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Abstract

Aleksandrov-Bakelman-Pucci estimate for
nonlocal partial differential equation on
manifold

Jongmyeong Kim
Department of Mathematical Sciences

The Graduate School

Seoul National University

This thesis consists of three papers concerning nonlocal elliptic equations
on the manifold. In the first paper, we establish the Alexander-Bekelman-
Pucci estimate, which is the maximum principle, for fully nonlinear nonlocal
equations in a nondivergence form on the manifold with nonnegative sectional
curvature. Our approach is based on the control of normal map, and the direct
comparison from the sectional curvature condition. The second paper deals
with the ABP estimate on hyperbolic space. In hyperbolic space, the behav-
ior of the heat kernel is different from that on Euclidean space. Hence, in the
ABP estimate, there is nonhomogeneous behavior. The heart of the analysis
lies in capturing the qualitative property for the integral values related to the
jump kernel. From these ABP estimates, we obtain Krylov-Safonov Harnack
inequality. The third paper discusses the equivalent definitions of fractional
p-Laplacian on hyperbolic space. Especially, we establish Caffarelli’s exten-
sion problem. As a remark, we get the coefficient of fractional Laplacian
on hyperbolic space and the robustness of Harnack inequality and Holder

regularity.

Key words: ABP estimate, manifold, nonlocal operator, hyperbolic space,
fractional Laplacian, extension problem
Student Number: 2016-20233
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Chapter 1
Introduction

Analyzing the property of the elliptic partial differential equation is a his-
torically important topic. Especially, Analysis for the nonlocal operator like
fractional Laplacian is a complex and notable subject in progress. On the
other hand, the elliptic partial differential equation on the manifold is also
a historical problem. There are great results on both elliptic divergent form
and nondivergent form in regularity theory. On an extension, we will con-
centrate on an analysis of nonlocal nondivergent elliptic operators on some
Riemannian manifolds through comparison methods.

In the first part of this thesis, we will concern with the interior regularity
of integro-differential operators on certain manifolds. To illustrate the issues,
let us explain the classical problem. Let {2 be an open and bounded subset in
R”, and u € C%(Q2) N C(Q) be a supersolution of Lu = a;;(r)u(z) = f where
a;;j, [ is continuous and f/D* € L"(f2) for Dx is the geometric mean of the
eigenvalues of a;;. By area formula, matrix inequality, and the estimate of

measure of gradient mapping, we get the following maximum principle

D*

2l e

supu~ < supu -+
Q

o9 Ln({u=Tu})

where I', = sup,{L < v in Q, L an affine function} is the (convex) envelope
and {u = T',} is the contact set. This is called Aleksandrov-Bakelman-Pucci
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maximum principle (Shortly, we will call it an ABP estimate from now on).
After that, we analyze the distribution of u roughly as follows.

Let u be a supersolution as before. There is universal constants ¢, g and C
such that if

u > 0in B2\/ﬁa / inf u < 1, ||f||Ln(B2ﬁ) < go,
Q3

there holds
Hu>t}NQ: <Ct ™ fort > 0.

From this information, we eventually get the Krylov-Safonov Harnack in-
equality and Holder regularity. Roughly speaking, for positive solution on
By,

Supu < C‘(gl%fu + 1 f 1),

and u € C*(By) for some universal a € (0, 1). In other words, there holds
[u@) —uy)| < Clz —yl*(sup [ul + | flloe@,) Yo,y € By
1

This type of theory naturally extends to the nondivergent type operator.
In this context, we establish Krylov-Safonov theory for nonlocal operators
on certain Riemannian manifolds on an extension.

Let me briefly review the history. In the 1960s, Aleksandrov [1|, Bakel-
man [6] and Pucci [94], independently established a maximum principle for
linear elliptic equations in nondivergent form with bounded measurable coef-
ficients. Their results were crucial in the proof of the Krylov-Safonov Harnack
inequality and Holder estimate for elliptic nondivergent linear operators with
bounded measurable coefficients [96]. Since these estimates for linear oper-
ators depend on ellipticity constants and the geometry of the domain, it is
naturally extended to the uniformly elliptic fully nonlinear equations; see
[18], [19] and the references therein. The main idea of the extension is that
one can consider the Pucci extremal operators and solution class so that

the viscosity solution in the class is represented by two inequalities of Pucci
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extremal operators. Then the certain property of Pucci operator makes it
possible to generalize linear theory to fully nonlinear equations. There are
also other generalizations. For parabolic equation, see [83], [84], [103], [105].
For L? viscosity solution, see [13], [35]. Other notable results are [11], [45],
[43], [44], [85]. Recently, there are also generalizations for degenerate or sin-
gular cases [36], [37], [63], [5].

On the other hand, on manifold, Cabré established ABP estimate and Krylov-
Safonov theory for nondivergent form on manifold with sectional curvature
bounded below by 0 [12]. In this paper, to overcome a missing concept of
the hyperplane, he suggested a generalized envelope that is derived from the
distance squared function. Also, the geometric comparison principle was an
important factor. Later, Wang and Zhang extended the ABP estimate on
the manifold with Ricci curvature bounded below by - [106]. There are also
other types of generalization for nondivergent type [74], [75], [77]. I would like
to mention that there is a famous Li and Yau estimate for divergent form
[88]. They used the logarithm of a solution to get a heat kernel estimate,
which easily leads to a parabolic and elliptic Harnack inequality.

For the regularity of fractional Laplacian or more generally, nonlocal integro-
differential operator, Caffarelli and Silvestre [15] first established ABP es-
timates for the nondivergent integro-differential operator. Due to the non-
locality, they couldn’t use integration to deal with matrix inequality terms.
Instead, they estimated a gradient of I" on the annulus centered at the contact
point. Interestingly, since the information on annulus was a measure value
estimate, they didn’t simply sum up those on annuli. Instead, by using the
convexity(concavity) of an envelope, they established a gradient estimate on
a ball inside of the inner complement of the annulus. The distinctive feature
is that the forcing term appears as || f||p~. Guillen and Schwab [60] took a
slightly different kernel and derived ABP estimates with not only || f||z~ but
also || f||». Recently, there were several improvements in this direction [81],
[82]. On the other hand, for divergent form, Kassmann proved in the spirit of

De Giorgi-Nash-Moser theory the Harnack inequality and Holder estimate in
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an appropriate form which included the nonlocality [67], [68]. Castro, Kuusi,
and Palatucci overcame nonlinearity and succeeded to achieve similar results
for fractional p Laplacian [40], [41]. There are also lots of improvements in
this direction [23], [22], [69], [73], [90].

For more general spaces, Banica, Gonzalez, and Séez established a singu-
lar integral definition of fractional Laplacian on hyperbolic space. They also
achieved Holder estimates and extension problems. |7]. For sphere, Alonso-
Oran, Cérdoba, and Martinez derived integral representation|3]. On the other
hand, in Dirichlet form theory, while searching for the heat kernel bounds,
Grigor'yan, Hu, and Hu derived Holder estimate for the jump type kernel
in analytical method[57|. As a similar result, Chen, Kumagai, and Wang
achieved Harnack inequality while they used a more probabilistic method|28|.
In chapter 2, We will deal with ABP estimate for nondivergent nonlocal
integro-differential operator, which is the main result of [72], on Rieman-
nian manifold with sectional curvature bounded below by 0 and some minor
assumptions. Although the nonlocality and nonsymmetric bring difficulties,
with rather strong comparison principles and smoothness of manifold, we can
achieve robust ABP estimate and Krylov-Safonov theory. In Chapter 3, We
will achieve similar results on hyperbolic space, which is the main result of
[70]. In hyperbolic space, as we mentioned before, there is a singular kernel
representation due to the Fourier transform. Interesting properties such as
inhomogeneity of scaling and exponential volume growth, which are closely
connected, make analysis hard. However, we can derive enough properties
such as the decaying property of integral values related to the jump kernel
to achieve regularity.

The second part deals with equivalent definition of fractional p Laplacian,
which will be the chapter 4 based on [71]. As the Laplcian operator can
be characterized by many different methods, the fractional Laplacian opera-
tor also has many equivalent definitions. In Euclidean space, such a result is
very well formulated in the survey paper [86]. Furthermore, del Teso, Gémez-

Castro, and Vazquez, despite nonlinearity, prove the equivalent definition of
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fractional p Laplacian operator in 4 forms; via heat kernel, extension, Bochner
integral, and Balakrishnan integral[39]. In a similar context, we derive three

equivalent definitions of fractional p Laplacian on hyperbolic space.



Chapter 2

Harnack inequality for Nonlocal
operators on Manifolds with

nonnegative curvature

2.1 Introduction

This paper is concerned with the Harnack inequalities and Holder estimates
for nonlocal equations on Riemannian manifolds with nonnegative curva-
ture. The Harnack inequalities and Holder estimates for second order local
operators have been studied extensively on Riemannian manifolds. We re-
fer the reader to [108, 29, 97| for second order operators of divergence form
and [12, 74, 106, 75, 77| for second order operators of non-divergence form.
As nonlocal operators have attracted the attention, some of these results
have been extended to nonlocal operators in various contexts. For exam-
ple, the Harnack inequalities and Holder estimates were established [28] in
the framework of Dirichlet form theory on metric measure spaces with the
volume doubling property, which include Riemannian manifolds with non-
negative curvature as a special case. Note that this result is appropriate for
linear nonlocal operators of divergence form.

The operators under consideration in this paper are nonlinear and of
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non-divergence form. To the best of author’s knowledge, the Krylov—Safonov
Harnack inequalities for nonlocal operators were not available on Riemannian
manifolds, while they are well-known in the Euclidean spaces [15, 60]. The
aim of this work is to establish the Krylov—Safonov Harnack inequalities and
Holder estimates for fully nonlinear nonlocal operators of non-divergence
form on Riemannian manifolds with nonnegative sectional curvatures. Since
the underlying space is not flat, we focus on how the curvatures affect the

regularity properties of solutions to the equations on manifolds.

2.1.1 Nonlocal operators on Riemannian manifolds

There are several ways of understanding nonlocal operators on the Euclidean
spaces—via infinitesimal generators of stochastic processes, semigroup and
heat kernels, the Dirichlet-to-Neumann map, or generators of Dirichlet forms;
each of which has been applied to obtain nonlocal operators on Rieman-
nian manifolds or more abstract spaces in different contexts. Applebaum and

Estrade [4] suggested the operators of the form

Lu(x) = / gy (1(ED26) ) i),

as infinitesimal generators of isotropic horizontal Lévy processes on Rieman-
nian manifold M with some symmetry assumption on it, where T, M is the
tangent space at x € M, exp is the exponential map, and v, is the Lévy
measure.

On the other hand, Banica, Gonzalez, and Saez |7] provided the repre-

sentation of the fractional Laplacian

—(—Apgn)’u(z) = p.v./ (u(2) — u(x)) K (dgn(z,x)) dz (2.1.1)

n

on the hyperbolic spaces H" with negative constant curvature, where p.v. de-
notes the Cauchy principal value, by using the Fourier transform [14]. See [7|

for the precise definition of the kernel K in (2.1.1). For more general compact
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manifolds and non-compact manifolds with Ricci curvature and injectivity
radius bounded below, Alonso-Oréan, Cordoba, and Martinez [3| provided an
integral representation of the fractional Laplace-Beltrami operator with an

error term using the well known formua

(—A,)u(x) = /000 (e "Pou(x) — u(z)) %, s e (0,1,

and the heat kernel bounds. However, we do not take the operators in [7]
and [3] as our definition because we are going to consider operators in a
more specific form.

In the Dirichlet form theory, it is standard to assume that metric measure
space (M, d, u) satisfies the volume doubling property. In this setting, the

fractional Laplacian-type Dirichlet form

5(u>v)=//M . (u(z) — u(2))(v(z) = v(2))J (z, 2) p(dr)p(dz)

with

A A

<2 S G d G, 2

w(B(z,d(z, 2)))d(z, 2)% ~ 0<\<A,

gives rise to the generator of the fractional Laplacian-type [28]. Motivated
by the fact that the Riemannian manifolds with nonnegative curvatures are
contained within this framework, we are going to modify this generator in
order to define non-divergence form operator.

Let (M, g) be a smooth, complete, connected n-dimensional Riemannian
manifold with nonnegative sectional curvatures. Let d,(z) = d(z, z) be the
Riemannian distance between two points x and z in M, and pu, be the Rie-
mannian measure induced by g. The operator considered in this paper is

modeled on the linear operator of the form

Lu(z) = (2 — 25)p.v. /M %(B(ux(,zc)zxzzu)()xd)x(z)% v (2), (2.1.2)
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where s € (0,1) is a constant. The choice of the factor (2 — 2s) in (2.1.2)
is now standard to obtain regularity estimates that are robust in the sense
that the constants in the estimates remain uniform as 2s approaches 2 (see
Section 2.1.2). Note that the operator above satisfies lim,_,; Lu = Au as one
can consider rotationally symmetric measure.

To define nonlinear operators, let us consider a class L of linear operators

of the form

Lu(z) = pv. /M (u(2) — u(z))va(2) AV (2),
with density functions v, satisfying
Ve(2) = v(To(2)) whenever d,(z) < inj(z), (2.1.3)
where inj(z) is the injectivity radius of x and T, : B(z,inj(z)) — B(x,inj(x))
is a map given by T.(z) = exp,(—exp,'(z)), and

2—2s 2—2s

M B GG Er = A e L)L

(2.1.4)

Whenever we evaluate Lu at x, we split the integral as follows: for R < inj(z),

Lu(x) = p.v./B ( )(u(z) —u(x))vy(z)dV(2)

(2.1.5)
+ / (u(2) — u(x))v(z) dV(2).
M\Br(z)
In contrast to the case of Euclidean spaces, the expression
Lu(x) = / O(u, x, 2)ve(2) dV (2)
Br(z) (2.1.6)

w(z) —w(x))vy(z)dV(z),
+/M\BR<@(” (2))s(2) AV (2)

where §(u, z, z) = (u(z) +u(T:(z)) —2u(z))/2 is the second order incremental
quotients, is not available in general because M is not a symmetric manifold.

Nevertheless, we will see in Lemma 2.2.3 that for L € Lo, (2.1.5) is well-
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defined when u is bounded in M and C? in a neighborhood of z. Throughout
the paper this observation will be used frequently, especially for the squared
distance function d2(z).

The extremal operators and elliptic operators are defined in the standard
way as follows. To impose ellipticity on operators, we define the mazimal and

mainimal operators by

M u(x) = sup Lu(z) and Mg u(z) = inf Lu(z).
LeLy LeLy

We say that an operator Z is elliptic with respect to Lq if
Mz, (u—0)(z) < Z(u,2) — I(v,2) < M (u—v)()

for every point € M and for all bounded functions u and v which are C?
near .
We point out that the usual explicit expressions of extremal operators in

the Euclidean spaces

A6 —A\o_
ME u(z) = (2 — 25) / +(“’$;Jy)|yln+2s (2 4 and
_ Moy (u,z,y) — ANO_(u,x,y
Mﬁou(x) = (2 - 23)/ Jr( w )‘y|n+2$ ( ) dy’

where w, is the volume of the n-dimensional unit ball and ¢(u, z,y) = (u(x+
y) + u(zr — y) — 2u(x))/2, are not available on manifolds in general. Thus,
whenever we evaluate Lu or ./\/lfou at x, we have to split the integral as

(2.1.5) or (2.2.8) to compute each integral.

2.1.2 Main results

The main results are the Krylov-Safonov Harnack inequality and interior

Holder estimates for fully nonlinear nonlocal operators of non-divergence

form on Riemannian manifolds with nonnegative sectional curvatures. Through-

out the paper we assume that (M, g) is a smooth, complete, connected Rie-

10
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mannian manifold with nonnegative sectional curvatures, satisfying the re-
verse volume doubling property (RVD) with constant a; and the volume
comparability (Comp) with constant as. See Section 2.2 for the assumptions
(RVD) and (Comp). Let us begin with the Krylov—Safonov Harnack inequal-
ity.

Theorem 2.1.1 (Harnack inequality). Let so € (0,1) and assume s € [sg, 1).
For zg € M, let K = Kpax(B(20,10j(20))) be the supremum of the sectional
curvatures in B(zo,inj(z9)) and let R > 0 be such that 2R < inj(z9) A —-=. If

VK
u € C%*(Bayr(20)) N L>®(M) is a nonnegative function on M satisfying

Mz u<Cy and Mfu>—Cy in Bap(z),

then
sup u < C ( inf u-+ C'OR28>

Br(z0) Br(20)

for some universal constant C > 0, depending only on n, A, A, a1, as, and

S0-

The next result is the interior Holder estimate for fully nonlinear nonlocal
operators of non-divergence form. In contrast to the case of local operators,
it does not immediately follow from the Harnack inequality. In the sequel,

| - I denotes the non-dimensional norm.

Theorem 2.1.2 (Holder estimates). Let sg € (0,1) and assume s € [sg, 1).
For zy € M ,let K = Kuyax(B(z0,1nj(29))) and let R > 0 be such that 2R <
inj(zo) A \/LF If u € C?(Bag(z0)) N L>®(M) is a function on M satisfying

Mzu<Co and Mfu>—Cy in Bap(z),

then u € C*(Bg(z0)) and

: < C ([lull ) + CoR*)

Hu| CQ(BR(ZO))

for some universal constants o € (0,1) and C > 0, depending only on n, A,

11
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A, a1, as, and sg.

It is noticeable that the universal constants in Theorem 2.1.1 and The-
orem 2.1.2 do not depend on nearby curvature upper bound although they
depend on the lower bound 0. This means that, in particular, when M = R",
Theorem 2.1.1 and Theorem 2.1.2 provide the results on the Krylov—Safonov
Harnack inequality and Hoélder estimates as in [15] without any restriction
on R. More generally, the restriction on R disappears when M is a manifold
with inj(M) = oo. In this case, Theorem 2.1.1 extends the global Harnack
inequality for local operators [12] to nonlocal operators.

Another important feature of Theorem 2.1.1 and Theorem 2.1.2 is the ro-
bustness of the estimates. Since the universal constants in the results depend
only on sy, not on s € (0, 1) itself, we could get the local Harnack inequality
and Holder estimates for the second order local operators as limit s — 1, so
this result gives unified estimates up to second order elliptic operators.

Let us make some remarks on the results. It would be the best if we get
ABP-type estimate with L™-norm as Cabré proved in [12]. However, we will
establish the ABP estimate with Riemann sums of L*°-norm as Caffarelli
and Silvestre showed in the Euclidean space [15]. To the best of author’s
knowledge, the full ABP estimate with L"-norm for fully nonlinear operators
are not available even in the Euclidean spaces. For the class of operators with
additional assumptions, Guillen and Schwab [60] provided the ABP estimates
using both L™ and L*° norms in Euclidean spaces. For this type of estimate,
we believe it would be applicable to our case.

For curvature bound and imposed radius condition, we refer to Cabré’s
observation in the last paragraph of [12]. So, we used the injectivity radius
and imposed the condition 15R < inj(z0) A 7=, for K = Kinax(B(20,1nj(20))),
on the radius of the ball. However, it might be more convenient to consider
a strongly convex region (or a strongly convexity radius) instead of the in-
jectivity radius: we call U C M is strongly convex if every ball B,(x) C U is
convex. This is because our operators are nonlocal and we need to consider

the relation between nearby points. Nevertheless, we will use the injectivity

12
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radius because it is more general.

If we assume the global upper bound of the sectional curvature such
as Sect(g) < K on M, the radius condition would be reduced to 5R < T
Moreover, the additional assumptions—the reverse volume doubling property
(RVD) and comparability of volumes (Comp)—on manifold are naturally
satisfied.

Since manifold is not symmetric space in general, a nonlocal antisymmet-
ric part in the operator appears naturally. Because it has no second order
incremental quotient of function, we cannot expect the integrability of op-
erators as usual. However, due to the smoothness of volume element which
exists inherently, we figure out the antisymmetric part has the same order as
the traditional symmetric part.

Moreover, we want to emphasize that we do not use affine functions and
cone technique as usual because affine functions with arbitrary directions do
not exist on manifold in general. Thus, we use the squared distance function
to solve this difficulty. Typically, when we control the gradient of the enve-
lope T" (defined in Section 2.3) with the squared distance function, we might
consider the coarea formula as in [12]. However, since the order of differentia-
bility of nonlocal operators is strictly less than 2, we cannot simply use the
coarea formula. At this part, we will directly estimate gradient with Jacobi
fields.

Lastly, for further researches, we are expecting that we can get a global
Harnack inequality for restricted manifolds. In general, in this paper, we
could not stretch the radius of ball due to the injectivity issue. We are also
expecting that we could get similar regularity properties for nonlocal operator
with kernels of variable orders, which are studied in [76, 73, 8] on Euclidean

spaces.

2.1.3 Outline

This paper is organized as follows. In Section 2.2, we ensure integrability

of operators. We also bound second difference of squared distance function.

13
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Mainly we need this bound for gradient estimate of the solution. Further-
more, we introduce some definitions and collect some result on dyadic cubes
for the analysis on manifold. In Section 2.3, we introduce an envelope defined
by squared distance function and estimate its gradient so that we get a (weak
type) Aleksandrov—Bakelman—Pucci estimate. Section 2.4 is devoted to the
construction of a barrier function. In Section 2.5, Lf-estimate is established
by using the ABP estimate and the barrier function obtained in the previ-
ous sections. The proofs for the Harnack inequality and Holder estimate are

provided in Section 2.6 and Section 2.7, respectively.

2.2 Preliminaries

This section is devoted to the basic knowledge on Riemannian geometry that
will be useful in the rest of the paper. For more details, the reader may
consult [66, 30, 104].

Let (M, g) be a smooth, complete manifold of dimension n. Let us denote
by R(&,7n)¢ the curvature tensor, then the sectional curvature of the plane

determined by linearly independent tangent vectors £, n € T, M is given by

g(R(&,m)E,m)

Sect(&,n) = 1€12[n|2 — g(&,m)*

Let dy(-) := d(-,y) be the distance function. We will see that the distance
squared function %df/ will play an important role in the regularity results.
Let us collect and study some useful properties of this function. First of all,
it is continuous in M and smooth in M \ Cut,. For any = ¢ Cut,, the Gauss

lemma implies that

V(dy/2)(x) = —exp, " y.

Moreover, it is well-known that if K; < Sect < Ky in By, (y) with K; <0
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and Ky > 0, then the Hessian of dz /2 has upper and lower bounds

VEad, () cot (V/Ead,(x)) 162 < DA(d}/2)()(5,€)
< V=Eady (@) coth (V=Fdy (1)) I,

(2.2.1)

for x € B,(y) and £ € T, M, where p < 5ui; i case Ky > 0 and p < inj(y)
otherwise (see, for example, [66, Theorem 6.6.1]). Since we are assuming that
Sect > 0, the bounds (2.2.1) read as

0 < VEdy(x) cot (VEdy(2)) g2 < DXE/2)()(,€) < 2, (22:2)

where K = Kpyax(Binj(y)(y)) is the supremum of the sectional curvatures in
Binj(y) (v). Using (2.2.2) and the mean value theorem for integrals, we obtain

the following lemma.

Lemma 2.2.1. For anyy € M and x € B,(y), let £ € T, M be such that
exp,(s§) € B,(y) for all s € (—1,1), where

2;? ZfK = KmaX(Biﬂj(y)<y)) > O’
inj(y) i K 0.

p < (2.2.3)

Then,

0 < (1= t)dy(exp, (t€)) + tdy(exp, (1 — t)(=€))) — dy(z) < (1 — )l
for any t € (0,1).

Let us now recall Gromov’s theorem in a manifold with a nonnegative
Ricci curvature. Since we assume that Sect > 0, the Ricci curvature is also

nonnegative. The Gromov’s theorem says that

pe(B(z, )

is nonincreasing in R
| Br|

15



CHAPTER 2. HARNACK INEQUALITY FOR NONLOCAL
OPERATORS ON MANIFOLDS WITH NONNEGATIVE CURVATURE

for any z € M, where |Bg| is the volume in R™ of a ball of radius R. It is
known that the ratio approaches 1 as R goes to zero, so together with the
monotonicity it implies that p,(B(z, R)) < |Bg|. Moreover, the Gromov’s

theorem also gives rise to the volume doubling property

po(BB) _ (R\"
%wwmgc>’0<§3 (VD)

The volume doubling property provides the following integrability of kernels

Vg.

Lemma 2.2.2. Let sy € (0,1) and assume s € [so,1). Then,

dV (z) ) o
1g(B(7, dy(2)))d,(2)2 <CR (2.2.4)

(2 — 2s) /M (R* A dy(2)?)

for some constant C' = C(n, so) > 0.

