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Abstract

Metastability of complex stochastic
interacting systems

Seonwoo Kim

Department of Mathematical Sciences

The Graduate School

Seoul National University

In this Ph.D. thesis, we conduct quantitative analyses of the phenomenon

of metastability occurring in various complex systems, such as ferromagnetic

spin systems or interacting particle systems. In addition, we develop a novel

approach to study metastability, theH1-approximation method, which is par-

ticularly useful to handle non-reversible systems. The quantitative results in-

clude Eyring–Kramers formula, a sharp asymptotics of the mean metastable

transition time, and Markov chain characterization of successive metastable

transitions. We focus on the results on specific models in two categories. In

the first part, we investigate the ferromagnetic Ising and Potts models in low

temperatures and several related models. In the second part, we consider the

condensing inclusion process and compare the results between reversible and

non-reversible systems.

Key words: Metastability, H1-approximation, Ising model, Potts model,

inclusion process

Student Number: 2018-26714
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Chapter 1

Introduction

Metastability occurs in various dynamical systems that possess two or more

locally stable states. In such cases, the dynamics spends exponentially long

time in the initial locally stable state, until it reaches a certain unpredictable

moment, and begins a rapid crossover to another locally stable state. These

three characteristics are ubiquitous in systems belonging to a wide range of

fields; a few examples are supercooling of water in physics, allotropic struc-

tures in chemistry, persistence of stock prices on high levels in economics,

etc.

In the context of statistical physics, metastability occurs in numerous

models such as small random perturbations of dynamical systems [19, 20, 21,

33, 58, 61, 62, 64, 65, 77], interacting particle systems with sticky interactions

[6, 15, 56, 57, 76, 78], ferromagnetic spin systems in low temperatures [1, 9,

14, 17, 18, 22, 24, 29, 53, 54, 59, 63, 71, 72, 69], etc. These are few of the

numerous important works conducted during the past few decades; for a

complete list of references, refer to the monographs [16, 75].
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CHAPTER 1. INTRODUCTION

Figure 1.1: Double-well potential U with local minimum m, global minimum
s, and critical point σ.

1.1 Early results

One of the earliest attempts to quantify the phenomenon of metastability

originates from chemical reaction rate theory in 1889, in which Arrhenius [3]

proposed a formula

R = Ae−E/(kT ), (1.1)

known as the Arrhenius equation. The equation (1.1) explains that the rate

constant R depends exponentially on the inverse temperature 1/T , through

an exponent −E/k which is proportional to the activation energy E, along

with a prefactor A which is the amplitude. The observation that the reaction

rate depends on the three above-mentioned variables (inverse temperature,

activation energy, and amplitude) turns out to be ubiquitous in most of the

slow-mixing dynamical systems (cf. (1.3)).

In 1940, Kramers [49] considered the following one-dimensional (1D) dif-

fusion equation, which is now recognized in the community as the overdamped

Langevin dynamics :

dXt = −U ′(Xt)dt+
√

2εdBt, (1.2)

where U : R → R is a smooth double-well potential (see Figure 1.1), Bt
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is the standard Brownian noise, and ε > 0 is a small control parameter

which corresponds to the absolute temperature of the system. In this system,

a metastability scenario occurs in low temperature (small ε). To see this,

suppose that the process starts from state m, which is the local minimum of

the left valley in Figure 1.1. Since ε is small, the behavior of (1.2) is dominated

by the drift term −U ′(Xt)dt which consistently pushes the system to the

initial state m, the unique stable equilibrium point inside the left valley.

However, due to the small noise term
√

2εdBt, after a long random time, the

process overcomes the energy barrier U(σ) − U(m) and eventually makes

a transition through the critical point σ to the right valley containing the

global minimum state s.

More quantitatively, in this special 1D case, Kramers derived the following

formula for the mean transition time from m to s:

Em[τs] '
2π√

(−U ′′(σ)) · U ′′(m)
· e

U(σ)−U(m)
ε as ε→ 0. (1.3)

Thanks to Eyring’s contributions [32] in the multi-dimensional setting, asymp-

totic identities as in (1.3) on the mean transition time are now widely recog-

nized by active researchers as the Eyring–Kramers formula.

1.2 Freidlin–Wentzell theory and pathwise ap-

proach to metastability

In 1960s, Freidlin and Wentzell [33] established the first probabilistic method-

ology to characterize the metastable behavior. The idea was to apply the

celebrated large deviation theory (e.g., [31]) to the path space of dynamical

systems. Using this tool, they addressed the following dynamics, which is the

d-dimensional overdamped Langevin dynamics (generalizing (1.2)):

dXt = −∇U(Xt)dt+
√

2εdBt, (1.4)

3
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where U : Rd → R is now a d-dimensional smooth double-well potential.

They proved the following exponential estimate on the mean transition time

from the metastable state m to the stable state s:

logEm[τN (s)] '
U(σ)− U(m)

ε
as ε→ 0,

where N (s) is a small neighborhood of s. However, a further quantitative

result such as (1.3) was unidentified at this point.

In 1984, Cassandro, Galves, Olivieri, and Vares [24] constructed a method-

ology by applying the aforementioned Freidlin–Wentzell theory to discrete

systems, such as interacting particle systems or ferromagnetic spin systems.

This is known as the pathwise approach to metastability. The main ideas of

this approach, along with numerous concrete examples, are well summarized

in the monograph [75] by Olivieri and Vares.

1.3 Potential-theoretic approach: Eyring–Kramers

formula

A crucial breakthrough arose in the early 2000s. Bovier, Eckhoff, Gayrard,

and Klein [19, 20, 21] successfully applied the well-known potential theory

to provide a robust methodology to achieve quantitative metastability re-

sults, including the Eyring–Kramers formula (cf. (1.3)). The key idea was

the fact that the mean transition time is closely related to the inverse of the

so-called capacity (see Section 3.2.1 for the precise definition) between two

metastable states, which can be precisely estimated using dual variational

formulas known as the Dirichlet and Thomson principles (cf. Section 3.2.5).

Using this approach, under suitable assumptions on the potential U , they

proved that the Eyring–Kramers formula for the d-dimensional Langevin dy-

4
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namics (1.4) is represented as

Em[τN (s)] '
2π

−µσ

√
− det∇2U(σ)

det∇2U(m)
· e

U(σ)−U(m)
ε as ε→ 0,

where µσ is the unique negative eigenvalue of ∇2U(σ). A sketch of the gist

of this approach is provided in Section 3.2. More technical details and also a

summary of the main results achieved so far can be found in the monograph

[16] by Bovier and den Hollander.

1.4 Martingale approach: Markov chain model

reduction

About ten years later, Beltrán and Landim [5, 7, 8] introduced a new method

to characterize metastability, which is the so-called Markov chain model re-

duction. They characterized the successive transitions between metastable

states as Markovian simple jumps between the states by certain coarse-

graining arguments. More precisely, the idea was to accelerate the original

system by a certain time scale (which is indeed the scale of the metastable

transition), and prove that the law of trajectories of this accelerated process

converges, in the Skorokhod topology on the path space, to the law of a sim-

ple Markov chain which represents the macroscopic metastable transitions of

the system. Details can be found in Section 3.1.2. The convergence is proved

by means of the martingale characterization of Markov processes (cf. [80]);

because of this feature, this method is also known as the martingale approach

to metastability. Rich motivations and ideas of this theory are presented in

the recent survey [52] by Landim.

5
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1.5 Organization of the thesis

In Part I, we summarize the results [10, 44, 46, 47, 48] regarding the metasta-

bility phenomenon in ferromagnetic Ising and Potts models and also in some

related systems. In Chapter 2, we briefly review the classic results in the

Ising model with positive magnetic field. In Chapter 3, we present the first

main result of this thesis, along with the outline of the general strategies

used throughout. Chapters 4 and 5 are devoted to some generalized models

of the model in Chapter 3. Chapter 6 deals with another model, namely the

Blume–Capel model, in which we find some similar but different features

of metastability in the low-temperature regime. In Chapter 7, we deal with

a generalized version of the Potts model whose energy landscape has much

more complex structure.

In Part II, we consider the condensing inclusion process and explain how

the metastability phenomenon occurs in this interacting particle system [43,

45]. In Chapter 8, we summarize the previous results in the reversible case.

Then, in Chapter 9, we present a result which considerably generalizes the

ones presented in the previous chapter. Finally, in Chapter 10, we present

yet another generalization regarding non-reversible inclusion processes.
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Part I

Ferromagnetic Ising/Potts and

related models
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Here, we settle some notation and rules that are frequently used in the

remainder of this thesis.

• For a, b ∈ R, Ja, bK denotes [a, b] ∩ Z.

• The set of natural numbers N includes 0.

• Written a, b ∈ A or {a, b} ⊆ A, it is implied implicitly that a and b

are different. The same holds for three or more elements.

• C > 0 denotes a positive constant, which does not depend on the

variables (β in Part I, in particular L in Chapter 5, and N in Part II,

in particular L in Sections 10.2.4 and 10.7), but may vary from line to

line.

• For two functions f and g of the variable mentioned above, it is denoted

as

– f = O(g) if there exists C such that |f | ≤ C|g|;

– f = Θ(g) if f = O(g) and g = O(f);

– f = o(g) or f � g if lim
f

g
= 0 (as the variable tends to infinity);

– f ' g if lim
f

g
= 1.

• For a ∈ R, bac (resp. dae) denotes the greatest (resp. least) integer less

than (resp. greater than) or equal to a.

8



Chapter 2

Classic result: Ising model with

positive external field

We fix a two-dimensional (2D) square lattice Λ = {1, 2, . . . , L}2 given peri-

odic boundary conditions, and a collection Ω = {+1, −1} of plus and minus

spins. Then, the spin configuration space is defined as X = ΩΛ. For each

configuration σ ∈ X , we define the Hamiltonian (or energy) as

H(σ) = Hpos(σ) :=
∑

{x, y}⊆Λ:x∼y

1{σ(x) 6= σ(y)} − h
∑
x∈Λ

1{σ(x) = +1},

where x ∼ y if and only if x and y are nearest neighbors. Here, h ∈ (0, 1) is

a small positive external field.

Denote by � ∈ X (resp. � ∈ X ) the configuration such that all spins are

+1 (resp. −1). Then, it is easy to verify that � is the unique global minimum

of H and � is a local minimum of H.

Definition 2.0.1 (Metropolis–Hastings dynamics).

• We define a spin-flipping dynamics σMH
β (t), t ≥ 0 as the continuous-

time Markov chain on X , characterized by the infinitesimal generator

9
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LMH
β which acts on each function f ∈ RX as

(LMH
β f)(σ) =

∑
x∈Λ

∑
a∈Ω

e−βmax{H(σx, a)−H(σ), 0}(f(σx, a)− f(σ)) (2.1)

for all σ ∈ X , where σx, a is obtained from σ by updating the spin at site

x to spin a, and β > 0 is the inverse temperature of the system. This is

a continuous-time version of the well-known Metropolis–Hastings (MH)

dynamics (which corresponds to the superscripts MH in σMH
β and LMH

β ),

and also known as the Glauber dynamics.

• Denote by rMH
β (·, ·) the jump rate of the process, i.e.,

rMH
β (σ, σx, a) = e−βmax{H(σx, a)−H(σ), 0}, rMH

β (σ, ζ) = 0 otherwise.

The jump rate to flip a spin equals 1 if the energy does not increase,

and equals e−β∆ if the energy increases by ∆. Thus, if β is large (low

temperature), it is exponentially difficult to increase the energy.

According to the MH dynamics, the state � is expected to be metastable.

In turn, we investigate the typical behavior of the metastable transition from

� to the stable configuration �.

Definition 2.0.2 (Gibbs distribution). We denote by µβ the Gibbs distribu-

tion on the system:

µβ(σ) =
1

Zβ
e−βH(σ) for all σ ∈ X ,

where Zβ is the normalizing constant
∑
σ∈X

e−βH(σ), known as the partition

function, such that µβ is indeed a probability distribution.

10
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The following detailed balance condition holds:

µβ(σ)rMH
β (σ, ζ) = µβ(ζ)rMH

β (ζ, σ) =

min{µβ(σ), µβ(ζ)} if ζ = σx, a 6= σ,

0 otherwise.

(2.2)

Thus, the following lemma is straightforward.

Lemma 2.0.3. The MH dynamics σMH
β (·) is reversible, and thus invariant

with respect to the Gibbs distribution µβ.

Notation 2.0.4. In the remainder of the article, denote by Pσ and Eσ the

law and the corresponding expectation of the dynamics starting from config-

uration σ. Moreover, denote by τA the (random) hitting time of a collection

A of configurations.

According to this notation, we are interested in the typical behavior of τ�

when the dynamics starts from �. The following exponential estimates were

verified in [71, Theorems 2 and 3].

Theorem 2.0.5. Define Γ = Γpos := 4`c−h[`c(`c−1)+1], where `c := d2/he.
Then, starting from �, the following statements hold for the metastable tran-

sition of the dynamics.

(1) lim
β→∞

β−1 log τ� = Γ in probability.

(2) lim
β→∞

β−1 logE�[τ�] = Γ.

(3) lim
β→∞

τ�/E�[τ�] = exp(1) in distribution, where exp(1) is a unit-mean

exponential random variable.

Remark 2.0.6. In Theorem 2.0.5, the value Γpos corresponds to the energy

barrier of the system. More precisely, Γpos equals the minimal amount of

energy to overcome among all possible transition paths from � to �. It was

further proved in [71] that this precise level Γpos is attained at configurations
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which contain the so-called critical droplet of plus spins in the sea of minus

spins. The critical droplet has the form of an (`c − 1)× `c quasi-square plus

a single protuberance on one of the longer sides. It is easy to check that this

type of configuration has Hamiltonian exactly H(�) + Γpos.

This result was extended in [9, Theorem 7.36] to the same model on the

three-dimensional (3D) periodic lattice, Λ3D = {1, 2, . . . , L}3.

Theorem 2.0.7. Define

Γ = Γpos-3D := 2mc(mc − δc) + 2mc(mc − 1) + 2(mc − δc)(mc − 1) + 4`c

− h[mc(mc − δc)(mc − 1) + `c(`c − 1) + 1],

where mc := d4/he and δc ∈ {0, 1} is determined by h. Then, the three

statements in Theorem 2.0.5 hold as well.

Remark 2.0.8. Similarly, Γpos-3D corresponds to the 3D energy barrier from

� to �, which is attained at 3D critical configurations. Concisely, the critical

droplet has the form of a quasi-cube, plus a quasi-square attached to one

of the biggest faces of the quasi-cube, plus a single protuberance on one of

the longer sides of the quasi-square. Thus, one can immediately catch the in-

ductive nature of the critical droplet, and conjecture that the d-dimensional

Ising model will exhibit a similar metastable behavior characterized by criti-

cal configurations whose form consists of consecutive m-quasi-c ubes for lower

dimensions m ∈ J1, d − 1K. However, proving such a result involves highly

complicated analyses of the geometric nature of high-dimensional lattices,

and thus the problem remains open at this point.

Focusing in particular on the second statement in Theorem 2.0.5, we may

predict that the mean transition time E�[τ�] roughly behaves like eβΓ. Mov-

ing further, in [22], the authors obtained the corresponding Eyring–Kramers

formula in both 2D and 3D models, by means of the potential-theoretic ap-

proach explained in Section 1.3.
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Theorem 2.0.9 (Eyring–Kramers formula).

(1) In the 2D Ising model, it holds that

E�[τ�] = (1 + o(1)) · 3

4(2`c − 1)L2
· eβΓ.

(2) In the 3D Ising model, it holds that

E�[τ�] =
1 + o(1)

8(mc − `c + 1)(mc − `c − δc + 1)(2`c − 1)L3
· eβΓ.
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Chapter 3

Ising/Potts models with zero

external fields

In this chapter, we denote by

Λ = {1, 2, . . . , K} × {1, 2, . . . , L}

the 2D rectangular lattice with K ≤ L. For technical reasons, we assume

that the lattice is sufficiently large; let 11 ≤ K ≤ L. For simplicity, we only

consider the case in which Λ is given periodic boundary conditions, so that

we can write

Λ = TK × TL, (3.1)

where Tn := Z/(nZ) represents the discrete 1D n-torus. The following argu-

ments can also be directly applied to the same model with open boundary

conditions; see Section 3.1.4 for a summary.

We denote the collection of spins as Ω = {1, . . . , q}, where q = 2 (resp.

q ≥ 3) corresponds to the Ising (resp. Potts) model. On the configuration
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space X = ΩΛ, the Hamiltonian with zero external field is defined as

H(σ) =
∑

{x, y}⊆Λ:x∼y

1{σ(x) 6= σ(y)}. (3.2)

For each spin a ∈ Ω, denote by a the configuration such that all spins are a,

and collect S := {1, . . . , q}. Then,

S = arg min
σ∈X

H(σ),

and thus the elements of S are called ground states.

Recall the Gibbs distribution from Definition 2.0.2. The next theorem

asserts that µβ is concentrated on the ground states in the low temperature

regime β →∞.

Theorem 3.0.1. It holds that Zβ = q +O(e−4β). In turn,

lim
β→∞

µβ(S) = 1 and lim
β→∞

µβ(s) =
1

q
for all s ∈ S.

The proof is elementary, and we omit the details.

Reversible Metropolis–Hastings dynamics

As in Definitions 2.0.1 and 2.0.2, we define the spin-flipping MH dynamics

σMH
β (t), t ≥ 0. Then, Lemma 2.0.3 is also valid in this case, so that the µβ is

the invariant distribution of the reversible MH dynamics σMH
β (·).

Non-reversible cyclic dynamics

We next introduce a non-reversible spin-flipping dynamics, also of Metropolis

type, under which the spin updates occur in a cyclic manner.
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Definition 3.0.2 (Cyclic dynamics). First, we denote by τxσ ∈ X the con-

figuration obtained from σ by rotating the spin at x:

(τxσ)(y) =

σ(x) + 1 if y = x,

σ(y) otherwise,

where we use the convention that q + 1 = 1. Then, denote by σcyc
β (t), t ≥ 0

the continuous-time Markov process on X with its corresponding infinitesimal

generator Lcyc
β acting on functions f ∈ RX as

(Lcyc
β f)(σ) =

∑
x∈Λ

e−βmaxa∈Ω{H(σx, a)−H(σ)}(f(τxσ)− f(σ)) for all σ ∈ X .

(3.3)

We call σcyc
β (·) the cyclic dynamics. Later, it is verified in Proposition 3.3.1

that the Gibbs distribution µβ is again the invariant distribution of the model.

Denote by rcyc
β (·, ·) the transition rate of the cyclic dynamics.

For q = 2, that is, for the Ising model, we obtain σcyc
β (·) ≡ σMH

β (·).
However, for q ≥ 3, the cyclic dynamics is non-reversible since a rotation

of a spin cannot be reversed, and thus, the cyclic dynamics behaves in a

fundamentally different manner to the reversible MH dynamics. In summary,

we can regard the cyclic dynamics as a non-reversible generalization of the

standard MH dynamics of the Potts model.

Finally, we remark that the metastability of a similar cyclic (non-reversible)

dynamics for the mean-field Potts model was studied in [59, 63].

Notation for two dynamics

In the remainder of this chapter, we omit the explicit labels in σMH
β (·) (resp.

LMH
β and rMH

β (·, ·)) and σcyc
β (·) (resp. Lcyc

β and rcyc
β (·, ·)), and simply denote

as σβ(·) (resp. Lβ and rβ(·, ·)) for both dynamics, when no risk of confusion

arises.
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Other models

All metastability results that are explained in the following section for the

MH/cyclic dynamics can be extended to several other interesting non-reversible

models. An introduction of these models and an explanation of the corre-

sponding main results are presented in Section 3.3 without detailed proofs.

3.1 Main results

In this section, we explain our main results of Chapter 3. To investigate

the metastable behavior of the dynamical system, first one has to quantify

the energy barrier between metastable sets. Since the ground states operate

as metastable states in the β → ∞ regime, we compute the energy barrier

between them.

Edge structure

For σ, ζ ∈ X , we write σ ∼ ζ if the dynamics can jump from σ to ζ or vice

versa, that is,

rβ(σ, ζ) + rβ(ζ, σ) > 0. (3.4)

Note that σ ∼ ζ if and only if ζ ∼ σ. This relation depends on the selection

of the dynamics, but not on the value of β > 0.

Height of paths

We first define height H(σ, ζ) between σ and ζ with σ ∼ ζ as

H(σ, ζ) =

max{H(σ), H(ζ)} for the MH dynamics,

max
a∈Ω

H(σx, a), ζ = τxσ or σ = τxζ for the cyclic dynamics.

(3.5)
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Note that this height is defined so that for both dynamics and for σ, ζ ∈ X
with rβ(σ, ζ) > 0,

µβ(σ)rβ(σ, ζ) = Z−1
β e−βH(σ, ζ). (3.6)

A sequence ω = (ωn)Nn=0 of configurations is defined as a path from ω0 to

ωN if rβ(ωn, ωn+1) > 0 for each n ∈ J0, N − 1K (according to (3.4), this is

a stronger requirement than ωn ∼ ωn+1). We write ω : σ → ζ if ω is a path

from σ to ζ. Subsequently, the height Φω of a path ω = (ωn)Nn=0 is defined as

Φω :=

 max
n∈J0, N−1K

H(ωn, ωn+1) if N ≥ 1,

H(ω0) if N = 0.
(3.7)

We note that, particularly in the MH dynamics, it holds that

Φω = max
n∈J0, N−1K

max{H(ωn), H(ωn+1)} = max
n∈J0, NK

H(ωn), (3.8)

but this result does not hold in the cyclic dynamics.

Communication height and energy barrier

For σ, ζ ∈ X (not necessarily σ ∼ ζ), the communication height Φ(σ, ζ) from

σ to ζ is defined as

Φ(σ, ζ) := min
ω:σ→ζ

Φω. (3.9)

It can be easily checked that

Φ(σ, σ) = H(σ) for all σ ∈ X . (3.10)

Moreover, for two disjoint subsets P and Q we define

Φ(P , Q) := min
σ∈P

min
ζ∈Q

Φ(σ, ζ),
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where we use the convention Φ({σ}, Q) = Φ(σ, Q) and Φ(P , {ζ}) = Φ(P , ζ).

For each a ∈ S, we write

ă := S \ {a}. (3.11)

Then, the energy barrier Γ between ground states is defined as

Γ := Φ(a, ă) for a ∈ S.

Note that Γ does not depend on the selection of a ∈ S owing to the symmetry

of the models. The following result characterizes the energy barrier.

Theorem 3.1.1. For all a, b ∈ S, it holds that

Γ = Φ(a, b) =

2K + 2 for the MH dynamics,

2K + 4 for the cyclic dynamics with q ≥ 3.
(3.12)

The proof of this theorem for the MH dynamics has already been obtained

in [69, Theorem 2.1]. The proof for the cyclic dynamics is presented in Section

3.6.1. We note that the relation Γ = Φ(a, b) for any a, b ∈ S follows directly

from the symmetry of the dynamics in the case of the MH dynamics. On

the other hand, this needs to be proved separately in the case of the cyclic

dynamics.

3.1.1 Eyring–Kramers formula

In view of Theorem 3.0.1, when β is very large, the Gibbs distribution is

concentrated on the ground states in S, and therefore, the associated Marko-

vian dynamics is expected to exhibit metastable behavior. More precisely, the

process σβ(·) starting from a ground state is expected to make a transition to

another one on a large time scale. To describe this hopping dynamics among

the ground states precisely, first, the mean of the transition time from one

ground state to another must be calculated.
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Our first main result for the metastability of the dynamics defined above

is the Eyring–Kramers formula. We again emphasize that K ≤ L is assumed.

The following theorem holds for both MH and cyclic dynamics.

Theorem 3.1.2 (Eyring–Kramers formula). There exists a constant κ =

κ(K, L) > 0 such that for all a, b ∈ Ω (cf. (3.11) and (3.12)),

lim
β→∞

e−ΓβEa[τă] =
κ

q − 1
and lim

β→∞
e−ΓβEa[τb] = κ. (3.13)

Moreover, the constant κ satisfies

κ =
ν0

4
+ oK(1), (3.14)

where oK(1) is a term that vanishes as K →∞, and ν0 is a constant defined

as

ν0 =

1 if K < L,

1/2 if K = L.
(3.15)

In the sequel, any appearance of ν0 refers to (3.15).

We remark that in the case of K < L, the metastable transition occurs

in only one direction of the lattice, whereas in the case of K = L, two

possible (horizontal and vertical) directions exist. This difference induces the

definition (3.15) of ν0. Furthermore, the constants κ(K, L) for the MH and

cyclic dynamics differ (although their limits in the regime K →∞ are equal).

Refer to Section 3.1.3 for comments on the proof of Theorem 3.1.2.

3.1.2 Markov chain model reduction

The aforementioned Eyring–Kramers formula provides a sharp estimate of

the mean transition time from one ground state to another. Furthermore,

since the hopping transitions between ground states occur successively, these

sequential jumps need to be understood in a more systematic manner.
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Approximation by trace process

Definition 3.1.3 (Trace process). We define a non-decreasing random vari-

able TS , the local time in S of the process, as

TS(t) :=

∫ t

0

1{ηN(s) ∈ S}ds for t ≥ 0.

Let T−1
S be its generalized inverse function:

T−1
S (s) = sup{t ≥ 0 : T (t) ≤ s} for s ≥ 0.

Then, the trace process σSβ (t), t ≥ 0 on S is defined by

σSβ (t) = σβ
(
T−1
S (t)

)
for t ≥ 0.

The random time TS(t) measures the local time up to time t that the process

spends in S. Hence, the random function T−1
S reconstructs the global time

of the process, starting from the local time in S. In this sense, the trace

process σSβ (·) on S is obtained from the original process σβ(·) by turning off

the clock whenever it is not in S. Therefore, σSβ (·) becomes a continuous-time

irreducible Markov chain on S. Rigorous proof of this fact can be found in

e.g., [5, Section 6.1].

Since it can be guessed from the Eyring–Kramers formula (cf. Theorem

3.1.2) that the transitions among the ground states occur on the time scale

eΓβ, the original process first needs to be accelerated by this factor to observe

the inter-ground state jumps in the ordinary time scale. Hence, we define the

accelerated trace process

Yβ(t) = σSβ (eΓβt) for all t ≥ 0.

The following estimate verifies that the accelerated original process σβ(eΓβ·)
does not spend meaningful time outside of S, and therefore, the accelerated
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trace process Yβ(·) successfully captures the inter-ground state dynamics.

Theorem 3.1.4 (Negligibility of excursions). For both dynamics, we have

lim
β→∞

max
a∈S

Ea
[ ∫ T

0

1{σβ(eΓβu) /∈ S}du
]

= 0 for all T > 0. (3.16)

Proof. Denote by Pµβ the law of the process σβ(·) starting from distribution

µβ. Then for any u > 0, we obtain

Pa[σβ(u) /∈ S] ≤ 1

µβ(a)
Pµβ [σβ(u) /∈ S] =

µβ(X \ S)

µβ(a)
,

where the final identity holds because µβ is the invariant distribution. Hence,

by the Fubini theorem,

Ea
[ ∫ t

0

1{σβ(eΓβu) /∈ S}du
]

=

∫ t

0

Pa[σβ(eΓβu) /∈ S]du ≤ t · µβ(X \ S)

µβ(a)
,

which vanishes as β →∞ according to Theorem 3.0.1.

Convergence of trace process

We prove that the process Yβ(·) converges to a certain continuous-time Markov

process Y (·) on S. This limiting Markov chain {Y (t)}t≥0 is defined as a

continuous-time Markov chain on S with the uniform jump rate rY (·, ·) given

by

rY (a, b) = κ−1 for all a, b ∈ S, (3.17)

where κ = κ(K, L) is the constant that appears in Theorem 3.1.2. We sub-

sequently obtain the following convergence result for both MH and cyclic

dynamics.

Theorem 3.1.5 (Markov chain model reduction). Suppose that the original

process σβ(·) starts from a ∈ S. Then, the law of the Markov chain Yβ(·)
converges to the law of the limiting Markov chain Y (·) starting from a as
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β → ∞, where the convergence occurs in the sense of the usual Skorokhod

topology.

By combining this result with Theorem 3.1.4, we can describe the metastable

(i.e., the inter-ground state) dynamics of σβ(·) on the time scale eβΓ using

the Markovian movement expressed by Y (·). Therefore, the package of results

in Theorems 3.1.4 and 3.1.5 is known in the literature as the Markov chain

model reduction of the metastable behavior [5, 7, 8]. This method provides a

powerful explanation for the metastable behavior, especially when multiple

ground states exist, as in the current model.

Remark 3.1.6 (Coarse-graining effect). In the cyclic dynamics, the spin can

be updated in only one direction 1→ 2→ · · · → q → 1. However, Theorem

3.1.5 states that the macroscopic jumps among the ground states 1, 2, . . . , q

occur in a uniform manner. Thus, it can be inferred that a coarse-graining

effect removes the cyclic feature of the microscopic world on the macroscopic

scale.

3.1.3 Comments on proof

It was demonstrated in [20] and [7] that the proof of the Eyring–Kramers

formula for both reversible and non-reversible dynamics is reduced to the

estimation of a potential-theoretic notion known as the capacity, which is

defined in Section 3.2.1. The proof of the Markov chain model reduction for

reversible dynamics also relies on the estimation of the capacity (cf. [5]),

whereas [60] showed that the non-reversible case additionally requires the

estimate of the equilibrium potential on each metastable set.

In Section 3.2, we present a novel and robust strategy to derive the es-

timates of the capacity as well as the equilibrium potential based on the

H1-approximation. According to this strategy, the proofs of Theorems 3.1.2

and 3.1.5 are reduced to constructions of certain test functions. This is a

decent simplification of the already-known methodologies, in that:
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(1) Classic potential-theoretic approaches (e.g., [60, 78]) require the con-

struction of a (divergence-free) test flow, which is in general very diffi-

cult to achieve.

(2) This new method provides the estimate of the equilibrium potential as

a by-product (which is crucial in the proof of the Markov chain model

reduction for non-reversible dynamics).

We expect that this strategy will be applicable to a wide range of non-

reversible models. The details of this method are discussed in Section 3.2.6.

Analysis of energy landscape

A deep understanding of the energy landscape as well as the behavior of

the dynamics thereon is required to construct a test function to employ our

strategy. The main difficulty of the zero external field model considered in

this chapter lies on the complexity of the saddle structure. This structure

consists of a large plateau with a high magnitude of complexity (compared

to the non-zero external field model, in which the saddle structure is sharp

and fully characterized by the existence of a special form of critical droplets).

This is another major difficulty that we aim to overcome.

However, it is impossible to describe the saddle structure without the

definition of numerous notions. Hence, we provide a detailed explanation of

the saddle structure for the MH and cyclic dynamics in Sections 3.4 and

3.6, respectively. Thereafter, we construct the test functions for the MH and

cyclic dynamics in Sections 3.5 and 3.7, respectively.

3.1.4 Remarks on open-boundary models

A careful investigation of our proof reveals that all results explained above

can also be extended to the open-boundary model. In the open-boundary
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model, the energy barrier is given by

Γ =

K + 1 for the MH dynamics,

K + 3 for the cyclic dynamics with q ≥ 3,

and the constant κ that appears in Theorem 3.1.2 satisfies

κ(K, L) = (4KL)−1[ν0 + oK(1)].

With these modifications, Theorems 3.1.1, 3.1.2, 3.1.4, and 3.1.5 also hold.

3.2 Potential theory and H1-approximation

In this section, we first provide a brief but self-contained summary of the

essential background on the potential theory of non-reversible Markov pro-

cesses on discrete spaces. For more detailed explanation, we refer to [7, 34, 79].

Then, we introduce a new strategy, the H1-approximation method, to prove

the Eyring–Kramers formula and Markov chain model reduction. We explain

our strategy in terms of the process σβ(·), which is either the MH or the cyclic

dynamics. Note again that we do not assume reversibility of the underlying

process σβ(·).
In the current section, we fix two disjoint non-empty subsets P and Q of

X .

3.2.1 Preliminaries

Equilibrium potential and capacity

The equilibrium potential between P and Q is the function hP,Q = hβP,Q :

X → [0, 1] defined by

hP,Q(σ) = Pσ[τP < τQ] for all σ ∈ X . (3.18)
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This function can also be characterized as the unique solution of the following

equation (cf. (2.1) and (3.3)):
hP,Q ≡ 1 on P ,

hP,Q ≡ 0 on Q,

LβhP,Q ≡ 0 on (P ∪Q)c.

(3.19)

Denote by Dβ(·) the Dirichlet form associated with the process σβ(·); i.e.,

for each f : X → R,

Dβ(f) := 〈f, −Lβf〉µβ =
1

2

∑
σ, ζ∈X

µβ(σ)rβ(σ, ζ)[f(ζ)− f(σ)]2, (3.20)

where 〈·, ·〉µβ denotes the L2(µβ)-inner product defined by

〈f, g〉µβ :=
∑
σ∈X

f(σ)g(σ)µβ(σ).

Especially, according to the second representation, the Dirichlet form gives

an H1-seminorm structure to L2(µβ). In particular, it holds that√
Dβ(f + g) ≤

√
Dβ(f) +

√
Dβ(g) for all f, g : X → R. (3.21)

The capacity between P and Q is then defined as

Capβ(P , Q) := Dβ(hP,Q). (3.22)

Adjoint dynamics

We denote by r∗β(·, ·) the adjoint transition rate with respect to the original

transition rate rβ(·, ·); i.e., for all σ, ζ ∈ X ,

r∗β(σ, ζ) :=
µβ(ζ)rβ(ζ, σ)

µβ(σ)
. (3.23)
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The adjoint dynamics {σ∗β(t)}t≥0 is the continuous-time Markov process on

X with jump rate r∗β(·, ·). The process σ∗β(·) also admits µβ as its unique

invariant distribution (cf. [34, Section 2]). Note that if the process σβ(·) is

reversible, we have r∗β(·, ·) ≡ rβ(·, ·) by the detailed balance condition, and

hence it holds that σβ(·) ≡ σ∗β(·).
We can define the equilibrium potential h∗P,Q and the capacity Cap∗β(P , Q)

with respect to the adjoint dynamics σ∗β(·) in the same manner as above. It

is well known, see e.g. [34, display (2.4)], that Capβ(P , Q) = Cap∗β(P , Q).

3.2.2 Reduction to potential-theoretic estimates

In this subsection, we explain the relation between the potential-theoretic no-

tions explained above and our main theorems (namely, the Eyring–Kramers

formula and the Markov chain model reduction).

General strategy for Eyring–Kramers formula

The proof of the Eyring–Kramers formula relies on the so-called magic for-

mula discovered for the reversible case in [20] and then extended to the non-

reversible case in [7, Proposition A.2]. This formula asserts that for a ∈ S and

Q ⊆ ă (cf. (3.11)), we have the following expression for the mean transition

time:

Ea[τQ] =
1

Capβ(a, Q)

∑
ζ∈X

µβ(ζ)h∗a,Q(ζ). (3.24)

By Theorem 3.0.1 and a trivial bound 0 ≤ h∗a,Q ≤ 1 (cf. (3.18)), we have

0 ≤
∑
ζ∈X\S

µβ(ζ)h∗a,Q(ζ) ≤ µβ(X \ S) = o(1).

Inserting this to (3.24) and applying Theorem 3.0.1 again, we obtain

Ea[τQ] =
1

Capβ(a, Q)

[∑
s∈S

1

q
h∗a,Q(s) + o(1)

]
. (3.25)
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Therefore, in order to prove the Eyring–Kramers formula, it suffices to deduce

sharp asymptotics of Capβ(a, Q) and h∗a,Q(s) for each s ∈ S.

General strategy for Markov chain model reduction

Denote by rYβ(·, ·) : S × S → [0, ∞) the jump rate of the accelerated trace

process Yβ(·). Then, to prove the convergence of Yβ(·) to the process Y (·)
with jump rate (3.17), it suffices to prove conditions (H0) and (H1) in [7,

Theorem 2.1]. In the specific cases when the metastable sets are singletons,

such as in our case, condition (H1) is trivial and we are left to verify condition

(H0), which is according to our notation,

lim
β→∞

rYβ(a, b) =
1

κ
. (3.26)

It has been discovered in [7, 60] that

rYβ(a, b) = eβΓ
Capβ(a, ă)

µβ(a)
hb,S\{a, b}(a) for a, b ∈ S. (3.27)

Thus, in view of Theorem 3.0.1, to prove (3.26), it suffices to estimate Capβ(a, ă)

and hb,S\{a, b}(a) for a, b ∈ S.

Summing up, we can observe that Theorems 3.1.2 and 3.1.5 are conse-

quences of sharp estimates of Capβ(P , Q), hP,Q(s), and h∗P,Q(s) for disjoint

non-empty subsets P , Q ⊆ S and s ∈ S. These estimates will be established

in the next subsection (cf. Theorems 3.2.3 and 3.2.4).

Remark 3.2.1. We remark that in the reversible case, it is possible to calculate

the transition rate of the trace process in terms of capacities only. Indeed,

according to [5, Lemma 6.8], it holds that for a, b ∈ S,

µβ(a)rYβ(a, b) =
1

2

[
Capβ(a, ă) + Capβ(b, b̆)− Capβ({a, b}, S \ {a, b})

]
.

(3.28)

According to this strategy, in the reversible case, it suffices to estimate
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Capβ(A, S \ A) for A ⊆ S. However, to pursue the complete level of gener-

ality also for non-reversible dynamics, we focus on the former strategy based

on (3.27).

3.2.3 Estimates of capacity and equilibrium potential

Auxiliary constants

To state the main estimates, we first need to introduce the bulk and edge

constants, which stand for the bulk and edge parts, respectively, of the saddle

structure.

The bulk constant b = b(K, L) is defined by (cf. (3.15))

b :=


ν0

(K + 2)(L− 4)

4KL
for the MH dynamics,

ν0
(K − 2)(L− 4)

4KL
for the cyclic dynamics with q ≥ 3,

(3.29)

while the edge constant e = e(K, L) is defined by

e :=
ν0

L
e0, (3.30)

where a complicated expression for the constant e0 will be given in (3.64) and

(3.104) for the MH and cyclic dynamics, respectively. Finally, the constant

κ that appears in Theorem 3.1.2 is defined by

κ := b + 2e. (3.31)

Lemma 3.2.2. The constant κ satisfies (3.14).

Proof. By Propositions 3.4.23 and 3.6.14, we have 0 < e ≤ 1

L
and 0 < e <

2

L
for the MH and cyclic dynamics, respectively. Thus, e = oK(1) and therefore

the conclusion of the lemma follows immediately from the expression (3.29)

of the bulk constant.
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Main estimates

We start from the capacity estimate.

Theorem 3.2.3. If P and Q are disjoint non-empty subsets of S, it holds

that

Capβ(P , Q) = (1 + o(1)) · c0(P , Q)e−Γβ, (3.32)

where c0(P , Q) :=
|P||Q|

κ(|P|+ |Q|)
.

Next, we state the estimate of equilibrium potentials.

Theorem 3.2.4. If P and Q are disjoint non-empty subsets of S and s ∈
S \ (P ∪Q), it holds that

hP,Q(s), h∗P,Q(s) = (1 + o(1)) · |P|
|P|+ |Q|

.

Up to this point, we followed a standard argument from the study of

metastability. The main difficulty in this approach lies on the proof of these

two theorems, especially when the dynamics is non-reversible.

3.2.4 Proof of the main results

Before proceeding to the proof of Theorems 3.2.3 and 3.2.4, we assume that

these theorems hold and then prove the main results.

Proof of Theorem 3.1.2. We fix a ∈ S and Q ⊆ ă, so that the estimate

(3.25) on Ea[τQ] holds. Applying Theorems 3.2.3 and 3.2.4 to this estimate,

we obtain

Ea[τQ] = (1 + o(1)) · κ
|Q|

eΓβ.

Inserting Q = ă or {b} completes the proof.
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Proof of Theorem 3.1.5. Applying Theorems 3.0.1, 3.2.3 and 3.2.4 to the ex-

pression (3.27) of the jump rate rYβ(·, ·) yields that, for all a, b ∈ S,

rYβ(a, b) = eΓβ ·
(1 + o(1)) · 1·(q−1)

κ(1+(q−1))
e−Γβ

1
q

+ o(1)
·
( 1

q − 1
+ o(1)

)
=

1

κ
+ o(1).

This completes the proof.

We remark that particularly in the reversible case, we may alternatively

apply the stategy explained in Remark 3.2.1. Namely, for all a, b ∈ S,

rYβ(a, b) =
Capβ(a, ă) + Capβ(b, b̆)− Capβ({a, b}, S \ {a, b})

2µβ(a)
.

Hence, by Theorems 3.2.3 and 3.0.1, we obtain the desired result.

3.2.5 Classic strategy: Dirichlet and Thomson princi-

ples

In this subsection, we explain two classic variational principles to estimate

the capacity.

Dirichlet principle: reversible case

First, we establish the minimization principle for Capβ(P , Q) when the pro-

cess is reversible. We define

Ca, b(P , Q) := {f ∈ RX : f = a on P and f = b on Q}. (3.33)

Theorem 3.2.5 (Dirichlet principle, reversible case). If the process is re-

versible, we have

Capβ(P , Q) = min
f∈C1, 0(P,Q)

Dβ(f).
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Moreover, the equilibrium potential hP,Q is the unique optimizer of the min-

imization problem.

For the proof of this well-known principle, we refer to [16, Chapter 7].

We remark that this principle holds for the process σMH
β (·) since the MH

dynamics is reversible, whereas it does not necessarily hold for σcyc
β (·) since

the cyclic dynamics is irreversible for q ≥ 3.

Thomson principle: reversible case

In order to explain the maximization problem for capacities, we introduce

the flow structure.

Definition 3.2.6 (Flow structure). • A function φ : X × X → R is

called a flow on X associated with the Markov process σβ(·), if it is

anti-symmetric in the sense that φ(σ, ζ) = −φ(ζ, σ) for all σ, ζ ∈ X ,

and satisfies φ(σ, ζ) 6= 0 only if σ ∼ ζ (cf. (3.4)).

• For each flow φ, we define the norm and divergence of the flow φ by

‖φ‖2 :=
1

2

∑
σ, ζ∈X :σ∼ζ

φ(σ, ζ)2

µβ(σ)rβ(σ, ζ)
,

(div φ)(σ) :=
∑
ζ∈X

φ(σ, ζ) =
∑

ζ∈X :σ∼ζ

φ(σ, ζ),

(div φ)(P) :=
∑
σ∈P

(div φ)(σ).

• A flow φ is called a unit flow from P toQ if (div φ)(P) = 1, (div φ)(Q) =

−1, and

(div φ)(σ) = 0 for all σ ∈ (P ∪Q)c.

Then, the following Thomson principle holds, which is a natural counter-

part to the Dirichlet principle.
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Theorem 3.2.7 (Thomson principle, reversible case). If the process is re-

versible, we have

Capβ(P , Q) = max
φ: unit flow from P to Q

1

‖φ‖2
.

Moreover, the harmonic flow

ϕP,Q(σ, ζ) := µβ(σ)rβ(σ, ζ)[hP,Q(σ)− hP,Q(ζ)] (3.34)

is the unique optimizer of the maximization problem.

For the moment, assume that the process is reversible. Combining Theo-

rems 3.2.5 and 3.2.7, if we find suitable test objects ftest and φtest, approximat-

ing the equilibrium potential hP,Q and the harmonic flow ϕP,Q, respectively,

we obtain the bounds

1

‖φtest‖2
≤ Capβ(P , Q) ≤ Dβ(ftest).

If the asymptotic limits of the upper and lower bounds match, then we may

conclude that the asymptotic limit of the capacity is also the same.

Generalized Dirichlet and Thomson principles

Next, we state a generalized version of the previous variational principles in

the non-reversible setting, established in [34, 79, 78]. For a function f : X →
R we define flows Φf and Φ∗f as

Φf (σ, ζ) := f(σ)µβ(σ)rβ(σ, ζ)− f(ζ)µβ(ζ)rβ(ζ, σ).

Φ∗f (σ, ζ) := f(σ)µβ(ζ)rβ(ζ, σ)− f(ζ)µβ(σ)rβ(σ, ζ).
(3.35)

One can easily verify that Φf and Φ∗f are indeed flows. Moreover, if the process

is reversible, it is straightforward that Φf ≡ Φ∗f . Notice that the harmonic

flow ϕP,Q defined in (3.34) in the reversible case is exactly ΦhP,Q .
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Theorem 3.2.8 (Generalized Dirichlet–Thomson principle [78, Theorem

5.3]).

