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Abstract

Aleksandrov-Bakelman-Pucci estimate for
nonlocal partial differential equation on

manifold

Jongmyeong Kim

Department of Mathematical Sciences

The Graduate School

Seoul National University

This thesis consists of three papers concerning nonlocal elliptic equations
on the manifold. In the first paper, we establish the Alexander-Bekelman-
Pucci estimate, which is the maximum principle, for fully nonlinear nonlocal
equations in a nondivergence form on the manifold with nonnegative sectional
curvature. Our approach is based on the control of normal map, and the direct
comparison from the sectional curvature condition. The second paper deals
with the ABP estimate on hyperbolic space. In hyperbolic space, the behav-
ior of the heat kernel is different from that on Euclidean space. Hence, in the
ABP estimate, there is nonhomogeneous behavior. The heart of the analysis
lies in capturing the qualitative property for the integral values related to the
jump kernel. From these ABP estimates, we obtain Krylov-Safonov Harnack
inequality. The third paper discusses the equivalent definitions of fractional
p-Laplacian on hyperbolic space. Especially, we establish Caffarelli’s exten-
sion problem. As a remark, we get the coefficient of fractional Laplacian
on hyperbolic space and the robustness of Harnack inequality and Hölder
regularity.

Key words: ABP estimate, manifold, nonlocal operator, hyperbolic space,
fractional Laplacian, extension problem
Student Number: 2016-20233
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Chapter 1

Introduction

Analyzing the property of the elliptic partial differential equation is a his-
torically important topic. Especially, Analysis for the nonlocal operator like
fractional Laplacian is a complex and notable subject in progress. On the
other hand, the elliptic partial differential equation on the manifold is also
a historical problem. There are great results on both elliptic divergent form
and nondivergent form in regularity theory. On an extension, we will con-
centrate on an analysis of nonlocal nondivergent elliptic operators on some
Riemannian manifolds through comparison methods.

In the first part of this thesis, we will concern with the interior regularity
of integro-differential operators on certain manifolds. To illustrate the issues,
let us explain the classical problem. Let Ω be an open and bounded subset in
Rn, and u ∈ C2(Ω)∩C(Ω) be a supersolution of Lu = aij(x)u(x) = f where
aij, f is continuous and f/D∗ ∈ Ln(Ω) for D∗ is the geometric mean of the
eigenvalues of aij. By area formula, matrix inequality, and the estimate of
measure of gradient mapping, we get the following maximum principle

sup
Ω
u− ≤ sup

∂Ω
u− +

∥∥∥∥f+

D∗

∥∥∥∥
Ln({u=Γu})

, (1.0.1)

where Γu = supL{L ≤ v in Ω, L an affine function} is the (convex) envelope
and {u = Γu} is the contact set. This is called Aleksandrov-Bakelman-Pucci
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CHAPTER 1. INTRODUCTION

maximum principle (Shortly, we will call it an ABP estimate from now on).
After that, we analyze the distribution of u roughly as follows.
Let u be a supersolution as before. There is universal constants ε, ε0 and C
such that if

u ≥ 0 in B2
√
n,

ˆ
Q3

inf u ≤ 1, ∥f∥Ln(B2
√
n)

≤ ε0,

there holds
|{u ≥ t} ∩Q1| ≤ Ct−ε for t > 0.

From this information, we eventually get the Krylov-Safonov Harnack in-
equality and Hölder regularity. Roughly speaking, for positive solution on
B1,

sup
B 1

2

u ≤ C(inf
B 1

2

u+ ∥f∥Ln(B1)),

and u ∈ Cα(B1) for some universal α ∈ (0, 1). In other words, there holds

|u(x)− u(y)| ≤ C|x− y|α(sup
B1

|u|+ ∥f∥Ln(B1) ∀x, y ∈ B 1
2
.

This type of theory naturally extends to the nondivergent type operator.
In this context, we establish Krylov-Safonov theory for nonlocal operators
on certain Riemannian manifolds on an extension.

Let me briefly review the history. In the 1960s, Aleksandrov [1], Bakel-
man [6] and Pucci [94], independently established a maximum principle for
linear elliptic equations in nondivergent form with bounded measurable coef-
ficients. Their results were crucial in the proof of the Krylov-Safonov Harnack
inequality and Hölder estimate for elliptic nondivergent linear operators with
bounded measurable coefficients [96]. Since these estimates for linear oper-
ators depend on ellipticity constants and the geometry of the domain, it is
naturally extended to the uniformly elliptic fully nonlinear equations; see
[18], [19] and the references therein. The main idea of the extension is that
one can consider the Pucci extremal operators and solution class so that
the viscosity solution in the class is represented by two inequalities of Pucci

2



CHAPTER 1. INTRODUCTION

extremal operators. Then the certain property of Pucci operator makes it
possible to generalize linear theory to fully nonlinear equations. There are
also other generalizations. For parabolic equation, see [83], [84], [103], [105].
For Lp viscosity solution, see [13], [35]. Other notable results are [11], [45],
[43], [44], [85]. Recently, there are also generalizations for degenerate or sin-
gular cases [36], [37], [63], [5].
On the other hand, on manifold, Cabré established ABP estimate and Krylov-
Safonov theory for nondivergent form on manifold with sectional curvature
bounded below by 0 [12]. In this paper, to overcome a missing concept of
the hyperplane, he suggested a generalized envelope that is derived from the
distance squared function. Also, the geometric comparison principle was an
important factor. Later, Wang and Zhang extended the ABP estimate on
the manifold with Ricci curvature bounded below by -κ [106]. There are also
other types of generalization for nondivergent type [74], [75], [77]. I would like
to mention that there is a famous Li and Yau estimate for divergent form
[88]. They used the logarithm of a solution to get a heat kernel estimate,
which easily leads to a parabolic and elliptic Harnack inequality.
For the regularity of fractional Laplacian or more generally, nonlocal integro-
differential operator, Caffarelli and Silvestre [15] first established ABP es-
timates for the nondivergent integro-differential operator. Due to the non-
locality, they couldn’t use integration to deal with matrix inequality terms.
Instead, they estimated a gradient of Γ on the annulus centered at the contact
point. Interestingly, since the information on annulus was a measure value
estimate, they didn’t simply sum up those on annuli. Instead, by using the
convexity(concavity) of an envelope, they established a gradient estimate on
a ball inside of the inner complement of the annulus. The distinctive feature
is that the forcing term appears as ∥f∥L∞ . Guillen and Schwab [60] took a
slightly different kernel and derived ABP estimates with not only ∥f∥L∞ but
also ∥f∥Ln . Recently, there were several improvements in this direction [81],
[82]. On the other hand, for divergent form, Kassmann proved in the spirit of
De Giorgi-Nash-Moser theory the Harnack inequality and Hölder estimate in

3



CHAPTER 1. INTRODUCTION

an appropriate form which included the nonlocality [67], [68]. Castro, Kuusi,
and Palatucci overcame nonlinearity and succeeded to achieve similar results
for fractional p Laplacian [40], [41]. There are also lots of improvements in
this direction [23], [22], [69], [73], [90].
For more general spaces, Banica, González, and Sáez established a singu-
lar integral definition of fractional Laplacian on hyperbolic space. They also
achieved Hölder estimates and extension problems. [7]. For sphere, Alonso-
Orán, Córdoba, and Martínez derived integral representation[3]. On the other
hand, in Dirichlet form theory, while searching for the heat kernel bounds,
Grigor’yan, Hu, and Hu derived Hölder estimate for the jump type kernel
in analytical method[57]. As a similar result, Chen, Kumagai, and Wang
achieved Harnack inequality while they used a more probabilistic method[28].
In chapter 2, We will deal with ABP estimate for nondivergent nonlocal
integro-differential operator, which is the main result of [72], on Rieman-
nian manifold with sectional curvature bounded below by 0 and some minor
assumptions. Although the nonlocality and nonsymmetric bring difficulties,
with rather strong comparison principles and smoothness of manifold, we can
achieve robust ABP estimate and Krylov-Safonov theory. In Chapter 3, We
will achieve similar results on hyperbolic space, which is the main result of
[70]. In hyperbolic space, as we mentioned before, there is a singular kernel
representation due to the Fourier transform. Interesting properties such as
inhomogeneity of scaling and exponential volume growth, which are closely
connected, make analysis hard. However, we can derive enough properties
such as the decaying property of integral values related to the jump kernel
to achieve regularity.
The second part deals with equivalent definition of fractional p Laplacian,
which will be the chapter 4 based on [71]. As the Laplcian operator can
be characterized by many different methods, the fractional Laplacian opera-
tor also has many equivalent definitions. In Euclidean space, such a result is
very well formulated in the survey paper [86]. Furthermore, del Teso, Gómez-
Castro, and Vázquez, despite nonlinearity, prove the equivalent definition of

4



CHAPTER 1. INTRODUCTION

fractional p Laplacian operator in 4 forms; via heat kernel, extension, Bochner
integral, and Balakrishnan integral[39]. In a similar context, we derive three
equivalent definitions of fractional p Laplacian on hyperbolic space.

5



Chapter 2

Harnack inequality for Nonlocal

operators on Manifolds with

nonnegative curvature

2.1 Introduction

This paper is concerned with the Harnack inequalities and Hölder estimates
for nonlocal equations on Riemannian manifolds with nonnegative curva-
ture. The Harnack inequalities and Hölder estimates for second order local
operators have been studied extensively on Riemannian manifolds. We re-
fer the reader to [108, 29, 97] for second order operators of divergence form
and [12, 74, 106, 75, 77] for second order operators of non-divergence form.
As nonlocal operators have attracted the attention, some of these results
have been extended to nonlocal operators in various contexts. For exam-
ple, the Harnack inequalities and Hölder estimates were established [28] in
the framework of Dirichlet form theory on metric measure spaces with the
volume doubling property, which include Riemannian manifolds with non-
negative curvature as a special case. Note that this result is appropriate for
linear nonlocal operators of divergence form.

The operators under consideration in this paper are nonlinear and of
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CHAPTER 2. HARNACK INEQUALITY FOR NONLOCAL
OPERATORS ON MANIFOLDS WITH NONNEGATIVE CURVATURE

non-divergence form. To the best of author’s knowledge, the Krylov–Safonov
Harnack inequalities for nonlocal operators were not available on Riemannian
manifolds, while they are well-known in the Euclidean spaces [15, 60]. The
aim of this work is to establish the Krylov–Safonov Harnack inequalities and
Hölder estimates for fully nonlinear nonlocal operators of non-divergence
form on Riemannian manifolds with nonnegative sectional curvatures. Since
the underlying space is not flat, we focus on how the curvatures affect the
regularity properties of solutions to the equations on manifolds.

2.1.1 Nonlocal operators on Riemannian manifolds

There are several ways of understanding nonlocal operators on the Euclidean
spaces—via infinitesimal generators of stochastic processes, semigroup and
heat kernels, the Dirichlet-to-Neumann map, or generators of Dirichlet forms;
each of which has been applied to obtain nonlocal operators on Rieman-
nian manifolds or more abstract spaces in different contexts. Applebaum and
Estrade [4] suggested the operators of the form

Lu(x) =

ˆ
TxM\{0}

(u(expx ξ)− u(x)) νx(dξ),

as infinitesimal generators of isotropic horizontal Lévy processes on Rieman-
nian manifold M with some symmetry assumption on it, where TxM is the
tangent space at x ∈ M , exp is the exponential map, and νx is the Lévy
measure.

On the other hand, Banica, González, and Sáez [7] provided the repre-
sentation of the fractional Laplacian

−(−∆Hn)su(x) = p.v.

ˆ
Hn

(u(z)− u(x))K (dHn(z, x)) dz (2.1.1)

on the hyperbolic spaces Hn with negative constant curvature, where p.v. de-
notes the Cauchy principal value, by using the Fourier transform [14]. See [7]
for the precise definition of the kernel K in (2.1.1). For more general compact
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OPERATORS ON MANIFOLDS WITH NONNEGATIVE CURVATURE

manifolds and non-compact manifolds with Ricci curvature and injectivity
radius bounded below, Alonso-Orán, Córdoba, and Martínez [3] provided an
integral representation of the fractional Laplace–Beltrami operator with an
error term using the well known formua

(−∆g)
su(x) =

ˆ ∞

0

(
e−t∆gu(x)− u(x)

) dt

t1+s
, s ∈ (0, 1,

and the heat kernel bounds. However, we do not take the operators in [7]
and [3] as our definition because we are going to consider operators in a
more specific form.

In the Dirichlet form theory, it is standard to assume that metric measure
space (M,d, µ) satisfies the volume doubling property. In this setting, the
fractional Laplacian-type Dirichlet form

E(u, v) =
¨

M×M\diag
(u(x)− u(z))(v(x)− v(z))J(x, z)µ(dx)µ(dz)

with

λ

µ(B(x, d(x, z)))d(x, z)2s
≤ J(x, z) ≤ Λ

µ(B(x, d(x, z)))d(x, z)2s
, 0 < λ ≤ Λ,

gives rise to the generator of the fractional Laplacian-type [28]. Motivated
by the fact that the Riemannian manifolds with nonnegative curvatures are
contained within this framework, we are going to modify this generator in
order to define non-divergence form operator.

Let (M, g) be a smooth, complete, connected n-dimensional Riemannian
manifold with nonnegative sectional curvatures. Let dx(z) = d(x, z) be the
Riemannian distance between two points x and z in M , and µg be the Rie-
mannian measure induced by g. The operator considered in this paper is
modeled on the linear operator of the form

Lu(x) = (2− 2s)p.v.

ˆ
M

u(z)− u(x)

µg(B(x, dx(z)))dx(z)2s
dV (z), (2.1.2)

8
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OPERATORS ON MANIFOLDS WITH NONNEGATIVE CURVATURE

where s ∈ (0, 1) is a constant. The choice of the factor (2 − 2s) in (2.1.2)
is now standard to obtain regularity estimates that are robust in the sense
that the constants in the estimates remain uniform as 2s approaches 2 (see
Section 2.1.2). Note that the operator above satisfies lims→1 Lu = ∆u as one
can consider rotationally symmetric measure.

To define nonlinear operators, let us consider a class L0 of linear operators
of the form

Lu(x) = p.v.

ˆ
M

(u(z)− u(x))νx(z) dV (z),

with density functions νx satisfying

νx(z) = νx(Tx(z)) whenever dx(z) < inj(x), (2.1.3)

where inj(x) is the injectivity radius of x and Tx : B(x, inj(x)) → B(x, inj(x))

is a map given by Tx(z) = expx(− exp−1
x (z)), and

λ
2− 2s

µg(B(x, dx(z)))dx(z)2s
≤ νx(z) ≤ Λ

2− 2s

µg(B(x, dx(z)))dx(z)2s
. (2.1.4)

Whenever we evaluate Lu at x, we split the integral as follows: for R < inj(x),

Lu(x) = p.v.

ˆ
BR(x)

(u(z)− u(x))νx(z) dV (z)

+

ˆ
M\BR(x)

(u(z)− u(x))νx(z) dV (z).

(2.1.5)

In contrast to the case of Euclidean spaces, the expression

Lu(x) =

ˆ
BR(x)

δ(u, x, z)νx(z) dV (z)

+

ˆ
M\BR(x)

(u(z)− u(x))νx(z) dV (z),

(2.1.6)

where δ(u, x, z) = (u(z)+u(Tx(z))−2u(x))/2 is the second order incremental
quotients, is not available in general because M is not a symmetric manifold.
Nevertheless, we will see in Lemma 2.2.3 that for L ∈ L0, (2.1.5) is well-
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defined when u is bounded in M and C2 in a neighborhood of x. Throughout
the paper this observation will be used frequently, especially for the squared
distance function d2x(z).

The extremal operators and elliptic operators are defined in the standard
way as follows. To impose ellipticity on operators, we define the maximal and
minimal operators by

M+
L0
u(x) = sup

L∈L0

Lu(x) and M−
L0
u(x) = inf

L∈L0

Lu(x).

We say that an operator I is elliptic with respect to L0 if

M−
L0
(u− v)(x) ≤ I(u, x)− I(v, x) ≤ M+

L0
(u− v)(x)

for every point x ∈ M and for all bounded functions u and v which are C2

near x.
We point out that the usual explicit expressions of extremal operators in

the Euclidean spaces

M+
L0
u(x) = (2− 2s)

ˆ
Rn

Λδ+(u, x, y)− λδ−(u, x, y)

ωn|y|n+2s
dy and

M−
L0
u(x) = (2− 2s)

ˆ
Rn

λδ+(u, x, y)− Λδ−(u, x, y)

ωn|y|n+2s
dy,

where ωn is the volume of the n-dimensional unit ball and δ(u, x, y) = (u(x+

y) + u(x − y) − 2u(x))/2, are not available on manifolds in general. Thus,
whenever we evaluate Lu or M±

L0
u at x, we have to split the integral as

(2.1.5) or (2.2.8) to compute each integral.

2.1.2 Main results

The main results are the Krylov–Safonov Harnack inequality and interior
Hölder estimates for fully nonlinear nonlocal operators of non-divergence
form on Riemannian manifolds with nonnegative sectional curvatures. Through-
out the paper we assume that (M, g) is a smooth, complete, connected Rie-

10
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mannian manifold with nonnegative sectional curvatures, satisfying the re-
verse volume doubling property (RVD) with constant a1 and the volume
comparability (Comp) with constant a2. See Section 2.2 for the assumptions
(RVD) and (Comp). Let us begin with the Krylov–Safonov Harnack inequal-
ity.

Theorem 2.1.1 (Harnack inequality). Let s0 ∈ (0, 1) and assume s ∈ [s0, 1).
For z0 ∈ M , let K = Kmax(B(z0, inj(z0))) be the supremum of the sectional
curvatures in B(z0, inj(z0)) and let R > 0 be such that 2R < inj(z0) ∧ π√

K
. If

u ∈ C2(B2R(z0)) ∩ L∞(M) is a nonnegative function on M satisfying

M−
L0
u ≤ C0 and M+

L0
u ≥ −C0 in B2R(z0),

then
sup

BR(z0)

u ≤ C

(
inf

BR(z0)
u+ C0R

2s

)
for some universal constant C > 0, depending only on n, λ, Λ, a1, a2, and
s0.

The next result is the interior Hölder estimate for fully nonlinear nonlocal
operators of non-divergence form. In contrast to the case of local operators,
it does not immediately follow from the Harnack inequality. In the sequel,
∥ · ∥′ denotes the non-dimensional norm.

Theorem 2.1.2 (Hölder estimates). Let s0 ∈ (0, 1) and assume s ∈ [s0, 1).
For z0 ∈ M ,let K = Kmax(B(z0, inj(z0))) and let R > 0 be such that 2R <

inj(z0) ∧ π√
K

. If u ∈ C2(B2R(z0)) ∩ L∞(M) is a function on M satisfying

M−
L0
u ≤ C0 and M+

L0
u ≥ −C0 in B2R(z0),

then u ∈ Cα(BR(z0)) and

∥u∥′
Cα(BR(z0))

≤ C
(
∥u∥L∞(M) + C0R

2s
)

for some universal constants α ∈ (0, 1) and C > 0, depending only on n, λ,

11
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Λ, a1, a2, and s0.

It is noticeable that the universal constants in Theorem 2.1.1 and The-
orem 2.1.2 do not depend on nearby curvature upper bound although they
depend on the lower bound 0. This means that, in particular, when M = Rn,
Theorem 2.1.1 and Theorem 2.1.2 provide the results on the Krylov–Safonov
Harnack inequality and Hölder estimates as in [15] without any restriction
on R. More generally, the restriction on R disappears when M is a manifold
with inj(M) = ∞. In this case, Theorem 2.1.1 extends the global Harnack
inequality for local operators [12] to nonlocal operators.

Another important feature of Theorem 2.1.1 and Theorem 2.1.2 is the ro-
bustness of the estimates. Since the universal constants in the results depend
only on s0, not on s ∈ (0, 1) itself, we could get the local Harnack inequality
and Hölder estimates for the second order local operators as limit s→ 1, so
this result gives unified estimates up to second order elliptic operators.

Let us make some remarks on the results. It would be the best if we get
ABP-type estimate with Ln-norm as Cabré proved in [12]. However, we will
establish the ABP estimate with Riemann sums of L∞-norm as Caffarelli
and Silvestre showed in the Euclidean space [15]. To the best of author’s
knowledge, the full ABP estimate with Ln-norm for fully nonlinear operators
are not available even in the Euclidean spaces. For the class of operators with
additional assumptions, Guillen and Schwab [60] provided the ABP estimates
using both Ln and L∞ norms in Euclidean spaces. For this type of estimate,
we believe it would be applicable to our case.

For curvature bound and imposed radius condition, we refer to Cabré’s
observation in the last paragraph of [12]. So, we used the injectivity radius
and imposed the condition 15R < inj(z0)∧ π√

K
, for K = Kmax(B(z0, inj(z0))),

on the radius of the ball. However, it might be more convenient to consider
a strongly convex region (or a strongly convexity radius) instead of the in-
jectivity radius: we call U ⊆M is strongly convex if every ball Bρ(x) ⊆ U is
convex. This is because our operators are nonlocal and we need to consider
the relation between nearby points. Nevertheless, we will use the injectivity

12
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radius because it is more general.
If we assume the global upper bound of the sectional curvature such

as Sect(g) < K on M , the radius condition would be reduced to 5R < π√
K

.
Moreover, the additional assumptions—the reverse volume doubling property
(RVD) and comparability of volumes (Comp)—on manifold are naturally
satisfied.

Since manifold is not symmetric space in general, a nonlocal antisymmet-
ric part in the operator appears naturally. Because it has no second order
incremental quotient of function, we cannot expect the integrability of op-
erators as usual. However, due to the smoothness of volume element which
exists inherently, we figure out the antisymmetric part has the same order as
the traditional symmetric part.

Moreover, we want to emphasize that we do not use affine functions and
cone technique as usual because affine functions with arbitrary directions do
not exist on manifold in general. Thus, we use the squared distance function
to solve this difficulty. Typically, when we control the gradient of the enve-
lope Γ (defined in Section 2.3) with the squared distance function, we might
consider the coarea formula as in [12]. However, since the order of differentia-
bility of nonlocal operators is strictly less than 2, we cannot simply use the
coarea formula. At this part, we will directly estimate gradient with Jacobi
fields.

Lastly, for further researches, we are expecting that we can get a global
Harnack inequality for restricted manifolds. In general, in this paper, we
could not stretch the radius of ball due to the injectivity issue. We are also
expecting that we could get similar regularity properties for nonlocal operator
with kernels of variable orders, which are studied in [76, 73, 8] on Euclidean
spaces.

2.1.3 Outline

This paper is organized as follows. In Section 2.2, we ensure integrability
of operators. We also bound second difference of squared distance function.

13
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Mainly we need this bound for gradient estimate of the solution. Further-
more, we introduce some definitions and collect some result on dyadic cubes
for the analysis on manifold. In Section 2.3, we introduce an envelope defined
by squared distance function and estimate its gradient so that we get a (weak
type) Aleksandrov–Bakelman–Pucci estimate. Section 2.4 is devoted to the
construction of a barrier function. In Section 2.5, Lε-estimate is established
by using the ABP estimate and the barrier function obtained in the previ-
ous sections. The proofs for the Harnack inequality and Hölder estimate are
provided in Section 2.6 and Section 2.7, respectively.

2.2 Preliminaries

This section is devoted to the basic knowledge on Riemannian geometry that
will be useful in the rest of the paper. For more details, the reader may
consult [66, 30, 104].

Let (M, g) be a smooth, complete manifold of dimension n. Let us denote
by R(ξ, η)ζ the curvature tensor, then the sectional curvature of the plane
determined by linearly independent tangent vectors ξ, η ∈ TxM is given by

Sect(ξ, η) =
g(R(ξ, η)ξ, η)

|ξ|2g|η|2g − g(ξ, η)2
.

Let dy(·) := d(·, y) be the distance function. We will see that the distance
squared function 1

2
d2y will play an important role in the regularity results.

Let us collect and study some useful properties of this function. First of all,
it is continuous in M and smooth in M \Cuty. For any x /∈ Cuty, the Gauss
lemma implies that

∇(d2y/2)(x) = − exp−1
x y.

Moreover, it is well-known that if K1 ≤ Sect ≤ K2 in Binj(y)(y) with K1 ≤ 0

14
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and K2 ≥ 0, then the Hessian of d2y/2 has upper and lower bounds

√
K2dy(x) cot

(√
K2dy(x)

)
|ξ|2g ≤ D2(d2y/2)(x)(ξ, ξ)

≤
√
−K1dy(x) coth

(√
−K1dy(x)

)
|ξ|2g,

(2.2.1)

for x ∈ Bρ(y) and ξ ∈ TxM , where ρ < π
2
√
K2

in case K2 > 0 and ρ < inj(y)

otherwise (see, for example, [66, Theorem 6.6.1]). Since we are assuming that
Sect ≥ 0, the bounds (2.2.1) read as

0 ≤
√
Kdy(x) cot

(√
Kdy(x)

)
|ξ|2g ≤ D2(d2y/2)(x)(ξ, ξ) ≤ |ξ|2g, (2.2.2)

where K = Kmax(Binj(y)(y)) is the supremum of the sectional curvatures in
Binj(y)(y). Using (2.2.2) and the mean value theorem for integrals, we obtain
the following lemma.

Lemma 2.2.1. For any y ∈ M and x ∈ Bρ(y), let ξ ∈ TxM be such that
expx(sξ) ∈ Bρ(y) for all s ∈ (−1, 1), where

ρ <

 π
2
√
K

if K := Kmax(Binj(y)(y)) > 0,

inj(y) if K = 0.
(2.2.3)

Then,

0 ≤ (1− t)d2y(expx(tξ)) + td2y(expx((1− t)(−ξ)))− d2y(x) ≤ t(1− t)|ξ|2g

for any t ∈ (0, 1).

Let us now recall Gromov’s theorem in a manifold with a nonnegative
Ricci curvature. Since we assume that Sect ≥ 0, the Ricci curvature is also
nonnegative. The Gromov’s theorem says that

µg(B(x,R))

|BR|
is nonincreasing in R

15
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for any x ∈ M , where |BR| is the volume in Rn of a ball of radius R. It is
known that the ratio approaches 1 as R goes to zero, so together with the
monotonicity it implies that µg(B(x,R)) ≤ |BR|. Moreover, the Gromov’s
theorem also gives rise to the volume doubling property

µg(B(x,R))

µg(B(x, r))
≤
(
R

r

)n

, 0 < r ≤ R. (VD)

The volume doubling property provides the following integrability of kernels
νx.

Lemma 2.2.2. Let s0 ∈ (0, 1) and assume s ∈ [s0, 1). Then,

(2− 2s)

ˆ
M

(
R2 ∧ dx(z)2

) dV (z)

µg(B(x, dx(z)))dx(z)2s
≤ CR2−2s (2.2.4)

for some constant C = C(n, s0) > 0.

Proof. By the volume doubling property (3.2.8), we have

ˆ
BR(x)

(2− 2s)dx(z)
2−2s

µg(B(x, dx(z)))
dV (z)

=
∞∑
k=0

ˆ
B(x,2−kR)\B(x,2−(k+1)R)

(2− 2s)dx(z)
2−2s

µg(B(x, dx(z)))
dV (z)

≤
∞∑
k=0

µg(B(x, 2−kR))

µg(B(x, 2−(k+1)R))
(2− 2s)2−k(2−2s)R2−2s

≤ 2n
2− 2s

1− 2−(2−2s)
R2−2s ≤ C(n)R2−2s,

(2.2.5)

where we observed in the last inequality that the function t/(1 − 2−t) is
bounded in [0, 2] from above. Similarly, by the volume doubling property
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(3.2.8) again, we obtain

ˆ
M\BR(x)

(2− 2s)R2

µ(B(x, dx(z)))dx(z)2s
dV (z)

=
∞∑
k=0

ˆ
B(x,2k+1R)\B(x,2kR)

(2− 2s)R2

µ(B(x, dx(z)))dx(z)2s
dV (z)

≤
∞∑
k=0

µg(B(x, 2k+1R))

µg(B(x, 2kR))
(2− 2s)2−2ksR2−2s

≤ 2n
2− 2s

1− 2−2s
R2−2s ≤ 2n+1

1− 2−s0
R2−2s.

(2.2.6)

Therefore, (2.2.4) follows by combining the inequalities (2.2.5) and (2.2.6).

Using Lemma 2.2.2, we show that Lu is well-defined.

Lemma 2.2.3. Let s0 ∈ (0, 1) and assume s ∈ [s0, 1). For x ∈ M , let
K be the supremum of the sectional curvatures in Binj(x)(x) and let 2R <

inj(x) ∧ π√
K

. Then, for L ∈ L0 and for u ∈ C2(BR(x)) ∩ L∞(M),

|Lu(x)| ≤ CΛ
(
∥u∥′

C2(BR(x))
+ ∥u∥L∞(M)

)
R−2s, (2.2.7)

where C = C(n, s0) > 0 is a universal constant. Therefore, the value of Lu
at x is well-defined.

Proof. By assuming R sufficiently small, we may assume that u is C2(BR(x))

and bounded in M .
Let us decompose the measure into the symmetric and antisymmetric

parts with respect to x, that is, dV (z) = dVs(z) + dVa(z), where dVs(z) :=
1
2
(dV (z)+dV (Tx(z))) and dVa(z) :=

1
2
(dV (z)−dV (Tx(z))). Then, for L ∈ L0
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we have

Lu(x) = (2− 2s)

ˆ
BR(x)

δ(u, x, z)νx(z) dVs(z)

+ (2− 2s)

ˆ
BR(x)

(u(z)− u(x))νx(z) dVa(z)

+ (2− 2s)

ˆ
M\BR(x)

(u(z)− u(x))νx(z) dV (z) =: I1 + I2 + I3.

(2.2.8)

We may apply Lemma 2.2.2 for dVs and dV to obtain |I1| ≤ CΛ∥u∥′
C2(BR(x))

R−2s

and |I3| ≤ CΛ∥u∥L∞(M)R
−2s, respectively. For I2, we observe that

|I2|

≤ Λ(2− 2s)∥u∥L∞(BR)

ˆ
BR(x)

1

µg(B(x, dx(z)))dx(z)2s
|dVa|(z)

≤ Λ(2− 2s)∥u∥L∞(BR)

ˆ R

0

ˆ
∂B1

1

µg∗(B(0, t))t2s

(
tn−1 −

(
sin(

√
Kt)√
K

)n−1)
dv dt,

where g∗ is the induced metric. Note that the inequalities

tn−1 −
(
sin(

√
Kt)√
K

)n−1

≤ n− 1

3!
(
√
Kt)2tn−1, t

√
K ≤

√
6,

and

t ≤ π

2

sin(
√
Kt)√
K

, t
√
K ≤ π

2
,

can be applied to obtain that

tn−1 −
(
sin(

√
Kt)√
K

)n−1

≤ CKt2
(
sin(

√
Kt)√
K

)n−1

,

since we have assumed that 2R < π/
√
K. Therefore,

|I2| ≤ CΛ(2− 2s)∥u∥L∞(BR)

ˆ
BR(x)

Kd2x(z)

µg(B(x, dx(z)))dx(z)2s
dV (z).
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By Lemma 2.2.2, we arrive at |I2| ≤ CΛ∥u∥L∞(BR)KR
2−2s. Again, by using

2R < π/
√
K,

|I2| ≤ CΛ∥u∥∞R−2s. (2.2.9)

The estimate (2.2.9) together with estimates for I1 and I3 finishes the proof.

Here are two assumptions on manifold we are going to use throughout
the paper.

• (Reversed volume doubling property) Let us assume that there is a
constant a1 ∈ (0, 1] such that

µg(BR(x))

µg(Br(x))
≥ a1

(
R

r

)n

, 0 < r ≤ R < inj(x). (RVD)

• (Comparability of volumes of balls with different centers) Let us assume
that there is a constant a2 ≥ 1 such that

a−1
2 ≤ µg(BR(x1))

µg(BR(x2))
≤ a2, 0 < R < inj(x1) ∧ inj(x2). (Comp)

Let us close this section with the following generalization of Euclidean
dyadic cubes that will be used in the decomposition of the contact set and
in the Calderón–Zygmund technique.