Proof. By the volume doubling property (3.2.8), we have

(2 — 28)d,(2)*~2¢
meﬁmmwnw@

o0 2_9 d:p 2—2s
= / (2= 25)do(z) = 0y
0  B(z.27*R)\B(z,2-(*+DR) pg(B(x,d.(2)))

(2.2.5)

) MH(B(JU, Z_kR)) —k(2—2s) p2—2s
< P
a ; tg(B(z, 2*(k+1)R))( s) R

n 2—-12s 2—2s 2—2s

where we observed in the last inequality that the function ¢/(1 — 27%) is
bounded in [0, 2] from above. Similarly, by the volume doubling property

16
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(3.2.8) again, we obtain

/ (2 —2s)R?
M\Br(z) M B(2, dy(2)))d.(2)

o0

_ (2 _ 28)R2 .
- ; /B(w,?k“R)\B(z,sz) w(B(x,dy(2)))d.(2)% dV(z)

= 1, (B(x, 211 R))
1y (B2, 2°R))
2 — 2 ontl

2—2s <
ot TS

dV (z)

(2 - 28)272]<:SR2723
k=0

<"

Therefore, (2.2.4) follows by combining the inequalities (2.2.5) and (2.2.6).
[

Using Lemma 2.2.2, we show that Lu is well-defined.

Lemma 2.2.3. Let sp € (0,1) and assume s € [sg,1). For x € M, let
K be the supremum of the sectional curvatures in B (x) and let 2R <

inj(z) A 7=. Then, for L € Ly and for u € C*(Bgr(x)) N L>*(M),

| Lu(z)| < CA (HUH'CQ(M) + HUHLOO(M)) R, (2.2.7)

where C' = C(n, sg) > 0 is a universal constant. Therefore, the value of Lu

at x is well-defined.

Proof. By assuming R sufficiently small, we may assume that u is C?(Bg(7))
and bounded in M.

Let us decompose the measure into the symmetric and antisymmetric
parts with respect to x, that is, dV (z) = dV;(z) + dV,(z), where dV;(z) :=
AV (2)+dV(T.(2))) and dV,(z) := 1(dV(2) =dV (T.(2))). Then, for L € L,

17
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we have

Lu(z) = (2 — 25)/ d(u, x, 2)v,(2) dVi(2)

Bgr(z)
L@ 2) / ()~ ) aVi(e)
+ (2 — 2s) /M\B ( )(u(z) —u(x))ve(2)dV(z) = I} + Iy + Is.

(2.2.8)

We may apply Lemma 2.2.2 for dV; and dV to obtain || < C’A||u||’CQ(BR(m))R*28

and |I3] < CAl|ul|pearyR™25, respectively. For I, we observe that

|1

1
< A(2 — 258)|Jull Lo (Br) /BR(@ tig(B(x, ds(2)))dy(2)

where g* is the induced metric. Note that the inequalities

1 (m(ﬁﬂ)”—l _n . 1

NI 3|

2 1dVal(2)

(VKD VK <6,

and JR
7 sin(v Kt)
t< -2 (WK<

can be applied to obtain that

() o ()

since we have assumed that 2R < 7/ VK. Therefore,

Y

bo| 3

Kd?
1] < CA@ = 29)fullo~is) | 0y ()

Br(z) 1g(B(x, dy(2)))ds(2)%
18

x;'x--! _CI:I_ 1—“ ';j]_ =)
: I



CHAPTER 2. HARNACK INEQUALITY FOR NONLOCAL
OPERATORS ON MANIFOLDS WITH NONNEGATIVE CURVATURE

By Lemma 2.2.2, we arrive at || < CAllu||p(py K R* . Again, by using
2R < ﬂ/\/f,
|L| < CAljul|« R (2.2.9)

The estimate (2.2.9) together with estimates for I; and I3 finishes the proof.
[

Here are two assumptions on manifold we are going to use throughout

the paper.

e (Reversed volume doubling property) Let us assume that there is a

constant a; € (0, 1] such that

tg(Br(z)) > a, (E)n’ 0 <r < R < inj(x). (RVD)

e (Comparability of volumes of balls with different centers) Let us assume

that there is a constant a, > 1 such that

tig(Br(71))

-1
a, <
> 7 py(Br(2))

<ag, 0< R <inj(x)Ainj(zs). (Comp)

Let us close this section with the following generalization of Euclidean
dyadic cubes that will be used in the decomposition of the contact set and

in the Calderéon—Zygmund technique.

Theorem 2.2.4 (Christ [31]). There is a countable collection D := {Q?, C
M :jeZ,a € I} of open sets and constants c1,co > 0 (with 2¢1 < ¢), and
do € (0,1), depending only on n, such that

(i) (M \ UaQY) =0 for each j € Z,

(i) if i > j, then either Q4 C Q7 or Q4N QYL =0,
(iii) for each (j,«) and each i < j, there is a unique 3 such that QI C Qlﬁ,
(i) diam(Q7) < 307, and

(v) each QI contains some ball B(z, ¢15)).
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2.3 Discrete ABP-type estimates

We begin with a discrete version of the ABP-type estimate which will play
a key role in the estimates of sub-level sets of u in Section 2.5. Cabré sug-
gested in [12] the use of distance squared functions instead of affine functions
as touching functions due to the fact that there is no non-constant affine

functions in general. This leads us to the smooth map
y = exp, V(R*u)(x). (2.3.1)

That is, if u is a smooth function satisfying « > 0in M\ Bsg and infp,, u < 1,
then for any point y € B, the minimum of the function R*u+ $d2 in Bsp is
achieved at some point x € Bspg, leading us to the smooth map (2.3.1). For
the second order operators, the Jacobian of this smooth map is controlled
by the determinant of D?*u, which is in turn controlled by f through the
equations. However, since nonlocal operators have order strictly less than
two, we cannot go through the determinant of D?u.

Motivated by the idea of proof of the discrete ABP estimates in [15],
we therefore find a small ring around each contact point, in which u stays
quadratically close to the envelope. The main difference is that we need to
construct the envelope using the distance squared functions instead of affine

functions. For each y € Bpg, there is a unique paraboloid

1
Py(z) =¢, - 2_R2dy<z)2

that touches u from below, with a contact point x € Bsr. We define the

envelope T' of u by
['(2) = sup Py(),

yEBR

and the contact set A = {x € Bsr : u(z) = I'(z)}. In the sequel, let us fix
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the universal constants

1

1/n 1
p1:2<—> V—->1 and py<
ai do

261

where ¢y, co, and Jy are constants, depending only on n, in Theorem 2.2.4,
and a; is the constant in the reverse volume doubling property (RVD). This
section is devoted to the following nonlocal ABP-type estimate on a Rie-
mannian manifold with nonnegative sectional curvature that generalizes the

result in [12]. Recall that D is a family of dyadic cubes in Theorem 2.2.4.

Lemma 2.3.1. Let sy € (0,1) and assume s € [sg,1). For zg € M, let K
be the supremum of the sectional curvatures in Binj.,)(20) and let 15R <
inj(zo) A T Let u e C?*(Bsgr(20)) N L>®(M) be a function on M satisfying
u >0 in M\ Bsg(2) and infp, .y u <1, and let T' be the envelope of u. If

M u < fin Bsp(zo), then

to(Ba()) < Y (A R f) (@), (233)
Dy o +

where Dy = {Q?.} is a finite subcollection of D of dyadic cubes, with diam(Q?,) <

popl_l/(z_zs)R, that intersect with the contact set A and satisfy A C Uj@i.

The constant C' depends only on n, X\, a1, as, and sg.

It is known [60] that the estimates (2.3.3) with the Riemann sums in the
right hand side replaced by ||A + f||zna) fails to hold even in the case of
the Euclidean space. Instead, as in [15], the Riemann sums of A + f over the
set Uj@‘i need to be considered. Thus, we need information not only on the
contact set, but also on UJ@i \ A. The map (2.3.1) is not appropriate as a
normal map since u and I" do not coincide outside the contact set. Instead, we
will make use of the map ¢, which assigns each point x € M the vertex point
y of the paraboloid P,, where P, is some paraboloid such that I'(z) = P,(z).
Note that the map ¢ may be multivalued since P, may not be unique.

By using the map ¢, we prove the following discrete ABP-type estimates.
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Lemma 2.3.2. Assume the same assumptions as in Lemma 2.5.1. There
is a finite subcollection Dy C D of dyadic cubes @7, with diameters d;, <
popfl/(zfzs)R, such that the following holds:

(i) Any two different dyadic cubes in Dy do not intersect.

(ii) AC Up, QL.

(i) 1g(0(@2) < € (A + B> masgy f) 11y(Qh).

(iv) ig(Q3)

< fig <B(zg, (1+4p1)ead) N{u <T 4+ CR2(A+ R maxg, f)+d?’a}>.

The constants C' > 0 and ~v > 0 depend only on n, A, ay, as, and So.

It is easy to see that Lemma 2.3.1 follows from Lemma 2.3.2. Indeed, since
we have tested all distance squared function centered on Bg, we have Br C
®(A). Hence, for the family D; of dyadic cubes constructed in Lemma 2.3.2

we obtain

0 Br) < 1y (00) < X 0@ < O (A+ R mac ) Q)
Dy o Qo +
We postpone the proof of Lemma 2.3.2 until the end of this section because
we need a series of lemmas in order to prove it.

The next lemma finds a ring around a contact point, where u is quadrati-
cally close to the paraboloid in a large portion of the ring. Note that if = is a
contact point, then I' is touched by u from above and by some paraboloid P,
from below at x, which shows that the paraboloid P, is uniquely determined

and I is differentiable at x. Moreover, in this case, we have
y = ¢(z) = exp, V(RT)(z) = exp, V(R*u)(x),

and hence ¢(x) is also uniquely determined.
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Lemma 2.3.3. Assume the same assumptions as in Lemma 2.5.1, and let

rE = pgpl_l/(g_Qs)_kR. Then, there exists a universal constant Cy > 0, de-

pending only on n, A, ay, and sg, such that for any x € A and any My > 0,
there is an integer k > 0 such that

a(Go) < 37 (A4 R 1(@) (o) (23.4)

where Ry, = B(x,m:)\B(x,7k+1), Gk = {2z € Ry : u(2) > P,(2)+Mo(ri/R)?},
and y = ¢(x).

Proof. Let x € A. By [107], we have
inj(z) > (inj(z) A conj(x)) — d(z, 2).
Using inj(zg) > 15R, d(x, z9) < bR, and

conj(x) A (inj(zo) — d(z, 29)) > 10R,

T
> -
T VK
we obtain that

inj(xz) > 5R. (2.3.5)

Let us compute M, u(x) = infrep (11 + I + I3), where

I = /B o (u(z) + 2—;20;3(2) - (u(m) + QLRQdi(x)» va(2)dV (2),

h-- (37 ~ 5 () V(). and
BRr(z)UBsRr(20) 2R Y 2Rz Y

By the fact (2.3.5), the symmetry (2.1.3) of density functions v,(z), Lemma 2.2.1,
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and Lemma 2.2.3, we have

1
L= [ 820 2)(z) Vi)
R Br(x)
1
- d2(2) — d? 2(2)dV,
i [, () = @) () avige)
1
(d2(2) — d(2)) va(2) AV (2)
2R? Bsr(20)\Br(z)
> — CAR™%,

where C' = C(n, s¢) is some universal constant.
On the other hand, we know that u(z) < u(z) + 5d(z) < infp,,(u+

WCF) < 11/2 < 6. This fact together with the assumption that « > 0 in

M \ Bsgr(zo) leads us to

6A(2 — 25)

B2 [ B T

dV(z) > ~CAR™*

by the similar argument.
Let us now estimate [;. Since the contact point  minimizes the function

211%2 d?, the integrand in I; is nonnegative. Thus, we have

I > A2 — 25) Z/ Q}QZCF( )~ (ul@) + 5 d,(+)) AV (2).

Let us assume to the contrary that (2.3.4) does not hold for all £ > 0, that
is,

ty(Gr) > %(A + R* f(x)) pg(Rg) forall k >0, (2.3.6)
0

for some Cjy > 0 that will be chosen at the end of the proof. If z € GG, then
w(z) + g=di(z) — (u(z) + g=di(x)) > Mo(r,/R)?. Thus, using (2.3.6) and
the reverse volume doubling property (RVD), we obtain the lower bound of
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I, as

_ 94 (r/R)* 25 £( 0
B2 AE=2)C0 3 L i (A B F@) vl

2—2 k(9— B
Y ) Scongf%pl k(2 23)R72$ <1 N Mg( (I,Tk+1))) (A+R28f(:1:))+

p pe pg(B(x, 1))
2
05 2 —2s ( 1 ) os
>\ —=Chp———— [ 1 - AR + f(x .
el pl 01 _ pl_(2_25) (Ilpylb ( f( ))+

Recalling (2.3.2) and observing that the function t/(1—p;?*) is bounded away

from 0 in [0, 2], we arrive at
I > Gy (ART* + f(2))

where ¢; = ¢1(n, A\, ay) > 0.
We have obtained that

flz) > M u(r) > Llélg (It + I + I3) > ¢1Cy (AR + f(l’))Jr — CAR™,

Therefore, by taking Cy sufficiently large, we arrive at a contradiction. [

The next lemma shows that the function I' — P, is — R 2-convex in the

sense of second order incremental quotients.

Lemma 2.3.4. Letx € A, y € ¢(x), K = Kpax(Binj)(¥)), and let p > 0
satisfy (2.2.3). For z € B,y(y), let § € T, M be such that exp,(s&) € B,(y) for
all s € (—=1,1). Then,

(0= B)(2) < (1= (0 = B)(z2) + 10— )(z2) + g1~ DI (28.7)
for all t € (0,1), where z; = exp,(t§) and zo = exp,((1 — t)(=E)).

Proof. By the definition of I, there is a paraboloid P, := P,, with some point
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Y« € Bp, such that I'(z) = P.(z). Then we have
([ =P)() =0< (1 =) = P)(z1) + (I = Po)(2),

and hence

(T = B)() < (1-0)(T = P)(z1) + 1 — P,)(z2)
— ((L = t)P(z1) + tPi(22) — Pi(2)) (2.3.8)
+((1 = t)Py(Zl) + th(Z2) - Py(z)) .

Using Lemma 2.2.1, we obtain

1

—((1 =) Pu(21) + tPu(22) — Pu(2)) = 5Y:2) (L =t)dy (1) + td; (2) — di, (2))
1 2
< (1~ Dlel
(2.3.9)
and
(1—1t)P,(z1)+tPy(22) — Py(z) = —2—]1%2 ((1 — t)dz(zl) + tdZ(ZQ) — dz(z)) < 0.
(2.3.10)
Therefore, (2.3.7) follows from (2.3.8), (2.3.9), and (2.3.10). O

By means of Lemma 2.3.3 and Lemma 2.3.4, we will show that in a small
ball near a contact point the envelope is captured by two paraboloids that are
quadratically close to each other. Recall that the convex envelope constructed
by affine functions in the case of Euclidean spaces [15] is captured by two
affine planes. The idea in [15] is to carry information from the “good ring"
to the ball enclosed by the ring, by using the convexity of the function I'. In

our setting, we use —R?-convexity of the function I' — P, instead.

Lemma 2.3.5. Assume the same assumptions as in Lemma 2.5.1. Let x € A,

y = ¢(x), and let r = ry be the radius in Lemma 2.3.3. There is a small
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constant g = eo(n) € (0,1) such that if

tg({z € B,(z) \ Byj2(x) : I'(2) > Py(z) + h}) < €opg( By () \ Brja()),
(2.3.11)
then

[(z) < Py(z) +h+ (—)2
for all z € B, 5(x).

Proof. Let us fix z € B, /Q(x) and claim that there are two points wq,wy €
B, (x)\ By /2(x) such that three points wy, z, and wy are joined by a geodesic,
and that

T(w;) < Py(w;) +h, i=12. (2.3.12)

Once we find such points, we may write w; = exp,(t§) and wy = exp,((1 —
t)(=¢€)) for some & € T,M with [£|, being the length of the line segment
between w; and wsy, and ¢t € (0,1). Then, we have ||, < 2r and t(1—t) < 1/4.
Thus, by Lemma 2.3.4 and (2.3.12), we obtain that

1 1 2
(= P)(=) < ht gt =0l <h+5 ()

finishing the proof.

To prove the claim, we first extend the line segment between z and z in
both directions to find two points z; and 2z, on 0Bs,/4(x). We call the farther
one from z as z; and the closer one from z as zp. Let D = {z : I'(2) <
P,(z) + h}, then it follows from (2.3.11) and (3.2.8) that

tg(Brs(21) N D) < pg((Br(2) \ Byja(x)) N D)
< eottg(Br(2) \ Brj2())
< EONQ(BQT(Zl)) < 5016”/‘9(37*/8(21))'

Assuming g < 274! we obtain

tg(D N Byg(z1)) > %Mg(Br/g(Zl)). (2.3.13)
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Let us write d = d(z,z) € [0,7/2) and define a map F = exp, oT oexp; " :
Binj2y(2) = M, where T : T.M — T.M is a linear map given by

g
T(E) = — 2

.

By [107], we know that inj(z) >

(inj(z0) A conj(z)) — d(z, z0). It follows from
inj(z9) > 15R, d(z, 20) < d(z,2) + d(x, z0) <r/2+ 5R, and

conj(z) A (inj(zo) — d(z, 20)) > 10R —1/2,

> T
VK
that inj(z) > 5R—r. Let us recall that we have r = r, = pop; PR < R
from the choice (2.3.2). Thus, we obtain inj(z) > 4r, and hence F' is well-
defined in B,/3(21) C Binj()(2).

What we only need to show is that (B, (z)\ B,/2(x)) "\DNF(DNB,s(21))

is not empty. Let us assume to the contrary that
F(D N B,s(z1)) C (Br(x) \ Byja(x)) N D° (2.3.14)

and find a contradiction by estimating the volume change by F. Let D; =
exp, (D N B,/s(z1)), Da = T(Dy), and D3 = exp,(Ds). Due to the lower

bound of curvature, we estimate

pg(D N Byg(z1)) = // det(D exp,)(tv)t" ' dvdt < // t"tdvdt = |Dy|.
D1 Dl

(2.3.15)

by means of the polar coordinates (see, for instance, [66]). Since d € [0,r/2),

we have
3r

|Dy| = (Z — > |D1| > 57" Dy (2.3.16)

3r
o d

Moreover, since the curvature in D3 is bounded from above by K..(Ds),
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which is less than or equal to K = Kpax(Binj(z)(20)), We obtain

sin(v Kt)
4(D3) // det(D exp,)(tv)t" ' dv dt > // sin t"_l dv dt.
3) ., ) I

Note that the function sin(v/Kt)/(v/Kt) is nonnegative and decreasing in
(0, 7zl If (t,v) € Dy, then

T 4d\8 —2 2 1K

and hence
sin ﬁ n-l
j1y(Ds) > D). (2.3.17)

10

Combining (2.3.13) and (2.3.15)—(2.3.17), we have puy(B,/3(21)) < C(n)pug(D3).

Moreover, by using (2.3.14), (2.3.11), and (3.2.8), we obtain

pg(Brys(z1)) < Cpg((Br(x) \ Byja(x)) N D)
< Ceopg(Br(x) \ Byja())
< Ceopig(Bar(21)) < 16"Ceopy (B s(21))-

Therefore, we arrive at a contradiction by taking ey < 16 "C L. m

The flatness of I' in a small region, obtained in Lemma 2.3.5, allows us
to control the gradient of I' in a smaller region, where the gradient of I" is
understood as the gradient of touching paraboloid. This is done by estimating

the image of the map ¢.

Lemma 2.3.6. Assume the same assumptions as in Lemma 2.5.3, and let
go be the constant in Lemma 2.3.5. For any x € A there is anr = 1, < 1y

such that

iy ({z € Rz u(z) > Py(2) + C (A + B*f(x)), (rk/R)2}> < coptg(Re)
(2.3.18)
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and

py (6 (Bra@)) < C (A B £(2))" ty(Boja(a)) (2.3.19)
where C' > 0 is a universal constant depending only on n, A, a1, az, and so.

Proof. Let © € A and y = ¢(z). By applying Lemma 2.3.3 to u with My =
%l (A+ R*f(x))., we find r = 1, < 1y such that (2.3.18) holds. Moreover,

since I' < u, we have

=+

g ({z € Ry :T(2) > Py(2)+C (A+ stf(x))+ (rk/R)2}> < goptg(Ry).
Thus, Lemma 2.3.5 shows that

2
P,(z) ST(z) < P,(2) + C (A + R* (), (}%) (2.3.20)
for all z € B, 2(x).

We first claim that there is a constant C; > 0 such that

Cl 2s
VP, (2) = VPy(2)|g0x) < I (A+R f(x))+ r (2.3.21)

for all z € B,4(x) and y, € ¢(z). It is enough to show that
d
dt

(= P)O0)| < G+ R¥ @) (232

t=0

for all geodesics 7, with unit speed, starting from (0) = 2. Suppose that
there is a geodesic v such that (2.3.22) does not hold. We may assume that

by considering 4(¢) = y(—t) instead of (t) if necessary. Let € > 0, then there
is 0 > 0 such that if |[t| < J, we have

G (n 4 g ) e < P = PG = (B = BYO(O) _ hit) = h(O)

Yx

+ - t t
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where h(t) = (I' = P,)(v(t)). Let T > 0 be the first time when ~ reaches
the boundary of Bs, s(x), namely, 7(T) € 0Bs,/s(x). Let N be the least
integer not smaller than 7'/0, and let 0 =ty < t; < --- < ty =T be equally
distributed times. Then we have t;1; — t; = T/N < §. We observe that
Lemma 2.3.4 shows

A(t) = h(tir) _ hltin) = h(t) | 1
ti —ti1 liv1 — 1 2R?

IA

(ti+1_ti—1)7 2217277*]\7—1
(2.3.24)
Thus, it follows from (2.3.23) and (2.3.24) that

h(ty) = hito) _ h(ta) — h(t) " 12T

T/IN = T/N SRE N
o hltn) =Ry | 2T
=TS TN SRE N

_(A+R28f(m))+r—6§

(N —1).

Therefore, we obtain that

Cy 9% h(ty) — h(to TN(N -1
¥ (G h g, o) < M) LN )

Since 7 has a unit speed, we have /8 < T' < r, and hence

% (A+ R f(2)), r—c
=R =C=P)E) , r _(L=P)T), 7
r/8 2R? r/8 2R?
Recalling that € was arbitrary, we have
SR @), (5) - e < C-PIOM). (2329)

Since y(T') € 0Bs,/s(x) C B,/2(x), the inequality (2.3.25) with sufficiently
large constant C; > 0 contradicts to (2.3.20). Therefore, we have proved the
claim (2.3.21).
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Let us next prove (2.3.19) using (2.3.21). It is enough to show that

é (W) c B<gb(x), C(A + R* f(m))+7‘>. (2.3.26)

Indeed, once (2.3.26) is proved, then by (Comp) and (3.2.8) (or (RVD)) we

have

o (6 (Ble.r/9)))
< 1ty (B(6(2), C(A+ R¥f(2))27)) < C (A+ B (), iyl Bl 7/4)).

To verify (2.3.26), let us fix z € B(z,7/4) and y. € ¢(2). Then we know from
(2.3.21) that

lexp; 'y —expty| ) = REV P, (2) = VB (2)lg) < O (A + R* f(x)) .
Thus, it only remains to show that

d(ye,y) < |exp; 'y, —exp iyl (2.3.27)
Let & = exp, !y, and & = exp, !y. Let us consider a family of geodesics

7(S7t) = expz(t(& + 8(62 - 61)))7

and the Jacobi field J along v. Then, by [53, Equation (1.9)] (or see, e.g.
[66]), we have

| T(D gty < 1T(0)]gz) = &2 = &ilg()-

Therefore, (2.3.27) follows by considering the curve s — 7(s, 1) and observing
that

1 1
«%wg/Wﬂamwmms/Mrfm@mzm—&wy
0 0

We have proved (2.3.27), from which we deduce (2.3.26). O
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We are now ready to prove Lemma 2.3.2 by using the previous lemmas
and the dyadic cubes in Theorem 2.2.4.

Proof of Lemma 2.53.2. In order to construct such a family, we are going to
use Theorem 2.2.4. Let us first fix the smallest integer N € Z such that
208" < ro. Then there are finitely many dyadic cubes QY of generation N
such that @fj NA#(Dand A C ua@f. Whenever a dyadic cube QY does

not satisfy (iii) and (iv), we consider its successors Qg 1 c QY instead of
QY. Among these successors of N + 1 generation, we only keep those whose
closures intersect A, and discard the rest. We iterate the process in the same
way. The only part we need to prove is that the process finishes in a finite
number of steps.

