creative
comimons

C O M O N S
& X EAlI-HI el Xl 2.0 Gigel=
Ol OtcHe =2 E 2= FR0l 86tH AFSA
o Ol MHE=E= SN, HE, 8E, A, SH & &5 = AsLIC

XS Mok ELICH

MNETEAl Fots BHEHNE HEAIGHHOF SLICH

Higel. M5t= 0 &

o Fot=, 0l MEZ2 THOIZE0ILE B2 H, 0l HAS0 B2 0|8
£ 2ok LIEFLH O OF 8 LICEH
o HEZXNZREH EX2 oItE O 0lelet xAdE=2 HEX EsLIT

AEAH OHE oISt Aele 212 WS0ll 26t g&
71 2f(Legal Code)E OloiotI| &H

olx2 0 Ed=t

Disclaimer =1

ction

Colle


http://creativecommons.org/licenses/by-nc-nd/2.0/kr/legalcode
http://creativecommons.org/licenses/by-nc-nd/2.0/kr/

JEERRUERS

Hall Algebras of Fukaya Categories
and Legendrian Skein Algebras

(FEFtoE e & sl 2Tt A9 U

2023'd 8¢

Aetista ot
e
Axd



Hall Algebras of Fukaya Categories

and Legendrian Skein Algebras
(Fotok WFe] & tidst 24Tt 2A B

Aznys = 2 ¥

o] EEE oA FYEROR AZH
20233 4¥

ML sk
e
Axd

AADY A FAEE L AFY

2023'd 64
94 A A F (S
299 % A & (9D




Abstract

Hall Algebras of Fukaya Categories
and Legendrian Skein Algebras

Seoyeon Kim

Department of Mathematical Sciences
The Graduate School
Seoul National University

Given a surface S, it can be considered as a symplectic manifold, so we can think
of the Fukaya category of the surface and its Hall algebra. On the other hand,
S x R has a natural contact structure so that we can think of its Legendrian
skein algebra generated by Legendrian links. In this thesis, we examine how to
define those algebras show that there is a Q-algebra homomorphism between

those two algebras.
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1 A, -categories

1.1 Definitions

There are various convention for defining A,,-categories. We follow the one

from [Hai21]

Definition 1.1 An A, -category C over a field k consists of the followings:
(a) aset Ob(C) of objects,
(b) a Z-graded k-vector space Hom(X,Y') for each pair of objects X,Y €
Ob(C),

(c) structure maps
my - HOm(Xo,Xl) (SRR Hom(Xk_l, Xk) — HOII](Xo,Xk)
of degree 2 — k, for each k > 1, satisfying A..-equations

Z Z(—l)Tmr(xl,w- s (i1, Tigs)y oK) =0 (1.1)

r+s=k+1 1

where T = deg’ x1 + - - + deg’ z; and deg’ z; = degx; + 1.

The first three A, equations are

mi(mi(z)) =0 (1.2)
ma(ma(x),y) + (—1)% “my(, mi(y)) + ma(ma(z,y)) = 0 (1.3)
ma(ma(x,y), 2) + (=1)*F “ma(x, ma(y, 2)) + ma(mi (), y, 2)+ (1.4)

1 ¥ _k'.':_]-]i =]
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(_1)deg,$m3(x7ml(y)> Z) + (_1)deg’$+deg'ym3(m’y’ml(z)) + ml(mi’)(l‘a Y, Z)) =0

The equation (1.2) implies that m; is a differential operator. The equation
(1.3) corresponds to the Leibniz rule for mi-differential and ma-product. If
my = 0 for k > 3, then C is equivalent to a differential graded category by the
following definition:

d(x) := (—l)degxml(x)

Ty - xp = (—1)d8 2 deg’ 2mo(x1, z2)

Then C with the differential d and the product - satisfies the definition of a
differential graded category.

For a given A..-category C, we can associate its cohomological category
H(C). It has the same objects as C, and morphism spaces are given by the
cohomological group H(Hom(X,Y '), m1). One can check that the associativity
rule for mophisms holds for H(C) up to sign, using the equation (1.4).

Note that an A.-category is not a category, since there is no associativity
rule for morphisms. However, the equation (1.4) shows that the associativity
holds up to homotopy. Also, unlike a category, there need not be the unit

morphism in an A.-category. This suggests the following definition.

Definition 1.2 Let C be an A -category.
(a) C is called strictly unital if there exists 1x € Hom(X, X) for each object

X € Ob(C) satistying the following equations:

ma(lx,x) = (—1)degxm2(:v, lx) == (1.5)

mk+1($1,‘-'7lx,‘-'7$k):0f0rk7é2 (16)



(b) Cis called cohomologically unital if H(C) is unital, i.e. there is the identity

morphism for every object X of H(C) so that H(C) is a usual category.
There is a notion of functors between A..-categories like usual categories.