(1) (Generalized Dirichlet principle) For f ∈ C1, 0(P , Q) and flow φ,

Capβ(P , Q) ≤ ‖Φf − φ‖2 + 2
∑
σ∈X

hP,Q(σ)(div φ)(σ). (3.36)

Equality holds if and only if

(f, φ) =
(hP,Q + h∗P,Q

2
,

Φh∗P,Q
− Φ∗hP,Q
2

)
.

(2) (Generalized Thomson principle) For g ∈ C0, 0(P , Q) and flow ψ,

Capβ(P , Q) ≥ 1

‖Φg − ψ‖2

[∑
σ∈X

hP,Q(σ)(divψ)(σ)
]2

. (3.37)

Equality holds if and only if

(g, ψ) =
( h∗P,Q − hP,Q

2Capβ(P , Q)
,

Φh∗P,Q
+ Φ∗hP,Q

2Capβ(P , Q)

)
.

Thus, the strategy remains the same as in the reversible case; we intend

to find suitable test objects ftest, φtest, gtest, and ψtest such that the right-

hand sides of (3.36) and (3.37) give the same asymptotic limit as β → ∞.

However, one can easily notice that it becomes a far more demanding task

than it was in the reversible case.

3.2.6 New strategy based on H1-approximation

In this subsection, we now explain our new strategy, the H1-approximation

method, to prove Theorems 3.2.3 and 3.2.4.
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H1-approximation of equilibrium potentials

In view of the expression (3.22), the natural first step to estimate the capacity

is to find good approximations of the equilibrium potentials hP,Q and h∗P,Q.

Since the Dirichlet form Dβ(f) can be regarded as the square of an H1-

seminorm (cf. (3.21)), the approximation is carried out in the sense of this

seminorm.

Proposition 3.2.9. In the setting of Theorems 3.2.3 and 3.2.4, there exist

h̃ = h̃P,Q and h̃∗ = h̃∗P,Q such that all of the following properties hold.

(1) Two functions h̃ and h̃∗ approximate hP,Q and h∗P,Q in the sense that

Dβ(hP,Q − h̃), Dβ(h∗P,Q − h̃∗) = o(e−βΓ). (3.38)

(2) We have

Dβ(h̃), Dβ(h̃∗) = (1 + o(1)) · c0(P , Q)e−Γβ, (3.39)

where c0(P , Q) is the constant that appears in Theorem 3.2.3.

(3) The values of h̃ and h̃∗ on the set S of ground states are given as

h̃(s) = h̃∗(s) =


1 if s ∈ P ,

0 if s ∈ Q,
|P|

|P|+ |Q|
if s ∈ S \ (P ∪Q).

(3.40)

The proof of this proposition, i.e., the construction of h̃ and h̃∗ satisfying

all properties above will be given in Sections 3.5 and 3.7 for the MH and

cyclic dynamics, respectively. We note that the properties (3.39) and (3.40)

are inspired from Theorems 3.2.3 and 3.2.4, respectively.

We now conclude this section by explaining the general strategy to derive

Theorems 3.2.3 and 3.2.4 from Proposition 3.2.9. We abbreviate h = hP,Q

and h∗ = h∗P,Q. Let us first look at Theorem 3.2.3.
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Proof of Theorem 3.2.3. In principle, the estimate of Capβ(P , Q) = Dβ(h)

should follow from that of Dβ(h−h̃) and Dβ(h̃) obtained in (3.38) and (3.39),

respectively, since Dβ(·)1/2 defines a seminorm. Indeed, by (3.21), we have

Dβ(h̃)1/2 −Dβ(h− h̃)1/2 ≤ Dβ(h)1/2 ≤ Dβ(h̃)1/2 +Dβ(h− h̃)1/2,

and thus by (3.38) and (3.39), we obtain

Dβ(h) = (1 + o(1)) · c0(P , Q)e−Γβ.

This completes the proof since Capβ(P , Q) = Dβ(h).

Remark 3.2.10. It should be emphasized here that Proposition 3.2.9-(3) is

not used in the proof of the capacity estimate. It will only be used in the

proof of Theorem 3.2.4.

Next, we explain the robust proof of Theorem 3.2.4. It should be remarked

that there was no robust method known in the literature to estimate the

equilibrium potential.

Proof of Theorem 3.2.4. We only prove the theorem for h = hP,Q since the

proof for h∗ is identical. Let us fix s ∈ S \ (P ∪Q). Write

δ(s) := h(s)− h̃(s) = h(s)− |P|
|P|+ |Q|

,

so that we wish to prove δ(s) = o(1). Note that there is nothing to prove if

δ(s) = 0. Otherwise, write

G(σ) =
1

δ(s)

[
h(σ)− h̃(σ)

]
for σ ∈ X .

By (3.38), we have

Dβ(G) =
1

δ(s)2
Dβ(h− h̃) =

1

δ(s)2
o(e−βΓ).
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Therefore, it suffices to prove that there exists a constant C > 0 independent

of β such that Dβ(G) ≥ Ce−βΓ. This follows from the fact that G(s) = 1,

G(σ) = 0 for all σ ∈ P ∪Q, and the next lemma.

Lemma 3.2.11. Let s ∈ S \ (P ∪ Q). Then, there exists a constant C > 0

such that

Dβ(F ) ≥ Ce−βΓ (3.41)

for all F ∈ C1, 0(s, P ∪Q) (cf .(3.33)).

Now, we finally discuss the proof of Lemma 3.2.11 which is the last in-

gredient in our robust argument. First, we present few standard strategies

regarding the proof of Lemma 3.2.11.

(1) If σβ(·) is reversible (e.g., the MH dynamics), by the Dirichlet principle

for reversible Markov chains (cf. Theorem 3.2.5), we have Dβ(F ) ≥
Capβ(s, P∪Q). Thus, the lemma is a direct consequence of our capacity

estimate, i.e., Theorem 3.2.3.

(2) If σβ(·) is non-reversible, we can define the symmetrized dynamics σsβ(·)

with jump rate
1

2
(rβ+r∗β)(·, ·). This dynamics is reversible with respect

to µβ. Denote by Capsβ(·, ·) the capacity with respect to σsβ(·). Since

the Dirichlet form associated with the process σsβ(·) is again Dβ(·), by

the Dirichlet principle for reversible Markov chains (cf. Theorem 3.2.5),

we have

Dβ(F ) ≥ Capsβ(s, P ∪Q). (3.42)

Hence, it suffices to estimate Capsβ(s, P ∪Q).

(2-1) Since the capacity estimate of reversible dynamics cannot be more

difficult than non-reversible ones, we can readily derive a result

similar to Theorem 3.2.3 for Capsβ(·, ·) (of course, the constant

c0(P , Q) in the right-hand side must be modified). Such a result,

along with (3.42), directly implies (3.41).
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(2-2) On the other hand if, for all β > 0, the process σβ(·) satisfies

the so-called sector condition (cf. [34, Section 2]) with a certain

constant C0 > 0 independent of β, then by [34, Lemma 2.6],

C0Capsβ(s, P ∪Q) ≥ Capβ(s, P ∪Q).

Thus, in this case Theorem 3.2.3, along with (3.42), immediately

implies (3.41).

In our model, it is possible to use strategy (2-2) since an elementary com-

putation reveals that the cyclic dynamics satisfies the sector condition with

constant C0 = q2. However, instead of explaining this tedious detail, we pro-

vide another simple proof computing Dβ(F ) directly, which is also suitable

for our model.

Proof of Lemma 3.2.11. Let us take a ∈ P ∪ Q. By Theorem 3.1.1, there

exists a path ω = (ωn)Nn=0 from a to s such that H(ωn, ωn+1) ≤ Γ for all

n ∈ J0, N−1K. Note that this path, and thus N , is independent of the inverse

temperature β.

Since rβ(ωn, ωn+1) > 0 and H(ωn, ωn+1) ≤ Γ, it holds from Theorem

3.0.1 and (3.6) that

µβ(ωn)rβ(ωn, ωn+1) =
1

Zβ
e−βH(ωn, ωn+1) ≥ ce−βΓ

for some c > 0. Therefore, by (3.38) and the formula (3.20) for the Dirichlet

form, it holds that

Dβ(F ) ≥ 1

2

N−1∑
n=0

µβ(ωn)rβ(ωn, ωn+1)[F (ωn+1)− F (ωn)]2

≥ c

2
e−βΓ

N−1∑
n=0

[F (ωn+1)− F (ωn)]2.
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Since F (ωN) = F (s) = 1 and F (ω0) = F (a) = 0, by the Cauchy–Schwarz

inequality, the last summation is bounded from below byN−1. This completes

the proof.

3.2.7 Concluding remark

The idea of finding proxies of equilibrium potentials is not novel. Such proxies

already played a significant role in the previous potential-theoretic approach

to metastability as well, since they provide approximations of the optimizers

of the Dirichlet and Thomson principles. The point here is that the new

method suggested above looks at these proxies in a completely different point

of view, and in turn provides much more straightforward way to handle non-

reversible situations and also the equilibrium potential. We refer to Remark

3.7.1 for more detail.

3.3 Other non-reversible models

Before proceeding to the analysis of the energy landscape and construction of

the test functions, we explain some other interesting non-reversible dynamics

associated with the Ising and Potts models that fall into the framework of

Section 3.2. Proofs of the Eyring–Kramers formula and Markov chain model

reduction for these models are similar with that of the cyclic model, and thus

we will omit repetition of the proof.

3.3.1 Generalized cyclic dynamics on the Potts model

In the cyclic dynamics defined in Definition 3.0.2, a spin can only be rotated

in the increasing order (1 → 2 → · · · ). One can also imagine a model for

which the spin can rotate in the opposite direction as well. To introduce this

model, let us define an operator τ−1
x : X → X by
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(τ−1
x σ)(y) =

σ(x)− 1 if y = x,

σ(y) otherwise,

where we use the convention 1− 1 = q. Then, for p ∈ [0, 1], define the jump

rate rβ, p(·, ·) on X × X as

rβ, p(σ, ζ) =


prcyc

β (σ, τxσ) if ζ = τxσ and x ∈ Λ,

(1− p)rcyc
β (σ, τxσ) if ζ = τ−1

x σ and x ∈ Λ,

0 otherwise.

We denote by p-cyclic dynamics the continuous-time Markov process with

jump rate rβ, p(·, ·). Note that the original cyclic dynamics corresponds to

the 1-cyclic dynamics (i.e., p = 1).

Proposition 3.3.1. For all p ∈ [0, 1], the unique invariant distribution of

the p-cyclic dynamics is the Gibbs distribution µβ.

Proof. Since it is clear that the p-cyclic dynamics is irreducible, a unique

invariant distribution exists. In order to show that this is indeed µβ, it suffices

to check that for all σ ∈ X ,∑
x∈Λ

µβ(σ)rβ, p(σ, τ
±1
x σ) =

∑
x∈Λ

µβ(τ±1
x σ)rβ, p(τ

±1
x σ, σ). (3.43)

By a direct computation based on the explicit formula for µβ and rβ, p, we

can check that both sides equal

1

Zβ

∑
x∈Λ

exp
{
− βmax

a∈Ω
H(σx, a)

}
,

and therefore the proof is completed.

Suppose from now on that q ≥ 3, so that the p-cyclic dynamics is not

the MH dynamics. Then, one can readily check that the p-cyclic dynamics is
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reversible if and only if p = 1/2, and the symmetrization (cf. strategy (2-1)

after Lemma 3.2.11) of any p-cyclic dynamics is the 1/2-cyclic dynamics. All

results for the cyclic dynamics can be extended to the p-cyclic dynamics as

follows.

Theorem 3.3.2. For all p ∈ [0, 1], the following statements hold for the

p-cyclic dynamics.

(1) The energy barrier is Γ = 2K + 4.

(2) (Eyring–Kramers formula) There exist constants κi = κi(K, L, p) > 0,

i ∈ J1, q − 1K, such that

lim
β→∞

e−ΓβEa[τă] =
1

κ−1
1 + · · ·+ κ−1

q−1

and lim
β→∞

e−ΓβEa[τb] = κ|b−a|

(3.44)

for all a, b ∈ Ω. The constants (κi)
q−1
i=1 satisfy κi = κq−i for each i ∈

J1, q − 1K and

κi(K, L, p) = ν0
(1 + p̂)(1 + · · ·+ p̂i−1)(1 + · · ·+ p̂q−i−1)

4(1 + · · ·+ p̂q−1)
+ oK(1),

(3.45)

where ν0 is the constant defined in (3.15) and

p̂ = min{p, 1− p}/max{p, 1− p}.

(3) (Markov chain model reduction) Theorems 3.1.4 and 3.1.5 hold with

limiting Markov chain Y (·) defined by the jump rate rY (a, b) = κ−1
|b−a|.

Remark 3.3.3 (Comparison of transition rates). By an elementary compu-

tation, we can verify that the fraction in the right-hand side of (3.45) is

increasing in p ∈ [0, 1/2] and decreasing in p ∈ [1/2, 1]. Therefore, in view of

the Eyring–Kramers formula (3.44), we can observe that the speed of transi-

tion becomes slower if p approaches to 1/2, i.e., to reversibility. We can draw
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the same conclusion when we investigate the Markov chain model reduction.

This verifies a widely-believed fact that a non-reversible dynamics runs faster

than the symmetrized reversible dynamics.

3.3.2 Directed dynamics on the Ising model

One can readily observe that the p-cyclic dynamics defined above is iden-

tical to the reversible MH dynamics if q = 2. Therefore, so far we did not

consider non-reversible dynamics associated with the Ising model. Here, we

introduce such a non-reversible dynamics, first constructed in [38], for which

the analysis of metastable behavior can be done in a similar manner.

Suppose from now on that q = 2, so that Ω = {1, 2}. For each edge

e = {x, y} in Λ (i.e., with x ∼ y), write

He(σ) := 1{σ(x) 6= σ(y)},

so that by definition we can write H(σ) =
∑

e: edge of Λ

He(σ).

For σ ∈ X , we denote by σx, x ∈ Λ, the configuration obtained from σ

by flipping the spin at site x. Then for p ∈ [0, 1], the p-directed dynamics

{σdir
β, p(t)}t≥0 is defined as the continuous-time Markov process with jump rate

rdir
β, p(·, ·) defined by

rdir
β, p(σ, ζ) =

exp
{
− β∆p(σ, ζ)

}
if ζ = σx and x ∈ Λ,

0 otherwise,

where

∆p(σ, σ
x) := p

[
Hex(σ

x)−Hex(σ) +Hnx(σ
x)−Hnx(σ)

]
+ (1− p)

[
Hwx(σ

x)−Hwx(σ) +Hsx(σ
x)−Hsx(σ)

]
.

Here, ex, nx, wx, and sx denote four edges emanating from x towards eastern,
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northern, western and southern directions, respectively.

Note that ∆1/2(σ, σx) = [H(σx)−H(σ)]/2 and therefore for p = 1/2, the

dynamics is reduced to the well-known reversible heat-bath Glauber dynam-

ics. On the other hand, for p 6= 1/2, the dynamics puts different masses on

the north/east edges and on the south/west edges, and thereby exhibits a

spatial non-reversibility. It is verified in [38, Section 3.3] that µβ is the unique

invariant distribution of the p-directed dynamics for all p ∈ [0, 1].

We can also analyze metastability of the p-directed model, and thus de-

duce the following results.

Theorem 3.3.4. For all p ∈ [0, 1], the following statements hold for the

p-directed model.

(1) The energy barrier is Γ = 2K + 4 min{p, 1− p}.

(2) (Eyring–Kramers formula) There exists a constant κ0 = κ0(K, L, p) >

0 such that

lim
β→∞

e−ΓβE1[τ2] = lim
β→∞

e−ΓβE2[τ1] = κ0.

The constant κ0 satisfies κ0(K, L, p) = ν0 + oK(1).

(3) (Markov chain model reduction) Theorems 3.1.4 and 3.1.5 hold with

limiting Markov chain Y (·) defined by the jump rate rY (1, 2) = rY (2, 1) =

κ−1
0 .

We remark that the analysis of the p-directed dynamics is valid only under

periodic boundary conditions.
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3.4 Energy landscape analysis: Metropolis–

Hastings dynamics

In this section, we investigate the energy landscape subjected to the MH

dynamics, and in the next section, we construct the test functions to complete

the proof of Proposition 3.2.9 for the MH dynamics.

Notation. In Sections 3.4 and 3.5 where we consider the MH dynamics, we

use Greek letters η and ξ to denote the spin configurations. On the other

hand, in Sections 3.6 and 3.7 where we consider the cyclic dynamics, we

alternatively use Greek letters σ and ζ to denote the spin configurations.

Remark 3.4.1. The following remarks are important in the upcoming sections.

(1) In Sections 3.4 and 3.5, we always consider the MH dynamics. In par-

ticular, we have Γ = 2K + 2 and we know from [69, Theorem 2.1] that

this Γ is indeed the energy barrier, i.e., Theorem 3.1.1 holds.

(2) In order to focus on the explanation of the saddle structure, which is

quite complicated, we postpone detailed combinatorial proofs of the

technical results to Section 3.9.

3.4.1 Neighborhoods

In the analysis of the energy landscape, the following notions are importantly

used.

Definition 3.4.2 (Neighborhood of configurations). For η ∈ X , we define

the neighborhoods of η as

N (η) := {ξ ∈ X : Φ(η, ξ) < Γ} and N̂ (η) := {ξ ∈ X : Φ(η, ξ) ≤ Γ}.
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Then, for P ⊆ X , we define

N (P) :=
⋃
η∈P

N (η) and N̂ (P) :=
⋃
η∈P

N̂ (η).

Remark 3.4.3. The following statements hold for neighborhoods.

(1) By (3.10), the set N (η) (resp. N̂ (η)) does not contain η provided that

H(η) ≥ Γ (resp. H(η) > Γ).

(2) By (3.8) and (3.9), each configuration ξ ∈ N (η) (resp. N̂ (η)) satisfies

H(ξ) < Γ (resp. H(ξ) ≤ Γ).

With this notation, the fact that Γ is the energy barrier can be reformu-

lated in the following manner.

Notation 3.4.4. We say that a path ω is a c-path if Φω ≤ c. Moreover, a

path ω = (ωn)Nn=0 is called a path in P if ωn ∈ P for all n ∈ J0, NK.

Proposition 3.4.5. For any a, b ∈ S, we have N (a) ∩ N (b) = ∅ and

N̂ (a) = N̂ (b).

Proof. By [69, Theorem 2.1-(i)], any path connecting a and b has height at

least Γ, and there indeed exists a Γ-path from a to b. The first assertion

indicates by contradiction that N (a) ∩ N (b) = ∅, while the second one

implies that N̂ (a) = N̂ (b).

We will now investigate what happens on the boundary of the set N̂ (η).

Lemma 3.4.6. Let η ∈ X and let ξ1 ∈ N̂ (η), ξ2 /∈ N̂ (η), and ξ1 ∼ ξ2. Then,

H(ξ2) > Γ.

Proof. Since ξ1 ∈ N̂ (η), there exists a path ω : η → ξ1 such that Φω ≤ Γ.

Suppose to the contrary that H(ξ2) ≤ Γ. Then, we can concatenate the

directed edge (ξ1, ξ2) at the end of the path ω to form a new path ω̃ : η → ξ2

satisfying Φω̃ ≤ Γ. This contradicts the assumption that ξ2 /∈ N̂ (η).
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The following notion is also important in our investigation.

Definition 3.4.7 (Restricted neighborhood). Let Q ⊆ X . For η ∈ X \ Q,

we define

N̂ (η; Q) := {ξ ∈ X : ∃ω : η → ξ in Qc such that Φω ≤ Γ}.

For P ⊆ X disjoint with Q, we define N̂ (P ; Q) :=
⋃
η∈P

N̂ (η; Q).

By definition, the following lemma is immediate.

Lemma 3.4.8. For all P ⊆ X , it holds that

N̂ (P) = N̂ (P ; ∅).

3.4.2 Canonical configurations

First, we introduce the special form of configurations which will be called

canonical configurations. These configurations are inspired by the expansion

algorithm given in [69, Proposition 2.3]. We note that we shall consistently

refer to Figure 3.1 for illustrations of the configurations introduced in the

following definition. In the figures of this article, each square corresponds to

a site (or vertex) of the lattice Λ.

Definition 3.4.9 (Pre-canonical and pre-regular configurations). We fix

a, b ∈ Ω and construct pre-canonical and pre-regular configurations between

two ground states a and b. We remark that k and ` are used throughout to

represent elements of TK and TL, respectively. In addition, v and h are used

to denote vertical and horizontal lengths, respectively.

• For ` ∈ TL and v ∈ J0, LK, we denote by ξa, b`, v ∈ X the spin configuration

whose spins are b on the sites in

TK × {`+ n ∈ TL : n ∈ J0, v − 1K ⊆ Z}
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Figure 3.1: Canonical configurations for the case (K, L) = (6, 8). These con-
figurations illustrate ξa, b2, 3 (left), ξa, b,+2, 3; 3, 4 (middle), and ξa, b,−2, 3; 2, 3 (right), respec-
tively (see Definition 3.4.9). Notice that our labeling of coordinates follows
the two-dimensional coordinate system, instead of the matrix system.

and a on the remainder. Hence, we have ξa, b`, 0 = a and ξa, b`, L = b for all

` ∈ TL. The configurations ξa, b`, v are called pre-regular configurations.

• For ` ∈ TL, v ∈ J0, L − 1K, k ∈ TK and h ∈ J0, KK, we denote by

ξa, b,+`, v; k, h ∈ X the configuration whose spins are b on the sites in

{
x ∈ Λ : ξa, b`, v (x) = b

}
∪
[
{k + n ∈ TK : n ∈ J0, h− 1K ⊆ Z} × {`+ v}

]
and a on the remainder. Similarly, we denote by ξa, b,−`, v; k, h ∈ X whose

spins are b on the sites in

{
x ∈ Λ : ξa, b`, v (x) = b

}
∪
[
{k + n ∈ TK : n ∈ J0, h− 1K ⊆ Z} × {`− 1}

]
and a on the remainder. Namely, we obtain ξa, b,+`, v; k, h (resp. ξa, b,−`, v; k, h) from

ξa, b`, v by attaching a protuberance of spins b of size h at its upper (resp.

lower) side of the cluster of spin b starting from the k-th location. It

is clear that ξa, b,+`, v; k, 0 = ξa, b,−`, v; k, 0 = ξa, b`, v , ξa, b,+`, v; k,K = ξa, b`, v+1 and ξa, b,−`, v; k,K =

ξa, b`−1, v+1.
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Now, we are ready to define the canonical configurations of X .

Definition 3.4.10 (Canonical and regular configurations). The definition

of canonical configurations differs between the cases of K < L and K = L.

Indeed, this is the main reason why the prefactor of the Eyring–Kramers

formula given in Theorem 3.1.2 differs between these two cases.

• (Case K < L) For a, b ∈ Ω, we define the collection Ca, b of canonical

configurations between a and b as

Ca, b :=
⋃
`∈TL

⋃
v∈J0, LK

{ξa, b`, v} ∪
⋃
`∈TL

⋃
v∈J0, L−1K

⋃
k∈TK

⋃
h∈J1,K−1K

{ξa, b,+`, v; k, h, ξ
a, b,−
`, v; k, h}.

One can easily see that the right-hand side is a decomposition of Ca, b.
Then, we define the collection C of canonical configurations as

C :=
⋃
a, b∈Ω

Ca, b. (3.46)

Similarly, we define

Ra, b
v :=

⋃
`∈TL

{ξa, b`, v} and Qa, bv :=
⋃
`∈TL

⋃
k∈TK

⋃
h∈J1,K−1K

{ξa, b,±`, v; k, h},

and then define Rv and Qv as in (3.46). A configuration belonging to

Rv for some v ∈ J0, LK is called a regular configuration.

• (Case K = L) For a, b ∈ Ω, we temporarily denote by C̃a, b, R̃a, b
v and

Q̃a, bv the collections Ca, b, Ra, b
v and Qa, bv defined in the previous case of

K < L. Define a transpose operator Θ : X → X by

(Θ(σ))(k, `) = σ(`, k) for k ∈ TK and ` ∈ TL. (3.47)

Then, we define A = Ã ∪ Θ(A) where A = Ca, b, Ra, b
v or Qa, bv . The

sets C, Rv and Qv are defined as in (3.46). These modified definitions
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for the case of K = L reflect the fact that the transitions can occur in

both horizontal and vertical directions of the lattice.

We can readily verify from the definition of the Hamiltonian H that

H(η) ≤ Γ for all η ∈ Ca, b, and moreover for a, b ∈ Ω,

H(η) =

Γ− 2 if η ∈ Ra, b
v for v ∈ J1, L− 1K,

Γ if η ∈ Qa, bv for v ∈ J1, L− 2K.
(3.48)

We stress that the definition of canonical configurations is not symmetric

between rows and columns if K < L, as they play different roles. Indeed,

the roles are fundamentally different in the metastable transitions, and that

leads to the fact that the energy barrier Γ depends only on K, not on L.

The following notation will be used throughout.

Notation 3.4.11. Suppose that N ≥ 2 is a positive integer.

• Define SN as the collection of connected subsets of TN , including the

empty set.

• For P, P ′ ∈ SN , we write P ≺ P ′ if P ⊆ P ′ and |P ′| = |P |+ 1.

• A sequence (Pm)Nm=0 of sets in SN is called an increasing sequence if it

satisfies

∅ = P0 ≺ P1 ≺ · · · ≺ PN = TN ,

so that |Pm| = m for all m ∈ J0, NK.

Now, we construct the so-called canonical paths between two ground

states.

Definition 3.4.12 (Canonical paths).

(1) We first introduce a standard sequence of subsets of Λ connecting the

empty set ∅ and the full set Λ.
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Figure 3.2: Example of a canonical path for the case of (K, L) = (6, 8).
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(a) First, for P, P ′ ∈ SL with P ≺ P ′, we say that a sequence (Ah)
K
h=0

of subsets of Λ is a standard sequence connecting TK × P and

TK×P ′ if there exists an increasing sequence (Qh)
K
h=0 in SK such

that

Ah = (TK × P ) ∪
[
Qh × (P ′ \ P )

]
for all h ∈ J0, KK.

(b) Now, a sequence (Am)KLm=0 of subsets of Λ is a standard sequence

connecting ∅ and Λ if there exists an increasing sequence (Pv)
L
v=0

in SL such that AKv = TK×Pv for all v ∈ J0, LK, and furthermore

for each v ∈ J0, L − 1K the subsequence (Ah)
K(v+1)
h=Kv is a standard

sequence connecting TK × Pv and TK × Pv+1.

(2) For a, b ∈ Ω, a sequence of configurations ω = (ωm)KLm=0 in X is called a

pre-canonical path (between a and b) if there exists a standard sequence

(Am)KLm=0 connecting ∅ and Λ such that

ωm(x) =

a if x /∈ Am,

b if x ∈ Am.

It is easy to verify that indeed, ω is a path connecting ω0 = a and

ωKL = b.

(3) Moreover, (ωm)KLm=0 in X is called a canonical path connecting a and b

(i.e., ω0 = a and ωKL = b) if there exists a pre-canonical path (ω̃m)KLm=0

such that

(a) (Case K < L) ωm = ω̃m for all m ∈ J0, KLK,

(b) (Case K = L) ωm = ω̃m for all m ∈ J0, KLK or ωm = Θ(ω̃m) for

all m ∈ J0, KLK.

An example of a canonical path is given in Figure 3.2. It is direct from the

construction that a canonical path consists of canonical configurations only.
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In particular, the following properties are immediate from the construction.

Lemma 3.4.13. For any canonical path (ωm)KLm=0 connecting a and b, the

following statements hold.

(1) For all v ∈ J0, LK, we have ωKv ∈ Ra, b
v .

(2) For all v ∈ J0, L− 1K and h ∈ J1, K − 1K, we have ωKv+h ∈ Qa, bv .

(3) It holds that Φω = Γ.

In view of part (3) of the previous lemma, a canonical path between a

and b is an optimal path that achieves the communication height Γ.

3.4.3 Typical configurations

Let us now define typical configurations which are extensions of canonical

configurations and indeed the main ingredient in the explanation of the saddle

structure. The definition is complicated, but its meaning will become clear

later. We refer to Figure 3.3 for an illustration of typical configurations.

Definition 3.4.14 (Typical configurations). • For a, b ∈ Ω, define the

collection of bulk typical configurations (between a and b) by

Ba, b =
⋃

v∈J2, L−2K

Ra, b
v ∪

⋃
v∈J2, L−3K

Qa, bv . (3.49)

One can easily notice that Ba, b = Bb, a. Then, we define B =
⋃
a, b∈Ω

Ba, b.

• Define

Ba, bΓ =
⋃

v∈J2, L−3K

Qa, bv = {η ∈ Ba, b : H(η) = Γ}.

Then, we define

BΓ :=
⋃
a, b∈Ω

Ba, bΓ =
⋃
a, b∈Ω

⋃
v∈J2, L−3K

Qa, bv .
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Figure 3.3: Typical configurations for the Ising model. This figure illustrates
the structure of N̂ (S) in the case of q = 2. We can notice from the figure that

as verified in Proposition 3.4.17, N̂ (S) = E1 ∪ B1, 2 ∪ E2, R1, 2
2 = E1 ∩ B1, 2

and R1, 2
L−2 = B1, 2 ∩ E2. Regions consisting of configurations with energy

Γ = 2K+2 are colored gray. The hexagonal region at the center of the figure
enclosed by the blue line denotes the set C = C1, 2 of canonical configurations
between 1 and 2. Since the MH dynamics cannot escape from N̂ (S) during
the transition from 1 to 2 (with dominating probability), the dynamics must
path through the B1, 2-part of the canonical configurations. The set E2 of
edge typical configurations near 2 consists of four regions. The first one is
the neighborhood N (2) denoted by the red-enclosed box. The second one is
the region consisting of configurations with energy Γ which is connected to
R1, 2
L−2 via a Γ-path in X \ BΓ. This region will be denoted by Z2, 1 in Section

3.4.4 (cf. Figure 3.4). An example of a configuration belonging to this region
is η1. In particular, we can connect η1 with a configuration in R1, 2

L−2 via a
Γ-path by updating six gray boxes in the order indicated in the figure (cf.
Proposition 3.4.18). The third region consists of dead-ends (cf. (3.55)). An
example of a dead-end is η2, which has energy 14 = 2× 6 + 2 = 2K + 2. The
fourth region is R1, 2

L−2. A similar decomposition holds for E1 as well.
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• For a ∈ Ω, the collection of edge typical configurations with respect to

a is defined as

Ea = N̂ (a; BΓ). (3.50)

Finally, we set E =
⋃
a∈Ω

Ea.

A configuration belonging to B ∪ E is called a typical configuration.

At first glance, the definition of typical configurations may look weird.

However, the meaning of this will become clear after investigating their prop-

erties. In particular, in Proposition 3.4.17, we shall demonstrate that Ea,
a ∈ Ω are mutually disjoint, and that typical configurations are exactly the

configurations which can be reached from ground states via Γ-paths. Hence,

they form the collection of configurations relevant to the transitions between

the ground states in S.

Remark 3.4.15 (Tube of typical trajectories). Later in Proposition 3.4.17, we

will show that

E ∪ B = N̂ (S).

From the viewpoint of the pathwise approach to metastability, N̂ (S) is ex-

actly the tube of typical trajectories [73, 74] of the metastable transitions

between the ground states in S. In this sense, we demonstrate in Proposition

3.4.17 that B ∪E is exactly the tube of typical trajectories of the metastable

transitions. We also remark here that this is also the case in the cyclic dy-

namics as well; see Proposition 3.6.12.

Remark 3.4.16 (Classification of typical configurations). We decompose typ-

ical configurations into the bulk and edge ones, since the patterns of transi-

tions therein are qualitatively different. We refer to Figure 3.3 for a detailed

explanation. Roughly speaking, to make a transition from a to b (without

touching the energy level higher than Γ, i.e., without escaping from N̂ (S)),

the dynamics has to pass through Ea first to arrive at Ba, b. Then, it goes

through Ba, b along the canonical path to arrive at Eb, and then finally it
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reaches b. The behavior of the dynamics on Ea and Eb is somewhat compli-

cated and is explained by an auxiliary Markov chain defined in Definition

3.4.21, which can be regarded as a random walk on the space of sub-trees of

a ladder graph (cf. Proposition 3.4.18).

The next proposition demonstrates the relations between bulk and edge

typical configurations rigorously.

Proposition 3.4.17. The following properties hold for the typical configu-

rations.

(1) For spins a, b ∈ Ω, we have Ea ∩ Eb = ∅.

(2) For spins a, b ∈ Ω, we have Ea ∩ Ba, b = Ra, b
2 .

(3) For three spins a, b, c ∈ Ω, we have Ea ∩ Bb, c = ∅.

(4) We have E ∪ B = N̂ (S).

We prove this proposition in Section 3.9.2. The bulk typical configurations

have a clear structure and we do not need a further investigation on this

set. On the other hand, the structure of edge typical configurations is quite

complicated and possesses one of the main difficulties of the current problem.

This structure will be explained in the remainder of the current section.

3.4.4 Classification of edge typical configurations

We fix a spin a ∈ Ω and focus on the classification of the configurations in

the set Ea. We refer to Figure 3.4 for an illustration of the definition given

here.

For another spin b 6= a, we define a set Za, b as

Za, b := {η ∈ X : ∃a path (ωn)Nn=0 in X \ BΓ such that

ω0 ∈ Ra, b
2 , ωN = η, and H(ωn) = Γ for all n ∈ J1, NK}.

(3.51)
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Figure 3.4: Edge typical configurations. The configurations belonging to gray
regions have energy Γ. Green regions denote the sets of the form R1, 2

v , v ∈
J2, L − 2K. We can notice from this figure that the set N (1) and the bulk
typical configurations in B1, 2 are connected through the configurations in
Z1, 2. Below the energy landscape, we give four examples of highly non-trivial
configurations belonging to Z1, 2. Indeed, as indicated in the figures, the sites
with spin 1 within the strip form sub-trees. These configurations have energy
Γ and do not belong to the dead-ends since each one of them can be connected
to R1, 2

2 by a Γ-path in X \ N (1).
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Note that Za, b 6= Zb, a. Write

Za :=
⋃

b∈Ω\{a}

Za, b and Ra :=
⋃

b∈Ω\{a}

Ra, b
2 .

Then, by (3.51) and Proposition 3.4.17 we have that

Za ⊆ Ea and Ra ⊆ Ea. (3.52)

Properties of Za, b

For a configuration η ∈ X and a spin a ∈ Ω, we denote by Pa(η) the set of

sites of spin a with respect to σ, i.e.,

Pa(η) := {x ∈ Λ : η(x) = a}. (3.53)

The next proposition verifies that each configuration in Za, b can be matched

with a sub-tree of a ladder graph (cf. Figure 3.4).

Proposition 3.4.18. For a, b ∈ Ω and η ∈ X , it holds that η ∈ Za, b if and

only if the following three conditions hold simultaneously.

• [Z1] For all x ∈ Λ, we have η(x) ∈ {a, b}.

• [Z2] There exists ` ∈ TL such that Pb(η) ⊆ TK ×{`, `+ 1} (or {`, `+

1} × TK if K = L).

• [Z3] Define Ga(η) := Pa(η)∩[TK×{`, `+1}] (or Pa(η)∩[{`, `+1}×TK ]

if K = L). Then, the set Ga(η) consists of vertices of a sub-tree1 of the

ladder graph TK × {`, `+ 1} (or {`, `+ 1} × TK if K = L).

We prove this statement in Section 3.9.3.

1We regard that the empty set is not a tree.
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Definition 3.4.19. Fix a, b ∈ Ω. For each ξa, b`, 2 ∈ R
a, b
2 , ` ∈ TL (and also

Θ(ξa, b`, 2 ) ∈ Ra, b
2 if K = L), Proposition 3.4.18 implies that there exists a

subset of configurations in Za, b connected to ξa, b`, 2 with tree structures on

TK × {`, ` + 1} (or {`, ` + 1} × TK for the case of Θ(ξa, b`, 2 ) ∈ Ra, b
2 ). We

will denote this subset by Za, b` ⊆ Za, b (or Θ(Za, b` ) ⊆ Za, b for the case of

Θ(ξa, b`, 2 ) ∈ Ra, b
2 ). Thus, we have the following decomposition of Za, b:

Za, b =


⋃
`∈TL

Za, b` if K < L,⋃
`∈TL

Za, b` ∪
⋃
`∈TL

Θ(Za, b` ) if K = L.
(3.54)

Moreover, it is clear that each copy of Za, b` (or Θ(Za, b` ) if K = L) has

the same structure. This structure will be further investigated in the next

subsection.

Decomposition of Ea

We write

Da := N̂ (a; Za), (3.55)

where D stands for dead-ends. Indeed, the set Da \ N (a) consists of the

dead-end configurations with energy Γ (cf. caption of Figure 3.3). We now

classify the edge typical configurations.

Proposition 3.4.20. For a ∈ Ω, we have the following decomposition of Ea:

Ea = Da ∪ Za ∪Ra. (3.56)

This proposition is also proved in Section 3.9.3.
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3.4.5 Graph structure of edge typical configurations

We consistently refer to Figure 3.5 for an illustration of the notions con-

structed in this subsection.

Fix a spin a ∈ Ω. The decomposition given in Proposition 3.4.20 can be

alternatively expressed as

Ea = Da ∪
⋃

b∈Ω\{a}

[Za, b ∪Ra, b
2 ]. (3.57)

Moreover, according to (3.54), Ea can be further expressed as
Da ∪

⋃
b 6=a

⋃
`∈TL

[Za, b` ∪ {ξ
a, b
`, 2}] if K < L,

Da ∪
⋃
b 6=a

⋃
`∈TL

[Za, b` ∪ {ξ
a, b
`, 2}] ∪

⋃
b6=a

⋃
`∈TL

[Θ(Za, b` ) ∪ {Θ(ξa, b`, 2 )}] if K = L.

(3.58)

We now construct a graph and a Markov chain describing the behavior of

the MH dynamics on Ea.

Definition 3.4.21. We introduce a graph structure and a Markov chain

thereon. Fix b 6= a, ` ∈ TL and consider the set N (a) ∪ Za, b` ∪ {ξ
a, b
`, 2}.

• (Graph) The vertex set V a, b
` is given by

V a, b
` := {a} ∪ Za, b` ∪ {ξ

a, b
`, 2}. (3.59)

Then, the edge set E a, b
` is defined as follows: {η, η′} ∈ E a, b

` for η, η′ ∈
V a, b
` if and only if either η, η′ 6= a and η ∼ η′, or η ∈ Za, b` , η′ = a and

η ∼ ξ for some ξ ∈ N (a). By definition, we can understand a ∈ V a, b
` as

a collapsed state representing the neighborhood N (a). By symmetry,

the graph structure G a, b
` := (V a, b

` , E a, b
` ) does not depend on a ∈ Ω,

b 6= a and ` ∈ TL (or even for the collection {a} ∪Θ(Za, b` ) ∪ {Θ(ξa, b`, 2 )}
if K = L). Thus, if there is no risk of confusion, we may omit the
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Figure 3.5: Structure of edge typical configurations. Let S = {1, 2, 3} and
K < L. Note that the set E1 consists of six parts: N (1), the dead-ends
attached to N (1) (cf. caption of Figure 3.3), R1, 2

2 , Z1, 2 (gray region of
equilateral-trapezoid shape), and finally two more similar collections R1, 3

2

and Z1, 3.
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subscript and superscript so that we simply write G = (V , E ).

• (Markov chain) Define r : V × V → [0, ∞) by setting

r(η, η′) :=


1 if η, η′ 6= a,

|{ξ ∈ N (a) : ξ ∼ η′}| if η = a and η′ ∈ Za, b,

|{ξ ∈ N (a) : ξ ∼ η}| if η ∈ Za, b and η′ = a,

(3.60)

for {η, η′} ∈ E , and by setting r(η, η′) = 0 otherwise. Define {Z(t)}t≥0

as the continuous-time Markov chain on V with rate r(·, ·). Since the

rate function r(·, ·) is symmetric by its definition, the Markov chain

Z(·) is reversible with respect to its invariant distribution, which is the

uniform distribution on V .

We next argue that the process Z(·) defined above approximates the MH

dynamics on the subset N (a) ∪ Za, b` ∪ {ξ
a, b
`, 2} for each selection b ∈ Ω \ {a}

and ` ∈ TL.

Proposition 3.4.22. For each b 6= a and ` ∈ TL, define a projection map

Πa, b
` : N (a) ∪ Za, b` ∪ {ξ

a, b
`, 2} → V by

Πa, b
` (η) =

a if η ∈ N (a),

η if η ∈ Za, b` ∪ {ξ
a, b
`, 2}.

(1) For η1, η2 6= a, we have

1

q
e−Γβr(Πa, b

` (η1), Πa, b
` (η2)) = (1 + o(1)) · µβ(η1)rβ(η1, η2). (3.61)

(2) For η1 6= a, we have

1

q
e−Γβr(Πa, b

` (η1), a) = (1 + o(1)) ·
∑

ξ∈N (a)

µβ(η1)rβ(η1, ξ). (3.62)
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In the case of K = L, we define Θ(Πa, b
` ) : N (a) ∪Θ(Za, b` ) ∪ {Θ(ξa, b`, 2 )} → V

in a similar way. Then, the same results hold as well.

We prove this approximation statement in Section 3.9.4.

In view of the previous proposition, we can construct a test function

on Ea in terms of the process Z(·). To this end, we have to investigate the

potential-theoretic objects of the process Z(·). Denote by f·, ·(·), cap(·, ·) and

D(·) the equilibrium potential, capacity and Dirichlet form with respect to

the Markov chain Z(·), respectively (we define them in the same way as in

Section 3.2.1). We also denote by L the infinitesimal generator associated

with the process Z(·) which acts on functions F : V → R as

(LF )(η) =
∑

η′∈V : {η, η′}∈E

r(η, η′){F (η′)− F (η)}. (3.63)

Then, the constant e0 that appears in (3.30) for the MH dynamics is defined

by

e0 :=
1

|V | · cap(a, ξa, b`, 2 )
. (3.64)

By the symmetry of the model, this constant e0 does not depend on a, b or

`. We emphasize that this constant appears in the capacity estimate because

the equilibrium potential

f := fa, ξa, b`, 2
(3.65)

approximates that of the MH dynamics in Ea (cf. Proposition 3.4.22). Indeed,

this function plays a significant role in the construction of the test function

in Section 3.5.

We conclude this section by showing that e0 is indeed small, so that

asymptotically (in K) this constant has a negligible effect on the constant κ

that appears in the Eyring–Kramers formula.

Proposition 3.4.23. It holds that e0 ≤ 1.
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Again, we give a nice proof in Section 3.9.4.

Remark 3.4.24. In fact, with a more refined argument, we can verify that

there exist two constants C1, C2 > 0 such that
C1

K
≤ e0 ≤

C2

K
. However, this

level of precision is unnecessary in our logical structure and thus we omit the

proof.

3.5 Test functions: Metropolis–Hastings dy-

namics

Throughout the section, we will again consider the MH dynamics and fix two

disjoint, non-empty subsets P and Q of S. The purpose of this section is to

construct the test function h̃ = h̃P,Q : X → R and verify three conditions

(3.38), (3.39) and (3.40) for this test function. This will provide the proof of

Proposition 3.2.9 and thus conclude our analysis given in Section 3.2 for the

MH dynamics. Note that in this case, the dynamics is reversible and thus we

do not need to construct h̃∗.

Notation 3.5.1. Throughout this section, we always use the alphabets

a, b, c to represent the spins subjected to a ∈ P , b ∈ Q, and c ∈ S \ (P∪Q),

respectively. If necessary, we also use a′, b′, c′ to represent a′ ∈ P , b′ ∈ Q,

and c′ ∈ S \ (P ∪Q).

3.5.1 Construction of h̃

In this subsection, we construct the desired test function h̃ : X → R. Before

the explicit construction, we briefly explain the nature behind such a descrip-

tion. On edge typical configurations, we let h̃ be a proper rescaled function

of f, which is the equilibrium potential of the auxiliary dynamics defined in

(3.65). This construction is natural because Proposition 3.4.22 ensures us

that the auxiliary process successfully characterizes the behavior of the orig-

inal process on the collection E of edge typical configurations. Next, on bulk
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typical configurations, we define h̃ as a proper rescaling of the equilibrium

potential of the symmetric simple random walk on an one-dimensional line.