Assume that the process produces an infinite sequence of nested dyadic
cubes {Q/}32y with o = a; € I;. Then the intersection of their closures is
some point xg which is contained in the contact set A. By Lemma 2.3.6, we
there is an r = r; < r¢ such that (2.3.18) and (2.3.19) hold. The condition
p1 > 1/8 in (2.3.2) allows us to find j > N satisfying r/(4p;) < 20} < r/4.
Then it follows from Theorem 2.2.4 (iv) that

Q. c B, 4(g). (2.3.28)

Moreover, by Theorem 2.2.4 (v), @/ contains some ball B(z/,¢,8). If z €
B, (1), then d(z,2)) < d(z,x0) + d(z0,2) < (1 +4/p1)cad), which shows
that

B, (z0) C B(22, (1 +4p1)cad)). (2.3.29)

Therefore, it follows from (2.3.19), (2.3.28), (Comp), and the volume doubling
property (3.2.8) that
(A + R* f(20))} 119(Br/a(0))

C
< C(A + R* max f) 11g(Q%)-
Qa +
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Furthermore, (2.3.18), (Comp), (3.2.8), and (RVD) show that

Hg (B(ZZ;, (14 4p1)cad)) N {u <T'+CR™ (A + R* max f) dg@})
Qa +

> iy Bo(zo) N {u < P+ C( A+ R*max Ty
(B0 fez e c(vemmes) (5)'})

> (1= e)pg(Ru(0)) = 7114(Q2)

for some universal constant v > 0. We have shown that Q?, satisfy (iii) and
(iv), which yields a contradiction. Therefore, the process must stop in a finite

number of steps. [

2.4 A barrier function

In this section we construct a barrier function, which is one of the key ingre-
dients for the Krylov—Safonov Harnack inequality. We use the function of the
form (d2 (-))* with a > 0 large, which have been used as a barrier function
both for nonlocal operators in the Euclidean spaces [15] and local operators
on Riemannian manifolds [12]. In [12], the Hessian bound of distance squared
function at one point is enough to evaluate the operator’s value. However, for
nonlocal operators on Riemannian manifolds, the curvatures near the given
point have to be taken into account to evaluate the operator. In order to
make the universal constants independent of the curvatures, we need to look

at a small region.

Lemma 2.4.1. For zy € M, let K be the supremum of the sectional curva-
tures in Binj(z)(20) and let 15R < inj(zo) A - There are universal constants

a >0 and so € (0,1), depending only on n, \, and A, such that the function

v(r) = max{ _ (%)‘20‘ - (dzggg)>—2a }

s a supersolution to

RQSMZOU(QC) +A <0,
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for every sy < s <1 and x € Bsg(2) \ Boyr(20)-

Proof. Fix x and let Ry := d,,(x) € (poR,5R). Let us consider normal coor-
dinates centered at x, then by (2.3.5) the point z is included in the normal
coordinates. Thus, we may assume that exp,'zy = Rpe;. Let £ := exp,' 2.
By the Toponogov’s triangle comparison (see, e.g., [93]), we have d,,(z) <
|Roer — &|rn and d,, (T2(2)) < |Roey + &|rn, and hence,

1 —2a
o(v,2,2) < — <ﬁ) (1Roer + €l + | Roer — &|za® — 2Rg™)

for d(z,x) < Ry/2. As T, M being identified as R", a simple algebraic in-
equality shows that

Ro\ 2 2 2(¢2
0(v,z,2) < 2a (%) (% - (2a+2)%3+ (204—{—2)(04—1—2)51]‘%? )
(24.1)

as in the proof of [15, Lemma 9.1].
Let us take a = a(n, A, A) > 0 sufficiently large so that

n—1
AM2a +2) (5) / vidv — A|OB,| > C1A, (2.4.2)
0B1

™

for some universal constant C; > 0 to be determined later, where dv is the

usual spherical measure on dB;. Then,

ReMEe) < @z [ BE LSRRI gy

sorys  He (B0, EDVEP
R sup / (0(2) — o)) (2) dVi(2)
B(z,R0/2)

LeLy

+ R* sup / (v(2) —v(@))ve(2)dV(2) = L + I + 1.
M\B(z,Ro/2)

LeLy

(2.4.3)
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For Iy, we use (2.4.1) to obtain

I < 2a(2 — 25) };2 (‘;R>
0

- AP = A2 +2) + ARa + 2)(a + 2)QEPR”
/B 1o (B0, [EDVIEP® - &)
(2.4.4)

Since the sectional curvatures on B(z, Ry/2) are bounded by K from above

and 0 from below, we have

his ‘/ L he (B <o e vz

Rol2 A — )\ 2 2
/ / o+ 2)up det(D exp,)(tv)t""! dv dt
0B1 >t2

/Ro/2 /831 (A A2 )(Sm\(/\i:t)) vf) dvug*(;zg,lt))t% dt

As in the proof of Lemma 2.3.5, we observe from ¢ < Ry/2 < 5

sin(vVKt) - sin(r/6) 3

= —. 2.4.5
VKt —  7w/6 T ( )
Thus, (2.4.2), (2.4.5), and the Gromov’s theorem yield that
Ro/2 gt CLA
L1 < —-C{A ——dl = —————— 2)%72%, 2.4.6
Ll = Ol /0 |Bt|t2s (2 _ 23)wn (RO/ ) ( )
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Similarly, we obtain that

1g+ (B0, [€]))[€]*
A2a+2)(a+2) /Ro/2 g+
0 g+ (

dt
R2 B(0,t))t
1-n rRy/2 n+3
< C’A(204 + 22(04 +2) (3 / t &
RO 0 wnthrQs

7r

4—2s

< CA(204—|—23(04+2) (Ro/2) ‘
R 4—2s

—2
Iy = /B AQ2a + 2)(a + 2)E2|€)? R, v (©)
Ro/2

<C

(2.4.7)

Therefore, combining (2.4.4), (2.4.6), and (2.4.7), and using Ry € (po, 5R),

we estimate I; as
2—2s
—2s

for some universal constants ¢, C' > 0, with ¢ independent of a.

For I5, we use a similar computation in Lemma 2.2.3 to obtain

C
I, < —A. 249
(<5 (249

On the other hand, since v is bounded, by following the proof of Lemma 2.2.2
Leon(B) 2=2 (2.4.10)
0= r) 1—2% o

for some C' = C(n,\, A, ) > 0. Thus, (2.4.3), (2.4.8), (2.4.9), and (2.4.10)
yield

we have

R¥ MY v(z)

2 — 2s C R\* 2—2s
< — - — —
_QQA( cC’1+C'4_2S(2a+2)(a+2))+2SA+C'A(T)

We now choose sg close to 1 so that the terms containing (2 — 2s) become
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small. Then we obtain

R¥PMF v(z) < —cC1A + SQA,
0

which finishes the proof by assuming that we have taken « sufficiently large

so that (2.4.2) holds with —cC} + % < —1. O

Lemma 2.4.2. For zy € M, let K be the supremum of the sectional curva-
tures in Binj(z)(20) and let 15R <'inj(z0) A . Given any so € (0,1), there
are universal constants a > 0 and k € (0,1/4], depending only on n, A, A,

and sy, such that the function

v(a) = max{ () (ng;))}

1S a supersolution to

RQSMZOU(QC) +A <0,
for every sy < s <1 and x € Bsg(20) \ Bpor(20)-

Proof. Let s; and ag be the sy and « in Lemma 2.4.1, respectively. If s > sq,
then the desired result holds with ag and k = 1/4. Now for sy < s < s1, we
will show the result still holds if we choose xk small enough.

Let a = max(ap, n/2). For z with Ry = d.,,(z) € (poR,5R), let us consider

normal coordinates centered at x. Then, as in Lemma 2.4.1 we have

Ao(v,z,2) 4 .
R®MT < (2 —25)R%* dV.
£u(@) < (2= 29) /mo/z) B eneE 1 ©

Ao(v,x,z)_ .
—(2—-2 RQs W .
( * /B(O,RO/Q) Mg*(B(O, €))% ® (&) +

2211+IQ+C.

Since v € C? in B(x, Ry/2) and v is bounded above, §, is bounded above.
Hence, I; < C for some universal constant. On the other hand, since d_ is

not integrable and s < s; < 2, we choose k small enough so that I + I, +C' <
—A. [
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Corollary 2.4.3. For zp € M, let K be the supremum of the sectional cur-
vatures in Binj(,)(20) and let 15R < inj(z) A \/LE There is a function v such
that

p

v>0 in M \ Bsgr(zo),
v<0 in Bar(z0),

4 RQSMZOU +A<0 in Bsp \EPOR(Z(J),
R2SMZOU <C in Bsr(20),

(% Z —C m B5R(Z()),

\

for some universal constant C' > 0, depending only on n, A, A, and sq.

Proof. Let a and k be constants given in Lemma 2.4.2. We define v(z) =

Y(d2, (x)/R?), where ¢ is a smooth and increasing function on [0, 00) such

that e B
p(t) = (i—) - (51) i > (o)’

By Lemma 2.4.2, R2SMZOU + A < 0in Bsg \ Byr. Thus, it only remains
to show that R*M} v < C in B,g. Indeed, for x € B,yr, we have that
10(v, x, 2)| < Cd,(2)?/R? for 2 € Br(x), and that v is bounded by a uniform
constant. Therefore, we obtain R* M v(x) < C by Lemma 2.2.3. O

2.5 Lf-estimate

This section is devoted to the so-called Lf-estimate, which is the main ingre-
dient in the proof of the Harnack inequality. It will follow from the following
lemma, which connects a pointwise estimate to an estimate in measure, and

the standard Calderon—Zygmund technique in [12].

Lemma 2.5.1. Let sy € (0,1) and assume s € [sg,1). Let c1, ca, and &
be the constants in Theorem 2.2.4, and let 6 = %50. For zyp € M, let K
be the supremum of the sectional curvatures in Binj(.)(20) and let 15R <

inj(zo) A T fue C?(Brr(20)) is a nonnegative function on M satisfying

39



CHAPTER 2. HARNACK INEQUALITY FOR NONLOCAL
OPERATORS ON MANIFOLDS WITH NONNEGATIVE CURVATURE

RQSMZOU < g in Brr(zo) and infp,, u < 1, then

prg({u < Mo} N Bsr(20))
tg(Brr(20))

Z Co,
where €9 > 0, ¢o € (0,1), and My > 1 are constants depending only on n, A,
A, a1, as, and sg.

Proof. Let v be the barrier function constructed in Corollary 2.4.3 and define
w = u+v. Then w satisfies w > 0 in M\ Bsg, infp,, w < 1, and R2SMZOw <
€0 + RQSMZOU in Bsgr. By applying Lemma 2.3.1 to w with its envelope I,
we have

n

Ba) £ 05 (20 R max M0+ 1) 1503
j sz +

Since RQSMZOU + A <0in Bsg \EpOR and R25MZOU < C'in Bsg, we obtain

1o(Br) < Cefpg(Bsp) +C Y pig(@QJ).
QLB r#0

We use the volume doubling property (3.2.8) and then take gy > 0 sufficiently

small so that we have

fg(Brr) < C Z g ( 7)-

QZx mEpoR#w

By using Lemma 2.3.2 (iv), we obtain

pg(Brr) < C pg (B(, (14 4/p1)esdl) N{w <T +C}).
We claim that B(z/, (1 + 4/p1)c28)) C Bsg(zo) whenever @Ja N B,yr # 0.
Indeed, let 2, € Q), N B,yr, then for any 2 € B(2/, (1 +4/p1)c28}), we have

d(z,20) < d(z,22) +d(20, 2,) + d(2, 20) < (14 4/p1)cadd + c28) + poR.
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We recall from the construction of @7, and (2.3.2), that ;8 < 79/4 < poR
and

d(z,20) < (34+4/p1)poR < SR,

which proves the claim. Thus, by taking a subcover of {B(z, (1+4/p1)c26))}

with finite overlapping and using v > —C' in Bsg, we arrive at

tig(Brr) < Cug({u < Mo} N Bsg)

for some M, > 1. Therefore, we obtain the desired result by letting ¢y =
1/C. O

Let §; = dp(1 — d9)/2 € (0,1). Let kg be the integer satisfying
CgégR_l <R< 025§R_2,

which is the generation of a dyadic cube whose size is comparable to that of
some ball of radius R. Lemma 2.5.1, together with the Calderén—Zygmund

technique developed in [12], provides the following L°-estimate.

Lemma 2.5.2. Let sq € (0,1) and assume s € [sg, 1). Let €g, ¢, and My be
the constants in Lemma 2.5.1. For zo € M, let R > 0 be such that 15R <
inj(z0) A 7= Let u € C?(Brr(20)) be a nonnegative function on M satisfying
RQSMZOU < &g in Brp(2) and infp,s,myu < 1. If Q1 is a dyadic cube of
generation kr such that d(z9, Q1) < 61 R, then

prg({u > M} N Q)

< (1 —¢p).
Ug(Ql) - ( 0)
foralli=1,2,---. As a consequence, we have
/'Lg({u > t} M Ql) S Ct_a, t> 0’
#g(Ql)

for some universal constants C' > 0 and & > 0.

A simple chaining argument and Lemma 2.5.2 prove the following weak
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Harnack inequality.

Theorem 2.5.3 (Weak Harnack inequality). Let so € (0,1) and assume
s € [s9,1). For zg € M, let K be the supremum of the sectional curvatures in
Binj(z)(20) and let R > 0 be such that 2R < inj(z) A Tz Ifue C?*(Bar(20))

is a nonnegative function satisfying My u < Cy in Bagr(2), then

1 1/P )
_ u? dV (z <C infu+C’R5),
(o [, v@) <o (grara

where p > 0 and C' > 0 are universal constants depending only on n, X\, A,

ai, as, and sq.

See, for instances, [12, Theorem 8.1] for the proof of Theorem 2.5.3.

2.6 Harnack inequality

In this section we prove the following theorem, from which Theorem 2.1.1
will follow. Let us recall that §; = do(1 — dg)/2 € (0, 1).

Theorem 2.6.1. Let so € (0,1) and assume s € [sg,1). For zo € M, let K
be the supremum of the sectional curvatures in Biy(.)(20) let R > 0 be such

that 15R < inj(z) A 7. If a nonnegative function u € C?(Brr(20)) satisfies
st/\/lzou <e& and R2S/\/lzou > —go in Brr(z0)
and infp(. 5,ryu < 1, then

sup u < C,
B(z0,01R/4)

where g9 > 0 and C' > 0 are universal constants depending only on n, A, A,

ai, as, and Sg.

Proof. Let € and ¢y be the constants as in Lemma 2.5.2 and let v = n/e. Let
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us consider the minimal value of ¢ > 0 such that

(@) < halz) =t (1 - dgi—?) " forallze Bla.6R).  (261)
Then by (2.6.1), we have supp(,, s,p/qt < t(3/4)77, from which we can
conclude the theorem once we show that ¢ < C for some universal constant.

There exists a point zg € B(zy, 01 R) satisfying u(xg) = h(zo). Let d =
"R —d,(xg), 7 = d/2, and A = {u > u(zg)/2}, then we have u(zy) =
hi(zg) = t(01R/d)". Let @1 be the unique dyadic cube of generation kg
that contains the point zg, which clearly satisfies d(zp, Q1) < d; R. Then, by

applying Lemma 2.5.2 to v with @)1, we obtain

r

wiane e (M) @ ser (1) @) 2o

We will show that there is a small constant 8 > 0 such that

o < ()12} 01Q2) < 51g(Q2), (2.6.3)

where ()2 C Q1 is the dyadic cube of generation kg, /14 containing the point
xo, provided that ¢ is sufficiently large. Recalling that (), contains some ball

B(z,clége"/“), we have from (2.6.2) and (3.2.8) that
O r\" kr
Ho(ANQ2) < 1y (AN QL) < = (5) 1g(Blz,e205))
C kro/1a C
< t—aﬂg(B(Zacléo ! ) < t_gﬂg(Q2)-

However, when ¢ is large, we also obtain

(AN @) < 51y(Q2),

which contradicts to (2.6.3). Therefore, the rest of the proof is dedicated to
proving (2.6.3).
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For every « € B(xy,0r), we have

u(z) < h(z) <t (dg}gr)—” - (1 - g) o).

Let us define the functions

(z) = (1 - g) o) — ua)

and w := vy. We will apply Lemma 2.5.2 to w in B(z,7(0r/14)). For z €

B(z,7(0r/14)), since v is nonnegative in B(xg, 0r), we have

Mz w(x) < Mg o(x) + MFE v_(z)

v_(2)
< —Mu(@) +A2-29) /M\Bm,w) (Bl (N )
. () — (1~ 6/2) 7ula))s
= RTa+ AL 2)/M\B<xo,9r> B )L Ve
(2.6.4)

Let us define a function
d.,(7)?
)= (1- =55
+

and consider the largest number 3 > 0 such that v > gg. From the assump-
tion infp(,,s,m u < 1, we have (1 —67)3 < 1. Let 2y € B(zo, R) be a point

where u(x1) = gg(x1). Then, since

(2 —2s)p.v. /M(u(z) —u(wy)) Ve, (2)dV(2)

<(@-2s)pv. /M (95(2) — g5(21)) v, (2) AV (2) < CR®,
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we obtain that

> R25M20u(x1)
= R*inf ((2 — 25)p.v. /M ((u(z) = w(z1))+ — (u(z) — u(z1))-)va, (2) dV(z))

> (=20 | ug<B(<ux(f,)d; g)ﬁiﬁ@)% Viz) =

It follows from u(z;) < 8 < 1/(1 — %) =: ¢ that

21, ey (2)))day (2)%

(u(z) — u(e))s
§(2—2$pv/;MAB@hd(d»%x) dV(z) < CR™>.

(u(2) — o)+
(2—2$pv/;MAB( V() o
( 6.

Let us now estimate the integral in (2.6.4) by using (2.6.5). If u(xy) < ¢,
then we have ¢t = u(x)(6;R/d)™" < ¢d; " and we are done. Otherwise, we

obtain that

M w(z)

(u(z) — o),
< R0+ A2-29) /M\Bm,eﬂ ia (Bl duo () o (2 O )

—2s
=R o

. (W) e py(Blanday (2)))day (o)
A2 >/M\B(xo,m 1o (Bar, doy () dor ()5 1Bl do(2))) ()2

dV (2).

For © € B(xo,0r/2), x1 € B(2, R), and z € M \ B(zo, 0r), we have

dg, (2) <14 d(x,xq) < d(x,x0) + d(zo, 20) + d(z0, 1)
dm(’z) B d(iL’,Z) B d(ﬂ?o,Z) —d<£lj'0,l')
| Or/2HSRER (R
Or/2 Or
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and hence, by (3.2.8),

fg(B(x1, dyy (2)))da, (2)% o (5>n+zs.

pg(B(x, dy(2)))ds(2)% or

Therefore, we have shown that

or\ > R\"
i — o < -
(14) MewsC <0r>
in B(xg, 7(0r/14)).

Let Q2 C @ be the dyadic cube of generation kg, /14 containing the point
2. Then by Lemma 2.5.2, we have

pg({u < u(z0)/2} N Q2)
= piy({w > ((1—0/2)7" = 1/2) u(zo)} N Qo)

= G sy ket ) )

We can make the quantity (1 —6/2)~7 —1/2 bounded away from 0 by taking
6 > 0 sufficiently small. Recalling that u(zo) = t(61R/2r)", w(ze) = ((1 —
0/2)77 — Du(xg), and v = n/e, we obtain

o < u(w0) 2} 1 Q) < Cingl(Qa) (1= 0/2)77 = 1) + 757).

We choose a constant 6 > 0 sufficiently small so that

—_

C((1-6/2)7"=1)" < T

If t > 0 is sufficiently large so that Ct=0~"¢ < 1/4, then we arrive at (2.6.3).

Therefore, t is uniformly bounded and the desired result follows. m
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2.7 Holder estimates

This section is devoted to the proof of Theorem 2.1.2, which will follow from
Lemma 2.7.1.

Lemma 2.7.1. Let so € (0,1) and assume s € [sg,1). For zyp € M, let K
be the supremum of the sectional curvatures in Binj(.)(20) let R > 0 be such
that 15R < inj(zo) A 7. If u € C?(B(z0,TR)) is a function such that |u| < 1
in B(z9, TR) and

R2SMZOU > —gp and R2SMZOU <eo in B(2,7R),
then u € C at zy with an estimate
lu(z) — u(z)| < CR™“d(z, 2),

where o € (0,1) and C > 0 are constants depending only on n, X\, A, ay, as,

and sgq.

Proof. Let Ry := 7-47%R and By := B(z, Ri). It is enough to find an
increasing sequence {my}r>0 and a decreasing sequence { My }r>o satisfying
my < u < My, in By, and M, — my, = 47°*. We initially choose my = —1/2
and My = 1/2 for the case k = 0. Let us assume that we have sequences
up to my and M. We want to show that we can continue the sequences by
finding my 1 and M.

Let @ be a dyadic cube of generation kg, /7 that contains the point z.
In @, either u > (M + my)/2 or u < (My + my)/2 in at least half of the

points in measure. We suppose that

g ({u > (M +mi) /25 01 Q1) > 11,(Q1) /2 (2.7.1)

Let us define a function

u(x) —my
v(x) = —(Mk m—yo1
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then v > 0 in By, by the induction hypothesis. For w := v, (2.7.1) is read as

pg({w > 1} N Q1) > pg(Q1)/2. (2.7.2)

To apply Lemma 2.5.2 to w, we need to estimate M, w < M, v+ MZOU_.
We know that R2S/\/lzov < 2e0/(My — my) in Brg. For MZOU*, we use the
bound

v(z) > —2((d,,(2)/Rp)* — 1) for z € M\ By,

which follows from the definition of v and the properties of sequences M}

and my. Then we have, for © € B(29,3Rg1),

Mz, ()
2e9 —2s 9 v-(2) -
<A [ e

<——R S+2A(2—23)/
My, —my, M\B(z,Rj;41) pg(B(w, dy (2

Note that d.,(z) < d.(z) + d(20) < dz(2) + 3Rk41 < 4d,(z). Thus, by using

48



CHAPTER 2. HARNACK INEQUALITY FOR NONLOCAL
OPERATORS ON MANIFOLDS WITH NONNEGATIVE CURVATURE

(3.2.8) and assuming a < 2sy, we obtain that

/ (dx(2)/Ry)* — 1

M\B(z,Rj41) tg(B(w, dy(2)))dy(2)%
(2)/Riy1)* =1

= /M\B(m,RkH) pg(B(z,dy(2)))de(2)%

dV (2)

oo

/ oU+ha _ 1
j 0 Y B(2,201 Ry 1)\ B (2,29 Ry 4 1) pig(B(, 29 Ryy1)) (29 Rpy1)?

< Z 204 —1 py(B(x, 2 Ry1))
(27 Rp41)* pg(B(x, 2/ Riy1))

<

dV (z)

2" S anj(a—2s —ja
§R2S Z(QQJ( )_2])
k+1 =0
B 2" 2% — 1
RE (1= 20 (1 —2%)
< on 2% — 1 _ca(n,a,s)
SRR -z R,

The constant ¢;(n, a, sp) can be made arbitrarily small by taking small «.

We have estimated

R 2s
( k7+1> M w < C e+ er)

in B(z,7(Rgs1/7)) for x € B(zo,2Rg+1). Therefore, by Lemma 2.5.2 and
(2.7.2), we have

Lo(@0) < ig(fw > 13 N Q1) < (@) (wlz) + Cleo + 1))

or equivalently,
0 <w(z)+ Cleo+ 1)

for some universal constant 6§ > 0. We take ¢g and « sufficiently small so that

Cep < 0/4 and Cey < 0/4, then we have w > 0/2 in B(zy,2R+1). Thus, if
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we set My 1 = My and my 1 = My — 4=+ then

Mk—mk

My 2 u>my + 1

0
0= M, — (1—1) 47% > my iy

n Bk+1.
On the other hand, if p,({u < (Mg +my)/2}NQ1) > py(Q1)/2, we define

My —u(x)
) = Gt =i 2

and continue in the same way using that RQSMZOu > —e&. O
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Chapter 3

Harnack inequality for fractional
Laplacian-type operators on

hyperbolic spaces

3.1 Introduction

In a celebrated series of papers [15, 16, 17] by Caffarelli and Silvestre, the
regularity theories such as Krylov—Safonov, Cordes—Nirenberg, and Evans—
Krylov theory are established for fractional-order operators on Euclidean
spaces. The most important feature is that the constants in regularity es-
timates do not blow up and remain uniform as the order of operator ap-
proaches 2. It means that the regularity theories for fractional-order and
second-order operators are unified. It has also been extended to the parabolic
cases |78, 79, 80].

On the other hand, the regularity theory for the local operators on Rie-
mannian manifolds has been studied. In particular, the studies on the Har-
nack inequalities, initiated by Yau [108] and Cheng—Yau [29], have been ex-
tended to second-order divergence and non-divergence form operators. These
are extensions of the De Giorgi-Nash-Moser [97| and Krylov-Safonov Har-
nack inequalities [12, 74, 106], respectively. See also |75, 77] for the parabolic

o1
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Harnack inequalities.

The natural extension is to obtain the regularity results for fractional-
order operators on Riemannian manifolds. Indeed, the Harnack inequality
for nonlocal operators on metric measure spaces with volume doubling prop-
erty, which includes Riemannian manifolds with nonnegative curvature, has
been studied via the Dirichlet form theory [28|. However, this approach does
not provide the unified regularity theory and is not appropriate for non-
divergence form operators. For nonlocal non-divergence form operators, the
Krylov—Safonov Harnack inequality on Riemannian manifolds with nonneg-
ative curvature has recently been established by the authors [72]. The result
in [72| unifies the Krylov—-Safonov Harnack inequalities for local and non-
local operators on manifolds with nonnegative curvature as in the works of
Caffarelli and Silvestre.