Definition 1.3 Let C,D be Ay -categories. An A -functor from C to D

consists of a map F : Ob(C) — Ob(D) and multilinear maps
F" 1 Home(Xo, X1) ® - - - ® Home (X, -1, X)) — Homp (F(Xo), F(X,))

satisfying the following A..-equation:

2 melF e ) P ) (L)

T 81,,8

k— 1
_Z -7: —it la"'axiamj(xi+17"'7‘Ti+j)a"'7xk)
where T = deg’ 1 + -+ + deg’ z;_1.

Let F:C —- D and G: D — £ be As-functors. Then we can define the

composition Go F : C — &£ as follows.

(GoF)e(zr, -+, an) (1.8)
—Z Z g'r‘ fSl xla"' 7$51)7"' 7]:8T(xkfsr+17'” ,.’Ek))

Also, we can define the identity functor F :C — C as F(X) = X, F! = Id on

Hom(X, X), and F* =0 for k > 2.

1.2 Curved A, -categories and bounding cochains

In some A,-categories naturally arising in symplectic geometry, the A.o-

equations do not hold. In particular, m1 is not a differential, so we cannot define



m1-cohomology. This occurs because of the existence of the curvature terms.

We generalize the definition of A,.-categories to describe this phenomenon.

Definition 1.4 Given a vector space V, a decreasing R-filtration on V is a
collection of subspaces V=g C V for 8 € R which satisfies the followings:

(a) Vsq D Vap for a < 8,

(b) Vo =Nacp Ve,

(c) the set of B € R with V>5/Vs5 is not empty, where Vs := g Vaa is

discrete in R,

(d) ﬂg Vap =10

(&) UsVap =V

(f) lim V/Vspg=V
An R-filtered vector space is a vector space V with a decreasing R-filtration.

The filtration induces a topology on V in a natural way.

Definition 1.5 A curved Ay -category C over a field k consists of the follow-
ings:
(a) a set Ob(C) of objects,
(b) a Z-graded and R-filtered k-vector space Hom(X,Y') for each pair of
objects X, Y € Ob(C),

(c) structure maps
my : Hom(Xp, X7) ® - -+ ® Hom(Xy_1, X;) — Hom(Xo, Xi)
of degree 2 — k, for each k > 0, satisfying A..-equations
S D me(@r, (@ Tie1), ) =00 (1.9)
r+s=k+1 1

where T =degx; + -+ - +degzi—1 + (1 — 1).

4 ;4 : CI:I : ]_-_]
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In particular, mg is a linear map defined on the base field £ with the target
Hom?(X, X). By abuse of notation, we denote the image of 1 under this linear
map by mg or mo(X).

It is also required that mg € Hom?(X, X)>o and
T; € HOIn(Xi_l, Xi)Z)\i = mk(xl, < ,xk) c HOIn(Xo, Xk)Z)\1+"~+)\k'
The first two equations are

mi(mo) =0 (1.10)

my(ma(z)) + ma(mo, z) + (—1)98 ¥ my (2, mg) = 0 (1.11)
Thus, unless mg = 0, m; is not a differential.

Definition 1.6 An element b € Hom!' (X, X)+ is a bounding cochain for an

object X if b satisfies the following equation:

imk(b,..- b)) =0 (1.12)
k=0

The equation (1.10) is called the Maurer-Cartan equation. A bounding
cochain is called also a Maurer-Cartan element. We denote the set of bounding
cochains for an object X by MC(X).

Using a bounding cochain, we can deform the A..-operations. Suppose there

exist bounding cochains for every object X in a given curved A..-category C.

Then we define new structure maps m;, as follows:

Thk(ﬂfl,"' ,CCk) = Zmn(b07"' ab07$1)b17"' 7bk‘—1)xk7bk7'” )bk) (113)

The right-hand side of the equation (1.11) is an infinite sum, but it converges

with respect to the topology given by the filtration. Moreover, these new



operations satisfy the usual A..-equations. In particular, mg vanishes and

m? = 0. This can be checked by direct calculation as follows:
o0
o =Y my(b,--+ ,b) =0
k=0

mi(z) =Y mp(bo, - ,bo,ma(x), by, -+ ,by)
szr(bo,"' b, mis(bo, - bo, b, -+ 1), by, -+, by)
:—Zmr(boy'” ms(bo, -+, bo), -+ 5 bo, @, by, -+ 1)
—Zmr(bo,“' o, by, mg(by, e by), e by)

=0

The third equality of the second equation comes from A., equation, and
the last equality holds because by and b; are bounding cochains.
Given a curved As-category C, we define a new Ao category C. The object of
C is a pair (X,b) where X € Ob(C) and b € MC(X). Also, morphism spaces
are given by

Hom((Xo, bo), (X1,b1)) := Home (X0, X1).

