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1 A1-categories

1.1 Definitions

There are various convention for defining A1-categories. We follow the one

from [Hai21]

Definition 1.1 An A1-category C over a field k consists of the followings:

(a) a set Ob(C) of objects,

(b) a Z-graded k-vector space Hom(X,Y ) for each pair of objects X,Y 2

Ob(C),

(c) structure maps

mk : Hom(X0, X1)⌦ · · ·⌦Hom(Xk�1, Xk) ! Hom(X0, Xk)

of degree 2� k, for each k � 1, satisfying A1-equations

X

r+s=k+1

X

i

(�1)†mr(x1, · · · ,ms(xi+1, · · · , xi+s), · · · , xk) = 0 (1.1)

where † = deg0 x1 + · · ·+ deg0 xi and deg0 xj = deg xj + 1.

The first three A1 equations are

m1(m1(x)) = 0 (1.2)

m2(m1(x), y) + (�1)deg
0 x
m2(x,m1(y)) +m1(m2(x, y)) = 0 (1.3)

m2(m2(x, y), z) + (�1)deg
0 x
m2(x,m2(y, z)) +m3(m1(x), y, z)+ (1.4)
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(�1)deg
0 x
m3(x,m1(y), z) + (�1)deg

0 x+deg
0 y
m3(x, y,m1(z)) +m1(m3(x, y, z)) = 0

The equation (1.2) implies that m1 is a di↵erential operator. The equation

(1.3) corresponds to the Leibniz rule for m1-di↵erential and m2-product. If

mk = 0 for k � 3, then C is equivalent to a di↵erential graded category by the

following definition:

d(x) := (�1)deg xm
1(x)

x2 · x1 := (�1)deg x1 deg
0 x2m2(x1, x2)

Then C with the di↵erential d and the product · satisfies the definition of a

di↵erential graded category.

For a given A1-category C, we can associate its cohomological category

H(C). It has the same objects as C, and morphism spaces are given by the

cohomological group H(Hom(X,Y ),m1). One can check that the associativity

rule for mophisms holds for H(C) up to sign, using the equation (1.4).

Note that an A1-category is not a category, since there is no associativity

rule for morphisms. However, the equation (1.4) shows that the associativity

holds up to homotopy. Also, unlike a category, there need not be the unit

morphism in an A1-category. This suggests the following definition.

Definition 1.2 Let C be an A1-category.

(a) C is called strictly unital if there exists 1X 2 Hom(X,X) for each object

X 2 Ob(C) satisfying the following equations:

m2(1X , x) = (�1)deg xm2(x, 1X) = x (1.5)

mk+1(x1, · · · , 1X , · · · , xk) = 0 for k 6= 2 (1.6)
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(b) C is called cohomologically unital ifH(C) is unital, i.e. there is the identity

morphism for every object X of H(C) so that H(C) is a usual category.

There is a notion of functors between A1-categories like usual categories.

Definition 1.3 Let C,D be A1-categories. An A1-functor from C to D

consists of a map F : Ob(C) ! Ob(D) and multilinear maps

Fn : HomC(X0, X1)⌦ · · ·⌦HomC(Xn�1, Xn) ! HomD(F(X0),F(Xn))

satisfying the following A1-equation:

X

r

X

s1,··· ,sr
mr(Fs1(x1, · · · , xs1), · · · ,Fsr(xk�sr+1, · · · , xk)) (1.7)

=
X

i,j

(�1)†Fk�j+1(x1, · · · , xi,mj(xi+1, · · · , xi+j), · · · , xk)

where † = deg0 x1 + · · ·+ deg0 xi�1.

Let F : C ! D and G : D ! E be A1-functors. Then we can define the

composition G � F : C ! E as follows.

(G � F)k(x1, · · · , xk) (1.8)

=
X

r

X

s1,··· ,sr
Gr(Fs1(x1, · · · , xs1), · · · ,Fsr(xk�sr+1, · · · , xk))

Also, we can define the identity functor F : C ! C as F(X) = X,F1 = Id on

Hom(X,X), and Fk = 0 for k � 2.

1.2 Curved A1-categories and bounding cochains

In some A1-categories naturally arising in symplectic geometry, the A1-

equations do not hold. In particular,m1 is not a di↵erential, so we cannot define
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m1-cohomology. This occurs because of the existence of the curvature terms.

We generalize the definition of A1-categories to describe this phenomenon.

Definition 1.4 Given a vector space V , a decreasing R-filtration on V is a

collection of subspaces V�� ⇢ V for � 2 R which satisfies the followings:

(a) V�↵ � V�� for ↵  �,

(b) V�� =
T

↵<� V�↵,

(c) the set of � 2 R with V��/V>� is not empty, where V>� :=
S

↵>� V�↵ is

discrete in R,

(d)
T

� V�� = ;

(e)
S

� V�� = V

(f) lim V/V�� = V

An R-filtered vector space is a vector space V with a decreasing R-filtration.