Theorem 2.2.4 (Christ [31]). There is a countable collection D := {Qj
α ⊂

M : j ∈ Z, α ∈ Ij} of open sets and constants c1, c2 > 0 (with 2c1 ≤ c2), and
δ0 ∈ (0, 1), depending only on n, such that

(i) µ(M \ ∪αQ
j
α) = 0 for each j ∈ Z,

(ii) if i ≥ j, then either Qi
β ⊂ Qj

α or Qi
β ∩Qj

α = ∅,

(iii) for each (j, α) and each i < j, there is a unique β such that Qj
α ⊂ Qi

β,

(iv) diam(Qj
α) ≤ c2δ

j
0, and

(v) each Qj
α contains some ball B(zjα, c1δ

j
0).
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2.3 Discrete ABP-type estimates

We begin with a discrete version of the ABP-type estimate which will play
a key role in the estimates of sub-level sets of u in Section 2.5. Cabré sug-
gested in [12] the use of distance squared functions instead of affine functions
as touching functions due to the fact that there is no non-constant affine
functions in general. This leads us to the smooth map

y = expx∇(R2u)(x). (2.3.1)

That is, if u is a smooth function satisfying u ≥ 0 inM\B5R and infB2R
u ≤ 1,

then for any point y ∈ BR, the minimum of the function R2u+ 1
2
d2y in B5R is

achieved at some point x ∈ B5R, leading us to the smooth map (2.3.1). For
the second order operators, the Jacobian of this smooth map is controlled
by the determinant of D2u, which is in turn controlled by f through the
equations. However, since nonlocal operators have order strictly less than
two, we cannot go through the determinant of D2u.

Motivated by the idea of proof of the discrete ABP estimates in [15],
we therefore find a small ring around each contact point, in which u stays
quadratically close to the envelope. The main difference is that we need to
construct the envelope using the distance squared functions instead of affine
functions. For each y ∈ BR, there is a unique paraboloid

Py(z) = cy −
1

2R2
dy(z)

2

that touches u from below, with a contact point x ∈ B5R. We define the
envelope Γ of u by

Γ(z) = sup
y∈BR

Py(z),

and the contact set A = {x ∈ B5R : u(x) = Γ(x)}. In the sequel, let us fix
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the universal constants

ρ1 = 2

(
1

a1

)1/n

∨ 1

δ0
> 1 and ρ0 <

2c1
(3 + 4/ρ1)c2

δ0 < 1, (2.3.2)

where c1, c2, and δ0 are constants, depending only on n, in Theorem 2.2.4,
and a1 is the constant in the reverse volume doubling property (RVD). This
section is devoted to the following nonlocal ABP-type estimate on a Rie-
mannian manifold with nonnegative sectional curvature that generalizes the
result in [12]. Recall that D is a family of dyadic cubes in Theorem 2.2.4.

Lemma 2.3.1. Let s0 ∈ (0, 1) and assume s ∈ [s0, 1). For z0 ∈ M , let K
be the supremum of the sectional curvatures in Binj(z0)(z0) and let 15R <

inj(z0) ∧ π√
K

. Let u ∈ C2(B5R(z0)) ∩ L∞(M) be a function on M satisfying
u ≥ 0 in M \ B5R(z0) and infB2R(z0) u ≤ 1, and let Γ be the envelope of u. If
M−

L0
u ≤ f in B5R(z0), then

µg(BR(z0)) ≤ C
∑
D1

(
Λ +R2smax

Q
j
α

f

)n

+

µg(Q
j
α), (2.3.3)

where D1 = {Qj
α} is a finite subcollection of D of dyadic cubes, with diam(Qj

α) ≤
ρ0ρ

−1/(2−2s)
1 R, that intersect with the contact set A and satisfy A ⊂ ∪jQ

j

α.
The constant C depends only on n, λ, a1, a2, and s0.

It is known [60] that the estimates (2.3.3) with the Riemann sums in the
right hand side replaced by ∥Λ + f∥Ln(A) fails to hold even in the case of
the Euclidean space. Instead, as in [15], the Riemann sums of Λ+ f over the
set ∪jQ

j

α need to be considered. Thus, we need information not only on the
contact set, but also on ∪jQ

j

α \ A. The map (2.3.1) is not appropriate as a
normal map since u and Γ do not coincide outside the contact set. Instead, we
will make use of the map ϕ, which assigns each point x ∈M the vertex point
y of the paraboloid Py, where Py is some paraboloid such that Γ(x) = Py(x).
Note that the map ϕ may be multivalued since Py may not be unique.

By using the map ϕ, we prove the following discrete ABP-type estimates.
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Lemma 2.3.2. Assume the same assumptions as in Lemma 2.3.1. There
is a finite subcollection D1 ⊂ D of dyadic cubes Qj

α, with diameters dj,α ≤
ρ0ρ

−1/(2−2s)
1 R, such that the following holds:

(i) Any two different dyadic cubes in D1 do not intersect.

(ii) A ⊂
⋃

D1
Q

j

α.

(iii) µg(ϕ(Q
j

α)) ≤ C
(
Λ +R2s max

Q
j
α
f
)n
+
µg(Q

j
α).

(iv) γµg(Q
j
α)

≤ µg

(
B(zjα, (1 + 4ρ1)c2δ

j
0) ∩ {u ≤ Γ + CR−2(Λ +R2s max

Q
j
α
f)+d

2
j,α}
)
.

The constants C > 0 and γ > 0 depend only on n, λ, a1, a2, and s0.

It is easy to see that Lemma 2.3.1 follows from Lemma 2.3.2. Indeed, since
we have tested all distance squared function centered on BR, we have BR ⊂
ϕ(A). Hence, for the family D1 of dyadic cubes constructed in Lemma 2.3.2
we obtain

µg(BR) ≤ µg(ϕ(A)) ≤
∑
D1

µg(ϕ(Q
j

α)) ≤ C
∑
D1

(
Λ +R2s max

Q
j
α

f

)n

+

µg(Q
j
α).

We postpone the proof of Lemma 2.3.2 until the end of this section because
we need a series of lemmas in order to prove it.

The next lemma finds a ring around a contact point, where u is quadrati-
cally close to the paraboloid in a large portion of the ring. Note that if x is a
contact point, then Γ is touched by u from above and by some paraboloid Py

from below at x, which shows that the paraboloid Py is uniquely determined
and Γ is differentiable at x. Moreover, in this case, we have

y = ϕ(x) = expx∇(R2Γ)(x) = expx∇(R2u)(x),

and hence ϕ(x) is also uniquely determined.
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Lemma 2.3.3. Assume the same assumptions as in Lemma 2.3.1, and let
rk = ρ0ρ

−1/(2−2s)−k
1 R. Then, there exists a universal constant C0 > 0, de-

pending only on n, λ, a1, and s0, such that for any x ∈ A and any M0 > 0,
there is an integer k ≥ 0 such that

µg(Gk) ≤
C0

M0

(
Λ +R2sf(x)

)
+
µg(Rk), (2.3.4)

where Rk = B(x, rk)\B(x, rk+1), Gk = {z ∈ Rk : u(z) > Py(z)+M0(rk/R)
2},

and y = ϕ(x).

Proof. Let x ∈ A. By [107], we have

inj(x) ≥ (inj(z0) ∧ conj(x))− d(x, z0).

Using inj(z0) > 15R, d(x, z0) < 5R, and

conj(x) ≥ π√
K

∧ (inj(z0)− d(x, z0)) > 10R,

we obtain that
inj(x) > 5R. (2.3.5)

Let us compute M−
L0
u(x) = infL∈L0(I1 + I2 + I3), where

I1 =

ˆ
BR(x)∪B5R(z0)

(
u(z) +

1

2R2
d2y(z)−

(
u(x) +

1

2R2
d2y(x)

))
νx(z) dV (z),

I2 = −
ˆ
BR(x)∪B5R(z0)

(
1

2R2
d2y(z)−

1

2R2
d2y(x)

)
νx(z) dV (z), and

I3 =

ˆ
M\(BR(x)∪B5R(z0))

(u(z)− u(x))νx(z) dV (z).

By the fact (2.3.5), the symmetry (2.1.3) of density functions νx(z), Lemma 2.2.1,
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and Lemma 2.2.3, we have

I2 =− 1

R2

ˆ
BR(x)

δ(d2y/2, x, z)νx(z) dVs(z)

− 1

2R2

ˆ
BR(x)

(
d2y(z)− d2y(x)

)
νx(z) dVa(z)

− 1

2R2

ˆ
B5R(z0)\BR(x)

(
d2y(z)− d2y(x)

)
νx(z) dV (z)

≥− CΛR−2s,

where C = C(n, s0) is some universal constant.
On the other hand, we know that u(x) ≤ u(x) + 1

2R2d
2
y(x) ≤ infB2R

(u +
1

2R2d
2
y) ≤ 11/2 < 6. This fact together with the assumption that u ≥ 0 in

M \B5R(z0) leads us to

I3 ≥ −
ˆ
M\BR(x)

6Λ(2− 2s)

µg(B(x, dx(z)))dx(z)2s
dV (z) ≥ −CΛR−2s

by the similar argument.
Let us now estimate I1. Since the contact point x minimizes the function

u+ 1
2R2d

2
y, the integrand in I1 is nonnegative. Thus, we have

I1 ≥ λ(2− 2s)
∞∑
k=0

ˆ
Gk

u(z) + 1
2R2d

2
y(z)−

(
u(x) + 1

2R2d
2
y(x)

)
µg(B(x, dx(z)))dx(z)2s

dV (z).

Let us assume to the contrary that (2.3.4) does not hold for all k ≥ 0, that
is,

µg(Gk) >
C0

M0

(Λ +R2sf(x))+µg(Rk) for all k ≥ 0, (2.3.6)

for some C0 > 0 that will be chosen at the end of the proof. If z ∈ Gk, then
u(z) + 1

2R2d
2
y(z) −

(
u(x) + 1

2R2d
2
y(x)

)
≥ M0(rk/R)

2. Thus, using (2.3.6) and
the reverse volume doubling property (RVD), we obtain the lower bound of
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I1 as

I1 ≥ λ(2− 2s)C0

∞∑
k=0

(rk/R)
2

µg(B(x, rk))r2sk

(
Λ +R2sf(x)

)
+
µg(Rk)

= λ
2− 2s

ρ1
C0

∞∑
k=0

ρ2−2s
0 ρ

−k(2−2s)
1 R−2s

(
1− µg(B(x, rk+1))

µg(B(x, rk))

)(
Λ +R2sf(x)

)
+

≥ λ
ρ20
ρ1
C0

2− 2s

1− ρ
−(2−2s)
1

(
1− 1

a1ρn1

)(
ΛR−2s + f(x)

)
+
.

Recalling (2.3.2) and observing that the function t/(1−ρ−t
1 ) is bounded away

from 0 in [0, 2], we arrive at

I1 ≥ c1C0

(
ΛR−2s + f(x)

)
+
,

where c1 = c1(n, λ, a1) > 0.
We have obtained that

f(x) ≥ M−
L0
u(x) ≥ inf

L∈L0

(I1 + I2 + I3) ≥ c1C0

(
ΛR−2s + f(x)

)
+
− CΛR−2s.

Therefore, by taking C0 sufficiently large, we arrive at a contradiction.

The next lemma shows that the function Γ − Py is −R−2-convex in the
sense of second order incremental quotients.

Lemma 2.3.4. Let x ∈ A, y ∈ ϕ(x), K = Kmax(Binj(y)(y)), and let ρ > 0

satisfy (2.2.3). For z ∈ Bρ(y), let ξ ∈ TzM be such that expz(sξ) ∈ Bρ(y) for
all s ∈ (−1, 1). Then,

(Γ− Py)(z) ≤ (1− t)(Γ− Py)(z1) + t(Γ− Py)(z2) +
1

2R2
t(1− t)|ξ|2g (2.3.7)

for all t ∈ (0, 1), where z1 = expz(tξ) and z2 = expz((1− t)(−ξ)).

Proof. By the definition of Γ, there is a paraboloid P∗ := Py∗ with some point
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y∗ ∈ BR, such that Γ(z) = P∗(z). Then we have

(Γ− P∗)(z) = 0 ≤ (1− t)(Γ− P∗)(z1) + t(Γ− P∗)(z2),

and hence

(Γ− Py)(z) ≤ (1− t)(Γ− Py)(z1) + t(Γ− Py)(z2)

− ((1− t)P∗(z1) + tP∗(z2)− P∗(z))

+ ((1− t)Py(z1) + tPy(z2)− Py(z)) .

(2.3.8)

Using Lemma 2.2.1, we obtain

− ((1− t)P∗(z1) + tP∗(z2)− P∗(z)) =
1

2R2

(
(1− t)d2y∗(z1) + td2y∗(z2)− d2y∗(z)

)
≤ 1

2R2
t(1− t)|ξ|2g

(2.3.9)

and

(1−t)Py(z1)+tPy(z2)−Py(z) = − 1

2R2

(
(1− t)d2y(z1) + td2y(z2)− d2y(z)

)
≤ 0.

(2.3.10)
Therefore, (2.3.7) follows from (2.3.8), (2.3.9), and (2.3.10).

By means of Lemma 2.3.3 and Lemma 2.3.4, we will show that in a small
ball near a contact point the envelope is captured by two paraboloids that are
quadratically close to each other. Recall that the convex envelope constructed
by affine functions in the case of Euclidean spaces [15] is captured by two
affine planes. The idea in [15] is to carry information from the “good ring"
to the ball enclosed by the ring, by using the convexity of the function Γ. In
our setting, we use −R−2-convexity of the function Γ− Py instead.

Lemma 2.3.5. Assume the same assumptions as in Lemma 2.3.1. Let x ∈ A,
y = ϕ(x), and let r = rk be the radius in Lemma 2.3.3. There is a small
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constant ε0 = ε0(n) ∈ (0, 1) such that if

µg({z ∈ Br(x) \Br/2(x) : Γ(z) > Py(z) + h}) ≤ ε0µg(Br(x) \Br/2(x)),

(2.3.11)
then

Γ(z) ≤ Py(z) + h+
1

2

( r
R

)2
for all z ∈ Br/2(x).

Proof. Let us fix z ∈ Br/2(x) and claim that there are two points w1, w2 ∈
Br(x)\Br/2(x) such that three points w1, z, and w2 are joined by a geodesic,
and that

Γ(wi) ≤ Py(wi) + h, i = 1, 2. (2.3.12)

Once we find such points, we may write w1 = expz(tξ) and w2 = expz((1 −
t)(−ξ)) for some ξ ∈ TzM with |ξ|g being the length of the line segment
between w1 and w2, and t ∈ (0, 1). Then, we have |ξ|g ≤ 2r and t(1−t) ≤ 1/4.
Thus, by Lemma 2.3.4 and (2.3.12), we obtain that

(Γ− Py)(z) ≤ h+
1

2R2
t(1− t)|ξ|2g ≤ h+

1

2

( r
R

)2
,

finishing the proof.
To prove the claim, we first extend the line segment between x and z in

both directions to find two points z1 and z2 on ∂B3r/4(x). We call the farther
one from z as z1 and the closer one from z as z2. Let D = {z : Γ(z) ≤
Py(z) + h}, then it follows from (2.3.11) and (3.2.8) that

µg(Br/8(z1) ∩Dc) ≤ µg((Br(x) \Br/2(x)) ∩Dc)

≤ ε0µg(Br(x) \Br/2(x))

≤ ε0µg(B2r(z1)) ≤ ε016
nµg(Br/8(z1)).

Assuming ε0 < 2−4n−1, we obtain

µg(D ∩Br/8(z1)) ≥
1

2
µg(Br/8(z1)). (2.3.13)
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Let us write d = d(z, x) ∈ [0, r/2) and define a map F = expz ◦T ◦ exp−1
z :

Binj(z)(z) →M , where T : TzM → TzM is a linear map given by

T (ξ) = −
3r
4
− d

3r
4
+ d

ξ.

By [107], we know that inj(z) ≥ (inj(z0) ∧ conj(z))− d(z, z0). It follows from
inj(z0) > 15R, d(z, z0) ≤ d(z, x) + d(x, z0) < r/2 + 5R, and

conj(z) ≥ π√
K

∧ (inj(z0)− d(z, z0)) ≥ 10R− r/2,

that inj(z) ≥ 5R−r. Let us recall that we have r = rk = ρ0ρ
−1/(2−2s)−k
1 R < R

from the choice (2.3.2). Thus, we obtain inj(z) > 4r, and hence F is well-
defined in Br/8(z1) ⊂ Binj(z)(z).

What we only need to show is that (Br(x)\Br/2(x))∩D∩F (D∩Br/8(z1))

is not empty. Let us assume to the contrary that

F (D ∩Br/8(z1)) ⊂ (Br(x) \Br/2(x)) ∩Dc (2.3.14)

and find a contradiction by estimating the volume change by F . Let D1 =

exp−1
z (D ∩ Br/8(z1)), D2 = T (D1), and D3 = expz(D2). Due to the lower

bound of curvature, we estimate

µg(D ∩Br/8(z1)) =

¨
D1

det(D expz)(tv)t
n−1 dv dt ≤

¨
D1

tn−1 dv dt = |D1|.

(2.3.15)
by means of the polar coordinates (see, for instance, [66]). Since d ∈ [0, r/2),
we have

|D2| =
( 3r

4
− d

3r
4
+ d

)n

|D1| ≥ 5−n|D1|. (2.3.16)

Moreover, since the curvature in D3 is bounded from above by Kmax(D3),
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which is less than or equal to K = Kmax(Binj(z0)(z0)), we obtain

µg(D3) =

¨
D2

det(D expz)(tv)t
n−1 dv dt ≥

¨
D2

(
sin(

√
Kt)√
Kt

)n−1

tn−1 dv dt.

Note that the function sin(
√
Kt)/(

√
Kt) is nonnegative and decreasing in

(0, π√
K
]. If (t, v) ∈ D2, then

t ≤
3r
4
− d

3r
4
+ d

(
7r

8
+ d

)
≤ 3r

2
<

3R

2
<

π

10
√
K
,

and hence

µg(D3) ≥
(
sin π

10
π
10

)n−1

|D2|. (2.3.17)

Combining (2.3.13) and (2.3.15)–(2.3.17), we have µg(Br/8(z1)) ≤ C(n)µg(D3).
Moreover, by using (2.3.14), (2.3.11), and (3.2.8), we obtain

µg(Br/8(z1)) ≤ Cµg((Br(x) \Br/2(x)) ∩Dc)

≤ Cε0µg(Br(x) \Br/2(x))

≤ Cε0µg(B2r(z1)) ≤ 16nCε0µg(Br/8(z1)).

Therefore, we arrive at a contradiction by taking ε0 < 16−nC−1.

The flatness of Γ in a small region, obtained in Lemma 2.3.5, allows us
to control the gradient of Γ in a smaller region, where the gradient of Γ is
understood as the gradient of touching paraboloid. This is done by estimating
the image of the map ϕ.

Lemma 2.3.6. Assume the same assumptions as in Lemma 2.3.3, and let
ε0 be the constant in Lemma 2.3.5. For any x ∈ A there is an r = rk ≤ r0

such that

µg

({
z ∈ Rk : u(z) > Py(z) + C

(
Λ +R2sf(x)

)
+
(rk/R)

2
})

≤ ε0µg(Rk)

(2.3.18)
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and
µg

(
ϕ
(
Br/4(x)

))
≤ C

(
Λ +R2sf(x)

)n
+
µg(Br/4(x)), (2.3.19)

where C > 0 is a universal constant depending only on n, λ, a1, a2, and s0.

Proof. Let x ∈ A and y = ϕ(x). By applying Lemma 2.3.3 to u with M0 =
C0

ε0
(Λ +R2sf(x))+, we find r = rk ≤ r0 such that (2.3.18) holds. Moreover,

since Γ ≤ u, we have

µg

({
z ∈ Rk : Γ(z) > Py(z) + C

(
Λ +R2sf(x)

)
+
(rk/R)

2
})

≤ ε0µg(Rk).

Thus, Lemma 2.3.5 shows that

Py(z) ≤ Γ(z) ≤ Py(z) + C
(
Λ +R2sf(x)

)
+

( r
R

)2
(2.3.20)

for all z ∈ Br/2(x).
We first claim that there is a constant C1 > 0 such that

|∇Py∗(z)−∇Py(z)|g(z) ≤
C1

R2

(
Λ +R2sf(x)

)
+
r (2.3.21)

for all z ∈ Br/4(x) and y∗ ∈ ϕ(z). It is enough to show that∣∣∣∣ ddt
∣∣∣∣
t=0

(Py∗ − Py) (γ(t))

∣∣∣∣ ≤ C1

R2

(
Λ +R2sf(x)

)
+
r (2.3.22)

for all geodesics γ, with unit speed, starting from γ(0) = z. Suppose that
there is a geodesic γ such that (2.3.22) does not hold. We may assume that

C1

R2

(
Λ +R2sf(x)

)
+
r ≤ d

dt

∣∣∣∣
t=0

(Py∗ − Py) (γ(t)),

by considering γ̃(t) = γ(−t) instead of γ(t) if necessary. Let ε > 0, then there
is δ > 0 such that if |t| < δ, we have

C1

R2

(
Λ +R2sf(x)

)
+
r−ε ≤ (Py∗ − Py)(γ(t))− (Py∗ − Py)(γ(0))

t
≤ h(t)− h(0)

t
,

(2.3.23)
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where h(t) = (Γ − Py)(γ(t)). Let T > 0 be the first time when γ reaches
the boundary of B3r/8(x), namely, γ(T ) ∈ ∂B3r/8(x). Let N be the least
integer not smaller than T/δ, and let 0 = t0 < t1 < · · · < tN = T be equally
distributed times. Then we have ti+1 − ti = T/N ≤ δ. We observe that
Lemma 2.3.4 shows

h(ti)− h(ti−1)

ti − ti−1

≤ h(ti+1)− h(ti)

ti+1 − ti
+

1

2R2
(ti+1 − ti−1), i = 1, 2, · · · , N − 1.

(2.3.24)
Thus, it follows from (2.3.23) and (2.3.24) that

C1

R2

(
Λ +R2sf(x)

)
+
r − ε ≤ h(t1)− h(t0)

T/N
≤ h(t2)− h(t1)

T/N
+

1

2R2

2T

N

≤ · · · ≤ h(tN)− h(tN−1)

T/N
+

1

2R2

2T

N
(N − 1).

Therefore, we obtain that

N

(
C1

R2

(
Λ +R2sf(x)

)
+
r − ε

)
≤ h(tN)− h(t0)

T/N
+

1

2R2

2T

N

N(N − 1)

2
.

Since γ has a unit speed, we have r/8 < T < r, and hence

C1

R2

(
Λ +R2sf(x)

)
+
r − ε

≤ (Γ− Py)(γ(T ))− (Γ− Py)(z)

r/8
+

r

2R2
≤ (Γ− Py)(γ(T ))

r/8
+

r

2R2
.

Recalling that ε was arbitrary, we have

C1

8

(
Λ +R2sf(x)

)
+

( r
R

)2
− r2

16R2
≤ (Γ− Py)(γ(T )). (2.3.25)

Since γ(T ) ∈ ∂B3r/8(x) ⊂ Br/2(x), the inequality (2.3.25) with sufficiently
large constant C1 > 0 contradicts to (2.3.20). Therefore, we have proved the
claim (2.3.21).
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Let us next prove (2.3.19) using (2.3.21). It is enough to show that

ϕ
(
B(x, r/4)

)
⊂ B

(
ϕ(x), C(Λ +R2sf(x))+r

)
. (2.3.26)

Indeed, once (2.3.26) is proved, then by (Comp) and (3.2.8) (or (RVD)) we
have

µg

(
ϕ
(
B(x, r/4)

))
≤ µg

(
B(ϕ(x), C(Λ +R2sf(x))+r)

)
≤ C

(
Λ +R2sf(x)

)n
+
µg(B(x, r/4)).

To verify (2.3.26), let us fix z ∈ B(x, r/4) and y∗ ∈ ϕ(z). Then we know from
(2.3.21) that

∣∣exp−1
z y∗ − exp−1

z y
∣∣
g(z)

= R2|∇Py∗(z)−∇Py(z)|g(z) ≤ C1

(
Λ +R2sf(x)

)
+
r.

Thus, it only remains to show that

d(y∗, y) ≤
∣∣exp−1

z y∗ − exp−1
z y

∣∣
g(z)

. (2.3.27)

Let ξ1 = exp−1
z y∗ and ξ2 = exp−1

z y. Let us consider a family of geodesics

γ(s, t) = expz(t(ξ1 + s(ξ2 − ξ1))),

and the Jacobi field J along γ. Then, by [53, Equation (1.9)] (or see, e.g.
[66]), we have

|J(1)|g(y∗) ≤ |J ′(0)|g(z) = |ξ2 − ξ1|g(z).

Therefore, (2.3.27) follows by considering the curve s 7→ γ(s, 1) and observing
that

d(y∗, y) ≤
ˆ 1

0

|γ′(s, 1)|g(y∗) ds ≤
ˆ 1

0

|ξ2 − ξ1|g(z) ds = |ξ2 − ξ1|g(z).

We have proved (2.3.27), from which we deduce (2.3.26).
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We are now ready to prove Lemma 2.3.2 by using the previous lemmas
and the dyadic cubes in Theorem 2.2.4.

Proof of Lemma 2.3.2. In order to construct such a family, we are going to
use Theorem 2.2.4. Let us first fix the smallest integer N ∈ Z such that
c2δ

N
0 ≤ r0. Then there are finitely many dyadic cubes QN

α of generation N

such that QN

α ∩ A ̸= ∅ and A ⊂ ∪αQ
N

α . Whenever a dyadic cube QN
α does

not satisfy (iii) and (iv), we consider its successors QN+1
β ⊂ QN

α instead of
QN

α . Among these successors of N + 1 generation, we only keep those whose
closures intersect A, and discard the rest. We iterate the process in the same
way. The only part we need to prove is that the process finishes in a finite
number of steps.

Assume that the process produces an infinite sequence of nested dyadic
cubes {Qj

α}∞j=N with α = αj ∈ Ij. Then the intersection of their closures is
some point x0 which is contained in the contact set A. By Lemma 2.3.6, we
there is an r = rk ≤ r0 such that (2.3.18) and (2.3.19) hold. The condition
ρ1 ≥ 1/δ0 in (2.3.2) allows us to find j ≥ N satisfying r/(4ρ1) ≤ c2δ

j
0 < r/4.

Then it follows from Theorem 2.2.4 (iv) that

Q
j

α ⊂ Br/4(x0). (2.3.28)

Moreover, by Theorem 2.2.4 (v), Qj
α contains some ball B(zjα, c1δ

j
0). If z ∈

Br(x0), then d(z, zjα) ≤ d(z, x0) + d(x0, z
j
α) < (1 + 4/ρ1)c2δ

j
0, which shows

that
Br(x0) ⊂ B(zjα, (1 + 4ρ1)c2δ

j
0). (2.3.29)

Therefore, it follows from (2.3.19), (2.3.28), (Comp), and the volume doubling
property (3.2.8) that

µg(ϕ(Q
j

α)) ≤ µg(ϕ(Br/4(x0))) ≤ C
(
Λ +R2sf(x0)

)n
+
µg(Br/4(x0))

≤ C

(
Λ +R2s max

Q
j
α

f

)n

+

µg(Q
j
α).
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Furthermore, (2.3.18), (Comp), (3.2.8), and (RVD) show that

µg

(
B(zjα, (1 + 4ρ1)c2δ

j
0) ∩

{
u ≤ Γ + CR−2

(
Λ +R2smax

Q
j
α

f

)
+

d2j,α

})
≥ µg

(
Br(x0) ∩

{
u ≤ Py + C

(
Λ +R2s max

Q
j
α

f

)
+

( r
R

)2})
≥ (1− ε)µg(Rk(x0)) ≥ γµg(Q

j
α)

for some universal constant γ > 0. We have shown that Qj
α satisfy (iii) and

(iv), which yields a contradiction. Therefore, the process must stop in a finite
number of steps.

2.4 A barrier function

In this section we construct a barrier function, which is one of the key ingre-
dients for the Krylov–Safonov Harnack inequality. We use the function of the
form (d2z0(·))

−α with α > 0 large, which have been used as a barrier function
both for nonlocal operators in the Euclidean spaces [15] and local operators
on Riemannian manifolds [12]. In [12], the Hessian bound of distance squared
function at one point is enough to evaluate the operator’s value. However, for
nonlocal operators on Riemannian manifolds, the curvatures near the given
point have to be taken into account to evaluate the operator. In order to
make the universal constants independent of the curvatures, we need to look
at a small region.

Lemma 2.4.1. For z0 ∈ M , let K be the supremum of the sectional curva-
tures in Binj(z0)(z0) and let 15R < inj(z0)∧ π√

K
. There are universal constants

α > 0 and s0 ∈ (0, 1), depending only on n, λ, and Λ, such that the function

v(x) = max

{
−
(ρ0
20

)−2α

,−
(
dz0(x)

5R

)−2α}
is a supersolution to

R2sM+
L0
v(x) + Λ ≤ 0,
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for every s0 ≤ s < 1 and x ∈ B5R(z0) \Bρ0R(z0).

Proof. Fix x and let R0 := dz0(x) ∈ (ρ0R, 5R). Let us consider normal coor-
dinates centered at x, then by (2.3.5) the point z0 is included in the normal
coordinates. Thus, we may assume that exp−1

x z0 = R0e1. Let ξ := exp−1
x z.

By the Toponogov’s triangle comparison (see, e.g., [93]), we have dz0(z) ≤
|R0e1 − ξ|Rn and dz0(Tx(z)) ≤ |R0e1 + ξ|Rn , and hence,

δ(v, x, z) ≤ −
(

1

5R

)−2α (
|R0e1 + ξ|−2α

Rn + |R0e1 − ξ|−2α
Rn − 2R−2α

0

)
for d(z, x) ≤ R0/2. As TxM being identified as Rn, a simple algebraic in-
equality shows that

δ(v, x, z) ≤ 2α

(
R0

5R

)−2α( |ξ|2

R2
0

− (2α + 2)
ξ21
R2

0

+ (2α + 2)(α + 2)
ξ21 |ξ|2

R4
0

)
(2.4.1)

as in the proof of [15, Lemma 9.1].
Let us take α = α(n, λ,Λ) > 0 sufficiently large so that

λ(2α + 2)

(
3

π

)n−1 ˆ
∂B1

v21 dv − Λ|∂B1| > C1Λ, (2.4.2)

for some universal constant C1 > 0 to be determined later, where dv is the
usual spherical measure on ∂B1. Then,

R2sM+
L0
v(x) ≤ (2− 2s)R2s

ˆ
B(0,R0/2)

Λδ(v, x, z)+ − λδ(v, x, z)−
µg∗(B(0, |ξ|))|ξ|2s

dV ∗
s (ξ)

+R2s sup
L∈L0

ˆ
B(x,R0/2)

(v(z)− v(x))νx(z) dVa(z)

+R2s sup
L∈L0

ˆ
M\B(x,R0/2)

(v(z)− v(x))νx(z) dV (z) =: I1 + I2 + I3.

(2.4.3)
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For I1, we use (2.4.1) to obtain

I1 ≤ 2α(2− 2s)
R2s

R2
0

(
5R

R0

)2α

·
ˆ
BR0/2

Λ|ξ|2 − λ(2α + 2)ξ21 + Λ(2α + 2)(α + 2)ξ21 |ξ|2R−2
0

µg∗(B(0, |ξ|))|ξ|2s
dV ∗

s (ξ).

(2.4.4)

Since the sectional curvatures on B(x,R0/2) are bounded by K from above
and 0 from below, we have

I1,1 :=

ˆ
BR0/2

Λ|ξ|2 − λ(2α + 2)ξ21
µg∗(B(0, |ξ|))|ξ|2s

dV ∗
s (ξ)

=

ˆ R0/2

0

ˆ
∂B1

Λ− λ(2α + 2)v21
µg∗(B(0, t))t2s

det(D expx)(tv)t
n+1 dv dt

≤
ˆ R0/2

0

ˆ
∂B1

(
Λ− λ(2α + 2)

(
sin(

√
Kt)√
Kt

)n−1

v21

)
dv

tn+1

µg∗(B(0, t))t2s
dt.

As in the proof of Lemma 2.3.5, we observe from t ≤ R0/2 <
5
2
R < π

6
√
K

that

sin(
√
Kt)√
Kt

≥ sin(π/6)

π/6
=

3

π
. (2.4.5)

Thus, (2.4.2), (2.4.5), and the Gromov’s theorem yield that

I1,1 ≤ −C1Λ

ˆ R0/2

0

tn+1

|Bt|t2s
dt = − C1Λ

(2− 2s)ωn

(R0/2)
2−2s. (2.4.6)
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Similarly, we obtain that

I1,2 :=

ˆ
BR0/2

Λ(2α + 2)(α + 2)ξ21 |ξ|2R−2
0

µg∗(B(0, |ξ|))|ξ|2s
dV ∗

s (ξ)

≤ C
Λ(2α + 2)(α + 2)

R2
0

ˆ R0/2

0

tn+3

µg∗(B(0, t))t2s
dt

≤ C
Λ(2α + 2)(α + 2)

R2
0

(
3

π

)1−n ˆ R0/2

0

tn+3

ωntn+2s
dt

≤ C
Λ(2α + 2)(α + 2)

R2
0

(R0/2)
4−2s

4− 2s
.