In this paper, we continue to pursue the unified regularity theory for
fully nonlinear nonlocal operators of order 2s € (0,2) on the hyperbolic
spaces H? that have constant negative curvatures —x < 0. We establish the
Alexandrov-Bakelman—Pucci (or ABP for short) estimates, Krylov—Safonov
Harnack inequality, and Holder estimates, which are robust as s — 1 and k —
0 in the sense that the regularity estimates recover the classical regularity
estimates for second-order operators on the hyperbolic spaces as s — 1 and
for fractional-order operators on the Euclidean spaces as k — 0.

The operators considered in this work are modeled on the fractional
Laplacian on the hyperbolic spaces. Since the hyperbolic geometry is not
distinguished from the Euclidean geometry when n = 1, we assume n > 2
throughout the paper. Let us recall the fractional Laplacian —(—Agn)?,
s € (0,1), kK > 0, on the hyperbolic spaces H". Let K, be the modified Bessel
function of the second kind and define %, ,(p) = p~"K,(ap) for notational

convenience. Then, the fractional Laplacian —(—Agn)® is given by

—(—Amp)*u(zr) = P.V./ (u(2) — w(@))ICh s e (dpm (2, 2)) dpmn (2),  (3.1.1)

n
K
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where the kernel £, ;  is given by

_ 1425 [ —VKO, =
K:n,s,ff(p) - Cn,s\/E (smh(\/_/@_p)) ez/lgi’anl (\/Ep) (312)

when n > 3 is odd and

]Cn,sui(p)

1+2 n
e VE O sinh(y/kr) ( VE O, ) C%/H%,%_l (\/Er) dr

\/_\/cosh V1) — cosh(y/kp) \sinh(y/kr)

(3.1.3)

when n > 2 is even, and

See Section 4.2 for details.

Remark 3.1.1. (i) Note that the normalizing constant ¢, s has the same
asymptotic behavior with 1 — s as s — 1 up to a dimensional constant.

This is a crucial fact for the robust regularity estimates as in [15, 16, 17].

(i) It is natural to expect that IC,, s , converges to the kernel of the fractional
Laplacian on the Euclidean space as curvature —kx approaches zero.
Indeed, we have from [71, Theorem 1.2]

—n—2s

Ko s.x (p) = p )

as k — 0 up to some constant depending on n and s.

(iii) The kernel I, s, decays exponentially as p — oo, which is different
from the behavior of the kernel on the Euclidean spaces. The difference
comes from the exponential growth of the volume of balls in the hyper-
bolic spaces, and this is why the regularity theories on manifolds with

negative and nonnegative curvatures are dealt with separately.
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Modeled on the fractional Laplacian (3.1.1), fully nonlinear operators of
the fractional Laplacian-type can be defined in the standard way. For a class

Ly of linear operators of the form

Lu(z) = P.V./ (u(z) —u(x))K(x, 2) dpmp (2), « € HY,

HR

with measurable kernels K satisfying
MCose(diip (2, 2)) < K(x,2) < Ay s e(dim (2, 2)), 0 <A <A,
the mazimal and minimal operators are defined by

MFu(x) == ME u(z) :== sup Lu(z),

LeLy

and

M u(x) == My u(r) := inf Lu(zr),

LeLly
respectively. It is easy to see that these extremal operators are well defined
at x € H” for any bounded function w that is C? near z, see (3.3.3). An
operator Z is said to be elliptic with respect to Ly if

Mg (u—v)(x) <I(u,z) = I(v,2) < Mzo(u —v)(x)

for every point z € H" and for all bounded functions « and v which are C?
near x.

The first step towards the Krylov—Safonov Harnack inequality and Holder
estimate is the ABP-type estimate, which provides an estimate on the dis-
tribution function of supersolutions to fully nonlinear nonlocal operators. To

state this result, we define functions

Se(t) = Sm}&# Ho() = /it coth(v/rt),

o4

.-':"x ! _kl:l_ '|_-li



CHAPTER 3. HARNACK INEQUALITY FOR FRACTIONAL
LAPLACIAN-TYPE OPERATORS ON HYPERBOLIC SPACES

and
Y
Tult) = tanh™' (1 tanh(y/kt))

Theorem 3.1.2 (ABP-type estimate). Let sg € (0,1) and assume s € [sg, 1).
Let uw € C?*(Bsg) N L>®(H") be a function on H" satisfying M~u < f in Bsg,
u >0 in H\ Bsg, and infp,, u < 1. Let € be a contact set defined by (3.4.1),
then there is a finite collection {Q%} of dyadic cubes, with diam(Q?) < r,
such that Q) NEC # 0, € C Uj@i, and

1Bal < 3 cFIQA), (3.14)
J
where 1o, ¢, and F are given by (3.3.6),

F =S8.(7TR) (A’HH(7R) + IL(QI%) max f) ;
0, Qi

and
c=C COShn—l (C\/ETOT,?(TO)F) (Cﬁ(ﬁ))F) (n—1)log cosh(Cv/kro T2 (r0) F) 7;271 (7“0),

respectively. See (3.3.1) for the definition of Iy .(R). The universal constant
C > 0 depends only onn, A\, A, and sg.

Remark 3.1.3. (i) The Riemann sum in (3.1.4) converges as s — 1 to the
integral

C/ S (TR) (AH.(TR) + RZf(a:))i dpmn (),
©

which is of the form appearing in [106, Theorem 1.2|. This implies that
Theorem 3.1.2 recovers the ABP estimate for second-order operators
on the hyperbolic spaces as a limit s — 1. Indeed, it will be proved in
Proposition 3.3.4 and Lemma 3.3.6 that Z ,(R) — C(n) and o — 0 as
s — 1. Moreover, since lim; .o 7, (t) = 2, the dependence of ¢ on x and

R disappears in the limit s — 1.

(ii)) Theorem 3.1.2 provides a new result even for second-order operators
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because it covers fully nonlinear operators.

(iii) Theorem 3.1.2 also recovers the ABP estimate on the Euclidean spaces
[15] as k — 0.

(iv) The function corresponds to R?* in the cases of the Euclidean

R2
Zo,x(R)
spaces [15] and manifolds with nonnegative curvature |72]. However,
this function exhibits qualitatively different behavior than R?* because
it involves the kernels /C, 5 ..(p) for the fractional Laplacian —(—Agp)®
which decay exponentially as p — oo while those in the case of mani-

folds with nonnegative curvature decay polynomially.

We next establish the Krylov—Safonov Harnack inequality and Holder
estimates for solutions of fully nonlinear nonlocal equations on the hyperbolic

spaces H.
Theorem 3.1.4 (Harnack inequality). Let so € (0,1) and assume s € [sg, 1).
If a nonnegative function u € C*(Bzg) N L>°(H") satisfies

M u<Cy and MTu>—-Cy in Bqp, (3.1.5)

then

. ('YR)2 >
<C fu+Co———
B (éiiR“ "T0.(TR)

for some universal constants §; € (0,1) and C > 0 depending only on n, A,
A, VER, and sq.

Let us denote by |- || the non-dimensional norm in the following theorem.

Theorem 3.1.5 (Holder estimates). Let sg € (0,1) and assume s € [sg, 1).
If u € C?(Byg) N L>®(H") satisfies (3.1.5), then

/ (TR)
lullca@m) < € (||U||L°°(H2) + Com

for some universal constants o € (0,1) and C > 0 depending only on n, A,
A, VER, and sq.
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Since Zy 4(R) — C(n) as s — 1 and the universal constants in Theo-
rem 3.1.4 and Theorem 3.1.5 do not depend on s, the regularity estimates in
Theorem 3.1.4 and Theorem 3.1.5 recover the classical estimates for second-
order operators on the hyperbolic space as limits.

The main difficulties in establishing regularity results, Theorem 3.1.2,
Theorem 3.1.4, and Theorem 3.1.5, arise from the effect of negative curva-
tures. The volume of a ball in the hyperbolic spaces behaves like that in the
Euclidean spaces when a radius is small, while it grows exponentially as a
radius gets bigger. Due to this non-homogeneity of the volume, the scaling
property does not hold, making the standard arguments for regularity re-
sults break. This kind of difficulty also appears on the heat kernel estimates
[26, 56, 57]. Hence, our result may provide some hints about the heat ker-
nel estimation on non-homogenous spaces. To overcome this difficulty, we
introduce new scale functions that take non-homogeneity into account and
provide some monotonicity properties in Section 3.3.

Another difficulty arising from the non-homogeneity of the volumes lies
in the dyadic ring argument in the ABP estimates. In the ABP estimates,
we find a dyadic ring around a given contact point in which a supersolution
is quadratically close to a tangent paraboloid in a large portion of the ring.
However, the standard dyadic rings By, \ By-+1), no longer work in the
framework of the hyperbolic spaces. It leads to introducing a hyperbolic dyadic
ring whose radii are determined by the volume of balls (see Section 3.4).
The hyperbolic dyadic ring turns out to be the natural “dyadic" ring in the
hyperbolic geometry.

After the ABP estimates, we prove the regularity estimates by construct-
ing a barrier function. It is standard to use the distance function for the
construction, but the computation is significantly different from the stan-
dard one because of the hyperbolic structure. We observe in Section 3.5 how
the negative curvature of the hyperbolic spaces affects the computations.

Let us also emphasize some applications. As mentioned in [15], the fully

nonlinear operators considered in this paper are naturally related to the

57



CHAPTER 3. HARNACK INEQUALITY FOR FRACTIONAL
LAPLACIAN-TYPE OPERATORS ON HYPERBOLIC SPACES

stochastic optimal control theory [99]. On the other hand, it is too hard to
miss how important the hyperbolic space is in mathematics. For example,
the hyperbolic spaces appear on the context of the uniformization theorem
and the special relativity. We also want to mention that hyperbolic spaces
can be used for computer scientific applications [92].

This paper is organized as follows. In Section 4.2, we recall several mod-
els for the hyperbolic spaces and define the fractional Laplacian —(—Agp)*
on the hyperbolic spaces H!. In Section 3.3, new scale functions are intro-
duced and some monotonicity properties are studied. The regularity theory
begins with ABP-type estimates in Section 3.4. In this section Theorem 3.1.2
is proved. The next step is the construction of a barrier function, and this
is presented in Section 3.5. This barrier function, together with the ABP
estimates, is used to obtain the so-called Lf-estimates in Section 3.6. The-
orem 3.1.4 and Theorem 3.1.5 are proved in Section 3.7 and Section 3.8,
respectively. In Section 3.9.1, some properties of special functions are col-

lected.

3.2 Preliminaries

In this section, we recall several models for the n-dimensional hyperbolic
spaces, revisit the definition of the fractional Laplacian on these spaces, and

collect some well-known results on the hyperbolic spaces.

3.2.1 Hyperbolic spaces
Let us recall the hyperboloid model and the Poincaré ball model (see, e.g.,
[52, 95, 102]).
We first recall the hyperboloid model
Hy = {(zo, o) €R™ g —af — oo —af = w7 2o > 0

with the metric induced by the Lorentzian metric —dz3 + dz? + - - - + da? in
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R™"!. The space H" has a constant curvature —x < 0. The internal product
induced by the Lorentzian metric is denoted by [z, 2'] = xozy — 2] — -+ —

xpal, and the distance between two points x and 2’ is given by

1
dpn (v, 2") = —= cosh™" (k[z, 2']).

VE
Using the polar coordinates, H can also be realized as

coshr sinhr

H:: {.Z': (W’Ww) 6Rn+1:7”20,w GSn_l}.

Then, the metric and volume element are given by ds® = 1(dr?+sinh®r dw?)

1
\/En
Let us also consider the Poincaré ball model B, = {y € R" : |y < t}

sinh™ ™! r dr dw, respectively.

and dym, =

with the metric

4b?
ds® = 5 dy?

(2 = [y[?)

and the volume measure

2b "
dugr =(——=] d 3.2.1
Hst,. 1) (t2 - |y!2) v (3:2.1)
where t/b = \/k. Note that the measure (3.2.1) tends to the Lebesgue mea-
sure dy as k — 0, provided that \/k = 2/t and b = 1?/2.
The map defined by

NG

: ’7...n€Hn'_>—
¢ (0,21, 7n) € H 1+ ko

(x17"' 7xn) € BZ“’ (322)

or equivalently, by

coshr sinhr sinh £
: H” — ¢ 2 B
¢ < VE VK w) € e et € P
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is an isometry and its inverse is given by

2+ |y)? 2ty 2ty,,

VR = Tyl?) Ve = yP) VR - |y|2)> € H:.

See [52, Chapter 8| for the proof. Therefore, there are several ways of de-

(blzyEIB%ZNH(

scribing the distance function as follows:

1
dgp, (0,y) = dup 0y, v) = ECOSh_I (£[0x, 2])

L (t2+ Iyl2> I (t+ |y|>
VE 2—yP) Vk t—lyl)’

where 0, = (\/LE’ 0,---,0) € H?. We shall write 0, = 0 if there is no confusion.

3.2.2 Fractional Laplacian on the hyperbolic spaces

The fractional Laplacian on H" is defined in [7] by using the Helgason Fourier
transform [51, 62, 101] (see also [52, 48|), and its normalizing constant is
computed in [71] by using the heat kernel [59|. However, these works are
built on the hyperbolic space with curvature —1. Since we are working on
H} with curvature —x < 0, we define the fractional Laplacian —(—Ag» ) on
H” and deduce the representation of its kernel from that of —(—Agn)®.

We recall the Helgason Fourier transform on the hyperbolic spaces. The
interested reader may consult [62, 51, 101, 52, 48|. By means of the isometry
(3.2.2), we may work on the Poincaré ball model instead of the hyperboloid
model. Let ¢ = 1 be fixed and denote B}, = BY,. The Helgason Fourier
transform is defined for u € C°(B") by

u(N, & k) = /n u(r)e_xew(r)duse (), AER, € st

K

where
7L—1+~ A

1— |z = "'
orere) = (=5
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is the eigenfunction with eigenvalue —(\? + ﬁ(” Ok ). It is well known that

the following inversion formula holds:

= N u ‘K)e T ﬂ o
B /oo /Snl (A& m)ergn )|Cn()\)|2 do (&) dA, (3.2.3)
where o
cu(N) = . e VR
() = v2(27) i)

is the Harish-Chandra coefficient. Moreover, the Plancherel formula holds:

), VE
()2 dyasy / /S R dr(a (32.4)

B:
Since
“Agu(\ & R)

=— | Agpu(@)e_rgx(r) dpsy (z)

By

— / 2 w(@) Appe_ e () dpimp () = <>\2 G ; 1)2> u(A, & k),

it is natural to define the fractional Laplacian —(—Ag»)® by

(1)
1

<_EBQ\)SU()\’€§ K) = <A2+ ) u(\ & k), (3.2.5)

which coincides with the definition given in [7, 71| when x = 1. By using
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(3.2.4) and (3.2.5), we have

(Bauh &) = [ (~Ba)ulele-ssa(o) dua(@)

1

= /n u(@)(—App) ey gm(2) dpimy (2)

1

= K° ()\2 + (n :1 1)2>S /M w(z)e_ siren(@) dpimy (2)
K </\2 i 1)2)83(/\,5; 1)

4

K (—=Apn)*u(X, & 1),

and hence (—Agy)*u = £°(—Agn)*u by the inversion formula (3.2.3). Since

dgn (2, 2) = VVkdpa (z,2) and  duga(z) = VK" dusp(2), (3.2.6)

we have

(~Ba)°u(w) =k [ (o) = (2)) Koo oo . 2)) i)

n

e / (u2) — 1(2)) e (V7 g (2, 2R dpizy (2),
By
from which we conclude

Kn,s,n(ﬂ) = \/En—‘_%lcn,s,l(\/gp)' (327)

Therefore, (3.1.2) and (3.1.3) follow from |71, Theorem 1.2] and (3.2.7).
Proposition 3.2.1. K, ;.. is strictly decreasing.

Proof. It suffices to prove that Ky := K, 51 is non-increasing. It is known
[71] that the kernel s is represented as

o dt
Ko =C [ atto:

for some C' = C(n,s) > 0, where p(t, p) is the heat kernel of the Laplacian
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Apgr on the hyperbolic space H". Moreover, it is known [2| that p(¢, p) is

strictly decreasing with respect to p. Therefore, IC; is strictly decreasing. [

3.2.3 Hyperbolic spaces revisited

We collect some well-known results on the hyperbolic spaces. The first one

is the volume doubling property that will be used frequently throughout the
paper.

Lemma 3.2.2. For any B, C Br € H},

R n |BR| R log, D
(F) <m=r(7) (328)

where D = 2" cosh™ ' (2y/kR).

Lemma 3.2.2 is a direct consequence of the Bishop—Gromov inequality.
See [104, Theorem 18.8 and Corollary 18.11] for the first inequality and the
second inequality with R = 2r in (3.2.8), respectively. For the full inequality,
we find a k € N satisfying R € [2571r,2%r), and then iterate the inequality.

The next result is a bound of the Hessian of the squared distance. See

[33, Lemma 3.12] for instance.

Lemma 3.2.3. Fix a point y € H! and consider the distance function
dHQ(??J) Then;

D? (dﬁg(m,y)ﬂ) (&€) < Hldup (z,y)) [

for all & € T,H.

Let us close this section with the following generalization of Euclidean
dyadic cubes that will be used in the decomposition of the contact set and

in the Calderéon—Zygmund technique.

Theorem 3.2.4 (Christ [31]). There is a countable collection {Q?, C H" :
J € Z,a € 1I;} of open sets and constants c1,co > 0 (with 2¢; < ¢3), and
do € (0,1), depending only on n, such that
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(i) [H \ Ua@4| = 0 for each j € Z,

(i) if i > j, then either Q4 C Q7 or Q5N QYL =0,
(iii) for each (j,) and each i < j, there is a unique B such that @}, C Qj,
() diam(QJ) < ¢,0?, and

(v) each QI contains some ball B(z,, ¢15)).

The original statement of [31, Theorem 11| consists of six properties. As
mentioned in [31], the first five properties concern only the quasi-metric space
structure and the last property requires the space to be of homogeneous type.
Since the hyperbolic spaces are not of homogeneous type, the last property—

which is not needed in this work—cannot be included.

3.3 Scale functions

Recall that, in the Euclidean spaces, it is sufficient to obtain regularity esti-
mates in B; because the estimates in By can be recovered from those in By
by using the scale invariance of the equations. The scale invariance heavily
relies on the homogeneity of the underlying spaces. However, the hyperbolic
spaces are not homogeneous. Indeed, the volume of a ball grows exponentially
as the radius goes to infinity in the hyperbolic spaces, and hence the kernel
IC,s,(p) of the fractional Laplacian (—Agn)® decays exponentially as p — oo.
Therefore, it is crucial to find appropriate scale functions that capture the

correct behavior at every scale. For this purpose, we define

To(R) = [ o)y 5.0)) s (),
D@ (3.3.1)

:Z’-OO,H(R) = / RQ}Cn,s,N(dHQ (Za iL‘)) d,uHQ (Z),
H2\Br(z)

and Z,(R) := Zyx(R) + Zoo x(R). They play a role of scale functions in the
regularity estimates on the hyperbolic spaces as the homogeneous polynomial

R?72% does on the Euclidean spaces.
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We omit the subscript £ when k = 1, ie., Zy = Zy1, Zoo = Loy and
Z =7,. Then, it follows from (3.2.6) and (3.2.7)

Ton(R) =k Io(VKR),
Toon(R) = Vi "I (VER), (3.3.2)
T.(R) =k I(\kR).

It is known that K, 1(p) ~ p™" % as p — 0 and K, .1(p) ~ p~ 1%~ (n1r
as p — oo, see |7, Theorem 2.4|] and |71, Theorem 1.2]. Thus, the scale
functions in (3.3.1) are well defined. Moreover, we observe

ILu()] < Al ez Zon(R) + 2A[ullpe g Zoon(R) < 400 (333)

for any operator L € Ly and any function u € C?(Bg(z)) N L>°(H?).

Let us now investigate some properties of the scale functions that are
useful for the upcoming regularity theory. Although the scale functions do
not have scaling properties, they satisfy some monotonicity properties. For
instance, Zy,, is increasing and Z.,, is decreasing by definition. Moreover,
some variations of these scale functions satisfy almost monotonicity. We say

that a function f is almost decreasing if there exists a constant C' > 1 such
that f(R) < Cf(r) for all R >r > 0.

Proposition 3.3.1. The functions R~*™1, .(R) and R™*Zy .(R) are almost

decreasing.

The almost monotonicity of R~2Z . (R) follows from that of R™2%5Z; . (R).
Furthermore, it is enough to show that R7275Z,(R) is almost decreasing by

the relation (3.3.2). Indeed, it is a direct consequence of the following lemma.

Lemma 3.3.2. There exist constants 0 < Cy(n) < Cy(n) and a non-increasing
function F such that C1F(R) < R™?"Zy(R) < C2F(R) for all R > 0.

Proof. Tt is enough to show

cofm) < B < o, p(m) (3.3.4)
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for some constants 0 < Cs(n) < Cy(n) and some non-increasing function
f(R). Indeed, once we prove (3.3.4), we then have

Cy T(R) _ ' T(p)dp
S F(R = C,F(R
2 M= o foR(Q—S)/ﬂ‘SdpS )
where -
F(R) = fo I
fo o Sdp

is a non-increasing function.

To prove the claim (3.3.4), we observe

Zo(R)

e = (SRS (R sinh ™! R

By Lemma 3.9.2, it is comparable to

f(R):=RIxs_, (" 5 1R> Ky, <” 5 13)

up to dimensional constants, where [, is the modified Bessel function of the

first kind. It only remains to show that f is non-increasing. We note that it is
sufficient to prove that g(R) = RI»_1(R) K= s(R) is non-increasing. Indeed,
by using (3.9.1) and [98, Theorem 3| we obtain

g'(R) = —S]%_lK%_H + RI%K%J’_S - RI%—lK%—FS—l

R? R?
<[ -—-s+ — In_(Kn s
VR?+a’ +a R+ (a+s)?+a+s) °* et

:<\/R2+a2 VR + (a+ s) )ngKngs

0,

IN

where a = (n — 1) /2. O

The following result shows a relation between two scale functions Z; and

Z+. Let us mention that the function H(t) = ¢ coth ¢ naturally appears when
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the negative curvature is involved as in Lemma 3.2.3. The relation between

Ty, and Z, ,, follows from Proposition 3.3.3 and (3.3.2).

Proposition 3.3.3. There exists a constant C' = C(n) > 0 such that

1—s

H(R)Zo(R)

for all R > 0.

Proof. By Lemma 3.9.2, we have

To(R) = |S"! /R R*K,1(p)sinh™ ! pdp
< CRz/ p*Iz_1(ap)Kzis(ap)dp
R

<CR [0t Iy(p) K glo) do
aR

where a = (n — 1)/2. Similarly, we also have

aR
L(R2C [ P L) Kyelo) dp
0

Thus, it is enough to show that there is a constant C' = C'(n) > 0 such that

00 . 1—3 aR i
R? /R p I (p)Kys(p) dp < C— ”H(R)/ P I 1 (p) K is(p) dp.
a 0

By Lemma 3.9.4, the problem is reduced to finding a constant C' = C'(n) > 0
such that
In_1(aR)Knis(aR) + In(aR)Kn s 1 (aR)

< CH(R) {Ig_l(aR)Kgﬂ(aR) + Iz (aR)Kzys1(aR) (3.3.5)

1
2—5

(I2(aR)K2is1(aR) 4+ In1(aR)Kn s o(aR)) |.
Indeed, it is easy to check that (3.3.5) holds by comparing the asymptotic
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behavior of the functions on both sides. O]

Since the limit behavior of the scale functions as s — 0 are of interest in

the unified regularity theory, we recall the following results.

Proposition 3.3.4. There exists a constant C' = C(n) > 0 such that

limZy(R) = lirr%Ioﬁ(R) =C
s—

s—1
for any R > 0.
Proof. The assertion follows from |71, Lemma 5.4] and (3.3.2). O

Proposition 3.3.5. For any R > 0,
limZ(R) =limZ »(R) = 0.
s—1 s—1

Proof. The desired result follows from Proposition 3.3.3, Proposition 3.3.4,
and (3.3.2). See also [71, Lemma 5.3|. O

In the work of Caffarelli and Silvestre [15], the quantity 7o = po2~ /229 R,
which is characterized by the relation (rq/pg)?~* = R*7%$/2, plays a funda-
mental role. The most important feature of this quantity is that it converges
to 0 as s — 1.

We define such a quantity in a similar way in our framework. Since the

scale function Zj is strictly increasing, its inverse exists. Thus, for a given

R > 0, we define ry € (0, R) by
o = mZot (Ton(R)/2) (3.3.6)

for some universal constant py € (0,1) that will be determined later. Let us

close the section with the following lemma.