The filtration induces a topology on V in a natural way.

Definition 1.5 A curved A1-category C over a field k consists of the follow-

ings:

(a) a set Ob(C) of objects,

(b) a Z-graded and R-filtered k-vector space Hom(X,Y ) for each pair of

objects X,Y 2 Ob(C),

(c) structure maps

mk : Hom(X0, X1)⌦ · · ·⌦Hom(Xk�1, Xk) ! Hom(X0, Xk)

of degree 2� k, for each k � 0, satisfying A1-equations

X

r+s=k+1

X

i

(�1)†mr(x1, · · · ,ms(xi, · · · , xi+s�1), · · · , xk) = 0 (1.9)

where † = deg x1 + · · ·+ deg xi�1 + (i� 1).
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In particular, m0 is a linear map defined on the base field k with the target

Hom2(X,X). By abuse of notation, we denote the image of 1 under this linear

map by m0 or m0(X).

It is also required that m0 2 Hom2(X,X)�0 and

xi 2 Hom(Xi�1, Xi)��i ) mk(x1, · · · , xk) 2 Hom(X0, Xk)��1+···+�k
.

The first two equations are

m1(m0) = 0 (1.10)

m1(m1(x)) +m2(m0, x) + (�1)deg x+1
m2(x,m0) = 0 (1.11)

Thus, unless m0 = 0, m1 is not a di↵erential.

Definition 1.6 An element b 2 Hom1(X,X)>0 is a bounding cochain for an

object X if b satisfies the following equation:

1X

k=0

mk(b, · · · , b) = 0 (1.12)

The equation (1.10) is called the Maurer-Cartan equation. A bounding

cochain is called also a Maurer-Cartan element. We denote the set of bounding

cochains for an object X by MC(X).

Using a bounding cochain, we can deform the A1-operations. Suppose there

exist bounding cochains for every object X in a given curved A1-category C.

Then we define new structure maps m̃k as follows:

m̃k(x1, · · · , xk) :=
X

mn(b0, · · · , b0, x1, b1, · · · , bk�1, xk, bk, · · · , bk) (1.13)

The right-hand side of the equation (1.11) is an infinite sum, but it converges

with respect to the topology given by the filtration. Moreover, these new
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operations satisfy the usual A1-equations. In particular, m̃0 vanishes and

m̃
2

1
= 0. This can be checked by direct calculation as follows:

m̃0 =
1X

k=0

mk(b, · · · , b) = 0

m̃
2

1(x) =
X

mk(b0, · · · , b0, m̃1(x), b1, · · · , b1)

=
X

mr(b0, · · · , b0,ms(b0, · · · , b0, x, b1, · · · , b1), b1, · · · , b1)

= �
X

mr(b0, · · · ,ms(b0, · · · , b0), · · · , b0, x, b1, · · · , b1)

�
X

mr(b0, · · · , b0, x, b1, · · · ,ms(b1, · · · , b1), · · · , b1)

= 0

The third equality of the second equation comes from A1 equation, and

the last equality holds because b0 and b1 are bounding cochains.

Given a curved A1-category C, we define a new A1 category C̃. The object of

C̃ is a pair (X, b) where X 2 Ob(C) and b 2 MC(X). Also, morphism spaces

are given by

HomC̃((X0, b0), (X1, b1)) := HomC(X0, X1).

The structure maps are m̃k’s we defined above.

1.3 Twisted complexes

Since an A1-category is not an abelian category(as mentioned before, it is not

even a category unless m�3 = 0), there is not a notion of exactness. However,

by enlarging it appropriately, we can think of a notion of exact triangles.

Definition 1.7 Let C be an A1-category. A twisted complex is a pair (X, �)

consisting of
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(a) A formal sum X =
nL

i=1

Xi[ki] of shifted objects (where Xi 2 Ob(C) and

ki 2 Z)

(b) A strictly upper triangular matrix � = (�ij)1i,jn where �ij is an ele-

ment of Homkj�ki+1(Xi[ki], Xj [kj ]). Also, it satisfies the Maurer-Cartan

equation
X

k�1
mk(�, · · · , �) = 0 (1.14)

or equivalently, for all 1  i < j  n,

X

k�1

X

i=i0<i1<···<ik=j

mk(�i0i1 , · · · , �ik�1ik) = 0 (1.15)

Note that the left-hand side of the equation (1.12) is a finite sum since

� is a strictly upper triangular matrix.

Given an A1-category C, we can define a new A1-category Tw(C) which

is ”triangulated”. The objects are twisted complexes, and

Homd
TwC((�Xi[ki], �), (�Yj [lj ],�)) = �i,j Hom

lj�ki+d
C (Xi, Yj).