(2.4.7)

Therefore, combining (2.4.4), (2.4.6), and (2.4.7), and using R0 ∈ (ρ0, 5R),
we estimate I1 as

I1 ≤ 2αΛ

(
−cC1 + C

2− 2s

4− 2s
(2α + 2)(α + 2)

)
, (2.4.8)

for some universal constants c, C > 0, with c independent of α.
For I2, we use a similar computation in Lemma 2.2.3 to obtain

I2 ≤
C

2s
Λ. (2.4.9)

On the other hand, since v is bounded, by following the proof of Lemma 2.2.2
we have

I3 ≤ CΛ

(
R

r

)2s
2− 2s

1− 2−2s
(2.4.10)

for some C = C(n, λ,Λ, α) > 0. Thus, (2.4.3), (2.4.8), (2.4.9), and (2.4.10)
yield

R2sM+
L0
v(x)

≤ 2αΛ

(
−cC1 + C

2− 2s

4− 2s
(2α + 2)(α + 2)

)
+
C

2s
Λ + CΛ

(
R

r

)2s
2− 2s

1− 2−2s
.

We now choose s0 close to 1 so that the terms containing (2 − 2s) become
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small. Then we obtain

R2sM+
L0
v(x) ≤ −cC1Λ +

C

s0
Λ,

which finishes the proof by assuming that we have taken α sufficiently large
so that (2.4.2) holds with −cC1 +

C
s0
< −1.

Lemma 2.4.2. For z0 ∈ M , let K be the supremum of the sectional curva-
tures in Binj(z0)(z0) and let 15R < inj(z0) ∧ π√

K
. Given any s0 ∈ (0, 1), there

are universal constants α > 0 and κ ∈ (0, 1/4], depending only on n, λ, Λ,
and s0, such that the function

v(x) = max

{
−
(κρ0

5

)−2α

,−
(
dz0(x)

5R

)−2α}
is a supersolution to

R2sM+
L0
v(x) + Λ ≤ 0,

for every s0 < s < 1 and x ∈ B5R(z0) \Bρ0R(z0).

Proof. Let s1 and α0 be the s0 and α in Lemma 2.4.1, respectively. If s ≥ s1,
then the desired result holds with α0 and κ = 1/4. Now for s0 < s < s1, we
will show the result still holds if we choose κ small enough.

Let α = max(α0, n/2). For x with R0 = dz0(x) ∈ (ρ0R, 5R), let us consider
normal coordinates centered at x. Then, as in Lemma 2.4.1 we have

R2sM+
L0
v(x) ≤ (2− 2s)R2s

ˆ
B(0,R0/2)

Λδ(v, x, z)+
µg∗(B(0, |ξ|))|ξ|2s

dV ∗
s (ξ)

− (2− 2s)R2s

ˆ
B(0,R0/2)

λδ(v, x, z)−
µg∗(B(0, |ξ|))|ξ|2s

dV ∗
s (ξ) + C

=: I1 + I2 + C.

Since v ∈ C2 in B(x,R0/2) and v is bounded above, δ+ is bounded above.
Hence, I1 ≤ C for some universal constant. On the other hand, since δ− is
not integrable and s < s1 < 2, we choose κ small enough so that I1+I2+C <

−Λ.
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Corollary 2.4.3. For z0 ∈ M , let K be the supremum of the sectional cur-
vatures in Binj(z0)(z0) and let 15R < inj(z0)∧ π√

K
. There is a function v such

that 

v ≥ 0 in M \B5R(z0),

v ≤ 0 in B2R(z0),

R2sM+
L0
v + Λ ≤ 0 in B5R \Bρ0R(z0),

R2sM+
L0
v ≤ C in B5R(z0),

v ≥ −C in B5R(z0),

for some universal constant C > 0, depending only on n, λ, Λ, and s0.

Proof. Let α and κ be constants given in Lemma 2.4.2. We define v(x) =

ψ(d2z0(x)/R
2), where ψ is a smooth and increasing function on [0,∞) such

that

ψ(t) =

(
32

52

)−α

−
(
t

52

)−α

if t ≥ (κρ0)
2.

By Lemma 2.4.2, R2sM+
L0
v + Λ ≤ 0 in B5R \ Bρ0R. Thus, it only remains

to show that R2sM+
L0
v ≤ C in Bρ0R. Indeed, for x ∈ Bρ0R, we have that

|δ(v, x, z)| ≤ Cdx(z)
2/R2 for z ∈ BR(x), and that v is bounded by a uniform

constant. Therefore, we obtain R2sM+
L0
v(x) ≤ C by Lemma 2.2.3.

2.5 Lε-estimate

This section is devoted to the so-called Lε-estimate, which is the main ingre-
dient in the proof of the Harnack inequality. It will follow from the following
lemma, which connects a pointwise estimate to an estimate in measure, and
the standard Calderón–Zygmund technique in [12].

Lemma 2.5.1. Let s0 ∈ (0, 1) and assume s ∈ [s0, 1). Let c1, c2, and δ0

be the constants in Theorem 2.2.4, and let δ = 2c1
c2
δ0. For z0 ∈ M , let K

be the supremum of the sectional curvatures in Binj(z0)(z0) and let 15R <

inj(z0) ∧ π√
K

. If u ∈ C2(B7R(z0)) is a nonnegative function on M satisfying
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R2sM−
L0
u ≤ ε0 in B7R(z0) and infB2R

u ≤ 1, then

µg({u ≤M0} ∩BδR(z0))

µg(B7R(z0))
≥ c0,

where ε0 > 0, c0 ∈ (0, 1), and M0 > 1 are constants depending only on n, λ,
Λ, a1, a2, and s0.

Proof. Let v be the barrier function constructed in Corollary 2.4.3 and define
w = u+v. Then w satisfies w ≥ 0 in M \B5R, infB2R

w ≤ 1, and R2sM−
L0
w ≤

ε0 +R2sM+
L0
v in B5R. By applying Lemma 2.3.1 to w with its envelope Γw,

we have

µg(BR) ≤ C
∑
j

(
ε0 +R2s max

Q
j
α

M+
L0
v + Λ

)n

+

µg(Q
j
α).

Since R2sM+
L0
v+Λ ≤ 0 in B5R \Bρ0R and R2sM+

L0
v ≤ C in B5R, we obtain

µg(BR) ≤ Cεn0µg(B5R) + C
∑

Q
j
α∩Bρ0R

̸=∅

µg(Q
j
α).

We use the volume doubling property (3.2.8) and then take ε0 > 0 sufficiently
small so that we have

µg(B7R) ≤ C
∑

Q
j
α∩Bρ0R

̸=∅

µg(Q
j
α).

By using Lemma 2.3.2 (iv), we obtain

µg(B7R) ≤ C
∑

Q
j
α∩Bρ0R

̸=∅

µg

(
B(zjα, (1 + 4/ρ1)c2δ

j
0) ∩ {w ≤ Γ + C}

)
.

We claim that B(zjα, (1 + 4/ρ1)c2δ
j
0) ⊂ BδR(z0) whenever Qj

α ∩ Bρ0R ̸= ∅.
Indeed, let z∗ ∈ Q

j

α ∩Bρ0R, then for any z ∈ B(zjα, (1 + 4/ρ1)c2δ
j
0), we have

d(z, z0) ≤ d(z, zjα) + d(zjα, z∗) + d(z∗, z0) < (1 + 4/ρ1)c2δ
j
0 + c2δ

j
0 + ρ0R.
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We recall from the construction of Qj
α and (2.3.2), that c2δj0 ≤ r0/4 < ρ0R

and
d(z, z0) < (3 + 4/ρ1)ρ0R ≤ δR,

which proves the claim. Thus, by taking a subcover of {B(zjα, (1+4/ρ1)c2δ
j
0)}

with finite overlapping and using v ≥ −C in B5R, we arrive at

µg(B7R) ≤ Cµg({u ≤M0} ∩BδR)

for some M0 > 1. Therefore, we obtain the desired result by letting c0 =

1/C.

Let δ1 = δ0(1− δ0)/2 ∈ (0, 1). Let kR be the integer satisfying

c2δ
kR−1
0 < R ≤ c2δ

kR−2
0 ,

which is the generation of a dyadic cube whose size is comparable to that of
some ball of radius R. Lemma 2.5.1, together with the Calderón–Zygmund
technique developed in [12], provides the following Lε-estimate.

Lemma 2.5.2. Let s0 ∈ (0, 1) and assume s ∈ [s0, 1). Let ε0, c0, and M0 be
the constants in Lemma 2.5.1. For z0 ∈ M , let R > 0 be such that 15R <

inj(z0)∧ π√
K

. Let u ∈ C2(B7R(z0)) be a nonnegative function on M satisfying
R2sM−

L0
u ≤ ε0 in B7R(z0) and infB(z0,δ1R) u ≤ 1. If Q1 is a dyadic cube of

generation kR such that d(z0, Q1) ≤ δ1R, then

µg({u > M i
0} ∩Q1)

µg(Q1)
≤ (1− c0)

i.

for all i = 1, 2, · · · . As a consequence, we have

µg({u > t} ∩Q1)

µg(Q1)
≤ Ct−ε, t > 0,

for some universal constants C > 0 and ε > 0.

A simple chaining argument and Lemma 2.5.2 prove the following weak
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Harnack inequality.

Theorem 2.5.3 (Weak Harnack inequality). Let s0 ∈ (0, 1) and assume
s ∈ [s0, 1). For z0 ∈M , let K be the supremum of the sectional curvatures in
Binj(z0)(z0) and let R > 0 be such that 2R < inj(z0)∧ π√

K
. If u ∈ C2(B2R(z0))

is a nonnegative function satisfying M−
L0
u ≤ C0 in B2R(z0), then

(
1

µg(BR)

ˆ
BR

up dV (z)

)1/p

≤ C

(
inf
BR

u+ C0R
2s

)
,

where p > 0 and C > 0 are universal constants depending only on n, λ, Λ,
a1, a2, and s0.

See, for instances, [12, Theorem 8.1] for the proof of Theorem 2.5.3.

2.6 Harnack inequality

In this section we prove the following theorem, from which Theorem 2.1.1
will follow. Let us recall that δ1 = δ0(1− δ0)/2 ∈ (0, 1).

Theorem 2.6.1. Let s0 ∈ (0, 1) and assume s ∈ [s0, 1). For z0 ∈ M , let K
be the supremum of the sectional curvatures in Binj(z0)(z0) let R > 0 be such
that 15R < inj(z0)∧ π√

K
. If a nonnegative function u ∈ C2(B7R(z0)) satisfies

R2sM−
L0
u ≤ ε0 and R2sM+

L0
u ≥ −ε0 in B7R(z0)

and infB(z0,δ1R) u ≤ 1, then

sup
B(z0,δ1R/4)

u ≤ C,

where ε0 > 0 and C > 0 are universal constants depending only on n, λ, Λ,
a1, a2, and s0.

Proof. Let ε and ε0 be the constants as in Lemma 2.5.2 and let γ = n/ε. Let
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us consider the minimal value of t > 0 such that

u(x) ≤ ht(x) := t

(
1− dz0(x)

δ1R

)−γ

for all x ∈ B(z0, δ1R). (2.6.1)

Then by (2.6.1), we have supB(z0,δ1R/4) u ≤ t(3/4)−γ, from which we can
conclude the theorem once we show that t ≤ C for some universal constant.

There exists a point x0 ∈ B(z0, δ1R) satisfying u(x0) = ht(x0). Let d =

δ1R − dz0(x0), r = d/2, and A = {u > u(x0)/2}, then we have u(x0) =

ht(x0) = t(δ1R/d)
γ. Let Q1 be the unique dyadic cube of generation kR

that contains the point x0, which clearly satisfies d(z0, Q1) ≤ δ1R. Then, by
applying Lemma 2.5.2 to u with Q1, we obtain

µg(A ∩Q1) ≤ C

(
u(x0)

2

)−ε

µg(Q1) ≤ Ct−ε
( r
R

)n
µg(Q1). (2.6.2)

We will show that there is a small constant θ > 0 such that

µg({u ≤ u(x0)/2} ∩Q2) ≤
1

2
µg(Q2), (2.6.3)

where Q2 ⊂ Q1 is the dyadic cube of generation kθr/14 containing the point
x0, provided that t is sufficiently large. Recalling that Q2 contains some ball
B(z, c1δ

kθr/14
0 ), we have from (2.6.2) and (3.2.8) that

µg(A ∩Q2) ≤ µg(A ∩Q1) ≤
C

tε

( r
R

)n
µg(B(z, c2δ

kR
0 ))

≤ C

tε
µg(B(z, c1δ

krθ/14
0 )) ≤ C

tε
µg(Q2).

However, when t is large, we also obtain

µg(A ∩Q2) <
1

2
µg(Q2),

which contradicts to (2.6.3). Therefore, the rest of the proof is dedicated to
proving (2.6.3).
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For every x ∈ B(x0, θr), we have

u(x) ≤ ht(x) ≤ t

(
d− θr

δ1R

)−γ

=

(
1− θ

2

)−γ

u(x0).

Let us define the functions

v(x) :=

(
1− θ

2

)−γ

u(x0)− u(x)

and w := v+. We will apply Lemma 2.5.2 to w in B(x0, 7(θr/14)). For x ∈
B(x0, 7(θr/14)), since v is nonnegative in B(x0, θr), we have

M−
L0
w(x) ≤ M−

L0
v(x) +M+

L0
v−(x)

≤ −M+
L0
u(x) + Λ(2− 2s)

ˆ
M\B(x0,θr)

v−(z)

µg(B(x, dx(z)))dx(z)2s
dV (z)

≤ R−2sε0 + Λ(2− 2s)

ˆ
M\B(x0,θr)

(u(z)− (1− θ/2)−γu(x0))+
µg(B(x, dx(z)))dx(z)2s

dV (z).

(2.6.4)

Let us define a function

gβ(x) := β

(
1− dz0(x)

2

R2

)
+

,

and consider the largest number β > 0 such that u ≥ gβ. From the assump-
tion infB(z0,δ1R) u ≤ 1, we have (1 − δ21)β ≤ 1. Let x1 ∈ B(z0, R) be a point
where u(x1) = gβ(x1). Then, since

(2− 2s)p.v.

ˆ
M

(u(z)− u(x1))−νx1(z) dV (z)

≤ (2− 2s)p.v.

ˆ
M

(gβ(z)− gβ(x1))−νx1(z) dV (z) ≤ CR−2s,
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we obtain that

ε0

≥ R2sM−
L0
u(x1)

= R2s inf

(
(2− 2s)p.v.

ˆ
M

(
(u(z)− u(x1))+ − (u(z)− u(x1))−

)
νx1(z) dV (z)

)
≥ R2sλ(2− 2s)p.v.

ˆ
M

(u(z)− u(x1))+
µg(B(x1, dx1(z)))dx1(z)

2s
dV (z)− C.

It follows from u(x1) ≤ β ≤ 1/(1− δ21) =: c that

(2− 2s)p.v.

ˆ
M

(u(z)− c)+
µg(B(x1, dx1(z)))dx1(z)

2s
dV (z)

≤ (2− 2s)p.v.

ˆ
M

(u(z)− u(x1))+
µg(B(x1, dx1(z)))dx1(z)

2s
dV (z) ≤ CR−2s.

(2.6.5)

Let us now estimate the integral in (2.6.4) by using (2.6.5). If u(x0) ≤ c,
then we have t = u(x0)(δ1R/d)

−γ ≤ cδ−γ
1 and we are done. Otherwise, we

obtain that

M−
L0
w(x)

≤ R−2sε0 + Λ(2− 2s)

ˆ
M\B(x0,θr)

(u(z)− c)+
µg(B(x, dx(z)))dx(z)2s

dV (z)

= R−2sε0

+ Λ(2− 2s)

ˆ
M\B(x0,θr)

(u(z)− c)+
µg(B(x1, dx1(z)))dx1(z)

2s

µg(B(x1, dx1(z)))dx1(z)
2s

µg(B(x, dx(z)))dx(z)2s
dV (z).

For x ∈ B(x0, θr/2), x1 ∈ B(z0, R), and z ∈M \B(x0, θr), we have

dx1(z)

dx(z)
≤ 1 +

d(x, x1)

d(x, z)
≤ 1 +

d(x, x0) + d(x0, z0) + d(z0, x1)

d(x0, z)− d(x0, x)

≤ 1 +
θr/2 + δ1R +R

θr/2
≤ C

R

θr
,
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and hence, by (3.2.8),

µg(B(x1, dx1(z)))dx1(z)
2s

µg(B(x, dx(z)))dx(z)2s
≤ C

(
R

θr

)n+2s

.

Therefore, we have shown that(
θr

14

)2s

M−
L0
w ≤ C

(
R

θr

)n

in B(x0, 7(θr/14)).
Let Q2 ⊂ Q1 be the dyadic cube of generation kθr/14 containing the point

x0. Then by Lemma 2.5.2, we have

µg({u < u(x0)/2} ∩Q2)

= µg({w >
(
(1− θ/2)−γ − 1/2

)
u(x0)} ∩Q2)

≤ Cµg(Q2)(
(1− θ/2)−γ − 1/2

)ε
u(x0)ε

(
inf

B(x0,δ1θr/14)
w + C

(
R

θr

)n)ε

.

We can make the quantity (1− θ/2)−γ −1/2 bounded away from 0 by taking
θ > 0 sufficiently small. Recalling that u(x0) = t(δ1R/2r)

γ, w(x0) = ((1 −
θ/2)−γ − 1)u(x0), and γ = n/ε, we obtain

µg({u < u(x0)/2} ∩Q2) ≤ Cµg(Q2)
(
((1− θ/2)−γ − 1)ε + t−εθ−nε

)
.

We choose a constant θ > 0 sufficiently small so that

C
(
(1− θ/2)−γ − 1

)ε ≤ 1

4
.

If t > 0 is sufficiently large so that Ct−εθ−nε ≤ 1/4, then we arrive at (2.6.3).
Therefore, t is uniformly bounded and the desired result follows.

46



CHAPTER 2. HARNACK INEQUALITY FOR NONLOCAL
OPERATORS ON MANIFOLDS WITH NONNEGATIVE CURVATURE

2.7 Hölder estimates

This section is devoted to the proof of Theorem 2.1.2, which will follow from
Lemma 2.7.1.

Lemma 2.7.1. Let s0 ∈ (0, 1) and assume s ∈ [s0, 1). For z0 ∈ M , let K
be the supremum of the sectional curvatures in Binj(z0)(z0) let R > 0 be such
that 15R < inj(z0)∧ π√

K
. If u ∈ C2(B(z0, 7R)) is a function such that |u| ≤ 1

2

in B(z0, 7R) and

R2sM+
L0
u ≥ −ε0 and R2sM−

L0
u ≤ ε0 in B(z0, 7R),

then u ∈ Cα at z0 with an estimate

|u(x)− u(z0)| ≤ CR−αd(x, z0)
α,

where α ∈ (0, 1) and C > 0 are constants depending only on n, λ, Λ, a1, a2,
and s0.

Proof. Let Rk := 7 · 4−kR and Bk := B(z0, Rk). It is enough to find an
increasing sequence {mk}k≥0 and a decreasing sequence {Mk}k≥0 satisfying
mk ≤ u ≤ Mk in Bk and Mk −mk = 4−αk. We initially choose m0 = −1/2

and M0 = 1/2 for the case k = 0. Let us assume that we have sequences
up to mk and Mk. We want to show that we can continue the sequences by
finding mk+1 and Mk+1.

Let Q1 be a dyadic cube of generation kRk+1/7 that contains the point x.
In Q1, either u > (Mk +mk)/2 or u ≤ (Mk +mk)/2 in at least half of the
points in measure. We suppose that

µg ({u > (Mk +mk)/2} ∩Q1) ≥ µg(Q1)/2. (2.7.1)

Let us define a function

v(x) :=
u(x)−mk

(Mk −mk)/2
,

47



CHAPTER 2. HARNACK INEQUALITY FOR NONLOCAL
OPERATORS ON MANIFOLDS WITH NONNEGATIVE CURVATURE

then v ≥ 0 in Bk by the induction hypothesis. For w := v+, (2.7.1) is read as

µg({w > 1} ∩Q1) ≥ µg(Q1)/2. (2.7.2)

To apply Lemma 2.5.2 to w, we need to estimate M−
L0
w ≤ M−

L0
v +M+

L0
v−.

We know that R2sM−
L0
v ≤ 2ε0/(Mk −mk) in B7R. For M+

L0
v−, we use the

bound
v(z) ≥ −2((dz0(z)/Rk)

α − 1) for z ∈M \Bk,

which follows from the definition of v and the properties of sequences Mk

and mk. Then we have, for x ∈ B(z0, 3Rk+1),

M−
L0
w(x)

≤ 2ε0
Mk −mk

R−2s + Λ(2− 2s)

ˆ
M\Bk

v−(z)

µg(B(x, dx(z)))dx(z)2s
dV (z)

≤ 2ε0
Mk −mk

R−2s + 2Λ(2− 2s)

ˆ
M\B(x,Rk+1)

(dz0(z)/Rk)
α − 1

µg(B(x, dx(z)))dx(z)2s
dV (z).

Note that dz0(z) ≤ dx(z) + dx(z0) ≤ dx(z) + 3Rk+1 ≤ 4dx(z). Thus, by using
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(3.2.8) and assuming α < 2s0, we obtain that

ˆ
M\B(x,Rk+1)

(dz0(z)/Rk)
α − 1

µg(B(x, dx(z)))dx(z)2s
dV (z)

≤
ˆ
M\B(x,Rk+1)

(dx(z)/Rk+1)
α − 1

µg(B(x, dx(z)))dx(z)2s
dV (z)

≤
∞∑
j=0

ˆ
B(x,2j+1Rk+1)\B(x,2jRk+1)

2(j+1)α − 1

µg(B(x, 2jRk+1))(2jRk+1)2s
dV (z)

≤
∞∑
j=0

2(j+1)α − 1

(2jRk+1)2s
µg(B(x, 2j+1Rk+1))

µg(B(x, 2jRk+1))

≤ 2n

R2s
k+1

∞∑
j=0

(
2α2j(α−2s) − 2−jα

)
=

2n

R2s
k+1

2α − 1

(1− 2α−2s)(1− 2−2s)

≤ 2n

R2s
k+1

2α − 1

(1− 2α−2s0)(1− 2−2s0)
=:

c1(n, α, s0)

R2s
k+1

.

The constant c1(n, α, s0) can be made arbitrarily small by taking small α.
We have estimated (

Rk+1

7

)2s

M−
L0
w ≤ C (ε0 + c1)

in B(x, 7(Rk+1/7)) for x ∈ B(z0, 2Rk+1). Therefore, by Lemma 2.5.2 and
(2.7.2), we have

1

2
µg(Q1) ≤ µg({w > 1} ∩Q1) ≤ Cµg(Q1) (w(x) + C(ε0 + c1))

ε ,

or equivalently,
θ ≤ w(x) + C(ε0 + c1)

for some universal constant θ > 0. We take ε0 and α sufficiently small so that
Cε0 < θ/4 and Cc1 < θ/4, then we have w ≥ θ/2 in B(z0, 2Rk+1). Thus, if
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we set Mk+1 =Mk and mk+1 =Mk − 4−α(k+1), then

Mk+1 ≥ u ≥ mk +
Mk −mk

4
θ =Mk −

(
1− θ

4

)
4−αk ≥ mk+1

in Bk+1.
On the other hand, if µg({u ≤ (Mk+mk)/2}∩Q1) ≥ µg(Q1)/2, we define

v(x) =
Mk − u(x)

(Mk −mk)/2

and continue in the same way using that R2sM+
L0
u ≥ −ε0.
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Chapter 3

Harnack inequality for fractional

Laplacian-type operators on

hyperbolic spaces

3.1 Introduction

In a celebrated series of papers [15, 16, 17] by Caffarelli and Silvestre, the
regularity theories such as Krylov–Safonov, Cordes–Nirenberg, and Evans–
Krylov theory are established for fractional-order operators on Euclidean
spaces. The most important feature is that the constants in regularity es-
timates do not blow up and remain uniform as the order of operator ap-
proaches 2. It means that the regularity theories for fractional-order and
second-order operators are unified. It has also been extended to the parabolic
cases [78, 79, 80].

On the other hand, the regularity theory for the local operators on Rie-
mannian manifolds has been studied. In particular, the studies on the Har-
nack inequalities, initiated by Yau [108] and Cheng–Yau [29], have been ex-
tended to second-order divergence and non-divergence form operators. These
are extensions of the De Giorgi–Nash–Moser [97] and Krylov–Safonov Har-
nack inequalities [12, 74, 106], respectively. See also [75, 77] for the parabolic
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Harnack inequalities.
The natural extension is to obtain the regularity results for fractional-

order operators on Riemannian manifolds. Indeed, the Harnack inequality
for nonlocal operators on metric measure spaces with volume doubling prop-
erty, which includes Riemannian manifolds with nonnegative curvature, has
been studied via the Dirichlet form theory [28]. However, this approach does
not provide the unified regularity theory and is not appropriate for non-
divergence form operators. For nonlocal non-divergence form operators, the
Krylov–Safonov Harnack inequality on Riemannian manifolds with nonneg-
ative curvature has recently been established by the authors [72]. The result
in [72] unifies the Krylov–Safonov Harnack inequalities for local and non-
local operators on manifolds with nonnegative curvature as in the works of
Caffarelli and Silvestre.

In this paper, we continue to pursue the unified regularity theory for
fully nonlinear nonlocal operators of order 2s ∈ (0, 2) on the hyperbolic
spaces Hn

κ that have constant negative curvatures −κ < 0. We establish the
Alexandrov–Bakelman–Pucci (or ABP for short) estimates, Krylov–Safonov
Harnack inequality, and Hölder estimates, which are robust as s→ 1 and κ→
0 in the sense that the regularity estimates recover the classical regularity
estimates for second-order operators on the hyperbolic spaces as s → 1 and
for fractional-order operators on the Euclidean spaces as κ→ 0.

The operators considered in this work are modeled on the fractional
Laplacian on the hyperbolic spaces. Since the hyperbolic geometry is not
distinguished from the Euclidean geometry when n = 1, we assume n ≥ 2

throughout the paper. Let us recall the fractional Laplacian −(−∆Hn
κ
)s,

s ∈ (0, 1), κ > 0, on the hyperbolic spaces Hn
κ. Let Kν be the modified Bessel

function of the second kind and define Kν,a(ρ) = ρ−νKν(aρ) for notational
convenience. Then, the fractional Laplacian −(−∆Hn

κ
)s is given by

−(−∆Hn
κ
)su(x) = P.V.

ˆ
Hn

κ

(u(z)− u(x))Kn,s,κ(dHn
κ
(x, z)) dµHn

κ
(z), (3.1.1)
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where the kernel Kn,s,κ is given by

Kn,s,κ(ρ) = cn,s
√
κ
1+2s

(
−
√
κ ∂ρ

sinh(
√
κρ)

)n−1
2

K 1+2s
2

,n−1
2

(√
κρ
)

(3.1.2)

when n ≥ 3 is odd and

Kn,s,κ(ρ)

= cn,s

ˆ ∞

ρ

√
κ
1+2s

sinh(
√
κr)

√
π
√

cosh(
√
κr)− cosh(

√
κρ)

(
−
√
κ ∂r

sinh(
√
κr)

)n
2

K 1+2s
2

,n−1
2

(√
κr
)
dr

(3.1.3)

when n ≥ 2 is even, and

cn,s =
(n− 1)

1+2s
2

2
n−1
2 π

n
2

1

|Γ(−s)|
.

See Section 4.2 for details.

Remark 3.1.1. (i) Note that the normalizing constant cn,s has the same
asymptotic behavior with 1− s as s→ 1 up to a dimensional constant.
This is a crucial fact for the robust regularity estimates as in [15, 16, 17].

(ii) It is natural to expect that Kn,s,κ converges to the kernel of the fractional
Laplacian on the Euclidean space as curvature −κ approaches zero.
Indeed, we have from [71, Theorem 1.2]

Kn,s,κ(ρ) → ρ−n−2s,

as κ→ 0 up to some constant depending on n and s.

(iii) The kernel Kn,s,κ decays exponentially as ρ → ∞, which is different
from the behavior of the kernel on the Euclidean spaces. The difference
comes from the exponential growth of the volume of balls in the hyper-
bolic spaces, and this is why the regularity theories on manifolds with
negative and nonnegative curvatures are dealt with separately.
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Modeled on the fractional Laplacian (3.1.1), fully nonlinear operators of
the fractional Laplacian-type can be defined in the standard way. For a class
L0 of linear operators of the form

Lu(x) = P.V.

ˆ
Hn

κ

(u(z)− u(x))K(x, z) dµHn
κ
(z), x ∈ Hn

κ,

with measurable kernels K satisfying

λKn,s,κ(dHn
κ
(x, z)) ≤ K(x, z) ≤ ΛKn,s,κ(dHn

κ
(x, z)), 0 < λ ≤ Λ,

the maximal and minimal operators are defined by

M+u(x) := M+
L0
u(x) := sup

L∈L0

Lu(x),

and
M−u(x) := M−

L0
u(x) := inf

L∈L0

Lu(x),

respectively. It is easy to see that these extremal operators are well defined
at x ∈ Hn

κ for any bounded function u that is C2 near x, see (3.3.3). An
operator I is said to be elliptic with respect to L0 if

M−
L0
(u− v)(x) ≤ I(u, x)− I(v, x) ≤ M+

L0
(u− v)(x)

for every point x ∈ Hn
κ and for all bounded functions u and v which are C2

near x.
The first step towards the Krylov–Safonov Harnack inequality and Hölder

estimate is the ABP-type estimate, which provides an estimate on the dis-
tribution function of supersolutions to fully nonlinear nonlocal operators. To
state this result, we define functions

Sκ(t) =
sinh(

√
κt)√

κt
, Hκ(t) =

√
κt coth(

√
κt),
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and
Tκ(t) =

√
κt

tanh−1(1
2
tanh(

√
κt))

.

Theorem 3.1.2 (ABP-type estimate). Let s0 ∈ (0, 1) and assume s ∈ [s0, 1).
Let u ∈ C2(B5R)∩L∞(Hn

κ) be a function on Hn
κ satisfying M−u ≤ f in B5R,

u ≥ 0 in Hn
κ\B5R, and infB2R

u ≤ 1. Let C be a contact set defined by (3.4.1),
then there is a finite collection {Qj

α} of dyadic cubes, with diam(Qj
α) ≤ r0,

such that Qj
α ∩ C ̸= ∅, C ⊂ ∪jQ

j

α, and

|BR| ≤
∑
j

cF n|Qj
α|, (3.1.4)

where r0, c, and F are given by (3.3.6),

F = Sκ(7R)

(
ΛHκ(7R) +

R2

I0,κ(R)
max
Q

j
α

f

)
+

,

and

c = C coshn−1
(
C
√
κr0T 2

κ (r0)F
) (
CT 2

κ (r0)F
)(n−1) log cosh(C

√
κr0T 2

κ (r0)F ) T 2n
κ (r0),

respectively. See (3.3.1) for the definition of I0,κ(R). The universal constant
C > 0 depends only on n, λ, Λ, and s0.

Remark 3.1.3. (i) The Riemann sum in (3.1.4) converges as s→ 1 to the
integral

C

ˆ
C

Sn
κ (7R)

(
ΛHκ(7R) +R2f(x)

)n
+
dµHn

κ
(x),

which is of the form appearing in [106, Theorem 1.2]. This implies that
Theorem 3.1.2 recovers the ABP estimate for second-order operators
on the hyperbolic spaces as a limit s → 1. Indeed, it will be proved in
Proposition 3.3.4 and Lemma 3.3.6 that I0,κ(R) → C(n) and r0 → 0 as
s → 1. Moreover, since limt→0 Tκ(t) = 2, the dependence of c on κ and
R disappears in the limit s→ 1.

(ii) Theorem 3.1.2 provides a new result even for second-order operators
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because it covers fully nonlinear operators.

(iii) Theorem 3.1.2 also recovers the ABP estimate on the Euclidean spaces
[15] as κ→ 0.

(iv) The function R2

I0,κ(R)
corresponds to R2s in the cases of the Euclidean

spaces [15] and manifolds with nonnegative curvature [72]. However,
this function exhibits qualitatively different behavior than R2s because
it involves the kernels Kn,s,κ(ρ) for the fractional Laplacian −(−∆Hn

κ
)s

which decay exponentially as ρ → ∞ while those in the case of mani-
folds with nonnegative curvature decay polynomially.