This is because the dynamics on the collection of bulk typical configurations

is approximately one-dimensional with symmetric simple transition rates due

to the simple geometry.

Definition 3.5.2 (Test function). We construct h̃ : X → [0, 1] on E , B and

X \(E ∪B) separately. Recall the constants defined in (3.29) and (3.30). Note

that we always use Notation 3.5.1.

(1) Construction on E =
⋃
a∈P

Ea ∪
⋃
b∈Q

Eb ∪
⋃

c∈S\(P∪Q)

Ec.

• For η ∈ Ea, we recall the decomposition (3.57) of Ea. We define

h̃(η) as
1 if η ∈ Da ∪ Za, a′ ∪Ra, a′

2 , a′ 6= a,

1− e

κ
(1− f(η)) if η ∈ Za, b ∪Ra, b

2 ,

1− |Q|
|P|+ |Q|

e

κ
(1− f(η)) if η ∈ Za, c ∪Ra, c

2 .

(3.66)

• For η ∈ Eb, define h̃(η) as
0 if η ∈ Db ∪ Zb, b′ ∪Rb, b′

2 , b′ 6= b,
e

κ
(1− f(η)) if η ∈ Zb, a ∪Rb, a

2 ,

|P|
|P|+ |Q|

e

κ
(1− f(η)) if η ∈ Zb, c ∪Rb, c

2 .

(3.67)

64



CHAPTER 3. ISING/POTTS MODELS WITH ZERO EXTERNAL
FIELDS

• For η ∈ Ec, define h̃(η) as

|P|
|P|+ |Q|

in Dc ∪ Zc, c′ ∪Rc, c′

2 ,

|P|
|P|+ |Q|

+
|Q|

|P|+ |Q|
e

κ
(1− f(η)) in Zc, a ∪Rc, a

2 ,

|P|
|P|+ |Q|

− |P|
|P|+ |Q|

e

κ
(1− f(η)) in Zc, b ∪Rc, b

2 .

(3.68)

(2) Construction on B. Recall the decomposition (3.49).

• We set h̃ ≡ 1 on Ba, a′ , h̃ ≡ 0 on Bb, b′ and h̃ ≡ |P|
|P|+ |Q|

on Bc, c′ .

• For η ∈ Ra, b
v with v ∈ J2, L− 2K, we set

h̃(η) :=
1

κ

[L− 2− v
L− 4

b + e
]
. (3.69)

For η ∈ Qa, bv with v ∈ J2, L − 3K, we can write η = ξa, b,±`, v; k, h (or

Θ(ξa, b,±`, v; k, h) if K = L) for some ` ∈ TL, k ∈ TK , and h ∈ J1, K−1K.
For such η, we set

h̃(η) :=
1

κ

[(K + 2)(L− 2− v)− (h+ 1)

(K + 2)(L− 4)
b + e

]
. (3.70)

• For η ∈ Ra, c
v , v ∈ J2, L− 2K,

h̃(η) :=
|P|

|P|+ |Q|
+

|Q|
|P|+ |Q|

1

κ

[L− 2− v
L− 4

b + e
]
.

For η ∈ Qa, cv , v ∈ J2, L − 3K, similarly η = ξa, c,±`, v; k, h (or Θ(ξa, c,±`, v; k, h)

if K = L) for some `, k and h. For such η, we set h̃(η) as

|P|
|P|+ |Q|

+
|Q|

|P|+ |Q|
1

κ

[(K + 2)(L− 2− v)− (h+ 1)

(K + 2)(L− 4)
b + e

]
.
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• For η ∈ Rc, b
v , v ∈ J2, L− 2K,

h̃(η) :=
|P|

|P|+ |Q|
1

κ

[L− 2− v
L− 4

b + e
]
.

For η ∈ Qc, bv , v ∈ J2, L − 3K, again, η = ξc, b,±`, v; k, h (or Θ(ξc, b,±`, v; k, h) if

K = L) for some `, k and h. We set

h̃(η) :=
|P|

|P|+ |Q|
1

κ

[(K + 2)(L− 2− v)− (h+ 1)

(K + 2)(L− 4)
b + e

]
.

(3) Construction on X \ (E ∪ B). We define h̃ ≡ 1 on this set.

Remark 3.5.3. Since E ∩B = R2 by Proposition 3.4.17-(2), we need to check

that the constructions of h̃ on E and on B agree with each other on this

intersection. This is immediate from our definition.

Remark 3.5.4. According to Definition 3.5.2, it is inferred that

• h̃(η) = 1 for all η ∈ Da, a ∈ P ,

• h̃(η) = 0 for all η ∈ Db, b ∈ Q,

• h̃(η) =
|P|

|P|+ |Q|
for all η ∈ Dc, c ∈ S \ (P ∪Q).

Remark 3.5.5. It is clear from our definition that the test function h̃ fulfills

the requirement (3.40). Hence, it remains to check (3.38) and (3.39).

3.5.2 Dirichlet energy of the test function

We first check (3.39).

Proposition 3.5.6. The function h̃ constructed in Definition 3.5.2 satisfies

(3.39), i.e.,

Dβ(h̃) = (1 + o(1)) · |P||Q|
κ(|P|+ |Q|)

e−Γβ.
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Proof. Let us divide the Dirichlet form Dβ(h̃) into three parts as[ ∑
{η, ξ}⊆X\(E∪B)

+
∑

η∈E∪B, ξ∈X\(E∪B)

+
∑

{η, ξ}⊆E∪B

]
µβ(η)rβ(η, ξ){h̃(ξ)− h̃(η)}2,

(3.71)

where all summations are carried out for two connected configurations η and

ξ, i.e., η ∼ ξ. Note that the first summation is 0 by part (3) of Definition

3.5.2.

For the second summation, we recall from part (4) of Proposition 3.4.17

that E ∪ B = N̂ (S). Hence, by Lemma 3.4.6, we have H(ξ) ≥ Γ + 1. Since

H(η) ≤ Γ, by Theorem 3.0.1 and (2.2),

µβ(η)rβ(η, ξ) = µβ(ξ) =
1

Zβ
e−βH(ξ) = O(e−(Γ+1)β).

Since h̃ : X → [0, 1], we can conclude that the second summation of (3.71)

is O(e−(Γ+1)β).

It remains to estimate the third summation of (3.71), which is indeed the

main constituent of the Dirichlet form. For each subset P ⊆ X , we write

E(P) =
{
{σ, ζ} ⊆ P : σ ∼ ζ

}
. (3.72)

Then, we can observe from Proposition 3.4.17 that we can decompose E(E ∪
B) as

E(E ∪ B) = E(B) ∪ E(E), (3.73)

and thus we can rewrite the first summation of (3.71) as[ ∑
{η, ξ}∈E(B)

+
∑

{η, ξ}∈E(E)

]
µβ(η)rβ(η, ξ){h̃(ξ)− h̃(η)}2. (3.74)

Now, we divide the estimate of these summations into two cases: K < L or

K = L.
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(Case K < L) We start by calculating the first summation of (3.74). Note

that B can be decomposed as (cf. Notation 3.5.1)⋃
a6=a′

Ba, a′ ∪
⋃
b6=b′
Bb, b′ ∪

⋃
c6=c′
Bc, c′ ∪

⋃
a, b

Ba, b ∪
⋃
a, c

Ba, c ∪
⋃
b, c

Bc, b.

Moreover, note that the summations with respect to
⋃
a6=a′

Ba, a′ ,
⋃
b 6=b′
Bb, b′ and⋃

c6=c′
Bc, c′ vanish by part (2) of Definition 3.5.2. Thus, we can divide the first

summation of (3.74) as∑
a, b

∑
{η, ξ}∈E(Ba, b)

+
∑
a, c

∑
{η, ξ}∈E(Ba, c)

+
∑
b, c

∑
{η, ξ}∈E(Bc, b)

. (3.75)

Since

E(Ba, b) =
⋃

v∈J2, L−3K

E(Ra, b
v ∪Qa, bv ∪R

a, b
v+1), (3.76)

the first double summation of (3.75) equals∑
a, b

∑
v∈J2, L−3K

∑
{η, ξ}∈E(Ra, bv ∪Qa, bv ∪Ra, bv+1)

µβ(η)rβ(η, ξ){h̃(ξ)− h̃(η)}2.

Fixing a ∈ P and b ∈ Q, which is possible because of symmetry, the last

display can be written as

|P||Q|
∑

v∈J2, L−3K

∑
{η, ξ}∈E(Ra, bv ∪Qa, bv ∪Ra, bv+1)

µβ(η)rβ(η, ξ){h̃(ξ)− h̃(η)}2. (3.77)
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The last summation in {η, ξ} can be written as
∑
`∈TL

∑
k∈TK

of

µβ(ξa, b`, v )rβ(ξa, b`, v , ξ
a, b,±
`, v; k, 1){h̃(ξa, b,±`, v; k, 1)− h̃(ξa, b`, v )}2

+
∑

h∈J1,K−2K

µβ(ξa, b,±`, v; k, h)rβ(ξa, b,±`, v; k, h, ξ
a, b,±
`, v; k, h+1){h̃(ξa, b,±`, v; k, h+1)− h̃(ξa, b,±`, v; k, h)}

2

+
∑

h∈J1,K−2K

µβ(ξa, b,±`, v; k, h)rβ(ξa, b,±`, v; k, h, ξ
a, b,±
`, v; k−1, h+1){h̃(ξa, b,±`, v; k−1, h+1)− h̃(ξa, b,±`, v; k, h)}

2

+ µβ(ξa, b,+`, v; k,K−1)rβ(ξa, b,+`, v; k,K−1, ξ
a, b
`, v+1){h̃(ξa, b`, v+1)− h̃(ξa, b,+`, v; k,K−1)}2

+ µβ(ξa, b,−`, v; k,K−1)rβ(ξa, b,−`, v; k,K−1, ξ
a, b
`−1, v+1){h̃(ξa, b`−1, v+1)− h̃(ξa, b,−`, v; k,K−1)}2.

By (2.2), (3.69), and (3.70), this equals 2
∑
`∈TL

∑
k∈TK

(where 2 is multiplied

since + and − in ± give us the same computation) of

e−Γβ

Zβ
· 4b2

[κ(K + 2)(L− 4)]2
+

∑
h∈J1,K−2K

e−Γβ

Zβ
· b2

[κ(K + 2)(L− 4)]2

+
∑

h∈J1,K−2K

e−Γβ

Zβ
· b2

[κ(K + 2)(L− 4)]2
+
e−Γβ

Zβ
· 4b2

[κ(K + 2)(L− 4)]2
.

By Theorem 3.0.1, this is further simplified as

(1 + o(1)) · e
−Γβ

q
· (2K + 4)b2

(K + 2)2(L− 4)2κ2
= (1 + o(1)) · 2b2

q(K + 2)(L− 4)2κ2
e−Γβ.

Therefore by (3.29), we can conclude that∑
a, b

∑
{η, ξ}∈E(Ba, b)

µβ(η)rβ(η, ξ){h̃(ξ)− h̃(η)}2

= (1 + o(1)) · |P||Q| ·
∑

v∈J2, L−3K

2
∑
`∈TL

∑
k∈TK

2b2

q(K + 2)(L− 4)2κ2
e−Γβ

= (1 + o(1)) · |P||Q| 4KL(L− 4)b2

q(K + 2)(L− 4)2κ2
e−Γβ = (1 + o(1)) · |P||Q|b

qκ2
e−Γβ.
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The second and third summations of (3.75) can be dealt with in the same

way (but with suitable constants multiplied), so that the second and the

third summations have limits in β →∞ as

|Q|2|P|(q − |P| − |Q|)b
(|P|+ |Q|)2qκ2

e−Γβ and
|P|2|Q|(q − |P| − |Q|)b

(|P|+ |Q|)2qκ2
e−Γβ,

respectively. Summing up the last two displays, we obtain

∑
{η, ξ}∈E(B)

µβ(η)rβ(η, ξ){h̃(ξ)−h̃(η)}2 = (1+o(1))· |P||Q|b
(|P|+ |Q|)κ2

e−Γβ. (3.78)

Next, we calculate the second summation of (3.74). We may decompose

E(E) as

E(E) =
⋃
a

E(Ea) ∪
⋃
b

E(Eb) ∪
⋃
c

E(Ec).

First, consider the summation in
⋃
a

E(Ea). By (3.57), Definition (3.5.2)-(1)

and Remark 3.5.4, we may rewrite it as∑
a, b

∑
`∈TL

∑
{η1, η2}⊆Za, b` ∪{ξa, b`, 2 }

µβ(η1)rβ(η1, η2){h̃(η2)− h̃(η1)}2

+
∑
a, b

∑
`∈TL

∑
η1∈Za, b∪{ξa, b`, 2 }

∑
ξ∈N (a)

µβ(η1)rβ(η1, ξ){h̃(ξ)− h̃(η1)}2

+
∑
a, c

∑
`∈TL

∑
{η1, η2}⊆Za, c` ∪{ξa, c`, 2 }

µβ(η1)rβ(η1, η2){h̃(η2)− h̃(η1)}2

+
∑
a, c

∑
`∈TL

∑
η1∈Za, c∪{ξa, c`, 2 }

∑
ξ∈N (a)

µβ(η1)rβ(η1, ξ){h̃(ξ)− h̃(η1)}2.
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By Proposition 3.4.22, taking into advantage the model symmetry, this equals

|P||Q| · L(1 + o(1)) ·
[ ∑
{η1, η2}⊆Za, b` ∪{ξa, b`, 2 }

+
∑

η1∈Za, b∪{ξa, b`, 2 }, η2=a

]
+ |P|(q − |P| − |Q|) · L(1 + o(1)) ·

[ ∑
{η1, η2}⊆Za, c` ∪{ξa, c`, 2 }

+
∑

η1∈Za, c∪{ξa, c`, 2 }, η2=a

]
(3.79)

applied to the summand q−1e−Γβr(η1, η2){h̃(η2) − h̃(η1)}2. By (3.66), this

becomes

|P||Q| · L(1 + o(1)) · e
2

κ2

∑
{η1, η2}∈E

+ |P|(q − |P| − |Q|) · L(1 + o(1)) · |Q|2

(|P|+ |Q|)2

e2

κ2

∑
{η1, η2}∈E

applied to the summand q−1e−Γβr(η1, η2){f(η2)− f(η1)}2. Noting the defini-

tion of capacities (cf. (3.22)), this is equal to

[
1 +

(q − |P| − |Q|)|Q|
(|P|+ |Q|)2

]
· |P||Q| · L(1 + o(1)) · e

−Γβe2

κ2q
|V |cap(a, Ra, b

2 )

=
[
1 +

(q − |P| − |Q|)|Q|
(|P|+ |Q|)2

]
· |P||Q|e(1 + o(1))

κ2q
e−Γβ,

where in the equality we used (3.30) and (3.64). Employing the same argu-

ments to the summations in
⋃
b

E(Eb) and
⋃
c

E(Ec) in the second summation

of (3.74), we obtain that the summations in
⋃
b

E(Eb) equals

[
1 +
|P|(q − |P| − |Q|)

(|P|+ |Q|)2

]
· |P||Q|e(1 + o(1))

κ2q
e−Γβ,
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and the summation in
⋃
c

E(Ec) becomes

[(q − |P| − |Q|)|Q|
(|P|+ |Q|)2

+
|P|(q − |P| − |Q|)

(|P|+ |Q|)2

]
· |P||Q|e(1 + o(1))

κ2q
e−Γβ.

Therefore, summing up the last three displays, we conclude that

∑
{η, ξ}∈E(E)

µβ(η)rβ(η, ξ){h̃(ξ)− h̃(η)}2 =
2|P||Q|
|P|+ |Q|

· e(1 + o(1))

κ2
e−Γβ. (3.80)

Therefore, by (3.74), (3.78), and (3.80), we conclude that the third summa-

tion of (3.71) equals 1 + o(1) times

|P||Q|
|P|+ |Q|

· b + 2e

κ2
e−Γβ =

|P||Q|
κ(|P|+ |Q|)

e−Γβ,

as desired.

(Case K = L) This case is analogous to the previous case. The only dif-

ference is the fact that (3.74) must be counted twice. This fact is reflected

in the definition of the constants b and e in (3.29) and (3.30) through the

constant ν0.

Remark 3.5.7. The estimates (3.78) and (3.80) are the reason that we call b

and e the bulk and edge constants, respectively.

3.5.3 Proof of H1-approximation

In this subsection, we prove (3.38) to complete the proof of Proposition 3.2.9

for the MH dynamics. To prove (3.38), we first expand

Dβ(hP,Q − h̃) = 〈hP,Q − h̃, −Lβ(hP,Q − h̃)〉µβ
= Dβ(hP,Q) +Dβ(h̃)− 〈hP,Q, −Lβh̃〉µβ − 〈h̃, −LβhP,Q〉µβ .

(3.81)
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Since h̃ ≡ 1 on P , h̃ ≡ 0 on Q (cf. Remark 3.5.5), and since LβhP,Q ≡ 0 on

(P ∪Q)c (cf. (3.19)), we have

〈h̃, −LβhP,Q〉µβ =
∑
a∈P

h̃(a)(−LβhP,Q)(a)µβ(a)

=
∑
a∈P

hP,Q(a)(−LβhP,Q)(a)µβ(a) = Dβ(hP,Q).

In the second equality, we used that hP,Q ≡ h̃ ≡ 1 on P . Inserting this into

(3.81) and expanding the first inner product in the right-hand side, we obtain

Dβ(hP,Q − h̃) = Dβ(h̃)−
∑
η∈X

hP,Q(η)(−Lβh̃)(η)µβ(η). (3.82)

By the definition of Lβ (cf. (2.1)) and Proposition 3.5.6, it suffices to prove

that∑
η∈X

hP,Q(η)
∑
ξ∈X

µβ(η)rβ(η, ξ)[h̃(η)− h̃(ξ)] = (1 + o(1)) · |P||Q|
κ(|P|+ |Q|)

e−Γβ.

(3.83)

Before proving this identity, we present a simple lemma which states that the

equilibrium potential hP,Q is asymptotically constant on each neighborhood

N (s) for s ∈ S.

Lemma 3.5.8. For all s ∈ S, we have max
η∈N (s)

∣∣hP,Q(η)− hP,Q(s)
∣∣ = o(1).

Proof. We first recall from [70, Theorem 3.2-(iii)] that, for all s ∈ S, we have

max
η∈N (s)

Pη[τX\N (s) < τs] = o(1). (3.84)

We first assume that s ∈ Q, so that hP,Q(s) = 0. For η ∈ N (s), we can

bound

|hP,Q(η)− hP,Q(s)| = hP,Q(η) = Pη[τP < τQ] ≤ Pη[τX\N (s) < τs].
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Thus, the proof is completed by (3.84). We can handle the case s ∈ P by an

entirely same manner.

Let us finally consider the case s ∈ S \ (P ∪Q). By the Markov property,

for η ∈ N (s),

hP,Q(η) = Pη[τs < τX\N (s)]Ps[τP < τQ] + Pη[τs > τX\N (s), τP < τQ].

From this, we obtain

|hP,Q(η)− hP,Q(s)| ≤ 2Pη[τs > τX\N (s)]

and thus the proof of this case is also completed by (3.84).

Remark 3.5.9. We can also prove this lemma by using a capacity bound

on the equilibrium potential (cf. [16, Lemma 8.4]), and then applying the

Dirichlet–Thomson principle.

Now, we begin to prove (3.83). Write

φ(η) :=
∑
ξ∈X

µβ(η)rβ(η, ξ)[h̃(η)− h̃(ξ)], (3.85)

so that our claim (3.83) can be simply rewritten as

∑
η∈X

hP,Q(η)φ(η) = (1 + o(1)) · |P||Q|
κ(|P|+ |Q|)

e−Γβ. (3.86)

First, we deduce that φ is negligible outside N̂ (S).

Lemma 3.5.10. For all η ∈ X \ N̂ (S), we have φ(η) = o(e−Γβ).

Proof. Since h̃ is defined as constant outside N̂ (S), we may only consider

η ∈ X \ N̂ (S) which is connected to at least one configuration in N̂ (S).

Then, by Lemma 3.4.6, we have H(η) ≥ Γ + 1, and thus by (2.2), it holds
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for ξ ∈ N̂ (S) with η ∼ ξ that

0 ≤ µβ(η)rβ(η, ξ) = min{µβ(η), µβ(ξ)} = µβ(η) = O(e−β(Γ+1)).

This completes the proof since h̃ : X → [0, 1].

Next, we deal with φ(η) where η ∈ N̂ (S). We decompose φ(η) = φ1(η) +

φ2(η) where

φ1(η) =
∑

ξ∈N̂ (S)

µβ(η)rβ(η, ξ)[h̃(η)− h̃(ξ)],

φ2(η) =
∑

ξ /∈N̂ (S)

µβ(η)rβ(η, ξ)[h̃(η)− h̃(ξ)].

The first claim is that φ2(η) is negligible for all η ∈ N̂ (S).

Lemma 3.5.11. Suppose that η ∈ N̂ (S). Then, φ2(η) = o(e−Γβ).

Proof. If ξ /∈ N̂ (S) with η ∼ ξ, then

µβ(η)rβ(η, ξ) = min{µβ(η), µβ(ξ)} = µβ(ξ) = O(e−β(Γ+1))

by (2.2), Proposition 3.4.17-(4), Lemma 3.4.6 and Theorem 3.0.1. Thus, since

0 ≤ h̃ ≤ 1,

|φ2(η)| ≤
∑

ξ /∈N̂ (S): ξ∼η

µβ(η)rβ(η, ξ) = O(e−β(Γ+1)),

which is o(e−βΓ) as desired.

Summing up, instead of (3.86), it suffices to show that

∑
η∈N̂ (S)

hP,Q(η)φ1(η) = (1 + o(1)) · |P||Q|
κ(|P|+ |Q|)

e−Γβ. (3.87)

Let us now investigate φ1. We start with the set B \ E .
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Lemma 3.5.12. It holds that φ1(η) = 0 for all η ∈ B \ E.

Proof. By construction of the function h̃ on B, it suffices to deal with the

cases η ∈ Ba, b \ E , η ∈ Ba, c \ E and η ∈ Bc, b \ E where a ∈ P , b ∈ Q and

c ∈ S \ (P ∪Q). We start with the case η ∈ Ba, b \ E .

We first consider the case K < L. If η = ξa, b`, v for some ` ∈ TL and

v ∈ J3, L− 3K, by simple inspection, φ1(η) equals∑
k∈TK

∑
ξ∈{ξa, b,+`, v; k, 1, ξ

a, b,−
`, v; k, 1, ξ

a, b,+
`, v−1; k,K−1, ξ

a, b,−
`+1, v−1; k,K−1}

µβ(η)rβ(η, ξ)[h̃(η)− h̃(ξ)].

Substituting the exact values from Definition 3.5.2 and noting (2.2), this

becomes
e−βΓ

Zβ

∑
k∈TK

2b

κ(K + 2)(L− 4)
[1 + 1− 1− 1],

which is zero. If η = ξa, b,+`, v; k, h for some ` ∈ TL, v ∈ J2, L − 3K, k ∈ TK and

h ∈ J1, K − 1K, then φ1(η) equals∑
ξ∈{ξa, b,+`, v; k, h+1, ξ

a, b,+
`, v; k−1, h+1, ξ

a, b,+
`, v; k, h−1, ξ

a, b,+
`, v; k+1, h−1}

µβ(η)rβ(η, ξ)[h̃(η)− h̃(ξ)]

=
e−Γβ

Zβ
· b

κ(K + 2)(L− 4)
[1 + 1− 1− 1],

which is again zero. The case of η = ξa, b,−`, v; k, h can be handled similarly. There-

fore, we conclude the case η ∈ Ba, b \ E under the assumption K < L. If

K = L, then there are twice more possibilities obtained by transposing the

above configurations. However, this case can be dealt with identically as

above.

Finally, note that the structure of h̃ on Ba, c and Bc, b are the same as the

structure on Ba, b, except for linear transformations. Thus, we can repeat the

same calculations to obtain the same result that φ1(η) = 0.

Next, we show that φ1 is also zero on R2 and RL−2.
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Lemma 3.5.13. It holds that φ1(η) = 0 for all η ∈ R2 ∪RL−2.

Proof. We have R2 = RL−2 by Definition 3.4.10 and thus we only focus on

R2. By Definition 3.5.2, we only need to consider η ∈ Ra, b
2 ∪R

a, c
2 ∪R

c, b
2 for

a ∈ P , b ∈ Q and c ∈ S \ (P ∪Q). First consider η ∈ Ra, b
2 . Without loss of

generality, we assume η = ξa, b`, 2 , since we can deal with the case of η = Θ(ξa, b`, 2 )

in the same way. Recall that f = fa, ξa, b`, 2
from (3.65) and recall the generator L

from (3.63). Then, since the uniform measure on V is the invariant measure

for the process Z(·), by the property of capacities (e.g., [16, (7.1.39)]), we can

write

1

|V |
∑

ξ∈V \{ξa, b`, 2 }

r(ξa, b`, 2 , ξ)[f(ξ
a, b
`, 2 )− f(ξ)] = − 1

|V |
(Lf)(ξa, b`, 2 ) = −cap(a, ξa, b`, 2 ).

On the other hand, by the definition of h̃, we can write∑
ξ∈Ea

µβ(ξa, b`, 2 )rβ(ξa, b`, 2 , ξ)[h̃(ξa, b`, 2 )− h̃(ξ)]

=
1

Zβ
e−βΓ e

κ

∑
ξ∈V \{ξa, b`, 2 }

r(ξa, b`, 2 , ξ){f(ξ
a, b
`, 2 )− f(ξ)}.

Summing up the computations above, we get∑
ξ∈Ea

µβ(ξa, b`, 2 )rβ(ξa, b`, 2 , ξ)[h̃(ξa, b`, 2 )− h̃(ξ)]

= − 1

Zβ
e−βΓ e

κ
× |V |cap(a, ξa, b`, 2 ) = −ν0

e−βΓ

ZβκL
,

(3.88)

where the second identity is a consequence of the definitions of e and e0 given
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in (3.30) and (3.64), respectively. On the other hand, by the definition of b,∑
ξ∈Ba, b

µβ(ξa, b`, 2 )rβ(ξa, b`, 2 , ξ)[h̃(ξa, b`, 2 )− h̃(ξ)]

=
1

Zβ
e−βΓ · 2K · 2b

κ(K + 2)(L− 4)
= ν0

e−βΓ

ZβκL
.

(3.89)

By adding (3.88) and (3.89), we obtain

φ1(ξa, b`, 2 ) = −ν0
e−βΓ

ZβκL
+ ν0

e−βΓ

ZβκL
= 0.

The same computations can be done with the remaining cases η ∈ Ra, c
2

and η ∈ Rc, b
2 , just by multiplying constants to each term. Thus, we do not

repeat the proof.

Next, we show that φ1(η) = 0 for η ∈ Za, b ∪ Za, c ∪ Zc, b, a ∈ P , b ∈ Q
and c ∈ S \ (P ∪Q).

Lemma 3.5.14. It holds that φ1(η) = 0 for all η ∈ Za, b ∪ Za, c ∪ Zc, b.

Proof. We consider only the case η ∈ Za, b, since the structure is identical in

the other cases (with constants multiplied). Recall L from (3.63). Then for

each η ∈ Za, b, we can write

φ1(η) =
1

Zβ
e−Γβ e

κ
× (Lf)(η). (3.90)

By the elementary property of equilibrium potentials (e.g., [16, (7.1.21)]), we

can easily conclude from (3.90) that φ1(η) = 0.

All it remains is to consider the configurations in Ds for all s ∈ S. This

is the content of the following two lemmas.

Lemma 3.5.15. For any s ∈ S and η ∈ Ds \ N (s), we have φ1(η) = 0.
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Proof. Recall from Definition 3.5.2-(1) that h̃ is defined to be constant on

Ds, and thus for all η ∈ Ds \ N (s),

φ1(η) =
∑

ξ∈N̂ (S): ξ∼η

µβ(η)rβ(η, ξ)[h̃(η)− h̃(ξ)] = 0.

This concludes the proof.

Lemma 3.5.16. For a ∈ P, b ∈ Q, and c ∈ S \ (P ∪Q), it holds that

∑
η∈N (a)

φ1(η) = (1 + o(1)) · |Q|
κ(|P|+ |Q|)

e−Γβ, (3.91)

∑
η∈N (b)

φ1(η) = −(1 + o(1)) · |P|
κ(|P|+ |Q|)

e−Γβ, (3.92)

∑
η∈N (c)

φ1(η) = o(e−Γβ). (3.93)

Moreover, there exists C > 0 independent of β such that for all η ∈ N (a) ∪
N (b) ∪N (c), |φ1(η)| ≤ Ce−Γβ.

Proof. To start, we prove the first identity which is

∑
η∈N (a)

∑
ξ∈N̂ (S): ξ∼η

µβ(η)rβ(η, ξ)[h̃(η)− h̃(ξ)] = (1 + o(1)) · |Q||
κ(|P|+ |Q|)

e−Γβ.

(3.94)

The left-hand side can be written as

−
∑

η∈N (a)

∑
b∈Q

|Ra, b
2 |

∑
ξ∈Za, b` : ξ∼η

e−Γβ

Zβ

e

κ
[f(ξ)− f(a)]

−
∑

η∈N (a)

∑
c∈S\(P∪Q)

|Ra, c
2 |

∑
ξ∈Za, c` : ξ∼η

e−Γβ

Zβ

|Q|
|P|+ |Q|

e

κ
[f(ξ)− f(a)].
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This can be rewritten as

− e−Γβ

Zβ

e

κ

∑
b∈Q

|Ra, b
2 |

∑
ξ∈Za, b` : {ξ,a}∈E

r(a, ξ)[f(ξ)− f(a)]

− e−Γβ

Zβ

|Q|
|P|+ |Q|

e

κ

∑
c∈S\(P∪Q)

|Ra, c
2 |

∑
ξ∈Za, c` : {ξ,a}∈E

r(a, ξ)[f(ξ)− f(a)].

By the property of capacities (e.g., [16, (7.1.39)]), the last display equals

− e−Γβ

Zβ

e

κ

[∑
b∈Q

|Ra, b
2 | × (Lf)(a) +

|Q|
|P|+ |Q|

∑
c∈S\(P∪Q)

|Ra, c
2 | × (Lf)(a)

]
=
e−Γβ

Zβ

e

κ

[
|Q| × 1

e
+ (q − |P| − |Q|)× |Q|

|P|+ |Q|
1

e

]
=
qe−Γβ

Zβκ

|Q|
|P|+ |Q|

.

By Theorem 3.0.1, we can verify (3.94). The second and third identities of

the lemma can be proved in the exact same way and thus we omit the detail.

Finally, take η ∈ N (a) ∪ N (b) ∪ N (c). By Definition 3.5.2, if ξ ∈ N̂ (S)

with ξ ∼ η, we know that h̃(η) 6= h̃(ξ) only if min{H(η), H(ξ)} ≥ Γ. This

implies that

|φ1(η)| ≤
∑

ξ∈N̂ (S): ξ∼η

µβ(η)rβ(η, ξ)|h̃(η)− h̃(ξ)| ≤ C

Zβ
e−Γβ.

The inequality holds by (2.2) and the fact that 0 ≤ h̃ ≤ 1. Since Zβ = q+o(1)

by Theorem 3.0.1, we conclude the proof.

Now, we have all ingredients to prove (3.38). Thus, we are ready to com-

plete the proof of Proposition 3.2.9 for the MH dynamics.

Proof of Proposition 3.2.9 for the MH dynamics. By Remark 3.5.5 and Propo-

sition 3.5.6, it suffices to verify (3.38). As we have discussed earlier, proving

(3.38) is reduced to proving (3.87). This has been verified in Lemmas 3.5.8
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and 3.5.12-3.5.16. More precisely, by Lemmas 3.5.12-3.5.15, we obtain∑
η∈N̂ (S)

hP,Q(η)φ1(η) =
∑
s∈S

∑
η∈N (s)

hP,Q(η)φ1(η) = o(e−Γβ)

= o(e−Γβ) +
∑
s∈S

[
hP,Q(s)

∑
η∈N (s)

φ1(η)
]
,

where the second identity follows from Lemma 3.5.8 and the last part of

Lemma 3.5.16. Inserting (3.91), (3.92) and (3.93) at the right-hand side, we

obtain (3.87) and thus the proof is completed.

3.6 Energy landscape analysis: cyclic dynam-

ics

In the current and the following sections, we always assume that the process

is the cyclic dynamics with q ≥ 3.

3.6.1 Energy barrier: proof of Theorem 3.1.1

We denote by Γ = Γcyc the energy barrier of the cyclic dynamics. In this

subsection, we prove Theorem 3.1.1, i.e., Γ = 2K + 4.

We first need to modify the canonical path of the MH dynamics defined

in Definition 3.4.12 to get a corresponding object with respect to the cyclic

dynamics, since the spin updates for the cyclic dynamics are more restrictive

compared to that for the MH dynamics. To this end, we fix two spins a, b ∈ Ω

and define the canonical paths from a ∈ S to b ∈ S.

Definition 3.6.1 (Canonical paths of cyclic dynamics). We denote by r ∈
J1, q − 1K the unique integer which makes b − a − r a multiple of q2. Then,

a sequence of configurations (ωn)rKLn=0 is called a canonical path from a to b

2Indeed, r = b− a if a < b and r = q + b− a if a > b.
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if there exists a backbone canonical path (ω̃m)KLm=0 of the MH dynamics from

a to b such that for each m ∈ J0, KL− 1K and i ∈ J0, rK,

ωrm+i = τ ixmω̃m,

where τ ixσ denotes the configuration obtained from σ by applying τx for i

times, and where xm ∈ Λ is the site on which the spin update ω̃m → ω̃m+1

occurs in the MH dynamics (i.e., ω̃m+1 = ω̃xm, bm ).

Remark 3.6.2. We note that the sequence (ωn)rKLn=0 is well defined. To this end,

we need to verify that the definition agrees on each ωrm for m ∈ J1, KL−1K.
Indeed, this is the case since

ωrm = ω̃m = τ rxm−1
ω̃m−1,

where the second identity holds since ω̃m = ω̃
xm−1, b
m−1 and r is exactly the

number of τxm−1 needed to be applied to ω̃m−1 to obtain ω̃m.

Now, we verify that a canonical path is indeed a path in the sense of the

cyclic dynamics, and that it indeed achieves the desired energy level 2K + 4.

Lemma 3.6.3. Suppose that ω = (ωn)rKLn=0 is a canonical path from a to b,

where r ∈ J1, q − 1K is as defined in Definition 3.6.1.

(1) The sequence ω is indeed a path.

(2) Recall (3.7). Then, it holds that Φω = 2K + 4.

Proof. We recall the notation of Definition 3.6.1 so that (ω̃m)KLm=0 denotes the

backbone MH-canonical path associated with the path ω with ω̃m+1 = ω̃xm, bm .

(1) By definition, for each m ∈ J0, KL− 1K and i ∈ J0, r − 1K, we can write

ωrm+i = τ ixmω̃m and ωrm+i+1 = τ i+1
xm ω̃m. Thus, we have ωrm+i+1 = τxmωrm+i

which implies rβ(ωrm+i, ωrm+i+1) > 0. This concludes the proof of part (1).
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(2) We continue the notation of part (1), so that ω is induced from an MH-

canonical path (ω̃m)KLm=0. Recall from (3.5) and (3.7) that

Φω = max
n∈J0, rKL−1K

H(ωn, ωn+1)

= max
m∈J0,KL−1K

max
i∈J0, r−1K

H(ωrm+i, ωrm+i+1) = max
m∈J0,KL−1K

max
c∈Ω

H(ω̃xm, cm ).

(3.95)

Then, by an elementary computation, we can explicitly calculate max
c∈Ω

H(ω̃xm, cm ).

Namely,

max
c∈Ω

H(ω̃xm, cm ) =



4 if m = 0 or KL− 1,

2m+ 5 if m ∈ J1, K − 2K,

2K + 2 if m = K − 1 or K(L− 1),

2K + 3 if m = Kv or K(v + 1)− 1,

2K + 4 if m ∈ JKv + 1, K(v + 1)− 2K,

2KL− 2m+ 3 if m ∈ JK(L− 1) + 1, KL− 2K,
(3.96)

where v ∈ J1, L− 2K. Here, the condition q ≥ 3 is used in the fact that there

always exists a third spin which is neither 1 nor 2. Therefore, by (3.95), we

have Φω = 2K + 4 and thus conclude the proof.

Now, we are ready to present the upper bound of the energy barrier.

Proposition 3.6.4. For all a, b ∈ S, we have Φ(a, b) ≤ 2K + 4.

Proof. The statement is direct from part (2) of Lemma 3.6.3.

A combinatorial proof of the next result is postponed to Section 3.11.1.

Proposition 3.6.5. For any path ω = (ωn)Nn=0 from a to ă, we have Φω ≥
2K + 4.

Finally, we are ready to prove Theorem 3.1.1.
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Proof of Theorem 3.1.1. Let a, b ∈ S. Proposition 3.6.4 implies that Φ(a, ă) ≤
Φ(a, b) ≤ 2K+4. On the other hand, Proposition 3.6.5 implies that Φ(a, ă) ≥
2K+4. Combining this two, we obtain that Φ(a, ă) = Φ(a, b) = 2K+4.

3.6.2 Neighborhoods

In this subsection, we explain the neighborhoods for the cyclic dynamics.

Before proceeding to define them, we first check the following lemma which

was obvious for the MH dynamics but not quite so for the cyclic dynamics.

Lemma 3.6.6. For all σ, ζ ∈ X , we have Φ(σ, ζ) = Φ(ζ, σ).

Proof. Let ω = (ωn)Nn=0 : σ → ζ be an optimal path satisfying Φω = Φ(σ, ζ).

Note that the reversed sequence (ωN , ωN−1, . . . , ω0) is no longer a path with

respect to the cyclic dynamics. However, since ωn+1 = τxωn for some x ∈ Λ,

we can write ωn = τ q−1
x ωn+1 where τ ixσ denotes the configuration obtained

from σ by applying τx for i times. Thus, we can replace (ωn+1, ωn) with

(ωn+1, τxωn+1, τ
2
xωn+1, . . . , τ

q−1
x ωn+1). (3.97)

Replacing each (ωn+1, ωn) in (ωN , ωN−1, . . . , ω0) in this manner, we get a

path ω̃ (with respect to the cyclic dynamics) from ζ to σ. Since

H(ωn+1, τxωn+1) = · · · = H(τ q−2
x ωn+1, τ

q−1
x ωn+1) = H(ωn, ωn+1),

we immediately have that Φω̃ = Φω = Φ(σ, ζ). Thus we have Φ(ζ, σ) ≤
Φ(σ, ζ). Replacing the roles of σ and ζ, we also obtain the reversed inequality

Φ(ζ, σ) ≥ Φ(σ, ζ) and thus we complete the proof.

Next, we define the neighborhood N (σ), N̂ (σ), N (P), and N̂ (P) in the

same manner with Definition 3.4.2. Then, since we also know that Γ is the

energy barrier, Proposition 3.4.5 also holds for the cyclic dynamics. On the

other hand, we now have to modify Lemma 3.4.6 in the following way.

84



CHAPTER 3. ISING/POTTS MODELS WITH ZERO EXTERNAL
FIELDS

Lemma 3.6.7. Let σ ∈ X and let ζ1 ∈ N̂ (σ), ζ2 /∈ N̂ (σ) and ζ1 ∼ ζ2. Then,

H(ζ1, ζ2) > Γ.

Proof. Suppose to the contrary that H(ζ1, ζ2) ≤ Γ. Since ζ1 ∼ ζ2, we have

either rβ(ζ1, ζ2) > 0 or rβ(ζ2, ζ1) > 0. For the former case, we first find a

path ω : σ → ζ1 such that Φω ≤ Γ (such a path exists since ζ1 ∈ N̂ (σ)).

Then, we can concatenate the directed edge (ζ1, ζ2) at the end of the path ω

to form a path ω′ : σ → ζ2 satisfying Φω′ ≤ Γ. This contradicts ζ2 /∈ N̂ (σ).

On the other hand, for the latter case, i.e., the case rβ(ζ2, ζ1) > 0, we

find a path ω : ζ1 → σ such that Φω ≤ Γ, where such a path exists since

Φ(ζ1, σ) = Φ(σ, ζ1) ≤ Γ thanks to Lemma 3.6.6. Then, we concatenate the

directed edge (ζ2, ζ1) at the front of the path ω to form a path ω′′ : ζ2 → σ

satisfying Φω′′ ≤ Γ. Thus, we have Φ(ζ2, σ) ≤ Γ and again by Lemma 3.6.6

we obtain Φ(σ, ζ2) ≤ Γ. This again contradicts ζ2 /∈ N̂ (σ).

In turn, we modify the definition of the restricted neighborhoods given in

Definition 3.4.7.

Definition 3.6.8 (Restricted neighborhood of cyclic dynamics). Let Q ⊆ X .

For σ ∈ X \ Q, we define N̂ (σ; Q) as the collection of all ζ with H(ζ) ≤ Γ

such that there exist ω0, ω1, . . . , ωN ∈ X \Q satisfying ω0 = σ, ωN = ζ and

ωn ∼ ωn+1 with H(ωn, ωn+1) ≤ Γ for all n ∈ J0, N − 1K.

For P ⊆ X disjoint with Q, we define N̂ (P ; Q) :=
⋃
σ∈P

N̂ (σ; Q).

Then, as we did in the analysis of the MH dynamics, we formulate the

following lemma.

Lemma 3.6.9. For all P ⊆ X , we have

N̂ (P) = N̂ (P ; ∅).

85



CHAPTER 3. ISING/POTTS MODELS WITH ZERO EXTERNAL
FIELDS

Proof. One can notice that this identity is not as trivial as in the MH dy-

namics, since in Definition 3.6.8 ωn and ωn+1 satisfy ωn ∼ ωn+1 instead of

rβ(ωn, ωn+1) > 0. Naturally, the proof presented here overcomes this differ-

ence.

We fix σ ∈ P and prove that N̂ (σ) = N̂ (σ; ∅). Since rβ(ζ1, ζ2) > 0

implies ζ1 ∼ ζ2 for any ζ1, ζ2 ∈ X , and since H(ζ) ≤ Γ for all ζ ∈ N̂ (σ), it is

immediate that N̂ (σ) ⊆ N̂ (σ; ∅). Thus, it suffices to demonstrate that

N̂ (σ) ⊇ N̂ (σ; ∅).

Take an arbitrary ζ ∈ N̂ (σ; ∅), so thatH(ζ) ≤ Γ and there exist ω0, . . . , ωN ∈
X which satisfy ω0 = σ, ωN = ζ, ωn ∼ ωn+1 and H(ωn, ωn+1) ≤ Γ. We claim

that for every n ∈ J0, NK, there exists a path ω̃(n) : ω0 → ωn such that

Φω̃(n) ≤ Γ. This claim concludes the proof by simply substituting n = N and

noting that ω0 = σ and ωN = ζ, which would then imply that ζ ∈ N̂ (σ) as

desired.

It remains to prove the claim. We inductively construct a path ω̃(n) : σ =

ω0 → ωn as follows. First, set ω̃0 = ω0 = σ which immediately proves the

case n = 0. Then, for each n ∈ J0, N − 1K suppose that ω̃(n) : ω0 → ωn is

constructed. Note that rβ(ωn, ωn+1) > 0 or rβ(ωn+1, ωn) > 0. If the former

case holds, then we simply define ω̃(n+1) by concatenating ω′ = (ωn, ωn+1) at

the end of ω̃(n). If the latter case holds, we concatenate a detour path ω′ of

length q − 1, as explained in (3.97), at the end of ω̃(n). In any case, ω̃(n+1) is

indeed a path from ω0 to ωn+1, and moreover

Φω̃(n+1) = max{Φω̃(n) , Φω′} ≤ Γ,

where the inequality holds by the induction hypothesis and the fact that

Φω′ = H(ωn, ωn+1) ≤ Γ in both cases. Therefore, we conclude the proof of

the lemma.
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Figure 3.6: Example of an orbit. Here, q = 5. Suppose that ζ = τ 3
x0
σ with

σ(x0) = 1 and ζ(x0) = 4 as in the figure. Then, the orbit Ox0(σ) = O(σ, ζ)
consists of the presented five configurations. Note that σlη1lη2lζlη3lσ.