The structure map is defined similarly as the equation (1.13), i.e. it is defined by

inserting �’s everywhere. Then A1-equation holds due to the fact that C is an

A1-category and the equation (1.14). Tw(C) contains C as a full subcategory,

since an object X of C can be considered as a twisted complex (X, 0). Also, for

any objects X,Y of C and an m1-closed morphism f 2 Hom0(X,Y ), we can

define a mapping cone Cone(f) as

Cone(f) = (X[1]� Y,
�
0 f
0 0

�
)

. Then the sequence

X
f�! Y �! Cone(f) �! X[1]
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or any other sequence isomorphic to the sequence above can be considered as

an exact triangle. Moreover, given objects X and Y , we can say that Z is an

extension of X by Y if the following sequence is an exact triangle.

Y �! Z �! X �! Y [1]

Remark 1.1 In terms of Fukaya categories, taking cone of two objects cor-

responds to Lagrangian surgery of two Lagrangian submanifolds. See [Aur14]

for further explanations.

1.4 Weighted counting measures

Definition 1.8 Let C be an A1-category over a finite field k. Then C is

called locally left-finite if Exti(X,Y ) is a finite set for every i 2 Z for every pair

of objects X,Y of C and Exti(X,Y ) = 0 for i less than some integer depending

on X,Y .

Definition 1.9 Let C be a locally left-finite A1-category over a finite field

k. The weighted counting measure µC is a measure assigning to an object X

of C a rational number

µC(X) := |Aut(X)|�1
1Y

k=1

|Ext�k(X,X)|(�1)k+1

where Aut(X) ⇢ Ext0(X,X) is the group of automorphisms of X.

Consider locally left-finite A1-categories C and D over a finite field Fq and

a A1-functor F : C ! D. Then F induces a linear map

F⇤ : QIso(C) ! QIso(D), F⇤([X]) = [F(X)]
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where QIso(C) is the Q-vector space generated by the isomorphism classes of

objects of C. If F has the property that for any [Y ] 2 Iso(D) the preimage

(F⇤)�1([Y ]) is finite, then we can define a linear map

F ! : QIso(D) ! QIso(C)

F !([Y ]) =
X

[X]2(F⇤)�1([Y ])

µC(X)

µD(Y )

[X].

Now we consider the functor T : C ! ⇤, where ⇤ is the final A1-category

with a single object ? and zero morphism spaces. If we assume that Iso(C) is

finite, then

T !([?]) =
X

[X]2Iso(C)

µC(X)[X]

which can be understood as a ’dual’ of µC . We write T !([?]) = µC as an abuse

of notation.

Consider the case T = G � F where F : C ! D and G : D ! ⇤ are

A1-functors. Then we can easily check the following equation:

µC = T !([?]) = (G � F)!([?]) = F !G!([?]) = F !(µD)

This equation will be used in chapter 4.
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2 Hall Algebras

2.1 Hall algebras of abelian categories

Definition 2.1 LetA be a category. ThenA is called locally finite if Hom(A,B)

is a finite set for every pair of objects A,B of A

Definition 2.2 Let A be a locally finite k-linear abelian category where k

is a finite field. The Hall algebra Hall(A) of A is a Q-vector space generated

by isomorphism classes of objects in A equipped with multiplication

[A] · [C] =
X

B2Ext1(A,C)

|Ext1(A,C)B|
|Hom(A,C)| [B]

where Ext1(A,C)B is a subset of Ext1(A,C) corresponding to short exact

sequences of the form 0 �! C �! B �! A �! 0.

Theorem 2.1 The Hall algebra Hall(A) is an associative algebra.

Proof. See section 2.3 of [Bri13]

Example 2.1 Let V ectk be the category of k-vector spaces where k is a

finite field with q elements. Denote an isomorphism class of n-dimensional

k-vector spaces by [n]. Then Hall(V ectk) is isomorphic to the algebra Q[x]

of polynomials in one variable via the isomorphism [n] �! xn

[n]q !
where [n]q =

q
n�1+ q

n�2+ · · ·+ q+1 and [n]q! = [1]q[2]q · · · [n]q. The explicit multiplication
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in the Hall algebra is given as follows:

[n] · [m] =
[n+m]q!

[n]q![m]q!
[n+m]

. (See example 4.3 from [Kir16] for further explanation of this example.)

2.2 Hall algebras of A1-categories

The definition of Hall algebras should be modified in case of A1-categories,

since the notion of exact sequences is replaced by exact triangles.