We next establish the Krylov–Safonov Harnack inequality and Hölder
estimates for solutions of fully nonlinear nonlocal equations on the hyperbolic
spaces Hn

κ.

Theorem 3.1.4 (Harnack inequality). Let s0 ∈ (0, 1) and assume s ∈ [s0, 1).
If a nonnegative function u ∈ C2(B7R) ∩ L∞(Hn

κ) satisfies

M−u ≤ C0 and M+u ≥ −C0 in B7R, (3.1.5)

then
sup
Bδ1R

u ≤ C

(
inf
Bδ1R

u+ C0
(7R)2

I0,κ(7R)

)
for some universal constants δ1 ∈ (0, 1) and C > 0 depending only on n, λ,
Λ,

√
κR, and s0.

Let us denote by ∥·∥′ the non-dimensional norm in the following theorem.

Theorem 3.1.5 (Hölder estimates). Let s0 ∈ (0, 1) and assume s ∈ [s0, 1).
If u ∈ C2(B7R) ∩ L∞(Hn

κ) satisfies (3.1.5), then

∥u∥′
Cα(BR)

≤ C

(
∥u∥L∞(Hn

κ) + C0
(7R)2

I0,κ(7R)

)
for some universal constants α ∈ (0, 1) and C > 0 depending only on n, λ,
Λ,

√
κR, and s0.
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Since I0,κ(R) → C(n) as s → 1 and the universal constants in Theo-
rem 3.1.4 and Theorem 3.1.5 do not depend on s, the regularity estimates in
Theorem 3.1.4 and Theorem 3.1.5 recover the classical estimates for second-
order operators on the hyperbolic space as limits.

The main difficulties in establishing regularity results, Theorem 3.1.2,
Theorem 3.1.4, and Theorem 3.1.5, arise from the effect of negative curva-
tures. The volume of a ball in the hyperbolic spaces behaves like that in the
Euclidean spaces when a radius is small, while it grows exponentially as a
radius gets bigger. Due to this non-homogeneity of the volume, the scaling
property does not hold, making the standard arguments for regularity re-
sults break. This kind of difficulty also appears on the heat kernel estimates
[26, 56, 57]. Hence, our result may provide some hints about the heat ker-
nel estimation on non-homogenous spaces. To overcome this difficulty, we
introduce new scale functions that take non-homogeneity into account and
provide some monotonicity properties in Section 3.3.

Another difficulty arising from the non-homogeneity of the volumes lies
in the dyadic ring argument in the ABP estimates. In the ABP estimates,
we find a dyadic ring around a given contact point in which a supersolution
is quadratically close to a tangent paraboloid in a large portion of the ring.
However, the standard dyadic rings B2−kr \ B2−(k+1)r no longer work in the
framework of the hyperbolic spaces. It leads to introducing a hyperbolic dyadic
ring whose radii are determined by the volume of balls (see Section 3.4).
The hyperbolic dyadic ring turns out to be the natural “dyadic" ring in the
hyperbolic geometry.

After the ABP estimates, we prove the regularity estimates by construct-
ing a barrier function. It is standard to use the distance function for the
construction, but the computation is significantly different from the stan-
dard one because of the hyperbolic structure. We observe in Section 3.5 how
the negative curvature of the hyperbolic spaces affects the computations.

Let us also emphasize some applications. As mentioned in [15], the fully
nonlinear operators considered in this paper are naturally related to the
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stochastic optimal control theory [99]. On the other hand, it is too hard to
miss how important the hyperbolic space is in mathematics. For example,
the hyperbolic spaces appear on the context of the uniformization theorem
and the special relativity. We also want to mention that hyperbolic spaces
can be used for computer scientific applications [92].

This paper is organized as follows. In Section 4.2, we recall several mod-
els for the hyperbolic spaces and define the fractional Laplacian −(−∆Hn

κ
)s

on the hyperbolic spaces Hn
κ. In Section 3.3, new scale functions are intro-

duced and some monotonicity properties are studied. The regularity theory
begins with ABP-type estimates in Section 3.4. In this section Theorem 3.1.2
is proved. The next step is the construction of a barrier function, and this
is presented in Section 3.5. This barrier function, together with the ABP
estimates, is used to obtain the so-called Lε-estimates in Section 3.6. The-
orem 3.1.4 and Theorem 3.1.5 are proved in Section 3.7 and Section 3.8,
respectively. In Section 3.9.1, some properties of special functions are col-
lected.

3.2 Preliminaries

In this section, we recall several models for the n-dimensional hyperbolic
spaces, revisit the definition of the fractional Laplacian on these spaces, and
collect some well-known results on the hyperbolic spaces.

3.2.1 Hyperbolic spaces

Let us recall the hyperboloid model and the Poincaré ball model (see, e.g.,
[52, 95, 102]).

We first recall the hyperboloid model

Hn
κ = {(x0, · · · , xn) ∈ Rn+1 : x20 − x21 − · · · − x2n = κ−1, x0 > 0}

with the metric induced by the Lorentzian metric −dx20 +dx21 + · · ·+dx2n in
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Rn+1. The space Hn
κ has a constant curvature −κ < 0. The internal product

induced by the Lorentzian metric is denoted by [x, x′] = x0x
′
0 − x1x

′
1 − · · · −

xnx
′
n, and the distance between two points x and x′ is given by

dHn
κ
(x, x′) =

1√
κ
cosh−1 (κ[x, x′]) .

Using the polar coordinates, Hn
κ can also be realized as

Hn
κ =

{
x =

(
cosh r√

κ
,
sinh r√

κ
ω

)
∈ Rn+1 : r ≥ 0, ω ∈ Sn−1

}
.

Then, the metric and volume element are given by ds2 = 1
κ
(dr2+sinh2 r dω2)

and dµHn
κ
= 1√

κ
n sinhn−1 r dr dω, respectively.

Let us also consider the Poincaré ball model Bn
t,κ = {y ∈ Rn : |y| < t}

with the metric
ds2 =

4b2

(t2 − |y|2)2
dy2

and the volume measure

dµBn
t,κ
(y) =

(
2b

t2 − |y|2

)n

dy, (3.2.1)

where t/b =
√
κ. Note that the measure (3.2.1) tends to the Lebesgue mea-

sure dy as κ→ 0, provided that
√
κ = 2/t and b = t2/2.

The map defined by

ϕ : (x0, x1, · · ·xn) ∈ Hn
κ 7→

√
κt

1 +
√
κx0

(x1, · · · , xn) ∈ Bn
t,κ, (3.2.2)

or equivalently, by

ϕ :

(
cosh r√

κ
,
sinh r√

κ
ω

)
∈ Hn

κ 7→ t
sinh r

2

cosh r
2

ω ∈ Bn
t,κ,
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is an isometry and its inverse is given by

ϕ−1 : y ∈ Bn
t,κ 7→

(
t2 + |y|2√
κ(t2 − |y|2)

,
2ty1√

κ(t2 − |y|2)
, · · · , 2tyn√

κ(t2 − |y|2)

)
∈ Hn

κ.

See [52, Chapter 8] for the proof. Therefore, there are several ways of de-
scribing the distance function as follows:

dBn
t,κ
(0, y) = dHn

κ
(0κ, x) =

1√
κ
cosh−1 (κ[0κ, x])

=
1√
κ
cosh−1

(
t2 + |y|2

t2 − |y|2

)
=

1√
κ
log

(
t+ |y|
t− |y|

)
,

where 0κ = ( 1√
κ
, 0, · · · , 0) ∈ Hn

κ. We shall write 0κ = 0 if there is no confusion.

3.2.2 Fractional Laplacian on the hyperbolic spaces

The fractional Laplacian on Hn is defined in [7] by using the Helgason Fourier
transform [51, 62, 101] (see also [52, 48]), and its normalizing constant is
computed in [71] by using the heat kernel [59]. However, these works are
built on the hyperbolic space with curvature −1. Since we are working on
Hn

κ with curvature −κ < 0, we define the fractional Laplacian −(−∆Hn
κ
)s on

Hn
κ and deduce the representation of its kernel from that of −(−∆Hn)s.

We recall the Helgason Fourier transform on the hyperbolic spaces. The
interested reader may consult [62, 51, 101, 52, 48]. By means of the isometry
(3.2.2), we may work on the Poincaré ball model instead of the hyperboloid
model. Let t = 1 be fixed and denote Bn

κ = Bn
1,κ. The Helgason Fourier

transform is defined for u ∈ C∞
c (Bn

κ) by

û(λ, ξ;κ) =

ˆ
Bn
κ

u(x)e−λ,ξ;κ(x) dµBn
κ
(x), λ ∈ R, ξ ∈ Sn−1,

where

eλ,ξ;κ(x) =

(
1− |x|2

|ξ − x|2

)n−1
2

+i λ√
κ
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is the eigenfunction with eigenvalue −(λ2 + κ (n−1)2

4
). It is well known that

the following inversion formula holds:

u(x) =

ˆ ∞

−∞

ˆ
Sn−1

û(λ, ξ;κ)eλ,ξ;κ(x)

√
κ
n−1

|cκ(λ)|2
dσ(ξ) dλ, (3.2.3)

where

cκ(λ) =
√
2(2π)n/2

Γ(i λ√
κ
)

Γ(n−1
2

+ i λ√
κ
)

is the Harish-Chandra coefficient. Moreover, the Plancherel formula holds:

ˆ
Bn
κ

|u(x)|2 dµBn
κ
(x) =

ˆ ∞

−∞

ˆ
Sn−1

|û(λ, ξ;κ)|2
√
κ
n−1

|cκ(λ)|2
dσ(ξ) dλ. (3.2.4)

Since

−̂∆Bn
κ
u(λ, ξ;κ)

= −
ˆ
Bn
κ

∆Bn
κ
u(x)e−λ,ξ;κ(x) dµBn

κ
(x)

= −
ˆ
Bn
κ

u(x)∆Bn
κ
e−λ,ξ;κ(x) dµBn

κ
(x) =

(
λ2 + κ

(n− 1)2

4

)
û(λ, ξ;κ),

it is natural to define the fractional Laplacian −(−∆Bn
κ
)s by

̂(−∆Bn
κ
)su(λ, ξ;κ) =

(
λ2 + κ

(n− 1)2

4

)s

û(λ, ξ;κ), (3.2.5)

which coincides with the definition given in [7, 71] when κ = 1. By using
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(3.2.4) and (3.2.5), we have

̂(−∆Bn
κ
)su(λ, ξ; 1) =

ˆ
Bn
1

(−∆Bn
κ
)su(x)e−λ,ξ;1(x) dµBn

1
(x)

=

ˆ
Bn
1

u(x)(−∆Bn
κ
)se−√

κλ,ξ;κ(x) dµBn
1
(x)

= κs
(
λ2 +

(n− 1)2

4

)s ˆ
Bn
1

u(x)e−√
κλ,ξ;κ(x) dµBn

1
(x)

= κs
(
λ2 +

(n− 1)2

4

)s

û(λ, ξ; 1)

= κs ̂(−∆Bn)su(λ, ξ; 1),

and hence (−∆Bn
κ
)su = κs(−∆Bn)su by the inversion formula (3.2.3). Since

dBn(x, z) =
√
κdBn

κ
(x, z) and dµBn(z) =

√
κ
n
dµBn

κ
(z), (3.2.6)

we have

(−∆Bn
κ
)su(x) = κs

ˆ
Bn

(u(x)− u(z))Kn,s,1(dBn(x, z)) dµBn(z)

= κs
ˆ
Bn
κ

(u(x)− u(z))Kn,s,1(
√
κ dBn

κ
(x, z))

√
κ
n
dµBn

κ
(z),

from which we conclude

Kn,s,κ(ρ) =
√
κ
n+2sKn,s,1(

√
κρ). (3.2.7)

Therefore, (3.1.2) and (3.1.3) follow from [71, Theorem 1.2] and (3.2.7).

Proposition 3.2.1. Kn,s,κ is strictly decreasing.

Proof. It suffices to prove that Ks := Kn,s,1 is non-increasing. It is known
[71] that the kernel Ks is represented as

Ks(ρ) = C

ˆ ∞

0

p(t, ρ)
dt

t1+s

for some C = C(n, s) > 0, where p(t, ρ) is the heat kernel of the Laplacian
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∆Hn on the hyperbolic space Hn. Moreover, it is known [2] that p(t, ρ) is
strictly decreasing with respect to ρ. Therefore, Ks is strictly decreasing.

3.2.3 Hyperbolic spaces revisited

We collect some well-known results on the hyperbolic spaces. The first one
is the volume doubling property that will be used frequently throughout the
paper.

Lemma 3.2.2. For any Br ⊂ BR ∈ Hn
κ,(

R

r

)n

≤ |BR|
|Br|

≤ D
(
R

r

)log2 D

, (3.2.8)

where D = 2n coshn−1(2
√
κR).

Lemma 3.2.2 is a direct consequence of the Bishop–Gromov inequality.
See [104, Theorem 18.8 and Corollary 18.11] for the first inequality and the
second inequality with R = 2r in (3.2.8), respectively. For the full inequality,
we find a k ∈ N satisfying R ∈ [2k−1r, 2kr), and then iterate the inequality.

The next result is a bound of the Hessian of the squared distance. See
[33, Lemma 3.12] for instance.

Lemma 3.2.3. Fix a point y ∈ Hn
κ and consider the distance function

dHn
κ
(·, y). Then,

D2
(
d2Hn

κ
(x, y)/2

)
(ξ, ξ) ≤ Hκ(dHn

κ
(x, y))|ξ|2

for all ξ ∈ TxHn
κ.

Let us close this section with the following generalization of Euclidean
dyadic cubes that will be used in the decomposition of the contact set and
in the Calderón–Zygmund technique.

Theorem 3.2.4 (Christ [31]). There is a countable collection {Qj
α ⊂ Hn

κ :

j ∈ Z, α ∈ Ij} of open sets and constants c1, c2 > 0 (with 2c1 ≤ c2), and
δ0 ∈ (0, 1), depending only on n, such that
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(i) |Hn
κ \ ∪αQ

j
α| = 0 for each j ∈ Z,

(ii) if i ≥ j, then either Qi
β ⊂ Qj

α or Qi
β ∩Qj

α = ∅,

(iii) for each (j, α) and each i < j, there is a unique β such that Qj
α ⊂ Qi

β,

(iv) diam(Qj
α) ≤ c2δ

j
0, and

(v) each Qj
α contains some ball B(zjα, c1δ

j
0).

The original statement of [31, Theorem 11] consists of six properties. As
mentioned in [31], the first five properties concern only the quasi-metric space
structure and the last property requires the space to be of homogeneous type.
Since the hyperbolic spaces are not of homogeneous type, the last property—
which is not needed in this work—cannot be included.

3.3 Scale functions

Recall that, in the Euclidean spaces, it is sufficient to obtain regularity esti-
mates in B1 because the estimates in BR can be recovered from those in B1

by using the scale invariance of the equations. The scale invariance heavily
relies on the homogeneity of the underlying spaces. However, the hyperbolic
spaces are not homogeneous. Indeed, the volume of a ball grows exponentially
as the radius goes to infinity in the hyperbolic spaces, and hence the kernel
Kn,s,κ(ρ) of the fractional Laplacian (−∆Hn

κ
)s decays exponentially as ρ→ ∞.

Therefore, it is crucial to find appropriate scale functions that capture the
correct behavior at every scale. For this purpose, we define

I0,κ(R) :=

ˆ
BR(x)

d2Hn
κ
(z, x)Kn,s,κ(dHn

κ
(z, x)) dµHn

κ
(z),

I∞,κ(R) :=

ˆ
Hn

κ\BR(x)

R2Kn,s,κ(dHn
κ
(z, x)) dµHn

κ
(z),

(3.3.1)

and Iκ(R) := I0,κ(R) + I∞,κ(R). They play a role of scale functions in the
regularity estimates on the hyperbolic spaces as the homogeneous polynomial
R2−2s does on the Euclidean spaces.
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We omit the subscript κ when κ = 1, i.e., I0 = I0,1, I∞ = I∞,1 and
I = I1. Then, it follows from (3.2.6) and (3.2.7)

I0,κ(R) =
√
κ
−2+2sI0(

√
κR),

I∞,κ(R) =
√
κ
−2+2sI∞(

√
κR),

Iκ(R) =
√
κ
−2+2sI(

√
κR).

(3.3.2)

It is known that Kn,s,1(ρ) ∼ ρ−n−2s as ρ → 0+ and Kn,s,1(ρ) ∼ ρ−1−se−(n−1)ρ

as ρ → ∞, see [7, Theorem 2.4] and [71, Theorem 1.2]. Thus, the scale
functions in (3.3.1) are well defined. Moreover, we observe

|Lu(x)| ≤ Λ∥u∥C2(BR(x))I0,κ(R) + 2Λ∥u∥L∞(Hn
κ)I∞,κ(R) < +∞ (3.3.3)

for any operator L ∈ L0 and any function u ∈ C2(BR(x)) ∩ L∞(Hn
κ).

Let us now investigate some properties of the scale functions that are
useful for the upcoming regularity theory. Although the scale functions do
not have scaling properties, they satisfy some monotonicity properties. For
instance, I0,κ is increasing and I∞,κ is decreasing by definition. Moreover,
some variations of these scale functions satisfy almost monotonicity. We say
that a function f is almost decreasing if there exists a constant C ≥ 1 such
that f(R) ≤ Cf(r) for all R > r > 0.

Proposition 3.3.1. The functions R−2+sI0,κ(R) and R−2I0,κ(R) are almost
decreasing.

The almost monotonicity ofR−2I0,κ(R) follows from that ofR−2+sI0,κ(R).
Furthermore, it is enough to show that R−2+sI0(R) is almost decreasing by
the relation (3.3.2). Indeed, it is a direct consequence of the following lemma.

Lemma 3.3.2. There exist constants 0 < C1(n) ≤ C2(n) and a non-increasing
function F such that C1F (R) ≤ R−2+sI0(R) ≤ C2F (R) for all R > 0.

Proof. It is enough to show

C3f(R) ≤
I ′
0(R)

R1−s
≤ C4f(R) (3.3.4)
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for some constants 0 < C3(n) ≤ C4(n) and some non-increasing function
f(R). Indeed, once we prove (3.3.4), we then have

C3

2
F (R) ≤ I0(R)

R2−s
=

´ R

0
I ′
0(ρ) dρ´ R

0
(2− s)ρ1−s dρ

≤ C4F (R),

where

F (R) =

´ R

0
ρ1−sf(ρ) dρ´ R

0
ρ1−sdρ

is a non-increasing function.
To prove the claim (3.3.4), we observe

I ′
0(R)

R1−s
= |Sn−1|R1+sKn,s,1(R) sinh

n−1R.

By Lemma 3.9.2, it is comparable to

f(R) := RIn
2
−1

(
n− 1

2
R

)
Kn

2
+s

(
n− 1

2
R

)
up to dimensional constants, where Iν is the modified Bessel function of the
first kind. It only remains to show that f is non-increasing. We note that it is
sufficient to prove that g(R) = RIn

2
−1(R)Kn

2
+s(R) is non-increasing. Indeed,

by using (3.9.1) and [98, Theorem 3] we obtain

g′(R) = −sIn
2
−1Kn

2
+s +RIn

2
Kn

2
+s −RIn

2
−1Kn

2
+s−1

≤

(
−s+ R2

√
R2 + a2 + a

− R2√
R2 + (a+ s)2 + a+ s

)
In

2
−1Kn

2
+s

=
(√

R2 + a2 −
√
R2 + (a+ s)2

)
In

2
−1Kn

2
+s

≤ 0,

where a = (n− 1)/2.

The following result shows a relation between two scale functions I0 and
I∞. Let us mention that the function H(t) = t coth t naturally appears when
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the negative curvature is involved as in Lemma 3.2.3. The relation between
I0,κ and I∞,κ follows from Proposition 3.3.3 and (3.3.2).

Proposition 3.3.3. There exists a constant C = C(n) > 0 such that

I∞(R) ≤ C
1− s

s
H(R)I0(R)

for all R > 0.

Proof. By Lemma 3.9.2, we have

I∞(R) = |Sn−1|
ˆ ∞

R

R2Kn,s,1(ρ) sinh
n−1 ρ dρ

≤ CR2

ˆ ∞

R

ρ−sIn
2
−1(aρ)Kn

2
+s(aρ) dρ

≤ CR2

ˆ ∞

aR

ρ−sIn
2
−1(ρ)Kn

2
+s(ρ) dρ,

where a = (n− 1)/2. Similarly, we also have

I0(R) ≥ C

ˆ aR

0

ρ2−sIn
2
−1(ρ)Kn

2
+s(ρ) dρ.

Thus, it is enough to show that there is a constant C = C(n) > 0 such that

R2

ˆ ∞

aR

ρ−sIn
2
−1(ρ)Kn

2
+s(ρ) dρ ≤ C

1− s

s
H(R)

ˆ aR

0

ρ2−sIn
2
−1(ρ)Kn

2
+s(ρ) dρ.

By Lemma 3.9.4, the problem is reduced to finding a constant C = C(n) > 0

such that

In
2
−1(aR)Kn

2
+s(aR) + In

2
(aR)Kn

2
+s−1(aR)

≤ CH(R)

[
In

2
−1(aR)Kn

2
+s(aR) + In

2
(aR)Kn

2
+s−1(aR)

− 1

2− s

(
In

2
(aR)Kn

2
+s−1(aR) + In

2
+1(aR)Kn

2
+s−2(aR)

) ]
.

(3.3.5)

Indeed, it is easy to check that (3.3.5) holds by comparing the asymptotic
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behavior of the functions on both sides.

Since the limit behavior of the scale functions as s→ 0 are of interest in
the unified regularity theory, we recall the following results.

Proposition 3.3.4. There exists a constant C = C(n) > 0 such that

lim
s→1

I0(R) = lim
s→1

I0,κ(R) = C

for any R > 0.

Proof. The assertion follows from [71, Lemma 5.4] and (3.3.2).

Proposition 3.3.5. For any R > 0,

lim
s→1

I∞(R) = lim
s→1

I∞,κ(R) = 0.

Proof. The desired result follows from Proposition 3.3.3, Proposition 3.3.4,
and (3.3.2). See also [71, Lemma 5.3].

In the work of Caffarelli and Silvestre [15], the quantity r0 = ρ02
−1/(2−2s)R,

which is characterized by the relation (r0/ρ0)
2−2s = R2−2s/2, plays a funda-

mental role. The most important feature of this quantity is that it converges
to 0 as s→ 1.

We define such a quantity in a similar way in our framework. Since the
scale function I0 is strictly increasing, its inverse exists. Thus, for a given
R > 0, we define r0 ∈ (0, R) by

r0 = ρ0I−1
0,κ(I0,κ(R)/2) (3.3.6)

for some universal constant ρ0 ∈ (0, 1) that will be determined later. Let us
close the section with the following lemma.

Lemma 3.3.6. For a fixed R > 0, lims→1 r0 = 0.
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Proof. Suppose that lims→1 r0 ̸= 0. Then, since r̃ := lim sups→1 r0 ̸= 0,
there is a sequence sk → 1 such that r0,k := ρ0I−1

0,κ,sk
(I0,κ,sk(R)/2) ∈ (0, R)

converges to r̃ as k → ∞, where I0,κ,sk is the scale function I0,κ with respect
to sk. We have

I0,κ,sk(r0,k/ρ0) = I0,κ,sk(R)/2. (3.3.7)

By Proposition 3.3.4 and continuity of I0, the left-hand side of (3.3.7) con-
verges to C as k → ∞ whereas the right-hand side of (3.3.7) converges to
C/2, which is a contradiction.

3.4 Discrete ABP-type estimates

In this section, we provide the proof of Theorem 3.1.2. Throughout the sec-
tion, u is assumed to be a supersolution given in Theorem 3.1.2. On Rieman-
nian manifolds, the distance squared function in construction of envelope was
suggested by Cabré in [12] and has been used by many in [74, 75, 77, 106].
More precisely, for each y ∈ BR, there is a unique paraboloid

Py(z) = cy −
1

2R2
d2Hn

κ
(z, y)

that touches u from below, with a contact point x ∈ B5R. The envelope Γ of
u is defined by

Γ(z) = sup
y∈BR

Py(z),

and the contact set is given by

C = {x ∈ B5R : u(x) = Γ(x)}. (3.4.1)

The first step toward to ABP-type estimates for nonlocal operators is to
find a ring around a given contact point in which supersolution u is quadrat-
ically close to the paraboloid in a large portion of the ring. In the Euclidean
spaces [15], or more generally in Riemannian manifolds with nonnegative cur-
vature [72], the standard dyadic rings B2−kr0 \ B2−(k+1)r0 are used. However,
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these are not appropriate within the framework of hyperbolic spaces due to
the lack of homogeneity of the volume of balls. We thus define rk recursively
by

|Brk |
|Brk−1

|
= 2−n, k = 1, 2, · · · ,

and a hyperbolic dyadic ring by Rk = Rk(x) = Brk(x)\Brk+1
(x). Note that we

have |Brk |/|Brk−1
| ≤ (rk/rk−1)

n from Lemma 3.2.2, and hence rk+1 ≥ rk/2.
By using the hyperbolic dyadic rings, we will prove a series of lemmas to
deduce Theorem 3.1.2. For notational convenience, we shall write

f̃κ(x) := ΛHκ(7R) +
R2

I0,κ(R)
f(x),

where we recall Hκ(t) =
√
κt coth(

√
κt).

Lemma 3.4.1. Let u be a supersolution given in Theorem 3.1.2. Then, there
exists a universal constant C0 > 0, independent of s, κ, and R, such that for
each x ∈ C and M0 > 0, there is an integer k ≥ 0 satisfying

|Gk| ≤
C0

M0

f̃κ(x)|Rk|, (3.4.2)

where Gk = Rk ∩ {u > Py +M0(rk/R)
2}.

Proof. Since x minimizes the function u + 1
2R2d

2
Hn

κ
(·, y), we have M−u(x) ≥

I1 + I2 + I3, where

I1 = λ

ˆ
BR(x)∪B5R

δ

(
u+

1

2R2
d2Hn

κ
(·, y), x, z

)
Kn,s,κ(dHn

κ
(z, x)) dµHn

κ
(z),

I2 = −Λ

ˆ
BR(x)∪B5R

δ+
(

1

2R2
d2Hn

κ
(·, y), x, z

)
Kn,s,κ(dHn

κ
(z, x)) dµHn

κ
(z),

I3 = −Λ

ˆ
Hn

κ\(BR(x)∪B5R)

δ−(u, x, z)Kn,s,κ(dHn
κ
(z, x)) dµHn

κ
(z),

and δ(v, x, z) = (v(z) + v(expx(− exp−1
x z)) − 2v(x))/2 is the second or-

der incremental quotients. By the mean value theorem for integrals and
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Lemma 3.2.3, we obtain

I2 ≥ −CΛHκ(7R)
I0,κ(R)

R2
. (3.4.3)

Since u(x) ≤ u(x) + 1
2R2d

2
Hn

κ
(x, y) ≤ infB2R

(u + 1
2R2d

2
Hn

κ
(x, y) ≤ 11/2 < 6 and

u ≥ 0 in Hn
κ \B5R, we also have

I3 ≥ −CΛI∞,κ(R)

R2
. (3.4.4)

Let us now focus on I1. Assume that (3.4.2) does not hold for all k. Then,
since

δ

(
u+

1

2R2
d2Hn

κ
(·, y), x, z

)
≥M0

(rk
R

)2
on Gk

and Ks,κ is decreasing by Proposition 3.2.1, we have

I1 ≥ λM0

∞∑
k=1

ˆ
Gk

(rk
R

)2
Kn,s,κ(dHn

κ
(z, x)) dµHn

κ
(z)

≥ λC0
f̃(x)

R2

∞∑
k=1

r2kKn,s,κ(rk)|Rk|.

Since rk+1 ≥ rk/2 and |Rk| = 2n|Rk+1|, we obtain

I1 ≥ λC0
f̃(x)

R2

∞∑
k=0

r2k+1Kn,s,κ(rk+1)|Rk+1|

≥ λ2−2−nC0
f̃(x)

R2

∞∑
k=0

r2kKn,s,κ(rk+1)|Rk|

≥ λ2−2−nC0
f̃(x)

R2

∞∑
k=0

ˆ
Rk

d2Hn
κ
(z, x)Kn,s,κ(dHn

κ
(z, x)) dµHn

κ
(z)

= λ2−2−nC0
f̃(x)

R2
I0,κ(r0).

Furthermore, by using Proposition 3.3.1 we have

I1 ≥ λ2−2−nC0
f̃(x)

R2
ρ20I0,κ(r0/ρ0) = λ2−3−nC0

f̃(x)

R2
ρ20I0,κ(R). (3.4.5)
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By combining (3.4.3), (3.4.4), and (3.4.5), and then using (3.3.6) and Propo-
sition 3.3.3, we obtain

f(x) ≥ λ2−3−nC0
f̃(x)

R2
ρ20I0,κ(R)− C

(
1 + s−1

0

)
ΛHκ(7R)

I0,κ(R)

R2
.

By taking C0 sufficiently large, we arrive at a contradiction.

The next lemma shows that the function Γ − Py is c-convex with an
appropriate function c. See [50, 89] for the definition of c-convex function.
The proof is exactly the same with that of [71, Lemma 3.4] except for the
Hessian bound of the distance squared function. That is, we use Lemma 3.2.3
instead of [71, Lemma 2.1].

Lemma 3.4.2. Let x ∈ C , z ∈ Hn
κ, and y ∈ BR be a vertex point of a

paraboloid Py. Then,

(Γ−Py)(z) ≤ (1−t)(Γ−Py)(z1)+t(Γ−Py)(z2)+
1

2R2
t(1−t)Hκ(dHn

κ
(y, z)+|ξ|)|ξ|2

for all t ∈ (0, 1), where z1 = expz(tξ) and z2 = expz((1− t)(−ξ)).

Using Lemma 3.4.2, we show that the envelope is captured in a small ball
near a contact point by two paraboloids that are quadratically close to each
other.

Lemma 3.4.3. Under the setting of Lemma 3.4.1, there is a universal con-
stant ε0 ∈ (0, 1) such that if

|{z ∈ Rk : Γ(z) > Py(z) + h}| ≤ ε0|Rk|,

then
Γ ≤ Py + h+ CHκ(7R)

(rk
R

)2
in Br̃k+1

(x), where r̃k+1 =
1√
κ
tanh−1(1

2
tanh(

√
κrk+1)).

Proof. Let us fix z ∈ Br̃k+1
(x) and set D = {z ∈ Rk : Γ(z) ≤ Py(z) + h}.

For w ∈ Rk, let us consider a geodesic c : R → Hn
κ passing through w and z.
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Then, c(R) ∩Rk consists of two connected components c(t1, t2) and c(t3, t4),
where t1 < t2 < t3 < t4 satisfy t4 − t3 = t2 − t1. We may assume that w =

c(t) ∈ c(t1, t2). We define a map φz : Rk → Rk by φz(w) = c (−t+ t1 + t4),
which is clearly one-to-one and onto.

Among all the geodesics passing through the point z, let us consider
geodesics c⊥ that are perpendicular to the geodesic joining x and z. Then
∪ c⊥ divides Rk into two regions: let A1 be the smaller one and A2 the bigger
one. We claim

|E| ≤ |φz(E)| for any Borel set E ⊂ A1. (3.4.6)

Indeed, we may assume that z = 0κ ∈ Hn
κ by using a global isometry. Then

the map φ := φz can be represented by

φ(w) =
1√
κ
(cosh(r + Cθ), sinh(r + Cθ)(−θ)), w =

1√
κ
(cosh r, sinh rθ),

where Cθ = dHn
κ
(φ(w∗), 0) − dHn

κ
(w∗, 0), with w∗, the intersection point of

∂Brk+1
(x) and the geodesic segment joining 0 and w. Note that φ is a smooth

map because it is a composition of smooth maps. Clearly, Cθ ≥ 0 if and only
if w ∈ A1. Thus, we obtain

|E| =
¨

1E(w)
sinhn−1(

√
κr)

√
κ
n−1 dr dθ

≤
¨

1φ(E)(φ(w))
sinhn−1(

√
κ(r + Cθ))√
κ
n−1 dr dθ

=

¨
1φ(E)

(
cosh r̃√

κ
,
sinh r̃√

κ
θ̃

)
sinhn−1(

√
κr̃)

√
κ
n−1 dr̃ dθ̃ = |φ(E)|,

where we have used change of variables r̃ = r + Cθ and θ̃ = −θ. This proves
(3.4.6).