The structure maps are m;’s we defined above.

1.3 Twisted complexes

Since an Aso-category is not an abelian category(as mentioned before, it is not
even a category unless m>3 = 0), there is not a notion of exactness. However,

by enlarging it appropriately, we can think of a notion of exact triangles.

Definition 1.7 Let C be an A-category. A twisted complex is a pair (X, J)

consisting of



n

(a) A formal sum X = @ X;[k;] of shifted objects (where X; € Ob(C) and
i=1
k; € Z)
(b) A strictly upper triangular matrix 0 = (0;;)1<i j<n Where d;; is an ele-

ment of Hom® ~%T1(X;[k;], X;[k;]). Also, it satisfies the Maurer-Cartan

equation

> mg(s,---,6) =0 (1.14)

k>1

or equivalently, for all 1 <7 < j <n,
Z Z mk(éioil, te ,(5%711‘]9) =0 (1.15)
k>1i=ig<ii <--<ip=j

Note that the left-hand side of the equation (1.12) is a finite sum since

d is a strictly upper triangular matrix.

Given an A-category C, we can define a new A-category Tw(C) which

is ”triangulated”. The objects are twisted complexes, and
li—k;+d
Homf e (©Xi[ki),0), (€Y;[Lj], 0)) = @4 Homd ™" (X, Y)).

The structure map is defined similarly as the equation (1.13), i.e. it is defined by
inserting §’s everywhere. Then A..-equation holds due to the fact that C is an
Aso-category and the equation (1.14). Tw(C) contains C as a full subcategory,
since an object X of C can be considered as a twisted complex (X, 0). Also, for
any objects X,Y of C and an m;-closed morphism f € Hom?(X,Y), we can

define a mapping cone Cone(f) as
Cone(f) = (X[] @Y, (§{))

. Then the sequence

X i>Y—>Cone(f) — X[1]

' A &) 8



or any other sequence isomorphic to the sequence above can be considered as
an exact triangle. Moreover, given objects X and Y, we can say that Z is an

extension of X by Y if the following sequence is an exact triangle.
Y7 X ->Y][l]

Remark 1.1 In terms of Fukaya categories, taking cone of two objects cor-
responds to Lagrangian surgery of two Lagrangian submanifolds. See [Aurl4]

for further explanations.

1.4 Weighted counting measures

Definition 1.8 Let C be an Ay,-category over a finite field k. Then C is
called locally left-finite if Ext!(X,Y) is a finite set for every i € Z for every pair
of objects X,Y of C and Ext*(X,Y) = 0 for i less than some integer depending

on X,Y.

Definition 1.9 Let C be a locally left-finite A.-category over a finite field
k. The weighted counting measure pc is a measure assigning to an object X
of C a rational number
)
pe(X) = |Aut(X)| 7! T 1Bxt = (x, x)| D"
k=1

where Aut(X) C Ext(X, X) is the group of automorphisms of X.

Consider locally left-finite A.-categories C and D over a finite field F, and

a Aso-functor F : C — D. Then F induces a linear map

Fi : QIso(C) — QIso(D), Fiu([X]) = [F(X)]



where QIso(C) is the Q-vector space generated by the isomorphism classes of
objects of C. If F has the property that for any [Y] € Iso(D) the preimage

(F+)~L([Y]) is finite, then we can define a linear map

F': QIso(D) — Qlso(C)

He(X) 1y

F(v) = i

[(XJe(F)~H (YD)

Now we consider the functor 7 : C — %, where * is the final A.-category
with a single object x and zero morphism spaces. If we assume that Iso(C) is

finite, then

T = D pe(X)X]

[X]€eIso(C)

which can be understood as a ’dual’ of uc. We write 7' ([x]) = pc as an abuse
of notation.
Consider the case 7 = G o F where F : C =+ D and G : D — * are

As-functors. Then we can easily check the following equation:
pe =T () = (G o F)([¥) = F'G([¥) = F'(up)

This equation will be used in chapter 4.