Lemma 3.3.6. For a fited R > 0, lim,_,; rg = 0.
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Proof. Suppose that limg ;79 # 0. Then, since 7 := limsup, ,;r9 # 0,
there is a sequence s, — 1 such that roy := poZ..,, (Zows (R)/2) € (0, R)

converges to 7 as k — oo, where 7, 5, is the scale function Z; ,, with respect

to s;. We have
"Z-Ovﬁ,sk (T07k/p0) = Iﬁ,n,sk<R)/2- (337)

By Proposition 3.3.4 and continuity of Zy, the left-hand side of (3.3.7) con-
verges to C' as k — oo whereas the right-hand side of (3.3.7) converges to
C'/2, which is a contradiction. O

3.4 Discrete ABP-type estimates

In this section, we provide the proof of Theorem 3.1.2. Throughout the sec-
tion, u is assumed to be a supersolution given in Theorem 3.1.2. On Rieman-
nian manifolds, the distance squared function in construction of envelope was
suggested by Cabré in [12| and has been used by many in [74, 75, 77, 106].

More precisely, for each y € Bg, there is a unique paraboloid

1

Py(2) = ¢y — §}§§dﬁg(27y)

that touches u from below, with a contact point x € Bsr. The envelope I' of
u is defined by
I'(2) = sup Py(z),

yEBR

and the contact set is given by
¢ ={x € Bsg : u(x) =T'(z)}. (3.4.1)

The first step toward to ABP-type estimates for nonlocal operators is to
find a ring around a given contact point in which supersolution v is quadrat-
ically close to the paraboloid in a large portion of the ring. In the Euclidean
spaces [15], or more generally in Riemannian manifolds with nonnegative cur-

vature [72[, the standard dyadic rings By-k,, \ By-w+1),, are used. However,

69



CHAPTER 3. HARNACK INEQUALITY FOR FRACTIONAL
LAPLACIAN-TYPE OPERATORS ON HYPERBOLIC SPACES

these are not appropriate within the framework of hyperbolic spaces due to

the lack of homogeneity of the volume of balls. We thus define r; recursively

by
1By

|B
and a hyperbolic dyadic ring by Ry, = Ry(x) = B,,(x)\B,,,, (). Note that we
have |B,, |/|Br._,| < (ri/rr—1)" from Lemma 3.2.2, and hence 7411 > 74/2.

By using the hyperbolic dyadic rings, we will prove a series of lemmas to

=27 k=12,

il

deduce Theorem 3.1.2. For notational convenience, we shall write

fuo(z) := AH,(TR) + Iojj( 7

f($)7

where we recall H,(t) = \/kt coth(y/kt).

Lemma 3.4.1. Let u be a supersolution given in Theorem 3.1.2. Then, there
exists a universal constant Cy > 0, independent of s, k, and R, such that for

each x € € and My > 0, there is an integer k > 0 satisfying
5 ~
Gl < < Fal@)| i, (3.4.2)
0

where Gy, = Ry, N {u > P, + My(rr/R)?}.

Proof. Since x minimizes the function u + 55;dZ, n(+y), we have M~u(z) >

2R2
[1 + IQ + [3, where

1
I 5 (1 gy ()2 ) Kl o) i 2,

Br(z)UBsr

<2R2 d%ﬂﬁ(, y), iU, Z) ICn7S7,§(dH':L (Z, x)) d/’LHQ (Z),
Br(z)UBsr

I3 = —A/ O (u, 2, 2) K s o (dpm (2, 7)) d sy (2),
Br(z)UBsR)

and §(v,x,2) = (v(z) + v(exp,(—exp,'z)) — 2v(x))/2 is the second or-

der incremental quotients. By the mean value theorem for integrals and
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Lemma 3.2.3, we obtain

Zy..(R)
R

I, > —CAH,(7R) (3.4.3)

Since u(z) < u(x) + QdeHn(l‘ y) <infp, . (u+ 2}__pclw(yc y) <11/2 < 6 and

u >0 in H? \ Bsg, we also have

Ioo,n(R>

Iy > ~OA==

(3.4.4)

Let us now focus on [;. Assume that (3.4.2) does not hold for all k. Then,

since
) +—d2( Y), T, 2 >M(r—k>2 on Gy,
2R? R e ) =HoAR
and K, is decreasing by Proposition 3.2.1, we have

o0

Tk 2
RO /| () Fonalg (2 2)) o 2
f@) <

> ACy }(22) > i) Ri.

k=1

Since 741 > /2 and |Ry| = 2"|Rg11|, we obtain

flz) o
L > )\CO% Z 7’1%+11Cn,s,n<7’k+1)|Rk+1|
k=

0
K.
> oyl ];2) S () Bl
k=0
> \27 2— "C fE Z/R dH" Z, x ns,,{(ng(z,x)) d,qu(Z)

—/\2 2= nC f( )Io,{(TQ)

Furthermore, by using Proposition 3.3.1 we have

f];)pozm(ro/po) N2 /(@) peZo.(R). (3.4.5)

I, > \2727"(C, 75
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By combining (3.4.3), (3.4.4), and (3.4.5), and then using (3.3.6) and Propo-
sition 3.3.3, we obtain

3 /(@) _ Lo,«(R)
f(.CE) > A2 ° COFP?)IOW(R) -C (1 + 5 1) AHN<7R> R2
By taking Cj sufficiently large, we arrive at a contradiction. O

The next lemma shows that the function I' — P, is c-convex with an
appropriate function c. See [50, 89| for the definition of c-convex function.
The proof is exactly the same with that of [71, Lemma 3.4] except for the
Hessian bound of the distance squared function. That is, we use Lemma 3.2.3
instead of [71, Lemma 2.1].

Lemma 3.4.2. Let x € €, z € H, and y € Bgr be a vertex point of a
paraboloid P,. Then,

(C=P)(z) < (1=1)(T=B,) (21 -+~ P) (22) st (11 Mo i 3, 2)+1ED e

for allt € (0,1), where z; = exp,(t§) and z = exp,((1 —t)(=£)).

Using Lemma 3.4.2, we show that the envelope is captured in a small ball
near a contact point by two paraboloids that are quadratically close to each

other.

Lemma 3.4.3. Under the setting of Lemma 3.4.1, there is a universal con-
stant g € (0,1) such that if

{z € Ry : T'(2) > P,(2) + h}| < eo|Ryl,

then

2
I < P, +h+ CH.(TR) (%’“)
1

in Bj,,(x), where Py = = tanh ™" (3 tanh(y/kry41)).
Proof. Let us fix z € By, () and set D = {z € Ry : ['(2) < Py(2) + h}.

For w € Ry, let us consider a geodesic ¢ : R — H} passing through w and z.
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Then, ¢(R) N Ry, consists of two connected components c(tq,ts) and c(t3,t4),
where t; < ty < t3 < t4 satisfy t4, — t3 = t5 — t;. We may assume that w =
c(t) € c(t1,t2). We define a map ¢, : Ry — Ry by @.(w) = c(—t +t1 + ty),
which is clearly one-to-one and onto.

Among all the geodesics passing through the point z, let us consider
geodesics ¢, that are perpendicular to the geodesic joining x and z. Then
Uc, divides Ry into two regions: let A; be the smaller one and A, the bigger

one. We claim
|E| < |p.(E)| for any Borel set E C A;. (3.4.6)

Indeed, we may assume that z = 0,, € H}! by using a global isometry. Then

the map ¢ := ¢, can be represented by

1 1
p(w) = ﬁ(cosh(r + Cy),sinh(r + Cy)(—0)), w = ﬁ(cosh r,sinh r6),

where Cy = dun(p(w*),0) — dgn(w*,0), with w*, the intersection point of
0B,, ., (r) and the geodesic segment joining 0 and w. Note that ¢ is a smooth
map because it is a composition of smooth maps. Clearly, Cy > 0 if and only

if w € A;. Thus, we obtain

E| = // st 1(‘/_”01 do

sinh" Y (/k(r + C,
< [ 1umtetwn ™™ %}f ) gy dp

cosh7 sinh7 <\ sinh® '(v/k7) ..~
_//1@@)( VR e) \/E”(‘\l/_ )drdﬁzlw(E)\,

where we have used change of variables 7 = r + Cy and § = —@. This proves
(3.4.6).

We next claim that

|Rx| < C|A;| with C' > 0 a universal constant. (3.4.7)
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Let us first deduce the lemma assuming that (3.4.7) is true. If we show that
©.(A1 N D)N D # (), then there are points w; € A; N D, i = 1,2, such that
@, (wy) = wsy. Since I'(w;) < Py(w;)+h, for i = 1,2, the desired result follows
from Lemma 3.4.2. Assume to the contrary that the set p(A4; N D) N D is
empty. By (3.4.7), we have

|A1 ch| S |Rk ﬂDC| S 60|Rk| S Cé‘o‘A1|.

By taking ey = (2C)~!, we obtain |A; N D| > |A;]/2. Since p,(A; N D) C
Ay N De, it follows that

1 1

which is a contradiction.

From now on, we focus on the proof of (3.4.7). To this end, it is convenient
to use the Poincaré ball model By = B}, . Let Ay = ¢(Ay) and Ry, = ¢(Ry),
where ¢ is the isometry given by (3.2.2). Since we are concerned with volumes,
we may assume @(z) = |¢(z)|e; so that Ay is rotationally symmetric with

respect to x;-axis. Let pi be such that r, = dgn (0, pre1). We observe that

{y € B} < pro1 < |yl < pr, e1-y/lyl > 1/2} C Ay (3.4.8)

Indeed, if we define A’ in the same way as A, with 2’ € 9By, .. (z) instead of

2 € B, (z), then A; D A, Moreover, any geodesic that is perpendicular to

Tk+1

xr1-axis and passes through pi1e; is contained in the sphere

1+ﬁi+1)2 2 2 2 (1_ﬁz+1)2
r4 — — t+xy;t+r3+ .4+, = ——| . 3.4.9
( ! 2pk+l 2 3 2pk’+l ( )

The x;-coordinate of the intersection of the spheres (3.4.9) and 22 +z3+... +

x2 = pi.q I given by
Ph+1 9 tanh(y/kTg11) 1
X = 1 + = = — s
1 1_}_pi+1( pk+1) tanh(\/grk+1>pk+1 2pk+1
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where we used

1 1 2 1 2
dun (0, per) = —=cosh™! L tanh = —=

NG 1—p* V& 1+ p?

in the second equality. Note that the radius 7| = \/LE tanh ™" (3 tanh(y/kry41))
is chosen so that the last equality holds. Therefore, (3.4.8) holds.

We now compute

4| = |A]

LA )

-sin @, _ody; -+ -dy,_odpdf

e

Since
Pk 9

n—1
——— | " dp,
Pk+1 (\/E(l - pQ))
(3.4.7) is proved with some C'(n) > 0. O

|Rel = Ry = |5"]

We define ¢ : H? — Bp by a map assigning each point x € H a vertex
point y of the paraboloid P,, where P, is a paraboloid such that ['(x) =
P,(x), which is not necessarily unique. Then, the flatness of I' obtained in
Lemma 3.4.3 allows us to control the image of ¢, which can be understood

as the image of gradient of I'.

Lemma 3.4.4. Under the setting of Lemma 3.4.1, let x € € and let k be
such that (3.4.2) holds, and let gy be the constant in Lemma 3.4.3. Then,

{z € Ry u(z) > Py(2) + Cfn(x)(rk/R)QH < eo| Ry (3.4.10)
and
& <B(x,fk+1 /2)) CB <y, CS(TR)Tu(rrs1) ﬂ(x)rk> , (3.4.11)
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where C > 0 is a universal constant depending only on n, A, A, and sq.

Proof. By taking My = Cofﬁ(:z)/eo in Lemma 3.4.1, we obtain (3.4.10). More-

over, by Lemma 3.4.3 we have

P, <T < P, + Cf(x) (%’“)2 (3.4.12)

in By, (x), with a universal constant C' > 0.
To prove (3.4.11), let z € B(x,7x4+1/2) and y, € ¢(2). We need to find
a upper bound of dun(y.,y). Let & = exp;'y. and & = exp.'y. Let us

consider a family of geodesics

c(s,t) = exp,(t(&1 + 5(&2 — &),

and the Jacobi field J along c. Then, by [53, Equation (1.8b)| (or see, e.g.
[66]), we have

’J(l)‘g(y*) < Sﬂ(|£1|>ul(0)|g(2) < Su(TR)|E2 — £1|9(Z)'

Considering the curve s — ¢(s, 1), we obtain
1

g (Y, y) < / 105¢(8,1)| gy ds < Su(TR)| exp; ' yu — exp; " ylg(2)-
0

By the Gauss lemma, we know that |exp; 'y, —exp;tyly.) = R*|V P, (2) —
VP,(2)|4(z)- Thus, it only remains to show that

R*|VP, (2) — VP,(2)|g) < OT(rrsr) f(2)rs (3.4.13)

for some universal constant C' > 0.
To this end, we prove that
~ ’r‘k

(By. = Py) (e()] < CTalrnsa) fu(2) 3o

t=0

‘ d (3.4.14)

dt

for all geodesics ¢, with unit speed, starting from ¢(0) = z. Suppose that
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(3.4.14) does not hold for some c¢. We may assume that

~ rk’

OTa(ren) Fulw) = <

| &

(Py. — Py) (c(1)),

[

t t=0

by considering ¢é(t) = ¢(—t) instead of ¢(t) if necessary. Let € > 0, then there
is a § > 0 such that if |[t| < 0, we have
7oy Tk (By. = B))(ct) = (B, = B,)(c(0))

Cﬁ(rk—&-l)fn(x)ﬁ —e< = —Y / <

h(t) — h(0)

)

t
(3.4.15)
where h(t) = (I' — P,)(c(t)). Let T > 0 be the first time such that ¢(7") €
0Bsy, ., /4(). Let N be the least integer not smaller than 7'/, and let 0 = ¢, <
t1 < .-+ <ty =T be equally distributed times. Then, t;;; —t;, = T/N < 4.
By Lemma 3.4.2, we have

h(t:) — h(ti-1) < h(tiv1) — h(t:) +Hn(7R)

ti—tiy), i=1,2--- N—1,
t; —ti1 tiv1 — 1 2R? (tirs 1)

(3.4.16)
Thus, it follows from (3.4.15) and (3.4.16) that

~ Tk < h(ti—i-l) - h,(tl) HH('?R) 21

OT(rh1) ful) o5 —€ < TN T am o (T bZoN-L

(3.4.17)
Summing up (3.4.17) fori =1,2,--- | N — 1, we obtain

e ) _ hitn) = hlto) | H(TR)2T N(N — 1)

N (C’ﬁ(rkﬂ)fn(ﬂ?)ﬁ —€ T/N 2R2 N 2

Since ¢ has a unit speed, we have 7y1/4 < T < Tj41, and hence

CT (e o) o —= < (T2 Py><c<£>+>1;4<r —RIG) | HallR)
c U=P)(T)) | H(TR)
N Trs1/4 oR2 MU

Recalling that 7. (rxy1) = rre1/Tke1 and 7441 > 75/2, and that € was arbi-
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trary, we have

C fg@% < (I'— P)(e(T)) + M(?M%- (3.4.18)

Since ¢(T') € 0Bsy,,,/a(x) C By, (x), the inequality (3.4.18) with a suf-
ficiently large constant C; > 0 contradicts to (3.4.12). Therefore, we have
proved (3.4.13), which finishes the proof.

[

We are now ready to prove a discrete ABP-type estimate, from which

Theorem 3.1.2 follows.

Lemma 3.4.5. Assume the same assumptions as in Theorem 3.1.2. There
is a finite collection D of dyadic cubes {Q2}, with diameters d; < rq, such
that the following hold:

(i) Any two different dyadic cubes in D do not intersect.
(i) € < UQ,.
(i) 16(Q0)| < cF"|Qi
(iv) |B(24,2r0) N {u < T+ Clsupg f(2))(ro/R)*}H = u|Q)l.
The constants C > 0 and p > 0 depend only on n, X\, A, and sy.

Proof. Let ¢y, co, and &g be the constants given in Theorem 3.2.4, which
depend only on n. Let us fix the smallest integer N such that c,6) < ry,
then there are finitely many dyadic cubes QY of generation N such that
QYN #0and € C U,Q. . Whenever a dyadic cube @7 (j > N) does not
satisfy (iii) and (iv), we consider all of its successors Qg“ C @7 instead of
Q7. Among these successors of j + 1 generation, we only keep those whose
closures intersect A and discard the rest. We prove that this process must
finish in a finite number of steps.

Assume to the contrary that the process produces an infinite sequence of

nested dyadic cubes {Q7 52 n- Then, the intersection of their closures is some
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contact point x € %. By Lemma 3.4.4, there is a £ > 0 such that (3.4.10)
and (3.4.11) hold. Let j > N be such that d7yi1/2 < 20 < Fry1/2 < 70,
then it follows from Theorem 3.2.4 that

B(zl,c100) C Q) C Q.. C B(x,741/2). (3.4.19)

Thus, it follows from (3.4.11) and (3.4.19) that

6@ < 16(B(x,7x41/2))| < By, CS(TR)T(rin) Fulw)ri)|-

Since Sx(7R) fu(z) < F and 1y < 2rpiy = 275 (rps1 ) s < 4Ta(ro)cady ', we
have

(@) < |B(22, CT2(ro) Feid))|.
Therefore, by Lemma 3.2.2 we obtain
6(QL)] < D (CTA(ro)F) ™" |QL

where D = 2" cosh” ™ (C'\/KT2(r0)c103 F), which shows that Q7 satisfies (iii).
If z € B(z,73,), then d(z,27) < d(z,z) 4+ d(z, 2]) < rp+ 26 < 27, which
shows that B(z,ry) C B(z7,2ry). Thus, by using (3.4.10), we have

|B(2], 2ro)n{u < T + C(sup Jal@)(ro/ R)*}

Qu
> [Ry N {u < P, + Cfu(w)(ri/R)*}]
> (1 —e0)| Ryl
= (1 - 50)(2n - 1)|B7"k+1|

> 1| Q7]

for some universal constant p > 0. This proves that @’ also satisfies (iv),
which yields a contradiction. Therefore, the process must stop in a finite

number of steps. [
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3.5 A barrier function

This section is devoted to a construction of a special barrier function, which is
a key ingredient together with the ABP-type estimates for the Krylov—Safonov
Harnack inequality. It is standard to use distance function to construct a bar-
rier function, but computations are significantly different from the standard
argument. We will observe how the negative curvature of hyperbolic spaces

comes into play. Let us begin with some inequalities.

Lemma 3.5.1. Let « > 0 and Ry > 0. Then

(cosh™!(t cosh(vERy))) ™ — (VERy) ™2 > —20&%@ —1) (3.5.1)

for all t > 1/ cosh(y/kRy). Moreover,

(cosh™ (t cosh(y/kRo)))™2*™%  (VKRy) ™22

t2 cosh?(\/kRy) — 1 sinh?(y/kRo)

Z o (20& + 2 + ZHN(ROQ))HH(RO) (t . 1)
(/i Ro )2 sinh? (/5 o)

(3.5.2)

and

(cosh™ ¢ cosh(yRy))) 21 ——LOMVRRY) (g ) -sams CSMlVRRY)

(t2 cosh?(y/kRgy) — 1)3/2 sinh®(\/k Ry)
(20 V() — (VR0 + 3R W)
B (/K Ro)?+1 sinh®(v/k Ry)
(3.5.3)

for allt > 1/ cosh(v/kRy).

Proof. Since the function

1
cosh(y/kRy)’

is convex, (3.5.1) follows from the inequality f(¢) > f(1) + f'(1)(t — 1). The

f(t) := (cosh™(t cosh(v/kRy)) 2, t >
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inequalities (3.5.2) and (3.5.3) can be obtained similarly by considering

(cosh™*(t cosh(y/KRy))) =22
t2 cosh?(\/kRy) — 1

h(t) == (COSh_l(t Cosh(\/ERo)))ﬂa—l

and

t cosh(y/kRy)
(t2 cosh?(v/KRy) — 1)3/2

g(t) ==

which are also convex functions. O]

Using Lemma 3.5.1, we first construct a barrier function when s is suffi-

ciently close to 1. Let us denote K; . = K, s, in the following lemmas.

Lemma 3.5.2. Let 6 € (0,1). There are constants a > 0 and sg € (0,1),
depending only on n, \, A, ¢, and \/kR, such that the function

v(w) = ma"{ - (25_0) - (%)}

18 a supersolution to

(TR)* \ &

for every so < s <1 and x € Bsg \E5R/4-

Proof. Fix x and let Ry := dgy(2,0) € (6R/4,5R). We are going to consider
the coordinates centered at x. There is an isometry ¢ € SO(1,n) such that
r = ¢(0) and 0 = w(ﬁ cosh(\/ERo),\/LEsinh(\/ERo)el) with e; € S"71
Notice that 0 denotes 0,, = (\/LE, 0,---,0) € H.

Let z € Bgyj2(x), then z = gp(\/LE cosh(\/ﬁr),\/igsinh(\/ﬁr)w) for some

r € [0, Ry/2) and w € S"~!. By the hyperbolic law of cosines, we have

drp (2,0) = dpp <s0 <COsh\(/_\/E7’)’ sinh\(/\_/ﬁ’i”)w) o (Coshi/@Ro)7 sinh(\>/_ERO>€l)>
o {(sh(yn) sib(yRr) (coshlyRy) sinb(yRR)
Hr <( VE VE ) ; < NG 7 v ))

1
= NG cosh ' (A — B)
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where A = cosh(y/kr) cosh(y/kRy) and B = sinh(y/kr) sinh(y/kRg)w;. Simi-

larly, we have

1
dyn (exp, (—exp; ' 2),0) = 7 cosh ' (A + B).

Thus, we obtain

20 (COSh™!(A = B)) 72 + (cosh™ (A + B)) ™" — 2(/iRo) "

§(v,z,2) = —(5/KkR) 5

Since (cosh™'(-))™2* is convex at A, we obtain

e (cosh™ A)~2e-2 A(cosh™ A)=2e=1\
6(v,r,2) < — (5\/ER) (a(2a +1) (A2 — 1)1/ Ta (A2 — 1)3/2 B

— (5v/kR)** ((cosh™ A)7** — (v/kRo)™*) .
Moreover, by applying Lemma 3.5.1 with ¢ = cosh(y/kr), we have

d(v,z, 2)

cosh(y/kr) =1 1) sinh®(v/kr)

< a2a+ 1)cs ((204 + 2+ 2H,,(Ro))Hw(Fo) (AR, )? (VER)?

(ViRo)? !

(JRR? 5 cosh(vkr) =1
+ acs (((20[ + 1)HH<R0> (\/_Ro) + 3HK(R0)) (\/ERO)Q 1)

X HH(R())%W% + 2(1057-[,{(30)(;08?\(/\%/232_ 1,

(3.5.5)

where cs = (20/6)?*. Let us now compute

MFo(z) < / (A6 (v,2,2) = A6 (v, , 2)) K o (dup (2, ) dpn (2)

B(z, %)
+ / (A6F (v, @, 2) = N6 (v, 2, 2)) Ky w(dup (2, 7)) dpmp (2)
H"\B(z, )

=. [1 -+ [2.
(3.5.6)
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We take o = a(n, A\, A, /kR) > 0 sufficiently large so that
A2a+1) ][ W2 do — AH(TR) > CiAH.(TR), (3.5.7)
S§n—1

for some universal constant C; > 0 to be determined later. Then, by (3.5.5)

we have

I
< Aacs ((2a 4+ 1)Hao(Ro) — (VER)? + 3H2(Ro)) He(Ro)

< / cosh(y/kr) — 1 sirth(\/E7")w2lC
Br, (VER0)?  (VERo)? T
—+ AO{(2CL’ + 1)05 (20/ + 2+ 2HK<RO>> HK(R())

cosh(y/kr) — 1 sinhQ(\/Er)wg o ;
o A v v R GRS

N Cwé/B (QAHR(RO)COS?%ZZ))Q— 1 AM2a+ 1+ H,.;(R@)%W%)

0
2

s,ﬁ(dHQ (27 .ZC)) dNHQ (’2)

X Ko (dmn (2, ) dpmp (2)
=acs(hy+ Lo+ 13).
(3.5.8)
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We use (3.5.7) to estimate I, 3 as follows:

Iy = / (4A7-[H(R0) —4X\(2a + 1 + H,.(Ry)) cosh? (g) w%)
Brqy/2

sinh?(\/K%)
: (\/_RO) ICsnd,uH"( )

Ro/2
< / (4A|S"—1|HR(7R) — 420 + 1)/ w? da)
0 S§n—1

. SlnhZ(\/Eg)IC sinh™™ 1(\/_7’) (359)
(VER)? " VE' 1
— _H“UR) fo/2 n-1) (T)° sinh™~ 1(\/—7“)
<10 s [ 18 () Kt TR

—OMHA?R)%

For I, and I, 5, we observe that cosh(y/sr) — 1 < Crr? and sinh®(y/kr) <

Ckr? for r € [0, Ry/2], where C' is some constant depending on /kR. Thus,
by using Lemma 3.9.2 and (3.2.7) we obtain

Ly + 1o
Ro/2 h o 1 h : hnfl
< CA / / cos g;; sin K%‘[r) K () SR 45 4
Sn— 1 0 \/En
1+s R0/2 -1 1
< CA(1 - )\/]—%4 7“4_5]%_1 (n \/Er) Ko (n \/Er) dr
0 0
\/——4—‘1-28 7\/ERO
<oan- oY P (1) K () d
0 0
—4+4-2s
K n—1
< CA(1 —s) \/_R4 4%;35 . < \/ERO) ,
0
(3.5.10)

where A is the function defined in (3.9.7).
On the other hand, by using the fact that v is bounded and Proposi-
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tion 3.3.3, we obtain

TlRo/2) _ , 1— SHA”@%' (3.5.11)

Thus, (3.5.6), (3.5.8), (3.5.9), (3.5.10), (3.5.11), and Lemma 3.3.2 yield

(TR)* .
I07,€(7R)M v(x)
S COéA — Cl

(TR V& %
1-— Av o
+ C( S)I(],R(’?R) Ré §+8’§_1

1
(3.5.12)

Recall from Proposition 3.3.4 that Z,(7TR) — C as s — 1. Moreover, the

. 4
function A%ﬂ,% .

second and the third terms in (3.5.12) can be made as small as we want by

does not blow up as s — 1 by Lemma 3.9.4. Thus, the
choosing sq close to 1. Therefore, the proof is finished by assuming that we
have taken « sufficiently large so that (3.5.4) holds. O

In the following lemma, we construct a barrier function for any s € (s, 1)

for given s¢ € (0,1).