Definition 2.3 Let C be a locally left-finite k-linear A1-category where k

is a finite field. Also, assume that C is closed under extensions and has a

zero object. The Hall algebra Hall(C) of C is a Q-vector space generated by

isomorphism classes of objects in C equipped with multiplication

[X] · [Z] =

0

@
1Y

i=0

|Ext�i(Z,X)|(�1)i+1

1

A
X

f2Ext1(Z,X)


Cone(Z[�1]

f�! X)

�

.

Theorem 2.2 The Hall algebra Hall(C) is an associative algebra.

Proof. We may assume that Homi(X,Y ) is a finite set for every i 2 Z and

vanishes for i ⌧ 0 by considering H(C) instead of C. It is obvious from the

definition of Hall algebra that Hall(H(C)) is the same as Hall(C)). Then we

have

[X] · [Z] =

0

@
1Y

i=0

|Hom�i(Z,X)|(�1)i+1

1

A
X

f2Hom
1
(Z,X)

m1(f)=0


Cone(Z[�1]

f�! X)

�

ForA1, A2, A3 2 Ob(C), letX123 be a set of twisted complexes (A1�A2�A3, � =

(aij). Note that aij = 0 2 Hom1(Ai, Aj) except when (i, j) = (1, 2), (2, 3), (1, 3).
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Also, the Maurer-Cartan equation givesm1(a12) = 0,m1(a23) = 0 andm1(a13)+

m2(a12, a23) = 0. Since C is closed under extensions, for example, a twisted

complex A2

a12��! A1 can be regarded as an object in C. Now we have

([A1] · [A2]) · [A3] =

=

0

@
1Y

i=0

|Hom�i(A2, A1)|(�1)
i+1

1

A
X

a122Hom
1
(A2,A1)

m1(a12)=0

[(A2

a12��! A1)] · [A3]

=

0

@
1Y

i=0

|Hom�i(A2, A1)|(�1)
i+1

1

A

0

@
1Y

i=0

|Hom�i(A3, A2 �A1)|(�1)
i+1

1

A

X

m1(a12)=0

X

m̃1(a13,a23)=0


A3

(a13,a23)�����! (A2

a12��! A1)

�

=

0

BBB@

1Y

k=0

Y

i,j2{1,2,3}
i<j

|Hom�k(Aj , Ai)|(�1)
k+1

1

CCCA
X

C2X123

[C]

Also,

[A1] · ([A2] · [A3]) =

=

0

@
1Y

i=0

|Hom�i(A3, A2)|(�1)
i+1

1

A
X

a232Hom
1
(A3,A2)

m1(a23)=0

[A1] · [(A3

a23��! A2)]

=

0

@
1Y

i=0

|Hom�i(A3, A2)|(�1)
i+1

1

A

0

@
1Y

i=0

|Hom�i(A2 �A3, A1)|(�1)
i+1

1

A

X

m1(a23)=0

X

m̃1(a12,a13)=0


(A3

a23��! A2)
(a12,a13)�����! A1

�

=

0

BBB@

1Y

k=0

Y

i,j2{1,2,3}
i<j

|Hom�k(Aj , Ai)|(�1)
k+1

1

CCCA
X

C2X123

[C]

Thus, the associativity holds.
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Example 2.2 Let C = Perf(Fq) be the category of finite-dimensional com-

plexes of vector spaces over a finite field Fq. Then Hall(C) is generated by

xk := [Fq[�k]] with relations

xk+1xk � q
�1

xkxk+1 = q � 1, k 2 Z (2.1)

xk+mxk = q
(�1)m

xkxk+m, k 2 Z, m � 2. (2.2)

These relations can be obtained from the following computation:

We have

Homi(Fq[�k],Fq[�k � 1]) =

8
>>><

>>>:

Fq i = 1

0 otherwise

Note that every morphism in Hom1(Fq[�k],Fq[�k � 1]) is an isomorphism

except the zero morphism. Thus, Cone(F[�k][�1]
f�! F[�k � 1]) is zero for

nonzero f . If f = 0, the cone is the direct sum F[�k� 1]�F[�k]. Then we get

[Fq[�k � 1]] · [Fq[�k]] = [Fq[�k � 1]� [Fq[�k]] + (q � 1)[0]. (2.3)

Also we have

Homi(Fq[�k � 1],Fq[�k]) =

8
>>><

>>>:

Fq i = �1

0 otherwise

Since Hom1(F1[�k � 1],Fq[�k] = 0), the cone is the direct sum. So we get

[Fq[�k]] · [Fq[�k � 1]] = |Hom�1(Fq[�k � 1],Fq[�k])| · [Fq[�k � 1]� Fq[�k]]

= q[Fq[�k � 1]� Fq[�k]] (2.4)
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Then the relation (2.1) is obtained by the equation (2.3) and (2.4).