9 ;4 ! CI:I : ]_-_]
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2 Hall Algebras

2.1 Hall algebras of abelian categories

Definition 2.1 Let A be a category. Then A is called locally finite if Hom(A, B)

is a finite set for every pair of objects A, B of A

Definition 2.2 Let A be a locally finite k-linear abelian category where k
is a finite field. The Hall algebra Hall(A) of A is a Q-vector space generated

by isomorphism classes of objects in A equipped with multiplication

< 1
A=y EES e
BEExt!(A4,0) ’

where Ext!(A,C)p is a subset of Ext!(A,C) corresponding to short exact

sequences of the form 0 - C - B — A — 0.

Theorem 2.1 The Hall algebra Hall(A) is an associative algebra.
Proof. See section 2.3 of [Bril3] O

Example 2.1 Let Vecti be the category of k-vector spaces where k is a
finite field with ¢ elements. Denote an isomorphism class of n-dimensional
k-vector spaces by [n]. Then Hall(Vecty) is isomorphic to the algebra Q|x]
of polynomials in one variable via the isomorphism [n] — WZ' where [n], =

"t +¢" 2+ +q+1and [n],! = [1]4[2], - - - [n]g- The explicit multiplication

10 :l_-E _k:_'l'



in the Hall algebra is given as follows:

) = Pt
=

. (See example 4.3 from [Kirl6] for further explanation of this example.)

2.2 Hall algebras of A,-categories

The definition of Hall algebras should be modified in case of A..-categories,

since the notion of exact sequences is replaced by exact triangles.

Definition 2.3 Let C be a locally left-finite k-linear A..-category where k
is a finite field. Also, assume that C is closed under extensions and has a
zero object. The Hall algebra Hall(C) of C is a Q-vector space generated by
isomorphism classes of objects in C equipped with multiplication

(X]-[2] = ﬁ|Ext—i(z,X)y<—1>”1 > [cone(Z[—1]i>X)
1=0 fEEXt (Z,X)

Theorem 2.2 The Hall algebra Hall(C) is an associative algebra.

Proof. We may assume that Hom®(X,Y) is a finite set for every i € Z and
vanishes for i < 0 by considering H(C) instead of C. It is obvious from the

definition of Hall algebra that Hall(H(C)) is the same as Hall(C)). Then we

have
ad i _q1)itl /
(X]- 121 = | [ | Hom™(Z, x)|-V > [Cone(Z[—l]—>X)
i=0 f€Hom! (Z,X)
m1(f)=0

For Ay, Ay, A3 € Ob(C), let X123 be a set of twisted complexes (41D AP A3, § =

(ai;). Note that a;; =0 € Homl(Ai, Aj) except when (¢,7) = (1,2),(2,3),(1,3).

11 :l_= _'-\.I:_'l' |



Also, the Maurer-Cartan equation gives mj(a12) = 0,m1(az3) = 0 and mi(ai3)+
ma(ai2,a23) = 0. Since C is closed under extensions, for example, a twisted

complex Ay 22 A; can be regarded as an object in C. Now we have
([A1] - [As]) - [A3] =

= (HHom i(Ag, Ay) | >) ST (A Ay [4y)

1=0 a12€Hom (Az,A1)
ml(a12):0
= | TT 1 Hom™ (A2, A1) V™ | [ T] | Hom™(As, Az & Ap)|["D™
=0 =0
S S

mi(a12)=0m1(a13,a23)=0

T I I1Hom™(4;,4) 0" | 3 (€]

k=04,5€{1,2,3} CeXia3
1<J

Also,

[A1] - ([A2] - [A5]) =

= (HHom i(As, A)| >) ST A1 [(4s 2 4y))

i=0 azs€Hom! (A3, Aj)
m1 (a23)=0
— (HHom I(As, Ag)| ZH) (HHom “(Ag ® Az, Ap)|C 1z+1>
i=0 1=0

ST [ty e )

mi1(az3)=0m1(a12,a13)=0

T II (Hom™(4;, 400" [ 3 (]

k=01,5€{1,2,3} CeXia3
1<j

Thus, the associativity holds. O

12 1] O



Example 2.2 Let C = Perf(F,) be the category of finite-dimensional com-

plexes of vector spaces over a finite field Fy. Then Hall(C) is generated by

xy, = [F[—k]] with relations
Th1Thp — @ TpTper = q — 1, kelZ (2.1)
ThrmTp = q(_l)mazkxk+m, keZ, m>2. (2.2)

These relations can be obtained from the following computation:

We have

0 otherwise

Note that every morphism in Hom!(F,[—k],F,[—k — 1]) is an isomorphism
except the zero morphism. Thus, Cone(F[—k]|[—1] ERN F[—k — 1]) is zero for

nonzero f. If f =0, the cone is the direct sum F[—k — 1] @ F[—k]. Then we get
[Fo[—k — 1] - [Fg[—k]] = [Fg[—k — 1] @ [Fy[-k]] + (¢ — D[0]. (2.3)

Also we have

0  otherwise

Since Hom! (F; [~k — 1], F,[—k] = 0), the cone is the direct sum. So we get

[Fy[—K]] - [Fg[~k — 1]] = [ Hom™" (Fg[~k — 1], Fg[~k])| - [Fy[~k — 1] & Fy[~k]]

= qFg[—k — 1] © Fy[—K]] (2.4)

13 #;rqu _CI:I_ ]_..]5 ral
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Then the relation (2.1) is obtained by the equation (2.3) and (2.4).