Lemma 3.5.3. Given sg € (0,1) and § € (0,1), there exist universal con-
stants « > 0 and n € (0,1/4], depending only on n, A\, A, 0, /&R, and sy,
such that the function

o(z) = ma"{ - <%> - (W) }

1S a supersolution to

%MJW(@ + AH.(TR) <0, (3.5.13)

for every so < s <1 and x € Bsg \§53/4.
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Proof. Let s; and ay be the sy and o in Lemma 3.5.2, respectively. When
s € [s1,1), the desired result holds with oy and n = 1/4.

Let us now assume s € (Sg,s1). For x with Ry := dmn (2,0) € (6R/4,5R),
we know that v € C?(B(z, Ry/2)) and that 6 (v, x,z) is bounded for 2 €
H? \ B(x, Ry/2). Thus, we have

(TR)*

Io,{(7R)M+ v(z) < CHL(TR) — /\/n 6 (v, 2, 2) Ky (i (2, 7)) dpzmn (2).

(3.5.14)
If we take o = max{c,n/2}, then the function 6~ (—(dm (-,0)/5R) >, x, z)
is not integrable. Therefore, the last integral in (3.5.14) can be made arbi-

trarily large, by taking n small. In particular, we choose 1 so that (3.5.13)
holds. O

Corollary 3.5.4. Let 6 € (0,1) and assume 0 < so < s < 1. Then, there is
a function vs such that

(

v >0 in H \ Bsg,

vs <0 in Bap,
(7R7R)M+v5 + AH(TR) <0 in Bsg \ Bsnys,

Zon 7R /\/l+v(; < CAH,.(7R) in Bsp,

(% Z -C m B5R,

\

for some universal constant C' > 0, depending only onn, \, A, ¢, /&R, and

So-

Proof. Let a and n be the constants given in Lemma 3.5.3, and define a func-

tion vs(x) = ¢(din (v,0)/R?), where 1 is a smooth and increasing function

on [0,00) such that
3\ £\
v =(%) - (%) ez
We already know from Lemma 3.5.3 that (m M Tvs + AH(TR) < 0 in
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Bsg\Bsgya. Finally, for € Bsgys, we have [8(vs, x, 2)| < CH(TR)dun (2, 2)*/ R?

for z € Br(z) and [0(vs, x, 2)| < C for z € H" \ Bg(x) with a uniform con-

stant C' > 0. Therefore, we conclude I(EZI?%;)MJFU(; < CAH,(TR) in Bspg,

with the help of Proposition 3.3.3. O]

3.6 Lf-estimate

In this section, we prove the so-called L¢-estimate, which connects a pointwise
estimate to an estimate in measure. Such a result forms a basis for the proofs
of the Harnack inequality and Holder estimate. From now on, we will prove
the results only on H" since Theorem 3.1.4 and Theorem 3.1.5 can be derived
from the results on H" by using a simple scaling argument. Moreover, since
the essential results in the previous sections have been proved on H?, one
may easily reprove forthcoming results on H}}. We write Iy = KC), 51, H = H,,

S = &;, and T = Ty for simplicity in the sequel.

Lemma 3.6.1. Assume 0 < sp < s < 1, and let § € (0,1). If u € C*(Byg)

2 .
I(g(}%)/\/l’u < g5 in Byr and

1s a nonnegative function on H" satisfying

infp,, u <1, then

u< MstNB
{u < M5} N Bsgl > s,
| Brr|

where es > 0, us € (0,1), and Mg > 1 are universal constants depending only
onmn, A\, A, d, R and sy.

Proof. Let vs be the barrier function constructed in Corollary 3.5.4 and define

w = u + vs. Then w satisfies w > 0 in H" \ Bjg, infp,, w < 1, and M~ w <

Zo(7R)
(TR)*

I',, we have

es + MTuvs in Bsp. By applying Theorem 3.1.2 to w with its envelope

|Br| <> cF™@J],
J

where

F = S(7TR) (A?—[(?R)+ U (zo(m)

5+max/\/l+v)>
LR\ TR g 7)),
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and ¢ = C’cosh”_l(CTz(ro)roF)(C’TQ(TO)F)(”_UlogC"Sh(Cﬂ(m)mFWﬂ"(ro). We
obtain by Proposition 3.3.1

(TR)? +
< .
F <S(7R) (55 + AH(TR) + 7.(7F) I%eix./\/l Vs .

Since AH(7R)+I(J£§)M+U(§ < 0in B5R\§5R/4 and :,(Z(};Z;)MJFU(; < CAH(TR)

in Bsr, we have

Bel<Cep > QL +C Y Q)

QLNBsg)1=0 QLNBsp/a#0

for some universal constant C' > 0, depending on R. By taking 5 > 0

sufficiently small, we have

|Brr| < C Z Q%]

@iﬁﬁm/ﬁé‘ﬁ
By using Lemma 3.4.5 (iv), we obtain

[Birl <C Y |B(2, 2r0) N {w < T, + C}.

Q NBsr 470

Whenever @i ﬂ§53/4 # (), the ball B(2J,2r) is contained in Bsg if we have
taken py = /4. Indeed, for z € B(z, 2ry)

dign (2,0) < dpn (2, 22) + dpn (22, 2.) + dpn (24, 0) < 219 + 79 + SR/4 < SR,

where z, is a point in @ja N Bsg. By taking a subcover of {B(z,2rq)} with

finite overlapping and using vs > —C' in Bsg, we arrive at
|Brr| < C{u < Ms} N Bsg|

for some Ms > 1. Taking pus = 1/C finishes the proof. O
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Lemma 3.6.1, together with the Calderon-Zygmund technique developed
in [12|, provides the following Lf-estimate. As in [12], we fix § = %50 and
01 = do(1 — dg)/2 € (0,1). Let kg be the integer satisfying

CQ5§R_1 <R< nggR_Q,

which is the generation of a dyadic cube whose size is comparable to that of

some ball of radius R.

Lemma 3.6.2. Assume 0 < so < s < 1. Let 5, 5, and Ms be the constants

in Lemma 3.6.1. Let u € C*(Byg) be a nonnegative function on H" satis-

fying Z(Z(I%)M_u < &5 in Brg and infp; pu < 1. If Q1 is a dyadic cube of

generation kr such that inf,cq, dun(z,0) < 61 R, then
{u> M} 0 Q| < (1— c)]Qul.
foralli=1,2,---. As a consequence, we have
Hu >t} N1 <Cte|Qu], t>0,

for some universal constants C' > 0 and ¢ > 0.

Corollary 3.6.3 (Weak Harnack inequality). Assume 0 < so < s < 1. If
u € C?*(Bsyg) is a nonnegative function satisfying M~u < Cy in Bag, then

1/p R2
P d g < C'| inf Co——
(f, mame) <0 (e oz )

where p > 0 and C' > 0 are universal constants depending only on n, X\, A,
R, and sg.

See, e.g., [12, Theorem 8.1| for the proof of Corollary 3.6.3.
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3.7 Harnack inequality

The purpose of this section is to prove the Krylov—Safonov Harnack inequality

by using Lemma 3.6.2. A simple scaling argument will provide Theorem 3.1.4.

Theorem 3.7.1. Assume 0 < sg < s < 1. If a nonnegative function u €
C?(ByR) satisfies

(TR)* (TR)*
IO(7R)M use and Zo(7R)

M+U > —&p m B7R

and infp, ,u <1, then

sup u < C,
Bs,r/a

where g9 > 0 and C' > 0 are universal constants depending only on n, A, A,

R, and sg.

Proof. Let € and g5 be the constants given in Lemma 3.6.2, and let ¢ > 0 be

the minimal value such that the following holds:

1 in T, 2 log, D\ —1/¢
u(@) < hy(x) = t<7—> (1 - %RO)) ) for all = € By, g,

where for D = 2" cosh” '(20yR). Since SUDp, ,, U < D 10%20/8)  we can
conclude the theorem once we show that ¢ < C for some universal constant
C.

Let g € Bs,r be a point such that u(xg) = hy(xg). Let d = R —
dyn (20,0), 7 = d/2, and A = {u > u(zy)/2}, then we have

R/4

o —%logQD
u(l’o) = ht(ZL’o) = tDl/E (51—}%> .

We apply Lemma 3.6.2 to u to obtain

anai<c (M) el scrig (7))l
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where ()7 is the unique dyadic cube of generation kg that contains the point
-

We will show that there is a small constant 6 > 0 such that

1
[A°N Q2| < §\Q2|, (3.7.1)

where Qo C @y is the dyadic cube of generation kg, /14 containing the point

xo, provided that ¢ is large. However, when ¢ is sufficiently large, we also have

C 7\ logs D
ANQ <lAnQil <= (%) 1Bz ead)]

D \ R
C k. C 1
< t—g|B(Z7015o < t—g|Q2| < §|Q2|,

where B(z, 015]59”14) is a ball contained in (3. This contradicts to (3.7.1) and
will lead us to a conclusion that ¢ is uniformly bounded.

Let us now focus on proving (3.7.1). For every « € B(xg, 0r), we have

—1/e _1
1 d — Or log, D 0 2 logy D
< < — = — = .
u(z) < hy(x) <t <D ( SR > ) <1 2) u(zo)

We define a function

o(z) = (1 _ Q>_;10g21>u(x0) _ u(z).

2

Since we will apply Lemma 3.6.2, we need a function which is nonnegative on

the whole space. Thus, we apply Lemma 3.6.2 to w := v in B(xq, 7(0r/14)).
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For © € B(z,7(0r/14)), we have

M~ w(z) < M v(x) + MTo_(z)

< —Mtu(z) +A/ v (2)Ky(dyn (2, 2)) dpign (2)
H"™\ B(z0,0r)
< GL(TR)_
- (TR
oA Ho\ B( e)(u(z)_(1_0/2)_loggpu<x0))+lcs(dﬂ"(2796))dan(Z)‘

(3.7.2)

To compute the last integral in (3.7.2), we introduce another auxiliary func-
tion ot
dHn (QJ, O)
95(x) 125(1—7 )
with the largest number 8 > 0 satisfying v > gg. From the assumption
infp, ,u <1, we have (1 —07)8 < 1. Let 1 € Bg be a point where u(z;) =
gp(x1). Since

/n 0 (u, 1, 2)Ks(dgn (2, 1)) dpgn (2) g/ 0 (98, x1, 2)Ks(dun (2, 1)) dpmn (2)

o I(R)
(TRE

< CH(TR)

we obtain that

Thus, we have

/n(u(z) — )" Ky(dun (2, 21)) dpmn (2)

N

o(7TR)

< /Hn 0T (u, 2, 2) Ky (dyn (2, 1)) dumn (2) < CH(TR)
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where ¢ := 1/(1 — 63).

If u(zo) < ¢, then we find an upper bound t = u(xo)(0;R/d) =< %P <
co, élogﬂ), which finishes the proof. Otherwise, it follows from (3.7.2) and
(3.7.3) that

Zo(TR)
(TR)?
Zo(TR)

g0+ AM u(z) — )1 Ks(dun (2, 21)) dupn (2
N IR CCEL RS CEN LG

1(07(;?) €0 + OM%(?R)I(“?(;;? :

M w(z) < €0+ A/Hn\B( ) )(u(z) — )+ Ks(dpn (2, 2)) dpmn (2)

IN

where

Ks(dyn(z, 7))
Ks(dyn (2, 21))

M:sup{ :J;EB(xo,Gr/Q),xlEBR,ZGH"\B(xO,Gr)}.

Let d = dyn(z,x) and dy = dyn(z, 1) for the sake of brevity. We recall from
Lemma 3.9.2 that the kernel K, is comparable with the function

1
R sinh ™7 (R) K., (”2 R).

If d > dy, then by [87, Chapter 4| we have

Ko(d) _ ()5 (sinhd )T Kupe(Fd)
- sinh d Kn/Z—&-s(%dl)

n—1
sinh dl 2 n—1
< Sldd < ¢
=0 ( sinh d > ‘ =0

If d < dy, by [87, Theorem 3.1] we have

+1 2s . n-1
d_ + sinhd; \ 2 25k (di—d)
sinh d
nts

¢ d
) n-1
d_ sinhd; \ 2 mFhd—d)
d sinh d '
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Since dy —d < d(x, "), we can bound Ks(d)/Ks(d;) by a constant depending
on R. Thus, for any cases the ratio Ky(d)/KCs(dy) is bounded by a universal
constant depending on R which is independent of s. By using Lemma 3.3.2,

we arrive at

012 oy < o BB/

Zo(0r/2) = Iy(0r/2)/(0r/2)?

H(TR) < C

in B(xo, 7(0r/14)).
Let Q2 C @ be the dyadic cube of generation kg, /14 containing the point
xo. Then by Lemma 3.6.2, we have

{u < u(zo)/2} N Q2] = {w > ((1-0/2)" = 1/2) u(z0)} N Q2|

< C1Go| E ( inf w4+ C) .
(1 =0/2)7" = 1/2) u(wp)® \Blxo.or0r/14)

We can make the quantity (1 —6/2)7* —1/2 bounded away from 0 by taking
¢ > 0 sufficiently small. Recalling that w(zg) = ((1 —0/2)7° — 1)u(zy), we

obtain

< otea/2y @l = C1Qal (- 07277 =17 + (o) ).

We choose a constant 6 > 0 sufficiently small so that

C(1-0/2)°-1) < i

If t > 0 is sufficiently large so that C(C/u(zo))® < 1/4, then we arrive at
(3.7.1). Therefore, t is uniformly bounded and the desired result follows. [

3.8 Holder estimates

In this section, the following Holder regularity result is proved. Theorem 3.1.5

follows from simple scaling and covering arguments.
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Lemma 3.8.1. Assume 0 < so < s < 1. There is a universal constant &g

such that if u € C?(Bzg) is a function such that |u| < 3 in Brg and

(R? . (TR
>
MTu gg and T,(7R)

u < n B
To(TR) > M u<ey in Brg,

then uw € C% at 0 € H" with an estimate
lu(z) — u(0)] < CR “dyn(x,0)%,

where a € (0,1) and C' > 0 are universal constants depending only on n, A,

A, R, and sg.

Proof. Let Ry, :=7-4 ¥R and By, := B r, - It suffices to construct an increasing
sequence {my}r>o and a decreasing sequence { My }r>o such that my < u <
M, in By, and My —my, = 4-°%. We initially choose mo = —1/2 and My = 1/2
for the case k = 0. Let us assume that we have sequences up to my and My
and find my4q and M.

For x € Bsg,,,, let Q1 be a dyadic cube of generation kg, /7. In @,
either u > (Mj, +my)/2 or u < (M 4+ my)/2 in at least half of the points in

measure. We assume

> (My+me)/2} 0 Q1| > é|@1|. (3.8.1)
A function defined by
o) = u(x) — my,

satisfies v > 0 in B; by the induction hypothesis. To apply Lemma 3.6.2, let

us consider a function w := v+, which satisfies

fw>1}NQi| > 51Q] (352)
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by (3.8.1). Since I(()?(?E)M_U < 2e0/(My, — my) in Brg, we have

_Bin M w < B (M v+ M)
Zo(Ri41) = Zo(Ret1)
260 R%+1 Io(?R) R%«H

<
= My —my To(R1) (TR Zo(Reyr)

MTu~

in Bsg, . By Lemma 3.3.2, we have

RI%—H IO(7R2) < <Rk+1>s — 4~ (k+1)s - g—kso
To(Resr) (TR) R

Thus, we obtain

2
RkJrl

R2
—— M Mw < 250+ —F _ MFyT,
To(Rpy1) ’

Zo(Ry+1)

by assuming o < sp.
For MTv™, we use an inequality v(z) > —2((dgn(z,0)/Rp)* — 1), z €
H"\ By, which follows from the definition of v and the properties of sequences

My, and my. Then, for any xg € Bsg,,,, we have

Mo~ (z9) < A/ v (2)Ks(dpn (x0, 2)) dpmn (2)

H™\ By,
dyr “
< 2A/ ((M> - 1) Ko (dgn (0, 2)) dpan (2).
H"\ By, Ry,
Since dgn (2,0) < 4dgn (2, x9), we obtain

Rjy
To(Re+1)

2ARI% dHn(Z l’o) @
< — +1/ ((—’ -1 /Csdnx,z d,unz
- IO(Rk+1) H"\B(z0,Rk+1) Ry ( H ( 0 )) H ( )

(3.8.3)

MTy~

Let I be the right-hand side of (3.8.3). By the dominated convergence the-

orem, we know that I converges to 0 as a« — 0 for each s. Let a, > 0 be
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the constant such that I < ¢y whenever o < «,. Since [ is continuous with
respect to o and s, a is chosen continuously. Thus, the quantity min,es, 1] v
is positive and depends on sy (not on s). By choosing a = min,c,,1) o, We

obtain ,
Ry

Zo(Ry+1)
in B(x, 7(Ri4+1/7)) for € Byg, . Therefore, by Lemma 3.6.2 and (3.8.2),

we have

M~ w < 380

S1Qu < 1{w > 11N Q1] < C1Q1] (w(w) + 3e0)°

or equivalently, § < w(x) + 3g¢ for some universal constant # > 0. By taking
g0 < 0/6, we arrive at w > 0/2 in Bsr,,,,- Thus, if we set My, = M), and

Mgyl = Mk 4 k+1) then

Mk—mk

M1 > u>my + 1

0
0 = M, — (1—1) 47% > my

in B

When (3.8. 1) does not hold, a similar proof can be made by using z /\/l+u >
./\/l u < gg. O

—¢go instead of

3.9 Appendix

3.9.1 Special functions

The equation
Py | dy
= =0
pdp +pd (P* + 1)y =

is called the modified Bessel’s equation, and its solutions are given by

= o\ 7 1,(p) — L(p)
I,(p) = = d K,(p) =~ _ :
(v) jZO JIM(v+7+1) <2> ol (v) 2 sin v
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They are called modified Bessel functions of the first and second kind, re-

spectively. They satisfy the recurrence relations

2 2
_yKya -[u—l - -[V+1 == _Vluy

Ky—i-l - Ky—l = R

and the following system of first-order differential equations:

I,,, = dy—1 — %Im K;l/ = —Nypy-1— %Kua
and
[L =/, + %Lj, KL =—-K,1+ %K,,.

(3.9.1)

Moreover, the following asymptotic behavior is well known. For further prop-

erties of special functions, the reader may consult the book [91].

Lemma 3.9.1. The asymptotic behavior of the modified Bessel functions are

given by

L,(p)fvﬁ(g)u, vt —1,-2

Ko (p) ~ %r(u) (5", Rev>o,

as p— 0, and

as p — 00.

In this paper, some special functions involving the modified Bessel func-
tions appear. Let us first study the kernel of the fractional Laplacian on the

hyperbolic spaces.

Lemma 3.9.2. There exist constants Cy,Cy > 0, depending only on n, such
that

o < sinh” (R, .1 (R)
1

—_ n— n— S C :
s(1 = 8)RIjo 1 ("5 R) Ky jors("52R) =
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The proof of Lemma 3.9.2 is divided into two parts: the odd and even di-

mensional cases. For the even dimensional case, we need the following lemma.

Lemma 3.9.3. Leta >0 and v > —"T_l. Then

/°° sinh ™/ 1y .
,
r +/coshr —cosh R

rPwv+24)
~ )= —=——2 2RV sinh Y (R)K,, /210 (aR
Vo B S R

n/2+V(aT) dr

as R — 0" up to dimensional constants.

Proof. By the change of variables r = Rt, we have

o0 1 P sinh™/?*1p Ky o0 (ar)
/R Vcoshr — cosh R R™ sinh™™?*! R K, )24, (aR)
Y Rt~V Sinh*”/%l(Rt) K240 (aRt)
a /1 V/cosh(Rt) — cosh(R) sinh™*™(R) Knja1,(aR)

We define for each R € (0, 1) a function fr by

Fa(t) = AL sinh "2 (R Kojor (0B g
\/cosh(Rt) — cosh(R) sinh™/*™(R) K1, (aR)’ ’
Note that
h(Rt) — cosh 1
cosh(RR )R2 cosh(F) > 5(152 —1) and sinh(Rt) > sinh(R)t.

Moreover, by [65, Equation (2.17)|, we have

Kn/2+y(aRt)

<t75V
Kn/2+u(CLR) -

Thus, fg is bounded from above by a function

t—n—2u+1

=Je—oe

99



CHAPTER 3. HARNACK INEQUALITY FOR FRACTIONAL
LAPLACIAN-TYPE OPERATORS ON HYPERBOLIC SPACES

which is integrable on (0, 00). Indeed, by the change of variables t> — 1 = T,

we obtain

o0 r1/2 1 1 n—1
t - dr=—B|(-=>
/1 fe) dt / T"/%” ! V2 (2,y—|— 2 )

where B is Euler’s Beta Integral (see [91, 5.12.3]).
For fixed t € (1, 00), we have

cosh(Rt) — cosh(R)

sinh(Rt) ot and K, 210 (aRt)
R2

=1 Sn® Koo (@)

%

N | —

as R — 0. Hence, we obtain limg_,o fr(t) = f(t). Therefore, the Lebesgue

dominated convergence theorem concludes the lemma. O

Proof of Lemma 3.9.2. Observe that the function v/RI,,/o—1 (%52 R) is compa-
rable to the function sinh "z (R) up to dimensional constants by Lemma 3.9.1.
Thus, it suffices to prove that sinh%(R)Kn7s71(R) is comparable to s(1 —
S)RTY2 K, /51 s("5* R) up to dimensional constants.

Let us first consider the odd dimensional case n = 2m -+ 1. It is sufficient

to prove
RYV2tssinh™ R [ —0p \"
C3 < G(R,s) := H j2vsm(R
3 < Gl&s) Kpi1/21s(mR) (sinhR) 125 (B)
<C;, R>0,5€]0,1], (3.9.2)

by recalling (3.1.2) and observing ¢, s < C(n)s(1 — s). By Lemma 3.9.1, the
modified Bessel function K, (p) is asymptotic to \/:ipe*p as p — oo uniformly
with respect to v € [1/2,n/2+ 1]. Moreover, its i-th derivative is asymptotic
to p~/2e= up to constants depending only on n and i by (3.9.1) in the same
range of v. Therefore, GG is bounded from above and below near R = oo by
positive constants depending only on n.

On the other hand, GG is also bounded near R = 0 by a dimensional
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constant since K, (p) is asymptotic to 2°7'T'(v)p™ as p — 0 and 2 7'T'(v) is
bounded from above and below by dimensional constants when v € [1/2,n/2+
1]. Since G is continuous, we conclude (3.9.2).

Let us next consider the even dimensional case n = 2m. In this case, we

consider

o sinhr —0. \™
H(R,s) = ") e wa (r)d
(£3) /R Vcoshr — cosh R (smhr) tze nca () dr

We first prove that R'**e™"YEH(R, s) is bounded from above and below

near R = oo by positive constants depending only on n. As R is sufficiently

close to oo, we have

H(R,s) < C’/ ¢ rimsen A2 gy
\/ —R \/Sinh(r-‘rR)

t+ R —S —n+3/2)(t+R) dt

\/ sinh R / /smh t
< CR™ 1-— S~ (n—1)R /
0 ,/smh%

< CR—I—se—(n—l)R

dt

and

n+2

=
H(R,S):/ QSlnhT\/coshr—coshR( &) His2s noa (1) dr
R

sinh r 2 2

> C/ e’"\/sinhr \/sinhr—i_ pol=se—(n+1/2)r 4,
R 2 2
> t
> C\/sinhR/ Sinh—(t+R)*1*Se*(n71/2)(t+R) At
>CR13"1)R/ /smh (14 t)"2e~(=1/2)t g

>CR—1 s—n R
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for some dimensional constants C' > 0.
Finally, we prove that R"***H(R,s) is bounded from above and below
near R = 0 by positive dimensional constants. By similar arguments as in

the odd dimensional case, the function H is comparable to

m+1

inh™ 2m — 1
sin r T1/28Km+1/2+5( m 7’) ar.

o0

r coshr —cosh R 2

and hence to

2m —1
R—1/2—s Sinh_m+1(R)Km+1/2+S ( m2 R)

by Lemma 3.9.3, up to dimensional constants. The desired result now follows
from Lemma 3.9.1. ]

Another special function involving the modified Bessel functions used in

this paper is given as follows: we define the definite integral
Al = / LK, dp. (3.9.3)

Lemma 3.9.4. LetkeNand f=pu—v+2k+1#£0,1,..., k. Then

k .
kY (E—j)!