We next claim that

|Rk| ≤ C|A1| with C > 0 a universal constant. (3.4.7)

73



CHAPTER 3. HARNACK INEQUALITY FOR FRACTIONAL
LAPLACIAN-TYPE OPERATORS ON HYPERBOLIC SPACES

Let us first deduce the lemma assuming that (3.4.7) is true. If we show that
φz(A1 ∩D) ∩D ̸= ∅, then there are points wi ∈ Ai ∩D, i = 1, 2, such that
φz(w1) = w2. Since Γ(wi) ≤ Py(wi)+h, for i = 1, 2, the desired result follows
from Lemma 3.4.2. Assume to the contrary that the set φ(A1 ∩ D) ∩ D is
empty. By (3.4.7), we have

|A1 ∩Dc| ≤ |Rk ∩Dc| ≤ ε0|Rk| ≤ Cε0|A1|.

By taking ε0 = (2C)−1, we obtain |A1 ∩ D| > |A1|/2. Since φz(A1 ∩ D) ⊂
A2 ∩Dc, it follows that

1

2
|A1| < |A1 ∩D| ≤ |φz(A1 ∩D)| ≤ |A2 ∩Dc| ≤ |Rk ∩Dc| ≤ 1

2
|A1|,

which is a contradiction.
From now on, we focus on the proof of (3.4.7). To this end, it is convenient

to use the Poincaré ball model Bn
κ = Bn

1,κ. Let Ã1 = ϕ(A1) and R̃k = ϕ(Rk),
where ϕ is the isometry given by (3.2.2). Since we are concerned with volumes,
we may assume ϕ(z) = |ϕ(z)|e1 so that Ã1 is rotationally symmetric with
respect to x1-axis. Let ρk be such that rk = dBn

κ
(0, ρke1). We observe that

{y ∈ Bn
κ : ρk+1 < |y| < ρk, e1 · y/|y| > 1/2} ⊂ Ã1. (3.4.8)

Indeed, if we define Ã′
1 in the same way as Ã1 with z′ ∈ ∂Br̃k+1

(x) instead of
z ∈ Br̃k+1

(x), then Ã1 ⊃ Ã′
1. Moreover, any geodesic that is perpendicular to

x1-axis and passes through ρ̃k+1e1 is contained in the sphere(
x1 −

1 + ρ̃2k+1

2ρ̃k+1

)2

+ x22 + x23 + ...+ x2n =

(
1− ρ̃2k+1

2ρ̃k+1

)2

. (3.4.9)

The x1-coordinate of the intersection of the spheres (3.4.9) and x21+x22+ ...+
x2n = ρ2k+1 is given by

x1 =
ρ̃k+1

1 + ρ̃2k+1

(1 + ρ2k+1) =
tanh(

√
κr̃k+1)

tanh(
√
κrk+1)

ρk+1 =
1

2
ρk+1,
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where we used

dHn
κ
(0, ρe1) =

1√
κ
cosh−1 1 + ρ2

1− ρ2
=

1√
κ
tanh−1 2ρ

1 + ρ2

in the second equality. Note that the radius r̃k+1 =
1√
κ
tanh−1(1

2
tanh(

√
κrk+1))

is chosen so that the last equality holds. Therefore, (3.4.8) holds.
We now compute

|A1| = |Ã1|

≥
ˆ 2π

0

ˆ ρk

ρk+1

ˆ π
3

0

· · ·
ˆ π

3

0

(
2√

κ(1− ρ2)

)n

· ρn−1 sinn−2 φ1 · · · sinφn−2 dφ1 · · · dφn−2 dρ dθ

≥ C(n)

ˆ ρk

ρk+1

(
2√

κ(1− ρ2)

)n

ρ2 dρ.

Since
|Rk| = |R̃k| = |Sn−1|

ˆ ρk

ρk+1

(
2√

κ(1− ρ2)

)n

ρn−1 dρ,

(3.4.7) is proved with some C(n) > 0.

We define ϕ : Hn
κ → BR by a map assigning each point x ∈ Hn

κ a vertex
point y of the paraboloid Py, where Py is a paraboloid such that Γ(x) =

Py(x), which is not necessarily unique. Then, the flatness of Γ obtained in
Lemma 3.4.3 allows us to control the image of ϕ, which can be understood
as the image of gradient of Γ.

Lemma 3.4.4. Under the setting of Lemma 3.4.1, let x ∈ C and let k be
such that (3.4.2) holds, and let ε0 be the constant in Lemma 3.4.3. Then,∣∣∣{z ∈ Rk : u(z) > Py(z) + Cf̃κ(x)(rk/R)

2
}∣∣∣ ≤ ε0|Rk| (3.4.10)

and

ϕ
(
B(x, r̃k+1/2)

)
⊂ B

(
y, CSκ(7R)Tκ(rk+1)f̃κ(x)rk

)
, (3.4.11)
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where C > 0 is a universal constant depending only on n, λ, Λ, and s0.

Proof. By takingM0 = C0f̃κ(x)/ε0 in Lemma 3.4.1, we obtain (3.4.10). More-
over, by Lemma 3.4.3 we have

Py ≤ Γ ≤ Py + Cf̃(x)
(rk
R

)2
(3.4.12)

in Br̃k+1
(x), with a universal constant C > 0.

To prove (3.4.11), let z ∈ B(x, r̃k+1/2) and y∗ ∈ ϕ(z). We need to find
a upper bound of dHn

κ
(y∗, y). Let ξ1 = exp−1

z y∗ and ξ2 = exp−1
z y. Let us

consider a family of geodesics

c(s, t) = expz(t(ξ1 + s(ξ2 − ξ1))),

and the Jacobi field J along c. Then, by [53, Equation (1.8b)] (or see, e.g.
[66]), we have

|J(1)|g(y∗) ≤ Sκ(|ξ1|)|J ′(0)|g(z) ≤ Sκ(7R)|ξ2 − ξ1|g(z).

Considering the curve s 7→ c(s, 1), we obtain

dHn
κ
(y∗, y) ≤

ˆ 1

0

|∂sc(s, 1)|g(y∗) ds ≤ Sκ(7R)| exp−1
z y∗ − exp−1

z y|g(z).

By the Gauss lemma, we know that | exp−1
z y∗ − exp−1

z y|g(z) = R2|∇Py∗(z)−
∇Py(z)|g(z). Thus, it only remains to show that

R2|∇Py∗(z)−∇Py(z)|g(z) ≤ CTκ(rk+1)f̃(x)rk (3.4.13)

for some universal constant C > 0.
To this end, we prove that∣∣∣∣ ddt

∣∣∣∣
t=0

(Py∗ − Py) (c(t))

∣∣∣∣ ≤ CTκ(rk+1)f̃κ(x)
rk
R2

(3.4.14)

for all geodesics c, with unit speed, starting from c(0) = z. Suppose that
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(3.4.14) does not hold for some c. We may assume that

CTκ(rk+1)f̃κ(x)
rk
R2

≤ d

dt

∣∣∣∣
t=0

(Py∗ − Py) (c(t)),

by considering c̃(t) = c(−t) instead of c(t) if necessary. Let ε > 0, then there
is a δ > 0 such that if |t| < δ, we have

CTκ(rk+1)f̃κ(x)
rk
R2

− ε ≤ (Py∗ − Py)(c(t))− (Py∗ − Py)(c(0))

t
≤ h(t)− h(0)

t
,

(3.4.15)
where h(t) = (Γ − Py)(c(t)). Let T > 0 be the first time such that c(T ) ∈
∂B3r̃k+1/4(x). LetN be the least integer not smaller than T/δ, and let 0 = t0 <

t1 < · · · < tN = T be equally distributed times. Then, ti+1 − ti = T/N ≤ δ.
By Lemma 3.4.2, we have

h(ti)− h(ti−1)

ti − ti−1

≤ h(ti+1)− h(ti)

ti+1 − ti
+
Hκ(7R)

2R2
(ti+1−ti−1), i = 1, 2, · · · , N−1.

(3.4.16)
Thus, it follows from (3.4.15) and (3.4.16) that

CTκ(rk+1)f̃κ(x)
rk
R2

−ε ≤ h(ti+1)− h(ti)

T/N
+
Hκ(7R)

2R2

2Ti

N
, i = 1, 2, · · · , N−1.

(3.4.17)
Summing up (3.4.17) for i = 1, 2, · · · , N − 1, we obtain

N
(
CTκ(rk+1)f̃κ(x)

rk
R2

− ε
)
≤ h(tN)− h(t0)

T/N
+

Hκ(7R)

2R2

2T

N

N(N − 1)

2
.

Since c has a unit speed, we have r̃k+1/4 < T < r̃k+1, and hence

CTκ(rk+1)f̃κ(x)
rk
R2

− ε ≤ (Γ− Py)(c(T ))− (Γ− Py)(z)

r̃k+1/4
+

Hκ(7R)

2R2
r̃k+1

≤ (Γ− Py)(c(T ))

r̃k+1/4
+

Hκ(7R)

2R2
r̃k+1.

Recalling that Tκ(rk+1) = rk+1/r̃k+1 and rk+1 ≥ rk/2, and that ε was arbi-
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trary, we have

Cf̃κ(x)
r2k
8R2

≤ (Γ− Py)(c(T )) +Hκ(7R)
r2k
8R2

. (3.4.18)

Since c(T ) ∈ ∂B3r̃k+1/4(x) ⊂ Br̃k+1
(x), the inequality (3.4.18) with a suf-

ficiently large constant C1 > 0 contradicts to (3.4.12). Therefore, we have
proved (3.4.13), which finishes the proof.

We are now ready to prove a discrete ABP-type estimate, from which
Theorem 3.1.2 follows.

Lemma 3.4.5. Assume the same assumptions as in Theorem 3.1.2. There
is a finite collection D of dyadic cubes {Qj

α}, with diameters dj ≤ r0, such
that the following hold:

(i) Any two different dyadic cubes in D do not intersect.

(ii) C ⊂
⋃
Q

j

α.

(iii) |ϕ(Qj

α)| ≤ cF n|Qj
α|.

(iv) |B(zjα, 2r0) ∩ {u ≤ Γ + C(sup
Q

j
α
f̃(x))(r0/R)

2}| ≥ µ|Qj
α|.

The constants C > 0 and µ > 0 depend only on n, λ, Λ, and s0.

Proof. Let c1, c2, and δ0 be the constants given in Theorem 3.2.4, which
depend only on n. Let us fix the smallest integer N such that c2δN0 ≤ r0,
then there are finitely many dyadic cubes QN

α of generation N such that
Q

N

α ∩ C ̸= ∅ and C ⊂ ∪αQ
N

α . Whenever a dyadic cube Qj
α (j ≥ N) does not

satisfy (iii) and (iv), we consider all of its successors Qj+1
β ⊂ Qj

α instead of
Qj

α. Among these successors of j + 1 generation, we only keep those whose
closures intersect A and discard the rest. We prove that this process must
finish in a finite number of steps.

Assume to the contrary that the process produces an infinite sequence of
nested dyadic cubes {Qj

α}∞j=N . Then, the intersection of their closures is some
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contact point x ∈ C . By Lemma 3.4.4, there is a k ≥ 0 such that (3.4.10)
and (3.4.11) hold. Let j ≥ N be such that δ0r̃k+1/2 ≤ c2δ

j
0 < r̃k+1/2 ≤ r0,

then it follows from Theorem 3.2.4 that

B(zjα, c1δ
j
0) ⊂ Qj

α ⊂ Q
j

α ⊂ B(x, r̃k+1/2). (3.4.19)

Thus, it follows from (3.4.11) and (3.4.19) that

|ϕ(Qj

α)| ≤ |ϕ(B(x, r̃k+1/2))| ≤ |B(y, CSκ(7R)Tκ(rk+1)f̃κ(x)rk)|.

Since Sκ(7R)f̃κ(x) ≤ F and rk ≤ 2rk+1 = 2Tκ(rk+1)r̃k+1 ≤ 4Tκ(r0)c2δ
j−1
0 , we

have
|ϕ(Qj

α)| ≤ |B(zjα, CT 2
κ (r0)Fc1δ

j
0)|.

Therefore, by Lemma 3.2.2 we obtain

|ϕ(Qj

α)| ≤ D
(
CT 2

κ (r0)F
)log2 D |Qj

α|

where D = 2n coshn−1(C
√
κT 2

κ (r0)c1δ
j
0F ), which shows that Qj

α satisfies (iii).
If z ∈ B(x, rk), then d(z, zjα) ≤ d(z, x)+ d(x, zjα) < rk + c2δ

j
0 ≤ 2r0, which

shows that B(x, rk) ⊂ B(zjα, 2r0). Thus, by using (3.4.10), we have

|B(zjα, 2r0)∩{u ≤ Γ + C(sup
Q

j
α

f̃κ(x))(r0/R)
2}|

≥ |Rk ∩ {u ≤ Py + Cf̃κ(x)(rk/R)
2}|

≥ (1− ε0)|Rk|

= (1− ε0)(2
n − 1)|Brk+1

|

≥ µ|Qj
α|

for some universal constant µ > 0. This proves that Qj
α also satisfies (iv),

which yields a contradiction. Therefore, the process must stop in a finite
number of steps.
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3.5 A barrier function

This section is devoted to a construction of a special barrier function, which is
a key ingredient together with the ABP-type estimates for the Krylov–Safonov
Harnack inequality. It is standard to use distance function to construct a bar-
rier function, but computations are significantly different from the standard
argument. We will observe how the negative curvature of hyperbolic spaces
comes into play. Let us begin with some inequalities.

Lemma 3.5.1. Let α > 0 and R0 > 0. Then

(cosh−1(t cosh(
√
κR0)))

−2α − (
√
κR0)

−2α ≥ −2α
Hκ(R0)

(
√
κR0)2α+2

(t− 1) (3.5.1)

for all t > 1/ cosh(
√
κR0). Moreover,

(cosh−1(t cosh(
√
κR0)))

−2α−2

t2 cosh2(
√
κR0)− 1

− (
√
κR0)

−2α−2

sinh2(
√
κR0)

≥ −(2α + 2 + 2Hκ(R0))Hκ(R0)

(
√
κR0)2α+4 sinh2(

√
κR0)

(t− 1)

(3.5.2)

and

(cosh−1(t cosh(
√
κR0)))

−2α−1 t cosh(
√
κR0)

(t2 cosh2(
√
κR0)− 1)3/2

− (
√
κR0)

−2α−1 cosh(
√
κR0)

sinh3(
√
κR0)

≥ −((2α + 1)Hκ(R0)− (
√
κR0)

2 + 3H2
κ(R0))Hκ(R0)

(
√
κR0)2α+4 sinh2(

√
κR0)

(t− 1)

(3.5.3)

for all t > 1/ cosh(
√
κR0).

Proof. Since the function

f(t) := (cosh−1(t cosh(
√
κR0))

−2α, t >
1

cosh(
√
κR0)

,

is convex, (3.5.1) follows from the inequality f(t) ≥ f(1) + f ′(1)(t− 1). The
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inequalities (3.5.2) and (3.5.3) can be obtained similarly by considering

g(t) :=
(cosh−1(t cosh(

√
κR0)))

−2α−2

t2 cosh2(
√
κR0)− 1

and

h(t) := (cosh−1(t cosh(
√
κR0)))

−2α−1 t cosh(
√
κR0)

(t2 cosh2(
√
κR0)− 1)3/2

,

which are also convex functions.

Using Lemma 3.5.1, we first construct a barrier function when s is suffi-
ciently close to 1. Let us denote Ks,κ = Kn,s,κ in the following lemmas.

Lemma 3.5.2. Let δ ∈ (0, 1). There are constants α > 0 and s0 ∈ (0, 1),
depending only on n, λ, Λ, δ, and

√
κR, such that the function

v(x) = max

{
−
(
δ

20

)−2α

,−
(
dHn

κ
(x, 0)

5R

)−2α}
is a supersolution to

(7R)2

I0,κ(7R)
M+v(x) + ΛHκ(7R) ≤ 0, (3.5.4)

for every s0 < s < 1 and x ∈ B5R \BδR/4.

Proof. Fix x and let R0 := dHn
κ
(x, 0) ∈ (δR/4, 5R). We are going to consider

the coordinates centered at x. There is an isometry φ ∈ SO(1, n) such that
x = φ(0) and 0 = φ( 1√

κ
cosh(

√
κR0),

1√
κ
sinh(

√
κR0)e1) with e1 ∈ Sn−1.

Notice that 0 denotes 0κ = ( 1√
κ
, 0, · · · , 0) ∈ Hn

κ.
Let z ∈ BR0/2(x), then z = φ( 1√

κ
cosh(

√
κr), 1√

κ
sinh(

√
κr)ω) for some

r ∈ [0, R0/2) and ω ∈ Sn−1. By the hyperbolic law of cosines, we have

dHn
κ
(z, 0) = dHn

κ

(
φ

(
cosh(

√
κr)√

κ
,
sinh(

√
κr)√

κ
ω

)
, φ

(
cosh(

√
κR0)√
κ

,
sinh(

√
κR0)√
κ

e1

))
= dHn

κ

((
cosh(

√
κr)√

κ
,
sinh(

√
κr)√

κ

)
,

(
cosh(

√
κR0)√
κ

,
sinh(

√
κR0)√
κ

))
=

1√
κ
cosh−1(A−B)
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where A = cosh(
√
κr) cosh(

√
κR0) and B = sinh(

√
κr) sinh(

√
κR0)ω1. Simi-

larly, we have

dHn
κ
(expx(− exp−1

x z), 0) =
1√
κ
cosh−1(A+B).

Thus, we obtain

δ(v, x, z) = −(5
√
κR)2α

(cosh−1(A−B))−2α + (cosh−1(A+B))−2α − 2(
√
κR0)

−2α

2
.

Since (cosh−1(·))−2α is convex at A, we obtain

δ(v, x, z) ≤− (5
√
κR)2α

(
α(2α + 1)

(cosh−1A)−2α−2

(A2 − 1)1/2
+ α

A(cosh−1A)−2α−1

(A2 − 1)3/2

)
B2

− (5
√
κR)2α

(
(cosh−1A)−2α − (

√
κR0)

−2α
)
.

Moreover, by applying Lemma 3.5.1 with t = cosh(
√
κr), we have

δ(v, x, z)

≤ α(2α + 1)cδ

(
(2α + 2 + 2Hκ(R0))Hκ(R0)

cosh(
√
κr)− 1

(
√
κR0)2

− 1

)
sinh2(

√
κr)

(
√
κR0)2

ω2
1

+ αcδ

((
(2α + 1)Hκ(R0)− (

√
κR0)

2 + 3H2
κ(R0)

) cosh(√κr)− 1

(
√
κR0)2

− 1

)
×Hκ(R0)

sinh2(
√
κr)

(
√
κR0)2

ω2
1 + 2αcδHκ(R0)

cosh(
√
κr)− 1

(
√
κR0)2

,

(3.5.5)

where cδ = (20/δ)2α. Let us now compute

M+v(x) ≤
ˆ
B(x,

R0
2
)

(
Λδ+(v, x, z)− λδ−(v, x, z)

)
Ks,κ(dHn

κ
(z, x)) dµHn

κ
(z)

+

ˆ
Hn\B(x,

R0
2
)

(
Λδ+(v, x, z)− λδ−(v, x, z)

)
Ks,κ(dHn

κ
(z, x)) dµHn

κ
(z)

=: I1 + I2.

(3.5.6)
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We take α = α(n, λ,Λ,
√
κR) > 0 sufficiently large so that

λ(2α + 1)

 
Sn−1

ω2
1 dσ − ΛHκ(7R) > C1ΛHκ(7R), (3.5.7)

for some universal constant C1 > 0 to be determined later. Then, by (3.5.5)
we have

I1

≤ Λαcδ
(
(2α + 1)Hκ(R0)− (

√
κR0)

2 + 3H2
κ(R0)

)
Hκ(R0)

×
ˆ
BR0/2

cosh(
√
κr)− 1

(
√
κR0)2

sinh2(
√
κr)

(
√
κR0)2

ω2
1Ks,κ(dHn

κ
(z, x)) dµHn

κ
(z)

+ Λα(2α + 1)cδ (2α + 2 + 2Hκ(R0))Hκ(R0)

×
ˆ
BR0/2

cosh(
√
κr)− 1

(
√
κR0)2

sinh2(
√
κr)

(
√
κR0)2

ω2
1Ks,κ(dHn

κ
(z, x)) dµHn

κ
(z)

+ αcδ

ˆ
BR0

2

(
2ΛHκ(R0)

cosh(
√
κr)− 1

(
√
κR0)2

− λ(2α + 1 +Hκ(R0))
sinh2(

√
κr)

(
√
κR0)2

ω2
1

)
×Ks,κ(dHn

κ
(z, x)) dµHn

κ
(z)

= αcδ (I1,1 + I1,2 + I1,3) .

(3.5.8)
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We use (3.5.7) to estimate I1,3 as follows:

I1,3 =

ˆ
BR0/2

(
4ΛHκ(R0)− 4λ(2α + 1 +Hκ(R0)) cosh

2

(√
κ

2

)
ω2
1

)
·
sinh2(

√
κ r
2
)

(
√
κR0)2

Ks,κ dµHn
κ
(z)

≤
ˆ R0/2

0

(
4Λ|Sn−1|Hκ(7R)− 4λ(2α + 1)

ˆ
Sn−1

ω2
1 dσ

)
·
sinh2(

√
κ r
2
)

(
√
κR0)2

Ks,κ
sinhn−1(

√
κr)

√
κ
n−1 dr

≤ −4C1Λ
Hκ(7R)

(
√
κR0)2

ˆ R0/2

0

|Sn−1|
(r
2

)2
Ks,κ(r)

sinhn−1(
√
κr)

√
κ
n−1 dr

= −C1ΛHκ(7R)
I0,κ(R0/2)

(
√
κR0)2

.

(3.5.9)

For I1,1 and I1,2, we observe that cosh(
√
κr) − 1 ≤ Cκr2 and sinh2(

√
κr) ≤

Cκr2 for r ∈ [0, R0/2], where C is some constant depending on
√
κR. Thus,

by using Lemma 3.9.2 and (3.2.7) we obtain

I1,1 + I1,2

≤ CΛ

ˆ R0/2

0

ˆ
Sn−1

cosh(
√
κr)− 1

κR2
0

sinh2(
√
κr)

κR2
0

ω2
1Ks,κ(r)

sinhn−1(
√
κr)

√
κ
n−1 dσ dr

≤ CΛ(1− s)

√
κ
1+s

R4
0

ˆ R0/2

0

r4−sIn
2
−1

(
n− 1

2

√
κr

)
Kn

2
+s

(
n− 1

2

√
κr

)
dr

≤ CΛ(1− s)

√
κ
−4+2s

R4
0

ˆ n−1
4

√
κR0

0

r4−sIn
2
−1(r)Kn

2
+s(r) dr

≤ CΛ(1− s)

√
κ
−4+2s

R4
0

A4−s
n
2
+s,n

2
−1

(
n− 1

4

√
κR0

)
,

(3.5.10)

where A is the function defined in (3.9.7).
On the other hand, by using the fact that v is bounded and Proposi-
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tion 3.3.3, we obtain

I2 ≤ CΛ
I∞,κ(R0/2)

(R0/2)2
≤ CΛ

1− s

s
Hκ(7R)

I0,κ(7R)

(7R)2
. (3.5.11)

Thus, (3.5.6), (3.5.8), (3.5.9), (3.5.10), (3.5.11), and Lemma 3.3.2 yield

(7R)2

I0,κ(7R)
M+v(x)

≤ CαΛ
[
− C1

+ C(1− s)
(7R)2

I0,κ(7R)

√
κ
−4+2s

R4
0

A4−s
n
2
+s,n

2
−1

(
n− 1

4

√
κR0

)
+

1− s

s

]
Hκ(7R).

(3.5.12)

Recall from Proposition 3.3.4 that I0(7R) → C as s → 1. Moreover, the
function A4−s

n
2
+s,n

2
−1 does not blow up as s → 1 by Lemma 3.9.4. Thus, the

second and the third terms in (3.5.12) can be made as small as we want by
choosing s0 close to 1. Therefore, the proof is finished by assuming that we
have taken α sufficiently large so that (3.5.4) holds.

In the following lemma, we construct a barrier function for any s ∈ (s0, 1)

for given s0 ∈ (0, 1).

Lemma 3.5.3. Given s0 ∈ (0, 1) and δ ∈ (0, 1), there exist universal con-
stants α > 0 and η ∈ (0, 1/4], depending only on n, λ, Λ, δ,

√
κR, and s0,

such that the function

v(x) = max

{
−
(
ηδ

20

)−2α

,−
(
dHn

κ
(x, 0)

5R

)−2α}
is a supersolution to

(7R)2

I0,κ(7R)
M+v(x) + ΛHκ(7R) ≤ 0, (3.5.13)

for every s0 < s < 1 and x ∈ B5R \BδR/4.
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Proof. Let s1 and α1 be the s0 and α in Lemma 3.5.2, respectively. When
s ∈ [s1, 1), the desired result holds with α1 and η = 1/4.

Let us now assume s ∈ (s0, s1). For x with R0 := dHn
κ
(x, 0) ∈ (δR/4, 5R),

we know that v ∈ C2(B(x,R0/2)) and that δ+(v, x, z) is bounded for z ∈
Hn

κ \B(x,R0/2). Thus, we have

(7R)2

I0,κ(7R)
M+v(x) ≤ CHκ(7R)− λ

ˆ
Hn

κ

δ−(v, x, z)Ks,κ(dHn
κ
(z, x)) dµHn

κ
(z).

(3.5.14)
If we take α = max{α1, n/2}, then the function δ−(−(dHn

κ
(·, 0)/5R)−2α, x, z)

is not integrable. Therefore, the last integral in (3.5.14) can be made arbi-
trarily large, by taking η small. In particular, we choose η so that (3.5.13)
holds.

Corollary 3.5.4. Let δ ∈ (0, 1) and assume 0 < s0 ≤ s < 1. Then, there is
a function vδ such that

vδ ≥ 0 in Hn
κ \B5R,

vδ ≤ 0 in B2R,

(7R)2

I0,κ(7R)
M+vδ + ΛHκ(7R) ≤ 0 in B5R \BδR/4,

(7R)2

I0,κ(7R)
M+vδ ≤ CΛHκ(7R) in B5R,

v ≥ −C in B5R,

for some universal constant C > 0, depending only on n, λ, Λ, δ,
√
κR, and

s0.

Proof. Let α and η be the constants given in Lemma 3.5.3, and define a func-
tion vδ(x) = ψ(d2Hn

κ
(x, 0)/R2), where ψ is a smooth and increasing function

on [0,∞) such that

ψ(t) =

(
32

52

)−α

−
(
t

52

)−α

if t ≥ (ηδ)2.

We already know from Lemma 3.5.3 that (7R)2

I0,κ(7R)
M+vδ + ΛHκ(7R) ≤ 0 in
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B5R\BδR/4. Finally, for x ∈ BδR/4, we have |δ(vδ, x, z)| ≤ CHκ(7R)dHn
κ
(x, z)2/R2

for z ∈ BR(x) and |δ(vδ, x, z)| ≤ C for z ∈ Hn
κ \ BR(x) with a uniform con-

stant C > 0. Therefore, we conclude (7R)2

I0,κ(7R)
M+vδ ≤ CΛHκ(7R) in B5R,

with the help of Proposition 3.3.3.

3.6 Lε-estimate

In this section, we prove the so-called Lε-estimate, which connects a pointwise
estimate to an estimate in measure. Such a result forms a basis for the proofs
of the Harnack inequality and Hölder estimate. From now on, we will prove
the results only on Hn since Theorem 3.1.4 and Theorem 3.1.5 can be derived
from the results on Hn by using a simple scaling argument. Moreover, since
the essential results in the previous sections have been proved on Hn

κ, one
may easily reprove forthcoming results on Hn

κ. We write Ks = Kn,s,1, H = H1,
S = S1, and T = T1 for simplicity in the sequel.

Lemma 3.6.1. Assume 0 < s0 ≤ s < 1, and let δ ∈ (0, 1). If u ∈ C2(B7R)

is a nonnegative function on Hn satisfying (7R)2

I0(7R)
M−u ≤ εδ in B7R and

infB2R
u ≤ 1, then

|{u ≤Mδ} ∩BδR|
|B7R|

≥ µδ,

where εδ > 0, µδ ∈ (0, 1), and Mδ > 1 are universal constants depending only
on n, λ, Λ, δ, R and s0.

Proof. Let vδ be the barrier function constructed in Corollary 3.5.4 and define
w = u+ vδ. Then w satisfies w ≥ 0 in Hn \ B5R, infB2R

w ≤ 1, and M−w ≤
I0(7R)
(7R)2

εδ +M+vδ in B5R. By applying Theorem 3.1.2 to w with its envelope
Γw, we have

|BR| ≤
∑
j

cF n|Qj
α|,

where

F = S(7R)
(
ΛH(7R) +

R2

I0(R)

(
I0(7R)

(7R)2
εδ +max

Q
j
α

M+vδ

))
+
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and c = C coshn−1(CT 2(r0)r0F )(CT 2(r0)F )
(n−1) log cosh(CT 2(r0)r0F )T 2n(r0). We

obtain by Proposition 3.3.1

F ≤ S(7R)
(
εδ + ΛH(7R) +

(7R)2

I0(7R)
max
Q

j
α

M+vδ

)
+

.

Since ΛH(7R)+ (7R)2

I0(7R)
M+vδ ≤ 0 in B5R\BδR/4 and (7R)2

I0(7R)
M+vδ ≤ CΛH(7R)

in B5R, we have

|BR| ≤ Cεnδ
∑

Q
j
α∩BδR/4=∅

|Qj
α|+ C

∑
Q

j
α∩BδR/4 ̸=∅

|Qj
α|

for some universal constant C > 0, depending on R. By taking εδ > 0

sufficiently small, we have

|B7R| ≤ C
∑

Q
j
α∩BδR/4 ̸=∅

|Qj
α|.

By using Lemma 3.4.5 (iv), we obtain

|B7R| ≤ C
∑

Q
j
α∩BδR/4 ̸=∅

|B(zjα, 2r0) ∩ {w ≤ Γw + C}|.

Whenever Qj

α ∩BδR/4 ̸= ∅, the ball B(zjα, 2r0) is contained in BδR if we have
taken ρ0 = δ/4. Indeed, for z ∈ B(zjα, 2r0)

dHn(z, 0) ≤ dHn(z, zjα) + dHn(zjα, z∗) + dHn(z∗, 0) ≤ 2r0 + r0 + δR/4 < δR,

where z∗ is a point in Q
j

α ∩ BδR. By taking a subcover of {B(zjα, 2r0)} with
finite overlapping and using vδ ≥ −C in B5R, we arrive at

|B7R| ≤ C|{u ≤Mδ} ∩BδR|

for some Mδ > 1. Taking µδ = 1/C finishes the proof.
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Lemma 3.6.1, together with the Calderón–Zygmund technique developed
in [12], provides the following Lε-estimate. As in [12], we fix δ = 2c1

c2
δ0 and

δ1 = δ0(1− δ0)/2 ∈ (0, 1). Let kR be the integer satisfying

c2δ
kR−1
0 < R ≤ c2δ

kR−2
0 ,

which is the generation of a dyadic cube whose size is comparable to that of
some ball of radius R.

Lemma 3.6.2. Assume 0 < s0 ≤ s < 1. Let εδ, µδ, and Mδ be the constants
in Lemma 3.6.1. Let u ∈ C2(B7R) be a nonnegative function on Hn satis-
fying (7R)2

I0(7R)
M−u ≤ εδ in B7R and infBδ1R

u ≤ 1. If Q1 is a dyadic cube of
generation kR such that infx∈Q1 dHn(x, 0) ≤ δ1R, then

|{u > M i
δ} ∩Q1| ≤ (1− cδ)

i|Q1|.

for all i = 1, 2, · · · . As a consequence, we have

|{u > t} ∩Q1| ≤ Ct−ε|Q1|, t > 0,

for some universal constants C > 0 and ε > 0.

Corollary 3.6.3 (Weak Harnack inequality). Assume 0 < s0 ≤ s < 1. If
u ∈ C2(B2R) is a nonnegative function satisfying M−u ≤ C0 in B2R, then

( 
BR

up dµHn

)1/p

≤ C

(
inf
BR

u+ C0
R2

I0(R)

)
,

where p > 0 and C > 0 are universal constants depending only on n, λ, Λ,
R, and s0.

See, e.g., [12, Theorem 8.1] for the proof of Corollary 3.6.3.

89



CHAPTER 3. HARNACK INEQUALITY FOR FRACTIONAL
LAPLACIAN-TYPE OPERATORS ON HYPERBOLIC SPACES

3.7 Harnack inequality

The purpose of this section is to prove the Krylov–Safonov Harnack inequality
by using Lemma 3.6.2. A simple scaling argument will provide Theorem 3.1.4.