Similarly, for m > 2, we can check that

[Fy[—k —m]] - [Fy[=k]] = [Fg[—k — m] © Fy[K]] (2.5)

[Fy[—K]] - [Fyl—k —m]] = ¢V [Fy[~k — m] & Fy[~k]). (2.6)

Then the relation (2.2) is obtained by the equation (2.5) and (2.6).

: s )8t



3 Fukaya Categories of Surfaces

3.1 Definitions

There are various versions of the Fukaya category. Basically, the Fukaya cateogry
is an A,-category defined for a given symplectic manifold. Its objects are
Lagrangian submanifolds (possibly with some additional structures) and mor-
phisms are intersections between two Lagrangian submanifolds. The A.-
operations correspond to counting pseudoholomorphic curves with boundary
condition given by Lagrangian submanifolds. However, it is not easy to define it
precisely, because there are some issues concerning transversality and regularity.

For example, we want the intersecting set of two Lagrangian submanifolds
to be finite, but if two Lagrangian submanifolds are not meeting transversally,
there might be infinitely many intersection points. This issue becomes critical
when we consider the morphism from some Lagrangian submanifold to itself.
One can use particulary chosen Lagrangian submanifolds so that any pair of
Lagrangian submanifolds meet transversally. In this case, we cannot consider
morphism spaces from some object to itself. Another solution is to perturb
Lagrangian submanifolds using Hamiltonian functions so that they meet each
other transversally after perturbation. Then we can think of morphism spaces
for any two objects, but we always have to consider the perturbation data and

their compatibility.

15 :l_=-| '-\.I:_'l'



Also, we need to be able to 'count’ pseudoholomophic curves with some
boundary conditions to define A,.-operations, which implies that the set of
certain pseudoholomophic curves are finite. In most cases, we should resolve
the regularity issue to achieve this. Pseudoholomorphic curves are given by
the solutions of some partial differential equation, and we need to check sev-
eral conditions to guarantee that the solution set is 'nice’. If the linearized
differnential operator derived form the partial differential equation satisfies the
regularity condition, then we can count how many solutions there exist and
use this number to define the A.-operations.

We will use the simplified version of the Fukaya category so that we can
avoid regularity issue. We will only consider 2-dimensional symplectic manifolds
i.e. any orientable surfaces(possibly with boundary components). Then the la-
grangian submaniolds are just curves. In this case, counting pseudoholomophic
curves is just counting polygons whose edges are Lagrangians and vertices are
intersection points of two lagrangians. Also, we will assume the perturbation
data is given appropriately and we will not delve into the transversallity issue
deeply(See [Sei08] for details).

Let S be a compact surface with boundary. Instead of dealing with curves

on S directly, we will consider S x R and a certain class of curves in S x R.

3.1.1 Contact manifolds and Legendrian submanifolds

Definition 3.1 Let M be a smooth manifold. A contact form on M is a
1-form « such that da is nondegenerate on ker . M is called contact manifold

if such an « is given.

The nondegeneracy of da on ker o implies that ker « is even-dimensional,

and thus every contact manifold must be odd-dimensional.

16 :l_=-| '-\.:_'l'



Example 3.1 Consider R?"*! with coordinates {x1,---,Zn, Y1, " ,Yn, 2}

It becomes a contact manifold with a contact form o = ), x;dy; + dz. The
nondegeneracy of a comes from the fact that a A (da)” = dxy A -+ Adxy A

dyi A -+ Ndyp Ndz # 0.

Example 3.2 Let M be a symplectic manifold with a symplectic form w = df.

Then M x R becomes a contact manifold with a contact form a = p*6 + dz
where z is a coordinate on R and p: M x R — M is a natural projection. The

nondegeneracy of da comes from the nondegeneracy of w.

The second example shows that symplectic manifolds correspond to some
contact manifolds in some sense. One might expect that there is an analogue

of lagrangian submanifolds in contact geometry, which is true.

Proposition 3.1 Let M be a (2n + 1)-dimensional contact manifold with
a contact form «. If L is a submanifold of M such that TL C kera, then

dimL <n.