Z Bkt )" P L Ko + Lugjin Kojon)

7=0

Proof. By using (3.9.1) and the integration by parts, we obtain

1
Al = B+p—v+1 (pBHIMKV + A = AT V> and  (3.9.4)
1
b, = p+1 B+1 B+1
AMV B m (/) LKy AM 1wt Au,u—i—l) . (3.9.5)

By plugging (3.9.5), with p, v replaced by p+1,v —1, into (3.9.4), we obtain

B‘i‘/lf_ U+ 1 p+1lv—1-
(3.9.6)

AP 1

= TNLK, + [ K, ) —
v 5+M_V+1p (/L l/+ pt1 1/1)
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The desired result follows by iterating (3.9.6). O

We also define the indefinite integral

R
ALL(R) = / p’1,K, dp. (3.9.7)
0

Note that it is well defined by Lemma 3.9.1, provided that —pu ¢ N, u > 0,
and B+ p—v+1>0.
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Chapter 4

The fractional p-Laplacian on

hyperbolic spaces

4.1 Introduction

Operators of fractional-order have been studied extensively not only on the
Euclidean spaces [42] but also on various spaces such as Riemannian man-
ifolds [3, 7, 24, 38, 54, 55, 61|, metric measure spaces |21, 27, 49, 56, 58],
discrete models [32], Lie groups |20, 34, 46, 47|, Wiener spaces [20], and so
on. On the Euclidean spaces, there are several equivalent definitions of the
fractional Laplacian [86] due to the simple structure of the spaces. In con-
trast to the case of Euclidean spaces, not all definitions are equivalent on
general spaces. For instance, one can study a regional-type operator [61] or a
spectral-type operator [100] on Riemannian manifolds. Moreover, some def-
initions, such as the one using the Fourier transform, do not even work on
general Riemannian manifolds and metric measure spaces. However, several
representations for the fractional Laplacians on some Riemannian manifolds,
such as hyperbolic spaces and spheres, have been established |7, 38] by means
of rich structures of the spaces.

The aim of this paper is two-fold. We first generalize representation for-

mulas in [7] to the nonlinear regime on the hyperbolic spaces. Precisely, we

104



CHAPTER 4. THE FRACTIONAL p-LAPLACIAN ON HYPERBOLIC
SPACES

define the fractional p-Laplacian (—Ag»); forn € N, 0 < s <1, and p > 1
by using the heat semigroup and establish the singular integral representa-
tion and the Caffarelli-Silvestre extension. Note that the definition via the
Fourier transform is not available because of the nonlinearity of the oper-
ator. We next study the pointwise convergence of (—Agn ) u(z) as s — 17
using the singular integral representation. For this purpose, we compute the
explicit values of the normalizing constants in the singular integral represen-
tation. This explicit value was available only when n = 3 and p = 2, see
[70].

Let us define the fractional p-Laplacian on the hyperbolic spaces. We
adopt the definition proposed in |39, Section 8.2|, which is a nonlinear exten-
sion of the Bochner’s definition [9]. See also [100]. To this end, let {e'#" };54
be the heat semigroup generated by the Laplacian Ag» on hyperbolic spaces.
That is, for a given function f : H® — R we denote by e/“u[f](z) the

solution w(z,t) of a Cauchy problem

Oyw(x,t) — Agnw(z,t) =0, z € H" t>0,
w(z,0) = f(x), x € H".

(4.1.1)

We define CZ(H") by the space of bounded C? functions on H™.

Definition 4.1.1. Let n € N, s € (0,1), and p > 1. Let v € C#(H") and
z € H". If p € (1,5%], assume in addition Vu(z) # 0. The fractional p-

Laplacian on H" is defined by

(~Bw)ute) = Ci [ e By (ul) ~ ul)](o)

where

(4.1.2)

and @, (r) = |r[P~2r.

The constant C; in (4.1.2) is chosen so that the pointwise convergence
lim q (—=Apn )yu(z) = (—Apn)pyu(z) holds, see Theorem 4.1.4. The same
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constant is used in the case of Euclidean spaces [39]. Moreover, this choice is
in accordance with the constant in the case p = 2, see [7].

The first result is the pointwise integral representation of the fractional
p-Laplacian with singular kernels. Note that the hyperbolic geometry is dis-

tinguished from the Euclidean geometry only when n > 2.

Theorem 4.1.2. Let n > 2, s € (0,1), and p > 1. Let v € C}(H") and
xeH " Ifp e (1, ﬁ], assume in addition Vu(zx) # 0. Then, the fractional

p-Laplacian on H" has the pointwise representation

(—Apn )pu(x) = Cosp PV /n Ju(z) = w(€)I"* (u(z) — u(§)Kn.sp(d(z, ) g
(4.1.3)
with the kernel IKC,, s, given by

n—1

—9, \ 7 [ _1w n—1
st = (22) 7 (5 ki (510))

when n > 3 s odd and

> sinhr —0, \? Lisp n—1
’Cn s - C ; - _TKj d
so(P) 2 » V/m/coshr — coshp (smh 7“> (r E ( 2 r>) "

when n > 2 is even, where

1+sp

_pJT/2 22T (2E2) o 1 (n— 1) 2

CTL — a5 n 9 - n— s
UArEh) M=)l 2 () 2

and K, is the modified Bessel function of the second kind. Moreover, the

kernel IC,, s, s positive and has the asymptotic behavior

—n—sp

Knsp(p) ~ p

as p — 0% and

sp

as p — 400, up to constants.
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In the linear case p = 2, the pointwise integral representation with sin-
gular kernel is provided in |7, Theorem 2.4 and 2.5] without constants. The
novelty of Theorem 4.1.2 is that it generalizes the representation formula to
the nonlinear regime with the normalizing constant. We emphasize that the
normalizing constant plays a crucial role in some contexts. For instance, it
is used in the convergence result (Theorem 4.1.4) and the robust regularity
theory (see |15, 70]).

The main tool in |7, 70] is the Fourier transform on the hyperbolic spaces.
Since the Fourier transform is not available in the nonlinear setting, we use
the heat kernel for the Laplace operator Ay~ on hyperbolic spaces to prove
Theorem 4.1.2. The explicit formula for the heat kernel with a normalizing
constant given in [59] enables us to obtain the exact values of the constants
in Theorem 4.1.2.

Let us proceed to another representation for the fractional p-Laplacian on
H". We recall that the fractional Laplacian on R"™ is obtained by a Dirichlet-
to-Neumann map via the Caffarelli-Silvestre extension [14]. Later, the article
[100] relates the heat semigroup to this extension. Moreover, this relation is
extended to the nonlinear framework [39] in R". We further investigate this

relation on the hyperbolic spaces. Let us consider the extension problem

1—
AU(z,y) + SpUy(x,y) +Uyy(z,y) =0, ze€H", y>0,
(4.1.4)
U(z,0) = f(=), z € H",
and define an extension operator Ej , by E; ,[f] := U. The following theorem

is our next main result.

Theorem 4.1.3. Let n € N, s € (0,1), and p > 1. Let u € CZ(H") and
xe " Ifp e (1,5%], assume Vu(x) # 0 additionally. Then

A ou(s) — Cy i Zeal () — ()

yNo yr (4.1.5)

C’3 . 1—sp
=ty =0, (Bl (u(x) — u()]) (.0)
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where
p /7/2 22T (%)
20 (5 [T(=s)|

To prove Theorem 4.1.3, we represent the solution U of the extension

Cs =

problem (4.1.4) by using the heat semigroup. Then, the formula for the heat
kernel [59] leads to the Poisson formula for U and the representation (4.1.5).

The last result is the pointwise convergence of the fractional p-Laplacian
on H" as s — 17. As one can expect, the fractional p-Laplacian converges to
the p-Laplacian as a limit. Recall that the p-Laplacian on H" is defined by
(—Agn)pu(x) = —div(|Vu(z)|P~2Vu(x)).

Theorem 4.1.4. Let n € N, p > 1, and u € C}(H"). For x € H" such that

Vu(z) #0,

ln(— A )ju(z) = (~Dge)pu(z).

The pointwise convergence of the fractional p-Laplacian on the Euclidean
spaces is well known [10, 42, 64]. Recall that the proof uses Taylor’s theorem

and the following computations:

> 1 IS”‘ll s
K(p)p dpdw = R,
Sn—1

n 1
K(p)pPttdpd ‘ | =1 pr-s) 4.1.6
/S g / o) o= R, (4.1.6)
/ / K B+p+n 1 dp dw = |Sn 1| R6+p(1—s)
sn—1 /B p(l - S) 7

where 8 > 0 and K (p) = p~"* is the kernel for the fractional p-Laplacian on
R™. However, in our framework we need the integrals in (4.1.6) with the kernel
K and the volume element p" ! dp dw replaced by K, ;, and sinh" ™! pdp dw,
respectively. These integrals do not seem to be of a form that is easily com-
puted. Instead, we compute the limits of these integrals as s — 17, which are
sufficient to establish Theorem 4.1.4. This is still not straightforward, but can
be obtained by using the asymptotic behavior of modified Bessel functions.
The paper is organized as follows. In Section 4.2 we recall the hyperboloid

model and study the modified Bessel function and its properties. Section 4.3
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is devoted to the proof of Theorem 4.1.2, which provides the pointwise in-
tegral representation of the fractional p-Laplacian with singular kernels. In
Section 4.4, we relate the heat semigroup to the extension problem (4.1.4)
and find the Poisson formula. Using the Poisson formula and the representa-
tion of the fractional p-Laplacian, we prove Theorem 4.1.3. Finally, we prove
the pointwise convergence result, Theorem 4.1.4, in Section 4.5. An auxiliary

result can be found in Section 4.6.1.

4.2 Preliminaries

In this section, we recall the basics of the hyperbolic spaces and collect some

facts about the modified Bessel function.

4.2.1 The hyperbolic space

There are several models for the hyperbolic spaces, but let us focus on the

hyperboloid model in this paper. The hyperboloid model is given by
H"* = {($0>""xn) e R" :x(%_x%_"'—ﬂﬁz 1,z >0}

with the Lorentzian metric —dzZ + dz? + - - - + dz? in R"™'. The Lorentzian

metric induces the natural internal product

[2,8] = oo — x1&1 — -+ — T,

on H". Moreover, the distance between two points x and £ is given by

d(z,€) = cosh™ ([, €]).
Using the polar coordinates, H" can also be realized as

H" = {z = (coshr,sinhrw) e R"" : 7 > 0,w e S"'}.
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Then, the metric and the volume element are given by dr? + sinh? r dw? and

sinh™ ! r dr dw, respectively.

4.2.2 The modified Bessel function

The modified Bessel functions naturally appear in the study of hyperbolic
geometry. In this paper, they are used to describe the kernel of the fractional
p-Laplacian and the Poisson kernel. For this purpose, we recall the definition
and some properties of the modified Bessel functions.
We call the ordinary differential equation
d’y | dy

2 2 2
_ - :O
pdp2+pdp (P~ +v7)y

the modified Bessel equation. The solutions are given by

- 1 P2t m1,(p) = L(p)
L(p) = = d K,(p) ==
,(p) ;ﬂmjﬂﬂ)(?) and K, (p) = 50—,

and they are called the modified Bessel functions of the first and the second
kind, respectively. Since only K, appears in this work, we focus on the prop-

erties of K. This function has the following integral representation (see |91,

10.32.10]):

1 1 Y OO —t—ﬁ —v—1

Ky(p):§ 5P e Tt dt. (4.2.1)
0

The asymptotic behavior of K, is given by

1 —v
K,(p) ~ §F(1/) (g) as p— 0%, for v > 0, and

(4.2.2)
K,(p) ~ et as p — +00.
v 2p
Moreover, K, satisfies the following recurrence relations:
’ v , v
Ky = Ny — EK]/ and Kl, = _KV_H + EKV (423)
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We also recall that K, is increasing with respect to v > 0. For further prop-
erties of the modified Bessel functions, the reader may consult the handbook
[91].

In the sequel, functions of the form p™" K, (ap) with v € R and a > 0 will

appear frequently. For notational convenience, we define
Ha(p) i=p VK, (ap). (4.2.4)
Then, it follows from (4.2.3)

—0p(A0a(f(p)) = af'(p)f(0) His1,a(f(p))

for any differentiable function f : (0, +00) — (0, +00).

4.3 Pointwise representation with singular ker-

nel

The singular kernel p~"~*P for the fractional p-Laplacian on the Euclidean
space R™ is homogeneous of degree —n—sp. This is a natural property coming
from the scale invariance of the operator. However, this cannot be expected
in the case of hyperbolic spaces because the hyperbolic geometry comes into
play. Indeed, we will see that the kernel K, ;,(p) behaves like p™"~* near
p = 0 whereas it decays like p~1=Z e~ (*"D? as p — +00, up to constants, by
providing the explicit form of the kernel K,, 5 ,. Moreover, we investigate the
pointwise integral representation of the fractional p-Laplacian on H".

It is well known that the Cauchy problem (4.1.1) has the unique solution

wwt) = [t dlz, O)F©)d

provided that f is a bounded continuous function, where the heat kernel
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p(t, p) is given [59] by

_ m 2
(i) = (271)m (471'1)1/2 <Sin181pp> e (43.1)
whenn =2m+1>11is odd and
1 em-12, [ =0, \" ' [*® re-%
Pt p) = 2(27r)m+1/2t_3/26_ft <$) » /coshr —coshp ar
(4.3.2)

when n = 2m > 2 is even. We use these explicit formulas for the heat kernels
not only in the computation of the singular kernels K,, 5, but also in the next
sections. For this purpose, we first prove the following lemma, which is useful

especially in the even dimensional case.

Lemma 4.3.1. Let v >1/2, a > 1/2, and y > 0. For m € NU {0} define

Fu) = St () ot (V).

B V/coshr — cosh p \ sinhr

where J,, is the function given in (4.2.4). Then, F,, is integrable on (p, +00)

(Si_nipp) /p " Falr)dr = /,) " Fuar)dr (4.3.3)

for allm e NU{0}.

and satisfies

Proof. Note that for any j > 1

-0, (M) _ .((e7“+—e—7")j

(er _ efr)j er — efr)jJrl

Therefore, all derivatives of Sinlhr (and ='—) have the same asymptotic behav-

r

iorase™" (and re”", respectvely) as r — +o00. Hence, F,,(r) ~ r

as r — +o00, which shows that the function F}, is integrable.
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Using the integration by parts, we have

/00 Fo(r)dr = /00 20, <\/cosh7’ — coshp) ( 0 )m%,a (\/W) dr
P p

sinh r
00 ) m+1
= / 2sinh7y/coshr — cosh p ( , hr ) Ky a <\/7"2 + y2> dr.
) sinhr

Thus, the recurrence relation (4.3.3) follows by applying the Leibniz integral
rule. [

Let us now prove Theorem 4.1.2 using the heat kernel and Lemma 4.3.1.

Proof of Theorem 4.1.2. Let e > 0 and define g.(x,§) = ®p(u(x)—u(§)) Xd(z,e)>e-

The heat semigroup associated to g.(z,-) is given by

5000 = [, et (o) 8 om0

when n = 2m + 1 > 3 is odd and

e [ge(x, )] (2)
/ 32 g\ / = relidr (w,€) dg
= e\,
n 2(2m)m /2 \sinhp » y/coshr —coshp g

when n = 2m > 2 is even, where p = d(x,§). We will prove

* A dt
Cl/o € A [gs(ma )](x)tlT% = Cnsp /d($’§)>5 q)p(u(l’)—U(E)),Cn,s,p(d(za 5)) df

(4.3.4)
in both cases.
Let us first consider the odd dimensional case. We fix § > 0 and integrate

the heat semigroup with respect to the singular measure ¢t~'~2 d¢ over the
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interval (§,00) to obtain

e [ e o, >J<x>tffip

=0, \"" e e® dt
- " ¢ £ Y d sp
Cl/ /n 47rt 1/2 ((sinhp) ‘ ' )g (,¢) §t1+7

—9.\™ 00 —m%-% s
(27T> (47T>1/2 /H" (Slnhpp) </5 € t dt) ga($7 5) d£

(4.3.5)
2 sp . .
Note that the function e-™*%¢="5" is integrable on (0,00). Indeed, the

formula (4.2.1) and the change of variables show

° _mQt_ﬁ _3+sp 1+sp o 4 (mp)2 _ 3+sp 1+5p
e 2 =m e it 2 dt =2(2m) 2 Hisep m(P).
0 0

(4.3.6)

Thus, (4.3.4) in the odd dimensional case follows by combining (4.3.5)—(4.3.6)
and passing the limit § 0.

We next consider the even dimensional case. Similarly as in the odd di-

mensional case, we obtain

* i
Cr [ e e o)

+3/20— (2m n?, -9 m—1
o [
n 2(2m)mt1/2 A sinhp

re” dt
d e £
/p V/coshr — cosh p re(:8) A8 ey tHz

B 01 / —8p m—1

-~ 2(2m)m /2 fy, \sinh p
[ et w) Jiadede
p 5 v/coshr — cosh p

114



CHAPTER 4. THE FRACTIONAL p-LAPLACIAN ON HYPERBOLIC
SPACES

Moreover, we have from (4.2.1) and (4.2.3)

1) me1)2, 2 54 d
/ e T A = 22m — 1) K 2 (1)
. 2

’ 2

=4(2m — 1)% (—@T) %#M(T)

r 2
Thus, we deduce

00 dt
Cr [ e ey

o (& . [ S T LY
—c, ., i T ge\ T,
w02 |\ Sinh p , V/m/coshr —coshp g

o sinh r -0, \"
— Cnp.s C - - %J 2m—1 d B 5 d ;
Croop 2/n/p V/m/coshr — cosh p (Slﬂhr) A (r) dr ge(, €) d&

H;p, a = 2m271, and y = 0 in the last

equality. This proves (4.3.4) in the even dimensional case.

where we used Lemma 4.3.1 with v =

On the one hand, the integral in the right-hand side of (4.3.4) converges

to the Cauchy principal value
P.V. / B, (u(z) — u(€))Knsp(d(x, €)) dé

as € \; 0. For the left-hand side of (4.3.4), on the other hand, we need to

estimate

A= /0 " gt (@, (u(z) — u(-))](x)ﬁ—t? — /O " et [9e(,)](2) tits;-

Proceeding as above, we have

A< ‘P.v. [ ) = )y . 6) ds] .
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Thus, applying Lemma 4.6.1 to K = K,, 5, yields

£

A [ KW [ Kol pdp, (137)
d(z,§)<e 0
where o = 2p — 2 when p € (%,2) and a = p when p € (1, %] U [2,00).
Note that C,, s ,, is positive, which will be proved later in Corollary 4.5.2. Since
Knsp~ p "% as p— 0% up to constants, the function p*kC,, s, (p) sinh™ ' p
is integrable near zero and hence the right-hand side of (4.3.7) converges to
zero as € \, 0. Therefore, the left-hand side of (4.3.4) converges to that of
(4.1.3) as € \, 0. O

4.4 Extension problem

In this section, we prove Theorem 4.1.3, which provides another representa-
tion of the fractional p-Laplacian on the hyperbolic spaces. We first relate
the heat semigroup to the extension problem (4.1.4) and find the Poisson

formula.

Lemma 4.4.1. Let n > 2, s € (0,1), and p > 1. If f € Cy,(H"™), then the
solution U = E; [ f] of the extension problem (4.1.4) is given by

2 dt

. y*r > tAgn = Y
Ulz,y) = —ZSPF(%) /0 e [f](z)e e (4.4.1)

Moreover, the solution can be represented by using the Poisson kernel:
Ulw) = [ Pl.9.0)f©) e (1.42)

The Poisson kernel P(p,y) is given by

n—1

—9.\ =
P(p,y) = Cyy™ ( £ ) Ji/u%nT—l (\/ p? +?JZ>

sinh p
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when n > 3 odd and

P =i [Tt () A (VPTR)
p

my/coshr — cosh p \ sinhr

when n > 2 even, where

1+4sp

n—1 4
C = n—: n
4 2237”F(S—§D)( 4

and A, s the function given in (4.2.4).

Proof. For each z € H" and y > 0, we define V' (z,y) by the function given
in the right-hand side of (4.4.1). Then, we have

_2 dt
Viz,y) QSPF p(t,p)f(§)dge = Py

where p = d(z,€). Recalling the expression (4.3.1) for the heat kernel p(¢, p)

and using (4.2.1), we obtain

V(z,y)

8 m2t_ﬂ2+y2 dt
2spF Sp / /n 27T 47Tt 1/2 ((Slnhp) € o ) f(f) df tl+sp/2

N /]HI" QSPF(SQP) (27r) (47T)1/2 (Smhp) (/0 ¢ t dt) f(€)d¢

_ / P(d(w,€).9)(€)d¢

when n = 2m + 1 is odd. If n = 2m is even, then we use (4.3.2) instead of
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(4.3.1) to have

Viz,y)
_7;; (2m 1) m—1 _r +y
t tr - dr
d¢ dt
ZSPF 3” / /n 2(2m)m+1/2 (smhp) / \/coshr — coshp J(&)ds
5+sz7 (2m 1)? t r24y?

yr / - " 1/ /oot re” e dt ar £(€) de
25PF(7”) n smhp 2(2mr)m+1/2 \/coshr — cosh p g '

Moreover, using (4.2.1) we compute

) me1)2 2 Step
/ o~ Tt 4+y AL = 2(2m — 1) Ji/s,gsp’% <\/ r?+ 92)
0
s [ —O, /72
4(2m—1)1+p ( )Jiﬁgsp,zmzl( 7’2‘1‘192)-

r

Therefore, we obtain

dr f(£) d¢

V(.’f y) C’ ysp/ < —8 >m—1 /oo ( 37,)(%/1;5 P,Lm —1 ( ’]"2 + y >
n p

sinh p V/m/coshr — cosh p
~ [ P91

in the even dimensional case as well, where we used Lemma 4.3.1 in the last
equality.

It only remains to prove the equality in (4.4.1) to conclude lemma. Note
that (4.4.2) will follow from (4.4.1) and the representations of V' above. To
prove the equality in (4.4.1), we check that the function V' solves the extension
problem (4.1.4). Since the heat semigroup e'2#"[f] solves (4.1.1), V satisfies

oy Oo tAgn —% —1-3P
AIV = W(‘%p)/o 0,5 (6 H [f](.T)) e 4t 2 dt.

Using the integration by parts and the fact that |2 [f](z)| < || f]|p~, we
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obtain

AV

=ty ([ e ¥eo] - [Tt ( S ) )
ysp o0 Ay y2 _% B _% Sp 4t .

Since

I RN I
Vo oo [ e e e a

vyttt [T A 2y
_ Hn —mft 2%
s e e
and

sp(sp — )y ot 21

‘/yy 2SPF sp) / H 6 at dt
2Sp+1 tA n y2 —2

 2wHI(2) Sy Y / Cfl(@)e e dt

one can easily compute
1 _
ALV (, y)+TV($ ,Y) + Viy(z,y) = 0.

Finally, we prove V(z,0) = f(x). Indeed, we have P(p,y) — 0 as y \, 0 if
p # 0 by definition. Moreover, since the heat kernel p(¢, p) satisfies

[ pttdwe)dc =1
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we obtain

ysP o0 _y? dt
/ P(d(x,ﬁ),y)dfzw(s_p)/o </ p(t,d(x,f))df)e 4 e
n 2 n 2
_ Y /OO R
BERCO N T

This concludes that V' solves the extension problem (4.1.4). O

Let us now prove Theorem 4.1.3 by using the Poisson formula in Lemma 4.4.1.

Proof of Theorem 4.1.3. We have the kernel representation of (—Agn ) u(z)
from Theorem 4.1.2 and the Poisson kernel representation of Ej ,[®,(u(z) —

u(-))](z,y) from Lemma 4.4.1. Since ¢, 5 ,Cy = C3C4, it is enough to show

[ (o) = )t )] 0

as y \, 0, where

n—1

K(p) = ( % )2 (JifuTw,n;l(p) — At (W))

sinh p 2

when n is odd and

K(p)

[ sinh r ( —0, )3 (%/HTP%<T) — Hiser s (\/r2+y2)>dr

, /m/coshr —coshp \sinhr

when n is even.