Theorem 3.7.1. Assume 0 < s0 ≤ s < 1. If a nonnegative function u ∈
C2(B7R) satisfies

(7R)2

I0(7R)
M−u ≤ ε0 and

(7R)2

I0(7R)
M+u ≥ −ε0 in B7R

and infBδ1R
u ≤ 1, then

sup
Bδ1R/4

u ≤ C,

where ε0 > 0 and C > 0 are universal constants depending only on n, λ, Λ,
R, and s0.

Proof. Let ε and εδ be the constants given in Lemma 3.6.2, and let t > 0 be
the minimal value such that the following holds:

u(x) ≤ ht(x) := t

(
1

D

(
1− dHn(x, z0)

δ1R

)log2 D)−1/ε

for all x ∈ Bδ1R,

where for D = 2n coshn−1(2δ0R). Since supBδ1R/4
u ≤ tD− 1

ε
log2(3/8), we can

conclude the theorem once we show that t ≤ C for some universal constant
C.

Let x0 ∈ Bδ1R be a point such that u(x0) = ht(x0). Let d = δ1R −
dHn(x0, 0), r = d/2, and A = {u > u(x0)/2}, then we have

u(x0) = ht(x0) = tD1/ε

(
2r

δ1R

)− 1
ε
log2 D

.

We apply Lemma 3.6.2 to u to obtain

|A ∩Q1| ≤ C

(
u(x0)

2

)−ε

|Q1| ≤ Ct−ε 1

D

( r
R

)log2 D
|Q1|,
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where Q1 is the unique dyadic cube of generation kR that contains the point
x0.

We will show that there is a small constant θ > 0 such that

|Ac ∩Q2| ≤
1

2
|Q2|, (3.7.1)

where Q2 ⊂ Q1 is the dyadic cube of generation kθr/14 containing the point
x0, provided that t is large. However, when t is sufficiently large, we also have

|A ∩Q2| ≤ |A ∩Q1| ≤
C

tεD

( r
R

)log2 D
|B(z, c2δ

kR
0 )|

≤ C

tε
|B(z, c1δ

krθ/14
0 )| ≤ C

tε
|Q2| <

1

2
|Q2|,

where B(z, c1δ
kθr/14
0 ) is a ball contained in Q2. This contradicts to (3.7.1) and

will lead us to a conclusion that t is uniformly bounded.
Let us now focus on proving (3.7.1). For every x ∈ B(x0, θr), we have

u(x) ≤ ht(x) ≤ t

(
1

D

(
d− θr

δ1R

)log2 D
)−1/ε

=

(
1− θ

2

)− 1
ε
log2 D

u(x0).

We define a function

v(x) :=

(
1− θ

2

)− 1
ε
log2 D

u(x0)− u(x).

Since we will apply Lemma 3.6.2, we need a function which is nonnegative on
the whole space. Thus, we apply Lemma 3.6.2 to w := v+ in B(x0, 7(θr/14)).

91



CHAPTER 3. HARNACK INEQUALITY FOR FRACTIONAL
LAPLACIAN-TYPE OPERATORS ON HYPERBOLIC SPACES

For x ∈ B(x0, 7(θr/14)), we have

M−w(x) ≤ M−v(x) +M+v−(x)

≤ −M+u(x) + Λ

ˆ
Hn\B(x0,θr)

v−(z)Ks(dHn(z, x)) dµHn(z)

≤ I0(7R)

(7R)2
ε0

+ Λ

ˆ
Hn\B(x0,θr)

(u(z)− (1− θ/2)−
log2 D

ε u(x0))
+Ks(dHn(z, x)) dµHn(z).

(3.7.2)

To compute the last integral in (3.7.2), we introduce another auxiliary func-
tion

gβ(x) := β

(
1− dHn(x, 0)2

R2

)+

,

with the largest number β > 0 satisfying u ≥ gβ. From the assumption
infBδ1R

u ≤ 1, we have (1− δ21)β ≤ 1. Let x1 ∈ BR be a point where u(x1) =
gβ(x1). Since

ˆ
Hn

δ−(u, x1, z)Ks(dHn(z, x1)) dµHn(z) ≤
ˆ
Hn

δ−(gβ, x1, z)Ks(dHn(z, x1)) dµHn(z)

≤ CH(7R)
I0(7R)

(7R)2
,

we obtain that

ε0 ≥
(7R)2

I0(7R)
M−u(x1)

≥ λ
(7R)2

I0(7R)

ˆ
Hn

δ+(u, x1, z)Ks(dHn(z, x1)) dµHn(z)− CΛH(7R).

Thus, we have

ˆ
Hn

(u(z)− c)+Ks(dHn(z, x1)) dµHn(z)

≤
ˆ
Hn

δ+(u, x1, z)Ks(dHn(z, x1)) dµHn(z) ≤ CH(7R)
I0(7R)

(7R)2
,

(3.7.3)
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where c := 1/(1− δ21).
If u(x0) ≤ c, then we find an upper bound t = u(x0)(δ1R/d)

− 1
ε
log2 D ≤

cδ
− 1

ε
log2 D

1 , which finishes the proof. Otherwise, it follows from (3.7.2) and
(3.7.3) that

M−w(x) ≤ I0(7R)

(7R)2
ε0 + Λ

ˆ
Hn\B(x0,θr)

(u(z)− c)+Ks(dHn(z, x)) dµHn(z)

≤ I0(7R)

(7R)2
ε0 + ΛM

ˆ
Hn\B(x0,θr)

(u(z)− c)+Ks(dHn(z, x1)) dµHn(z)

≤ I0(7R)

(7R)2
ε0 + CMH(7R)

I0(7R)

(7R)2
,

where

M = sup

{
Ks(dHn(z, x))

Ks(dHn(z, x1))
: x ∈ B(x0, θr/2), x1 ∈ BR, z ∈ Hn \B(x0, θr)

}
.

Let d = dHn(z, x) and d1 = dHn(z, x1) for the sake of brevity. We recall from
Lemma 3.9.2 that the kernel Ks is comparable with the function

Rs− 1
2 sinh−n−1

2 (R)Kn
2
+s

(
n− 1

2
R

)
.

If d ≥ d1, then by [87, Chapter 4] we have

Ks(d)

Ks(d1)
≤ C

(
d1
d

)1/2+s(
sinh d1
sinh d

)n−1
2 Kn/2+s(

n−1
2
d)

Kn/2+s(
n−1
2
d1)

≤ C

(
sinh d1
sinh d

)n−1
2

e
n−1
2

(d1−d) ≤ C.

If d < d1, by [87, Theorem 3.1] we have

Ks(d)

Ks(d1)
≤ C

(
d1
d

)n+1
2

+2s(
sinh d1
sinh d

)n−1
2

e
n−1
2

(d1−d)

<

(
d1
d

)n+5
2
(
sinh d1
sinh d

)n−1
2

e
n−1
2

(d1−d).
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Since d1−d ≤ d(x, x′), we can bound Ks(d)/Ks(d1) by a constant depending
on R. Thus, for any cases the ratio Ks(d)/Ks(d1) is bounded by a universal
constant depending on R which is independent of s. By using Lemma 3.3.2,
we arrive at

(θr/2)2

I0(θr/2)
M−

L0
w ≤ C

I0(R)/R
2

I0(θr/2)/(θr/2)2
H(7R) ≤ C

in B(x0, 7(θr/14)).
Let Q2 ⊂ Q1 be the dyadic cube of generation kθr/14 containing the point

x0. Then by Lemma 3.6.2, we have

|{u < u(x0)/2} ∩Q2| = |{w >
(
(1− θ/2)−s − 1/2

)
u(x0)} ∩Q2|

≤ C|Q2|(
(1− θ/2)−s − 1/2

)ε
u(x0)ε

(
inf

B(x0,δ1θr/14)
w + C

)ε

.

We can make the quantity (1− θ/2)−s− 1/2 bounded away from 0 by taking
θ > 0 sufficiently small. Recalling that w(x0) = ((1 − θ/2)−s − 1)u(x0), we
obtain

|{u < u(x0)/2} ∩Q2| ≤ C|Q2|
(
((1− θ/2)−s − 1)ε +

(
C

u(x0)

)ε)
.

We choose a constant θ > 0 sufficiently small so that

C
(
(1− θ/2)−s − 1

)ε ≤ 1

4
.

If t > 0 is sufficiently large so that C(C/u(x0))ε < 1/4, then we arrive at
(3.7.1). Therefore, t is uniformly bounded and the desired result follows.

3.8 Hölder estimates

In this section, the following Hölder regularity result is proved. Theorem 3.1.5
follows from simple scaling and covering arguments.
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Lemma 3.8.1. Assume 0 < s0 ≤ s < 1. There is a universal constant ε0
such that if u ∈ C2(B7R) is a function such that |u| ≤ 1

2
in B7R and

(7R)2

I0(7R)
M+u ≥ −ε0 and

(7R)2

I0(7R)
M−u ≤ ε0 in B7R,

then u ∈ Cα at 0 ∈ Hn with an estimate

|u(x)− u(0)| ≤ CR−αdHn(x, 0)α,

where α ∈ (0, 1) and C > 0 are universal constants depending only on n, λ,
Λ, R, and s0.

Proof. Let Rk := 7·4−kR and Bk := BRk
. It suffices to construct an increasing

sequence {mk}k≥0 and a decreasing sequence {Mk}k≥0 such that mk ≤ u ≤
Mk in Bk and Mk−mk = 4−αk. We initially choose m0 = −1/2 and M0 = 1/2

for the case k = 0. Let us assume that we have sequences up to mk and Mk

and find mk+1 and Mk+1.
For x ∈ B2Rk+1

, let Q1 be a dyadic cube of generation kRk+1/7. In Q1,
either u > (Mk +mk)/2 or u ≤ (Mk +mk)/2 in at least half of the points in
measure. We assume

|{u > (Mk +mk)/2} ∩Q1| ≥
1

2
|Q1|. (3.8.1)

A function defined by

v(x) :=
u(x)−mk

(Mk −mk)/2

satisfies v ≥ 0 in Bk by the induction hypothesis. To apply Lemma 3.6.2, let
us consider a function w := v+, which satisfies

|{w > 1} ∩Q1| ≥
1

2
|Q1| (3.8.2)

95



CHAPTER 3. HARNACK INEQUALITY FOR FRACTIONAL
LAPLACIAN-TYPE OPERATORS ON HYPERBOLIC SPACES

by (3.8.1). Since (7R)2

I0(7R)
M−v ≤ 2ε0/(Mk −mk) in B7R, we have

R2
k+1

I0(Rk+1)
M−w ≤

R2
k+1

I0(Rk+1)
(M−v +M+v−)

≤ 2ε0
Mk −mk

R2
k+1

I0(Rk+1)

I0(7R)

(7R)2
+

R2
k+1

I0(Rk+1)
M+v−

in B3Rk+1
. By Lemma 3.3.2, we have

R2
k+1

I0(Rk+1)

I0(7R)

(7R)2
≤
(
Rk+1

7R

)s

= 4−(k+1)s < 4−ks0 .

Thus, we obtain

R2
k+1

I0(Rk+1)
M−w ≤ 2ε0 +

R2
k+1

I0(Rk+1)
M+v−,

by assuming α < s0.
For M+v−, we use an inequality v(z) ≥ −2((dHn(z, 0)/Rk)

α − 1), z ∈
Hn\Bk, which follows from the definition of v and the properties of sequences
Mk and mk. Then, for any x0 ∈ B3Rk+1

, we have

M+v−(x0) ≤ Λ

ˆ
Hn\Bk

v−(z)Ks(dHn(x0, z)) dµHn(z)

≤ 2Λ

ˆ
Hn\Bk

((
dHn(z, 0)

Rk

)α

− 1

)
Ks(dHn(x0, z)) dµHn(z).

Since dHn(z, 0) ≤ 4dHn(z, x0), we obtain

R2
k+1

I0(Rk+1)
M+v−

≤
2ΛR2

k+1

I0(Rk+1)

ˆ
Hn\B(x0,Rk+1)

((
dHn(z, x0)

Rk+1

)α

− 1

)
Ks(dHn(x0, z)) dµHn(z).

(3.8.3)

Let I be the right-hand side of (3.8.3). By the dominated convergence the-
orem, we know that I converges to 0 as α → 0 for each s. Let αs > 0 be
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the constant such that I ≤ ε0 whenever α ≤ αs. Since I is continuous with
respect to α and s, αs is chosen continuously. Thus, the quantity mins∈[s0,1] αs

is positive and depends on s0 (not on s). By choosing α = mins∈[s0,1] αs, we
obtain

R2
k+1

I0(Rk+1)
M−w ≤ 3ε0

in B(x, 7(Rk+1/7)) for x ∈ B2Rk+1
. Therefore, by Lemma 3.6.2 and (3.8.2),

we have

1

2
|Q1| ≤ |{w > 1} ∩Q1| ≤ C|Q1| (w(x) + 3ε0)

ε ,

or equivalently, θ ≤ w(x) + 3ε0 for some universal constant θ > 0. By taking
ε0 < θ/6, we arrive at w ≥ θ/2 in B2Rk+1

. Thus, if we set Mk+1 = Mk and
mk+1 =Mk − 4−α(k+1), then

Mk+1 ≥ u ≥ mk +
Mk −mk

4
θ =Mk −

(
1− θ

4

)
4−αk ≥ mk+1

in Bk+1.
When (3.8.1) does not hold, a similar proof can be made by using (7R)2

I0(7R)
M+u ≥

−ε0 instead of (7R)2

I0(7R)
M−u ≤ ε0.

3.9 Appendix

3.9.1 Special functions

The equation

ρ2
d2y

dρ2
+ ρ

dy

dρ
− (ρ2 + ν2)y = 0

is called the modified Bessel’s equation, and its solutions are given by

Iν(ρ) =
∞∑
j=0

1

j!Γ(ν + j + 1)

(ρ
2

)2j+ν

and Kν(ρ) =
π

2

I−ν(ρ)− Iν(ρ)

sin νπ
.
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They are called modified Bessel functions of the first and second kind, re-
spectively. They satisfy the recurrence relations

Kν+1 −Kν−1 =
2ν

R
Kν , Iν−1 − Iν+1 =

2ν

R
Iν ,

and the following system of first-order differential equations:I ′ν = Iν−1 − ν
R
Iν ,

I ′ν = Iν+1 +
ν
R
Iν ,

and

K ′
ν = −Kν−1 − ν

R
Kν ,

K ′
ν = −Kν+1 +

ν
R
Kν .

(3.9.1)

Moreover, the following asymptotic behavior is well known. For further prop-
erties of special functions, the reader may consult the book [91].

Lemma 3.9.1. The asymptotic behavior of the modified Bessel functions are
given by

Iν(ρ) ∼
1

Γ(ν + 1)

(ρ
2

)ν
, ν ̸= −1,−2, · · · ,

Kν(ρ) ∼
1

2
Γ(ν)

(ρ
2

)−ν

, Re ν > 0,

as ρ→ 0, and

Iν(ρ) ∼
eρ√
2πρ

,

Kν(ρ) ∼
√

π

2ρ
e−ρ,

as ρ→ ∞.

In this paper, some special functions involving the modified Bessel func-
tions appear. Let us first study the kernel of the fractional Laplacian on the
hyperbolic spaces.

Lemma 3.9.2. There exist constants C1, C2 > 0, depending only on n, such
that

C1 ≤
sinhn−1(R)Kn,s,1(R)

s(1− s)R−sIn/2−1(
n−1
2
R)Kn/2+s(

n−1
2
R)

≤ C2.
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The proof of Lemma 3.9.2 is divided into two parts: the odd and even di-
mensional cases. For the even dimensional case, we need the following lemma.

Lemma 3.9.3. Let a > 0 and ν > −n−1
2

. Then

ˆ ∞

R

sinh−n/2+1 r√
cosh r − coshR

r−νKn/2+ν(ar) dr

∼
√
π

2

Γ(ν + n−1
2
)

Γ(ν + n
2
)
R−ν sinh−n/2+1(R)Kn/2+ν(aR)

as R → 0+ up to dimensional constants.

Proof. By the change of variables r = Rt, we have

ˆ ∞

R

1√
cosh r − coshR

r−ν

R−ν

sinh−n/2+1 r

sinh−n/2+1R

Kn/2+ν(ar)

Kn/2+ν(aR)
dr

=

ˆ ∞

1

Rt−ν√
cosh(Rt)− cosh(R)

sinh−n/2+1(Rt)

sinh−n/2+1(R)

Kn/2+ν(aRt)

Kn/2+ν(aR)
dt.

We define for each R ∈ (0, 1) a function fR by

fR(t) =
Rt−ν√

cosh(Rt)− cosh(R)

sinh−n/2+1(Rt)

sinh−n/2+1(R)

Kn/2+ν(aRt)

Kn/2+ν(aR)
, t ∈ (1,∞).

Note that

cosh(Rt)− cosh(R)

R2
≥ 1

2
(t2 − 1) and sinh(Rt) ≥ sinh(R)t.

Moreover, by [65, Equation (2.17)], we have

Kn/2+ν(aRt)

Kn/2+ν(aR)
≤ t−

n
2
−ν .

Thus, fR is bounded from above by a function

f(t) =
t−n−2ν+1√
(t2 − 1)/2

,
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which is integrable on (0,∞). Indeed, by the change of variables t2 − 1 = τ ,
we obtain

ˆ ∞

1

f(t) dt =
1√
2

ˆ ∞

0

τ−1/2

(1 + τ)n/2+ν
dτ =

1√
2
B

(
1

2
, ν +

n− 1

2

)
=

√
π

2

Γ(ν + n−1
2
)

Γ(ν + n
2
)
<∞,

where B is Euler’s Beta Integral (see [91, 5.12.3]).
For fixed t ∈ (1,∞), we have

cosh(Rt)− cosh(R)

R2
→ 1

2
(t2 − 1),

sinh(Rt)

sinh(R)
→ t and

Kn/2+ν(aRt)

Kn/2+ν(aR)
→ t−n/2−ν

as R → 0+. Hence, we obtain limR→0 fR(t) = f(t). Therefore, the Lebesgue
dominated convergence theorem concludes the lemma.

Proof of Lemma 3.9.2. Observe that the function
√
RIn/2−1(

n−1
2
R) is compa-

rable to the function sinh
n−1
2 (R) up to dimensional constants by Lemma 3.9.1.

Thus, it suffices to prove that sinh
n−1
2 (R)Kn,s,1(R) is comparable to s(1 −

s)R−1/2−sKn/2+s(
n−1
2
R) up to dimensional constants.

Let us first consider the odd dimensional case n = 2m+1. It is sufficient
to prove

C3 ≤ G(R, s) :=
R1/2+s sinhmR

Km+1/2+s(mR)

(
−∂R
sinhR

)m

K1/2+s,m(R)

≤ C4, R > 0, s ∈ [0, 1], (3.9.2)

by recalling (3.1.2) and observing cn,s ≤ C(n)s(1− s). By Lemma 3.9.1, the
modified Bessel function Kν(ρ) is asymptotic to

√
π
2ρ
e−ρ as ρ→ ∞ uniformly

with respect to ν ∈ [1/2, n/2+1]. Moreover, its i-th derivative is asymptotic
to ρ−1/2e−ρ up to constants depending only on n and i by (3.9.1) in the same
range of ν. Therefore, G is bounded from above and below near R = ∞ by
positive constants depending only on n.

On the other hand, G is also bounded near R = 0 by a dimensional
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constant since Kν(ρ) is asymptotic to 2ν−1Γ(ν)ρ−ν as ρ→ 0 and 2ν−1Γ(ν) is
bounded from above and below by dimensional constants when ν ∈ [1/2, n/2+

1]. Since G is continuous, we conclude (3.9.2).
Let us next consider the even dimensional case n = 2m. In this case, we

consider

H(R, s) :=

ˆ ∞

R

sinh r√
cosh r − coshR

(
−∂r
sinh r

)m

K 1+2s
2

,n−1
2
(r) dr

We first prove that R1+se(n−1)RH(R, s) is bounded from above and below
near R = ∞ by positive constants depending only on n. As R is sufficiently
close to ∞, we have

H(R, s) ≤ C

ˆ ∞

R

er√
sinh( r−R

2
)
√

sinh( r+R
2
)
r−1−se(−n+1/2)r dr

≤ C
1√

sinhR

ˆ ∞

0

1√
sinh t

2

(t+R)−1−se(−n+3/2)(t+R) dt

≤ CR−1−se−(n−1)R

ˆ ∞

0

1√
sinh t

2

dt

≤ CR−1−se−(n−1)R

and

H(R, s) =

ˆ ∞

R

2 sinh r
√
cosh r − coshR

(
−∂r
sinh r

)n+2
2

K 1+2s
2

,n−1
2
(r) dr

≥ C

ˆ ∞

R

er
√

sinh
r −R

2

√
sinh

r +R

2
r−1−se−(n+1/2)r dr

≥ C
√
sinhR

ˆ ∞

0

√
sinh

t

2
(t+R)−1−se−(n−1/2)(t+R) dt

≥ CR−1−se−(n−1)R

ˆ ∞

0

√
sinh

t

2
(1 + t)−2e−(n−1/2)t dt

≥ CR−1−se−(n−1)R
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for some dimensional constants C > 0.
Finally, we prove that Rn+2sH(R, s) is bounded from above and below

near R = 0 by positive dimensional constants. By similar arguments as in
the odd dimensional case, the function H is comparable to

ˆ ∞

R

sinh−m+1 r√
cosh r − coshR

r−1/2−sKm+1/2+s

(
2m− 1

2
r

)
dr,

and hence to

R−1/2−s sinh−m+1(R)Km+1/2+s

(
2m− 1

2
R

)
by Lemma 3.9.3, up to dimensional constants. The desired result now follows
from Lemma 3.9.1.

Another special function involving the modified Bessel functions used in
this paper is given as follows: we define the definite integral

Aβ
µ,ν =

ˆ
ρβIµKν dρ. (3.9.3)

Lemma 3.9.4. Let k ∈ N and β = µ− ν + 2k + 1 ̸= 0, 1, . . . , k. Then

Aβ
µ,ν =

k∑
j=0

(−1)jk!/(k − j)!

2(β − k) · · · (β − k + j)
ρβ+1 (Iµ+jKν−j + Iµ+j+1Kν−j−1) .

Proof. By using (3.9.1) and the integration by parts, we obtain

Aβ
µ,ν =

1

β + µ− ν + 1

(
ρβ+1IµKν + Aβ+1

µ,ν−1 − Aβ+1
µ+1,ν

)
and (3.9.4)

Aβ
µ,ν =

1

β − µ+ ν + 1

(
ρβ+1IµKν − Aβ+1

µ−1,ν + Aβ+1
µ,ν+1

)
. (3.9.5)

By plugging (3.9.5), with µ, ν replaced by µ+1, ν−1, into (3.9.4), we obtain

Aβ
µ,ν =

1

β + µ− ν + 1
ρβ+1(IµKν + Iµ+1Kν−1)−

β − µ+ ν − 1

β + µ− ν + 1
Aβ

µ+1,ν−1.

(3.9.6)
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The desired result follows by iterating (3.9.6).

We also define the indefinite integral

Aβ
µ,ν(R) =

ˆ R

0

ρβIµKν dρ. (3.9.7)

Note that it is well defined by Lemma 3.9.1, provided that −µ /∈ N, µ > 0,
and β + µ− ν + 1 > 0.
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Chapter 4

The fractional p-Laplacian on

hyperbolic spaces

4.1 Introduction

Operators of fractional-order have been studied extensively not only on the
Euclidean spaces [42] but also on various spaces such as Riemannian man-
ifolds [3, 7, 24, 38, 54, 55, 61], metric measure spaces [21, 27, 49, 56, 58],
discrete models [32], Lie groups [20, 34, 46, 47], Wiener spaces [20], and so
on. On the Euclidean spaces, there are several equivalent definitions of the
fractional Laplacian [86] due to the simple structure of the spaces. In con-
trast to the case of Euclidean spaces, not all definitions are equivalent on
general spaces. For instance, one can study a regional-type operator [61] or a
spectral-type operator [100] on Riemannian manifolds. Moreover, some def-
initions, such as the one using the Fourier transform, do not even work on
general Riemannian manifolds and metric measure spaces. However, several
representations for the fractional Laplacians on some Riemannian manifolds,
such as hyperbolic spaces and spheres, have been established [7, 38] by means
of rich structures of the spaces.

The aim of this paper is two-fold. We first generalize representation for-
mulas in [7] to the nonlinear regime on the hyperbolic spaces. Precisely, we
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define the fractional p-Laplacian (−∆Hn)sp for n ∈ N, 0 < s < 1, and p > 1

by using the heat semigroup and establish the singular integral representa-
tion and the Caffarelli–Silvestre extension. Note that the definition via the
Fourier transform is not available because of the nonlinearity of the oper-
ator. We next study the pointwise convergence of (−∆Hn)spu(x) as s → 1−

using the singular integral representation. For this purpose, we compute the
explicit values of the normalizing constants in the singular integral represen-
tation. This explicit value was available only when n = 3 and p = 2, see
[70].

Let us define the fractional p-Laplacian on the hyperbolic spaces. We
adopt the definition proposed in [39, Section 8.2], which is a nonlinear exten-
sion of the Bochner’s definition [9]. See also [100]. To this end, let {et∆Hn}t≥0

be the heat semigroup generated by the Laplacian ∆Hn on hyperbolic spaces.
That is, for a given function f : Hn → R we denote by et∆Hn [f ](x) the
solution w(x, t) of a Cauchy problem∂tw(x, t)−∆Hnw(x, t) = 0, x ∈ Hn, t > 0,

w(x, 0) = f(x), x ∈ Hn.
(4.1.1)

We define C2
b (Hn) by the space of bounded C2 functions on Hn.

Definition 4.1.1. Let n ∈ N, s ∈ (0, 1), and p > 1. Let u ∈ C2
b (Hn) and

x ∈ Hn. If p ∈ (1, 2
2−s

], assume in addition ∇u(x) ̸= 0. The fractional p-
Laplacian on Hn is defined by

(−∆Hn)spu(x) = C1

ˆ ∞

0

et∆Hn [Φp(u(x)− u(·))](x) dt

t1+
sp
2

,

where
C1 =

p

2

√
π/2

Γ(p+1
2
)

2s(2−p)

|Γ(−s)|
(4.1.2)

and Φp(r) = |r|p−2r.

The constant C1 in (4.1.2) is chosen so that the pointwise convergence
lims↗1(−∆Hn)spu(x) = (−∆Hn)pu(x) holds, see Theorem 4.1.4. The same
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constant is used in the case of Euclidean spaces [39]. Moreover, this choice is
in accordance with the constant in the case p = 2, see [7].

The first result is the pointwise integral representation of the fractional
p-Laplacian with singular kernels. Note that the hyperbolic geometry is dis-
tinguished from the Euclidean geometry only when n ≥ 2.

Theorem 4.1.2. Let n ≥ 2, s ∈ (0, 1), and p > 1. Let u ∈ C2
b (Hn) and

x ∈ Hn. If p ∈ (1, 2
2−s

], assume in addition ∇u(x) ̸= 0. Then, the fractional
p-Laplacian on Hn has the pointwise representation

(−∆Hn)spu(x) = cn,s,p P.V.

ˆ
Hn

|u(x)− u(ξ)|p−2(u(x)− u(ξ))Kn,s,p(d(x, ξ)) dξ

(4.1.3)
with the kernel Kn,s,p given by

Kn,s,p(ρ) = C2

(
−∂ρ
sinh ρ

)n−1
2
(
ρ−

1+sp
2 K 1+sp

2

(
n− 1

2
ρ

))
when n ≥ 3 is odd and

Kn,s,p(ρ) = C2

ˆ ∞

ρ

sinh r√
π
√
cosh r − cosh ρ

(
−∂r
sinh r

)n
2
(
r−

1+sp
2 K 1+sp

2

(
n− 1

2
r

))
dr

when n ≥ 2 is even, where

cn,s,p =
p

2

√
π/2

Γ(p+1
2
)

22sΓ(n+sp
2

)

π
n
2 |Γ(−s)|

, C2 =
1

2
n−2+sp

2 Γ(n+sp
2

)

(
n− 1

2

) 1+sp
2

,

and Kν is the modified Bessel function of the second kind. Moreover, the
kernel Kn,s,p is positive and has the asymptotic behavior

Kn,s,p(ρ) ∼ ρ−n−sp

as ρ→ 0+ and
Kn,s,p(ρ) ∼ ρ−1− sp

2 e−(n−1)ρ

as ρ→ +∞, up to constants.
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In the linear case p = 2, the pointwise integral representation with sin-
gular kernel is provided in [7, Theorem 2.4 and 2.5] without constants. The
novelty of Theorem 4.1.2 is that it generalizes the representation formula to
the nonlinear regime with the normalizing constant. We emphasize that the
normalizing constant plays a crucial role in some contexts. For instance, it
is used in the convergence result (Theorem 4.1.4) and the robust regularity
theory (see [15, 70]).

The main tool in [7, 70] is the Fourier transform on the hyperbolic spaces.
Since the Fourier transform is not available in the nonlinear setting, we use
the heat kernel for the Laplace operator ∆Hn on hyperbolic spaces to prove
Theorem 4.1.2. The explicit formula for the heat kernel with a normalizing
constant given in [59] enables us to obtain the exact values of the constants
in Theorem 4.1.2.

Let us proceed to another representation for the fractional p-Laplacian on
Hn. We recall that the fractional Laplacian on Rn is obtained by a Dirichlet-
to-Neumann map via the Caffarelli–Silvestre extension [14]. Later, the article
[100] relates the heat semigroup to this extension. Moreover, this relation is
extended to the nonlinear framework [39] in Rn. We further investigate this
relation on the hyperbolic spaces. Let us consider the extension problem

∆xU(x, y) +
1− sp

y
Uy(x, y) + Uyy(x, y) = 0, x ∈ Hn, y > 0,

U(x, 0) = f(x), x ∈ Hn,
(4.1.4)

and define an extension operator Es,p by Es,p[f ] := U . The following theorem
is our next main result.

Theorem 4.1.3. Let n ∈ N, s ∈ (0, 1), and p > 1. Let u ∈ C2
b (Hn) and

x ∈ Hn. If p ∈ (1, 2
2−s

], assume ∇u(x) ̸= 0 additionally. Then

(−∆Hn)spu(x) = C3 lim
y↘0

Es,p[Φp(u(x)− u(·))](x, y)
ysp

=
C3

sp
lim
y↘0

y1−sp∂y

(
Es,p[Φp(u(x)− u(·))]

)
(x, y),

(4.1.5)
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where
C3 =

p

2

√
π/2

Γ(p+1
2
)

22sΓ( sp
2
)

|Γ(−s)|
.

To prove Theorem 4.1.3, we represent the solution U of the extension
problem (4.1.4) by using the heat semigroup. Then, the formula for the heat
kernel [59] leads to the Poisson formula for U and the representation (4.1.5).

The last result is the pointwise convergence of the fractional p-Laplacian
on Hn as s→ 1−. As one can expect, the fractional p-Laplacian converges to
the p-Laplacian as a limit. Recall that the p-Laplacian on Hn is defined by
(−∆Hn)pu(x) = −div(|∇u(x)|p−2∇u(x)).

Theorem 4.1.4. Let n ∈ N, p > 1, and u ∈ C2
b (Hn). For x ∈ Hn such that

∇u(x) ̸= 0,
lim
s↗1

(−∆Hn)spu(x) = (−∆Hn)pu(x).

The pointwise convergence of the fractional p-Laplacian on the Euclidean
spaces is well known [10, 42, 64]. Recall that the proof uses Taylor’s theorem
and the following computations:

ˆ
Sn−1

ˆ ∞

R

K(ρ)ρn−1 dρ dω =
|Sn−1|
sp

R−sp,

ˆ
Sn−1

ˆ R

0

K(ρ)ρp+n−1 dρ dω =
|Sn−1|
p(1− s)

Rp(1−s),

ˆ
Sn−1

ˆ R

0

K(ρ)ρβ+p+n−1 dρ dω =
|Sn−1|

β + p(1− s)
Rβ+p(1−s),

(4.1.6)

where β > 0 andK(ρ) = ρ−n−sp is the kernel for the fractional p-Laplacian on
Rn. However, in our framework we need the integrals in (4.1.6) with the kernel
K and the volume element ρn−1 dρ dω replaced by Kn,s,p and sinhn−1 ρ dρ dω,
respectively. These integrals do not seem to be of a form that is easily com-
puted. Instead, we compute the limits of these integrals as s→ 1−, which are
sufficient to establish Theorem 4.1.4. This is still not straightforward, but can
be obtained by using the asymptotic behavior of modified Bessel functions.