Similarly, for m � 2, we can check that

[Fq[�k �m]] · [Fq[�k]] = [Fq[�k �m]� Fq[�k]] (2.5)

[Fq[�k]] · [Fq[�k �m]] = q
(�1)m+1

[Fq[�k �m]� Fq[�k]]. (2.6)

Then the relation (2.2) is obtained by the equation (2.5) and (2.6).

14



3 Fukaya Categories of Surfaces

3.1 Definitions

There are various versions of the Fukaya category. Basically, the Fukaya cateogry

is an A1-category defined for a given symplectic manifold. Its objects are

Lagrangian submanifolds (possibly with some additional structures) and mor-

phisms are intersections between two Lagrangian submanifolds. The A1-

operations correspond to counting pseudoholomorphic curves with boundary

condition given by Lagrangian submanifolds. However, it is not easy to define it

precisely, because there are some issues concerning transversality and regularity.

For example, we want the intersecting set of two Lagrangian submanifolds

to be finite, but if two Lagrangian submanifolds are not meeting transversally,

there might be infinitely many intersection points. This issue becomes critical

when we consider the morphism from some Lagrangian submanifold to itself.

One can use particulary chosen Lagrangian submanifolds so that any pair of

Lagrangian submanifolds meet transversally. In this case, we cannot consider

morphism spaces from some object to itself. Another solution is to perturb

Lagrangian submanifolds using Hamiltonian functions so that they meet each

other transversally after perturbation. Then we can think of morphism spaces

for any two objects, but we always have to consider the perturbation data and

their compatibility.
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Also, we need to be able to ’count’ pseudoholomophic curves with some

boundary conditions to define A1-operations, which implies that the set of

certain pseudoholomophic curves are finite. In most cases, we should resolve

the regularity issue to achieve this. Pseudoholomorphic curves are given by

the solutions of some partial di↵erential equation, and we need to check sev-

eral conditions to guarantee that the solution set is ’nice’. If the linearized

di↵ernential operator derived form the partial di↵erential equation satisfies the

regularity condition, then we can count how many solutions there exist and

use this number to define the A1-operations.

We will use the simplified version of the Fukaya category so that we can

avoid regularity issue. We will only consider 2-dimensional symplectic manifolds

i.e. any orientable surfaces(possibly with boundary components). Then the la-

grangian submaniolds are just curves. In this case, counting pseudoholomophic

curves is just counting polygons whose edges are Lagrangians and vertices are

intersection points of two lagrangians. Also, we will assume the perturbation

data is given appropriately and we will not delve into the transversallity issue

deeply(See [Sei08] for details).

Let S be a compact surface with boundary. Instead of dealing with curves

on S directly, we will consider S ⇥ R and a certain class of curves in S ⇥ R.

3.1.1 Contact manifolds and Legendrian submanifolds

Definition 3.1 Let M be a smooth manifold. A contact form on M is a

1-form ↵ such that d↵ is nondegenerate on ker↵. M is called contact manifold

if such an ↵ is given.

The nondegeneracy of d↵ on ker↵ implies that ker↵ is even-dimensional,

and thus every contact manifold must be odd-dimensional.

16



Example 3.1 Consider R2n+1 with coordinates {x1, · · · , xn, y1, · · · , yn, z}.

It becomes a contact manifold with a contact form ↵ =
P

i xidyi + dz. The

nondegeneracy of ↵ comes from the fact that ↵ ^ (d↵)n = dx1 ^ · · · ^ dxn ^

dy1 ^ · · · ^ dyn ^ dz 6= 0.

Example 3.2 LetM be a symplectic manifold with a symplectic form ! = d✓.

Then M ⇥ R becomes a contact manifold with a contact form ↵ = p
⇤
✓ + dz

where z is a coordinate on R and p : M ⇥R ! M is a natural projection. The

nondegeneracy of d↵ comes from the nondegeneracy of !.

The second example shows that symplectic manifolds correspond to some

contact manifolds in some sense. One might expect that there is an analogue

of lagrangian submanifolds in contact geometry, which is true.

Proposition 3.1 Let M be a (2n + 1)-dimensional contact manifold with

a contact form ↵. If L is a submanifold of M such that TL ⇢ ker↵, then

dimL  n.

Proof. Let ◆ : L ! M be an inclusion. Then ◆
⇤
↵ = 0. Hence ◆⇤TL is an

isotropic subspace of the symplectic vector space (ker↵, d↵), which implies

dimL  n.

Definition 3.2 Let M be a (2n + 1)-dimensional contact manifold with a

contact form ↵. A submanifold L is called an isotropic submanifold if TL ⇢

ker↵. If dimL = n, then L is called a legendrian submanifold.

Example 3.3 Let S be a surface with a symplectic form ! = d✓ and L ⇢ M

be a Lagrangian submanifold, which is a curve. Then there is a Legendrian

curve L
0 ⇢ M ⇥ R such that its projection to M is L.