We first split the integral as follows:

[ outo) = uie e, ) ae

<

/d( oo Dy (u(x) — u(g))K(d(x,g))dg‘ n

:J1+J2.

/d( £)>1 Oy (u(x) — u(€))K(d(z,£)) dg
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For Ji, we apply Lemma 4.6.1 to K to obtain

5 < / d(z, €)°|K (d(, €))] d,
d(x,£)<1

where a = 2p — 2 when p € (3%,2) and a = p when p € (1, 72| U [2,00).

For J;, we have
R / K (d(x,€))] de.
d(z,£)>1

By the dominated convergence theorem, we conclude J; + Jo — 0 as y N\
0. [

4.5 Pointwise convergence

This section is devoted to the proof of Theorem 4.1.4, which uses the point-
wise representation (4.1.3) of the fractional p-Laplacian on H"™. As mentioned

in Section 4.1, the limits of the integrals

00 R
cn7s7p/R Knsp(p) Sinhn_lpdp, Cn,s,p/ PP, s 0(P) Sinh"_lpdp, (4.5.1)
0

and R
cms,p/ pﬂﬂ’lCn,s,p sinh" ' pdp, B >0, (4.5.2)
0

as s — 17, play a key role in the proof of Theorem 4.1.4. Let us begin with

the following lemma.

Lemma 4.5.1. Let v > 1/2, a > 1/2, and m € NU{0}. Then, the function

-9, m
~ (sinhp) Hialp)

is positive, where J,, is the function given in (4.2.4).
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Proof. Using the formula (4.2.1) and change of variables, we have

_a e ] ‘X’L a2t dt
Ha(p) = Qu+1 /0 € 1 dt = 2(2a)” /0 t1/26 " rt1/2°

Thus, recalling the expression of the heat kernel (4.3.1) for odd dimensional

case, we obtain

—ap m o° ( 2_ 2)t dt
= mema —. 4.5.
(5s) A= [ s s

It is known |25, Lemma 2.3] that the heat kernel p(¢, p) is strictly decreasing
with respect to p. Since p(t,p) — 0 as p — oo, we deduce that p(t,p) is

positive. Therefore, the conclusion follows from (4.5.3). O

As a consequence of Lemma 4.5.1, we obtain the positivity of the kernel
Kn787p‘

Corollary 4.5.2. Let n € N, s € (0,1), and p > 1. The kernel IC,, 5, is

positive.

In the following series of lemmas, we compute limits of the integrals in
(4.5.1) and (4.5.2) with the help of Lemma 4.5.1.

Lemma 4.5.3. Letn > 2 and p > 1. For any R > 0,

lim cn,s,p/ Knsp(p) sinh" ™! pdp = 0.
s 1 R

Proof. Let us first consider the case n = 2m+1 with m > 1. Since ¢, ;,Cs <

C(1 — s) for some C' = C(n,p) > 0, by using Lemma 4.5.1 we have

0< cm&p/ Kn.sp(p)sinh™ ™ pdp
R (4.5.4)

S [Csintp () A )

R sinh p

Thus, it is enough to show that the right-hand side of (4.5.4) converges to
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zero as s — 17. We actually prove the following stronger statement:

> -0
. . . m—4a P
ngl}l%(l s) / sinh™™ p (—

. sinhp) Q%/H%,a(p) dp =0 for each a > 0.

(4.5.5)
We use the induction on m. When m = 1, using (4.2.3) and the fact that
K, is increasing with respect to v > 0, we have

o0 _8 o0 1+sp
: 1+a p _
/R sinh ™ p (sinhp) qu;p,a(p) dp = a/

(sinh® p)p™ 2" Ksia (ap) dp
R

<a / (sinh® p)p‘u%Ks%(ap) dp.
R

By (4.2.2), there exists M = M(p) > 1 such that

Ky(p) < \/fep for p > M.
p

The inequalities p~ 2 < max{p_%, p‘HTP} and sinh p < e, together with
(4.5.6), yield

(4.5.6)

/ (sinh® p)p~ =" Kz (ap) dp
R 2

M/a . B 1ip
< / (sinh” p) max {p
R

RN }Km(aﬂ)der \/E/ p' % dp.
2 a JM/a
Note that the first integral in the right-hand side of the inequality above is a

constant depending on a, p, and R only. For the second integral, we estimate

\/E/oo 'Oflfgdpz3 u
a Jmya

a\N% 2 |=m a\s
(17) " ==/ Zmax{ (57) ¢
spV a \M sp\ a M

Thus, we arrive at

lim(1 — s)/ sinh*™ p (—_8p) Hivs ,(p)dp
s 1 R 2

=0
sinh p ’

which proves (4.5.5) for m = 1.
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Assume now that (4.5.5) is true for m and prove it for m + 1. Using

integration by parts, we have

0o . m+1
lim(1 — 3)/ sinh™ e p (ﬁ) %”%va(ﬁ’) dp

51 R sinh p
— ll}ri(l —s)(m+a) /ROO sinh™ ™! pcosh p <si_nla1pp)m K o (p) dp.
Thus, by an inequality
cosh p < coth Rsinhp for p > R, (4.5.7)

Lemma 4.5.1, and the induction hypothesis, we conclude

; _ inhmtlta P .

ll}ri(l s)/R sinh p (sinhp) E%G%@(p) dp
-9,

< h R)lim(1 —
< (m + a)(coth R) SI}I%( 5)/R Sinh p

o0

sinh” p ( ) Jifu%,a(p) dp = 0.

This finishes the proof of the lemma in the odd dimensional case.
Let us next consider the even dimensional cases n = 2m with m > 1.

Similarly as in the odd dimensional case, since

0< / Kos.p(p) sinh" " pdp
R

§(1—s)/ sinh*" ! p ST ( ar) Ji/u%,zm%(r)drdpa

R , /coshr —coshp \sinhr

the desired result will follow once we prove the following:

> 2m—1 & sinh r —8 m
lim(1 — s sinh™z @ - Hivsp (r)drd
s/l( )/R P » +/coshr —coshp (sinhr> 3 o7 P

=0 foreacha>1/2.
(4.5.8)
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If m =1, then
o0 ! o0 sinhr O
inh2*t* / 1 Ltsp drd
/R St P » /coshr —coshp <smhr) s o(r) dr dp
< /M/a it [ ! r 2" Koy (ar) dr d
a sin s+p (ar) dr
~— Jr P » +/coshr — cosh p g P

o0 1 o 1 14
+a sinh2 ™ ro2 ar)drdp =: J; + Js.
/M/a P » +/coshr —coshp T( ) P ! 2

For Jy, we use (4.5.6) to obtain

 ginh2 T 1
Jy < \ma dr dp.
2= Mja P ;eap v/coshr — cosh p P
Since
1 1 o0 1
dr

dr = —
vcoshr — cosh p V2, \/ sinh 72 inh 752

1 /°° 1
< - dr
Vv2sinhp J,  Janh r—r

o LT [
_m/ﬂ b T = T(3/4) | sinbp

(4.5.9)

and sinh” p < e we have

M

r(1/4) e T(/4)mya [ ay\%
P =TT fM/J’ C =1 sp< )"

On the other hand, for J; we observe

M/a _1
J1 < a/ sinh%”p/ max{r” o 2}K3+p (ar) drdp.
R , coshr —coshp 2

Since the inner integral is continuous and integrable on [R,M/al, J; is

controlled by some constant C' = C(a,p, R) > 0. Therefore, we conclude
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limg (1 — s)(J1 + J2) = 0, which proves (4.5.8) for m = 1.
Finally, let us assume that (4.5.8) holds for m and prove it for m + 1. By

Lemma 4.3.1, we have

o 2m+1 o sinh r —9, \"™
lim(1 — inh™z *¢ : H1tsp drd
sl}%< ) /R o P , /coshr —coshp (sinhr) 1+T’“(T) ree

o m _a
= lim(1 —S)/ sinh 2 +1+a/)< — )
s 1 R sinh p

o sinh r —0,
» +/coshr —coshp

) Jf%’a(r) drdp.

sinh r

Using integration by parts, (4.5.7), and Lemma 4.5.1, we deduce

. &0 . 2m+1 4, o sinh r —87« mtl
h}ri(l —3) sinh™z ™p ' Ji’u%’a(r) drdp
5 o

R V/coshr — cosh p \ sinhr
° 2m—1 OO sinh r -0 "
< li 1-— inh ™ 2 ta . Htsp drd
- 08%( °) /R o P » coshr —coshp (Sinhr) HT’“(T) ree

for some C' = C(m, a, R). Therefore, the statement (4.5.8) for m + 1 follows
by the induction hypothesis. O]

Lemma 4.5.4. Letn > 2 andp > 1. For any R > 0,

1 I(5)

s Wé) (4.5.10)

hmcnsp/ PPICh s p(p) sinh™™ Yodp = —

The proof of Lemma 4.5.4 for the even dimensional case needs the follow-

ing lemma.

Lemma 4.5.5. Let a >0 and v > —1/2. Then,

o —v

r " K,1(ar) . (v +3)
, /coshr —coshp 2T (v +1)

p " Kyy1(ap)

as p— 0F.
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Proof. By the change of variables r = pt, we have

r
\/cosh r —cosh p p~ K,,H )
/ KV+1 (apt)
\/COSh (pt) — cosh p Ku11(ap)

pdt.

We define for each p € (0,1) a function f, by

t" Ky 1a(apt)
v/cosh(pt) — cosh p Kut1(ap)

fp(t) =

n (1,00). Note that we have

cosh(pt) 2— cosh p > l(tQ ),
p 2

Moreover, by [65, Equation (2.17)|, we have

KV—H(apt) <t—y—1
Ku+l(ap) N

Thus, f, is bounded from above by a function

t—21/—1

ft) = W,

which is integrable on (1,00). Indeed, by the change of variables t*? — 1 = T,

we obatin
r1/2 1 1 1
t)dt = — - Y -
/f \/_/ 1+Tl+“ V2 (THQ)

:\[L)<+oo
2T (v+1)

where B is Euler’s Beta Integral (see [91, Section 5.12]).
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For fixed t € (1,00), we have

h(pt) — cosh 1 K, t
cosh(p )2 coshp S (2 —1) and +1(apt) vl
P KVJrl(ap)

(V]

as p — 07. Hence, we obtain lim, g f,(t) = f(t). Therefore, the Lebesgue

dominated convergence theorem concludes the lemma. O
We are in a position to prove Lemma 4.5.4 by using Lemma 4.5.5.

Proof of Lemma 4.5.4. Let us first consider the odd dimensional case n =

2m + 1 with m > 1. One can easily check that (4.5.10) is equivalent to

-a,
sinh p

R m
lim(1 — s)/ PP sinh®™ p ( ) Hsp  (p)dp
s M 0 5

gm-1 79\ "2 fom+1
— £ p(bremT -
P (m> ( 2 >

by using lim, ~ (1 — s)|I'(=s)| = 1. Actually, we will prove the following

(4.5.11)

statement, which is slightly stronger than (4.5.11):

R —8 m
1‘ 1 - 1 h2m —p 14sp
sl;q( 8)/0 P’ sin p<smhp> Hiss o (p) dp

» (4.5.12)

+1
om—=1 /9 2 2 1
_ () r(M) for cach a > 1.

P a 2
Let € € (0,1), then there exists dp € (0,1) such that

sinh p
p

l—e< <l4e¢ (4.5.13)

for all p € (0,6p). Moreover, using the asymptotic behavior (4.2.2) of the
modified Bessel function, for each s € [0, 1] we find §; > 0 such that

3+sp

1 _34sp 1 -
5F 3+ sp (/_)) 2 SKM(P)S +€F 3+ sp (/_)> 2
2 2 2 ’ ’ ’ :

(4.5.14)
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for all p € (0,0,). Furthermore, since K, is uniformly continuous with respect
to v, we may assume that d, has been chosen continuously on s. Let us take
§ = 6o A mingepp1)6s A R, then § = 0(e,p, R) > 0, and (4.5.13) and (4.5.14)
hold for all p € (0,4).

We fix @ > 1 and denote by G pm.q(p) the integrand in the left-hand side
of (4.5.12). Then, |G pm.a(p)| is bounded by the function supg< <1 |G p.m.a(P)|;
which is independent of s and bounded on a compact interval [§/a, R]. Thus,
we have

R

lim(1 — s Gspmalp)dp =0,
8/1( ) 5/a Ps ,(p) p

and hence

R d/a
(1 =5) [ Gupmalp)dp = lim(1 =) [ Gupmalo)dp.

Let us now prove (4.5.12) by induction. When m = 1, we first use (4.2.3) to

have
14sp

Gspialp) =ap” 2 K3+Tsp(ap) sinh p.

If p < d/a, then p < ap < J since a > 1. Thus, we utilize (4.5.13) and (4.5.14)

to obtain

1+sp

(1 B 8)2 (g) 2 T (3 + Sp) pp(l—s)—l < Gs,p,l,a(ﬂ)

a 2

1+sp

() e ()
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This leads us to the inequalities
R
lin(1=3) [ Gupnale) o
d/a
:il/r(I}(l_S)/o Gs,p,l,a(p) dp
2\ 2" 3+ sp 8/a (1—s)
<1 _ 2 [ 4 1-s)—1
<ip-see?(2) 7o (2HT) [T e

- () ()

and

p+1

i) | Cpnalp)dp > (1— o () r(%57).

p \a 2

Therefore, the statement (4.5.12) for m = 1 follows by taking ¢ — 0.

Assume now that (4.5.12) holds for m > 1. Then, a similar argument
shows

R
il/r%(l - S)/O Gspm+1alp) dp
d/a

o _ C 1 2me2 i ‘

— y;ri(l s) i pP sinh p (sinhp) %H%p’a(p) dp

< lim(1 — s)(1 + ¢)*™* /5/a PP (=9, —0, m%Jrs (p)dp
s 0 r sinh p T ’

where nonnegativity of the integrands follows from Lemma 4.5.1. Using the
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integration by parts, (4.5.13), and the induction hypothesis, we arrive at

R
lim(1 — s)/ Gspmi1.a(p)dp
0

s M
d/a -9 m
< 2m+1 : o +2m 4 Ltep
<P am Dl o) [ () A ()0
(1+)2mh | o g \"
—_— 2 1) lim(1 — h*" p | —= | Hrisp d
pt+1
(1 +¢g)2m+t 2m=t (2N 7T _ [(p+2m+1
= = 2 1 z | It
(1—¢)?m (p+2m +1) p \a 2
(L4 e)mtigm (9 %IF p+2m+3
T T1-92 p \a 2 '

Similarly, we obtain

R 2m~+1 om 2fl
) 1—c¢ 2 2\ 2 +2m+ 3
lim(1 — s) / Crpmiralp)dp > L2702 (—) r (19—) ,
s 0

(1+¢)> p \a 2

from which (4.5.12) for m+1 follows by taking ¢ — 0. The statement (4.5.12)
has been proved for all m € N, finishing the proof of (4.5.10) for the odd
dimensional case.

Let us next consider the even dimensional case n = 2m with m > 1. In

this case, (4.5.10) is equivalent to

s sinh r

R 00 inh .
lim(1 — s) / PP sinh®" 1 p ST ( O
0

» coshr —coshp

B T 2ml 2 %F p+2m
V2 p \m—1/2 2 '

) Jf#%(r) drdp
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As in the odd dimensional case, we will prove a stronger statement:

B -1, sinhr —a, \"
g}q (1= / p'sinh » Vcoshr —coshp <sinhr) %/H%’“Oq) drdp

Tom=l (ON"T  (p4om
_ ) for each a > 1/2.
35 () () ez

Recall that we have taken d so that (4.5.13) and (4.5.14) hold for all p € (0, 6).
Let us fix @ > 1/2. By Lemma 4.5.5, for each s € [0,1] we find d, > 0 such
that

1+sp
WP(M) 14sp o0 7"7 2 K3+sp<ar)
l—e)/==52—2p 2 Ksw(ap) < : dr
( )\/gl‘(¥)p E (ap) < , /coshr —coshp

7_(_1—\(2—{-5]7) 1+sp
< (1—i—€)\/j 25 p~ 2 Ksisp(ap)
2T (22) 2

(4.5.16)

(4.5.15)

for all p € (0,4,). Moreover, we may assume that 0, has been chosen contin-
wously on s. Let 6 = & A mingeo 1) ds, then § = d(e,p, R,a) > 0 and (4.5.16)
holds for all p € (0,9).

We denote by Hj,m.q(p) the integrand in the left-hand side of (4.5.15).

Then, the same argument as in the odd dimensional case shows

1)

2a
ll/r%l_s/ H pmalp }91}%(1—8) ; H pma(p) dp.

We argue by induction again to prove (4.5.15). If m = 1, then

1 1+sp

Hs,p,lﬂ(ﬂ) = ap’sinh p Jcoshr — cosh pT_TKSJr% (CL?“) dr.

Since a > 1/2, we have p < d and ap < § for p < %. Thus, by (4.5.13),
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(4.5.16), and (4.5.14), we obtain

(1- 5)3\@ (2) T (2 28p> o=t

S Hs,p,l,a(p)

Therefore, we have

pt1
oo 2) R () o
s 2 &R p+3
1 - r
(+6)\/gp<a> (2)

from which we deduce (4.5.15) for m = 1 by taking ¢ — 0.

Suppose that (4.5.15) is true for m > 1. Then, by (4.5.13), Lemma 4.3.1,
and Lemma 4.5.1, we have

il/f%l—s / Hspm+1a dp

= lim(1 — s sinh?™ ™!
lig(1 ) / o p
o0 sinhr ( -0,
» +/coshr —coshp
.
<tin(i - )1+ [T n-a,)
0

s,/
o sinh r -0,
» /coshr —coshp

m+1
sinh 7“) %/H%’a(r) drdp

> Q%/H%’a(r) drdp.

sinh r

Using the integration by parts, (4.5.13), and the induction hypothesis, we
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arrive at

E/I‘I}l_s / Hspm+1a dp

= (14¢)*"(p+2m)

)
2a o inhr -0, \"
x lim (1 — +2m=1 i ") Hiw (r)drd
sl}q( 8>/0 4 , /coshr —coshp \sinhr E alr)drdp

)
(1+¢e)*™ _ 2a
S (1 —g)2m-1 (p+2m) gg}u — 5) . Hy pm.a(p)dp

(e fm2m (2 pTHF p+2m+2
C(1—e)2m1\ 2 p \a 2 '

The inequality

pt1

(1—e)?™ [r2m (22 _(p+2m+2
lim(1— H dp> =\ 5\ -) T{(—=—
Sl}(ri S / spm-‘rla( ) p— (1+6)2m—1 2 P a 2

can be obtained in the same way. Thus, we conclude that (4.5.15) for m + 1
holds by taking ¢ — 0. This finishes the proof for the even dimensional

case. OJ

Lemma 4.5.6. Letn > 2 and p > 1. For any R > 0 and § > 0,

hmcnsp/ e /Cnsp( )sinh" ! pdp = 0. (4.5.17)

Proof. We proceed as in the previous lemma to prove (4.5.17). When n =
2m + 1 with m > 1, we show

-0,
sinh p

R
lim PP sinh®™ p (

> Hsp (p)dp =0 for each a >1
s/'1 Jg P

by induction. Indeed, for ¢ € (0,1) let 6 > 0 be the constant given in the
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proof of Lemma 4.5.4. Then, by using (4.5.13) and (4.5.14) we prove

R
lim(1 — s)/ PGy pralp)dp
0

s M
1+sp

2 d/a
< 1121(1 —5)(1+¢)? (2) r (3 —;sp> / PU=9+6-1 4,
’ 0

a
+sp

L 2 5 3+ sp 1 5 P(1*S)+ﬁ_
“tma-00+2* (2) 0 (557) s (3) o

for the case m = 1, where G, is the function defined in the proof of

Lemma 4.5.4. Moreover, one can follow the steps in the proof of Lemma 4.5.4

to obtain
(1— 8)2m+1 . R
AT eem @HA+2m+ 1)l —s) /0 PGy pmalp)dp
R
< h/r(ri(l - 8)/ pﬁGs,p,m—&-l,a(p) d,O
s 0
1 + € 2m—+1 . R
= ((1 — i)?m (p+B+2m+1)lim(1 — 8)/0 PG pma(p) dp,

which proves the induction step.

The even dimensional case n = 2m with m > 1 can also be verified by

proving

lim (1 ) /R P+ sinh 2! > sinh r -0, \" o () drd
ST St 1+sp \T) AT
/71 0 P , /coshr —coshp \sinhr P a P

=0

for each @ > 1/2. This can be proved by the induction as in the previous

lemma, so we omit the proof. O

Let us provide the proof of Theorem 4.1.4 by using the pointwise repre-
sentation (4.1.3) and Taylor’s theorem, and gathering pieces of limits in the

preceding lemmas.

Proof of Theorem 4.1.4. Let u € CZ(H") and let + € H" be such that
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Vu(x) # 0. Let R > 0, then by Lemma 4.5.3 we first have

o [ Byfule) ~ u(€) Koy, €))
d(x,€)>R
5 Cn,s,p/ ’Cn,S,p(p) Sinhn_l pdp — 0
R

as s — 17. Thus, by the pointwise representation (4.1.3) of the fractional

p-Laplacian, we obtain

lim(—AHn);u(x) = lim cnvsva.V./ D, (u(x) — u(&))Kn s p(d(z, §)) dE.
8/1 S/‘l d(I,£)<R

(4.5.18)
Let v = exp, ' ¢ be a tangent vector in T,H" and denote by T,£ the point
exp,(—v) € H". Since K, 5,(d(z,§)) = Kpsp(d(z, T2E)), we write

/d( <R (I)p(u(x) - u(g))’Cn,S,p(d(% f)) d¢

= % / lu(x) — u(€) P2 (2u(z) — u(€) — w(Toé))Kn.sp(d(z, €)) dE
d(z,§)<R

1 =2 ulz) — u(E) P2
+§/d(z,§)<R(‘U($) 7l ) =)

(@) = u(Te€)) Ko s p(d(2, §)) A€
= J1 + JQ.

By Taylor’s theorem, we have
u(@) = u(€) = —(Vu(@),v) + O([vf), () —u(T:€) = (Vu(w),v) + O(|v]),

and

2u(r) — u(§) — (7€) = —(D*u(z)v,v) + O([v]).

If we write w = v/|v], then

[u(z) — u(@)I"~* = [olP*[(Vu(z),w) P~ + O(v ).
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Thus, we obtain

[u(z) = w(©P*(2u(z) — u(§) — u(T:5))
—[o["[{Vu(z), w) " (D*u(z)w, w) + O(jv[*).

Therefore, we deduce

:“/ PV u(), )72 (D)0, w) K (p) sinh™" p e dp
Sn—1

2/d( <R Ofd(x, é)pﬂ)lcnﬁs,p(d(x,f))dﬁ.
(4.5.19)

For J,, since
[u(To€) = (@)~ = fu(z) — u(8)[?
= (p = 2o (Vu(z), w)(Vu(z), w) "~ D?u(z)w, w) + O([v]?),

we have

([u(T2€) — u(@)["~* = Ju(z) — u(€)I"™?) (ulz) — u(T:E))
= —(p = P UVu(z),w) " (D*u(@)w, w) + O(jv["*).

Thus, we obtain

- R
J= PR [ PUTula) )P D (), o ) sinh” pdod
0 Sn—1

1
= O(d(z, )P, p(d(z
£ 3Ol 7 (i ©)

(4.5.20)

Combining (4.5.18), (4.5.19), and (4.5.20), and using Lemma 4.5.4 and Lemma 4.5.6,

we arrive at

. p—1 1 T(HY)
1 —A ns = —
S (A pule) = =T p

/Snl (Vu(x),w) P *(D*u(r)w, w) dw.
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The argument as in the proof of [10, Theorem 2.8| shows

[ Tua) )P DR, do = 2y e,

when Vu(z) # 0, where

. D=L
’yp:/ |wn]p’2wfdw:7TTl % ) (4.5.21)
Sn—1

rE)

See [64, Lemma 2.1] for the computation of (4.5.21). This finishes the proof.
[

4.6 Appendix

4.6.1 Auxiliary result

In this section, we recall an auxiliary result from [39] that helps proving
Theorem 4.1.2 in Section 4.3.

Lemma 4.6.1. Let p > 1,7 >0, u € C}(H"), and v € H". If p € (1, 5%],
assume Vu(z) # 0 additionally. If K : H* — R is rotationally symmetric
with respect to x, that is, K(§) = K(d(x,§)) for all £ € H", then

‘P.V./ @, (u(z) —u(f))K(d(ﬂc,f))dS‘ < C/ d(x,&)*| K (d(x,£))| dg
d(z,&)<r (

d(z,&)<r

for some constant C = C(n,p, ||ul|c2@n)) > 0, where o = 2p — 2 when

p € (5%,2) and o = p otherwise.

The cases p € (1,5%], p € (5%,2), and p € [2,00) are proved in [39,

Lemma A.1, A2, and A3|, respectively, for the case of Euclidean spaces.
We omit the proof of Lemma 4.6.1 because the same proofs work in our

framework.
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