3.6.3 Orbits and typical configurations

Definition 3.6.10 (Orbits). We refer to Figure 3.6.

(1) For σ ∈ X and x ∈ Λ, the orbit Ox(σ) consists of q configurations

which have same spin values with σ on Λ \ {x}, namely,

Ox(σ) := {σ, τxσ, . . . , τ q−1
x σ}.

Note that for all ζ1, ζ2 ∈ Ox(σ), we have rMH
β (ζ1, ζ2) > 0 where rMH

β (·, ·)
denotes the transition rate of the MH dynamics.

(2) Fix σ, ζ ∈ X such that ζ = τ ix0
σ for some x0 ∈ Λ and i ∈ J1, q − 1K

(i.e., such that rMH
β (σ, ζ) > 0). The orbit O(σ, ζ) containing σ and ζ

is defined as

O(σ, ζ) := Ox0(σ) = {σ, τx0σ, . . . , τ
q−1
x0

σ}.

It is clear that σ, ζ ∈ O(σ, ζ), and that O(σ, ζ) = O(ζ, σ).

(3) Following the above notation, for η ∈ O(σ, ζ) \ {σ, ζ} so that η = τ jx0
σ

with j ∈ J1, q−1K\{i}, we write σlηlζ if j ∈ J1, i−1K and ζlηlσ
if j ∈ Ji+ 1, q− 1K. Intuitively, σl ηl ζ (resp. ζ l ηl σ) if one meets

η during the series of i updates σ → ζ (resp. q − i updates ζ → σ).
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(4) For a subset P ⊆ X , we define

O(P) :=
⋃

σ, ζ∈P: rMH
β (σ, ζ)>0

O(σ, ζ). (3.98)

The notion of orbits is necessary since all spin updates in an orbit Ox(σ)

attain the same level of height. More precisely, noting that

Ox(σ) = {σ, τxσ, . . . , τ q−1
x σ},

we have for all i ∈ J0, q − 1K that (cf. (3.7))

H(τ ixσ, τ
i+1
x σ) = max

j∈J0, q−1K
H(τ jxσ) = max

Ox(σ)
H. (3.99)

Now, we introduce typical configurations subjected to the cyclic dynamics.

Definition 3.6.11 (Typical configurations of cyclic dynamics). Recall the

sets Ra, b
v and Qa, bv defined in Definition 3.4.10.

(1) For each regular configuration σ ∈ Ra, b
v , we write

σ :=
⋃
x∈Λ

Ox(σ). (3.100)

Then for v ∈ J2, L− 2K, we define

Ra, b

v :=
⋃

σ∈Ra, bv

σ and Rv :=
⋃
a, b∈Ω

Ra, b

v .

(2) For v ∈ J2, L− 3K, we define

Qa, bv := O(Qa, bv ) and Qv :=
⋃
a, b∈Ω

Qa, bv .

(3) The set of (cyclic) bulk typical configurations between two ground states
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a and b is defined by

Ba, b :=
⋃

v∈J2, L−3K

Qa, bv ∪
⋃

v∈J2, L−2K

Ra, b

v .

We write

Ba, bΓ :=
[ ⋃
v∈J2, L−3K

Qa, bv
]
\
[ ⋃
v∈J2, L−2K

Ra, b

v

]
.

Then, we naturally define B :=
⋃
a, b∈Ω

Ba, b and BΓ :=
⋃
a, b∈Ω

Ba, bΓ .

(4) For a ∈ Ω, we define the set of (cyclic) edge typical configurations

associated with spin a as Ea := N̂ (a; BΓ). Then, we set E :=
⋃
a∈Ω

Ea.

Notation. For each regular configuration ξa, b`, v ∈ R
a, b
v , we simply denote by

ξ
a, b

`, v the collection ξa, b`, v (cf. (3.100)).

With this new definition of the typical configurations, we can construct

the saddle structure for the cyclic dynamics as we did in Proposition 3.4.17

for the MH dynamics.

Proposition 3.6.12. The following properties hold.

(1) For spins a, b ∈ Ω, we have Ea ∩ Eb = ∅.

(2) For spins a, b ∈ Ω, we have Ea ∩ Ba, b = Ra, b

2 .

(3) For three spins a, b, c ∈ Ω, we have Ea ∩ Bb, c = ∅.

(4) It holds that E ∪ B = N̂ (S).

A detailed proof of this proposition is given in Section 3.11.2.
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3.6.4 Graph structure of edge typical configurations

Recall that in the investigation of the edge typical configurations of the MH

dynamics, the graph structure (cf. Section 3.4.5) played a significant role. In

this subsection, we explain the corresponding results for the cyclic dynamics.

Recall the sets Za, b and Za, b` from (3.51) and Definition 3.4.19, respec-

tively, and define

Za, b := O(Za, b) and Za, b` := O(Za, b` )

so that, by the characterization of the set Za, b in Proposition 3.4.18, we can

decompose the set Za, b into (similarly with (3.54))

Za, b =


⋃
`∈TL

Za, b` if K < L,⋃
`∈TL

Za, b` ∪
⋃
`∈TL

Θ(Za, b` ) if K = L.
(3.101)

Now, we define

Za :=
⋃

b∈Ω\{a}

Za, b, Ra
:=

⋃
b∈Ω\{a}

Ra, b

2 , and Da := N̂ (a; Za), (3.102)

so that we have the following representations of Ea:

Ea = Da ∪ Za ∪Ra

=


Da ∪

⋃
b6=a

⋃
`∈TL

[Za, b` ∪ ξ
a, b

`, 2] if K < L,

Da ∪
⋃
b6=a

⋃
`∈TL

[Za, b` ∪ ξ
a, b

`, 2] ∪
⋃
b 6=a

⋃
`∈TL

[Θ(Za, b` ) ∪Θ(ξ
a, b

`, 2)] if K = L.

A crucial difference here with the structure explained in Section 3.4 is that

Za, b is no longer disjoint with both Da and Ra
. In turn, here we should

define the graph structure on the Za, b itself and may exclude the sets Da and
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Ra
.

Definition 3.6.13. We fix a, b ∈ Ω and ` ∈ TL. Then, we introduce a graph

structure and a Markov chain on Za, b` .

• (Graph) We first assign a graph structure (cf. (3.72))

G
a, b

` = (V
a, b

` , E
a, b

` ) := (Za, b` , E(Za, b` )).

By symmetry, the graph structure G
a, b

` does not depend on ` ∈ TL
(or the transpose operator Θ if K = L), while it indeed depends

on a, b ∈ Ω (actually on the value of b − a modulo q) unlike in Def-

inition 3.4.21. Thus, we omit the subscript ` and simply write G
a, b

=

(V
a, b
, E

a, b
) when no risk of confusion arises.

• (Target sets) We define two disjoint subsets of V
a, b

= Za, b` as

A
a, b

= A
a, b

` := Za, b` ∩N (a) and B
a, b

= B
a, b

` := Za, b` ∩ ξ
a, b

`, 2.

• (Markov chain) We define a symmetric rate function ra, b : V
a, b ×

V
a, b → [0, ∞) in such a way that

ra, b(σ, σ′) =

1 if {σ, σ′} ∈ E
a, b

and rβ(σ, σ′) > 0,

0 otherwise.

Then, define {Za, b(t)}t≥0 as the continuous-time Markov chain on V
a, b

with rate ra, b(·, ·). The Markov chain Z
a, b

(·) is invariant under the

uniform distribution on V
a, b

, but it is not reversible with respect to it.

We denote by Z
∗, a, b

(·) the adjoint Markov process of Z
a, b

(·). Denote

by f
a, b

·, · (·), capa, b(·, ·) and D
a, b

the equilibrium potential, capacity and

Dirichlet form with respect to the Markov chain Z
a, b

(·), respectively. In

addition, we denote by f
∗, a, b
·, · (·) the equilibrium potential with respect
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to the adjoint process Z
∗, a, b

(·). Finally, we abbreviate

f
a, b

:= f
a, b

A
a, b

,B
a, b and f

∗, a, b
= f
∗, a, b
A
a, b

,B
a, b .

Edge constant

We are now ready to define the edge constant e0 that appears in (3.30) for

the cyclic dynamics. We first define

ea, b0 :=
1

|V a, b| · capa, b(A a, b
, B

a, b
)
. (3.103)

The next proposition not only provides the bound on this constant, but also

proves that this constant, somewhat surprisingly, does not depend on the

choices of a and b.

Proposition 3.6.14. The value of ea, b0 does not depend on a, b ∈ Ω, and

moreover we have ea, b0 < 2.

A proof of this proposition is given in Section 3.11.2. Thanks to this

proposition, we can finally define the constant e0 that appears in (3.30) for

the cyclic dynamics:

e0 := ea, b0 for any a, b ∈ Ω. (3.104)

3.7 Test functions: cyclic dynamics

Fix two non-empty, disjoint P and Q of S. The purpose of this section is to

construct two test functions h̃, h̃∗ : X → R that appear in Proposition 3.2.9,

and then to prove that these two test functions satisfy three conditions (3.38),

(3.39) and (3.40). We again use Notation 3.5.1 throughout this section.

Remark 3.7.1. Of course, the test functions of the cyclic dynamics are dif-

ferent to (in fact, slightly more complex than) those of the MH dynamics.
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However, most parts of the proofs of three conditions (3.38), (3.39) and (3.40)

are quite similar or identical, and thus we omit the details for such cases. This

reveals that the proof of the non-reversible model based on our strategy does

not possess additional difficulty compared to the proof of the reversible model.

3.7.1 Test functions

In this subsection, we construct test functions h̃ and h̃∗ which are approxima-

tions of the equilibrium potentials hP,Q and h∗P,Q, respectively. The following

definition is an analogue of Definition 3.5.2.

Definition 3.7.2 (Test functions). We construct h̃, h̃∗ : X → R. Notation

3.5.1 is valid throughout. We first assume that K < L.

(1) Construction on E. We first define the function h̃.

• For σ ∈ Ea, we define h̃(σ) as
1 if σ ∈ Da ∪ Za, a

′

∪Ra, a′

2 , a′ 6= a,

1− e

κ
(1− f

a, b
(σ)) if σ ∈ Za, b,

1− |Q|
|P|+ |Q|

e

κ
(1− f

a, c
(σ)) if σ ∈ Za, c.

(3.105)

• For σ ∈ Eb, we define h̃(σ) as
0 if σ ∈ Db ∪ Zb, b

′

∪Rb, b′

2 , b′ 6= b,
e

κ
(1− f

b, a
(σ)) if σ ∈ Zb, a,

|P|
|P|+ |Q|

e

κ
(1− f

b, c
(σ)) if σ ∈ Zb, c.
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• For σ ∈ Ec, we define h̃(σ) as

|P|
|P|+ |Q|

in Dc ∪ Zc, c
′

∪Rc, c′

2 ,

|P|
|P|+ |Q|

+
|Q|

|P|+ |Q|
e

κ
(1− f

c, a
(σ)) in Zc, a,

|P|
|P|+ |Q|

− |P|
|P|+ |Q|

e

κ
(1− f

c, b
(σ)) in Zc, b.

The function h̃∗ is defined in the same way, except that we substitute

f
∗, s, s′

in place of f
s, s′

for all s, s′ ∈ S above.

(2) Construction on B. We first set

h̃ ≡ h̃∗ ≡


1 on Ba, a

′

,

0 on Bb, b
′

,

|P|
|P|+ |Q|

on Bc, c
′

.

Next, we consider the construction on Ba, b which is carried out by

interpolating the value from
b + e

κ
at Ra, b

2 to
e

κ
at Ra, b

L−2 in the

following way.

• For σ ∈ Ra, b

v with v ∈ J2, L− 2K, we set

h̃(σ) = h̃∗(σ) =
1

κ

[L− 2− v
L− 4

b + e
]
.

• For σ ∈ Qa, bv with v ∈ J2, L − 3K, where σ = ξa, b,±`, v; k, h for some

` ∈ TL, k ∈ TK and h ∈ J1, K − 1K, we set

h̃(σ) = h̃∗(σ) =
1

κ

[(K − 2)(L− 2− v)− (h− 1)

(K − 2)(L− 4)
b + e

]
.

• For σ ∈ Qa, bv \Qa, bv with v ∈ J2, L−3K, we have σ ∈ O(ξa, b,±`, v; k, h, ξ
a, b,±
`, v; k, h+1)
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or σ ∈ O(ξa, b,±`, v; k, h, ξ
a, b,±
`, v; k−1, h+1) for some ` ∈ TL, k ∈ TK and

h ∈ J1, K − 2K. For the former case, we set

h̃(σ) :=

h̃(ξa, b,±`, v; k, h+1) if ξa, b,±`, v; k, h l σ l ξa, b,±`, v; k, h+1,

h̃(ξa, b,±`, v; k, h) if ξa, b,±`, v; k, h+1 l σ l ξa, b,±`, v; k, h.
(3.106)

The value h̃∗(σ) is defined in the reversed way. For the latter

case, i.e., the case of σ ∈ O(ξa, b,±`, v; k, h, ξ
a, b,±
`, v; k−1, h+1), the functions

are constructed in the same manner.

Similarly, constructions on Ba, c and Bc, b can be done by interpolating

from
|P|

|P|+ |Q|
+

|Q|
|P|+ |Q|

b + e

κ
to

|P|
|P|+ |Q|

+
|Q|

|P|+ |Q|
e

κ
, and from

|P|
|P|+ |Q|

b + e

κ
to

|P|
|P|+ |Q|

e

κ
, respectively.

(3) Construction on X \ (E ∪ B). We set h̃ ≡ h̃∗ ≡ 1 thereon.

For the case of K = L, for all σ ∈ E ∪ B considered in parts (1) and (2)

above, we additionally set h̃(Θ(σ)) := h̃(σ) and h̃∗(Θ(σ)) := h̃∗(σ).

Remark 3.7.3. It is immediate from the definition that (3.40) holds for the

test functions h̃ and h̃∗.

It remains to prove conditions (3.38) and (3.39). We only verify these two

conditions for h̃, since the verification for h̃∗ is essentially identical (done by

reversing the order of orbits). Let us first check (3.39) for h̃.

Proposition 3.7.4. The function h̃ satisfies (3.39), i.e.,

Dβ(h̃) = (1 + o(1)) · |P||Q|
κ(|P|+ |Q|)

e−Γβ.
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Proof. We decompose Dβ(h̃) as

1

2

[ ∑
σ, ζ∈X\(E∪B)

+
∑

σ∈E∪B, ζ∈X\(E∪B) or

ζ∈E∪B, σ∈X\(E∪B)

+
∑

σ, ζ∈E∪B

]
µβ(σ)rβ(σ, ζ)[h̃(ζ)− h̃(σ)]2,

where all summations are carried over pairs σ, ζ such that σ ∼ ζ. Since

h̃ is defined as constant on X \ (E ∪ B), the first summation is 0. For the

second summation, by (3.6), Lemma 3.6.7 and Proposition 3.6.12-(4), we

have µβ(σ)rβ(σ, ζ) = O(e−(Γ+1)β) = o(e−Γβ) and thus this summation is

negligible. It only remains to prove

1

2

∑
σ, ζ∈E∪B

µβ(σ)rβ(σ, ζ)[h̃(ζ)− h̃(σ)]2 = (1 + o(1)) · |P||Q|
κ(|P|+ |Q|)

e−Γβ.

The proof of this estimate is essentially the same with the corresponding part

in the proof of Proposition 3.5.6, and we omit the detail.

3.7.2 Proof of H1-approximation

In this section, we prove (3.38) for h̃ and thus complete the proof of Propo-

sition 3.2.9. The storyline is identical to the one given in Section 3.5.3. Note

that the computation carried out in (3.82) is valid without reversibility and

thus we have

Dβ(hP,Q − h̃) = Dβ(h̃)−
∑
σ∈X

hP,Q(σ)(−Lβh̃)(σ)µβ(σ).

Hence, as in (3.83), it suffices to prove that

∑
σ∈X

hP,Q(σ)
∑
ζ∈X

µβ(σ)rβ(σ, ζ)[h̃(σ)− h̃(ζ)] = (1 + o(1)) · |P||Q|
κ(|P|+ |Q|)

e−Γβ.

(3.107)

96



CHAPTER 3. ISING/POTTS MODELS WITH ZERO EXTERNAL
FIELDS

To this end, we first demonstrate that the equilibrium potential hP,Q is nearly

constant on each neighborhood N (σ) for any σ ∈ X , which is an analogue

of Lemma 3.5.8.

Lemma 3.7.5. For all σ ∈ X , it holds that max
ζ∈N (σ)

∣∣hP,Q(ζ)−hP,Q(σ)
∣∣ = o(1).

Note that the argument given in Lemma 3.5.8 relies on the reversibility

only because of the cited result [70, Theorem 3.2-(iii)]. Thus, in this lemma,

it suffices to replace this reference with [27, Propositions 3.10 and 3.18-(3)]

which is a non-reversible generalization of [70, Theorem 3.2-(iii)]. In addition,

we emphasize that the proof outlined in Remark 3.5.9 can also be applied to

this lemma as well.

We now start to estimate the left-hand side of (3.107). As done in Section

3.5.3, write

φ(σ) :=
∑
ζ∈X

µβ(σ)rβ(σ, ζ)[h̃(σ)− h̃(ζ)], (3.108)

so that we can rewrite (3.107) as

∑
σ∈X

hP,Q(σ)φ(σ) = (1 + o(1)) · |P||Q|
κ(|P|+ |Q|)

e−Γβ. (3.109)

The following lemma can be proved in the same manner with Lemma 3.5.10;

it suffices to use Lemma 3.6.7 instead of Lemma 3.4.6.

Lemma 3.7.6. For all σ ∈ X \ N̂ (S), we have φ(σ) = o(e−Γβ).

Next, we decompose φ = φ1 + φ2 where for σ ∈ N̂ (S),

φ1(σ) :=
∑

ζ∈N̂ (S)

µβ(σ)rβ(σ, ζ)[h̃(σ)− h̃(ζ)],

φ2(σ) :=
∑

ζ /∈N̂ (S)

µβ(σ)rβ(σ, ζ)[h̃(σ)− h̃(ζ)].

Next, we can show that φ2 is negligible as in Lemma 3.5.11.
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Lemma 3.7.7. For all σ ∈ N̂ (S), we have φ2(σ) = o(e−Γβ).

This can be proved in the same manner with Lemma 3.5.11. In addition

to the replacement of Lemma 3.4.6 with Lemma 3.6.7, we need to replace

Proposition 3.4.17-(4) with Proposition 3.6.12-(4). Summing up, instead of

(3.109), it suffices to show that

∑
σ∈N̂ (S)

hP,Q(σ)φ1(σ) = (1 + o(1)) · |P||Q|
κ(|P|+ |Q|)

e−Γβ. (3.110)

Next, we investigate φ1 in several lemmas. Let us first consider φ1 on the

bulk typical configurations.

Lemma 3.7.8. For each v ∈ J2, L − 3K and a, b ∈ Ω, it holds that φ1 ≡ 0

on Qa, bv \ (Ra, b

v ∪R
a, b

v+1).

Proof. We only prove that φ1(σ) = 0 for all σ ∈ O(ξa, b,+`, v; k, h, ξ
a, b,+
`, v; k, h+1) with

v ∈ J2, L−3K and h ∈ J1, K−2K, since the other orbits can be handled in the

same way. Write ξa, b,+`, v; k, h+1 = τmx ξ
a, b,+
`, v; k, h for some x ∈ Λ and m ∈ J1, q − 1K3,

so that we can write

σ = τ ixξ
a, b,+
`, v; k, h for some i ∈ J0, q − 1K.

(Case 1: i 6= 0, m) We immediately have h̃(τxσ) = h̃(σ) by definition and

thus

φ1(σ) = µβ(σ)rβ(σ, τxσ)[h̃(σ)− h̃(τxσ)] = 0,

where φ1(σ) consists of only one term since we have τyσ /∈ N̂ (S) for all

y ∈ Λ \ {x}.
(Case 2: σ = ξa, b,+`, v; k, h, so that h 6= 1 since σ /∈ Ra, b

v ) In this case, there are

four updates (that does not exceed the energy level Γ) from σ along the or-

bits O(ξa, b,+`, v; k, h, ξ
a, b,+
`, v; k, h+1), O(ξa, b,+`, v; k, h, ξ

a, b,+
`, v; k−1, h+1), O(ξa, b,+`, v; k, h−1, ξ

a, b,+
`, v; k, h) and

3Actually, m = b− a or m = q + b− a.
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O(ξa, b,+`, v; k+1, h−1, ξ
a, b,+
`, v; k, h). By a direct computation with the definition of h̃,

we can check that for all these updates, which we denote as τx1 , τx2 , τx3 , τx4

respectively, we have

µβ(σ)rβ(σ, τxiσ)[h̃(σ)− h̃(τxiσ)] = ±e
−Γβ

Zβ
· b

κ(K − 2)(L− 4)
for i ∈ J1, 4K,

(3.111)

where the sign is plus for i ∈ {1, 2} and minus for i ∈ {3, 4}. Therefore,

φ1(σ) =
4∑
i=1

µβ(σ)rβ(σ, τxiσ)[h̃(σ)− h̃(τxiσ)]

=
e−Γβ

Zβ
· b

κ(K − 2)(L− 4)
· (1 + 1− 1− 1) = 0.

(Case 3: σ = ξa, b,+`, v; k, h+1, so that h 6= K − 2 since σ /∈ Ra, b

v+1) This case can

be handled in the same manner with (Case 2).

Next, we handle Ra, b

v for a, b ∈ Ω and v ∈ J2, L− 2K.

Lemma 3.7.9. For each v ∈ J2, L− 2K and a, b ∈ Ω, it holds that∑
σ∈Ra, bv

φ1(σ) = 0. (3.112)

Moreover, there exists a constant C > 0 such that |φ1(σ)| ≤ Ce−Γβ for all

σ ∈ Ra, b

v .

Proof. Let us first assume that v 6= 2, L− 2. Recall that Ra, b

v =
⋃

σ∈Ra, bv

σ. By

the definition of h̃, it holds that the function φ1 vanishes outside⋃
`∈TL

⋃
k∈TK

{ξa, b,+`, v; k, 1, ξ
a, b,−
`, v; k, 1, ξ

a, b,+
`, v−1; k,K−1, ξ

a, b,−
`+1, v−1; k,K−1}.
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Thus, to prove (3.112), it suffices to verify that for all ` ∈ TL and k ∈ TK ,

φ1(ξa, b,+`, v; k, 1) +φ1(ξa, b,−`, v; k, 1) +φ1(ξa, b,+`, v−1; k,K−1) +φ1(ξa, b,−`+1, v−1; k,K−1) = 0. (3.113)

By definition of h̃ on the bulk typical configurations, we have

φ1(ξa, b,+`, v; k, 1) = φ1(ξa, b,−`, v; k, 1) =
e−Γβ

Zβ
· b

κ(K − 2)(L− 4)
,

φ1(ξa, b,+`, v−1; k,K−1) = φ1(ξa, b,−`+1, v−1; k,K−1) = −e
−Γβ

Zβ
· b

κ(K − 2)(L− 4)
.

Thus, (3.113) is a direct consequence of this computation. Moreover, we can

also verify the second statement from this computation as well via Theorem

3.0.1 and (3.29).

The proof of cases v = 2, L − 2 is a notational modification of that of

Lemma 3.5.13, and thus we omit the details.

Now, we consider the function φ1 at the edge typical configurations.

Lemma 3.7.10. We have φ1(σ) = 0 for

(1) σ ∈ (Za, b ∪ Za, c ∪ Zc, b) \ N (S) (cf. Notation 3.5.1) and

(2) σ ∈ Ds \ N (s) with s ∈ S.

Proof. Part (1) can be proved in the same way as we proved Lemma 3.5.14.

On the other hand, part (2) directly follows from the fact that h̃ is defined

as constant on Ds (cf. Definition 3.7.2-(1)).

It remains to investigate φ1 on the sets N (s), s ∈ S.
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Lemma 3.7.11. For a, b, c chosen according to Notation 3.5.1, we have

∑
σ∈N (a)

φ1(σ) = (1 + o(1)) · |Q|
κ(|P|+ |Q|)

e−Γβ, (3.114)

∑
σ∈N (b)

φ1(σ) = −(1 + o(1)) · |P|
κ(|P|+ |Q|)

e−Γβ, (3.115)

∑
σ∈N (c)

φ1(σ) = o(e−Γβ). (3.116)

Moreover, there exists a positive constant C so that for all σ ∈ N (S),

|φ1(σ)| ≤ Ce−Γβ.

Proof. The proof of this lemma is identical to that of Lemma 3.5.16 and we

omit the detail.

Finally, we are ready to prove Proposition 3.2.9 for the cyclic dynamics.

Proof of Proposition 3.2.9 for the cyclic dynamics. By Remark 3.7.3 and Propo-

sition 3.7.4, if suffices to verify (3.38). We explained above that (3.38) follows

if we can prove (3.110). By Lemmas 3.7.8 and 3.7.10, we have∑
σ∈N̂ (S)

hP,Q(σ)φ1(σ) = o(e−Γβ) +
∑
s∈S

∑
σ∈N (s)

hP,Q(σ)φ1(σ)

= o(e−Γβ) +
∑
s∈S

[
hP,Q(s)

∑
σ∈N (s)

φ1(σ)
]
,

where the first identity follows from Lemma 3.7.5 and the last part of Lemma

3.7.9, and where the second identity follows from Lemma 3.7.5 and the last

part of Lemma 3.7.11. Now, inserting (3.114), (3.115) and (3.116) completes

the proof.
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3.8 Decomposition lemma

Before proceeding to the proofs of results stated in Sections 3.4 and 3.6, we

provide a decomposition of neighborhoods which is crucially used in later

discussions. Let P1, P2, and Q be pairwise disjoint subsets of X . Then, by

the definition of neighborhoods, we immediately have

N̂ (P1 ∪ P2; Q) = N̂ (P1; Q) ∪ N̂ (P2; Q). (3.117)

The following lemma is a refinement of this decomposition. Note that the

proof works for both the MH and cyclic dynamics.

Lemma 3.8.1. Suppose that P1, P2 and Q are pairwise disjoint subsets of

X . Then, it holds that

N̂ (P1 ∪ P2; Q) = N̂ (P1; P2 ∪Q) ∪ N̂ (P2; P1 ∪Q).

In particular, if Q = ∅ then we have

N̂ (P1 ∪ P2) = N̂ (P1; P2) ∪ N̂ (P2; P1).

Proof. First, we consider the first identity. By (3.117) and the definition of

restricted neighborhoods, we immediately have that

N̂ (P1 ∪ P2; Q) ⊇ N̂ (P1; P2 ∪Q) ∪ N̂ (P2; P1 ∪Q). (3.118)

To prove the reversed inclusion, we assume to the contrary that there exists

σ ∈ X such that

σ ∈ N̂ (P1 ∪ P2; Q) \
[
N̂ (P1; P2 ∪Q) ∪ N̂ (P2; P1 ∪Q)

]
. (3.119)

By (3.117), we may assume without loss of generality that

σ ∈ N̂ (P1; Q) \
[
N̂ (P1; P2 ∪Q) ∪ N̂ (P2; P1 ∪Q)

]
. (3.120)
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Note that σ ∈ N̂ (P1; Q) implies automatically that H(σ) ≤ Γ. Then, the

fact that σ /∈ N̂ (P1; P2 ∪ Q) ∪ N̂ (P2; P1 ∪ Q) implies that we readily have

σ /∈ P1 ∪ P2.

Now since σ ∈ N̂ (P1; Q), we can find (ωn)Nn=0 in X \Q with N ≥ 1 such

that ω0 ∈ P1, ωN = σ, ωn ∼ ωn+1 and H(ωn, ωn+1) ≤ Γ. Let us assume that

N is the smallest of all such sequences. If ωn /∈ P2 for all n ∈ J1, N−1K, then

(ωn)Nn=0 ⊆ X \ (P2 ∪ Q) so that we get a contradiction since we must have

σ /∈ N̂ (P1; P2∪Q). Therefore, we can find n0 ∈ J1, N−1K such that ωn0 ∈ P2.

Since we have ωn /∈ P1 for all n ∈ J1, NK by the minimality of the length

N , we can notice that (ωn)Nn=n0
⊆ (P1 ∪ Q)c and thus σ ∈ N̂ (P2; P1 ∪ Q).

Thus, we get a contradiction to (3.120). Hence, we have proved the reversed

inclusion of (3.118) and the proof of the first identity is completed.

Finally, the second identity of the lemma is immediate from Lemmas 3.4.6

and 3.6.7.

3.9 Proof of results in Section 3.4

3.9.1 Preliminaries

First, we give in Proposition 3.9.3 a characterization of configurations which

have energy less than Γ. For a ∈ Ω, we write

‖η‖a =
∑
x∈Λ

1{η(x) = a}, (3.121)

which denotes the number of sites in η with spin a. We recall some notation

from [69, Section 2.1].

Notation 3.9.1. We refer to Figure 3.7 for an illustration of the notions

introduced below.

• For a configuration η ∈ X , a bridge, which is a horizontal or vertical

bridge, is a row or column, respectively, in which all spins are the same.
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Figure 3.7: Figures for Notation 3.9.1. Configurations η1, η2 and η3 have hor-
izontal bridges, vertical bridges and a cross, respectively. Let S = {1, 2, 3}
and let white, gray and orange boxes denote sites with spin 1, 2 and 3, respec-
tively. Then e.g., for configuration η1, it holds that B1(η1) = 1, B2(η1) = 2,
B3(η1) = 0, ∆Hr1(η1) = 5 and ∆Hc2(η1) = 6. Note that one should be care-
ful about the periodic boundary condition when computing ∆Hr1(η1) and
∆Hc2(η1).

If a bridge consists of spin a ∈ Ω, we call this bridge an a-bridge. Then,

we denote by Ba(η) the number of a-bridges with respect to η.

• In a configuration η, a cross is the union of a horizontal bridge and a

vertical bridge. A cross consisting of spin a ∈ Ω is called an a-cross.

Moreover, η is called cross-free if it does not have a cross.

• We denote by r1, . . . , rL the rows and c1, . . . , cK the columns of Λ =

TK × TL, starting from the lowest and the leftmost one, respectively.

For v ∈ J1, LK, h ∈ J1, KK and η ∈ X , we define

∆Hrv(η) =
∑

{x, y}⊂rv :x∼y

1{η(x) 6= η(y)}

and

∆Hch(η) =
∑

{x, y}⊂ch:x∼y

1{η(x) 6= η(y)},

so that

H(η) =
∑

v∈J1, LK

∆Hrv(η) +
∑

h∈J1,KK

∆Hch(η). (3.122)
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An edge belonging to a row (resp. column) is called a horizontal (resp.

vertical) edge.

The following lower bound for the Hamiltonian is useful.

Lemma 3.9.2. It holds that

H(η) ≥ 2
[
K + L−

∑
a∈Ω

Ba(η)
]
.

Proof. It follows directly from (3.122) since ∆Hrv(η) ≥ 2 (resp. ∆Hch(η) ≥ 2)

if rv (resp. ch) is not a bridge.

Now, we classify the configurations with low energy.

Proposition 3.9.3. Suppose that η ∈ X satisfies H(η) < Γ. Then, η satisfies

exactly one of the following types.

• (L1) There exist a, b ∈ Ω and v ∈ J2, L− 2K such that η ∈ Ra, b
v . Here,

N (η) is a singleton, i.e., N (η) = {η}.

• (L2) There exist a, b ∈ Ω such that η ∈ Ra, b
1 . In this case, N (η) =

N (a).

• (L3) For some a ∈ Ω, η has an a-cross. Then, N (η) = N (a) and

∑
b 6=a

‖η‖b ≤
H(η)2

16
≤ (2K + 1)2

16
. (3.123)

Proof. Fix η ∈ X with H(η) < Γ = 2K+2. It is obvious that no configuration

can be of more than one type. Thus, we first show that η falls into exactly

one among three categories, and then we will prove that configurations of

each category satisfy each succeeding statement in the list.

By Lemma 3.9.2, η has at least L bridges. We take one of them and let

this be an a-bridge for some a ∈ Ω. Now, we consider three cases separately.
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(Case 1: η has a horizontal a-bridge without a vertical a-bridge)

Since ∆Hch(η) ≥ 2 for all h ∈ J1, KK and since H(η) ≤ Γ− 1 = 2K + 1, we

get from (3.122) that ∑
v∈J1, LK

∆Hrv(η) ≤ 1.

Since we cannot have ∆Hrv(η) = 1, we must have ∆Hrv(η) = 0 for all

v ∈ J1, LK. This implies that η ∈ Ra, b
v for some b 6= a and v ∈ J0, L − 1K

(v = L is excluded because η must have an a-bridge). We consider three

sub-cases separately.

• If v ∈ J2, L− 2K, then η satisfies (L1).

• If v = 0, then η = a and thus η clearly has an a-cross, so that η satisfies

(L3).

• If v = 1 or v = L − 1, then η satisfies (L2) (if v = L − 1 then

η ∈ Ra, b
L−1 = Rb, a

1 ).

(Case 2: η has a vertical a-bridge without a horizontal a-bridge)

Since ∆Hrv(η) ≥ 2 for all v ∈ J1, LK, we get from (3.122) that 2K + 2 > 2L

and hence we must have K = L. The rest of the proof is now identical to

(Case 1); it suffices to switch the role of columns and rows.

(Case 3: η has an a-cross) Here, η readily satisfies (L3).

Now, we verify the conditions of each category. If η satisfies (L1), then

it is clear that N (η) is a singleton since any configuration obtained from η

by flipping a spin has energy greater than or equal to Γ. If η satisfies (L2),

then a part of a canonical path connecting a and η is a (Γ − 2)-path, and

thus η ∈ N (a).

Finally, suppose that η satisfies (L3). For this case, without loss of gener-

ality we may assume that TK×{1} and {1}×TL form the a-cross. Then, we

update each spin to a in J2, KK×J2, LK in the ascending lexicographic order.

The presence of a-bridges assures us that the Hamiltonian does not increase
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during the entire procedure. In the end we reach a, and the maximal energy

along the path is attained at the initial configuration, which is H(η) < Γ.

Hence, we can conclude that η ∈ N (a).

Next, we verify the inequality (3.123). Define η̃ ∈ X as the configuration

obtained from η by replacing all non-a spins by some fixed b0 ∈ S \ {a}, i.e.,

for x ∈ Λ,

η̃(x) =

a if η(x) = a,

b0 if η(x) 6= a.

Then, it is straightforward from (3.122) that H(η̃) ≤ H(η). Moreover, as

η̃ also has an a-cross, we may regard clusters of spins b0 in η̃ as an object

in J2, KK × J2, LK ⊆ Z2. Thus, we can apply the well-known isoperimetric

lemma [1, Corollary 2.5] to deduce

‖η̃‖b0 ≤
H(η̃)2

16
≤ H(η)2

16
≤ (2K + 1)2

16
,

where the last inequality follows from the assumption that H(η) ≤ Γ− 1 =

2K + 1. We also remark that the equality of the first inequality holds when

the only cluster of spin b0 in η̃ forms a square. Since
∑
b6=a

‖η‖b = ‖η̃‖b0 , (3.123)

is now proved and we conclude the proof.

To conclude this subsection, we record a lemma regarding depths of val-

leys other than the metastable ones, which it is essential in the characteriza-

tion of the three-dimensional metastable valleys in Chapter 4.

Lemma 3.9.4. Let η ∈ X and a ∈ Ω. For any standard sequence (Am)KLm=0

of sets connecting ∅ and Λ and for m ∈ J0, KLK, we define ωm ∈ X in such

a manner that

ωm(x) =

a if x ∈ Am,

η(x) if x ∈ Λ \ Am.

Then, we have that H(ωm) ≤ H(η) + Γ for all m ∈ J0, KLK.
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Proof. As ωKL = a, the lemma is immediate for m = KL. Thus, we prove

this for m ∈ J0, KL− 1K.
Suppose that m ∈ JK`, K(` + 1) − 1K for some ` ∈ J0, L − 1K and

write ξ = ωm. Suppose that AK` = TK × P`, AK(`+1) = TK × P`+1 and

P`+1 \ P` = {`0}. By (3.122), we can write

H(ξ)−H(η) =
∑

v∈J1, LK

[∆Hrv(ξ)−∆Hrv(η)] +
∑

h∈J1,KK

[∆Hch(ξ)−∆Hch(η)].

(3.124)

We start by considering the first summation at the right-hand side. For v ∈
P`, we have ∆Hrv(ξ) = 0 and thus the summand is non-positive. For v ∈
X \ P`+1, the configurations η and ξ have the same v-th row and thus the

summand is 0. Finally, for v = `0, observe that ξ is obtained from η by

changing spins at consecutive sites to b, and thus we can readily conclude

that the energy has been increased by at most 2. Summing up, we obtain∑
v∈J1, LK

[∆Hrv(ξ)−∆Hrv(η)] ≤ 2. (3.125)

By the same reasoning with the case of v = `0 above, we can also observe

that each summand of the second summation of (3.124) is at most 2 and

hence ∑
h∈J1,KK

[∆Hch(ξ)−∆Hch(η)] ≤ 2K. (3.126)

By (3.124), (3.125) and (3.126), we get H(ξ)−H(η) ≤ 2K + 2 = Γ, and we

have proved the lemma.

3.9.2 Typical configurations

In this subsection, we prove Proposition 3.4.17. We first give two lemmas.

Lemma 3.9.5. For a, b ∈ Ω, suppose that η1 ∈ Ba, b and η2 ∈ X satisfy

η1 ∼ η2 and H(η2) ≤ Γ. Then, the following statements hold.
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(1) If η1 ∈ Ra, b
v for v ∈ J2, L− 2K, then η2 ∈ Qa, bv−1 ∪Qa, bv . In particular, if

v ∈ J3, L− 3K then η2 ∈ Ba, bΓ .

(2) If η1 ∈ Ba, bΓ , then η2 ∈ Ba, b.

In particular, it necessarily holds that η2 ∈ Ca, b.

Proof. We first assume that K < L and consider two cases separately.

(Case 1: η1 = ξa, b`, v for some ` ∈ TL and v ∈ J2, L − 2K) We can observe

from the illustration given in Figure 3.1 that the only way of flipping a spin

of η1 in such a way that the resulting configuration has energy at most Γ is

either to attach a protuberance of spin b to the cluster of spin b of η1 or to

attach a protuberance of spin a to the cluster of spin a of η1. This implies

that η2 must be one of the following forms:

ξa, b,±`, v; k, 1, ξ
a, b,+
`, v−1; k,K−1, ξ

a, b,−
`+1, v−1; k,K−1 for k ∈ TK .

Hence, η2 ∈ Qa, bv−1 ∪ Qa, bv . This proves the first assertion of part (1). The

second assertion is straightforward.

(Case 2: η1 = ξa, b,±`, v; k, h for some ` ∈ TL, v ∈ J2, L − 3K, k ∈ TK, and

h ∈ J1, K − 1K) In this case, we can also observe from the illustration given

in Figure 3.1 that the only way of flipping a spin of η1 without increasing

the energy is to expand or shrink the protuberance of spin b attached at

ξa, b`, v , and therefore η2 = ξa, b,±`, v; k, h−1, ξa, b,±`, v; k, h+1, ξa, b,±`, v; k+1, h−1 or ξa, b,±`, v; k−1, h+1. This

proves that η2 ∈ Ba, b and hence part (2) is now verified. Thus, we conclude

the case of K < L.

The case of K = L can be treated in the same manner. We just have to

consider also the configurations transposed by the operator Θ.

The previous lemma implies the following result.

Lemma 3.9.6. It holds that N̂ (B; C \ B) = B.
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Proof. Since the Hamiltonian of configurations belonging to B does not ex-

ceed Γ, it is immediate that

N̂ (B; C \ B) ⊇ B.

Thus, it suffices to show the opposite inclusion. Since

N̂ (B; C \ B) =
⋃
a, b∈Ω

N̂ (Ba, b; C \ B) ⊆
⋃
a, b∈Ω

N̂ (Ba, b; Ca, b \ Ba, b),

it suffices to show that for a, b ∈ Ω,

N̂ (Ba, b; Ca, b \ Ba, b) ⊆ Ba, b. (3.127)

Take η ∈ N̂ (Ba, b; Ca, b \ Ba, b). Then, we have a Γ-path (ωn)Nn=0 in X \ (Ca, b \
Ba, b) = (X \ Ca, b)∪Ba, b from Ba, b to η. Suppose the contrary that η /∈ Ba, b.
Then, as ω0 ∈ Ba, b, there exists n0 ∈ J0, N − 1K such that ωn0 ∈ Ba, b and

ωn0+1 ∈ X \ Ba, b. Since (ωn)Nn=0 is a path in (X \ Ca, b) ∪ Ba, b, we get

ωn0+1 ∈ (X \ Ba, b) ∩
[
(X \ Ca, b) ∪ Ba, b

]
= X \ Ca, b.

On the other hand, since ωn0 ∈ Ba, b we must have ωn0+1 ∈ Ca, b by Lemma

3.9.5 and thus we get a contradiction. Therefore, we must have η ∈ Ba, b and

thus we get (3.127).

Now, we are ready to present a proof of Proposition 3.4.17.

Proof of Proposition 3.4.17. We first prove that

{b} ∩ N̂ (a; BΓ) = ∅. (3.128)

Let us suppose the contrary that (ωn)Nn=0 is a Γ-path from a to b in X \ BΓ.
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We now follow the idea of [69, Proposition 2.6]. Define u : J0, NK→ R as

u(n) = Bb(ωn) for all n ∈ J0, NK,

where Bb(·) is defined in Notation 3.9.1. Then, we have that

u(0) = 0, u(N) = K + L, and |u(n+ 1)− u(n)| ≤ 2 for all n ∈ J0, N − 1K.
(3.129)

Thus, the following instant n∗ is well defined:

n∗ = min{n ∈ J0, N − 1K : u(n), u(n+ 1) ≥ 2}. (3.130)

Note that, since we need to change at least 2K − 1 spins from a to get

u(t) ≥ 2, we clearly have n∗ ≥ 2K − 1. By (3.129), we have Bb(ωn∗) = 2 or

3. We divide the proof into three cases as in Proposition 3.9.3.

(Case 1: ωn∗ has a horizontal b-bridge without a vertical b-bridge)

For this case, if Bb(ωn∗) = 3, we have Bb(ωn∗−1) ≥ 2 and thus we get a

contradiction to the minimality of n∗. Thus, we must have Bb(ωn∗) = 2.

Since ωn∗ cannot have any vertical bridges, we get ∆Hch(ωn∗) ≥ 2 for all

h ∈ J1, KK. In view of (3.122) and the fact that H(ωn∗) ≤ Γ = 2K + 2,

we can readily conclude that the only possibility is ωn∗ ∈ Ra0, b
2 or Qa0, b

2

for some a0 6= b. The latter case yields an immediate contradiction since

Qa0, b
2 ⊆ Ba0, b

Γ ⊆ BΓ. Summing up, we must have ωn∗ ∈ Ra0, b
2 for some a0 6= b.

Since H(ωn∗+1) ≤ Γ, the only possibility to get ωn∗+1 from ωn∗ is either to

change a spin a0 neighboring the cluster of spin b to b, or to change a spin

b neighboring the cluster of spin a0 to a0. Both cases yield a contradiction,

since in the former we get ωn∗+1 ∈ Ba, bΓ ⊆ BΓ while in the latter u(n∗+1) = 1.

(Case 2: ωn∗ has a vertical b-bridge without a horizontal b-bridge)

This case is similar to (Case 1) and we omit the detail.

(Case 3: ωn∗ has a b-cross) In this case, ωn∗ does not have a bridge whose

spin is not b and thus, by (3.129), the configuration ωn∗ has at most 3 bridges.
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Therefore, by Lemma 3.9.2, it holds that

H(ωn∗) ≥ 2(K + L− 3) > Γ.

This contradicts the assumption that (ωn)Nn=0 is a Γ-path. Therefore, we

conclude the proof of (3.128).

(1) This is direct from (3.128), since otherwise we can construct a Γ-path

from a to b avoiding BΓ by reversing and concatenating.