The paper is organized as follows. In Section 4.2 we recall the hyperboloid
model and study the modified Bessel function and its properties. Section 4.3
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is devoted to the proof of Theorem 4.1.2, which provides the pointwise in-
tegral representation of the fractional p-Laplacian with singular kernels. In
Section 4.4, we relate the heat semigroup to the extension problem (4.1.4)
and find the Poisson formula. Using the Poisson formula and the representa-
tion of the fractional p-Laplacian, we prove Theorem 4.1.3. Finally, we prove
the pointwise convergence result, Theorem 4.1.4, in Section 4.5. An auxiliary
result can be found in Section 4.6.1.

4.2 Preliminaries

In this section, we recall the basics of the hyperbolic spaces and collect some
facts about the modified Bessel function.

4.2.1 The hyperbolic space

There are several models for the hyperbolic spaces, but let us focus on the
hyperboloid model in this paper. The hyperboloid model is given by

Hn =
{
(x0, . . . , xn) ∈ Rn+1 : x20 − x21 − · · · − x2n = 1, x0 > 0

}
with the Lorentzian metric −dx20 + dx21 + · · ·+ dx2n in Rn+1. The Lorentzian
metric induces the natural internal product

[x, ξ] = x0ξ0 − x1ξ1 − · · · − xnξn

on Hn. Moreover, the distance between two points x and ξ is given by

d(x, ξ) = cosh−1([x, ξ]).

Using the polar coordinates, Hn can also be realized as

Hn =
{
x = (cosh r, sinh r ω) ∈ Rn+1 : r ≥ 0, ω ∈ Sn−1

}
.
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Then, the metric and the volume element are given by dr2 + sinh2 r dω2 and
sinhn−1 r dr dω, respectively.

4.2.2 The modified Bessel function

The modified Bessel functions naturally appear in the study of hyperbolic
geometry. In this paper, they are used to describe the kernel of the fractional
p-Laplacian and the Poisson kernel. For this purpose, we recall the definition
and some properties of the modified Bessel functions.

We call the ordinary differential equation

ρ2
d2y

dρ2
+ ρ

dy

dρ
− (ρ2 + ν2)y = 0

the modified Bessel equation. The solutions are given by

Iν(ρ) =
∞∑
j=0

1

j!Γ(ν + j + 1)

(ρ
2

)2j+ν

and Kν(ρ) =
π

2

I−ν(ρ)− Iν(ρ)

sin νπ
,

and they are called the modified Bessel functions of the first and the second
kind, respectively. Since only Kν appears in this work, we focus on the prop-
erties of Kν . This function has the following integral representation (see [91,
10.32.10]):

Kν(ρ) =
1

2

(
1

2
ρ

)ν ˆ ∞

0

e−t− ρ2

4t t−ν−1 dt. (4.2.1)

The asymptotic behavior of Kν is given by

Kν(ρ) ∼
1

2
Γ(ν)

(ρ
2

)−ν

as ρ→ 0+, for ν > 0, and

Kν(ρ) ∼
√

π

2ρ
e−ρ as ρ→ +∞.

(4.2.2)

Moreover, Kν satisfies the following recurrence relations:

K ′
ν = −Kν−1 −

ν

R
Kν and K ′

ν = −Kν+1 +
ν

R
Kν . (4.2.3)
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We also recall that Kν is increasing with respect to ν > 0. For further prop-
erties of the modified Bessel functions, the reader may consult the handbook
[91].

In the sequel, functions of the form ρ−νKν(aρ) with ν ∈ R and a > 0 will
appear frequently. For notational convenience, we define

Kν,a(ρ) := ρ−νKν(aρ). (4.2.4)

Then, it follows from (4.2.3)

−∂ρ(Kν,a(f(ρ))) = af ′(ρ)f(ρ)Kν+1,a(f(ρ))

for any differentiable function f : (0,+∞) → (0,+∞).

4.3 Pointwise representation with singular ker-

nel

The singular kernel ρ−n−sp for the fractional p-Laplacian on the Euclidean
space Rn is homogeneous of degree −n−sp. This is a natural property coming
from the scale invariance of the operator. However, this cannot be expected
in the case of hyperbolic spaces because the hyperbolic geometry comes into
play. Indeed, we will see that the kernel Kn,s,p(ρ) behaves like ρ−n−sp near
ρ = 0 whereas it decays like ρ−1− sp

2 e−(n−1)ρ as ρ→ +∞, up to constants, by
providing the explicit form of the kernel Kn,s,p. Moreover, we investigate the
pointwise integral representation of the fractional p-Laplacian on Hn.

It is well known that the Cauchy problem (4.1.1) has the unique solution

w(x, t) =

ˆ
Hn

p(t, d(x, ξ))f(ξ) dξ,

provided that f is a bounded continuous function, where the heat kernel
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p(t, ρ) is given [59] by

p(t, ρ) =
1

(2π)m
1

(4πt)1/2

(
−∂ρ
sinh ρ

)m

e−m2t− ρ2

4t (4.3.1)

when n = 2m+ 1 ≥ 1 is odd and

p(t, ρ) =
1

2(2π)m+1/2
t−3/2e−

(2m−1)2

4
t

(
−∂ρ
sinh ρ

)m−1 ˆ ∞

ρ

re−
r2

4t

√
cosh r − cosh ρ

dr

(4.3.2)
when n = 2m ≥ 2 is even. We use these explicit formulas for the heat kernels
not only in the computation of the singular kernels Kn,s,p but also in the next
sections. For this purpose, we first prove the following lemma, which is useful
especially in the even dimensional case.

Lemma 4.3.1. Let ν > 1/2, a ≥ 1/2, and y ≥ 0. For m ∈ N ∪ {0} define

Fm(r) :=
sinh r√

cosh r − cosh ρ

(
−∂r
sinh r

)m

Kν,a

(√
r2 + y2

)
,

where Kν,a is the function given in (4.2.4). Then, Fm is integrable on (ρ,+∞)

and satisfies (
−∂ρ
sinh ρ

) ˆ ∞

ρ

Fm(r) dr =

ˆ ∞

ρ

Fm+1(r) dr (4.3.3)

for all m ∈ N ∪ {0}.

Proof. Note that for any j ≥ 1

−∂r
(
(er + e−r)j−1

(er − e−r)j

)
= j

(er + e−r)j

(er − e−r)j+1
− (j − 1)

(er + e−r)j−2

(er − e−r)j−1
.

Therefore, all derivatives of 1
sinh r

(and r
sinh r

) have the same asymptotic behav-
ior as e−r (and re−r, respectvely) as r → +∞. Hence, Fm(r) ∼ r−ν−1/2e(1/2−m−a)r

as r → +∞, which shows that the function Fm is integrable.
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Using the integration by parts, we have

ˆ ∞

ρ

Fm(r) dr =

ˆ ∞

ρ

2∂r

(√
cosh r − cosh ρ

)( −∂r
sinh r

)m

Kν,a

(√
r2 + y2

)
dr

=

ˆ ∞

ρ

2 sinh r
√

cosh r − cosh ρ

(
−∂r
sinh r

)m+1

Kν,a

(√
r2 + y2

)
dr.

Thus, the recurrence relation (4.3.3) follows by applying the Leibniz integral
rule.

Let us now prove Theorem 4.1.2 using the heat kernel and Lemma 4.3.1.

Proof of Theorem 4.1.2. Let ε > 0 and define gε(x, ξ) = Φp(u(x)−u(ξ))χd(x,ξ)>ε.
The heat semigroup associated to gε(x, ·) is given by

et∆Hn [gε(x, ·)](x) =
ˆ
Hn

1

(2π)m
1

(4πt)1/2

((
−∂ρ
sinh ρ

)m

e−m2t− ρ2

4t

)
gε(x, ξ) dξ

when n = 2m+ 1 ≥ 3 is odd and

et∆Hn [gε(x, ·)](x)

=

ˆ
Hn

t−3/2e−
(2m−1)2

4
t

2(2π)m+1/2

(
−∂ρ
sinh ρ

)m−1 ˆ ∞

ρ

re−
r2

4t dr√
cosh r − cosh ρ

gε(x, ξ) dξ

when n = 2m ≥ 2 is even, where ρ = d(x, ξ). We will prove

C1

ˆ ∞

0

et∆Hn [gε(x, ·)](x)
dt

t1+
sp
2

= cn,s,p

ˆ
d(x,ξ)>ε

Φp(u(x)−u(ξ))Kn,s,p(d(x, ξ)) dξ

(4.3.4)
in both cases.

Let us first consider the odd dimensional case. We fix δ > 0 and integrate
the heat semigroup with respect to the singular measure t−1− sp

2 dt over the
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interval (δ,∞) to obtain

C1

ˆ ∞

δ

et∆Hn [gε(x, ·)](x)
dt

t1+
sp
2

= C1

ˆ ∞

δ

ˆ
Hn

1

(2π)m
1

(4πt)1/2

((
−∂ρ
sinh ρ

)m

e−m2t− ρ2

4t

)
gε(x, ξ) dξ

dt

t1+
sp
2

=
C1

(2π)m(4π)1/2

ˆ
Hn

(
−∂ρ
sinh ρ

)m(ˆ ∞

δ

e−m2t− ρ2

4t t−
3+sp

2 dt

)
gε(x, ξ) dξ.

(4.3.5)

Note that the function e−m2t− ρ2

4t t−
3+sp

2 is integrable on (0,∞). Indeed, the
formula (4.2.1) and the change of variables show

ˆ ∞

0

e−m2t− ρ2

4t t−
3+sp

2 dt = m1+sp

ˆ ∞

0

e−t− (mρ)2

4t t−
3+sp

2 dt = 2(2m)
1+sp

2 K 1+sp
2

,m(ρ).

(4.3.6)
Thus, (4.3.4) in the odd dimensional case follows by combining (4.3.5)–(4.3.6)
and passing the limit δ ↘ 0.

We next consider the even dimensional case. Similarly as in the odd di-
mensional case, we obtain

C1

ˆ ∞

δ

et∆Hn [gε(x, ·)](x)
dt

t1+
sp
2

= C1

ˆ ∞

δ

ˆ
Hn

t−3/2e−
(2m−1)2

4
t

2(2π)m+1/2

(
−∂ρ
sinh ρ

)m−1

ˆ ∞

ρ

re−
r2

4t

√
cosh r − cosh ρ

dr gε(x, ξ) dξ
dt

t1+
sp
2

=
C1

2(2π)m+1/2

ˆ
Hn

(
−∂ρ
sinh ρ

)m−1

ˆ ∞

ρ

(ˆ ∞

δ

e−
(2m−1)2

4
t− r2

4t t−
5+sp

2 dt

)
r dr gε(x, ξ) dξ√
cosh r − cosh ρ

.
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Moreover, we have from (4.2.1) and (4.2.3)

ˆ ∞

0

e−
(2m−1)2

4
t− r2

4t t−
5+sp

2 dt = 2(2m− 1)
3+sp

2 K 3+sp
2

, 2m−1
2

(r)

= 4(2m− 1)
1+sp

2

(
−∂r
r

)
K 1+sp

2
, 2m−1

2
(r).

Thus, we deduce

C1

ˆ ∞

0

et∆Hn [gε(x, ·)](x)
dt

t1+
sp
2

= cn,s,pC2

ˆ
Hn

(
−∂ρ
sinh ρ

)m−1 ˆ ∞

ρ

(−∂r)K 1+sp
2

, 2m−1
2

(r)
√
π
√
cosh r − cosh ρ

dr gε(x, ξ) dξ

= cn,s,pC2

ˆ
Hn

ˆ ∞

ρ

sinh r√
π
√
cosh r − cosh ρ

(
−∂r
sinh r

)m

K 1+sp
2

, 2m−1
2

(r) dr gε(x, ξ) dξ,

where we used Lemma 4.3.1 with ν = 1+sp
2

, a = 2m−1
2

, and y = 0 in the last
equality. This proves (4.3.4) in the even dimensional case.

On the one hand, the integral in the right-hand side of (4.3.4) converges
to the Cauchy principal value

P.V.

ˆ
Hn

Φp(u(x)− u(ξ))Kn,s,p(d(x, ξ)) dξ

as ε ↘ 0. For the left-hand side of (4.3.4), on the other hand, we need to
estimate

A :=

ˆ ∞

0

et∆Hn [Φp(u(x)− u(·))](x) dt

t1+
sp
2

−
ˆ ∞

0

et∆Hn [gε(x, ·)](x)
dt

t1+
sp
2

.

Proceeding as above, we have

|A| ≲
∣∣∣∣P.V.ˆ

d(x,ξ)≤ε

Φp(u(x)− u(ξ))Kn,s,p(d(x, ξ)) dξ

∣∣∣∣ .
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Thus, applying Lemma 4.6.1 to K = Kn,s,p yields

|A| ≲
ˆ
d(x,ξ)≤ε

ραKn,s,p(ρ) dy ≲
ˆ ε

0

ραKn,s,p(ρ) sinh
n−1 ρ dρ, (4.3.7)

where α = 2p − 2 when p ∈ ( 2
2−s

, 2) and α = p when p ∈ (1, 2
2−s

] ∪ [2,∞).
Note that Kn,s,p is positive, which will be proved later in Corollary 4.5.2. Since
Kn,s,p ∼ ρ−n−sp as ρ→ 0+ up to constants, the function ραKn,s,p(ρ) sinh

n−1 ρ

is integrable near zero and hence the right-hand side of (4.3.7) converges to
zero as ε ↘ 0. Therefore, the left-hand side of (4.3.4) converges to that of
(4.1.3) as ε↘ 0.

4.4 Extension problem

In this section, we prove Theorem 4.1.3, which provides another representa-
tion of the fractional p-Laplacian on the hyperbolic spaces. We first relate
the heat semigroup to the extension problem (4.1.4) and find the Poisson
formula.

Lemma 4.4.1. Let n ≥ 2, s ∈ (0, 1), and p > 1. If f ∈ Cb(Hn), then the
solution U = Es,p[f ] of the extension problem (4.1.4) is given by

U(x, y) =
ysp

2spΓ( sp
2
)

ˆ ∞

0

et∆Hn [f ](x)e−
y2

4t
dt

t1+
sp
2

. (4.4.1)

Moreover, the solution can be represented by using the Poisson kernel:

U(x, y) =

ˆ
Hn

P (d(x, ξ), y)f(ξ) dξ. (4.4.2)

The Poisson kernel P (ρ, y) is given by

P (ρ, y) = C4 y
sp

(
−∂ρ
sinh ρ

)n−1
2

K 1+sp
2

,n−1
2

(√
ρ2 + y2

)
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when n ≥ 3 odd and

P (ρ, y) = C4 y
sp

ˆ ∞

ρ

sinh r√
π
√
cosh r − cosh ρ

(
−∂r
sinh r

)n
2

K 1+sp
2

,n−1
2

(√
r2 + y2

)
dr

when n ≥ 2 even, where

C4 =
1

2
n−3
2 π

n
2Γ( sp

2
)

(
n− 1

4

) 1+sp
4

and Kν,a is the function given in (4.2.4).

Proof. For each x ∈ Hn and y > 0, we define V (x, y) by the function given
in the right-hand side of (4.4.1). Then, we have

V (x, y) =
ysp

2spΓ( sp
2
)

ˆ ∞

0

ˆ
Hn

p(t, ρ)f(ξ) dξ e−
y2

4t
dt

t1+
sp
2

,

where ρ = d(x, ξ). Recalling the expression (4.3.1) for the heat kernel p(t, ρ)
and using (4.2.1), we obtain

V (x, y)

=
ysp

2spΓ( sp
2
)

ˆ ∞

0

ˆ
Hn

1

(2π)m
1

(4πt)1/2

((
−∂ρ
sinh ρ

)m

e−m2t− ρ2+y2

4t

)
f(ξ) dξ

dt

t1+sp/2

=

ˆ
Hn

ysp

2spΓ( sp
2
)

1

(2π)m
1

(4π)1/2

(
−∂ρ
sinh ρ

)m(ˆ ∞

0

e−m2t− ρ2+y2

4t t−
3+sp

2 dt

)
f(ξ) dξ

=

ˆ
Hn

P (d(x, ξ), y)f(ξ) dξ

when n = 2m + 1 is odd. If n = 2m is even, then we use (4.3.2) instead of
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(4.3.1) to have

V (x, y)

=
ysp

2spΓ( sp
2
)

ˆ ∞

0

ˆ
Hn

t−
5+sp

2 e−
(2m−1)2

4
t

2(2π)m+1/2

(
−∂ρ
sinh ρ

)m−1 ˆ ∞

ρ

re−
r2+y2

4t dr√
cosh r − cosh ρ

f(ξ) dξ dt

=
ysp

2spΓ( sp
2
)

ˆ
Hn

(
−∂ρ
sinh ρ

)m−1 ˆ ∞

ρ

ˆ ∞

0

t−
5+sp

2 e−
(2m−1)2

4
t

2(2π)m+1/2

re−
r2+y2

4t dt√
cosh r − cosh ρ

dr f(ξ) dξ.

Moreover, using (4.2.1) we compute

ˆ ∞

0

e−
(2m−1)2

4
t− r2+y2

4t t−
5+sp

2 dt = 2(2m− 1)
3+sp

2 K 3+sp
2

, 2m−1
2

(√
r2 + y2

)
= 4(2m− 1)

1+sp
2

(
−∂r
r

)
K 1+sp

2
, 2m−1

2

(√
r2 + y2

)
.

Therefore, we obtain

V (x, y) = C4 y
sp

ˆ
Hn

(
−∂ρ
sinh ρ

)m−1 ˆ ∞

ρ

(−∂r)K 1+sp
2

, 2m−1
2

(√
r2 + y2

)
√
π
√
cosh r − cosh ρ

dr f(ξ) dξ

=

ˆ
Hn

P (d(x, ξ), y)f(ξ) dξ

in the even dimensional case as well, where we used Lemma 4.3.1 in the last
equality.

It only remains to prove the equality in (4.4.1) to conclude lemma. Note
that (4.4.2) will follow from (4.4.1) and the representations of V above. To
prove the equality in (4.4.1), we check that the function V solves the extension
problem (4.1.4). Since the heat semigroup et∆Hn [f ] solves (4.1.1), V satisfies

∆xV =
ysp

2spΓ( sp
2
)

ˆ ∞

0

∂t
(
et∆Hn [f ](x)

)
e−

y2

4t t−1− sp
2 dt.

Using the integration by parts and the fact that |et∆Hn [f ](x)| ≤ ∥f∥L∞ , we
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obtain

∆xV

=
ysp

2spΓ( sp
2
)

([
et∆Hn [f ](x)e−

y2

4t t−1− sp
2

]∞
0

−
ˆ ∞

0

et∆Hn [f ](x)∂t

(
e−

y2

4t t−1− sp
2

)
dt

)
= − ysp

2spΓ( sp
2
)

ˆ ∞

0

et∆Hn [f ](x)

(
y2

4
e−

y2

4t t−3− sp
2 −

(
1 +

sp

2

)
e−

y2

4t t−2− sp
2

)
dt.

Since

Vy =
spysp−1

2spΓ( sp
2
)

ˆ ∞

0

et∆Hn [f ](x)e−
y2

4t t−1− sp
2 dt

− ysp+1

2sp+1Γ( sp
2
)

ˆ ∞

0

et∆Hn [f ](x)e−
y2

4t t−2− sp
2 dt

and

Vyy =
sp(sp− 1)ysp−2

2spΓ( sp
2
)

ˆ ∞

0

et∆Hn [f ](x)e−
y2

4t t−1− sp
2 dt

− 2sp+ 1

2sp+1Γ( sp
2
)
ysp

ˆ ∞

0

et∆Hn [f ](x)e−
y2

4t t−2− sp
2 dt

+
ysp+2

2sp+1Γ( sp
2
)

ˆ ∞

0

et∆Hn [f ](x)e−
y2

4t t−3− sp
2 dt,

one can easily compute

∆xV (x, y) +
1− sp

y
Vy(x, y) + Vyy(x, y) = 0.

Finally, we prove V (x, 0) = f(x). Indeed, we have P (ρ, y) → 0 as y ↘ 0 if
ρ ̸= 0 by definition. Moreover, since the heat kernel p(t, ρ) satisfies

ˆ
Hn

p(t, d(x, ξ)) dξ = 1,
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we obtain
ˆ
Hn

P (d(x, ξ), y) dξ =
ysp

2spΓ( sp
2
)

ˆ ∞

0

(ˆ
Hn

p(t, d(x, ξ)) dξ

)
e−

y2

4t
dt

t1+
sp
2

=
ysp

2spΓ( sp
2
)

ˆ ∞

0

e−
y2

4t
dt

t1+
sp
2

= 1.

This concludes that V solves the extension problem (4.1.4).

Let us now prove Theorem 4.1.3 by using the Poisson formula in Lemma 4.4.1.

Proof of Theorem 4.1.3. We have the kernel representation of (−∆Hn)spu(x)

from Theorem 4.1.2 and the Poisson kernel representation of Es,p[Φp(u(x)−
u(·))](x, y) from Lemma 4.4.1. Since cn,s,pC2 = C3C4, it is enough to show∣∣∣∣ˆ

Hn

Φp(u(x)− u(ξ))K(d(x, ξ)) dξ

∣∣∣∣→ 0

as y ↘ 0, where

K(ρ) =

(
−∂ρ
sinh ρ

)n−1
2 (

K 1+sp
2

,n−1
2
(ρ)− K 1+sp

2
,n−1

2

(√
ρ2 + y2

))
when n is odd and

K(ρ)

=

ˆ ∞

ρ

sinh r√
π
√
cosh r − cosh ρ

(
−∂r
sinh r

)n
2 (

K 1+sp
2

,n−1
2
(r)− K 1+sp

2
,n−1

2

(√
r2 + y2

))
dr

when n is even.
We first split the integral as follows:∣∣∣∣ˆ

Hn

Φp(u(x)− u(ξ))K(d(x, ξ)) dξ

∣∣∣∣
≤
∣∣∣∣ˆ

d(x,ξ)≤1

Φp(u(x)− u(ξ))K(d(x, ξ)) dξ

∣∣∣∣+ ∣∣∣∣ˆ
d(x,ξ)>1

Φp(u(x)− u(ξ))K(d(x, ξ)) dξ

∣∣∣∣
= J1 + J2.
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For J1, we apply Lemma 4.6.1 to K to obtain

J1 ≲
ˆ
d(x,ξ)≤1

d(x, ξ)α|K(d(x, ξ))| dξ,

where α = 2p − 2 when p ∈ ( 2
2−s

, 2) and α = p when p ∈ (1, 2
2−s

] ∪ [2,∞).
For J2, we have

J2 ≲ ∥u∥p−1
L∞(Hn)

ˆ
d(x,ξ)>1

|K(d(x, ξ))| dξ.

By the dominated convergence theorem, we conclude J1 + J2 → 0 as y ↘
0.

4.5 Pointwise convergence

This section is devoted to the proof of Theorem 4.1.4, which uses the point-
wise representation (4.1.3) of the fractional p-Laplacian on Hn. As mentioned
in Section 4.1, the limits of the integrals

cn,s,p

ˆ ∞

R

Kn,s,p(ρ) sinh
n−1 ρ dρ, cn,s,p

ˆ R

0

ρpKn,s,p(ρ) sinh
n−1 ρ dρ, (4.5.1)

and
cn,s,p

ˆ R

0

ρβ+pKn,s,p sinh
n−1 ρ dρ, β > 0, (4.5.2)

as s → 1−, play a key role in the proof of Theorem 4.1.4. Let us begin with
the following lemma.

Lemma 4.5.1. Let ν > 1/2, a ≥ 1/2, and m ∈ N ∪ {0}. Then, the function

ρ 7→
(

−∂ρ
sinh ρ

)m

Kν,a(ρ)

is positive, where Kν,a is the function given in (4.2.4).
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Proof. Using the formula (4.2.1) and change of variables, we have

Kν,a(ρ) =
aν

2ν+1

ˆ ∞

0

e−t− (aρ)2

4t t−ν−1 dt =
1

2(2a)ν

ˆ ∞

0

1

t1/2
e−a2t− ρ2

4t
dt

tν+1/2
.

Thus, recalling the expression of the heat kernel (4.3.1) for odd dimensional
case, we obtain(

−∂ρ
sinh ρ

)m

Kν,a(ρ) =

ˆ ∞

0

e(m
2−a2)tp(t, ρ)

dt

tν+1/2
. (4.5.3)

It is known [25, Lemma 2.3] that the heat kernel p(t, ρ) is strictly decreasing
with respect to ρ. Since p(t, ρ) → 0 as ρ → ∞, we deduce that p(t, ρ) is
positive. Therefore, the conclusion follows from (4.5.3).

As a consequence of Lemma 4.5.1, we obtain the positivity of the kernel
Kn,s,p.

Corollary 4.5.2. Let n ∈ N, s ∈ (0, 1), and p > 1. The kernel Kn,s,p is
positive.

In the following series of lemmas, we compute limits of the integrals in
(4.5.1) and (4.5.2) with the help of Lemma 4.5.1.

Lemma 4.5.3. Let n ≥ 2 and p > 1. For any R > 0,

lim
s↗1

cn,s,p

ˆ ∞

R

Kn,s,p(ρ) sinh
n−1 ρ dρ = 0.

Proof. Let us first consider the case n = 2m+1 with m ≥ 1. Since cn,s,pC2 ≤
C(1− s) for some C = C(n, p) > 0, by using Lemma 4.5.1 we have

0 ≤ cn,s,p

ˆ ∞

R

Kn,s,p(ρ) sinh
n−1 ρ dρ

≲ (1− s)

ˆ ∞

R

sinh2m ρ

(
−∂ρ
sinh ρ

)m

K 1+sp
2

,m(ρ) dρ.

(4.5.4)

Thus, it is enough to show that the right-hand side of (4.5.4) converges to

122



CHAPTER 4. THE FRACTIONAL p-LAPLACIAN ON HYPERBOLIC
SPACES

zero as s→ 1−. We actually prove the following stronger statement:

lim
s↗1

(1− s)

ˆ ∞

R

sinhm+a ρ

(
−∂ρ
sinh ρ

)m

K 1+sp
2

,a(ρ) dρ = 0 for each a > 0.

(4.5.5)
We use the induction on m. When m = 1, using (4.2.3) and the fact that

Kν is increasing with respect to ν > 0, we have

ˆ ∞

R

sinh1+a ρ

(
−∂ρ
sinh ρ

)
K 1+sp

2
,a(ρ) dρ = a

ˆ ∞

R

(sinha ρ)ρ−
1+sp

2 K 3+sp
2
(aρ) dρ

≤ a

ˆ ∞

R

(sinha ρ)ρ−
1+sp

2 K 3+p
2
(aρ) dρ.

By (4.2.2), there exists M =M(p) > 1 such that

K 3+p
2
(ρ) ≤

√
π

ρ
e−ρ for ρ > M. (4.5.6)

The inequalities ρ−
1+sp

2 ≤ max{ρ− 1
2 , ρ−

1+p
2 } and sinh ρ < eρ, together with

(4.5.6), yield

ˆ ∞

R

(sinha ρ)ρ−
1+sp

2 K 3+p
2
(aρ) dρ

≤
ˆ M/a

R

(sinha ρ)max
{
ρ−

1
2 , ρ−

1+p
2

}
K 3+p

2
(aρ) dρ+

√
π

a

ˆ ∞

M/a

ρ−1− sp
2 dρ.

Note that the first integral in the right-hand side of the inequality above is a
constant depending on a, p, and R only. For the second integral, we estimate√

π

a

ˆ ∞

M/a

ρ−1− sp
2 dρ =

2

sp

√
π

a

( a
M

) sp
2 ≤ 2

sp

√
π

a
max

{( a
M

) p
2
, 1

}
.

Thus, we arrive at

lim
s↗1

(1− s)

ˆ ∞

R

sinh1+a ρ

(
−∂ρ
sinh ρ

)
K 1+sp

2
,a(ρ) dρ = 0,

which proves (4.5.5) for m = 1.
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Assume now that (4.5.5) is true for m and prove it for m + 1. Using
integration by parts, we have

lim
s↗1

(1− s)

ˆ ∞

R

sinhm+1+a ρ

(
−∂ρ
sinh ρ

)m+1

K 1+sp
2

,a(ρ) dρ

= lim
s↗1

(1− s)(m+ a)

ˆ ∞

R

sinhm+a−1 ρ cosh ρ

(
−∂ρ
sinh ρ

)m

K 1+sp
2

,a(ρ) dρ.

Thus, by an inequality

cosh ρ ≤ cothR sinh ρ for ρ ≥ R, (4.5.7)

Lemma 4.5.1, and the induction hypothesis, we conclude

lim
s↗1

(1− s)

ˆ ∞

R

sinhm+1+a ρ

(
−∂ρ
sinh ρ

)m+1

K 1+sp
2

,a(ρ) dρ

≤ (m+ a)(cothR) lim
s↗1

(1− s)

ˆ ∞

R

sinhm+a ρ

(
−∂ρ
sinh ρ

)m

K 1+sp
2

,a(ρ) dρ = 0.

This finishes the proof of the lemma in the odd dimensional case.
Let us next consider the even dimensional cases n = 2m with m ≥ 1.

Similarly as in the odd dimensional case, since

0 ≤
ˆ ∞

R

Kn,s,p(ρ) sinh
n−1 ρ dρ

≲ (1− s)

ˆ ∞

R

sinh2m−1 ρ

ˆ ∞

ρ

sinh r√
cosh r − cosh ρ

(
−∂r
sinh r

)m

K 1+sp
2

, 2m−1
2

(r) dr dρ,

the desired result will follow once we prove the following:

lim
s↗1

(1− s)

ˆ ∞

R

sinh
2m−1

2
+a ρ

ˆ ∞

ρ

sinh r√
cosh r − cosh ρ

(
−∂r
sinh r

)m

K 1+sp
2

,a(r) dr dρ

= 0 for each a ≥ 1/2.

(4.5.8)
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If m = 1, then

ˆ ∞

R

sinh
1
2
+a ρ

ˆ ∞

ρ

sinh r√
cosh r − cosh ρ

(
−∂r
sinh r

)
K 1+sp

2
,a(r) dr dρ

≤ a

ˆ M/a

R

sinh
1
2
+a ρ

ˆ ∞

ρ

1√
cosh r − cosh ρ

r−
1+sp

2 K 3+p
2
(ar) dr dρ

+ a

ˆ ∞

M/a

sinh
1
2
+a ρ

ˆ ∞

ρ

1√
cosh r − cosh ρ

r−
1+sp

2 K 3+p
2
(ar) dr dρ =: J1 + J2.

For J2, we use (4.5.6) to obtain

J2 ≤
√
πa

ˆ ∞

M/a

sinh
1
2
+a ρ

ρ1+
sp
2 eaρ

ˆ ∞

ρ

1√
cosh r − cosh ρ

dr dρ.

Since
ˆ ∞

ρ

1√
cosh r − cosh ρ

dr =
1√
2

ˆ ∞

ρ

1√
sinh r+ρ

2
sinh r−ρ

2

dr

≤ 1√
2 sinh ρ

ˆ ∞

ρ

1√
sinh r−ρ

2

dr

=
1√

2 sinh ρ

ˆ ∞

0

1√
sinh r

2

dr =
Γ(1/4)

Γ(3/4)

√
π

sinh ρ

(4.5.9)

and sinha ρ ≤ eaρ, we have

J2 ≤
Γ(1/4)

Γ(3/4)
π
√
a

ˆ ∞

M/a

ρ−1− sp
2 dρ =

Γ(1/4)

Γ(3/4)

π
√
a

sp

( a
M

) sp
2
.

On the other hand, for J1 we observe

J1 ≤ a

ˆ M/a

R

sinh
1
2
+a ρ

ˆ ∞

ρ

max{r− 1+p
2 , r−

1
2}√

cosh r − cosh ρ
K 3+p

2
(ar) dr dρ.

Since the inner integral is continuous and integrable on [R,M/a], J1 is
controlled by some constant C = C(a, p, R) > 0. Therefore, we conclude
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lims↗1(1− s)(J1 + J2) = 0, which proves (4.5.8) for m = 1.
Finally, let us assume that (4.5.8) holds for m and prove it for m+1. By

Lemma 4.3.1, we have

lim
s↗1

(1− s)

ˆ ∞

R

sinh
2m+1

2
+a ρ

ˆ ∞

ρ

sinh r√
cosh r − cosh ρ

(
−∂r
sinh r

)m+1

K 1+sp
2

,a(r) dr dρ

= lim
s↗1

(1− s)

ˆ ∞

R

sinh
2m+1

2
+a ρ

(
−∂ρ
sinh ρ

)
ˆ ∞

ρ

sinh r√
cosh r − cosh ρ

(
−∂r
sinh r

)m

K 1+sp
2

,a(r) dr dρ.