Proof. Let ¢+ : L — M be an inclusion. Then t*« = 0. Hence ¢, TL is an

isotropic subspace of the symplectic vector space (ker ¢, dar), which implies

dim L < n. ]

Definition 3.2 Let M be a (2n + 1)-dimensional contact manifold with a
contact form «. A submanifold L is called an isotropic submanifold if TL C

ker . If dim L = n, then L is called a legendrian submanifold.

Example 3.3 Let S be a surface with a symplectic form w = dff and L C M
be a Lagrangian submanifold, which is a curve. Then there is a Legendrian

curve L' C M x R such that its projection to M is L.

17 :l_=-| '-\.I:_'l'



3.1.2 Grading

Let S be a compact surface with boundary. We want the morphism spaces of
Fukaya category of S to be Z-graded. This Z-grading comes from a certain

structure on S.

Definition 3.3 A grading structure on S is a section 7 of the projectivized

tangent bundle P(T'S).

Suppose that a grading structure n is given. Consider a universal cover
p: P(TS) — P(TS). We may assume that the restriction p : p~1(P(T'S);) —
P(T'S), is a universal cover for all z € S, since 7 defines a basepoint of each

fiber of P(T'S).

Definition 3.4 A graded curve is an immersed curve v : I — S with a

P

section ¥ of v*P(T'S) such that (¢) is a lift of the tangent space T'S, ).

Note that an immersed Legendrian curve in S x R projects to an immersed

curve in S, so we can think of a graded curve in S x R.

3.1.3 Definition: objects and morphisms

Consider a tuple (S, N, 6,7, k) where S is a compact surface with boundary,
N C 0S is a finite set of marked points, 6 is a Liouville 1-form on S (i.e. df is a
symplectic form on S), 1 is a grading structure on S, and k is a coefficient field.
We will define two different Fukaya catrgories. First, we denote the partially
wrapped Fukaya category by F (S, N,0,n,k). An object of F(S,N,0,n,k) is
a compact graded Legendrian curve L in S x R with a local system of finite-

dimensional k-vector spaces E such that OL is either empty or contained in

18 :l_-E _'-\.I:_'l' |



(0S\ N) xR. Another version of Fukaya category is the infinitesimally wrapped

category FY(S,N,0,n,k). An object (L, F) of F¥(S,N,0,n,k) is the same as

an object of F(S, N,0,n, k), except that 0L is contained in N x R if nonempty.

Before we define morphisms, we need the notion of the intersection index.

—_——

Let Li = (v : I = SxR,7; : I = P(TS)) be graded immersed curves(i = 0, 1)
with transverse intersection at = 7o (tg) = v1(¢1). Then the intersection index

of Ly and L7 is defined as follows:

iz (Lo, L1) := [Y1(t1) — Yo(to)]

:= the smallest n € Z with n > v1(t1) — vo(to)-

Let us explain the meaning of the expression i (t1) — o (to). Note that both

—_~—

Yo(to) and 1 (t1) is contained in P(T'S),, which is a universal cover of P(7'S),.

The fiber of projectivized tangent bundle of a surface is diffeomorphic to R/Z.

—_—

Then the identification P(7'S), ~ R/Z gives the identification P(T'S), ~ R.

Thus, the difference of 4y (to) and i (¢1) is a well-defined real number and does
not depend of the choice of the identification.

Let (Lo, Eo) and (L1, E1) be objects of F(S,N,0,n,k) such that their
projections to S intersect transversely and OL; = ) for i« = 0,1. We also
assume that L is oriented. The morphism space is defined as follows:

Hom((Lo, Eo), (L1, E1)) == D Homp((Eo)p: (Er)p)[—ip(Lo, L1)].
pepr(Lo)npr(L1)
If the orientation on L;j is reversed, we identify x € Hom((Lg, Ey), (L1, E1))
with (—1)1*lz.

If either pr(Lg) is not transverse to pr(Li)(e.g. Lo = L1) or both Ly and

L1 have boundary, we need to perturb Ly as graded Legendrian curves so that

pr(Lo) and pr(L;) intersects transversely. It is equivalent to perturb pr(Lg) by

19 ¥ [, -1 =1
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Figure 3.1 Objects of F (blue arcs) and F" (red arcs)

a Hamiltonian diffeomorphism. The resulting morphism space depends on the
choice of perturbation, but they are all quasi-isomorphic to each other.

Let p € S be a intersection point of pr(Ly) and pr(Li). Then the corre-
sponding points of Legendrian curves are vy(to) = (p, 20) and 71 (t1) = (p, 21)-
We can endow Hom((Lo, Eo), (L1, E1)) with the structure of R-filtered vector
space by defining Hom((Lo, Eo), (L1, F1))>p as the morphism space generated

by the intersection points with zg — 21 > .