(2) First, we have Ba, b ⊇ Ra, b
2 from the definition of the set Ba, b. Moreover,

since a canonical path connecting Ra, b
2 and a is a Γ-path in X \ BΓ, we also

have Ea ⊇ Ra, b
2 . This concludes that

Ea ∩ Ba, b ⊇ Ra, b
2 . (3.131)

Now, we claim that the reversed inclusion also holds. To this end, we start

by observing that, since Ba, bΓ and Ea are disjoint from the definition (3.50),

Ea ∩ Ba, b ⊆ Ba, b \ Ba, bΓ =
⋃

v∈J2, L−2K

Ra, b
v .

For η ∈ Ra, b
v with v ∈ J3, L− 3K, we cannot have a Γ-path in X \BΓ from a

to η by part (1) of Lemma 3.9.5. Thus, such an η cannot belong to Ea and

we deduce that

Ea ∩ Ba, b ⊆ Ra, b
2 ∪R

a, b
L−2. (3.132)

Note that we have Eb ⊇ Ra, b
L−2 by the same reason with Ea ⊇ Ra, b

2 that we

proved before; hence, any configuration η ∈ Ra, b
L−2 cannot belong to Ea by

part (1). This observation and (3.132) implies that Ea ∩ Ba, b ⊆ Ra, b
2 . This

along with (3.131) completes the proof of part (2).

(3) We can deduce Ea ∩ Bb, c ⊆ Rb, c
2 ∪ R

b, c
L−2 by the the same logic as we

obtained (3.132). Then, since Rb, c
2 ⊆ Eb and Rb, c

L−2 ⊆ E
c, part (1) implies

that Ea ∩ Bb, c = ∅.
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(4) The inclusion E ⊆ N̂ (S) is immediate from the definition of E , and the

inclusion B ⊆ N̂ (S) is direct from the fact that any configuration in Ba, b is

obtained starting from a via a canonical path which is a Γ-path (cf. Lemma

3.4.13-(3)). Thus, we get

E ∪ B ⊆ N̂ (S). (3.133)

On the other hand, by Lemma 3.8.1 with P1 = C \B, P2 = B and Q = ∅ and

Lemma 3.4.8, we can write

N̂ (C) = N̂ (B; C \ B) ∪ N̂ (C \ B; B). (3.134)

First, by Lemma 3.9.6,

N̂ (B; C \ B) = B. (3.135)

On the other hand, since any configuration in C \B is obtained starting from

a ground state by a part of a canonical path which is a Γ-path in X \BΓ, we

get

N̂ (C \ B; B) ⊆ N̂ (C \ B; BΓ) = N̂ (S; BΓ) = E . (3.136)

By combining (3.134), (3.135) and (3.136), we get N̂ (C) ⊆ B∪E . Since S ⊆ C,
the opposite inclusion of (3.133) holds, and the proof is completed.

3.9.3 Edge typical configurations

Here, we prove Propositions 3.4.18 and 3.4.20.

Proof of Proposition 3.4.18. To begin with, we consider the case of K < L.

First, we prove the only if part. Fix η ∈ Za, b and take a path (ωn)Nn=0 in

X \ BΓ such that ω0 = ξa, b`, 2 for some ` ∈ TL, ωN = η and H(ωn) = Γ for all

n ∈ J1, NK. It suffices to prove that ωn satisfies all requirements [Z1], [Z2]

and [Z3] for all n ∈ J1, NK. We prove this by induction on n. First, consider

the case n = 1. Then, since ω0 = ξa, b`, 2 and ω1 /∈ BΓ, the proof of Lemma 3.9.5
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implies that

ω1 ∈
⋃
k∈TK

{ξa, b,+`, 1; k,K−1, ξ
a, b,−
`+1, 1; k,K−1}.

In any case [Z1] and [Z2] are obvious, and since Ga(η) is a singleton subset

of TK×{`, `+1}, [Z3] also holds. These observations conclude the first step

of n = 1.

Now, suppose that the three conditions hold for ωn, and then we consider

ωn+1. Note that H(ωn) = H(ωn+1) = Γ. We denote by z ∈ Λ the site where

the spin update happens from ωn to ωn+1, which does not change the energy.

By simple inspection, any spin update outside TK×{`, `+1} strictly increases

the energy, and thus z ∈ TK × {`, ` + 1}. Moreover, any spin update to a

third spin (other than a and b) strictly increases the energy, since the fact

that Ga(ωn) is a sub-tree in TK × {`, `+ 1} implies that there is no isolated

spin. Therefore, the spin update at site z must be b → a or a → b inside

TK × {`, ` + 1}. This observation verifies both [Z1] and [Z2] for the new

configuration ωn+1.

To check [Z3] for ωn+1, we divide into two cases.

• If the update at z is b→ a, then z /∈ Ga(ωn) and Ga(ωn+1) = Ga(ωn)∪
{z}. Since H(ωn) = H(ωn+1), z must have exactly two neighboring sites

with spin a and two neighboring sites with spin b. Since z has exactly

one neighbor outside TK×{`, `+1} which has spin a by condition [Z1],

z must have exactly one neighbor with spin a inside TK × {`, ` + 1}.
This implies that Ga(ωn+1) = Ga(ωn) ∪ {z} is still a tree.

• If the update at z is a→ b, then z ∈ Ga(ωn) and Ga(ωn+1) = Ga(ωn) \
{z}. The same logic as above indicates that z has exactly one neighbor

with spin a inside TK × {`, ` + 1}. This is equivalent to saying that z

is an external vertex of the tree Ga(ωn) and that {z} ⊆ Ga(ωn) with

proper inclusion. Therefore, Ga(ωn+1) = Ga(ωn) \ {z} is also a tree.

This concludes the proof of the only if part.
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Now, we prove the if part. Suppose that [Z1], [Z2] and [Z3] hold for a

configuration η ∈ X . Then, since Ga(η) is a tree in TK × {`, `+ 1}, we may

enumerate

Ga(η) = {x1, x2, . . . , xm}

in a way that {xi, . . . , xm} is still a tree for all i ∈ J1, mK. Indeed, we can

just inductively choose an external vertex xi in each Ga(η) \ {x1, . . . , xi−1}.
Then, starting from η, we define a path (ωn)mn=0 such that for each n ∈
J1, mK, ωn is obtained from ωn−1 by flipping the spin a on xn to spin b (i.e.,

ωn = ωxn, bn−1 ). Then, by the same logic used in the two cases above, we have

H(ωn) = H(ωn−1) for n ∈ J1, m − 1K. On the other hand, the final update

from ωm−1 to ωm decreases the energy by 2 since in ωm−1, xm has three

neighboring sites with spin b and one neighboring site with spin a. Moreover,

Ga(ωm) = ∅ which implies that ωm = ξa, b`, 2 ∈ R
a, b
2 . Therefore, the reversed

path (ωm−n)mn=0 guarantees by definition that ω0 = η ∈ Za, b. This concludes

the proof of the case of K < L.

Finally, the case of K = L can be dealt with in an identical manner; the

only difference is that we may also have ω0 = Θ(ξa, b`, 2 ) for some ` ∈ TL, so

that in [Z2] we may have Pb(η) ⊆ {`, `+ 1} × TK . Everything else works in

the same way.

Before proceeding to the proof of Proposition 3.4.20, we give an additional

property of the set Za, b.

Lemma 3.9.7. Let a, b ∈ Ω and η ∈ Za, b. Then, the followings hold.

(1) There exists a Γ-path from a to η in X \ BΓ.

(2) If another ξ ∈ X satisfies η ∼ ξ and H(ξ) ≤ Γ, then we have ξ ∈
Za, b ∪N (a) ∪Ra, b

2 .

Proof. (1) Without loss of generality, we assume that K < L. According to

the notation and statements from Proposition 3.4.18, Ga(η), the collection
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of sites in TK × {`, `+ 1} with spin a, is a tree. Then, we may enumerate

[
TK × {`, `+ 1}

]
\Ga(η) = {y1, . . . , yM}

in a way that Ga(η)∪{y1, . . . , yi} is connected for all i ∈ J1, MK. Indeed, we

can just inductively choose a neighboring site to Ga(η)∪{y1, . . . , yi}. Then,

we define a path (ωn)Mn=0 such that for each n ∈ J1, MK, ωn is obtained

from ωn−1 by flipping the spin b on yn to spin a (i.e., ωn = ωyn, an−1 ). By our

construction, on each step n, the site yn has at least two neighboring sites with

spin a (one in Ga(η) ∪ {y1, . . . , yn−1} and another outside TK × {`, `+ 1}),
which implies that H(ωn) ≤ H(ωn−1). Moreover, it is clear that H(ωM) = a.

Therefore, (ωn)Mn=0 is a H(η)-path from η to a. Since H(η) = Γ and it is

clear by construction that ωn /∈ BΓ, we conclude that (ωn)Mn=0 satisfies the

requirements of part (1).

(2) Let (ωn)Nn=0 be a path in X \ BΓ from Ra, b
2 to η such that H(ωn) = Γ

for n ∈ J1, NK (cf. (3.51)). Suppose first that H(ξ) = Γ. Then by part (3) of

Lemma 3.9.5, it follows that ξ /∈ BΓ. Hence, by letting ωN+1 = ξ, the path

(ωn)N+1
n=0 in X \BΓ is fromRa, b

2 to ξ and satisfies H(ωn) = Γ for n ∈ J1, N+1K.
Thus, by (3.51), we get ξ ∈ Za, b.

Next, we consider the case H(ξ) < Γ. Using Proposition 3.9.3 and con-

sidering the conditions [Z1], [Z2] and [Z3] in Proposition 3.4.18 that η must

satisfy, we can easily deduce that ξ ∈ Ra, b
2 or ξ has an a-cross. In the latter

case, again by Proposition 3.9.3 it holds that ξ ∈ N (a). Thus, we conclude

the proof.

Now, we prove Proposition 3.4.20.

Proof of Proposition 3.4.20. First, we demonstrate that

Ea = N̂ (a; Za ∪Ra ∪ BΓ) ∪ Za ∪Ra. (3.137)

Recall that Ea = N̂ (a; BΓ) = N̂ (N (a); BΓ). Since Za is connected to
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N (a) by a Γ-path outside BΓ by Lemma 3.9.7-(1), we have N̂ (Za; BΓ) =

N̂ (N (a); BΓ). Moreover, Ra is connected to a by a part of a canonical path

outside BΓ, so that N̂ (Ra; BΓ) = N̂ (N (a); BΓ). Thus, we obtain

Ea = N̂
(
N (a) ∪ Za ∪Ra; BΓ

)
.

Then, by Lemma 3.8.1 with P1 = N (a), P2 = Za ∪ Ra and Q = BΓ, we

obtain

Ea = N̂ (N (a); Za ∪Ra ∪ BΓ) ∪ N̂ (Za ∪Ra; N (a) ∪ BΓ).

Since it is clear that N̂ (N (a); Za ∪ Ra ∪ BΓ) = N̂ (a; Za ∪ Ra ∪ BΓ), it

suffices to prove that

N̂ (Za ∪Ra; N (a) ∪ BΓ) = Za ∪Ra. (3.138)

Subjected to the energy barrier Γ, the first exit from Za is to N (a)∪Ra by

Lemma 3.9.7-(2), and the first exit from Ra is to Za∪BΓ by Lemma 3.9.5-(1)

and (3.51). Thus, we can deduce (3.138) by the same logic that we used to

prove (3.127). Thus, we have proved (3.137).

Now, to conclude the proof of Proposition 3.4.20 it remains to prove that

N̂ (a; Za ∪ Ra ∪ BΓ) = Da. Note that Da = N̂ (a; Za). It is clear that

N̂ (a; Za ∪Ra ∪BΓ) ⊆ N̂ (a; Za). Suppose that there exists η ∈ N̂ (a; Za) \
N̂ (a; Za∪Ra∪BΓ). This implies that not only there exists a Γ-path ω from

a to η in X \ Za, but also all such paths must visit Ra ∪ BΓ. Thus, we may

define

n1 := min{n ≥ 0 : ωn ∈ Ra ∪ BΓ}.

By Lemma 3.9.5 and (3.51), we readily have three possibilities:

ωn1−1 ∈ Za ∪
⋃

b∈Ω\{a}

⋃
v∈J3, L−3K

Ra, b
v ∪

⋃
b∈Ω\{a}

Ra, b
L−2.
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The first possibility, ωn1−1 ∈ Za, is clearly impossible by the definition of ω.

The second possibility, ωn1−1 ∈ Ra, b
v for some b 6= a and v ∈ J3, L − 3K, is

also impossible since then by Lemma 3.9.5-(1), ωn1−2 ∈ BΓ which contradicts

the minimality of n1. Finally, the third possibility, ωn1−1 ∈ Ra, b
L−2 for some

b 6= a, implies that ωn1−1 ∈ Eb and this is again impossible since Ea ∩ Eb = ∅
by Proposition 3.4.17-(1). Therefore, all cases reject the possibility that such

η exists, and we conclude the proof.

3.9.4 Graph structure

In this subsection, we prove Propositions 3.4.22 and 3.4.23.

Proof of Proposition 3.4.22. By symmetry, it suffices to prove only for the

projection Πa, b
` : N (a) ∪ Za, b` ∪ {ξa, b`, 2} → V . We first consider part (1).

Suppose that η1, η2 6= a. If η1 � η2, then both sides of (3.61) are clearly 0

and there is nothing to prove. If η1 ∼ η2 so that {η1, η2} ∈ E , then by (2.2)

and (3.60), we can write

1

q
e−Γβr(Πa, b

` (η1), Πa, b
` (η2)) =

1

q
e−Γβ =

Zβ
q
· µβ(η1)rβ(η1, η2),

since min{µβ(η1), µβ(η2)} =
1

Zβ
e−Γβ. By Theorem 3.0.1, the right-hand side

of the last display becomes (1 + o(1)) · µβ(η1)rβ(η1, η2).

We next consider part (2) so that η1 6= a. Similarly, we may assume

{η1, a} ∈ E since otherwise both sides of (3.62) become 0. Then by (3.60),

we can write

1

q
e−Γβr(Πa, b

` (η1), a) =
1

q
e−Γβ|{ξ ∈ N (a) : ξ ∼ η1}|

= |{ξ ∈ N (a) : ξ ∼ η1}| ·
Zβ
q
· µβ(η1).

Since min{µβ(η1), µβ(ξ)} = µβ(η1) =
1

Zβ
e−Γβ for all ξ ∈ N (a), by (2.2) and
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Theorem 3.0.1, the right-hand side equals

(1 + o(1)) ·
∑

ξ∈N (a)

µβ(η1)rβ(η1, ξ).

This concludes the proof.

Proof of Proposition 3.4.23. We fix a, b ∈ Ω and ` ∈ TL. Recall (3.65). Note

that

cap(a, ξa, b`, 2 ) = D(f) =
∑

{x, y}⊆V

1

|V |
r(x, y)[f(y)− f(x)]2.

For each k ∈ TK , consider a path ωk = (ωkn)Kn=0 such that

ωk0 = a and ωkn = ξa, b,+`, 1; k, n for n ∈ J1, KK.

This is indeed a path from a to ξa, b`, 2 subjected to the process Z(·) since

ωk0 = ξa, b`, 1 ∈ N (a) and ωkK = ξa, b,+`, 1; k,K = ξa, b`, 2 . Therefore, we may calculate

along only these K paths:

cap(a, ξa, b`, 2 ) ≥
∑
k∈TK

K−1∑
n=0

1

|V |
r(ωkn, ω

k
n+1)[f(ωkn+1)− f(ωkn)]2

=
1

|V |
∑
k∈TK

K−1∑
n=0

[f(ωkn+1)− f(ωkn)]2.

By the Cauchy–Schwarz inequality, we obtain

cap(a, ξa, b`, 2 ) ≥ 1

|V |
∑
k∈TK

1

K

[K−1∑
n=0

[f(ωkn+1)− f(ωkn)]
]2

=
1

|V |
∑
k∈TK

1

K
[f(a)− f(ξa, b`, 2 )]2.

Since f(a) = 1 and f(ξa, b`, 2 ) = 0, we deduce that cap(a, ξa, b`, 2 ) ≥ |V |−1 which

concludes the proof.
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3.9.5 Gateway configurations

In this subsection, we define the notion of gateway configurations. which is

essential in the 3D Ising/Potts models in Chapter 4.

Definition 3.9.8 (Gateway configurations). Recall the collection Za, b de-

fined in (3.51). Define the gateway Ga, b between a and b as

Ga, b = Za, b ∪ Ba, b ∪ Zb, a, (3.139)

where this expression gives a decomposition of Ga, b. Since Ba, b = Bb, a, we

have Ga, b = Gb, a. A configuration belonging to Ga, b is called a gateway con-

figuration between a and b.

Remark 3.9.9. In the terminology which was first suggested in [67] and widely

used since then, gate configurations are the ones which serve as effective

checkpoints of the transition, along with the property that their energy equals

the exact energy barrier (i.e., Γ in our case). On the other hand, in our sense

(cf. Definition 3.9.8), gateway configurations may have energy less than Γ;

indeed, we have Ra, b
v ⊆ Ga, b for v ∈ J2, L − 2K where each configuration in

Ra, b
v , v ∈ J2, L − 2K has energy Γ − 2 < Γ. Nevertheless, our definition of

gateway configurations still works properly since the gateway configurations

with energy less than Γ must immediately visit the ones with energy Γ before

preceding further. This fact is interpreted in part (1) of Lemma 3.9.5.

Lemma 3.9.10. For a, b ∈ Ω, suppose that two configurations η and ξ satisfy

η ∈ Ga, b, ξ /∈ Ga, b, η ∼ ξ, and H(ξ) ≤ Γ.

Then, we have either ξ ∈ N (a) and η ∈ Za, b or ξ ∈ N (b) and η ∈ Zb, a. In

particular, we cannot have η ∈ Ba, b.

Proof. The proof is straightforward from Lemmas 3.9.5 and 3.9.7.
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3.10 Dirichlet form on gateway configurations

In this short section, we record a result which is needed in Chapter 4. In this

subsection, we assume that q = 2.

Proposition 3.10.1. Recall the test function h̃ : X = {1, 2}Λ → R from

Definition 3.5.2. Then, it holds that

∑
{η, ξ}⊆X : {η, ξ}∩G1, 2 6=∅

µβ(η)rβ(η, ξ){h̃(ξ)− h̃(η)}2 =
1 + o(1)

2κ
e−Γβ.

Proof. It has already been verified in the proof of Proposition 3.5.6 that

∑
{η, ξ}⊆E∪B

µβ(η)rβ(η, ξ){h̃(ξ)− h̃(η)}2 =
1 + o(1)

2κ
e−Γβ. (3.140)

Then, by the definition of h̃ given in Definition 3.5.2, h̃ ≡ 1 on D1 and h̃ ≡ 0

on D2. Thus, the summation in the left-hand side vanishes if

{η, ξ} ⊆ D1 or {η, ξ} ⊆ D2. (3.141)

Proposition 3.4.20 and Definition 3.9.8 imply the following decomposition:

E ∪ B = D1 ∪ G1, 2 ∪ D2.

Therefore, by (3.141), the left-hand side of (3.140) equals∑
{η, ξ}⊆X : {η, ξ}∩G1, 2 6=∅

µβ(η)rβ(η, ξ){h̃(ξ)− h̃(η)}2,

which concludes the proof of the proposition.
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3.11 Proof of results in Section 3.6

3.11.1 Energy barrier

Proof of Proposition 3.6.5. We fix such a path ω, so that ω0 = a and ωN = b

for some b ∈ ă, and suppose the contrary that Φω ≤ 2K + 3. By the formula

(3.95), we note that

max
m∈J0,KLK

H(ωm) ≤ max
m∈J0,KL−1K

max
a∈Ω

H(ωxm, am ) = Φω ≤ 2K + 3, (3.142)

where xm is the location of the spin update from ωm to ωm+1. Therefore, each

configuration ωm has energy at most 2K + 3.

We claim that there exists m ∈ J0, KLK such that ωm ∈ Qa0, b
v for some

a0 6= b and v ∈ J2, L−3K, and that the size of protuberance of spin b belongs

to J2, K − 2K. First, we assume that the claim holds and then prove the

theorem. If the claim holds, then we can easily check that H(ωm) = 2K + 2

and for every x ∈ Λ,

max
a∈Ω

H(ωx, am ) ∈ {2K + 4, 2K + 5, 2K + 6}.

Here, it is used that q ≥ 3; this no longer holds if q = 2. This implies that

Φω ≥ max
a∈Ω

H(ωxm, am ) ≥ 2K + 4,

which contradicts the assumption and thus concludes the proof.

It remains to verify the claim. To this end, we take maximal m ∈ J0, KLK
such that ‖ωm‖b = bKL/2c+ 3 (cf. (3.121)). We divide the proof into three

cases.

(Case 1: ωm has a horizontal b-bridge without a vertical b-bridge)

For this case, since ∆Hch(ωm) ≥ 2 for all h ∈ J1, KK, by (3.122), the fact

that H(ωm) ≤ 2K + 3, and the fact that ∆Hrv(ωm) ≥ 2 if ∆Hrv(ωm) > 0,

we deduce that the possibilities lie among:
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• (C1)
∑
v∈TL

∆Hrv(ωm) = 0 and
∑
h∈TK

∆Hch(ωm) = 2K,

• (C2)
∑
v

∆Hrv(ωm) = 0 and
∑
h

∆Hch(ωm) = 2K + 1,

• (C3)
∑
v

∆Hrv(ωm) = 0 and
∑
h

∆Hch(ωm) = 2K + 2,

• (C4)
∑
v

∆Hrv(ωm) = 0 and
∑
h

∆Hch(ωm) = 2K + 3,

• (C5)
∑
v

∆Hrv(ωm) = 2 and
∑
h

∆Hch(ωm) = 2K,

• (C6)
∑
v

∆Hrv(ωm) = 2 and
∑
h

∆Hch(ωm) = 2K + 1,

• (C7)
∑
v

∆Hrv(ωm) = 3 and
∑
h

∆Hch(ωm) = 2K.

In sub-cases (C1), (C2), (C3) and (C4), all rows must be bridges so that

all columns are the same. This is impossible since ‖ωm‖b = bKL/2c + 3

cannot be a multiple of K ≥ 11. In sub-case (C5), it necessarily holds

that ∆Hch(ωm) = 2 for all h ∈ J1, KK. Then, it is easy to deduce that

ωm ∈ Qa0, b
v for some a0 6= b. Moreover, the size of protuberance of b cannot

be 1 or K − 1 since bKL/2c + 3 cannot be equivalent to ±1 modulo K.

Thus, the claim is proved in this case. In sub-case (C6), the only possible

configuration is the one which is obtained from a regular configuration by

attaching a protuberance of a third spin. This is impossible by the same logic

that bKL/2c+ 3 cannot be equivalent to 0 or ±1 modulo K. Finally, in sub-

case (C7), there exists v0 ∈ TL such that ∆Hrv0
(ωm) = 3 and ∆Hrv(ωm) = 0

for all v 6= v0. This implies that there are three types of spins in the row

rv0 and all the other rows are bridges, but this contradicts the fact that

∆Hch(ωm) must be 2 for all h ∈ TK . Thus, this sub-case is impossible.

Therefore, we conclude the proof of the claim in this case.
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(Case 2: ωm has a vertical b-bridge without a horizontal b-bridge)

This case can be handled by the identical manner to (Case 1) and we omit

the details.

(Case 3: ωm has a b-cross) In this case, as in the proof of Proposition

3.9.3, define σ̃ ∈ X as the configuration obtained from ωm by replacing all

non-b spins with some fixed a0 ∈ S \ {b}, i.e., for x ∈ Λ,

σ̃(x) =

b if ωm(x) = b,

a0 if ωm(x) 6= b,

so that H(σ̃) ≤ H(ωm). Then, we can apply the well-known isoperimetric

inequality (e.g. [1, Corollary 2.5]) to the a0-clusters of σ̃ to deduce

H(σ̃) ≥ 4
√
‖σ̃‖a0 = 4

√
KL−

⌊KL
2

⌋
− 3 > 2K + 4,

where we used L ≥ K ≥ 11 at the last inequality. Thus, we obtain H(ωm) >

2K + 3 which contradicts (3.142). This completes the proof.

3.11.2 Typical configurations

From now on, we provide proofs of the characterization of typical configura-

tions subjected to the cyclic dynamics, which are formulated in Section 3.6.3.

Since the structure is highly similar to the typical configurations with respect

to the MH dynamics, we will omit the details if there are no specific novel

ideas involved compared to the corresponding previous versions in Sections

3.4 and 3.9.

First, we prove Proposition 3.6.12. We need two lemmas.

Lemma 3.11.1. For a, b ∈ Ω, suppose that σ1 ∈ B
a, b

and σ2 ∈ X satisfy

σ1 ∼ σ2 and H(σ1, σ2) ≤ Γ. Then, the following statements hold.

(1) If σ1 ∈ R
a, b

v for v ∈ J2, L− 2K, then σ2 ∈ R
a, b

v ∪Q
a, b

v−1 ∪Q
a, b

v .
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(2) If σ1 ∈ B
a, b

Γ , then σ2 ∈ B
a, b

.

Proof. This lemma can be proved in the exact same way as Lemma 3.9.5,

and thus we omit the proof.

We employ the previous lemma to prove the following crucial lemma.

Lemma 3.11.2. It holds that N̂ (B; E \ B) = B.

Proof. It suffices to show N̂ (B; E \ B) ⊆ B. If we suppose the contrary, then

there must be a first exit from the set B outside E \ B. This is impossible,

since Lemma 3.11.1 implies that we first exit from B via a configuration in

R2 ⊆ E . This concludes the proof.

Proof of Proposition 3.6.12. (1) It suffices to prove that {b}∩N̂ (a; BΓ) = ∅.
Suppose the contrary that (ωn)Nn=0 is a sequence from a to b in X \ BΓ so

that ωn ∼ ωn+1 and H(ωn, ωn+1) ≤ Γ. Following the proof of Proposition

3.6.5, we again claim that there exists m ∈ J0, KLK such that ωm ∈ Qa0, b
v

for some a0 6= b and v ∈ J2, L− 3K and that the size of protuberance of spin

b belongs to J2, K − 2K. Such configuration belongs to BΓ, and thus we are

able to conclude the proof by contradiction.

As before, we take maximal m ∈ J0, KLK such that ‖ωm‖b = bKL/2c+ 3

(cf. (3.121)). The only difference here with the proof of Proposition 3.6.5

is that we also allow ωm to have energy 2K + 4. In turn, we have four

additional sub-cases added to the seven sub-cases in (Case 1) in the proof

of Proposition 3.6.5, namely,

• (C8)
∑
v

∆Hrv(ωm) = 0 and
∑
h

∆Hch(ωm) = 2K + 4,

• (C9)
∑
v

∆Hrv(ωm) = 2 and
∑
h

∆Hch(ωm) = 2K + 2,

• (C10)
∑
v

∆Hrv(ωm) = 3 and
∑
h

∆Hch(ωm) = 2K + 1,
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Figure 3.8: Illustration for the proof of Proposition 3.6.12. The figures repre-
sent configurations belonging to sub-cases (C9), (C10), and (C11), respec-
tively.

• (C11)
∑
v

∆Hrv(ωm) = 4 and
∑
h

∆Hch(ωm) = 2K.

Sub-case (C8) is impossible since ‖ωm‖b cannot be a multiple of K. For

sub-case (C9), the only possible type is illustrated in Figure 3.8-left and thus

in this case we must have ‖ωm‖b = bKL/2c + 3 ≡ 0 or ±2 modulo K. This

is impossible for K ≥ 11.

For (C10), the only possible type of configuration is given in Figure

3.8-middle. Then, to obtain the next configuration ωm+1 without exceeding

the energy barrier Γ = 2K + 4, it is mandatory that the spin flip ωm →
ωm+1 happens on the single protuberance spin. Since m is maximal, the

resulting spin must be b, so that we obtain ωm+1 ∈ BΓ which contradicts our

assumption (here we employed the fact that ‖ωm‖b = bKL/2c+ 3 cannot be

equivalent to −2 modulo K). Finally, for sub-case (C11), the possible types

of configurations are given in Figure 3.8-right. Note that any update from

a configuration of one of these types attains energy barrier at least 2K + 6,

and thus we obtain a contradiction. This completes the proof of part (1).

(2) By definition, we have Ra, b

2 ⊆ Ba, b. Moreover, it is verified in Definition

3.6.1 and Lemma 3.6.3 that a part of a canonical path from a to b becomes

a Γ-path from a to Ra, b
2 in X \ BΓ, so that Ra, b

2 ⊆ Ea. This automatically
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implies that Ra, b

2 ⊆ Ea. Hence, we have proved

Ea ∩ Ba, b ⊇ Ra, b

2 . (3.143)

To prove the other direction, observe that

Ea ∩ Ba, b ⊆ Ba, b \ Ba, bΓ =
⋃

v∈J2, L−2K

Ra, b

v .

For σ ∈ Ra, b

v with v ∈ J3, L − 3K, we cannot have a Γ-path in X \ BΓ from

a to σ by part (1) of Lemma 3.11.1. Thus, such σ cannot belong to Ea and

we deduce that

Ea ∩ Ba, b ⊆ Ra, b

2 ∪R
a, b

L−2. (3.144)

Since Ra, b

L−2 ⊆ E
b

and Ea ∩ Eb = ∅ by part (1), we conclude that

Ea ∩ Ba, b ⊆ Ra, b

2 . (3.145)

The proof is completed by (3.143) and (3.145).

(3) By the same logic as we obtained (3.144), we deduce that Ea∩Bb, c ⊆ Rb, c

2 ∪
Rb, c

L−2. Since Rb, c

2 ⊆ E
b

and Rb, c

L−2 ⊆ E
c
, part (1) implies that Ea ∩ Bb, c = ∅.

(4) It suffices to prove that

N̂ (E ∪ B) ⊆ E ∪ B, (3.146)

since it is clear that E ∪B ⊆ N̂ (E ∪B) = N̂ (S). Indeed, the canonical paths

defined in Definition 3.6.1 assure us that N̂ (B) = N̂ (S) and by definition

and Lemma 3.6.9, N̂ (E) ⊆ N̂ (S). To prove (3.146), by Lemma 3.8.1 with

P1 = B, P2 = E \ B, and Q = ∅ and Lemma 3.6.9,

N̂ (E ∪ B) = N̂ (B; E \ B) ∪ N̂ (E \ B; B).
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This completes the proof of (3.146) by Lemma 3.11.2, since we have N̂ (E \
B; B) ⊆ N̂ (E ; BΓ) = E .

Finally, we proceed to prove Proposition 3.6.14. First, we state a few

lemmas. For a ∈ Ω, we denote by NMH(a) the neighborhood of a in the

sense of the MH dynamics (cf. Definition 3.4.2).

Lemma 3.11.3. For every a ∈ Ω, it holds that NMH(a) ⊆ N (a).

Proof. We take σ ∈ NMH(a) and prove that σ ∈ N (a). There exists a path

ω̃ : a → σ subject to the MH dynamics such that Φω̃ ≤ 2K + 1. Now, we

define a path ω : a→ σ by enlarging each MH-spin update in ω̃ by iterating

spin rotations on the corresponding site. Then, to prove that σ ∈ N (a), it

suffices to demonstrate that Φω ≤ 2K + 3.

Consider each pair (ω̃m, ω̃m+1) with ω̃m+1 = ω̃xm, bm for some xm ∈ Λ and

b ∈ Ω, from which the enlarged path becomes (ωn, ωn+1, . . . , ωn+r) (so that

ωn = ω̃m and ωn+r = ω̃m+1). Then, by (3.5),

H(ωn+i, ωn+i+1) = max
c∈Ω

H(ω̃xm, cm ) for all i ∈ J0, r − 1K.

Since ω̃m(xm) 6= ω̃m+1(xm) and ω̃m(x) = ω̃m+1(x) for all x 6= xm, it holds

that

min
{ ∑
x:x∼xm

1{ω̃m(x) = ω̃m(xm)},
∑

x:x∼xm

1{ω̃m+1(x) = ω̃m+1(xm)}
}
≤ 2.

Indeed, if the minimum is bigger than 2, then xm must have at least three

neighboring sites with spin ω̃m(xm) and also at least three neighboring sites

with spin ω̃m+1(xm), which is absurd since xm has exactly four neighboring

sites in Λ. Thus, we deduce that

max
c∈Ω

H(ω̃xm, cm ) ≤ max{H(ω̃m), H(ω̃m+1)}+ 2.
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This concludes the proof since Φω equals

max
n≥0

H(ωn, ωn+1) ≤ max
m≥0

[
max{H(ω̃m), H(ω̃m+1)}+ 2

]
= Φω̃ + 2 ≤ 2K + 3.

Lemma 3.11.4. Fix a, b ∈ Ω and ` ∈ TL. The following statements hold.

(1) The sets A
a, b

` and B
a, b

` belong to Za, b` .

(2) It holds that

A
a, b

` =
{
σ ∈ Za, b` : ∃ζ ∈ NMH(a) such that rMH

β (σ, ζ) > 0
}
, (3.147)

(3) It holds that

B
a, b

` =
{
σ ∈ Za, b` : rMH

β (σ, ξa, b`, 2 ) > 0
}
. (3.148)

Proof. (1) Recall from Definition 3.6.13 that

A
a, b

` = Za, b` ∩N (a) and B
a, b

` = Za, b` ∩ ξ
a, b

`, 2.

It suffices to prove that a configuration σ ∈ Za, b` \ Z
a, b
` cannot belong to

N (a)∪ ξa, b`, 2. Indeed, such σ has a single spin c ∈ Ω \ {a, b} which is obtained

by a spin update from a configuration in Za, b` , and thus we can verify that

this update increases the energy by 2 and thus H(σ) = 2K + 4. This clearly

implies that σ /∈ N (a), since every configuration in N (a) has energy at most

2K + 3. Moreover, suppose the contrary that σ ∈ ξa, b`, 2. Then, since σ has a

single spin c and H(ξa, b`, 2 ) = 2K, σ must be obtained from ξa, b`, 2 by an update

from a spin (a or b) to c which increases the energy by 4. This contradicts

the previous observation, and thus we conclude that σ /∈ ξa, b`, 2.

(2) First, we prove the ⊇-part of (3.147). To this end, suppose that σ ∈ Za, b`

and ζ ∈ NMH(a) satisfy rMH
β (σ, ζ) > 0. By property [Z1] of Proposition

129



CHAPTER 3. ISING/POTTS MODELS WITH ZERO EXTERNAL
FIELDS

3.4.18, σ consists of spins a and b only. Moreover, the fact that rMH
β (σ, ζ) > 0

and H(ζ) < H(σ) implies that the MH-spin flip σ → ζ occurs on some x0 ∈ Λ

in either way:

• a→ b where a has three neighboring spins b and one neighboring spin

a,

• b→ a where b has three neighboring spins a and one neighboring spin

b.

In any cases, we may obtain σ by iterating the spin rotation τx0 to ζ. Then,

by (3.5) and the presence of three same spins on the nearest neighbors of x0,

the height along that path ζ → σ equals (cf. (3.99))

max
O(ζ, σ)

H = 2K + 3.

Next, by Lemma 3.11.3, we have ζ ∈ N (a) and thus there exists a (2K + 3)-

path from a to ζ. Therefore, concatenating this path before the previously-

defined path ζ → σ, we obtain a (2K + 3)-path from a to σ. This deduces

that σ ∈ N (a), and thus we have proved the ⊇-part.

To prove the ⊆-part of (3.147), fix σ ∈ A
a, b

` = Za, b` ∩ N (a). By part

(1), we know that σ ∈ Za, b` ∩ N (a), so that we may apply Proposition

3.4.18. Since σ ∈ N (a), there exists σ0 ∈ X such that rβ(σ0, σ) > 0 and

H(σ0, σ) ≤ 2K+ 3. Then, it is immediate that rMH
β (σ, σ0) > 0. According to

properties [Z1] and [Z2] in Proposition 3.4.18, this can only happen when

the MH-spin flip σ → σ0 occurs on x0 ∈ Λ in either way:

• a → c for some c 6= a, where a has three neighboring spins b and one

neighboring spin a,

• b → c for some c 6= b, where b has three neighboring spins a and one

neighboring spin b.
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According to Proposition 3.4.18, the former case implies that x0 is the only

site with spin a on the strip TK × {`, ` + 1} (or {`, ` + 1} × TK if K = L),

and thus σ ∈ Ra, b

2 , which is clearly impossible. Therefore, the second case

must hold.

Now, we define a new configuration σ1 as

σ1(x) =

σ(x) if x 6= x0,

a if x = x0.

Then, rMH
β (σ, σ1) > 0. Moreover, since x0 has three neighboring spins a,

H(σ1) = 2K. Thus, by Proposition 3.9.3, we readily deduce that σ1 ∈
NMH(a). This concludes the proof of part (2).

(3) This can be proved in a nearly same manner to part (2), and thus we

omit the proof.

Finally, we present a proof of Proposition 3.6.14.

Proof of Proposition 3.6.14. To prove that the constant ea, b0 is independent

of a, b ∈ Ω, we first denote by Z̃a, b` (·) the trace of the process Z
a, b

` (·) to the

subset Za, b` ⊆ Za, b` (cf. Section 3.1.2). Then, by [5, Corollary 6.2], the jump

rate r̃a, b` (·, ·) of the process Z̃a, b` (·) can be written as

r̃a, b` (σ1, σ2) = ra, b` (σ1, σ2) +
∑

ζ∈Za, b` \Z
a, b
`

ra, b` (σ1, ζ) ·Pζ [τZa, b`
= τσ2 ]

for all σ1, σ2 ∈ Za, b` , where Pζ denotes the law of the process Z
a, b

` (·) starting

from ζ. Thus, by the cyclic structure of the set Za, b` , we can observe that

r̃a, b` (σ1, σ2) = 1
{
rMH
β (σ1, σ2) > 0

}
,

and hence the trace process Z̃a, b` (·) is equivalent to the Markov chain defined

in Definition 3.4.21 restricted to Za, b` . In particular, it does not depend on
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a, b ∈ Ω.

Denote by c̃ap
a, b

(·, ·) the capacity with respect to the process Z̃a, b` (·) on

Za, b` . Then, by [7, (A.10)], we can write (recall that A
a, b

` and B
a, b

` are subsets

of Za, b` by Lemma 3.11.4-(1)),

1

ea, b0

= |V a, b

` | · cap
a, b(A

a, b

` , B
a, b

` ) =
(
|A a, b

` |+ |B
a, b

` |
)
· c̃apa, b(A a, b

` , B
a, b

` ).

(3.149)

By Proposition 3.4.18, Definition 3.4.19, and Lemma 3.11.4, we notice that

the Markov chain Z̃a, b` (·) and the sets A
a, b

` and B
a, b

` have the same structure

for all a, b ∈ Ω. Therefore, we conclude from the expression (3.149) that the

constant ea, b0 does not depend on a, b ∈ Ω, and we have proved the first

statement of the proposition.

Next, we estimate ea, b0 . Since it does not depend on a, b ∈ Ω by the first

statement, we may assume that a = 1 and b = 2. By the same logic with the

proof of Proposition 3.4.23 (given in Section 3.9.4), we write

cap1, 2
` (A

1, 2

` , B
1, 2

` ) = D
1, 2

(f
1, 2

) =
1

2

∑
x, y∈V

1, 2

1

|V 1, 2|
r1, 2(x, y)[f

1, 2
(y)−f1, 2(x)]2.

For each k ∈ TK , we consider a path ω(k) = (ω(k)
n )K−2

n=0 where ω(k)
n = ξ1, 2,+

`, 1; k, n+1

for n ∈ J0, K − 2K. Note that ξ1, 2,+
`, 1; k, 1 ∈ A

1, 2

` and ξ1, 2,+
`, 1; k,K−1 ∈ B

1, 2

` . Thus,

we have

cap1, 2
` (A

1, 2

` , B
1, 2

` ) ≥ 1

2

∑
k∈TK

K−3∑
n=0

1

|V 1, 2|
[f

1, 2
(ω

(k)
n+1)− f

1, 2
(ω(k)

n )]2.
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By the Cauchy–Schwarz inequality,

cap1, 2
` (A

1, 2

` , B
1, 2

` ) ≥ 1

2|V 1, 2|

∑
k∈TK

1

K − 2

[K−3∑
n=0

[f
1, 2

(ω
(k)
n+1)− f

1, 2
(ω(k)

n )]
]2

=
K

2(K − 2)|V 1, 2|
,

where the last equality follows from

f
1, 2

(ω
(k)
0 ) = f

1, 2
(ξ1, 2,+
`, 1; k, 1) = 1 and f

1, 2
(ω

(k)
K−2) = f

1, 2
(ξ1, 2,+
`, 1; k,K−1) = 0.

This proves that cap1, 2
` (A

1, 2

` , B
1, 2

` ) · |V 1, 2| > 1

2
, and the proof is completed.
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Chapter 4

Three-dimensional model

In this chapter, we deal with the Ising/Potts models with zero external fields

on the 3D lattice. We fix three positive integers K ≤ L ≤ M . Then, we

denote by

Λ = J1, KK× J1, LK× J1, MK

the 3D lattice box. Again, we impose either open or periodic boundary con-

ditions upon the lattice box Λ. For the latter boundary condition, we can

write

Λ = TK × TL × TM . (4.1)

The Hamiltonian and the Gibbs distribution are given as in (3.2) and

Definition 2.0.2. Moreover, the ground states are collected, as done in the

previous chapter, as

S = {1, 2, . . . , q}. (4.2)

The following theorem is an analogue of Theorem 3.0.1.

Theorem 4.0.1. We have

Zβ = q +O(e−6β). (4.3)
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Thus, we obtain

lim
β→∞

µβ(s) =
1

q
for all s ∈ S and lim

β→∞
µβ(S) = 1.

On this model, we impose the MH dynamics σβ(t) = σMH
β (t), t ≥ 0 as

defined in Definition (2.0.1). For σ, ζ ∈ X , we write σ ∼ ζ if rβ(σ, ζ) > 0.

Again, the detailed balance condition holds:

µβ(σ)rβ(σ, ζ) = µβ(ζ)rβ(ζ, σ) =

min{µβ(σ), µβ(ζ)} if σ ∼ ζ,

0 otherwise.
(4.4)

Remark 4.0.2. We employ the continuous-time dynamics (as applied in nu-

merous previous studies) because it offers a simpler presentation than the

corresponding discrete dynamics (as demonstrated in [9, 22, 69]), for which

the jump probability is given by

pβ(σ, ζ) =



1

q|Λ|
· e−βmax{H(ζ)−H(σ), 0} if ζ = σx, a 6= σ, x ∈ Λ, a ∈ Ω,

1−
∑

x∈Λ, a∈Ω:σx, a 6=σ

pβ(σ, σx, a) if ζ = σ,

0 otherwise.

(4.5)

However, our computations can be applied to this model as well. See also

Remark 4.1.11.

4.1 Main results

4.1.1 Large deviation-type results

Here, we explain the large deviation-type results obtained for the metastable

behavior.

135



CHAPTER 4. THREE-DIMENSIONAL MODEL

Energy barrier between ground states

Recall the energy barrier and communication height defined in Section 3.1.

We define

Γ = Γ3D = Γ3D(K, L, M) = Φ(s, s′) for all s, s′ ∈ S.

Note that Φ(s, s′) does not depend on the selections of s, s′ ∈ S, owing to

the model symmetry. Additionally, note that Γ represents the energy barrier

between ground states, because the dynamics must overcome this energy level

to make a transition from one ground state to another.

To characterize the energy barrier, we must check the maximum energy

of all paths connecting the ground states. Thus, the energy barrier is a global

feature of the energy landscape, and characterizing it is a non-trivial task.

For the current model, we can identify the exact value of the energy barrier.

Recall that we assumed K ≤ L ≤M .

Theorem 4.1.1. For all sufficiently large K, it holds that

Γ =

2KL+ 2K + 2 under periodic boundary conditions,

KL+K + 1 under open boundary conditions.
(4.6)

Remark 4.1.2. Our arguments state that this theorem holds for K ≥ 2829,

where the threshold 2829 may be sub-optimal (cf. Remark 4.5.4). However,

the optimality of this threshold is a minor issue, because our main concern is

the spin system on large boxes. Henceforth, we assume that K satisfies this

condition, i.e., K ≥ 2829.

Theorem 4.1.1 is proved in Section 4.5.

Remark 4.1.3. Several remarks regarding the previous theorem are in order.