17



3.1.2 Grading

Let S be a compact surface with boundary. We want the morphism spaces of

Fukaya category of S to be Z-graded. This Z-grading comes from a certain

structure on S.

Definition 3.3 A grading structure on S is a section ⌘ of the projectivized

tangent bundle P(TS).

Suppose that a grading structure ⌘ is given. Consider a universal cover

p : P̂(TS) ! P(TS). We may assume that the restriction p : p�1(P(TS)x) !

P(TS)x is a universal cover for all x 2 S, since ⌘ defines a basepoint of each

fiber of P(TS).

Definition 3.4 A graded curve is an immersed curve � : I ! S with a

section �̃ of �⇤P̂(TS) such that �̃(t) is a lift of the tangent space TS�(t).

Note that an immersed Legendrian curve in S⇥R projects to an immersed

curve in S, so we can think of a graded curve in S ⇥ R.

3.1.3 Definition: objects and morphisms

Consider a tuple (S,N, ✓, ⌘, k) where S is a compact surface with boundary,

N ⇢ @S is a finite set of marked points, ✓ is a Liouville 1-form on S (i.e. d✓ is a

symplectic form on S), ⌘ is a grading structure on S, and k is a coe�cient field.

We will define two di↵erent Fukaya catrgories. First, we denote the partially

wrapped Fukaya category by F(S,N, ✓, ⌘, k). An object of F(S,N, ✓, ⌘, k) is

a compact graded Legendrian curve L in S ⇥ R with a local system of finite-

dimensional k-vector spaces E such that @L is either empty or contained in

18



(@S \N)⇥R. Another version of Fukaya category is the infinitesimally wrapped

category F_(S,N, ✓, ⌘, k). An object (L,E) of F_(S,N, ✓, ⌘, k) is the same as

an object of F(S,N, ✓, ⌘, k), except that @L is contained in N ⇥R if nonempty.

Before we define morphisms, we need the notion of the intersection index.

Let Li = (�i : I ! S⇥R, �̃i : I ! P̂(TS)) be graded immersed curves(i = 0, 1)

with transverse intersection at x = �0(t0) = �1(t1). Then the intersection index

of L0 and L1 is defined as follows:

ix(L0, L1) := d�̃1(t1)� �̃0(t0)e

:= the smallest n 2 Z with n > �̃1(t1)� �̃0(t0).

Let us explain the meaning of the expression �̃1(t1)� �̃0(t0). Note that both

�̃0(t0) and �̃1(t1) is contained in P̂(TS)x, which is a universal cover of P(TS)x.

The fiber of projectivized tangent bundle of a surface is di↵eomorphic to R/Z.

Then the identification P(TS)x ' R/Z gives the identification P̂(TS)x ' R.

Thus, the di↵erence of �̃0(t0) and �̃1(t1) is a well-defined real number and does

not depend of the choice of the identification.

Let (L0, E0) and (L1, E1) be objects of F(S,N, ✓, ⌘, k) such that their

projections to S intersect transversely and @Li = ; for i = 0, 1. We also

assume that L1 is oriented. The morphism space is defined as follows:

Hom((L0, E0), (L1, E1)) :=
M

p2pr(L0)\pr(L1)

Homk((E0)p, (E1)p)[�ip(L0, L1)].

If the orientation on L1 is reversed, we identify x 2 Hom((L0, E0), (L1, E1))

with (�1)|x|x.

If either pr(L0) is not transverse to pr(L1)(e.g. L0 = L1) or both L0 and

L1 have boundary, we need to perturb L0 as graded Legendrian curves so that

pr(L0) and pr(L1) intersects transversely. It is equivalent to perturb pr(L0) by
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Figure 3.1 Objects of F (blue arcs) and F_ (red arcs)

a Hamiltonian di↵eomorphism. The resulting morphism space depends on the

choice of perturbation, but they are all quasi-isomorphic to each other.

Let p 2 S be a intersection point of pr(L0) and pr(L1). Then the corre-

sponding points of Legendrian curves are �0(t0) = (p, z0) and �1(t1) = (p, z1).

We can endow Hom((L0, E0), (L1, E1)) with the structure of R-filtered vector

space by defining Hom((L0, E0), (L1, E1))�� as the morphism space generated

by the intersection points with z0 � z1 � �.

Remark 3.1 Let us explain relation between the partially wrapped Fukaya

category F and the infinitesimally wrapped Fukaya category F_. As its no-

tation implies, these two category can be understood as a dual of each other.