Remark 3.1 Let us explain relation between the partially wrapped Fukaya
category F and the infinitesimally wrapped Fukaya category FV. As its no-
tation implies, these two category can be understood as a dual of each other.
For example, consider a disk D with a set N of 3 marked points in 9D (See
Figure 3.1). A projection on D of object curve of F is either a closed curve or
an arc connecting components of D \ N. Suppose an object X of F" whose
projection onto D is an arc connecting two marked points is given. This arc
meets any curve or arc coming from F transversally (after some perturbation
if necessary), and an integer can be assigned for each intersection, which is an
intersection index. In this sense, 7" can be viewed as a dual of F. Similar

argument shows that F is also a dual of FV.
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3.1.4 Definition: structure maps

As mentioned before, we will define structure maps by counting polygons with
Lagrangian boundaries. Let Lg, - - - , L, be graded Legendrian curves such that
their projections to S intersect transversely. We choose intersection points
xp € pr(Lg) Npr(Lgsyq) for k=1,--- ,n—1 and x, € pr(Ly) N L,. For each
intersection points, we have a degree dj, := iy, (L, Lgy1) for k=1,--- ,n—1

and d,, 1= iy, (Lo, L,). We assume that
do+ - -dp1=dp+n—2.

If this assumption does not hold, the output of structure map is zero.
Consider a smooth (n + 1)-gon ¢ : D — S up to reparametrization, such

that the k-th corner of D is mapped to z; and the edge from xj_1 to x is

mapped to pr(Lg). Then parallel transport along the edges of ¢(D) defines a

map

7(D) : Hom((En—1)z,,_1» (En)z, ) @ - @ Hom((Eo)ags (£1)ap)

— Hom((Eo)z,, (En)a,)-
Now we define the structure map as follows:

my, : Hom(X,, 1, Xp) @ Hom(Xo, X1) — Hom(Xo, Xp), my := > _ £7(D)
D

where Xy, = (L, E)) are objects of the Fukaya category. The sign depends on

the orientation of Lj. We omit the details.
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3.2 Maurer-Cartan elements

Consider an object (L, E') such that pr(L) has a self-intersection. In this case,
there are 1-gons whose vertices are the self-intersection points. In the view of
Ao-category, this corresponds to mg. Thus, if we allow such objects, Fukaya
category becomes a curved A..-category.

Let 6 € Hom!'((L, E), (L, E))>o be a Maurer-Cartan element. Here, Hom((L, E), (L, E))
is defined by perturbing L slightly to L’ so that pr(L) and pr(L’) intersect
transversely. Then (L, E,§) is an object of the curved Fukaya category.

Given L, we can define a category C(L); whose objects are rank 1 local
system E on L with a Maurer-Cartan element § € Hom!((L, E), (L, E))=¢ and

morphisms are
HomC(L)l ((L, E(), (50), (L, El, 51)) = HOID((L, EQ), (L, El))ZO-

In case that L C N x R, there is a natural functor Fy, : C(L); — F". This

functor will be used in the next chapter.
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4 Legendrian Skein algebras

4.1 Definitions

We fix S, N, 0,n, where S is a compact surface with boundary, N C 95 a finite

set, 6 a Liouville form on S and 7 a grading on S.

Definition 4.1 The Legendrian Skein module Skein(S, N, 6,7) is the Z[t,t ™1,
1)~!]-module generated by isotopy classes of graded Legendrian curves(we refer
to these curves as links) embedded in S x R whose boundary is contained in

N x R, with the relation below:

V4

\,} (—pm-ns ) / B L o - . .

>

co =(-n)7" (4.2)
Ry (4.3)
The Legendrian Skein algebra is the Legendrian Skein module Skein(.S, N, 6,7)
equipped with a product defined by

L1 - Ly :=stack Ly on top of L.

It is obvious from the definition that the product is associative. The unit is a

isotopy class of the empty link.
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4.2 Legendrian Skein algebras and Hall algebras

Let S, N,0,n be the ones as before, and k = F,. We want to define a Q-algebra

homomorphism
D Skein(sv N, 0, 77) ®Z[t,t*1,(t—1)*1} Q— Hau(f(sa N,0,n, k))

where Z[t,t=%, (t — 1)7!] acting on Q as t — q.