(1) Note that Theorem 4.1.1 does not depend on the value of q, because in

the transition from a to b for a, b ∈ Ω, no spins besides a and b play a

significant role.
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(2) Suppose temporarily that Γd is the energy barrier, defined in the same

way as above, subjected to Ising/Potts models defined on a d-dimensional

lattice box of size K1 × · · · × Kd with K1 ≤ · · · ≤ Kd. Then, we ex-

pect that Γd = 2 + 2
d−1∑
n=1

n∏
i=1

Ki under periodic boundary conditions

and Γd = 1 +
d−1∑
n=1

n∏
i=1

Ki under open boundary conditions for all d ≥ 2.

Notice that the case of d = 2 is handled in [69, Theorem 1.1] and the

case of d = 3 is handled in Theorem 4.1.1. We leave the verification of

this conjecture for the case of d ≥ 4 as a future research problem.

Large deviation-type results based on pathwise approach

Here, we explain the large deviation-type analysis of the metastable behav-

ior of the Metropolis–Hastings dynamics. These results can be obtained via

the pathwise approach developed in [24], provided that we can analyze the

model energy landscape to a certain degree of precision. We refer to the

monograph [75] for an extensive summary of the pathwise approach. This

approach allows us to analyze the metastability from three different perspec-

tives: transition time, spectral gap, and mixing time. All these quantities are

crucial for quantifying the metastable behavior. First, we explicitly define

them as follows:

• For s ∈ S, we write s̆ = S \ {s}. Then, our primary concern is the

hitting time τs̆ or τs′ for s′ ∈ s̆ when the dynamics starts from s ∈ S.

• The mixing time corresponding to the level ε ∈ (0, 1) is defined as

tmix
β (ε) = min

{
t ≥ 0 : max

σ∈X
‖Pσ[σβ(t) ∈ ·]− µβ(·)‖TV ≤ ε

}
,

where ‖ · ‖TV represents the total variation distance between measures

(cf. [66, Chapter 4]).
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• We denote by λβ the spectral gap of the MH dynamics.

The 2D version of the following theorem was established in [69] using the

refined pathwise approach developed in [27, 67, 70]. We extend their results

to the 3D model.

Theorem 4.1.4. The following statements hold.

(1) (Transition time) For all s, s′ ∈ S and ε > 0, we have

lim
β→∞

Ps[eβ(Γ−ε) < τs̆ ≤ τs′ < eβ(Γ+ε)] = 1, (4.7)

lim
β→∞

1

β
logEs[τs̆] = lim

β→∞

1

β
logEs[τs′ ] = Γ. (4.8)

Moreover, under Ps, as β →∞,

τs̆
Es[τs̆]

,
τs′

Es[τs′ ]
⇀ Exp(1), (4.9)

where Exp(1) is the exponential random variable with a mean value of

1.

(2) (Mixing time) For all ε ∈ (0, 1/2), the mixing time satisfies

lim
β→∞

1

β
log tmix

β (ε) = Γ.

(3) (Spectral gap) There exist two constants 0 < c1 ≤ c2 such that

c1e
−βΓ ≤ λβ ≤ c2e

−βΓ.

Remark 4.1.5. The above theorem holds under both open and periodic bound-

ary conditions.

Theorem 4.1.4 states that the metastable transition time, mixing time,

and inverse spectral gap become exponentially large as β → ∞, and their

exponential growth rates are determined by the energy barrier Γ.
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The robust methodology developed in [27, 67, 70] implies that character-

izing the energy barrier between ground states and identifying all the deepest

valleys suffice (up to several technical issues) to confirm the results presented

in Theorem 4.1.4. In [69], the authors performed corresponding analyses of

the energy landscape; then, they used this robust methodology to prove The-

orem 4.1.4 for two dimensions. We perform the corresponding analysis of the

energy landscape for the 3D model as well in Sections 4.3, 4.4, and 4.5. The

proof of Theorem 4.1.4 is given in Section 4.5.3. Analysis of the energy land-

scape is far more difficult than that of the 2D one considered in Chapter 3

for several reasons. Details are presented at the beginning of Section 4.3.

Characterization of transition path

Our analysis of the energy landscape is sufficiently precise to characterize all

the possible transition paths between ground states in a high level of detail.

The transition paths are rigorously defined in Definition 4.6.13; we do not

present explicit definitions here, because we would have to define a large

amount of notation. The following theorem asserts that, with dominating

probability, the MH dynamics evolves along one of the transition paths when

a transition occurs from one ground state to another.

Theorem 4.1.6. For all s ∈ S, we have

Ps
[
∃0 < t1 < · · · < tN < τs̆ s.t. (σβ(tn))Nn=1 is a transition path s↔ s̆

]
= 1− o(1).

The characterization of the transition paths and the proof of this theorem

are given in Section 4.6.4.

4.1.2 Eyring–Kramers formula and model reduction

The following results constitute more quantitative analyses of the metastable

behavior obtained using potential-theoretic methods. In particular, we obtain
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the Eyring–Kramers formula (which is a considerable refinement of (4.8)) and

the Markov chain model reduction of metastable behavior.

For these results, we require an accurate understanding of the energy

landscape and the behavior of the MH dynamics on a large set of saddle

configurations between ground states. We conduct these analyses in Sections

4.6 and 4.7.

We further remark that the quantitative results given below depend on the

selection of boundary condition, in contrast to Theorems 4.1.4 and 4.1.6 (cf.

Remark 4.1.5). For brevity, we assume periodic boundary conditions through-

out this subsection. We can treat the open boundary case in a similar manner;

the results and a sketch of the proof are presented in Section 4.8.

Eyring–Kramers formula

The following result constitutes a refinement of (4.8) (and hence of (4.9))

that allows us to pin down the sub-exponential prefactor associated with

the large deviation-type exponential estimates of the mean transition time

between ground states.

Theorem 4.1.7. There exists a constant κ = κ(K, L, M) > 0 such that for

all s, s′ ∈ S,

Eβs [τs̆] = (1 + o(1)) · κ

q − 1
eΓβ and Eβs [τs′ ] = (1 + o(1)) · κeΓβ. (4.10)

Moreover, the constant κ satisfies

lim
K→∞

κ(K, L, M) =


1/8 if K < L < M,

1/16 if K = L < M or K < L = M,

1/48 if K = L = M.

(4.11)

Remark 4.1.8. Here, we make several comments regarding Theorem 4.8.1.

(1) Although we do not present the exact formula for the constant κ in
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the theorem, they can be explicitly expressed in terms of potential-

theoretic notions relevant to a random walk defined in a complicated

space (cf. (4.15) and (4.16) for the formulas). This random walk is

vague (cf. Proposition 4.6.9) compared with the corresponding random

walk identified in Proposition 3.4.23 for the 2D model, which reflects

the complexity of the energy landscape of the 3D model compared with

that of the 2D one.

(2) The constant κ is model-dependent. For different Glauber dynamics

(even with identical boundary conditions), this constant may differ.

(3) If K < L < M , the transition between ground states must occur in a

specific direction; meanwhile, if K = L < M or K < L = M , there are

two possible directions for the transition. If K = L = M , there are six

possible directions. This explains the dependence of the asymptotics of

κ on the relationships among K, L, and M .

We require precise analyses of the energy landscape and the behavior

of the underlying metastable processes on a certain neighborhood of sad-

dle configurations between metastable sets. In most other models for which

the Eyring–Kramers formula can be obtained via such robust strategies, the

energy landscape is relatively simple; hence, the landscape only marginally

presents serious mathematical issues. However, in the current model, the

saddle consists of a very large collection of saddle configurations, which form

a complex structure. Analyzing this structure is a highly complicated task;

moreover, it is difficult to assess the behavior of the dynamics in the neigh-

borhood of this large set with adequate precision. The achievement of these

tasks is one of the main contributions presented in this chapter. We empha-

size here that the H1-approximation technique, which is used in the proof of

the main results in a critical manner, is particularly handy for models with

complicated landscapes, such as the one considered here.
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Markov chain model reduction of metastable behavior

Recall the accelerated process σ̂β(t), t ≥ 0 and the accelerated trace process

Yβ(t), t ≥ 0 introduced in Section 3.1.2, here subjected to the 3D model.

Moreover, in view of the second estimate of (4.10), we define the limiting

Markov chain {Y (t)}t≥0 on S, which expresses the asymptotic behavior of

the accelerated process σ̂β(·) between the ground states as a continuous-time

Markov chain with jump rate

rY (s, s′) = κ−1 for all s, s′ ∈ S. (4.12)

Theorem 4.1.9. The following statements hold.

(1) The law of the Markov chain Yβ(·) converges to that of the limiting

Markov chain Y (·) as β →∞, in the usual Skorokhod topology.

(2) It holds that

lim
β→∞

max
s∈S

Es
[ ∫ t

0

1{σ̂β(u) /∈ S}du
]

= 0.

Remark 4.1.10. Temporarily, we denote by Es the law of the limiting Markov

chain Y (·) starting from s ∈ S. Theorem 4.1.9 is consistent with Theorem

4.1.7, in that for any s′ ∈ s̆, we have Es[τs′ ] = κ.

Remark 4.1.11 (Discrete Metropolis–Hastings dynamics). The only differ-

ence in the discrete dynamics defined by (4.5) is that it is q|Λ| times slower

than the continuous dynamics (in the average sense). Therefore, Theorems

4.1.1, 4.1.4, and 4.1.6 are valid for this dynamics without any modification.

Theorems 4.8.1 and 4.1.9 hold provided that we replace the constant κ with

κ′ = q|Λ| ·κ. The rigorous verification of the result proceeds in a similar way;

thus, we do not repeat it here.
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Outlook of proofs of main results

To prove Theorems 4.1.1 and 4.1.4, which fall into the category of pathwise-

type metastability results, we investigate the energy landscape of the Ising/Potts

models on the 3D lattice Λ, as described in Sections 4.3, 4.4, and 4.5. Along

the investigation, we present proofs of Theorems 4.1.1 and 4.1.4 in Section

4.5. Then, we proceed to the proofs of Theorems 4.8.1 and 4.1.9, which require

more accurate analyses of the energy landscape than the previous theorems.

These detailed analyses are presented in Section 4.6, and as a byproduct we

present the proof of Theorem 4.1.6 in Section 4.6.4. Then, we present the

proofs of Theorems 4.8.1 and 4.1.9 in Section 4.7.

Non-reversible models

The stochastic system considered in this chapter is the continuous-time MH

dynamics, which is reversible with respect to the Gibbs distribution µβ. In

fact, as done in Chapter 3, we can consider various dynamics with invariant

distribution µβ but are non-reversible with respect to this measure. Since the

approximation method and the pathwise approach used in the proof of the

main results presented above are robust and can be used in the non-reversible

setting as well, we can analyze the 3D version of the non-reversible models

and obtain similar results.

4.2 Outline of the proof

Recall the strategy explained in Section 3.2. We define the constant κ =

κ(K, L, M) that appears in Theorems 4.8.1 and 4.1.9.

• Let mK = bK2/3c, and let κ2D = κ2D(K, L) be the constant κ(K, L)

that appears in Theorem (3.1.2). Then, for n ∈ J1, q − 1K, the bulk
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constant b(n) is defined explicitly as

b(n) =



1

n(q − n)
· M − 2mK

2M
· κ2D(K, L) if K < L < M,

1

n(q − n)
· M − 2mK

2M
· κ2D(K, L) if K = L < M,

1

n(q − n)
· M − 2mK

4M
· κ2D(K, L) if K < L = M,

1

n(q − n)
· M − 2mK

6M
· κ2D(K, L) if K = L = M.

(4.13)

• The edge constant e(n), n ∈ J1, q − 1K, is defined in (4.116). Further-

more, it is verified in Proposition 4.6.9 that

0 < e(n) ≤ 1

K1/3
for all n ∈ J1, q − 1K. (4.14)

• Then, for n ∈ J1, q − 1K, we define the constant

c(n) = b(n) + e(n) + e(q − n). (4.15)

We remark that by definition, b(n) = b(q − n) for n ∈ J1, q − 1K;
therefore, we have c(n) = c(q − n). Finally, we define the constant κ

that appears in Theorem 4.1.7 as

κ = (q − 1)c(1). (4.16)

For A ⊆ Ω, we define (cf. (4.2))

S(A) = {a : a ∈ A}.

A pair (A, B) of two subsets A and B of Ω is referred to as a proper partition

of Ω if A and B are non-empty subsets of Ω satisfying A ∪ B = Ω and

A ∩ B = ∅. Our aim is to estimate the capacity between S(A) and S(B)
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for proper partitions (A, B) of Ω. The following theorem expresses the key

capacity estimate:

Theorem 4.2.1. It holds for any proper partition (A, B) of Ω that

Capβ(S(A), S(B)) =
1 + o(1)

qc(|A|)
e−Γβ, (4.17)

where c(|A|) is the constant defined in (4.15).

We conclude the proofs of Theorems 4.8.1 and 4.1.9 by assuming Theorem

4.2.1.

Proof of Theorem 4.1.7. Recall the magic formula (3.24):

Es[τs̆] =
1

Capβ(s, s̆)

∑
σ∈X

µβ(σ)hs, s̆(σ).

Using Theorem 4.0.1 and the fact that hs, s̆(s) = 1 and hs, s̆ ≡ 0 on s̆, we

can rewrite the last summation as

1

q
+ o(1) +

∑
σ∈X\S

µβ(σ)hs, s̆(σ) =
1

q
+ o(1),

where the identity follows from the trivial bound |hs, s̆| ≤ 1 (cf. (3.18)).

Summing up the computations above and applying Theorem 4.2.1, we obtain

Es[τs̆] =
1

Capβ(s, s̆)

[1

q
+ o(1)

]
= (1 + o(1)) · κ

q − 1
eΓβ. (4.18)

We next address the second estimate of (4.10). Assume that the process

σβ(·) starts from s and that s 6= s′. We define a sequence of stopping times

(Jn)∞n=0 by J0 = 0 and

Jn+1 = inf{t ≥ Jn : σβ(t) ∈ S \ σβ(Jn)} for n ≥ 0.
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In other words, (Jn)∞n=0 is the sequence of random times at which the process

σβ(·) visits a new ground state. By (4.18) and the strong Markov property,

we have for all n ≥ 0 that

Es[Jn+1 − Jn] = (1 + o(1)) · κ

q − 1
eΓβ. (4.19)

Then, we define

n(s′) = inf{n ≥ 0 : σβ(Jn) = s′}

such that τs′ = Jn(s′); thus, we can write

τs′ =

n(s′)−1∑
i=0

(Ji+1 − Ji). (4.20)

Note that because we have assumed s 6= s′, it holds that n(s′) ≥ 1. By

symmetry, we observe that n(s′) is a geometric random variable with success

probability 1/(q − 1) that is independent of the sequence (Jn)∞n=0. Thus, we

get from (4.19) and (4.20) that

Es[τs′ ] = (1 + o(1)) · κ

q − 1
eΓβ · (q − 1) = (1 + o(1)) · κeΓβ.

Finally, from (3.14), (4.13), (4.14), and (4.15), we can easily see that κ sat-

isfies the asymptotics (4.11). This completes the proof.

Next, we consider Theorem 4.1.9. Before stating the proof, we remark

that two alternative approaches are available for the Markov chain model

reduction in the context of metastability: an approach based on the Poisson

equation [58, 61, 76, 77], and one based on the resolvent equation [57, 65].

Proof of Theorem 4.1.9. We first consider part (1). We denote by rYβ : S ×
S → [0, ∞) the transition rate of the trace process Yβ(·). In view of the

rate (4.12) of the limiting Markov chain, it suffices to prove that rYβ(s, s′) =

(1+o(1))/κ for all s, s′ ∈ S. Since rβ(s, s′) does not depend on the selections
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of s, s′ ∈ S by the symmetry of the model, it remains to prove that

rYβ(s, s̆) = (1 + o(1)) · q − 1

κ
for all s ∈ S. (4.21)

We temporarily denote by Es the law of the trace process Yβ(·) starting from

s. Then,

1

rYβ(s, s̆)
= Es[τs̆] = e−Γβ · Es

[ ∫ τs̆

0

1{σβ(t) ∈ S}dt
]
, (4.22)

where the factor e−Γβ is included because we accelerated the process by the

factor eΓβ; the integrand 1{σβ(t) ∈ S} arises because the trace process is

obtained from the accelerated process by turning off the clock when the

process resides outside S. Then, by [5, Proposition 6.10], we can write

Es
[ ∫ τs̆

0

1{σβ(t) ∈ S}dt
]

=
1

Capβ(s, s̆)

∑
σ∈X

µβ(σ)1{σ ∈ S}hs, s̆(σ) =
µβ(s)

Capβ(s, s̆)
,

where the second identity follows from the fact that hs, s̆(s) = 1 and hs, s̆ ≡ 0

on s̆. Therefore, by Theorems 4.0.1 and 4.2.1, we obtain

Es
[ ∫ τs̆

0

1{σβ(t) ∈ S}dt
]

= (1 + o(1)) · κ

q − 1
eΓβ.

Inserting this into (4.22) yields (4.21).

Part (2) can be proved in the exact same way as Theorem 3.1.4.

Finally, to prove Theorem 4.2.1, we apply the H1-approximation method

given in Proposition 3.2.9. This is done by constructing the explicit test

function in Section 4.7.
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4.3 Canonical configurations and paths

Analyzing the energy landscape of the 3D model is far more complex than

that of the 2D model; below, we briefly list the main differences between

them that serve to complexify the problem. Below, for the 2D objects, we

added the superscripts 2D.

(1) In the 2D model, the energy of the gateway configuration is either Γ2D

or Γ2D − 2. Thus, a Γ2D-path on the gateway configurations does not

have the freedom to move. On the other hand, in the 3D model, the

energy of the gateway configuration ranges from Γ− 2K − 2 to Γ. This

implies that the behavior of a Γ-path around a gateway configuration

of energy Γ − 2K − 2 (which is a regular configuration) cannot be

characterized precisely.

(2) In the 2D model, a Γ2D-path from a2D to b2D must visit a configu-

ration in Ra, b, 2D
2 . Then, it successively visits Ra, b, 2D

3 , ..., Ra, b, 2D
L−2 and

finally arrives at b2D. Remarkably, this path does not need to visit a

configuration in Ra, b, 2D
1 and in Ra, b, 2D

L−1 ; this fact essentially arises from

the features of the 2D geometry. In the 3D model, we observe a sim-

ilar phenomenon. To explain this, let us temporarily denote by Ra, b
v ,

v ∈ J1, L − 1K the collection of 3D configurations such that there are

v consecutive K ×L slabs of spins b and such that the spins at the re-

maining sites are a. Then, there exists an integer n = nK,L,M such that

any Γ-path connecting a and b must successively visit configurations

in Ra, b
n , Ra, b

n+1, . . . , Ra, b
M−n but need not visit Ra, b

i for i ∈ J1, n− 1K and

i ∈ JM −n+1, M −1K. In the 2D model, the number corresponding to

this n = nK,L,M is 2. We guess that in the 3D model, n ∼ K1/2; how-

ever, we cannot determine the exact value of n. This fact reveals the

complex structure of the energy landscape in the 3D model. Instead,
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we prove below (cf. Propositions 4.3.14 and 4.5.1) that

bK1/2c ≤ n ≤ bK2/3c.

Fortunately, this bound suffices to complete our analysis without iden-

tifying the exact value of n.

(3) In the 2D model, the N 2D-neighborhoods are fully characterized in

Proposition 3.9.3; meanwhile, in the 3D case, we cannot obtain such

a specific and simple result. We overcome the absence of this result

by using the 2D result obtained in Proposition 3.9.3, through suitably

applying it to the analysis of the 3D model. Indeed, this absence is

a crucial difficulty in extending the analysis to the four- or higher-

dimensional models.

(4) Because of the aforementioned complexity of the energy landscape, the

transition may encounter a dead-end with energy Γ, even in the bulk

part of the transition; this is not the case in the 2D model. There-

fore, another technical challenge is that of carefully characterizing these

dead-ends and appropriately excluding them from the computation.

As explained above, the energy landscape of the 3D model is more complex

than that of the 2D one, and we are unable to present a complete descrip-

tion of the energy landscape for the former. Nevertheless, we analyze the

landscape with the precision required to prove our main results.

In Section 4.3, we introduce canonical configurations and paths. Their

definitions are direct generalizations of those in the 2D model. Then, we

explain several applications of these canonical objects.

We first collect several notation which will be frequently used throughout

the remainder of the article.
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Figure 4.1: Figures on Notation 4.3.1. This form of figure is used throughout
the remainder of the article to illustrate a 3D configuration consisting of two
types of spins only. The large dotted box denotes Λ = TK × TL × TM . The
orange unit boxes denote the sites with spin b, and the empty part denotes
the cluster of spin a. For some cases when we only concern the shape of the
cluster of spin b (e.g. in Figure 4.2), we omit the dotted box representing Λ.

Notation 4.3.1. We refer to Figure 4.11 for an illustration of the notation

below.

• For m ∈ TM , the slab TK × TL × {m} ⊆ Λ is called an m-th floor. For

each configuration σ ∈ X , we denote by σ(m) the configuration of σ at

the m-th floor, i.e.,

σ(m)(k, `) = σ(k, `, m); k ∈ TK , ` ∈ TL. (4.23)

Thus, σ(m) ∈ X 2D is a spin configuration in Λ2D = TK × TL.

• For a, b ∈ Ω and P ⊆ TM , we denote by σa, bP ∈ X the configuration

satisfying

σa, bP (k, `, m) = b · 1{m ∈ P}+ a · 1{m /∈ P}. (4.24)

1In fact, this figure and all the 3D figures below contradict our assumption that K ≥
2829. However, we believe that there will be absolutely no confusion with these figures
which only provide simple illustrations of complicated notions.
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Also, recall the definition of neighborhoods given in Definition 3.4.2, but

now subjected to the 3D energy barrier Γ = Γ3D.

4.3.1 Canonical configurations

The following notation is used frequently.

Notation 4.3.2. We first introduce several maps on X . If K = L, we de-

fine a bijection Θ(12) : X → X as the map switching the first and second

coordinates, i.e., for all σ ∈ X and (k, `, m) ∈ Λ,

(Θ(12)(σ))(k, `, m) = σ(`, k, m).

If L = M , we can similarly define a bijection Θ(23) on X switching the second

and third coordinates. Finally, for the case of K = L = M , we can even define

the bijection Θ(13) on X switching the first and third coordinates.

Then, for A ⊆ X , we define Υ(A) as

Υ(A) =



A if K < L < M,

A ∪Θ(12)(A) if K = L < M,

A ∪Θ(23)(A) if K < L = M,

A ∪Θ(12)(A) ∪Θ(23)(A) ∪Θ(13)(A)

∪ (Θ(12) ◦Θ(23))(A) ∪ (Θ(23) ◦Θ(12))(A)
if K = L = M.

Note that the set Υ(A) for the case of K = L = M denotes the set of all

configurations obtained by permuting the coordinates of the configurations

in A.

Now, we define canonical configurations of our 3D model.

Definition 4.3.3 (Canonical configurations). We refer to Figure 4.2 for a

visualization of the objects introduced below. Recall Notation 3.4.11. We

first introduce some building blocks in the definition of canonical and gateway
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Figure 4.2: Canonical configurations. These two configurations belong to Ca, b6

(if the orange boxes represent the sites with spin b as in Figure 4.1), since the
2D configurations at the 7-th floor are 2D canonical configurations ξa, b,+6, 7; 5, 2

and ξa, b,−3, 4; 2, 6, respectively.

configurations. For a, b ∈ Ω and P, Q ∈ SM with P ≺ Q, we define C̃a, bP,Q ⊆ X
as

σ ∈ C̃a, bP,Q ⇔


σ(m) = b2D if m ∈ P,

σ(m) = a2D if m ∈ Qc,

σ(m) ∈ Ca, b, 2D if m ∈ Q \ P,

where the 2D objects are defined in Chapter 3. Then, we set

Ca, bP,Q = Υ(C̃a, bP,Q). (4.25)

We then define, for i ∈ J0, M − 1K,

Ca, bi =
⋃

P,Q∈SM : |P |=i and P≺Q

Ca, bP,Q and Ca, b =
M−1⋃
i=0

Ca, bi . (4.26)

Finally, for a proper partition (A, B) of Ω, we write

CA,Bi =
⋃
a∈A

⋃
b∈B

Ca, bi and CA,B =
⋃
a∈A

⋃
b∈B

Ca, b.

A configuration belonging to Ca, b for some a, b ∈ Ω is called a canonical
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configuration between a and b.

In view of the definition above, the role of the map Υ is clear. When

K < L < M there is only one direction of transition, if K = L < M or

K < L = M there are 2 = 2! possible directions, while if K = L = M there

are 6 = 3! possible directions. The map Υ reflects this observation into the

definition. Next, let us define regular configurations which are the special

ones among the canonical configurations.

Definition 4.3.4 (Regular configurations). For a, b ∈ Ω and P ∈ SM , recall

the configuration σa, bP from (4.24) and define

R̃a, b
i = {σa, bP : P ∈ SM , |P | = i}; i ∈ J0, MK. (4.27)

Note that R̃a, b
i is a collection of configurations consisting of spins a and b

only, where spins a and b are located at slabs TK × TL × (TM \ P ) and

TK × TL × P , respectively, for P ∈ SM with |P | = i. Then, define (cf.

Notation 4.3.2)

Ra, b
i = Υ(R̃a, b

i ). (4.28)

A configuration belonging to Ra, b
i for some i ∈ J0, MK is called a regular

configuration. Clearly, we have Ra, b
0 = {a} and Ra, b

M = {b}. For a proper

partition (A, B) of Ω, we write

RA,B
i =

⋃
a∈A

⋃
b∈B

Ra, b
i . (4.29)

4.3.2 Energy of canonical configurations

One can compute the energy of canonical configurations readily by elemen-

tary computations, but we provide a more systematic approach which will

be frequently used in later computations. To this end, we first introduce a

notation.
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Notation 4.3.5. For (k, `) ∈ TK × TL, we denote by σ〈k, `〉 ∈ STM the

configuration of σ on the (k, `)-th pillar {k} × {`} × TM , i.e.,

σ〈k, `〉(m) = σ(k, `, m); m ∈ TM . (4.30)

The energy of the 1D configuration σ〈k, `〉 is denoted by

H1D(σ〈k, `〉) =
∑
m∈TM

1{σ(k, `, m) 6= σ(k, `, m+ 1)}. (4.31)

In the following lemma, we decompose the 3D energy into lower-dimensional

ones. Here, H2D is the Hamiltonian of the 2D Ising/Potts configurations.

Lemma 4.3.6. For each σ ∈ X , it holds that

H(σ) =
∑
m∈TM

H2D(σ(m)) +
∑

(k, `)∈TK×TL

H1D(σ〈k, `〉). (4.32)

Proof. We can write H(σ) as∑
m∈TM

[ ∑
k∈TK

∑
`∈TL

1{σ(k+1, `,m)6=σ(k, `,m)} + 1{σ(k, `+1,m)6=σ(k, `,m)}

]
+
∑
k∈TK

∑
`∈TL

[ ∑
m∈TM

1{σ(k, `,m) 6=σ(k, `,m+1)}

]
.

The first and second lines correspond to the first and second terms at the

right-hand side of (4.32), respectively.

Based on the previous expression, we deduce the following proposition.

Proposition 4.3.7 (Energy of canonical configurations). The following prop-

erties hold.

(1) For each canonical configuration σ, we have H(σ) ≤ Γ.
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(2) For each configuration σ ∈ Ca, bi for some a, b ∈ Ω and i ∈ J1, M − 2K,

we have

H(σ) ∈ JΓ− 2K − 2, ΓK.

Proof. Observe that for a canonical configuration σ, we have H1D(σ〈k, `〉) ≤ 2

for all (k, `) ∈ TK ×TL, and H2D(σ(m)) = 0 for all m ∈ TM \ {m0} for some

m0 ∈ TM , at which it holds that H2D(σ(m0)) ≤ 2K + 2 (cf. (3.48)). Thus, by

Lemma 4.3.6,

H(σ) ≤ (2K + 2) + 2KL = Γ.

For part (2), it suffices to additionally observe that H1D(σ〈k, `〉) = 2 for all

(k, `) ∈ TK × TL if i ∈ J1, M − 2K and thus

H(σ) ≥ 2KL = Γ− 2K − 2.

Remark 4.3.8. In particular, we have H(σ) = Γ−2K−2 = 2KL for any σ ∈
RA,B
i , i ∈ J1, M−1K. Hence, a Γ-path at a regular configuration can evolve in

a non-canonical way, since we still have a spare of 2K+2 to reach the energy

barrier Γ. Incorporating all these behaviors in the metastability analysis is a

demanding part of the 3D model. For this reason, the regular configuration

plays a crucial role. We remark that for the 2D case, any optimal path at a

regular configuration does not have freedom, and that helped a lot simplifying

the arguments.

4.3.3 Canonical paths

In this subsection, we define 3D canonical paths between ground states. They

generalize the 2D paths recalled in Definition 3.4.12. Refer to Figure 4.3 for

an illustration.
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Figure 4.3: Canonical path connecting a and b.
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Definition 4.3.9 (Canonical paths). We recall Notation 3.4.11. Let us fix

a, b ∈ Ω. A path (ωt)
KLM
t=0 is called a pre-canonical path connecting a and b

if there exists an increasing sequence (Pi)
M
i=0 in SM such that

• for each i ∈ J0, MK, we have that ωKLi = σa, bPi
(cf. (4.24)), and

• for each i ∈ J0, M − 1K, there exists a 2D canonical path (γit)
KL
t=0 from

a2D to b2D defined in Definition 3.4.12 such that

ω
(m)
t =


b2D if m ∈ Pi,

a2D if m ∈ TM \ Pi+1,

γit−KLi if m ∈ Pi+1 \ Pi,

for all t ∈ JKLi, KL(i+ 1)K.

If K < L < M , a path is called a canonical path if it is a pre-canonical path.

If K = L < M , a path is called a canonical path if it is either a pre-canonical

one or the image of a pre-canonical one with respect to the map Θ(12). We

can define canonical paths for the cases of K < L = M and K = L = M in

a similar manner.

Remark 4.3.10. We emphasize that for a canonical path (ωt)
KLM
t=0 , all con-

figurations ωt, t ∈ J0, KLMK, are canonical configurations, and hence any

canonical path is a Γ-path by part (1) of Proposition 4.3.7.

Canonical paths provide optimal paths between two ground states, and

hence we can confirm the following upper bound for the energy barrier.

Proposition 4.3.11. For s, s′ ∈ S, we have that Φ(s, s′) ≤ Γ.

Proof. By Remark 4.3.10, it suffices to take a canonical path connecting s

and s′.

We prove Φ(s, s′) ≥ Γ in Section 4.5 to verify Φ(s, s′) = Γ. This reversed

inequality requires a much more complicated proof.
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4.3.4 Characterization of the deepest valleys

We show in this subsection that using the canonical paths, the valleys in

the energy landscape, except for the ones associated to the ground states,

have depths less than Γ. Note that Theorem 4.1.1, although not yet proved,

indicates that the valleys associated to the ground states have depth Γ. This

characterization of the depths of other valleys is essentially required since we

have to reject the possibility of being trapped in a deeper valley in the course

of transition. This fact is crucially used in the application of the pathwise

approach to metastability.

Notation 4.3.12. For the convenience of notation, we call (ωt)
T
t=0 a pseudo-

path if either ωt ∼ ωt+1 or ωt = ωt+1 for all t ∈ J0, T − 1K.

Proposition 4.3.13. For σ ∈ X \ S, we have

Φ(σ, S)−H(σ) ≤ Γ− 2 < Γ.

Proof. Main idea of the proof is inherited from the proof of [69, Theorem

2.1]. Let us find two spins a, b ∈ Ω so that σ has spins a and b at some sites,

which is clearly possible since σ /∈ S. Let us fix a canonical path (ωt)
KLM
t=0

connecting a and b. Then, we write

At = {x ∈ Λ : ωt(x) = b}; t ∈ J0, KLMK,

so that we have ∅ = A0 ⊆ A1 ⊆ · · · ⊆ AKLM = Λ and |At| = t for all

t ∈ J0, KLMK. We can take the path (ωt)
KLM
t=0 in a way that

A1 = {x0} and σ(x0) = b. (4.33)

Now, we define a pseudo-path (cf. Notation 4.3.12) (ω̃t)
KLM
t=0 connecting σ
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and b as

ω̃t(x) =

σ(x) if x /∈ At,

b if x ∈ At.

In other words, we update the spins in an exactly same manner with the

canonical path (ωt)
KLM
t=0 . We claim that

H(ω̃t)−H(σ) ≤ 2KL+ 2K = Γ− 2 for all t ∈ J0, KLMK. (4.34)

It is immediate that this claim concludes the proof. To prove this claim, we

recall the decomposition obtained in Lemma 4.3.6 and write ω̃t = ζ. Then,

we can write H(ζ)−H(σ) as∑
m∈TM

[H2D(ζ(m))−H2D(σ(m))]+
∑

(k, `)∈TK×TL

[H1D(ζ〈k, `〉)−H1D(σ〈k, `〉)]. (4.35)

Let us first consider the first summation of (4.35). We suppose that t ∈
JKLi, KL(i + 1)K and write ωKLi = σa, bP and ωKL(i+1) = σa, bQ where P ≺ Q.

Write Q \ P = {m′}. Then, we have that

H2D(ζ(m))−H2D(σ(m)) =

−H2D(σ(m)) ≤ 0 if m ∈ P,

0 if m ∈ Qc,
(4.36)

since ζ(m) = b2D for m ∈ P and ζ(m) = σ(m) for m ∈ Qc. On the other hand,

by Lemma 3.9.4, we have that

H2D(ζ(m′))−H2D(σ(m′)) ≤ 2K + 2. (4.37)

By (4.36) and (4.37), we conclude that∑
m∈TM

[H2D(ζ(m))−H2D(σ(m))] ≤ 2K + 2. (4.38)
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Now, we turn to the second summation of (4.35). Note that ζ〈k, `〉 is obtained

from σ〈k, `〉 by flipping the spins in consecutive sites in Q to b. From this, we

can readily deduce that

H1D(ζ〈k, `〉)−H1D(σ〈k, `〉) ≤ 2 for all k ∈ TK and ` ∈ TL. (4.39)

Moreover, if x0 = (k0, `0, m0), we can check that

H1D(ζ〈k0, `0〉)−H1D(σ〈k0, `0〉) ≤ 0. (4.40)

By (4.39) and (4.40), we get∑
(k, `)∈TK×TL

[H1D(ζ〈k, `〉)−H1D(σ〈k, `〉)] ≤ 2(KL− 1). (4.41)

Now, the claim (4.34) follows from (4.35), (4.38), and (4.41).

4.3.5 Auxiliary result on saddle configurations

In the 2D case, in the analysis of the energy landscape, the collection R2D
2

plays a significant role since to make an optimal transition (not exceeding

the energy barrier 2K + 2), we may skip the collection R2D
1 but must pass

through R2D
2 . Thus, the integer 2 worked as some kind of a threshold for

metastable transitions. We expect a similar pattern in the 3D case, and we

briefly explain this phenomenon in this subsection.

Let us define

mK = bK2/3c. (4.42)

Then, we shall prove in Corollary 4.5.5 below that

Φ(a, σa, bJ1, nK) = Γ for all n ∈ JmK , M −mKK. (4.43)
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Thus, we can define (cf. Figure 4.5 below)

nK,L,M = min{n ∈ J1, M − 1K : Φ(a, σa, bJ1, nK) = Γ}. (4.44)

We strongly believe that this quantity does not depend on M , but we do not

have a proof for it at the moment. Note that this number was just 2 in the

2D case. In the 3D model, we do not know this number exactly, since non-

canonical movements at the early stage of transitions are hard to characterize.

However, the upper bound nK,L,M ≤ mK = bK2/3c obtained from (4.43) is

enough for our purpose, as we shall see later.

The main result of this subsection is the corresponding lower bound. This

result will not be used in the proofs later, but emphasizes the complexity of

the energy landscape near ground states.

Proposition 4.3.14. We have nK,L,M ≥ bK1/2c.

Proof. It suffices to prove that

Φ(1, σ1, 2
J1, nK) ≤ Γ− 2 for all n ∈ J1, bK1/2c − 1K.

We fix such an n and write σ = σ1, 2
J1, nK. We now construct an explicit path

from σ to 1 without exceeding the energy Γ − 2. Note that σ1, 2
J1, nK has spins

2 at TK × TL × J1, nK and spins 1 at all the other sites. In this proof, we

regard TK = J1, KK and TL = J1, LK in order to simplify the explanation of

the order of spin flips in a lexicographic manner.

• First, starting from σ, we change spins 2 to 1 in J1, KK×J1, nK×J1, nK
in ascending lexicographic order. Denote by ζ ∈ X the obtained spin

configuration, which has spins 2 only on J1, KK× Jn + 1, LK× J1, nK.
Then, the variation of the Hamiltonian from σ to ζ can be expressed
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by the following n× n matrices:
+2 + 0 · · · + 0

+4 + 2 · · · + 2
...

+4 + 2 · · · + 2

 ,


+0 − 2 · · · − 2

+2 + 0 · · · + 0
...

+2 + 0 · · · + 0

×(K−2),


−2 − 4 · · · − 4

+0 − 2 · · · − 2
...

+0 − 2 · · · − 2

 .

Here, each n×n matrix represents {i}×J1, nK×J1, nK for 1 ≤ i ≤ K, in

which the numbers represent the variation of the energy which should

be read in ascending lexicographic order. From this path, we obtain

Φ(σ, ζ) ≤ 2KL+ 2n2 + 2n− 2, (4.45)

where the maximum of the energy is obtained right after flipping the

spin at (2, 1, n − 1), which is denoted by bold font at the matrices

above.

• Next, starting from ζ, we change spins 2 to 1 in J1, KK×{i}× J1, nK in

the ascending lexicographic order for i ∈ Jn+ 1, L− 1K, from i = n+ 1

to i = L− 1. Denote by ζ ′ ∈ X the obtained spin configuration, which

has spins 2 only on J1, KK × {L} × J1, nK. In each step, the variation

of the Hamiltonian is represented by the n×K matrix
+0 − 2 · · · − 2 − 4

+2 + 0 · · · + 0 − 2
...

+2 + 0 · · · + 0 − 2

 .

Since H(ζ) = 2KL, we can verify that

Φ(ζ, ζ ′) ≤ 2KL+ 2, (4.46)
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where the maximum is obtained right after flipping the spin at (1, n+

1, 1) (cf. bold font +2).

• Finally, starting from ζ ′, we change spins 2 to 1 in the ascending lexi-

cographic order. The variation of the Hamiltonian is represented by
−2 − 4 · · · − 4 − 6

+0 − 2 · · · − 2 − 4
...

+0 − 2 · · · − 2 − 4

 .

Hence, the Hamiltonian monotonically decreases from H(ζ ′) = 2K(n+

1) to arrive at H(1) = 0. Hence, we have

Φ(ζ ′, 1) ≤ 2K(n+ 1). (4.47)

Therefore, by (4.45), (4.46), and (4.47), we have

Φ(σ, 1) ≤ 2KL+ 2n2 + 2n− 2.

Since n ∈ J1, bK1/2c − 1K, it holds that 2n2 + 2n− 2 ≤ 2K. This concludes

the proof.

4.4 Gateway configurations

In the analysis of the 3D model, a crucial notion is the concept of gateway

configurations. The gateway configurations of the 3D model play a far more

significant role than those of the 2D model.

We fix a proper partition (A, B) of Ω throughout this section.

163



CHAPTER 4. THREE-DIMENSIONAL MODEL

Figure 4.4: Examples of gateway configurations. Each configuration above
represents a gateway configuration of type 1 (left), type 2 (middle), or type
3 (right), respectively.

4.4.1 Gateway configurations

We refer to Figure 4.4 for an illustration of gateway configurations defined

below.

Definition 4.4.1 (Gateway configurations). For a, b ∈ Ω and P, Q ∈ SM

with P ≺ Q, we define G̃a, bP,Q ⊆ C̃
a, b
P,Q as

σ ∈ G̃a, bP,Q ⇔


σ(m) = b2D if m ∈ P,

σ(m) = a2D if m ∈ Qc,

σ(m) ∈ Ga, b, 2D if m ∈ Q \ P,

where Ga, b, 2D is defined in Definition 3.9.8. Then, we define (cf. Notation

4.3.2)

Ga, bP,Q = Υ(G̃a, bP,Q).

Then, recall mK from (4.42) and define, for i ∈ J0, M − 1K,

Ga, bi =
⋃

P,Q∈SM : |P |=i and P≺Q

Ga, bP,Q and Ga, b =

M−mK⋃
i=mK−1

Ga, bi . (4.48)

Notice that the crucial difference between (4.48) and (4.26) is the fact that

the second union in (4.48) is taken only over i ∈ JmK − 1, M − mKK. This

is related to (4.43), and we give a more detailed reasoning in Section 4.4.2.
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A configuration belonging to Ga, b for some a, b ∈ Ω is called a gateway

configuration.

Finally, for a proper partition (A, B) of Ω, we write for i ∈ J0, M − 1K,

GA,Bi =
⋃
a∈A

⋃
b∈B

Ga, bi and GA,B =
⋃
a∈A

⋃
b∈B

Ga, b. (4.49)

Notation 4.4.2. For a, b ∈ Ω and P, Q ∈ SM with P ≺ Q, Q \ P = {m0},
and |P | ∈ JmK − 1, M −mKK, we decompose

G̃a, bP,Q = G̃a, b, [1]
P,Q ∪ G̃a, b, [2]

P,Q ∪ G̃a, b, [3]
P,Q ,

where (cf. Definition 3.4.14)

G̃a, b, [1]
P,Q = {σ ∈ G̃a, bP,Q : σ(m0) ∈ Ba, b, 2D \ Ba, b, 2D

Γ },

G̃a, b, [2]
P,Q = {σ ∈ G̃a, bP,Q : σ(m0) ∈ Ba, b, 2D

Γ },

G̃a, b, [3]
P,Q = {σ ∈ G̃a, bP,Q : σ(m0) ∈ Za, b, 2D ∪ Zb, a, 2D}.

Then, write Ga, b, [n]
P,Q = Υ(G̃a, b, [n]

P,Q ), n ∈ {1, 2, 3}. A configuration σ ∈ GA,B

is called a gateway configuration of type n, n ∈ {1, 2, 3}, if σ ∈ Ga, b, [n]
P,Q for

some a ∈ A, b ∈ B and P, Q ∈ SM with P ≺ Q.

The following proposition is direct from the definition of gateway config-

urations.

Proposition 4.4.3. For σ ∈ GA,B, we have H(σ) ∈ {Γ − 2, Γ}. Moreover,

we have H(σ) = Γ − 2 if and only if σ is a gateway configuration of type 1

and H(σ) = Γ if and only if σ is a gateway configuration of type 2 or 3.

Proof. Let σ ∈ G̃a, bP,Q for some a ∈ A, b ∈ B and P, Q ∈ SM with P ≺ Q,

Q \P = {m0}, and |P | ∈ JmK − 1, M −mKK. Then, by Lemma 4.3.6, we can

write

H(σ) = H2D(σ(m0)) + 2KL
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since H2D(σ(m)) = 0 for all m 6= m0 and H1D(σ〈k, `〉) = 2 for all k ∈ TK and

` ∈ TL. Hence, by definition, we have

H(σ) =

2KL+ 2K = Γ− 2 if σ ∈ G̃a, b, [1]
P,Q ,

2KL+ 2K + 2 = Γ if σ ∈ G̃a, b, [2]
P,Q ∪ G̃a, b, [3]

P,Q .

Since the Hamiltonian is invariant under Υ, the proof is completed.

4.4.2 Properties of gateway configurations

Next, we investigate several crucial properties of the gateway configurations

which will be used frequently in the following discussions. The following

notation will be useful in the remaining parts of the article.

Notation 4.4.4. For any integers u, v such that 0 ≤ u < v ≤M , we write

Ka, b[u, v] =
v⋃
i=u

Ka, bi and KA,B[u, v] =
v⋃
i=u

KA,Bi ,

where K ∈ {C, G, R}. In particular, by (4.48) and (4.49), we can write

GA,B = GA,B[mK−1,M−mK ]. (4.50)

In this section, we focus on the relation between gateway configurations

and neighborhoods of regular configurations. We refer to Figure 4.5 for an

illustration of the relations obtained in the current subsection.

The first one below states that we have to escape from a gateway con-

figuration via a neighborhood of regular configurations, unless we touch a

configuration with energy higher than Γ.

Lemma 4.4.5. For a proper partition (A, B) of Ω, the following statements

hold.

