ l7ukA
Suppose that f;B = B — E;, + E;11, and let d(i,j) = s. Let sp > s be the minimal

number such that ug(l)) < uggll.

Lemma 7.2.2. Under the above hypothesis, we have

fi(B*) = B* - Emu) + Eﬂlu(l)'

S0 S0
Proof. For asign.” € {4, —, -} in 0, we label it as .7 when the cell (4, j) corresponding
to . is numbered k by d. Consider a connected subsequence (--- ,+;) of o. If + is the
first sign in o, it is trivial that s = sy and + is the first non matched + in ¢*. So suppose
that + is not the first sign. Then the sign just before 4 in o is —; with ¢t > s. If t > s+41,
it is also trivial since the zig-zag z¢,; divide o vertically. Let t = s + 1. Consider three

cases as follows.

(case 1) +; doesn’t exists in o,

(case 2) +; exists and u) < ugo),

(case 3) +; exists and uV >0,

Note that (case 1) implies ul < ul(to). Since ugl) is the column index of the position of —;

in o*, (case 1) and (case 2) implies s = sy and —; is the sign just before +; in ¢*. Hence
we are done in these case. In (case 3), +; precedes —; in ¢*. Then we repeat the above
reasoning for t = s+ 1 and ¢, instead of s and ¢. If (case 1) and (case 2), so =t and +; is
the first non cancelled + in o*. If (case 3), we repeat for £+ 1, and so on. This procedure

will terminates. [
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Next, we compare the southwest channel numbering on B with those on B. We keep

the notation u,io), u,(:) and sg. Define d~ on B by

d(i,u) ife=(1+1,u),
d”(c) = 1qd(c)—1 ifc=(i,j) for some j with s < d(c) < s, (7.2.3)

d(c) otherwise.

Similarly, let d’ be any proper numbering on B and define d'+ on B by

d'(i+ 1u) if ¢ = (i,u),
d(c)=Kd(c)+1 if c=(i,j) for some j with s < d'(c) < s}, (7.2.4)

d'(c) otherwise.

Lemma 7.2.3. d~,d'" is well defined proper numbering.

Proof. For d—, since +; is not cancelled, there is no —; as in the proof of Lemma 2.2.
And there is such sy also as in Lemma 2.2. Hence the definition of d~ is valid. Then it
is easy to see that the level set of d~ forms zig-zags satisfying the conditions of zig-zags
formed by a proper numbering.

For d'*, by similar reasoning, there is no +; and there is such sj. Then it is easy to
see that d'* is a proper numbering O]

Moreover, (d7)* = d. And if dy is another numbering on B such that dy(i,u) = 2 and
dy > d, then sg of ds is smaller than that of d, so d5 > d~.

Let C' = {-++ > Co >y *++ > @ = Co + (Mm,n) >uy -+ } be a channel of B with
co = (i,u) Let r > 0 be the maximal number such that cy,..., ¢, is in i-th row. Let
¢g = (i + 1,u). Note that the length r nW-chain between ¢ and ¢, has length at most
r, by the maximality of channel. With the signature rules, we conclude that there exists
is in ¢ + 1-th row. Therefore,

a chain ¢y >py €] > - >uw €, >y Crp1. With e, -+ ¢

C_:{"'>nw05 >nW"'>an,«_ >anr+1 >nW"'>anl—1 >anl_:Ca+(m,n) >nw"'}

is a channel of B.

Similarly, for a channel C’ of B, we may define C'* of B by
CH— — { < >ow Ci)+ >nw Cll > o CE—T‘-{-I >nu c;tr > o C;+ — 06++(m,n) > }
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CHAPTER 7. PROOFS

Note that we modify the cell before ¢ in C'* case.

In this case, + and — preserves ordering on channels, but there is gap between C' and
(C~)*. However, we always have (i,u) € CN(C~)" and (i + 1,u) € C"'N(C"")".

Together with subsection 2.1. The lemma 6.6 in the paper also hold for dual case:
d-=d

Let C,C" be the southwest channels of B and B. In this case, C'~ differs only by (i, u)
from C. Hence, C >,, C'" >, (C7)t = C so C = . Thus d- = d’ or equivalently
dt =d.

Even though d~ is modified several zig-zags from d, the set of inner and outer corners
are differ by one for each corner. More precisely, the inner corner (i,u) of zs of B moves

to (i + 1,u) and and outer corner (z,ug(l))) moves to (i + 1, ugé)) This amounts exactly

that f; moves a cell (i, ug?) of B* one row down. O

/

The remaining part of the proof follows from that (d%')" is the southwest channel

numbering on B , which can be proved in similar manner described in Section 7.1.3.
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