For example, consider a disk D with a set N of 3 marked points in @D (See

Figure 3.1). A projection on D of object curve of F is either a closed curve or

an arc connecting components of @D \N . Suppose an object X of F_ whose

projection onto D is an arc connecting two marked points is given. This arc

meets any curve or arc coming from F transversally (after some perturbation

if necessary), and an integer can be assigned for each intersection, which is an

intersection index. In this sense, F_ can be viewed as a dual of F . Similar

argument shows that F is also a dual of F_.
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3.1.4 Definition: structure maps

As mentioned before, we will define structure maps by counting polygons with

Lagrangian boundaries. Let L0, · · · , Ln be graded Legendrian curves such that

their projections to S intersect transversely. We choose intersection points

xk 2 pr(Lk) \ pr(Lk+1) for k = 1, · · · , n � 1 and xn 2 pr(L0) \ Ln. For each

intersection points, we have a degree dk := ixk(Lk, Lk+1) for k = 1, · · · , n� 1

and dn := ixn(L0, Ln). We assume that

d0 + · · · dn�1 = dn + n� 2.

If this assumption does not hold, the output of structure map is zero.

Consider a smooth (n + 1)-gon � : D ! S up to reparametrization, such

that the k-th corner of D is mapped to xk and the edge from xk�1 to xk is

mapped to pr(Lk). Then parallel transport along the edges of �(D) defines a

map

⌧(D) : Hom((En�1)xn�1 , (En)xn�1)⌦ · · ·⌦Hom((E0)x0 , (E1)x0)

! Hom((E0)xn , (En)xn).

Now we define the structure map as follows:

mn : Hom(Xn�1, Xn)⌦Hom(X0, X1) ! Hom(X0, Xn),mn :=
X

D

±⌧(D)

where Xk = (Lk, Ek) are objects of the Fukaya category. The sign depends on

the orientation of Lk. We omit the details.
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3.2 Maurer-Cartan elements

Consider an object (L,E) such that pr(L) has a self-intersection. In this case,

there are 1-gons whose vertices are the self-intersection points. In the view of

A1-category, this corresponds to m0. Thus, if we allow such objects, Fukaya

category becomes a curved A1-category.

Let � 2 Hom1((L,E), (L,E))>0 be a Maurer-Cartan element. Here, Hom((L,E), (L,E))

is defined by perturbing L slightly to L
0 so that pr(L) and pr(L0) intersect

transversely. Then (L,E, �) is an object of the curved Fukaya category.

Given L, we can define a category C(L)1 whose objects are rank 1 local

system E on L with a Maurer-Cartan element � 2 Hom1((L,E), (L,E))>0 and

morphisms are

HomC(L)1((L,E0, �0), (L,E1, �1)) := Hom((L,E0), (L,E1))�0.

In case that @L ⇢ N ⇥ R, there is a natural functor FL : C(L)1 ! F_. This

functor will be used in the next chapter.
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4 Legendrian Skein algebras

4.1 Definitions

We fix S,N, ✓, ⌘, where S is a compact surface with boundary, N ⇢ @S a finite

set, ✓ a Liouville form on S and ⌘ a grading on S.

Definition 4.1 The Legendrian Skein module Skein(S,N, ✓, ⌘) is the Z[t, t�1, (t�

1)�1]-module generated by isotopy classes of graded Legendrian curves(we refer

to these curves as links) embedded in S ⇥ R whose boundary is contained in

N ⇥ R, with the relation below:

n

m
� q

(�1)m�n
n

m
= �m,n(q � 1)

n

n
� �m,n(1� q

�1)
n

n
(4.1)

= (q � 1)�1 (4.2)

= 0 (4.3)

The Legendrian Skein algebra is the Legendrian Skein module Skein(S,N, ✓, ⌘)

equipped with a product defined by

L1 · L2 := stack L2 on top of L1.

It is obvious from the definition that the product is associative. The unit is a

isotopy class of the empty link.
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4.2 Legendrian Skein algebras and Hall algebras

Let S,N, ✓, ⌘ be the ones as before, and k = Fq. We want to define a Q-algebra

homomorphism

� : Skein(S,N, ✓, ⌘)⌦Z[t,t�1,(t�1)�1] Q ! Hall(F(S,N, ✓, ⌘, k))

where Z[t, t�1, (t� 1)�1] acting on Q as t ! q.

Consider a graded Legendrian link L in S ⇥R and a category C(L)1) from

section 3.2. Since our base field is finite, C(L)1 has finitely many objects and

morphism spaces are finite sets. Then we can think of a weighted counting

measure

µC(L)1(X) = |Aut(X)|�1
1Y

k=1

|Ext�k(X,X)|(�1)k+1
.

Then we can pushforward this measure using the functor FL : C(L)1 !