166



CHAPTER 4. THREE-DIMENSIONAL MODEL

Figure 4.5: Structure of gateway configurations between a and b. The grey
regions consist of configurations of energy Γ. The green boxes denote the
sets of the form N (Ra, b

i ) for i ∈ JnK,L,M , M − nK,L,MK (cf. (4.44)), while
the green lines denote the gateway configurations of type 1 whose energy is
Γ − 2 (cf. Proposition 4.4.3). Later in Proposition 4.5.1, we shall show that
mK ≥ nK,L,M . The structure given in this figure (especially between Ga, bmK−1

and Ga, bM−mK ) is confirmed in Lemma 4.4.5. We remark that the dead-ends

are attached to N (a), N (b), and N (Ra, b
i ), i ∈ JnK,L,M , M − nK,L,MK. In

particular, the configurations in Ga, bi with i < nK,L,M−1 belong to the dead-
ends attached to the set N (a).
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(1) For a ∈ A, b ∈ B, and i ∈ JmK − 1, M − mKK, we suppose that

σ ∈ Ga, bi and ζ ∈ X \ Ga, bi satisfy σ ∼ ζ and H(ζ) ≤ Γ. Then, we have

ζ ∈ N (Ra, b
[i, i+1]), and moreover σ is a gateway configuration of type 3.

(2) Suppose that σ ∈ GA,B and ζ ∈ X \ GA,B satisfy σ ∼ ζ and H(ζ) ≤ Γ.

Then, we have ζ ∈ N (RA,B
[mK−1,M−mK+1]), and moreover σ is a gateway

configuration of type 3.

Proof. We first suppose that σ ∈ G̃a, bP,Q and ζ ∈ X \ G̃a, bP,Q for some a ∈ A,

b ∈ B and P, Q ∈ SM with P ≺ Q and |P | ∈ JmK − 1, M −mKK. We write

Q \ P = {m0}. Then, we claim that ζ ∈ N ({σa, bP , σa, bQ }), and σ is of type 3.

Let us first show that σ is a gateway configuration of type 3. If σ is of

type 1, then we have H(σ) = Γ− 2, H2D(σ(m0)) = 2K, and σ(m0) ∈ Ba, b, 2D.

To update a spin in σ without increasing the energy by 3 or more, it can be

readily observed that we have to update a spin of σ at the m0-th floor to

get ζ with H2D(ζ(m0)) ≤ 2K + 2. In such a situation, Lemma 3.9.10 asserts

that σ(m0) /∈ Ba, b, 2D and we get a contradiction. A similar argument can be

applied if σ is of type 2, and hence we can conclude that σ is of type 3.

Now, since σ is of type 3, we have H(σ) = Γ, H2D(σ(m0)) = 2K + 2,

and σ(m0) ∈ Za, b, 2D ∪Zb, a, 2D (cf. (3.51)). In order not to increase the energy

by flipping a site of σ, it is clear that we have to flip a spin at the m0-th

floor (cf. Figure 4.4). This means that, by Lemma 3.9.10, we have ζ(m0) ∈
N 2D(a2D) ∪ N 2D(b2D). Now, we suppose first that ζ(m0) ∈ N 2D(a2D). Then,

there exists a 2D (2K + 1)-path (ωt)
T
t=0 in X 2D = SΛ2D

such that ω0 = a2D

and ωT = ζ(m0). Define a 3D path (ω̃t)
T
t=0 as

ω̃
(m)
t =

ω
(m)
t if m = m0,

ζ(m) = σ(m) if m 6= m0.

Then, (ω̃t)
T
t=0 is a (Γ − 1)-path connecting σa, bP and ζ, and thus we get ζ ∈

N (σa, bP ). Similarly, we can deduce that ζ(m0) ∈ N 2D(b2D) implies ζ ∈ N (σa, bQ ).

This concludes the proof of the claim.

168



CHAPTER 4. THREE-DIMENSIONAL MODEL

Now, we return to the lemma. For part (1), suppose that σ ∈ Ga, bP,Q

for some a ∈ A, b ∈ B and P, Q ∈ SM with |P | = i ∈ JmK − 1, M −
mKK and P ≺ Q. If σ ∈ G̃a, bP,Q, then by the claim above, we get

ζ ∈ N ({σa, bP , σa, bQ }) ⊆ N (Ra, b
[i, i+1]),

and moreover σ is a gateway configuration of type 3. On the other hand,

if σ ∈ Θ(G̃a, bP,Q) for some permutation operator Θ that appears in Notation

4.3.2, then by the same logic as above, we obtain that

ζ ∈ N ({Θ(σa, bP ), Θ(σa, bQ )}) ⊆ N (Θ(R̃a, b
[i, i+1])) ⊆ N (Ra, b

[i, i+1]),

and that σ is a gateway configuration of type 3. This completes the proof of

part (1). Part (2) is direct from part (1).

Next, we establish a relation between GA,B and N (RA,B
[0,M ]) for proper

partitions (A, B) of S.

Lemma 4.4.6. For a proper partition (A, B) of Ω, the two sets GA,B and

N (RA,B
[0,M ]) are disjoint and moreover, it holds that

N̂
(
GA,B; N (RA,B

[0,M ])
)

= GA,B. (4.51)

Proof. We first claim that, for any a ∈ A, b ∈ B, and P, Q ∈ SM with

P ≺ Q and |P | ∈ JmK − 1, M −mKK2,

G̃a, bP,Q ∩N (RA,B
[0,M ]) = ∅. (4.52)

Suppose the contrary that we can take a configuration σ ∈ G̃a, bP,Q∩N (RA,B
[0,M ]).

Then, since σ ∈ G̃a, bP,Q and since H(σ) < Γ as σ ∈ N (RA,B
[0,M ]), the configu-

ration σ must be a gateway configuration of type 1 by Proposition 4.4.3.

Since σ ∈ N (RA,B
[0,M ]), there exists a (Γ − 1)-path connecting σ and RA,B

[0,M ].

2In fact, it holds even if |P | ∈ J0, M − 1K.
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However, it is clear that (cf. Figure 4.4) any configuration ζ such that ζ ∼ σ

has energy at least Γ. This yields a contradiction. By the same argument, we

can show that Θ(G̃a, bP,Q) is also disjoint with N (RA,B
[0,M ]) where Θ is one of the

permutation operators introduced in Notation 4.3.2, and hence it holds that

Ga, bP,Q is disjoint with N (RA,B
[0,M ]). Hence, the two sets GA,B and N (RA,B

[0,M ]) are

disjoint.

Next, we turn to (4.51). Since GA,B ⊆ N̂ (GA,B; N (RA,B
[0,M ])) easily follows

from (4.52), it suffices to show that

N̂ (GA,B; N (RA,B
[0,M ])) ⊆ G

A,B.

Suppose the contrary that we can take σ ∈ N̂ (GA,B; N (RA,B
[0,M ])) which does

not belong to GA,B. Let (ωt)
T
t=0 be a Γ-path in X \ N (RA,B

[0,M ]) connecting

GA,B and σ. Since we have assumed that σ /∈ GA,B, we can take

t0 = min{t : ωt /∈ GA,B}.

Since ωt0−1 ∈ GA,B, ωt0 /∈ GA,B, and ωt0−1 ∼ ωt0 , by Lemma 4.4.5, we have

ωt0−1 ∈ N (RA,B
[mK−1,M−mK+1]). This contradicts the fact that (ωt)

T
t=0 is a path

in X \ N (RA,B
[0,M ]).

4.5 Energy barrier between ground states

The main objective of the current section is to analyze the energy barrier

and optimal paths between ground states. In this section, we fix a proper

partition (A, B) of S. The main result of the current section is the following

result regarding the energy barrier between the ground states.

Proposition 4.5.1. The following statements hold.

(1) For s, s′ ∈ S, we have that Φ(s, s′) ≥ Γ.
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(2) Let (ωt)
T
t=0 be a path in X \ GA,B connecting S(A) and S(B). Then,

there exists t ∈ J0, T K such that H(ωt) ≥ Γ + 1.

Part (1) of the previous proposition gives an opposite bound of Propo-

sition 4.3.11 and hence completes the proof of the characterization of the

energy barrier. Moreover, in part (2), it is verified that any optimal path

connecting S(A) and S(B) must visit a gateway configuration between them.

Before proceeding further, we officially conclude the proof of Theorem 4.1.1

by assuming Proposition 4.5.1.

Proof of Theorem 4.1.1. The conclusion of the theorem holds by Proposition

4.3.11 and part (1) of Proposition 4.5.1.

We provide the proof of Proposition 4.5.1 in Sections 4.5.1 and 4.5.2.

Then, in Section 4.5.3, we prove the large deviation-type results, namely

Theorem 4.1.4, based on the analysis of energy landscape that we carried

out so far.

4.5.1 Preliminary analysis on energy landscape

The purpose of this subsection is to provide a lemma (cf. Lemma 4.5.3 below)

regarding the communication height between two far away configurations,

which will be the crucial tool in the proof of Proposition 4.5.1.

Before proceeding to this result, we first introduce a lower bound on the

Hamiltonian H which will be used frequently in the remaining computations

of the current section. For σ ∈ X and a ∈ Ω, denote by Da(σ) ⊆ TK × TL
the collection of monochromatic pillars in σ of spin a:

Da(σ) = {(k, `) ∈ TK × TL : σ〈k, `〉(m) = a for all m ∈ TM}.
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Then, let D(σ) =
⋃
a∈Ω

Da(σ) and write

da(σ) = |Da(σ)| and d(σ) = |D(σ)| =
∑
a∈Ω

da(σ). (4.53)

Now, we derive a lower bound on H.

Lemma 4.5.2. For each σ ∈ X , it holds that

H(σ) ≥ 2KL− 2d(σ) +
∑
m∈TM

H2D(σ(m)), (4.54)

and the equality holds if and only if H1D(σ〈k, `〉) = 2 for all (k, `) ∈ (TK ×
TL) \ D(σ).

Proof. Since H1D(σ〈k, `〉) = 0 if (k, `) ∈ D(σ) and H1D(σ〈k, `〉) ≥ 2 otherwise,

we have that ∑
(k, `)∈TK×TL

H1D(σ〈k, `〉) ≥ 2(KL− d(σ)). (4.55)

Hence, we can deduce (4.54) from Lemma 4.3.6. The conclusion on the equal-

ity condition is immediate from the argument above.

Now, we proceed to the main result of this subsection. For the simplicity

of notation, we write, for a ∈ Ω,

Va := N 2D(a2D) ⊆ X 2D and ∆2D := X 2D \
q⋃

a=1

Va (4.56)

so that we have the following natural decomposition of the set X 2D:

X 2D =
( q⋃
a=1

Va
)
∪∆2D. (4.57)

Note that the set ∆2D is non-empty by the definition of N 2D. Recall mK ∈ N
from (4.42). The following lemma, which is the main technical result in the
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analysis of the energy landscape, asserts that we have to overcome an energy

barrier of Γ in order to change a 2D configuration at a certain floor from a

neighborhood of a ground state to a neighborhood of another ground state.

Lemma 4.5.3. Suppose that a, b ∈ Ω. Moreover, let U and V be two disjoint

subsets of TM satisfying |U |, |V | ≥ mK, and let σ ∈ X be a configuration

satisfying

σ(m) ∈ Va for all m ∈ U and σ(m) ∈ Vb for all m ∈ V.

Suppose that another configuration ζ ∈ X satisfies either ζ(m) ∈ Va1 for some

m ∈ U and a1 6= a or ζ(m) ∈ Vb1 for some m ∈ V and b1 6= b. Finally, we

assume that σ satisfies

d(σ) < 200. (4.58)

Then, both of the following statements hold.

(1) It holds that Φ(σ, ζ) ≥ Γ.

(2) For any path (ωt)
T
t=0 in X \ Ga, b connecting σ and ζ, there exists t ∈

J0, T K such that H(ωt) ≥ Γ + 1.

Proof. We first consider part (1). Let (ωt)
T
t=0 be a path connecting σ and ζ.

For convenience of notation, we define a collection (cm)m∈U∪V such that

cm =

a if m ∈ U,

b if m ∈ V.
(4.59)

Then, we define

T0 = min{t : H2D(ω
(m)
t ) /∈ Vcm for some m ∈ U ∪ V },

where the existence of t ∈ J1, T − 1K such that H2D(ω
(m)
t ) /∈ Vcm for some

m ∈ U ∪ V is guaranteed by the conditions on σ and ζ. Now, we find m0 ∈
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U ∪ V such that

H2D(ω
(m0)
T0

) /∈ Vcm0 . (4.60)

By the definitions of Va and T0, we have that

H2D(ω
(m0)
T0

) ≥ Γ2D = 2K + 2. (4.61)

If H(ωT0) ≥ Γ, there is nothing to prove. Hence, let us assume from now on

that

H(ωT0) < Γ. (4.62)

Then, by Lemma 4.5.2 with σ = ωT0 and by recalling the definition (4.53) of

d(σ), we have

2
∑
n∈Ω

dn(ωT0) + 2K + 2 >
∑
m∈TM

H2D(ω
(m)
T0

). (4.63)

Since we get a contradiction to (4.61) if Dn(ωT0) = ∅ for all n ∈ Ω, there

exists n ∈ Ω such that Dn(ωT0) 6= ∅. Suppose first that n ∈ Ω \ {b}. For this

case, we claim that

H2D(ω
(m)
T0

) ≥ 4 for all m ∈ V. (4.64)

Assume not, so that we have ω
(m)
T0

= n2D for some m ∈ V . If m = m0, this

obviously cannot happen. On the other hand, if m ∈ V \ {m0}, we have

ω
(m)
T0
∈ Vb by the definition of T0 and thus ω

(m)
T0

cannot be n2D as b 6= n.

Therefore, we verified (4.64). Similarly, if n ∈ Ω \ {a}, we obtain

H2D(ω
(m)
T0

) ≥ 4 for all m ∈ U. (4.65)

Since either (4.64) or (4.65) must happen, and since |U |, |V | ≥ mK , we get
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from (4.61) and (4.63) that

2
∑
n∈Ω

dn(ωT0) + 2K + 2 > (2K + 2) + 4(mK − 1), (4.66)

and hence ∑
n∈Ω

dn(ωT0) ≥ 2mK − 1. (4.67)

Thus, we have either∑
n∈Ω\{a}

dn(ωT0) ≥ mK or
∑

n∈Ω\{b}

dn(ωT0) ≥ mK .

Then for K satisfying the condition in Theorem 4.1.1, we have mK ≥ 200

and thus by the condition (4.58), we can take T1 < T0 such that

T1 = min
{
t :

∑
n∈Ω\{a}

dn(ωt) = h2
K or

∑
n∈Ω\{b}

dn(ωt) = h2
K

}
(4.68)

where hK = b
√
mK − 1c. Since T1 < T0, by the definition of T0, we have

ω
(m)
T1
∈ Va, ∀m ∈ U and ω

(m)
T1
∈ Vb, ∀m ∈ V. (4.69)

We first suppose that
∑

n∈Ω\{a}

dn(ωT1) = h2
K . Since (cf. (3.121))

‖ω(m)
T1
‖n ≥ dn(ωT1) for all m ∈ TM , n ∈ Ω,

we can assert from (4.69) and (L2), (L3) of Proposition 3.9.3 that

H2D(ω
(m)
T1

) ≥ 4
( ∑

n∈Ω\{a}

dn(ωT1)
)1/2

= 4hK for all m ∈ U. (4.70)

Therefore, by Lemma 4.5.2 with σ = ωT1 , the definition of T1, and (4.70), we
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get

H(ωT1) ≥ 2KL−4h2
K+4hK |U | ≥ 2KL−4h2

K+4hKmK > 2KL+2K+2 = Γ,

where the last inequality holds for K ≥ 32. Of course, we get the same

conclusion for the case of
∑

n∈Ω\{b}

dn(ωT1) = h2
K by an identical argument.

Therefore, we can conclude that H(ωT1) > Γ, and thus part (1) is verified.

Now, we turn to part (2). We now assume that, for some σ and ζ satis-

fying the assumptions of the lemma, there exists a path (ωt)
T
t=0 in X \ Ga, b

connecting σ and ζ with

H(ωt) ≤ Γ for all t ∈ J0, T K. (4.71)

Without loss of generality, we can assume that the triple (σ, ζ, (ωt)
T
t=0) that

we selected has the smallest path length T among all such triples.

Recall T0 from the proof of the first part. If Dn(ωT0) 6= ∅ for some n ∈ Ω,

we can repeat the same argument with part (1) to deduce H(ωT1) > Γ, where

T1 is defined in (4.68). This contradicts (4.71).

Next, we consider the case when Dn(ωT0) = ∅ for all n ∈ Ω. The contra-

diction for this case is more involved than that of the corresponding case of

part (1). By Lemma 4.5.2, we have that

2K + 2 ≥
∑
m∈TM

H2D(ω
(m)
T0

). (4.72)

Recall m0 from (4.60). Since H2D(ω
(m0)
T0

) = 2K + 2 by (4.61), we not only

have

H2D(ω
(m)
T0

) = 0 for all m ∈ TM \ {m0}, (4.73)
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but also the equality in (4.72) holds, i.e.,∑
m∈TM

H2D(ω
(m)
T0

) = 2K + 2. (4.74)

Hence, by the last part of Lemma 4.5.2, we must have

H1D(ω
〈k, `〉
T0

) = 2 for all (k, `) ∈ TK × TL. (4.75)

From these observations, we can deduce the following facts:

• By (4.74), (4.75), and Lemma 4.5.2, we have H(ωT0) = Γ.

• By (4.73) and (4.75), we have ω
(m)
T0
∈ {a2D, b2D} for all m ∈ TM \{m0}.

Moreover, the spins must be aligned so that (4.75) holds. Without loss of

generality, we assume that m0 ∈ U , since the case m0 ∈ V can be handled in

an identical manner. Starting from ωT0 , suppose that we flip a spin at m-th

floor, m 6= m0, without decreasing the 2D energy of the m0-th floor. Then,

since each non-m0-th floor is monochromatic and (4.75) holds, the 3D energy

of σ increases by at least four and we obtain a contradiction to the fact that

(ωt)
T
t=0 is a Γ-path. Thus, we must decrease the 2D energy of the m0-th floor

before modifying the other floors. Define

T2 = min{t > T0 : H2D(ω
(m0)
t ) < 2K + 2}.

Then, by Proposition 3.9.3, it suffices to consider the following two cases:

• (Case 1: ω
(m0)
T2

∈ Vn for some n ∈ Ω) Since ω
(m0)
T0

∈ X 2D is the

first escape from the valley Va, it holds from the minimality of T2 that

ω
(m0)
T2

/∈ Vn for n ∈ Ω\{a} (the 2D path must visit a number of regular

configurations first; see part (1) of Proposition 3.4.17). On the other

hand, if ω
(m0)
T2
∈ Va, then we obtain a contradiction from the minimality

of the length of (ωt)
T
t=0, as we have a shorter path from ωT2 to ζ where

ωT2 clearly satisfies the conditions imposed to σ.
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• (Case 2: ω
(m0)
T2

is a 2D regular configuration) Since we have as-

sumed that m0 ∈ U , we have ω
(m0)
T2

∈ Ra, b′

2 for some b′ ∈ Ω \ {a}
(by the minimality of T2 and part (1) of Proposition 3.4.17). Now,

we claim that b′ = b. To this end, let us suppose that b′ 6= b. Then

as ω
(m)
T2
∈ {a2D, b2D} for m 6= m0, we have H1D(ω

〈k, `〉
T2

) ≥ 3 for

(k, `) ∈ TK × TL satisfying ω
(m0)
T2

(k, `) = b′. Because there are exactly

2K such (k, `), by Lemma 4.5.2, we have

H(ωT2) =
∑

(k, `)∈TK×TL

H1D(ω
〈k, `〉
T2

) +
∑
m∈TM

H2D(ω
(m)
T2

)

≥ 3× 2K + 2× (KL− 2K) + 2K > Γ,

where at the first inequality we used the fact that H2D(ω
(m0)
T2

) = 2K.

This contradicts the fact that (ωt)
T
t=0 is a Γ-path. Therefore, we must

have b′ = b, which implies along with (4.75) that ωT2 ∈ Ga, b. Hence, we

get a contradiction as we assumed that (ωt)
T
t=0 is a path in X \ Ga, b.

Since we get a contradiction for both cases, we completed the proof of part

(2).

Remark 4.5.4. We remark that (4.68) is exactly the place from which the

lower bound 2829 of K in Theorem 4.1.1 originates.

The following is a direct consequence of the previous lemma which will

be used later.

Corollary 4.5.5. Suppose that P, Q ∈ SM and |P | ∈ JmK , M −mKK. Then

for a, b ∈ Ω, we have Φ(σa, bP , σa, bQ ) = Γ. In particular, we have Φ(σa, bP , a) =

Γ.

Proof. We can apply Lemma 4.5.3 with σ = σa, bP and ζ = σa, bQ to get

Φ(σa, bP , σa, bQ ) ≥ Γ. (4.76)
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On the other hand, by taking a canonical path connecting a and σa, bP , we get

Φ(a, σa, bP ) ≤ Γ. Similarly, we get Φ(a, σa, bQ ) ≤ Γ. Hence, we obtain

Φ(σa, bP , σa, bQ ) ≤ max{Φ(a, σa, bP ), Φ(a, σa, bQ )} ≤ Γ. (4.77)

Combining (4.76) and (4.77) proves Φ(σa, bP , σa, bQ ) = Γ. By inserting Q = ∅,
we get Φ(σa, bP , a) = Γ.

4.5.2 Proof of Proposition 4.5.1

Recall (3.121). Note that

‖σ‖a =
∑
m∈TM

‖σ(m)‖a. (4.78)

We are now ready to prove Proposition 4.5.1. We first prove this proposition

when q = 2. Then, the general case can be verified from this result via a

projection-type argument.

Proof of Proposition 4.5.1: q = 2. Since q = 2, we only have two spins 1 and

2 and hence we let s = 1 and s′ = 2. We fix an arbitrary path (ωt)
T
t=0

connecting s and s′, and take σ ∈ (ωt)
T
t=0 such that

‖σ‖1 = bKLM/2c+ 1. (4.79)

Since there is nothing to prove if H(σ) ≥ Γ + 1, we assume that

H(σ) ≤ Γ. (4.80)

Then, we claim that there exists t ∈ J0, T K such that H(ωt) = Γ. Moreover,

we claim that if (ωt)
T
t=0 is a path in X \ G1, 2, there exists t ∈ J0, T K such

that H(ωt) = Γ + 1. It is clear that a verification of these claims immediately

proves the case of q = 2.
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We recall the decomposition (4.57) of X 2D and write

Pn = Pn(σ) = {m ∈ TM : σ(m) ∈ Vn}; n ∈ {1, 2},

R = R(σ) = {m ∈ TM : σ(m) ∈ ∆2D},

so that TM can be decomposed into TM = P1 ∪ P2 ∪ R. Write p1 = |P1|,
p2 = |P2|, and r = |R| so that the previous decomposition of TM implies

p1 + p2 + r = M. (4.81)

We also write d1 = d1(σ), d2 = d2(σ), and d = d(σ) so that d = d1 + d2. The

following facts are crucially used:

• By Lemma 4.5.2 and (4.80), it holds that

d1 + d2 +K + 1 ≥ 1

2

∑
m∈TM

H2D(σ(m)). (4.82)

• We have 
H2D(σ(m)) ≥ 4‖σ(m)‖1/2

2 ≥ 4d
1/2
2 if m ∈ P1,

H2D(σ(m)) ≥ 4‖σ(m)‖1/2
1 ≥ 4d

1/2
1 if m ∈ P2,

H2D(σ(m)) ≥ 2K if m ∈ R,

(4.83)

where the first two bounds follow from (L2) and (L3) of Proposition

3.9.3, while the last one follows from (L1) of Proposition 3.9.3.

• By inserting (4.83) to (4.82), we get

d1 + d2 +K + 1 ≥ 2p1d
1/2
2 + 2p2d

1/2
1 +Kr. (4.84)

We consider four cases separately based on the conditions on p1, p2, and r.

Recall that we assumed K ≥ 2829; several arguments below require K to be
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large enough, and they indeed hold for K in this range.

(Case 1: p1, p2 ≥ 1) Since both P1 and P2 are non-empty, the first two

bounds in (4.83) activate and thus

d1, d2 ≤
(2K + 1)2

16
. (4.85)

We note that, since the function f(x) = x − 2ax1/2 is convex on [0, ∞) for

a > 0, by (4.85) we have

d1 − 2p2d
1/2
1 ≤ max

{
0,

(2K + 1)2

16
− 2K + 1

2
p2

}
,

d2 − 2p1d
1/2
2 ≤ max

{
0,

(2K + 1)2

16
− 2K + 1

2
p1

}
.

(4.86)

Inserting (4.86) to (4.84), we get

Kr ≤ K + 1 +
2∑
i=1

max
{

0,
(2K + 1)2

16
− 2K + 1

2
pi

}
. (4.87)

We now consider three sub-cases:

• p1, p2 ≤ (2K + 1)/8: For this case, we can rewrite (4.87) as

Kr ≤ K+1+
(2K + 1)2

8
−2K + 1

2
(p1+p2) < K+1+

(2K + 1)2

8
−K(p1+p2).

Inserting (4.81) yields a contradiction since K ≤M .

• p1 ≤ (2K+1)/8 < p2 or p2 ≤ (2K+1)/8 < p1: By symmetry, it suffices

to consider the former case, for which we can rewrite (4.87) as

Kr ≤ K + 1 +
(2K + 1)2

16
− 2K + 1

2
p1

< 2K +
(2K + 1)2

16
−Kp1.
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Thus, we get

p1 + r ≤ 2 +
(2K + 1)2

16K
,

and thus by the second bound in (4.83),

‖σ‖2 ≥ p2

(
KL− (2K + 1)2

16

)
≥
(
M − 2− (2K + 1)2

16K

)(
KL− (2K + 1)2

16

)
.

We get a contradiction to (4.79) since the right-hand side is greater

than bKLM/2c+ 1.

• p1, p2 > (2K + 1)/8: By (4.87), we can notice that r = 0 or 1. By

(4.79), the first bound in (4.83), and (4.78), we get

⌊KLM
2

⌋
+ 1 = ‖σ‖1 ≥

∑
m∈P1

‖σ(m)‖1 ≥ p1

(
KL− (2K + 1)2

16

)
,

and thus,

p2 ≥M − 1− p1 ≥M − 1− bKLM/2c+ 1

KL− (2K + 1)2/16
≥ 2K + 1

7
. (4.88)

Similarly, we get

p1 ≥
2K + 1

7
. (4.89)

Now, by (4.85), (4.88) and (4.89), it holds that

p2 ≥
4

7
d

1/2
1 and p1 ≥

4

7
d

1/2
2 .

Inserting this along with (4.88) and (4.89) to the right-hand side of
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(4.84), we get

2p1d
1/2
2 + 2p2d

1/2
1 +Kr ≥

(
d2 +

1

4
p1d

1/2
2

)
+
(
d1 +

1

4
p2d

1/2
1

)
≥ d+

2K + 1

28
d1/2,

where the last inequality follows from the inequality x1/2 + y1/2 ≥ (x+

y)1/2. Applying this to (4.84), we conclude that

d ≤
(28(K + 1)

2K + 1

)2

< 200.

This proves the condition (4.58) for σ. Moreover, since p1, p2 > (2K +

1)/8 ≥ mK , we can now apply part (1) of Lemma 4.5.3 to deduce

Φ(σ, s′) ≥ Γ, and this proves the first part of the claim. Moreover, if

(ωt)
T
t=0 is a path in X \ G1, 2, then the sub-path from σ to ωT = s′ is

also in X \ G1, 2, and thus part (2) of Lemma 4.5.3 verifies the second

assertion of the claim as well.

(Case 2: p1 ≥ 1, p2 = 0, r ≥ 1 or p1 ≥ 1, p2 = 0, r ≥ 1) By symmetry, it

suffices to consider the former case. Similarly as in (Case 1), we can apply

the first bound in (4.83) to deduce

d2 ≤
(2K + 1)2

16
. (4.90)

Again by the first bound in (4.83), we have

‖σ(m)‖1 ≥ KL− (2K + 1)2

16
for all m ∈ P1,

and thus we get

∑
m∈R

‖σ(m)‖1 = ‖σ‖1 −
∑
m∈P1

‖σ(m)‖1 ≤
KLM

2
+ 1− p1

(
KL− (2K + 1)2

16

)
.
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Therefore, there exists m0 ∈ R such that

‖σ(m0)‖1 ≤
1

r

[KLM
2

+ 1− p1

(
KL− (2K + 1)2

16

)]
= KL− (2K + 1)2

16
+

1

r

[
− KLM

2
+

(2K + 1)2M

16
+ 1
]

≤ KL− (2K + 1)2

16
− 1

r

[KLM
4
− K2M

20

]
,

where at the second line we used p1 = M − r. Thus, we have

d1 ≤ ‖σ(m0)‖1 ≤ KL− (2K + 1)2

16
− 1

r

[KLM
4
− K2M

20

]
. (4.91)

Inserting this to (4.84), we get

2p1d
1/2
2 +Kr ≤ d2 +

[
KL− (2K + 1)2

16
− 1

r

(KLM
4
− K2M

20

)]
+K + 1.

Reorganizing and applying a similar estimate as in (4.86), we get

Kr +
1

r

[KLM
4
− K2M

20

]
≤ KL− (2K + 1)2

16
+K + 1 + (d2 − 2p1d

1/2
2 )

≤ KL− (2K + 1)2

16
+K + 1 + max

{
0,

(2K + 1)2

16
− 2K + 1

2
p1

}
= KL+K + 1−min

{(2K + 1)2

16
,

2K + 1

2
p1

}
. (4.92)

Now, we analyze two sub-cases separately.

• p1 ≤ (2K + 1)/8: Then, we can rewrite (4.92) as

Kr +
1

r

[KLM
4
− K2M

20

]
≤ KL+K + 1− 2K + 1

2
p1 ≤ KL+K.

Multiplying r/K in both sides, we reorganize the previous inequality
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as (
r − L+ 1

2

)2

≤ (L+ 1)2

4
− LM

4
+
KM

20
≤ L2 + 10L+ 5

20
. (4.93)

Since p1 ≤ (2K + 1)/8, we have

r ≥M − 2K + 1

8
≥ 3

4
L− 1. (4.94)

Inserting (4.94) to (4.93) yields a contradiction for L ≥ K ≥ 2829.

• p1 > (2K + 1)/8: For this case, (4.92) becomes

Kr +
1

r

[KLM
4
− K2M

20

]
≤ KL+K + 1− (2K + 1)2

16

≤ KL− K2

4
+K.

Multiplying both sides by r/K and reorganizing, we get(
r − L

2
+
K

8
− 1

2

)2

≤ 1

64
(4L−K + 4)2 − LM

4
+
KM

20
.

Since the right-hand side is negative for K ≥ 9, we get a contradiction.

(Case 3: p1 ≥ 1, p2 = 0, r = 0 or p1 = 0, p2 ≥ 1, r = 0) As before, we only

consider the former case. In this case, indeed P1 = TM . Thus, by the first

bound in (4.83) we have

‖σ‖1 =
∑
m∈TM

‖σ(m)‖1 ≥M
(
KL− (2K + 1)2

16

)
>
KLM

2
+ 2.

This contradicts (4.79).

(Case 4: p1 = p2 = 0) For this case, we have σ(m) ∈ ∆2D for all m ∈ TM .

Hence, H2D(σ(m)) ≥ 2K for all m ∈ TM by (L1) of Proposition 3.9.3, and

185



CHAPTER 4. THREE-DIMENSIONAL MODEL

thus by (4.82) we get

d1 + d2 ≥ K(M − 1)− 1. (4.95)

Since d1 + d2 = d ≤ KL, we get M = L+ 1 or L.

If M = L + 1, we must have d1 + d2 = KL or KL − 1. If this is KL,

then all floors should have the same configuration, which is impossible since

‖σ‖1 = bKLM/2c + 1 cannot be a multiple of M . If this is KL − 1, then

the equality in (4.95) must hold and thus we have H2D(σ(m)) = 2K for

all m ∈ TM . Hence, by (L1) of Proposition 3.9.3, ‖σ(m)‖1, m ∈ TM , is a

multiple of K, and thus ‖σ‖1 =
∑
m∈TM

‖σ(m)‖1 is also a multiple of K. This is

impossible since ‖σ‖1 = bKLM/2c+ 1 is not a multiple of K.

It remains to consider the case of M = L. For this case, (4.95) becomes

d1 + d2 ≥ K(L− 1)− 1. (4.96)

Define

E(σ) = (TK × TL) \ (D1(σ) ∪ D2(σ)) (4.97)

so that we have |E(σ)| ≤ K + 1 by (4.96). We now have three sub-cases. We

note that H2D(σ(m)) is an even integer for each m ∈ TM , as q = 2.

• First, we assume that H2D(σ(m)) = 2K for all m ∈ TM . Then, as in the

previous discussion on the case of M = L + 1, we get a contradiction

since ‖σ‖1 must be a multiple of K for this case.

• Next, we assume that H2D(σ(m)) ≥ 2K + 2 for all m ∈ TM . Then, by

(4.82),

d = d1 + d2 ≥ (K + 1)(L− 1). (4.98)

If d = KL, then as in the case of M = L + 1, we get a contradiction

since ‖σ‖1 = bKLM/2c+1 cannot be a multiple of M . Hence, we have

d ≤ KL− 1, and combining this with (4.98) implies that we must have
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K = L (and thus K = L = M), and moreover

d = KL− 1 and H2D(σ(m)) = 2K + 2 for all m ∈ TM .

Hence, we have |E(σ)| = KL − d = 1. Write E(σ) = {(k0, `0)}. By

Lemma 3.9.2, we can deduce that the configuration σ(m) has at least

L − 1 ≥ 3 monochromatic bridges, and thus we have at least one

monochromatic bridge of the form TK × {`} or {k} × TL that does

not touch E(σ), so that it is a subset of either D1(σ) or D2(σ). Suppose

first that this bridge is TK × {`} for some ` ∈ TL. Then, the slab

TK × {`} × TM is monochromatic. Therefore, by replacing the role of

the second and third coordinates, which is possible since K = L = M ,

the proof is reduced to one of (Case 1), (Case 2), and (Case 3) as

there is a monochromatic floor so that either p1 or p2 is positive. This

completes the proof. Similarly, if the monochromatic bridge is {k}×TL,

then we replace the role of the first and third coordinates to complete

the proof.

• Now, we lastly assume that H2D(σ(i0)) = 2K for some i0 ∈ TM and

H2D(σ(j0)) ≥ 2K + 2 for some j0 ∈ TM . By (4.82), we get

d ≥ KL−K, (4.99)

and hence, we have |E(σ)| ≤ K (cf. (4.97)). Now, we consider two

sub-sub-cases separately.

– |E(σ)| ≤ K−1: First, suppose that K < L. By (L1) of Proposition

3.9.3, we have σ(i0) ∈ R1, 2
v for some v ∈ J2, L− 2K. Since |E(σ)| ≤

K − 1 ≤ L− 1, there exists `1 ∈ TL such that

(TK × {`1}) ∩ E(σ) = ∅.
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We further have TK × {`1} ⊆ D1(σ) or TK × {`1} ⊆ D2(σ) since

σ(i0) ∈ R1, 2
v . This implies that all sites in the slab TK×{`1}×TM

have the same spin n under σ. Since L = M , we can replace the

role of the second and third coordinates to reduce the proof to one

of (Case 1), (Case 2) and (Case 3). This completes the proof.

Next, if K = L, then since there further exists k1 ∈ TK such that

({k1} × TL) ∩ E(σ) = ∅, we can use the same argument as above

to handle this case as well.

– |E(σ)| = K: The equality in (4.99) must hold, and thus we get

H2D(σ(j0)) = 2K + 2 and H2D(σ(m)) = 2K for all m ∈ TM \ {j0}.
We first suppose that K < L. By (L1) of Proposition 3.9.3, we

get σ(m) = ξ1, 2
`m, vm

for some `m ∈ TL and vm ∈ J2, L − 2K for

all m ∈ TM \ {j0}. Then, since L is strictly bigger than K =

|E(σ)|, we can always find a row in TK × TL which is either a

subset of D1(σ) or D2(σ). Thus, by changing the role of the second

and third coordinates, which is possible since L = M , we find a

monochromatic floor and the proof is reduced to one of (Case

1), (Case 2) and (Case 3). Next, we handle the case K = L,

so that for all m ∈ TM \ {j0}, σ(m) = ξ1, 2
`m, vm

or Θ(ξ1, 2
`m, vm

) (cf.

Definition 3.4.10) for some `m ∈ TL and vm ∈ J2, L − 2K. First

of all, assume that all of them are of the same direction. Without

loss of generality, assume that σ(m) = ξ1, 2
`m, vm

for all m ∈ TM \{j0}.
If σ(m1) 6= σ(m2) for some m1, m2 ∈ TM \ {j0}, then E(σ) must be

exactly the line where they differ and hence we can write E(σ) =

TK × {`0} for some `0 ∈ TL. Then, by taking any ` ∈ TL \ {`0},
we notice that TK × {`} is not only monochromatic in σ(m) with

m ∈ TM \ {j0}, but also a subset of either D1(σ) or D2(σ); hence,

TK × {`} ×TM is a monochromatic slab. By replacing the role of

the second and third coordinates, which is possible since L = M ,

we find a monochromatic floor and the proof is reduced to one
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of (Case 1), (Case 2) and (Case 3). On the contrary, suppose

that σ(m1) = σ(m2) for all m1, m2 ∈ TM \ {j0}. If there exists a

row or column which is disjoint with E(σ), then we can argue as

above. If not, then we can easily deduce that for the j0-th floor,

H2D(σ(j0)) ≥ 4(K − 4) > 2K + 2,

which contradicts the assumption that H2D(σ(j0)) = 2K + 2. Fi-

nally, we consider the case when σ(m) = ξ1, 2
`, v and σ(m′) = Θ(ξ1, 2

`′, v′)

for some m, m′ ∈ TM \ {j0} simultaneously. In this case, we have

d1 ≤ (K − v)(K − v′) and d2 ≤ vv′.

Thus, we get a contradiction since

|E(σ)| ≥ K2 − (K − v)(K − v′)− vv′

=
1

2
K2 − 1

2
(K − 2v)(K − 2v′)

≥ 1

2
K2 − 1

2
(K − 4)2 = 4K − 8 > K,

where the second inequality holds since v, v′ ∈ J2, K − 2K.

Now, we consider the general case of Proposition 4.5.1.

Proof of Proposition 4.5.1: general case. We fix a proper partition (A, B) of

S and then fix a ∈ A and b ∈ B. Let (ωt)
T
t=0 be a path connecting a and

b. For each σ ∈ X , we denote by σ̃ the configuration obtained from σ by

changing all spins in A to 1 and spins in B to 2. Thus, σ̃ becomes an Ising
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configuration, i.e. a spin configuration for q = 2. Note that

H(σ̃) =
∑

{x, y}⊆Λ:x∼y

1{σ̃(x) 6= σ̃(y)}

=
∑

{x, y}⊆Λ:x∼y

1{σ(x) ∈ A, σ(y) ∈ B or σ(x) ∈ B, σ(y) ∈ A}

≤
∑

{x, y}⊆Λ:x∼y

1{σ(x) 6= σ(y)} = H(σ).

(4.100)

Now, we consider the induced pseudo-path (ω̃t)
T
t=0 of (ωt)

T
t=0 (cf. Notation

4.3.12). Thus, by the proof above for q = 2, there exists t1 ∈ J0, T K such that

H(ω̃t1) ≥ Γ. Thus, we get from (4.100) that

Γ ≤ H(ω̃t1) ≤ H(ωt1),

and we complete the proof for part (1).

For part (2), suppose that (ωt)
T
t=0 is a path such that

H(ωt) ≤ Γ for all t ∈ J0, T K. (4.101)

Then, by (4.100), we have H(ω̃t) ≤ Γ for all t ∈ J0, T K. Thus, by the proof

above for q = 2, there exists s ∈ J0, T K such that ω̃s ∈ G1, 2. We now claim

that ωs ∈ GA,B. It is immediate that this claim finishes the proof.

To prove this claim, we write

Un = {x ∈ Λ : ω̃s(x) = n}; n = 1, 2.

Then, we have

ωs(x) ∈ A for x ∈ U1 and ωs(x) ∈ B for x ∈ U2. (4.102)
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Now, we assume that

ωs(x) 6= ωs(y) for some x, y ∈ U1 or x, y ∈ U2 with x ∼ y. (4.103)

We now express the energy H(ωs) as

H(ωs) =
[ ∑
{x, y}⊆U1 or {x, y}⊆U2

+
∑

x∈U1, y∈U2

]
1{ωs(x) 6= ωs(y)}, (4.104)

where the summation is carried over x, y satisfying x ∼ y. Note that the

second summation is equal to H(ω̃s) by (4.102). On the other hand, we can

readily deduce from Figure 4.4 that the first summation of (4.104) is at least

4 if ω̃s is a gateway configuration of type 1, and at least 2 if ω̃s is a gateway

configuration of type 2 or 3 (cf. Notation 4.4.2). Thus, by Proposition 4.4.3,

we can conclude that the right-hand side of (4.104) is at least Γ + 2; i.e.,

we get H(ωs) ≥ Γ + 2. This contradicts (4.101) and hence, we cannot have

(4.103). This finally implies that there exist a0 ∈ A and b0 ∈ B such that

ωs(x) =

a0 if x ∈ U1,

b0 if x ∈ U2,

and thus we have ωs ∈ Ga0, b0 ⊆ GA,B as claimed.

4.5.3 Proof of Theorem 4.1.4

Theorem 4.1.4 is now a consequence of our analysis on the energy landscape

and the general theory developed in [69, 70].

Proof of Theorem 4.1.4. We have two results on the energy barrier; Theorem

4.1.1 and Proposition 4.3.13. The theory developed in [70] implies that these

two are sufficient to conclude Theorem 4.1.43. This implication has been

3We remark that the second convergence of (4.9) is not a consequence of an analysis of
the energy barrier, but of the first convergence of (4.9) and the symmetry of the model.
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rigorously verified in [69] for the case of d = 2, and this argument extends

to the case of d = 3 without a modification. Hence, we do not repeat the

argument here, and refer the readers to [69, Section 3] for a detailed proof.

4.6 Typical configurations and optimal paths

In the previous sections, we proved large deviation-type results regarding the

metastable behavior by analyzing the energy barrier in terms of canonical and

gateway configurations. In order to get precise quantitative results such as

Theorems 4.8.1 and 4.1.9 or to get a characterization of optimal paths, we

need a more refined analysis of the energy landscape based on the typical

configurations which will be introduced and analyzed in the current section.

We fix a proper partition (A, B) of Ω throughout the section.

4.6.1 Typical configurations

Let us start by defining the typical configurations. We consistently refer to

Figure 4.6 for an illustration of our construction.

For a, b ∈ Ω and i ∈ J0, MK, we define

R̂a, b
i = N̂ (Ra, b

i ; Ga, b). (4.105)

We also define

R̂A,B
i = N̂ (RA,B

i ; GA,B); i ∈ J0, MK.

Remark 4.6.1. For i ∈ JmK , M −mKK, we have that

R̂A,B
i =

⋃
a∈A, b∈B

R̂a, b
i .

This argument is also given in [69, Section 3] for d = 2, and an identical one works for
d = 3.
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Figure 4.6: 3D typical configurations for the Ising model. Suppose that q = 2,
A = {1}, and B = {2} (one can compare this figure with Figure 4.5). The

given figure provides an illustration of the complete structure of the set N̂ (S).
This characterization is verified in Proposition 4.6.6. We take bulk ones only
from mK to M −mK instead of nK,L,M (cf. (4.44)) to M − nK,L,M since we
do not know the exact value of nK,L,M . Because of this, the structure of the
edge typical configurations is a little bit more complicated than in the 2D
case.
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To check this, it suffices to check N̂ (Ra, b
i ; Ga, b) = N̂ (Ra, b

i ; GA,B) provided

that a ∈ A and b ∈ B. This follows from Lemma 4.5.3 since Ra, b
i cannot be

connected to a configuration in GA,B \ Ga, b via a Γ-path in X \ Ga, b by part

(2) of Lemma 4.5.3.