Using integration by parts, (4.5.7), and Lemma 4.5.1, we deduce

lim
s↗1

(1− s)

ˆ ∞

R

sinh
2m+1

2
+a ρ

ˆ ∞

ρ

sinh r√
cosh r − cosh ρ

(
−∂r
sinh r

)m+1

K 1+sp
2

,a(r) dr dρ

≤ C lim
s↗1

(1− s)

ˆ ∞

R

sinh
2m−1

2
+a ρ

ˆ ∞

ρ

sinh r√
cosh r − cosh ρ

(
−∂r
sinh r

)m

K 1+sp
2

,a(r) dr dρ

for some C = C(m, a,R). Therefore, the statement (4.5.8) for m+ 1 follows
by the induction hypothesis.

Lemma 4.5.4. Let n ≥ 2 and p > 1. For any R > 0,

lim
s↗1

cn,s,p

ˆ R

0

ρpKn,s,p(ρ) sinh
n−1 ρ dρ =

1

π
n−1
2

Γ(p+n
2
)

Γ(p+1
2
)
. (4.5.10)

The proof of Lemma 4.5.4 for the even dimensional case needs the follow-
ing lemma.

Lemma 4.5.5. Let a > 0 and ν > −1/2. Then,

ˆ ∞

ρ

r−νKν+1(ar)√
cosh r − cosh ρ

dr ∼
√
π

2

Γ(ν + 1
2
)

Γ(ν + 1)
ρ−νKν+1(aρ)

as ρ→ 0+.
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Proof. By the change of variables r = ρt, we have

ˆ ∞

ρ

1√
cosh r − cosh ρ

r−νKν+1(ar)

ρ−νKν+1(aρ)
dr

=

ˆ ∞

1

t−ν√
cosh(ρt)− cosh ρ

Kν+1(aρt)

Kν+1(aρ)
ρ dt.

We define for each ρ ∈ (0, 1) a function fρ by

fρ(t) =
t−ν√

cosh(ρt)− cosh ρ

Kν+1(aρt)

Kν+1(aρ)
ρ

on (1,∞). Note that we have

cosh(ρt)− cosh ρ

ρ2
≥ 1

2
(t2 − 1).

Moreover, by [65, Equation (2.17)], we have

Kν+1(aρt)

Kν+1(aρ)
≤ t−ν−1.

Thus, fρ is bounded from above by a function

f(t) :=
t−2ν−1√
(t2 − 1)/2

,

which is integrable on (1,∞). Indeed, by the change of variables t2 − 1 = τ ,
we obatin

ˆ ∞

1

f(t) dt =
1√
2

ˆ ∞

1

τ−1/2

(1 + τ)1+ν
dτ =

1√
2
B

(
1

2
, ν +

1

2

)
=

√
π

2

Γ(ν + 1
2
)

Γ(ν + 1)
< +∞,

where B is Euler’s Beta Integral (see [91, Section 5.12]).
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For fixed t ∈ (1,∞), we have

cosh(ρt)− cosh ρ

ρ2
→ 1

2
(t2 − 1) and

Kν+1(aρt)

Kν+1(aρ)
→ t−ν−1

as ρ → 0+. Hence, we obtain limρ↘0 fρ(t) = f(t). Therefore, the Lebesgue
dominated convergence theorem concludes the lemma.

We are in a position to prove Lemma 4.5.4 by using Lemma 4.5.5.

Proof of Lemma 4.5.4. Let us first consider the odd dimensional case n =

2m+ 1 with m ≥ 1. One can easily check that (4.5.10) is equivalent to

lim
s↗1

(1− s)

ˆ R

0

ρp sinh2m ρ

(
−∂ρ
sinh ρ

)m

K 1+sp
2

,m(ρ) dρ

=
2m−1

p

(
2

m

) p+1
2

Γ

(
p+ 2m+ 1

2

) (4.5.11)

by using lims↗1(1 − s)|Γ(−s)| = 1. Actually, we will prove the following
statement, which is slightly stronger than (4.5.11):

lim
s↗1

(1− s)

ˆ R

0

ρp sinh2m ρ

(
−∂ρ
sinh ρ

)m

K 1+sp
2

,a(ρ) dρ

=
2m−1

p

(
2

a

) p+1
2

Γ

(
p+ 2m+ 1

2

)
for each a ≥ 1.

(4.5.12)

Let ε ∈ (0, 1), then there exists δ0 ∈ (0, 1) such that

1− ε ≤ sinh ρ

ρ
≤ 1 + ε (4.5.13)

for all ρ ∈ (0, δ0). Moreover, using the asymptotic behavior (4.2.2) of the
modified Bessel function, for each s ∈ [0, 1] we find δs > 0 such that

1− ε

2
Γ

(
3 + sp

2

)(ρ
2

)− 3+sp
2 ≤ K 3+sp

2
(ρ) ≤ 1 + ε

2
Γ

(
3 + sp

2

)(ρ
2

)− 3+sp
2

(4.5.14)
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for all ρ ∈ (0, δs). Furthermore, since Kν is uniformly continuous with respect
to ν, we may assume that δs has been chosen continuously on s. Let us take
δ = δ0 ∧ mins∈[0,1] δs ∧ R, then δ = δ(ε, p, R) > 0, and (4.5.13) and (4.5.14)
hold for all ρ ∈ (0, δ).

We fix a ≥ 1 and denote by Gs,p,m,a(ρ) the integrand in the left-hand side
of (4.5.12). Then, |Gs,p,m,a(ρ)| is bounded by the function sup0≤s≤1 |Gs,p,m,a(ρ)|,
which is independent of s and bounded on a compact interval [δ/a,R]. Thus,
we have

lim
s↗1

(1− s)

ˆ R

δ/a

Gs,p,m,a(ρ) dρ = 0,

and hence

lim
s↗1

(1− s)

ˆ R

0

Gs,p,m,a(ρ) dρ = lim
s↗1

(1− s)

ˆ δ/a

0

Gs,p,m,a(ρ) dρ.

Let us now prove (4.5.12) by induction. When m = 1, we first use (4.2.3) to
have

Gs,p,1,a(ρ) = aρp−
1+sp

2 K 3+sp
2
(aρ) sinh ρ.

If ρ < δ/a, then ρ ≤ aρ < δ since a ≥ 1. Thus, we utilize (4.5.13) and (4.5.14)
to obtain

(1− ε)2
(
2

a

) 1+sp
2

Γ

(
3 + sp

2

)
ρp(1−s)−1 ≤ Gs,p,1,a(ρ)

≤ (1 + ε)2
(
2

a

) 1+sp
2

Γ

(
3 + sp

2

)
ρp(1−s)−1.
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This leads us to the inequalities

lim
s↗1

(1− s)

ˆ R

0

Gs,p,1,a(ρ) dρ

= lim
s↗1

(1− s)

ˆ δ/a

0

Gs,p,1,a(ρ) dρ

≤ lim
s↗1

(1− s)(1 + ε)2
(
2

a

) 1+sp
2

Γ

(
3 + sp

2

) ˆ δ/a

0

ρp(1−s)−1 dρ

= (1 + ε)2
1

p

(
2

a

) p+1
2

Γ

(
p+ 3

2

)
and

lim
s↗1

(1− s)

ˆ R

0

Gs,p,1,a(ρ) dρ ≥ (1− ε)2
1

p

(
2

a

) p+1
2

Γ

(
p+ 3

2

)
.

Therefore, the statement (4.5.12) for m = 1 follows by taking ε→ 0.
Assume now that (4.5.12) holds for m ≥ 1. Then, a similar argument

shows

lim
s↗1

(1− s)

ˆ R

0

Gs,p,m+1,a(ρ) dρ

= lim
s↗1

(1− s)

ˆ δ/a

0

ρp sinh2m+2 ρ

(
−∂ρ
sinh ρ

)m+1

K 1+sp
2

,a(ρ) dρ

≤ lim
s↗1

(1− s)(1 + ε)2m+1

ˆ δ/a

0

ρp+2m+1(−∂ρ)
(

−∂ρ
sinh ρ

)m

K 1+sp
2

,a(ρ) dρ,

where nonnegativity of the integrands follows from Lemma 4.5.1. Using the
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integration by parts, (4.5.13), and the induction hypothesis, we arrive at

lim
s↗1

(1− s)

ˆ R

0

Gs,p,m+1,a(ρ) dρ

≤ (1 + ε)2m+1(p+ 2m+ 1) lim
s↗1

(1− s)

ˆ δ/a

0

ρp+2m

(
−∂ρ
sinh ρ

)m

K 1+sp
2

,a(ρ) dρ

≤ (1 + ε)2m+1

(1− ε)2m
(p+ 2m+ 1) lim

s↗1
(1− s)

ˆ δ/a

0

ρp sinh2m ρ

(
−∂ρ
sinh ρ

)m

K 1+sp
2

,a(ρ) dρ

=
(1 + ε)2m+1

(1− ε)2m
(p+ 2m+ 1)

2m−1

p

(
2

a

) p+1
2

Γ

(
p+ 2m+ 1

2

)
=

(1 + ε)2m+1

(1− ε)2m
2m

p

(
2

a

) p+1
2

Γ

(
p+ 2m+ 3

2

)
.

Similarly, we obtain

lim
s↗1

(1− s)

ˆ R

0

Gs,p,m+1,a(ρ) dρ ≥
(1− ε)2m+1

(1 + ε)2m
2m

p

(
2

a

) p+1
2

Γ

(
p+ 2m+ 3

2

)
,

from which (4.5.12) for m+1 follows by taking ε→ 0. The statement (4.5.12)
has been proved for all m ∈ N, finishing the proof of (4.5.10) for the odd
dimensional case.

Let us next consider the even dimensional case n = 2m with m ≥ 1. In
this case, (4.5.10) is equivalent to

lim
s↗1

(1− s)

ˆ R

0

ρp sinh2m−1 ρ

ˆ ∞

ρ

sinh r√
cosh r − cosh ρ

(
−∂r
sinh r

)m

K 1+sp
2

, 2m−1
2

(r) dr dρ

=

√
π

2

2m−1

p

(
2

m− 1/2

) p+1
2

Γ

(
p+ 2m

2

)
.
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As in the odd dimensional case, we will prove a stronger statement:

lim
s↗1

(1− s)

ˆ R

0

ρp sinh2m−1 ρ

ˆ ∞

ρ

sinh r√
cosh r − cosh ρ

(
−∂r
sinh r

)m

K 1+sp
2

,a(r) dr dρ

=

√
π

2

2m−1

p

(
2

a

) p+1
2

Γ

(
p+ 2m

2

)
for each a ≥ 1/2.

(4.5.15)

Recall that we have taken δ so that (4.5.13) and (4.5.14) hold for all ρ ∈ (0, δ).
Let us fix a ≥ 1/2. By Lemma 4.5.5, for each s ∈ [0, 1] we find δ̃s > 0 such
that

(1− ε)

√
π

2

Γ(2+sp
2

)

Γ(3+sp
2

)
ρ−

1+sp
2 K 3+sp

2
(aρ) ≤

ˆ ∞

ρ

r−
1+sp

2 K 3+sp
2
(ar)

√
cosh r − cosh ρ

dr

≤ (1 + ε)

√
π

2

Γ(2+sp
2

)

Γ(3+sp
2

)
ρ−

1+sp
2 K 3+sp

2
(aρ)

(4.5.16)

for all ρ ∈ (0, δ̃s). Moreover, we may assume that δ̃s has been chosen contin-
uously on s. Let δ̃ = δ ∧mins∈[0,1] δ̃s, then δ = δ(ε, p, R, a) > 0 and (4.5.16)
holds for all ρ ∈ (0, δ̃).

We denote by Hs,p,m,a(ρ) the integrand in the left-hand side of (4.5.15).
Then, the same argument as in the odd dimensional case shows

lim
s↗1

(1− s)

ˆ R

0

Hs,p,m,a(ρ) dρ = lim
s↗1

(1− s)

ˆ δ
2a

0

Hs,p,m,a(ρ) dρ.

We argue by induction again to prove (4.5.15). If m = 1, then

Hs,p,1,a(ρ) = aρp sinh ρ

ˆ ∞

ρ

1√
cosh r − cosh ρ

r−
1+sp

2 K 3+sp
2
(ar) dr.

Since a ≥ 1/2, we have ρ < δ and aρ < δ for ρ < δ
2a

. Thus, by (4.5.13),
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(4.5.16), and (4.5.14), we obtain

(1− ε)3
√
π

2

(
2

a

) 1+sp
2

Γ

(
2 + sp

2

)
ρp(1−s)−1

≤ Hs,p,1,a(ρ)

≤ (1 + ε)3
√
π

2

(
2

a

) 1+sp
2

Γ

(
2 + sp

2

)
ρp(1−s)−1.

Therefore, we have

(1− ε)3
√
π

2

1

p

(
2

a

) p+1
2

Γ

(
p+ 3

2

)
≤ lim

s↗1
(1− s)

ˆ R

0

Hs,p,1,a(ρ) dρ

≤ (1 + ε)3
√
π

2

1

p

(
2

a

) p+1
2

Γ

(
p+ 3

2

)
,

from which we deduce (4.5.15) for m = 1 by taking ε→ 0.
Suppose that (4.5.15) is true for m ≥ 1. Then, by (4.5.13), Lemma 4.3.1,

and Lemma 4.5.1, we have

lim
s↗1

(1− s)

ˆ R

0

Hs,p,m+1,a(ρ) dρ

= lim
s↗1

(1− s)

ˆ δ
2a

0

ρp sinh2m+1 ρ

ˆ ∞

ρ

sinh r√
cosh r − cosh ρ

(
−∂r
sinh r

)m+1

K 1+sp
2

,a(r) dr dρ

≤ lim
s↗1

(1− s)(1 + ε)2m
ˆ δ

2a

0

ρp+2m(−∂ρ)
ˆ ∞

ρ

sinh r√
cosh r − cosh ρ

(
−∂r
sinh r

)m

K 1+sp
2

,a(r) dr dρ.

Using the integration by parts, (4.5.13), and the induction hypothesis, we
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arrive at

lim
s↗1

(1− s)

ˆ R

0

Hs,p,m+1,a(ρ) dρ

= (1 + ε)2m(p+ 2m)

× lim
s↗1

(1− s)

ˆ δ
2a

0

ρp+2m−1

ˆ ∞

ρ

sinh r√
cosh r − cosh ρ

(
−∂r
sinh r

)m

K 1+sp
2

,a(r) dr dρ

≤ (1 + ε)2m

(1− ε)2m−1
(p+ 2m) lim

s↗1
(1− s)

ˆ δ
2a

0

Hs,p,m,a(ρ) dρ

=
(1 + ε)2m

(1− ε)2m−1

√
π

2

2m

p

(
2

a

) p+1
2

Γ

(
p+ 2m+ 2

2

)
.

The inequality

lim
s↗1

(1−s)
ˆ R

0

Hs,p,m+1,a(ρ) dρ ≥
(1− ε)2m

(1 + ε)2m−1

√
π

2

2m

p

(
2

a

) p+1
2

Γ

(
p+ 2m+ 2

2

)
can be obtained in the same way. Thus, we conclude that (4.5.15) for m+ 1

holds by taking ε → 0. This finishes the proof for the even dimensional
case.

Lemma 4.5.6. Let n ≥ 2 and p > 1. For any R > 0 and β > 0,

lim
s↗1

cn,s,p

ˆ R

0

ρp+βKn,s,p(ρ) sinh
n−1 ρ dρ = 0. (4.5.17)

Proof. We proceed as in the previous lemma to prove (4.5.17). When n =

2m+ 1 with m ≥ 1, we show

lim
s↗1

ˆ R

0

ρp+β sinh2m ρ

(
−∂ρ
sinh ρ

)m

K 1+sp
2

,a(ρ) dρ = 0 for each a ≥ 1

by induction. Indeed, for ε ∈ (0, 1) let δ > 0 be the constant given in the
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proof of Lemma 4.5.4. Then, by using (4.5.13) and (4.5.14) we prove

lim
s↗1

(1− s)

ˆ R

0

ρβGs,p,1,a(ρ) dρ

≤ lim
s↗

(1− s)(1 + ε)2
(
2

a

) 1+sp
2

Γ

(
3 + sp

2

) ˆ δ/a

0

ρp(1−s)+β−1 dρ

= lim
s↗

(1− s)(1 + ε)2
(
2

a

) 1+sp
2

Γ

(
3 + sp

2

)
1

p(1− s) + β

(
δ

a

)p(1−s)+β

= 0

for the case m = 1, where Gs,p,m,a is the function defined in the proof of
Lemma 4.5.4. Moreover, one can follow the steps in the proof of Lemma 4.5.4
to obtain

(1− ε)2m+1

(1 + ε)2m
(p+ β + 2m+ 1) lim

s↗1
(1− s)

ˆ R

0

ρβGs,p,m,a(ρ) dρ

≤ lim
s↗1

(1− s)

ˆ R

0

ρβGs,p,m+1,a(ρ) dρ

≤ (1 + ε)2m+1

(1− ε)2m
(p+ β + 2m+ 1) lim

s↗1
(1− s)

ˆ R

0

ρβGs,p,m,a(ρ) dρ,

which proves the induction step.
The even dimensional case n = 2m with m ≥ 1 can also be verified by

proving

lim
s↗1

(1− s)

ˆ R

0

ρp+β sinh2m−1 ρ

ˆ ∞

ρ

sinh r√
cosh r − cosh ρ

(
−∂r
sinh r

)m

K 1+sp
2

,a(r) dr dρ

= 0

for each a ≥ 1/2. This can be proved by the induction as in the previous
lemma, so we omit the proof.

Let us provide the proof of Theorem 4.1.4 by using the pointwise repre-
sentation (4.1.3) and Taylor’s theorem, and gathering pieces of limits in the
preceding lemmas.

Proof of Theorem 4.1.4. Let u ∈ C2
b (Hn) and let x ∈ Hn be such that
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∇u(x) ̸= 0. Let R > 0, then by Lemma 4.5.3 we first have∣∣∣cn,s,p ˆ
d(x,ξ)≥R

Φp(u(x)− u(ξ))Kn,s,p(d(x, ξ)) dξ
∣∣∣

≲ cn,s,p

ˆ ∞

R

Kn,s,p(ρ) sinh
n−1 ρ dρ→ 0

as s → 1−. Thus, by the pointwise representation (4.1.3) of the fractional
p-Laplacian, we obtain

lim
s↗1

(−∆Hn)spu(x) = lim
s↗1

cn,s,pP.V.

ˆ
d(x,ξ)<R

Φp(u(x)− u(ξ))Kn,s,p(d(x, ξ)) dξ.

(4.5.18)
Let v = exp−1

x ξ be a tangent vector in TxHn and denote by Txξ the point
expx(−v) ∈ Hn. Since Kn,s,p(d(x, ξ)) = Kn,s,p(d(x, Txξ)), we write

ˆ
d(x,ξ)<R

Φp(u(x)− u(ξ))Kn,s,p(d(x, ξ)) dξ

=
1

2

ˆ
d(x,ξ)<R

|u(x)− u(ξ)|p−2(2u(x)− u(ξ)− u(Txξ))Kn,s,p(d(x, ξ)) dξ

+
1

2

ˆ
d(x,ξ)<R

(
|u(x)− u(Txξ)|p−2 − |u(x)− u(ξ)|p−2

)
· (u(x)− u(Txξ))Kn,s,p(d(x, ξ)) dξ

=: J1 + J2.

By Taylor’s theorem, we have

u(x)−u(ξ) = −⟨∇u(x), v⟩+O(|v|2), u(x)−u(Txξ) = ⟨∇u(x), v⟩+O(|v|2),

and
2u(x)− u(ξ)− u(Txξ) = −⟨D2u(x)v, v⟩+O(|v|3).

If we write ω = v/|v|, then

|u(x)− u(ξ)|p−2 = |v|p−2|⟨∇u(x), ω⟩|p−2 +O(|v|p−1).
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Thus, we obtain

|u(x)− u(ξ)|p−2(2u(x)− u(ξ)− u(Txξ))

= −|v|p|⟨∇u(x), ω⟩|p−2⟨D2u(x)ω, ω⟩+O(|v|p+1).

Therefore, we deduce

J1 = −1

2

ˆ R

0

ˆ
Sn−1

ρp|⟨∇u(x), ω⟩|p−2⟨D2u(x)ω, ω⟩Kn,s,p(ρ) sinh
n−1 ρ dω dρ

+
1

2

ˆ
d(x,ξ)<R

O(d(x, ξ)p+1)Kn,s,p(d(x, ξ)) dξ.

(4.5.19)

For J2, since

|u(Txξ)− u(x)|p−2 − |u(x)− u(ξ)|p−2

= (p− 2)|v|p−1⟨∇u(x), ω⟩|⟨∇u(x), ω⟩|p−4⟨D2u(x)ω, ω⟩+O(|v|p),

we have (
|u(Txξ)− u(x)|p−2 − |u(x)− u(ξ)|p−2

)
(u(x)− u(Txξ))

= −(p− 2)|v|p|⟨∇u(x), ω⟩|p−2⟨D2u(x)ω, ω⟩+O(|v|p+1).

Thus, we obtain

J2 = −p− 2

2

ˆ R

0

ˆ
Sn−1

ρp|⟨∇u(x), ω⟩|p−2⟨D2u(x)ω, ω⟩Kn,s,p(ρ) sinh
n−1 ρ dω dρ

+
1

2

ˆ
d(x,ξ)<R

O(d(x, ξ)p+1)Kn,s,p(d(x, ξ)) dξ.

(4.5.20)

Combining (4.5.18), (4.5.19), and (4.5.20), and using Lemma 4.5.4 and Lemma 4.5.6,
we arrive at

lim
s↗1

(−∆Hn)spu(x) = −p− 1

2

1

π
n−1
2

Γ(p+n
2
)

Γ(p+1
2
)

ˆ
Sn−1

|⟨∇u(x), ω⟩|p−2⟨D2u(x)ω, ω⟩ dω.
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The argument as in the proof of [10, Theorem 2.8] shows

ˆ
Sn−1

|⟨∇u(x), ω⟩|p−2⟨D2u(x)ω, ω⟩ dω = γp(∆Hn)p

when ∇u(x) ̸= 0, where

γp =

ˆ
Sn−1

|ωn|p−2ω2
1 dω = π

n−1
2

Γ(p−1
2
)

Γ(p+n
2
)
. (4.5.21)

See [64, Lemma 2.1] for the computation of (4.5.21). This finishes the proof.

4.6 Appendix

4.6.1 Auxiliary result

In this section, we recall an auxiliary result from [39] that helps proving
Theorem 4.1.2 in Section 4.3.

Lemma 4.6.1. Let p > 1, r > 0, u ∈ C2
b (Hn), and x ∈ Hn. If p ∈ (1, 2

2−s
],

assume ∇u(x) ̸= 0 additionally. If K : Hn → R is rotationally symmetric
with respect to x, that is, K(ξ) = K(d(x, ξ)) for all ξ ∈ Hn, then∣∣∣∣P.V.ˆ

d(x,ξ)<r

Φp(u(x)− u(ξ))K(d(x, ξ)) dξ

∣∣∣∣ ≤ C

ˆ
d(x,ξ)<r

d(x, ξ)α|K(d(x, ξ))| dξ

for some constant C = C(n, p, ∥u∥C2(Hn)) > 0, where α = 2p − 2 when
p ∈ ( 2

2−s
, 2) and α = p otherwise.

The cases p ∈ (1, 2
2−s

], p ∈ ( 2
2−s

, 2), and p ∈ [2,∞) are proved in [39,
Lemma A.1, A2, and A3], respectively, for the case of Euclidean spaces.
We omit the proof of Lemma 4.6.1 because the same proofs work in our
framework.
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국문초록

본 학위논문은 비국소 타원형 방정식을 다룬 세 편의 연구논문으로 구성된다. 첫 번

째 논문에서, 우리는 최대값 정리의 일종인 알렉산드로브-베켈만-푸찌 정리를 완전

비선형 비국소 작용소에 대해 0 이상의 단면 곡률을 가지는 다양체 위에서 확립한다.

우리의접근방법은정규함수의조절과단면곡률로부터오는직접비교에기인한다.

두 번째 논문은 쌍곡선 공간에서 에이비피 정리를 다루는 것이다. 쌍곡선 공간에서는

열 핵의 움직임이 유클리드 공간과는 다르다. 따라서 에이비피 정리를 얻는 과정에서

그러한 비동차 현상을 관찰할 수 있다. 분석의 핵심은 도약 핵과 관련된 적분 값들의

질적특징을얻는것에있다.이러한에이비피정리들로부터우리는크릴로브-사포노

브하낙부등식을얻을수있다.세번째논문은부분쌍곡선공간에서피라플라시안의

대등 정리들에 대한 것이다. 특히, 우리는 카파렐리의 확장 문제 또한 정립할 수 있었

다.특징으로,우리는쌍곡선공간에서부분라플라시안의계수와하낙부등식과홀더

정칙성의 단단함을 구할 수 있었다.

주요어휘: ABP 근사, 다양체, 비국소 작용소, 하이퍼볼릭 공간, 파편 라플라
시안, 확장 문제
학번: 2016-20233



감사의 글

다사다난했던 박사과정을 이렇게 성공적으로 마무리할 수 있게 되어 정

말 감사합니다. 무엇인가 새로운 것을 만든다는 것이 참 어려운 일이지만 또
한편으론 보람찬 일이라는 것을 배우게 된 박사과정이었습니다. 힘든 길이었
지만 무사히 마무리할 수 있게 된 데에는 많은 분의 도움이 있었습니다. 우선
지도교수님이신 이기암 교수님께 감사드립니다. 수학을 공부한다는 게 어떤
것인지 교수님을 통해 배울 수 있었습니다. 결코 완벽히 따라 할 순 없겠지만
교수님께 보여주신 수학에 대한 놀라운 통찰력과 열정적인 자세를 배우고자

정말 많이 노력하였습니다. 또한 제가 힘들 때마다 따듯한 격려와 긍정적인
조언을 해주셔서 정말 힘이 많이 되었습니다.
바쁘신 와중에도 박사학위논문 심사에 참여해 주신 변순식 교수님, 김성훈
교수님, 김민현 교수님, 김판기 교수님께도 감사의 말씀을 드립니다. 박사 학
위심사를 준비하는 과정에서 저의 주제에 대해 깊은 관심을 두시고 세심한

조언을 해주셔서 박사논문을 완성하는 데, 그리고 앞으로 좋은 수학자가 되는
데 많은 도움이 되었습니다.
박사학위 과정 동안 정말 많은 시간을 함께 보낸 연구실 동료들에게도 감사합

니다. 효석이형, 상필이형, 형성이형, 성하형, 성한이형, 민현이형, 태훈이형,
탁원이형, 그리고 진제와 성은이, 애솔이에게 정말 많은 도움을 받았습니다.
비단 수학 공부, 수학 이야기를 한 것이 도움이 되었을 뿐만 아니라 이분들과
좋은 추억을 함께 할 수 있었기 때문에 행복하게 박사과정을 끝마칠 수 있었

습니다.
짧게나마지인들에게도감사의말을전하고싶습니다.고향친구들,학부친구
들 그리고 함께 운동한 동아리 친구들에게 정말 감사합니다. 그들과 함께했기
때문에 숱한 어려움에도 좌절하지 않고 좋은 선택을 내릴 수 있었던 것 같습

니다.
소중한 가족들에게 감사를 표하고 싶습니다. 힘들 때 항상 저를 믿어주시고
지지하여 주신 부모님. 항상 좋은 조언을 해준 형과 동생. 이처럼 가족 모두가
항상 무한한 사랑과 지지를 보내주어서 어떻게 이 은혜를 보답할 수 있을지

모르겠습니다. 어린 시절부터 부모님께서 베풀어 주신 사랑과 관심이 없었더
라면 제가 이렇게 수학을 좋아하는 바른 사람으로 성장하지 못했을 겁니다.



BIBLIOGRAPHY

설명할 순 없지만 힘들 때마다 가족들과의 추억이 정말 저에겐 많은 힘이 되

었습니다. 오랜 기간이 걸렸던 학위과정이었지만 가족들이 언제나 저의 꿈을
묵묵히 지지해 주었기 때문에 박사학위를 마무리할 수 있었습니다.
미처 언급하지 못한 다른 모든 분에게도 감사를 표합니다. 학위과정은 제 인
생에서 정말 행복했던 소중한 경험이었습니다. 이만 줄이도록 하겠습니다.

153


	Abstract                                                                                                              
	Contents                                                                                                             
	1 Introduction                                                                                                    
	2 Harnack inequality for Nonlocal operators on Manifolds with nonnegative curvature        
	2.1  Introduction                                                                                               
	2.1.1 Nonlocal operators on Riemannian manifolds                                       
	2.1.2 Main results                                                                                             
	2.1.3 Outline                                                                                                     

	2.2 Preliminaries                                                                                               
	2.3 Discrete ABP-type estimates                                                                      
	2.4 A barrier function                                                                                       
	2.5 Lε -estimate                                                                                                 
	2.6 Harnack inequality                                                                                      
	2.7 Hlder estimates                                                                                         

	3 Harnack inequality for fractional Laplacian-type operators on hyperbolic spaces            
	3.1 Introduction                                                                                                
	3.2 Preliminaries                                                                                               
	3.2.1 Hyperbolic spaces                                                                                   
	3.2.2 Fractional Laplacian on the hyperbolic spaces                                       
	3.2.3 Hyperbolic spaces revisited                                                                     

	3.3 Scale functions                                                                                           
	3.4 Discrete ABP-type estimates                                                                      
	3.5 A barrier function                                                                                       
	3.6 Lε -estimate                                                                                                 
	3.7 Harnack inequality                                                                                      
	3.8 Hlder estimates                                                                                         
	3.9 Appendix                                                                                                     
	3.9.1 Special functions                                                                                      


	4 The fractional p-Laplacian on hyperbolic spaces                                          
	4.1 Introduction                                                                                                
	4.2 Preliminaries                                                                                                
	4.2.1 The hyperbolic space                                                                               
	4.2.2 The modified Bessel function                                                                  

	4.3 Pointwise representation with singular kernel                                           
	4.4 Extension problem                                                                                      
	4.5 Pointwise convergence                                                                               
	4.6 Appendix                                                                                                     
	4.6.1 Auxiliary result                                                                                         


	Bibliography                                                                                                       
	Abstract (in Korean)                                                                                          
	Acknowledgement (in Korean)                                                                         


<startpage>9
Abstract                                                                                                               i
Contents                                                                                                              ii
1 Introduction                                                                                                     1
2 Harnack inequality for Nonlocal operators on Manifolds with nonnegative curvature         6
 2.1  Introduction                                                                                                6
  2.1.1 Nonlocal operators on Riemannian manifolds                                        7
  2.1.2 Main results                                                                                              10
  2.1.3 Outline                                                                                                      13
 2.2 Preliminaries                                                                                                14
 2.3 Discrete ABP-type estimates                                                                       20
 2.4 A barrier function                                                                                        34
 2.5 Lε -estimate                                                                                                  39
 2.6 Harnack inequality                                                                                       42
 2.7 Hlder estimates                                                                                          47
3 Harnack inequality for fractional Laplacian-type operators on hyperbolic spaces             51
 3.1 Introduction                                                                                                 51
 3.2 Preliminaries                                                                                                58
  3.2.1 Hyperbolic spaces                                                                                    58
  3.2.2 Fractional Laplacian on the hyperbolic spaces                                        60
  3.2.3 Hyperbolic spaces revisited                                                                      63
 3.3 Scale functions                                                                                            64
 3.4 Discrete ABP-type estimates                                                                       69
 3.5 A barrier function                                                                                        80
 3.6 Lε -estimate                                                                                                  87
 3.7 Harnack inequality                                                                                       90
 3.8 Hlder estimates                                                                                          94
 3.9 Appendix                                                                                                      97
  3.9.1 Special functions                                                                                       97
4 The fractional p-Laplacian on hyperbolic spaces                                           104
 4.1 Introduction                                                                                                 104
 4.2 Preliminaries                                                                                                 109
  4.2.1 The hyperbolic space                                                                                109
  4.2.2 The modified Bessel function                                                                   110
 4.3 Pointwise representation with singular kernel                                            111
 4.4 Extension problem                                                                                       116
 4.5 Pointwise convergence                                                                                121
 4.6 Appendix                                                                                                      138
  4.6.1 Auxiliary result                                                                                          138
Bibliography                                                                                                        139
Abstract (in Korean)                                                                                           151
Acknowledgement (in Korean)                                                                          152
</body>