F_(S,N, ✓, ⌘, k) so that we get a measure on F_. This measure assigns a

rational number to an isomorphism class of F_. Then it can be understood as

an element of Hall(F)(see Remark 3.1). Thus, we define

�(L) := (FL)⇤(µC(L)1)

. We can describe the weighted counting measure µC(L)1 in a more concrete

way. Before that, we define an integer e(L) for a graded Legendrian link L =

(� : I ! S ⇥ R, �̃ : I ! P̂(TS)). For each self-crossing point x 2 Cr(L) there

exists t0, t1 2 I such that pr(�(t0)) = pr(�(t1)) = x and the z-coordinate of

�(t0) is greater than the one of �(t1). Now we define

e(L) =|{x 2 Cr(L) : i(L, t0, L, t1)  0 and even}|

� |{x 2 Cr(L) : i(L, t0, L, t1)  0 and odd}|.
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Proposition 4.1 Let L be a graded Legendrian link. Then the following

formula holds:

µC(L)1 = (q � 1)�|⇡0(L)|q�e(L)
X

E

X

�2MC(L,E)

[(L,E, �)]

where E ranges over all isomorphism classes of rank one local systems on L.

Proof. Let C(L)1,0 be the category with the same objects as C(L)1 and mor-

phism spaces Hom�0 /Hom>0. Then we can factor the trivial functor T :

C(L)1 ! ⇤ through G : C(L)1 ! C(L)1,0. As we have seen in section 1.4, we

have

µC(L)1 = G!(µC(L)1,0).

Since any Maurer-Cartan element is in Hom�0, two objects (L,E, �) and

(L,E, �
0 are isomorphic. Also, the elements in Hom�0 /Hom>0 are generated

by the fundamental class of connected components of L and its Poincare duals.

Thus we have |Aut((L,E, �))| = (q � 1)|⇡0(L)| and

µC(L)1,0 = (q � 1)�|⇡0(L)|
X

E

[(L,E)].

Note that e(L) is equal to

1X

i=0

(�1)i dimHom�i((L,E), (L,E))>0

by definition, so the aurgument at the end of section 1.4 implies that

G!(µC(L)1,0) = (q � 1)�|⇡0(L)|q�e(L)
X

E

X

�2MC(L,E)

[(L,E, �)].
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Theorem 4.1 The assignment L 7! �(L) defines a well-defined Q-algebra

homomorphism

� : Skein(S,N, ✓, ⌘)⌦Z[t,t�1,(t�1)�1] Q ! Hall(F(S,N, ✓, ⌘, k)).

Proof. Proving that the Skein relation is preserved by � requires the ob-

servation of relation between the set of Maurer-Cartan element of di↵erent

resolutions at intersection points of given links. We omit this part and refer

the details to [Hai21]. We only prove the compatibility with product.

Suppose given two Legendrian links L1, L2 and the maximum value of z-

coordinate of L1 is less than the minimum value of L2 so that L1 is below

L2. Let L := L1

F
L2. We want to show that �(L) = �(L1)�(L2). Since L1 is

below L2, we have

Hom((L,E), (L,E))�0 =Hom((L1, E1), (L1, E1))�0 �Hom((L2, E2), (L1, E1))

�Hom((L2, E2), (L2, E2))�0. (4.4)

Also, � = (�11, �21, �22) 2 Hom1((L,E), (L,E))>0 is a Maurer-Cartan element

if and only if �11 and �22 are Maurer-Cartan elements and �21 is an m̃1-closed

degree 1 morphism. Thus, we have the following:

0

@
X

�112MC(L1,E1)

[(L1, E1, �11]

1

A ·

0

@
X

�222MC(L1,E1)

[(L2, E2, �22]

1

A

= q
�e(L2,L1)

X

�2MC(L,E)

[(L,E, �)] (4.5)

where

e(L2, L1) =
1X

i=0

(�1)i dimExt�i((L2, E2), (L1, E1))

=
1X

i=0

(�1)i dimHom�i((L2, E2), (L1, E1)).
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Now we can calculate the product �(L1) · �(L2) explicitly. First, we can

write �(L1) and �(L2) as

�(L1) = (q � 1)�|⇡0(L1)|q�e(L1)
X

E1

X

�112MC(L1,E1)

[(L1, E1, �11)]

�(L2) = (q � 1)�|⇡0(L2)|q�e(L2)
X

E2

X

�222MC(L2,E2)

[(L2, E2, �22)]

From the equation (4.1), we know that e(L) = e(L1) + e(L2) + e(L2, L1). Also,

it is obvious that |⇡0(L)| = |⇡0(L1)|+ |⇡0(L2)|. Then, using the equation (4.2)

we get

�(L1) · �(L2) = (q � 1)�|⇡0(L)|qe(L2,L1)�e(L)

0

@q
�e(L2,L1)

X

�2MC(L,E)

[(L,E, �)]

1

A

= (q � 1)�|⇡0(L)|q�e(L)
X

�2MC(L,E)

[(L,E, �)]

= �(L)
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