Consider a graded Legendrian link L in S x R and a category C(L);) from
section 3.2. Since our base field is finite, C(L); has finitely many objects and
morphism spaces are finite sets. Then we can think of a weighted counting

measure

prequyy (X) = [Aus(O] [T 1Bt~ (0, 2007,
k=1

Then we can pushforward this measure using the functor Fr : C(L); —
FY(S,N,0,n,k) so that we get a measure on F*. This measure assigns a
rational number to an isomorphism class of FV. Then it can be understood as

an element of Hall(F)(see Remark 3.1). Thus, we define

(L) = (FL)«(pe(w),)

. We can describe the weighted counting measure fi¢(z), in a more concrete

way. Before that, we define an integer e(L) for a graded Legendrian link L =

(v:I—SxR,5:I—P(TS)). For each self-crossing point = € Cr(L) there
exists to,t1 € I such that pr(v(t9)) = pr(y(t1)) = = and the z-coordinate of

~(to) is greater than the one of v(¢1). Now we define

e(L) =|{z € Cr(L) : i(L,tyg, L,t1) < 0 and even}|

— {z € Cx(L) : i(L, to, L, t1) < 0 and odd}|.
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Proposition 4.1 Let L be a graded Legendrian link. Then the following
formula holds:

Hery, = (¢—1) ~Imo(L ‘ el Z Z (L, E,6)]

E §eMC(L,E)

where E ranges over all isomorphism classes of rank one local systems on L.

Proof. Let C(L)1,0 be the category with the same objects as C(L); and mor-
phism spaces Hom>o /Homs. Then we can factor the trivial functor 7 :
C(L); — * through G : C(L); — C(L)1,0. As we have seen in section 1.4, we
have

tery, = G (Be(no)-

Since any Maurer-Cartan element is in Homsq, two objects (L, E,d) and
(L,E, 0" are isomorphic. Also, the elements in Hom>( / Homs are generated
by the fundamental class of connected components of L and its Poincare duals.

Thus we have |[Aut((L, E,§))| = (¢ — 1)I™@)] and

He(my, = (a— 1)WY (L, B)).
E

Note that e(L) is equal to

3" (~1)! dim Hom™((L, E), (L, E))
1=0

by definition, so the aurgument at the end of section 1.4 implies that

G liie(nyy) = (a— 1) @D S (1, E,5)).

E §eMC(L,E)
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Theorem 4.1 The assignment L — ®(L) defines a well-defined Q-algebra

homomorphism
® : Skein(S, N,0,n) Qzti-1,-1)-1 Q — Hall(F(S,N,0,n,k)).

Proof. Proving that the Skein relation is preserved by ® requires the ob-
servation of relation between the set of Maurer-Cartan element of different
resolutions at intersection points of given links. We omit this part and refer
the details to [Hai21]. We only prove the compatibility with product.
Suppose given two Legendrian links Lj, Ls and the maximum value of z-
coordinate of L; is less than the minimum value of Lo so that Li is below
Ls. Let L := Ly | | La. We want to show that ®(L) = ®(L;)®(L2). Since L; is

below Lo, we have

HOIH((L, E), (L, E))ZO = HOHl((Ll, El), (Ll, El))ZO ) HOHI((LQ, Eg), (Ll, El))

@HOHI((LQ,EQ), (LQ,EQ))Z(). (44)

Also, § = (011,021, d22) € Hom!'((L, E), (L, E))so is a Maurer-Cartan element
if and only if d11 and Jo0 are Maurer-Cartan elements and d91 is an mq-closed

degree 1 morphism. Thus, we have the following:

> (L Brdul | - ST (Lo, Bz, b20)

d11EMC(L1,En) 82206 MC(L1,E1)

— gl N (LB, 6)] (4.5)
5EMC(L7E)

where

e(Ly, L) =Y (=1 dimExt~*((Lo, E), (L1, E1))

o

~
Il
o

(—1)"dim Hom™*((Lg, Fs), (L1, E1)).

o

-
I
o
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Now we can calculate the product ®(L;) - ®(L2) explicitly. First, we can
write ®(L;) and ®(Lsg) as

B(L1) = (¢ — 1)~ moElgmelhy) Z Z [(L1, E1, 011)]

FE1 611 EMC(Ll,El)

B(Lo) = (g — 1) B2 eSS [(Ly, By, b))

By 6206 MC(La,Ez)

From the equation (4.1), we know that e(L) = e(L1) 4+ e(L2) + e(Le, L1). Also,

it is obvious that |mo(L)| = |mo(L1)| + |mo(L2)|. Then, using the equation (4.2)

we get

O(Ly) - @(Ly) = (¢ — 1)~ moBlgetial)=e(l) (qe(LQ’L“ >, L.E, 5)])
§EMC(L,E)

= (q— 1)~ mWlg=et) N (L, E,0)]
5eMC(L,E)

— (L)
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