Remark 4.6.2. By Lemma 4.5.3, two sets R̂A,B
i and R̂A,B

j for different i, j

are disjoint if either i ∈ JmK , M − mKK or j ∈ JmK , M − mKK. Moreover

by Proposition 4.5.1, they are disjoint if i ∈ J0, mK − 1K and j ∈ JM −
mK + 1, MK or vice versa. On the other hand, they might be the same set if

i, j ∈ J0, mK − 1K or i, j ∈ JM −mK + 1, MK. In particular, we have

R̂A,B
0 = R̂A,B

1 = · · · = R̂A,B
nK,L,M−1,

where nK,L,M is defined in (4.44). The same result holds for R̂a, b
i instead of

R̂A,B
i .

Now, we define the typical configurations. We recall Notation 4.4.4.

Definition 4.6.3 (Typical configurations). For a proper partition (A, B) of

Ω, we define the typical configurations as follows.

• Bulk typical configurations: We define, for a, b ∈ Ω,

Ba, b = Ga, b[mK ,M−mK−1] ∪ R̂
a, b
[mK ,M−mK ],

and then define

BA,B =
⋃
a∈A

⋃
b∈B

Ba, b = GA,B[mK ,M−mK−1] ∪ R̂
A,B
[mK ,M−mK ], (4.106)

where the second identity holds because of Remark 4.6.1. A configu-

ration belonging to BA,B is called a bulk typical configuration between

S(A) and S(B).
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• Edge typical configurations: We define

EA = GA,BmK−1 ∪ R̂
A,B
[0,mK ] and EB = GA,BM−mK ∪ R̂

A,B
[M−mK ,M ]. (4.107)

Finally, we define EA,B = EA ∪ EB. A configuration belonging to EA,B

is called an edge typical configuration between S(A) and S(B).

Later in Proposition 4.6.6, we shall show that BA,B∪EA,B = N̂ (S) and hence

all relevant configurations in the analysis of metastable behavior between

S(A) and S(B) belong to either BA,B or EA,B.

Remark 4.6.4. Since RA,B
0 = S(A) and RA,B

M = S(B) (cf. (4.29)), we can

readily observe that S(A) ⊆ EA and S(B) ⊆ EB.

4.6.2 Properties of typical configurations

In this subsection, we analyze some properties of the edge and bulk typical

configurations. In fact, we have to take K large enough (i.e., K ≥ 2829) in

order to get the structural properties of edge and bulk typical configurations

given in the current section.

The first property asserts that EA and EB are disjoint.

Proposition 4.6.5. The two sets EA and EB are disjoint.

Proof. By part (2) of Lemma 4.5.3 (cf. Remark 4.6.2), the set R̂A,B
mK

is

disjoint with EB; similarly, the set R̂A,B
M−mK is disjoint with EA. It is di-

rect from the definition that GA,BmK−1 and GA,BM−mK are disjoint. By definition,

GA,BmK−1, G
A,B
M−mK ⊆ G

A,B are mutually disjoint with R̂A,B
[0,mK ] and R̂A,B

[M−mK ,M ].

Hence, it suffices to prove that R̂A,B
[0,mK−1] and R̂A,B

[M−mK+1,M ] are disjoint. Oth-

erwise, we can take a configuration σ such that

σ ∈ R̂A,B
[0,mK−1] ∩ R̂

A,B
[M−mK+1,M ].
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Since σ ∈ R̂A,B
[0,mK−1], there exists a Γ-path in X \GA,B (which is indeed a part

of a canonical path) connecting σ and S(A). Similarly, there exists a Γ-path

in X \ GA,B connecting σ and S(B). By concatenating them, we can find a

Γ-path (ωt)
T
t=0 in X \GA,B connecting S(A) and S(B). This contradicts part

(2) of Proposition 4.5.1.

Now, we analyze the crucial features of the typical configurations. Note

that this is a 3D version of Proposition 3.4.17.

Proposition 4.6.6. For a proper partition (A, B) of S, the following prop-

erties hold for the typical configurations.

(1) It holds that EA ∩ BA,B = R̂A,B
mK

and EB ∩ BA,B = R̂A,B
M−mK .

(2) We have EA,B ∪ BA,B = N̂ (S).

Proof. (1) It suffices to prove the first identity, as the second one follows

similarly. One can observe that the set GA,BmK−1 ⊆ GA,B is disjoint with BA,B

from (4.106), and the set GA,B[mK ,M−mK−1] ⊆ G
A,B is disjoint with EA in view

of the expression (4.107). Therefore, by (4.106) and (4.107), we get

EA ∩ BA,B = R̂A,B
[0,mK ] ∩ R̂

A,B
[mK ,M−mK ]. (4.108)

By Lemma 4.5.3, the two setsRA,B
[0,mK−1] andRA,B

[mK ,M−mK ] cannot be connected

by a Γ-path in X \ GA,B, and hence R̂A,B
[0,mK−1] and R̂A,B

[mK ,M−mK ] are disjoint.

Therefore, we have

R̂A,B
[0,mK ] ∩ R̂

A,B
[mK ,M−mK ] = R̂A,B

mK
∩ R̂A,B

[mK ,M−mK ] = R̂A,B
mK

. (4.109)

The proof is completed by (4.108) and (4.109).

(2) We will first prove that

N̂ (S) = N̂ (N (RA,B
[0,M ]) ∪ G

A,B). (4.110)
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Since it is immediate that S is a subset of the right-hand side, we have

N̂ (S) ⊆ N̂ (N (RA,B
[0,M ])∪G

A,B). On the other hand, since N (RA,B
[0,M ])∪G

A,B ⊆
N̂ (S) clearly holds, we also have N̂ (N (RA,B

[0,M ])∪G
A,B) ⊆ N̂ (S). This proves

(4.110). Since the sets N (RA,B
[0,M ]) and GA,B are disjoint by Lemma 4.4.6, we

can apply Lemmas 3.8.1 and 4.4.6 to deduce

N̂ (S) = N̂ (N (RA,B
[0,M ]); G

A,B) ∪ N̂ (GA,B; N (RA,B
[0,M ])).

= N̂ (RA,B
[0,M ]; G

A,B) ∪ GA,B = R̂A,B
[0,M ] ∪ G

A,B.

This completes the proof since by (4.50), (4.106) and (4.107), we have EA,B∪
BA,B = GA,B ∪ R̂A,B

[0,M ].

4.6.3 Structure of edge typical configurations

As in the 2D case, Sections 3.4.4 and 3.4.5, we analyze the structure of edge

typical configurations.

We remark that we fixed a proper partition (A, B) of S. Decompose

EA = OA ∪ IA (4.111)

where

OA = {σ ∈ EA : H(σ) = Γ} and IA = {σ ∈ EA : H(σ) < Γ}.

We now take a subset IA of IA so that we can decompose IA into the

following disjoint union:

IA =
⋃
σ∈IA

N (σ).

Consequently, we get the following decomposition of EA:

EA = OA ∪
( ⋃
σ∈IA

N (σ)
)
. (4.112)

197



CHAPTER 4. THREE-DIMENSIONAL MODEL

Notation 4.6.7. For σ ∈ IA, we denote by σ ∈ IA the unique configuration

satisfying σ ∈ N (σ).

By part (1) of Lemma 4.5.3, for σ, σ′ ∈ RA,B
mK

, the two sets N (σ) and

N (σ′) are disjoint. By a similar reasoning, we know that for any σ ∈ RA,B
mK

and a ∈ A, the sets N (σ) and N (a) are disjoint. Thus, we can assume that

RA,B
mK
∪ S(A) ⊆ IA. (4.113)

The following construction of an auxiliary Markov chain is an analogue of

Definition 3.4.21.

Definition 4.6.8. For a proper partition (A, B) of Ω, we define a Markov

chain ZA(·) on IA ∪ OA.

• (Graph) We define the graph structure G A = (V A, E A) for V A =

OA ∪ IA. The edge set E A is defined by declaring that {σ, σ′} ∈ E A

for σ, σ′ ∈ V A ifσ, σ′ ∈ OA and σ ∼ σ′ or

σ ∈ OA, σ′ ∈ IA, and σ ∼ ζ for some ζ ∈ N (σ′).

• (Markov chain) We first define a rate rA : V A × V A → [0, ∞). If

{σ, σ′} /∈ E A, we set rA(σ, σ′) = 0, and if {σ, σ′} ∈ E A, we set

rA(σ, σ′) =


1 if σ, σ′ ∈ OA,

|{ζ ∈ N (σ) : ζ ∼ σ′}| if σ ∈ IA and σ′ ∈ OA,

|{ζ ∈ N (σ′) : ζ ∼ σ}| if σ ∈ OA and σ′ ∈ IA.

(4.114)

We now let {ZA(t)}t≥0 be the continuous-time Markov chain on V A

with rate rA(·, ·). Note that the uniform distribution on V A is the

invariant measure for the chain ZA(·), and indeed this chain is reversible

with respect to this measure.
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• (Potential-theoretic objects) Denote by LA, hA·, ·(·), and capA(·, ·)
the generator, equilibrium potential, and capacity with respect to the

Markov chain ZA(·), respectively.

We now give three important propositions regarding the objects con-

structed above. These propositions play fundamental roles in the construc-

tion of the test function on the edge typical configurations.

We remark from (4.113) that S(A), RA,B
mK
⊆ IA ⊆ V A. Potential-theoretic

objects between these two sets are crucially used in our discussion. We define

e(A) =
1

|V A|capA(S(A), RA,B
mK )

. (4.115)

For n ∈ J1, q − 1K (with a slight abuse of notation) we can write

e(n) =
1

|V An|capAn(S(An), RAn, Bn
mK )

, (4.116)

where An = J1, nK and Bn = Jn + 1, qK. Since e(A) depends on A only

through |A|, it holds that e(A) = e(|A|). We next derive a rough bound of

e(n) via the Thomson principle (cf. Theorem 3.2.7).

Proposition 4.6.9. For all n ∈ J1, q − 1K, we have that e(n) ≤ 1

K1/3
.

Proof. We shall construct below a unit flow ψ from S(A) to RA,B
mK

that

satisfies

‖ψ‖2 <
mK |V A|

2M
. (4.117)

Then, by Theorem 3.2.7, we have

capA(S(A), RA,B
mK

) ≥ 1

‖ψ‖2
>

2M

|V A|mK

≥ K1/3

|V A|
.

Recalling the definition (4.115), this completes the proof.

Now, it remains to construct a unit flow ψ from S(A) to RA,B
mK

satisfying
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bound (4.117). To this end, let us first fix a ∈ A and b ∈ B. Define

iK,L,M = max{m ≥ 1 : Φ(S(A), RA,B
m ) < Γ}. (4.118)

By Corollary 4.5.5, we know that iK,L,M < mK .

Let us start by fixing P, Q ∈ SM such that P ≺ Q, Q \ P = {m},
iK,L,M ≤ |P | < |Q| ≤ mK , a ∈ A, and b ∈ B. Then, we first define a flow

ψP,Q connecting σa, bP = σa, bP and σa, bQ = σa, bQ (cf. Notation 4.6.7). First, we

set

ψP,Q(σ, ζ) = −ψP,Q(ζ, σ) =
1

2KLM
(4.119)

if σ, ζ ∈ Ca, bP, Q satisfy, for some ` ∈ TL, k ∈ TK , v ∈ J1, L − 2K, and h ∈
J1, K − 2K, 

σ(m) = ξa, b`, v and ζ(m) = ξa, b,+`, v; k, 1,

σ(m) = ξa, b,+`, v; k, h and ζ(m) = ξa, b,+`, v; k, h+1,

σ(m) = ξa, b,+`, v; k,K−1 and ζ(m) = ξa, b`, v+1.

(4.120)

Now, we claim that all configurations that appear in (4.120) except for the

ones corresponding to ξa, b`, 1 and ξa, b`, L−1 belong to V A. To check this, observe

first that if the m-th floor of σ ∈ Ca, bP, Q is of the form σ(m) = ξa, b,+`, v; k, h, we have

H(σ) = Γ and hence σ ∈ OA. On the other hand, if the m-th floor of σ ∈ Ca, bP, Q

is of the form σ(m) = ξa, b`, v for v ∈ J2, L − 2K, we have H(σ) = Γ − 2 and

moreover N (σ) = {σ}. This implies that σ ∈ IA. This proves the claim. On

the other hand, since if σ(m) = ξa, b`, 1 then σ ∈ N (σa, bP ), and if σ(m) = ξa, b`, L−1

then σ ∈ N (σa, bQ ) (cf. the canonical paths provide (Γ − 1)-paths), we can

replace the configurations corresponding to ξa, b`, 1 and ξa, b`, L−1 that appear in

(4.120) with σa, bP and σa, bQ , respectively, to get a flow connecting σa, bP and

σa, bQ . We remark that we may have σa, bP = σa, bQ .

We deduce from the definition of the flow norm that

‖ψP,Q‖2 =
|V A|

(2KLM)2
×K2L(L− 2) <

|V A|
4M2

, (4.121)
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where K2L(L − 2) is the number of edges that appear in (4.120). Next, we

define

ψ =

mK−1∑
r=iK,L,M

∑
P,Q∈SM : |P |=r, P≺Q

ψP,Q.

Notice from (4.118) that a configuration of the form σa, bP,Q with |P | = iK,L,M is

indeed an element of S(A). Then, from the definition (4.119), we can readily

check that ψ(x) = 0 for all x /∈ S(A)∪RA,B
mK

(by using the fact that the flow

on each edge has a constant magnitude
1

2KLM
), and moreover it holds that

(cf. (4.113)) ∑
x∈S(A)

∑
y∈V A

ψ(x, y) = 1. (4.122)

Indeed, to prove the last assertion, it suffices to observe that∑
x∈S(A)

∑
y∈V A

ψ(x, y) =
∑

P,Q∈SM : |P |=iK,L,M , P≺Q

∑
ζ∈V A:σa, bP ∼ζ

ψP,Q(σa, bP , ζ)

=
1

2KLM
×KL× 2M = 1,

where KL is the number of configurations in Ca, bP,Q connected to σa, bP , and 2M

is the number of possible choices of P and Q. Consequently, the flow ψ is a

unit flow from S(A) to RA,B
mK

.

Thus, it suffices to verify (4.117). Since the support of ψP,Q (which is the

collection of edges on which ψP,Q is non-zero) for different pairs (P, Q) are

disjoint, we deduce from (4.121) that

‖ψ‖2 =

mK−1∑
r=iK,L,M

∑
P,Q∈SM : |P |=r, P≺Q

‖ψP,Q‖2 < mK × 2M × |V
A|

4M2
=

mK |V A|
2M

,

and therefore ψ satisfies (4.117).
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For simplicity, we write (cf. (4.113))

hA(·) = hAS(A),Ra, bmK

(·) (4.123)

where hA is the equilibrium potential defined in Definition 4.6.8. This func-

tion is a fundamental object in the construction of the test function in Section

4.7.

Proposition 4.6.10. For σ ∈ R̂A,B
mK
∩ OA ⊆ V A, we have hA(σ) = 0.

Proof. We fix σ ∈ R̂A,B
mK
∩ OA. It suffices to prove that any Γ-path (ωt)

T
t=0

from σ to S(A) must visit N (RA,B
mK

). Suppose first that the path (ωt)
T
t=0 does

not visit GA,B. Since σ ∈ R̂A,B
mK

, there exists a Γ-path in X \GA,B connecting

RA,B
mK

and σ, and therefore by concatenating this path with (ωt)
T
t=0, we get a

Γ-path in X \ GA,B connecting RA,B
mK

and S(A). This contradicts part (2) of

Lemma 4.5.3. Thus, the path (ωt)
T
t=0 must visit GA,B and we let

t0 = min{t : ωt ∈ GA,B}.

By part (2) of Lemma 4.4.5, we have ωt0−1 ∈ N (RA,B
[mK−1,M−mK+1]). If ωt0−1 ∈

N (RA,B
i ) for some i ∈ JmK − 1, M −mK + 1K \ {mK}, then (ωt)

t0−1
t=0 induces

a Γ-path from RA,B
mK

from RA,B
i avoiding GA,B, which contradicts part (2) of

Lemma 4.5.3. Hence, we can conclude that ωt0−1 ∈ N (RA,B
mK

), as desired.

Remark 4.6.11. The previous proposition implies that configurations σ that

belong to R̂A,B
mK
∩OA are dead-ends attached to N (RA,B

mK
) (cf. grey protuber-

ances attached to green boxes in Figures 4.5 and 4.6).

The next proposition highlights the fact that the auxiliary process ZA(·)
defined in Definition 4.6.8 approximates the behavior of the Metropolis–

Hastings dynamics at the edge typical configurations.
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Proposition 4.6.12. Define a projection map ΠA : EA → V A by (cf. Nota-

tion 4.6.7)

ΠA(σ) =

σ if σ ∈ IA,

σ if σ ∈ OA.

Then, there exists C = C(K, L, M) > 0 such that

(1) for σ1, σ2 ∈ OA, we have∣∣∣1
q
e−ΓβrA(ΠA(σ1), ΠA(σ2))− µβ(σ1)rβ(σ1, σ2)

∣∣∣ ≤ Ce−(Γ+1)β, (4.124)

(2) for σ1 ∈ OA and σ2 ∈ I
A

, we have∣∣∣1
q
e−ΓβrA(ΠA(σ1), ΠA(σ2))−

∑
ζ∈N (σ2)

µβ(σ1)rβ(σ1, ζ)
∣∣∣ ≤ Ce−(Γ+1)β.

(4.125)

Proof. As the proof is identical to that of Proposition 3.4.22, we omit the

details.

4.6.4 Analysis of 3D transition paths

In this section, we finally define the collection of transition paths between

ground states that appear in Theorem 4.1.6.

Definition 4.6.13 (Transition paths). Write

HA,B = GA,B ∪ R̂A,B
[mK ,M−mK ]. (4.126)

A path (ωt)
T
t=0 is called a transition path between S(A) and S(B) if

ω0 ∈ N̂ (S(A); GA,B), ωT ∈ N̂ (S(B); GA,B), and

ωt ∈ HA,B for all t ∈ J1, T − 1K.
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In particular, we have ω0 ∈ N (RA,B
mK−1), ω1 ∈ GA,BmK−1, ωT−1 ∈ GA,BM−mK , and

ωT ∈ N (RA,B
M−mK+1) by part (1) of Lemma 4.4.5.

Remark 4.6.14. The two sets N̂ (S(A); GA,B) and N̂ (S(B); GA,B) are disjoint

thanks to part (2) of Proposition 4.5.1.

Now, we characterize all the optimal paths between ground states in terms

of the transition paths.

Theorem 4.6.15. Let (ωt)
T
t=0 be a Γ-path connecting S(A) and S(B). Then,

(ωt)
T
t=0 has a transition path between S(A) and S(B) as a sub-path.

Proof. Let (ωt)
T
t=0 be a Γ-path connecting S(A) and S(B), and define

T ′ = min{t : ωt ∈ N̂ (S(B); GA,B)}.

Then, define

t′ = max{t < T ′ : ωt ∈ N̂ (S(A); GA,B)}.

We claim that the sub-path (ωt)
T ′

t=t′ is a transition path between S(A) and

S(B). By part (1) of Lemma 4.4.5, we have

ωt′ ∈ N (RA,B
mK−1), ωt′+1 ∈ GA,BmK−1, ωT ′−1 ∈ GA,BM−mK , and ωT ′ ∈ N (RA,B

M−mK+1).

In particular, we get ωt′+1, ωT ′−1 ∈ HA,B. To complete the proof of the

claim, it suffices to check that, if σ ∈ HA,B and ζ /∈ HA,B satisfy σ ∼ ζ

and H(ζ) ≤ Γ, then ζ ∈ N (RA,B
mK−1) ∪ N (RA,B

M−mK+1). To prove this, let us

first assume that σ ∈ R̂a, b
i for some a ∈ A, b ∈ B, and i ∈ JmK , M − mKK

(cf. (4.126)). Then, since ζ /∈ R̂a, b
i and H(ζ) ≤ Γ, by the definition of R̂a, b

i

we must have ζ ∈ GA,B, and hence we get a contradiction to the fact that

ζ /∈ HA,B. Next, we assume that σ ∈ GA,Bi for some i ∈ JmK − 1, M −mKK.
Since ζ ∈ X \HA,B, by Lemma 4.4.5, we have ζ ∈ N (RA,B

mK−1)∪N (RA,B
M−mK+1).

This completes the proof.
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Therefore, we can now say that the set GA,B ∪ R̂A,B
[mK ,M−mK ] consists of

a saddle plateau between S(A) and S(B), which is a huge set of saddle

configurations.

Now, we can prove Theorem 4.1.6.

Proof of Theorem 4.1.6. Denote by τ̂ the hitting time of the set {σ ∈ X :

H(σ) ≥ Γ + 1}. Then, by the large deviation principle (e.g. [70, Theorem

3.2]), we have that

Ps[τ̂ < eβ(Γ+1/2)] = o(1).

Hence, by part (1) of Theorem 4.1.4, we have that Ps[τs̆ < τ̂ ] = 1−o(1). Thus,

the conclusion of the theorem follows immediately from Theorem 4.6.15.

4.7 Construction of test function

We fix in this section a proper partition (A, B) of Ω. The main purpose of

the current section is to construct a test function h̃ = h̃S(A),S(B) : X → R
that satisfies the requirements of Proposition 3.2.9. We remark that, since

the process is reversible, we only need to construct one test object h̃ which

approximates both hS(A),S(B) = h∗S(A),S(B).

Notation 4.7.1. Since the partition (A, B) is fixed, we simply write b =

b(|A|), eA = e(|A|), eB = e(|B|), and c = c(|A|) so that c = b + eA + eB

throughout the current section.

4.7.1 Construction of test function

We now define a function h̃ : X → R which indeed fulfills all requirements

in Proposition 3.2.9, as we shall verify later.

Definition 4.7.2 (Test function). We construct the test function h̃ on EA,B,

BA,B, and (EA,B ∪ BA,B)c separately. Recall Notation 4.6.7.
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(1) Construction of h̃ on edge typical configurations EA,B = EA∪EB.

• For σ ∈ EA, we recall the decomposition (4.112) of EA and define

h̃(σ) =

1− eA
c

(1− hA(σ)) if σ ∈ OA,

1− eA
c

(1− hA(σ)) if σ ∈ IA.
(4.127)

• For σ ∈ EB, we similarly define

h̃(σ) =


eB
c

(1− hB(σ)) if σ ∈ OB,
eB
c

(1− hB(σ)) if σ ∈ IB.
(4.128)

(2) Construction of h̃ on bulk typical configurations BA,B. Recall

the 2D test function h̃2D explained in Proposition 3.10.1. We define the

test function on each component of the decomposition (4.106) of BA,B.

• Construction on GA,B[mK ,M−mK−1]: Let us first fix P, Q ∈ SM such

that P ≺ Q and |P | ∈ JmK , M −mK − 1K. Write

GA,BP,Q =
⋃

a∈A, b∈B

Ga, bP,Q.

The test function h̃ is defined on GA,BP,Q by

h̃(σ) =
1

c

[M −mK − |P | − (1− h̃2D(σ(m)))

M − 2mK

b + eB

]
; σ ∈ GA,BP,Q ,

(4.129)

where {m} = Q \ P so that σ(m) is a 2D gateway configuration

between a2D and b2D for some (a, b) ∈ A×B. Since GA,B[mK ,M−mK−1]
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can be decomposed into

GA,B[mK ,M−mK−1] =

M−mK−1⋃
i=mK

⋃
P,Q∈SM :P≺Q and |P |=i

GA,BP,Q ,

we can combine the constructions (4.129) to define the test func-

tion on GA,B[mK ,M−mK−1].

• Construction on R̂A,B
i for i ∈ JmK , M −mKK: We set

h̃(σ) =
1

c

[M −mK − i
M − 2mK

b + eB

]
; σ ∈ R̂A,B

i , (4.130)

so that the function h̃ is constant on each R̂A,B
i , i ∈ JmK , M −

mKK.

(3) Construction of h̃ on the remainder set X \ (EA,B ∪ BA,B): We define

h̃(σ) = 1 for all σ ∈ X \ (EA,B ∪ BA,B).

Remark 4.7.3. From the definition above, we can readily observe the following

properties of the test function h̃.

(1) In view of part (1) of Proposition 4.6.6, we should check that the def-

initions of h̃ on EA,B and BA,B agree on R̂A,B
mK

and R̂A,B
M−mK . This can

be verified from (4.127), (4.128), (4.130), and Proposition 4.6.10. In

particular, both definitions imply that the value of h̃ on the former set

is constantly
b + eB

c
, while the value of h̃ on the latter set is constantly

eB
c

.

(2) It is obvious that h̃ ≡ 1 on S(A) and h̃ ≡ 0 on S(B), and moreover we

can readily verify from the definition that 0 ≤ h̃ ≤ 1.

The remainder of this section is devoted to proving parts (1) and (2) of

Proposition 3.2.9. In the remainder of the current section, we assume for
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simplicity that K < L < M . The other cases, K = L < M , K < L = M , or

K = L = M , can be handled in the exact same manner.

4.7.2 Dirichlet form of test function

We first prove that the test function h̃ satisfies property (2) of Proposition

3.2.9.

Proof of part (2) of Proposition 3.2.9. We divide the Dirichlet form into three

parts as[ ∑
{σ, ζ}⊆EA,B∪BA,B

+
∑

σ∈EA,B∪BA,B
ζ∈(EA,B∪BA,B)c

+
∑

{σ, ζ}⊆(EA,B∪BA,B)c

]

µβ(σ)rβ(σ, ζ){h̃(ζ)− h̃(σ)}2.

We first consider the second summation. Observe first that, by part (2) of

Proposition 4.6.6, we have EA,B∪BA,B = N̂ (S) and thus we get H(ζ) ≥ Γ+1

if σ ∼ ζ. Hence, by (4.4) and Theorem 4.0.1, we get

µβ(σ)rβ(σ, ζ) = min{µβ(σ), µβ(ζ)} = µβ(ζ) ≤ Ce−(Γ+1)β.

From the fact that 0 ≤ h̃ ≤ 1 (cf. part (2) of Remark 4.7.3), we can conclude

that the second summation is o(1)e−Γβ. The third summation is trivially 0

by the definition of the test function on (EA,B∪BA,B)c. Therefore, it remains

to show that∑
{σ, ζ}⊆EA,B∪BA,B

µβ(σ)rβ(σ, ζ){h̃(ζ)− h̃(σ)}2 =
1 + o(1)

cq
e−Γβ. (4.131)

By part (1) of Proposition 4.6.6 and the fact that h̃ is constant on each R̂A,B
i ,
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i ∈ JmK , M −mKK (cf. (4.130)), we can decompose the left-hand side into[ ∑
{σ, ζ}⊆BA,B

+
∑

{σ, ζ}⊆EA
+

∑
{σ, ζ}⊆EB

]
µβ(σ)rβ(σ, ζ){h̃(ζ)− h̃(σ)}2. (4.132)

Again by the fact that h̃ is constant on each R̂A,B
i , we can express the first

summation as

M−mK−1∑
i=mK

∑
a∈A, b∈B

∑
P,Q∈SM :
P≺Q, |P |=i

∑
{σ, ζ}⊆Ba, b: {σ, ζ}∩Ga, bP,Q 6=∅

µβ(σ)rβ(σ, ζ){h̃(ζ)− h̃(σ)}2.

(4.133)

By (4.129) and (4.130), Theorem 4.0.1 and (4.3), we can write the last sum-

mation as (1 + o(1)) times

2b2e−2KLβ

qc2(M − 2mK)2

∑
{σ, ζ}⊆Ba, b: {σ, ζ}∩Ga, bP,Q 6=∅

µ2D
β (σ(m))r2D

β (σ(m), ζ(m)){h̃2D(ζ(m))− h̃2D(σ(m))}2,

(4.134)

where {m} = Q\P and σ(m) and ζ(m) are regarded as 2D Ising configurations.

By Proposition 3.10.1, the last summation is
1 + o(1)

2κ2D
e−Γ2Dβ. Therefore, dis-

play (4.134) equals

b2e−2KLβ

c2(M − 2mK)2
× (1 + o(1))e−Γ2Dβ

qκ2D
. (4.135)

Inserting this to (4.133) (and recalling (4.13)), we get

∑
{σ, ζ}⊆BA,B

µβ(σ)rβ(σ, ζ){h̃(ζ)− h̃(σ)}2 =
b + o(1)

c2q
e−Γβ. (4.136)

Next, we deal with the second and third summations of (4.132). By
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(4.127) and Proposition 4.6.12, the second summation equals

e−Γβ

q

∑
{σ, ζ}⊆V A

e2
Ar

A(σ, ζ){hA(ζ)− hA(σ)}2

c2
+ o(1)e−Γβ =

eA + o(1)

c2q
e−Γβ.

(4.137)

Similarly, we get

∑
{σ, ζ}⊆EB

µβ(σ)rβ(σ, ζ){h̃(ζ)− h̃(σ)}2 =
eB + o(1)

c2q
e−Γβ. (4.138)

Therefore, by (4.136), (4.137), and (4.138), we can conclude that the left-

hand side of (4.131) is equal to

(1 + o(1))× b + eA + eB
c2q

e−Γβ =
1 + o(1)

qc
e−Γβ.

This concludes the proof.

4.7.3 H1-approximation

Now it remains to prove that the test function h̃ satisfies part (1) of Propo-

sition 3.2.9. We shall carry this out in the current section to conclude the

proof of Proposition 3.2.9.

We abbreviate h = hS(A),S(B) in the remainder of the section. Then, the

next lemma asserts that the equilibrium potential is nearly constant on each

N -neighborhood. Since this lemma can be proved in the exact same manner

as Lemma 3.5.8, we omit the proof.

Lemma 4.7.4. For any σ ∈ X such that H(σ) < Γ, it holds that

max
ζ∈N (σ)

|h(ζ)− h(σ)| = o(1).
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Now we proceed to the proof of (3.38). By (3.20), we can write

Dβ(h− h̃) = 〈h− h̃, −Lβh+ Lβh̃〉µβ
= Dβ(h) +Dβ(h̃)− 〈h, −Lβh̃〉µβ − 〈h̃, −Lβh〉µβ .

Since h̃ ≡ h ≡ 1 on S(A), h̃ ≡ h ≡ 0 on S(B) (cf. Remark 4.7.3-(2)), and

Lβh ≡ 0 on X \ S (cf. (3.19)), we have

〈h̃, −Lβh〉µβ =
∑
s∈S(A)

h̃(s)(−Lβh)(s)µβ(s)

=
∑
s∈S(A)

h(s)(−Lβh)(s)µβ(s) = Dβ(h).

By the last two displayed equations, we obtain that

Dβ(h− h̃) = Dβ(h̃)−
∑
σ∈X

h(σ)(−Lβh̃)(σ)µβ(σ). (4.139)

Therefore, by part (2) of Proposition 3.2.9 proved in the previous subsection

and the definition of Lβ (cf. (2.1)), we are left to prove that

∑
σ∈X

h(σ)
∑
ζ∈X

µβ(σ)rβ(σ, ζ)[h̃(σ)− h̃(ζ)] =
1 + o(1)

qc
e−Γβ. (4.140)

For simplicity, we define

ψ(σ) =
∑
ζ∈X

µβ(σ)rβ(σ, ζ)[h̃(σ)− h̃(ζ)], (4.141)

so that we can rewrite our objective (4.140) as

∑
σ∈X

h(σ)ψ(σ) =
1 + o(1)

qc
e−Γβ. (4.142)

In summary, it suffices to prove (4.142) to prove that h̃ satisfies part (1) of
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Proposition 3.2.9. The proof of (4.142) is divided into several lemmas. First,

we demonstrate that ψ(σ) is negligible if σ is not a typical configuration.

Lemma 4.7.5. For every σ ∈ X \ (EA,B ∪ BA,B) (i.e., σ /∈ N̂ (S) by Propo-

sition 4.6.6), it holds that ψ(σ) = o(e−Γβ).

Proof. Since h̃ ≡ 1 on X \ (EA,B ∪ BA,B) by part (3) of Definition 4.7.2, it

readily holds that

ψ(σ) =
∑

ζ∈EA,B∪BA,B
µβ(σ)rβ(σ, ζ)[h̃(σ)− h̃(ζ)].

Then, by (4.4) and part (2) of Proposition 4.6.6, if ζ ∈ EA,B ∪ BA,B with

σ ∼ ζ then H(σ) ≥ Γ + 1, and thus

µβ(σ)rβ(σ, ζ) = µβ(σ) = O(e−(Γ+1)β).

Along with the fact that 0 ≤ h̃ ≤ 1, we conclude that ψ(σ) = O(e−(Γ+1)β) =

o(e−Γβ).

We are left to consider ψ(σ) for σ ∈ EA,B ∪ BA,B = N̂ (S). To this end,

we decompose as ψ = ψ1 + ψ2 where

ψ1(σ) =
∑

ζ∈EA,B∪BA,B
µβ(σ)rβ(σ, ζ)[h̃(σ)− h̃(ζ)], (4.143)

ψ2(σ) =
∑

ζ /∈EA,B∪BA,B
µβ(σ)rβ(σ, ζ)[h̃(σ)− h̃(ζ)].

In fact, we can show that ψ2(σ) is negligible.

Lemma 4.7.6. For σ ∈ EA,B ∪ BA,B, we have ψ2(σ) = o(e−Γβ).

Proof. This follows directly by the same argument presented in the proof of

Lemma 4.7.5.
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Now, to estimate ψ1(σ), let us first look at the bulk typical configurations

that are not the edge typical configurations.

Lemma 4.7.7. We have that ψ1(σ) = o(e−Γβ) for all σ ∈ GA,B[mK ,M−mK−1].

Proof. For σ ∈ GA,B[mK ,M−mK−1], by definition we can write

ψ1(σ) =
∑

ζ∈EA,B∪BA,B
µβ(σ)rβ(σ, ζ)[h̃(σ)− h̃(ζ)]

=
b

c(M − 2mK)

∑
ζ∈EA,B∪BA,B

µβ(σ)rβ(σ, ζ)[h̃2D(σ(m))− h̃2D(ζ(m))]

for some m ∈ Q \ P with P ≺ Q (cf. Definition 4.7.2), where σ(m) and ζ(m)

are considered as 2D Ising configurations. Then, by Theorem 4.0.1 and (4.3),

the last display equals

2b(1 + o(1))

qc(M − 2mK)
e−2KLβ ×

∑
ζ∈EA,B∪BA,B

µ2D
β (σ)r2D

β (σ, ζ)[h̃2D(σ(m))− h̃2D(ζ(m))].

Since σ(m) is a 2D gateway configuration, by the results in Section 3.5.3, the

last summation equals o(e−Γ2Dβ). Therefore, we conclude that

ψ1(σ) =
2b(1 + o(1))

qc(M − 2mK)
e−2KLβ × o(e−Γ2Dβ) = o(e−Γβ).

Lemma 4.7.8. For all i ∈ JmK + 1, M −mK − 1K, we have that∑
σ∈R̂A,Bi

ψ1(σ) = 0.

Moreover, |ψ1(σ)| ≤ Ce−βΓ for all σ ∈ R̂A,B
i , for some fixed constant C > 0.

Proof. Recall from the definition that h̃ is defined as constant on each R̂A,B
i .
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Thus, ψ1(σ) = 0 for all σ ∈ R̂A,B
i \ N (RA,B

i ) and it suffices to show that∑
σ∈N (RA,Bi )

ψ1(σ) = o(e−βΓ).

It remains to prove that for all a ∈ A, b ∈ B, and P ∈ SM such that

|P | ∈ JmK + 1, M −mK − 1K,∑
σ∈N (σa, bP )

∑
ζ∈EA,B∪BA,B

µβ(σ)rβ(σ, ζ)[h̃(σ)− h̃(ζ)] = o(e−βΓ). (4.144)

Indeed, the left-hand side can be written as∑
Q∈SM :P≺Q

∑
σ∈Ca, bP,Q∩N (σa, bP ), ζ∈Ca, bP,Q: ζ∼σ

µβ(σ)rβ(σ, ζ)[h̃(σ)− h̃(ζ)]

+
∑

Q′∈SM :Q′≺P

∑
σ∈Ca, b

Q′,P∩N (σa, bP ), ζ∈Ca, b
Q′,P : ζ∼σ

µβ(σ)rβ(σ, ζ)[h̃(σ)− h̃(ζ)].

Since we constructed the test function h̃ between σa, bP and σa, bQ (P ≺ Q) and

between σa, bQ′ and σa, bP (Q′ ≺ P ) in the same manner, the two summations

above cancel out with each other, and thus we obtain (4.144).

Finally, for the last statement of the lemma, it suffices to see that if

σ ∈ N (RA,B
i ) and ζ /∈ N (RA,B

i ) with σ ∼ ζ then H(ζ) ≥ Γ, and thus

µβ(σ)rβ(σ, ζ) = µβ(ζ) ≤ 1

Zβ
e−βΓ = O(e−βΓ),

where the last equality holds by Theorem 4.0.1. This proves the last statement

of the lemma since the number of summands in (4.143) does not depend on

β, and since we have 0 ≤ h̃ ≤ 1 (cf. Remark 4.7.3).

Next, we turn to the edge typical configurations.

Lemma 4.7.9. The following statements hold.
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(1) If σ ∈ OA \ (R̂A,B
mK
∪N (S(A))), we have ψ1(σ) = o(e−Γβ).

(2) If σ ∈ IA \ (R̂A,B
mK
∪N (S(A))), it holds that∑

ζ∈N (σ)

ψ1(ζ) = 0, (4.145)

and |ψ1(ζ)| ≤ Ce−Γβ for all ζ ∈ N (σ) where C is a constant indepen-

dent of β.

Proof. (1) By part (1) of Proposition 4.6.12 and the definition of h̃, we cal-

culate

ψ1(σ) =
∑
ζ∈EA

eA
qc
e−ΓβrA(σ, ΠA(ζ))[hA(σ)− hA(ΠA(ζ))] +O(e−(Γ+1)β)

=
eA
qc
e−Γβ × |V A| · (−LAhA)(σ) +O(e−(Γ+1)β).

Since LAhA = 0 on OA \ (R̂A,B
mK
∪ N (S(A))) by the elementary property of

equilibrium potentials (cf. (3.19)), we may conclude that ψ1(σ) = O(e−(Γ+1)β) =

o(e−Γβ).

(2) First, we prove (4.145). Note that h̃ is constant on N (σ). Thus,∑
ζ∈N (σ)

ψ1(ζ) =
∑

ζ∈N (σ)

∑
ζ′∈OA

µβ(ζ)rβ(ζ, ζ ′)[h̃(ζ)− h̃(ζ ′)].

By part (2) of Proposition 4.6.12 and the definition of h̃, this is equal to∑
ζ′∈OA

eA
qc
e−Γβ × rA(σ, ζ ′)[hA(σ)− hA(ζ ′)] +O(e−(Γ+1)β)

=
eA
qc
e−Γβ × |V A| · (−LAhA)(σ) + o(e−Γβ).
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Since LAhA = 0 on IA \ (R̂A,B
mK
∪N (S(A))), we conclude that∑

ζ∈N (σ)

ψ1(ζ) = o(e−Γβ)

and (4.145) is now proved.

Finally, for the last statement, the last display implies that for all ζ ∈
N (σ),

|ψ1(ζ)| =
∣∣∣ ∑
ζ′∈OA

eA
qc
e−Γβ × rA(σ, ζ ′)[hA(σ)− hA(ζ ′)]

∣∣∣+O(e−(Γ+1)β)

≤
∑
ζ′∈OA

eA
qc
rA(σ, ζ ′)e−Γβ +O(e−(Γ+1)β) ≤ Ce−Γβ,

where the first inequality holds since 0 ≤ hA ≤ 1 and the second inequality

holds by Proposition 4.6.9, (4.114), and the fact that the number of such

ζ ′ ∈ OA with σ ∼ ζ ′ does not depend on β. This concludes the proof.

Lemma 4.7.10. It holds that∑
σ∈R̂A,BmK

ψ1(σ) = o(e−Γβ),

and that |ψ1(σ)| ≤ Ce−Γβ for all σ ∈ R̂A,B
mK

where C is a constant independent

of β.

Proof. First, we consider the first statement. Proposition 4.6.10 and the def-

inition of h̃ on R̂A,B
mK

imply that ψ1(σ) = 0 for all σ ∈ R̂A,B
mK
\ N (RA,B

mK
).

Hence, it suffices to prove that∑
σ∈N (RA,BmK

)

ψ1(σ) = o(e−Γβ). (4.146)
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Since h̃ is constant on N (RA,B
mK

), the left-hand side can be decomposed into[ ∑
σ∈N (RA,BmK

), ζ∈EA

+
∑

σ∈N (RA,BmK
), ζ∈BA,B

]
µβ(σ)rβ(σ, ζ)[h̃(σ)− h̃(ζ)]. (4.147)

Let us analyze the first summation of (4.147). By part (2) of Proposition

4.6.12, this equals∑
σ∈RA,BmK

∑
ζ∈OA

eA
qc
e−Γβ × rA(σ, ζ)[hA(σ)− hA(ζ)] +O(e−(Γ+1)β).

By the property of capacities (e.g., [16, (7.1.39)]) and Proposition 4.6.10, we

have

e−1
A = |V A|capA(S(A), RA,B

mK
) = −

∑
σ∈RA,BmK

∑
ζ: {σ, ζ}∈EA

rA(σ, ζ){hA(σ)− hA(ζ)}.

(4.148)

Summing up, we obtain

∑
σ∈N (RA,BmK

), ζ∈EA

ψ1(σ) = − 1

qc
e−Γβ + o(e−Γβ). (4.149)

Next, we analyze the second summation of (4.147).∑
a∈A, b∈B

∑
P,Q∈SM :P≺Q, |P |=mK

∑
σ∈N (σa, bP,Q), ζ∈Ba, b

µβ(σ)rβ(σ, ζ)[h̃(σ)− h̃(ζ)].

(4.150)

By Theorem 4.0.1, (4.3), and the results in Section 3.5.3, this becomes (recall

the 2D constant κ2D from (3.31))

|A||B| × 2M × 2b(1 + o(1))

qc(M − 2mK)
e−2KLβ × 1

2κ2D
e−Γ2Dβ =

1 + o(1)

qc
e−Γβ, (4.151)

where the identity follows from the definition of b in (4.13). Combining this
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with (4.147) and (4.149), we can prove the first statement of the lemma.

For the second statement, from the discussion before (4.146) it is inferred

that we only need to prove for σ ∈ N (RA,B
mK

). For such σ ∈ N (RA,B
mK

), the

previous proof implies that

ψ1(σ) =
[ ∑
ζ∈EA

+
∑

ζ∈BA,B

]
µβ(σ)rβ(σ, ζ)[hA(σ)− hA(ζ)] +O(e−(Γ+1)β),

where we used the fact that 0 ≤ h̃ ≤ 1. By (4.148) and Proposition 4.6.9,

the first summation in the right-hand side is bounded by Ce−Γβ. By (4.150)

and (4.151), the second summation in the right-hand side is also bounded by

Ce−Γβ. Therefore, we conclude the proof of the second statement.

Lemma 4.7.11. It holds that∑
σ∈N (S(A))

ψ1(σ) =
1 + o(1)

qc
e−Γβ and

∑
σ∈N (S(B))

ψ1(σ) = o(e−Γβ).

Moreover, it holds that |ψ1(σ)| ≤ Ce−Γβ for all σ ∈ N (S(A)) ∪ N (S(B))

where C is a constant independent of β.

Proof. We concentrate on the claim for N (S(A)), since the corresponding

claim for N (S(B)) can be proved in the exact same way.

By the property of capacities (e.g., [16, (7.1.39)]) as above, we can write

that

e−1
A = |V A|capA(S(A), RA,B

mK
) =

∑
σ∈S(A)

∑
ζ: {σ, ζ}∈EA

rA(σ, ζ){hA(σ)− hA(ζ)}.
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Therefore, by the definition of h̃ and part (2) of Proposition 4.6.12,∑
σ∈N (S(A))

ψ1(σ)

=
∑

σ∈S(A)

∑
ζ: {σ, ζ}∈EA

eA
qc
e−Γβ · rA(σ, ζ)[hA(σ)− hA(ζ)] +O(e−(Γ+1)β)

=
1

qc
e−Γβ + o(e−Γβ).

This proves the first statement. As before, the fact that |ψ1| ≤ Ce−Γβ on

N (S(A)) is straightforward from the observations made in the proof.

Finally, we present a proof of Proposition 3.2.9 by combining all compu-

tations above.

Proof of Proposition 3.2.9. It remains to prove that h̃ satisfies part (1) since

we already verified in the previous subsection that it satisfies part (2). By

the discussion at the beginning of the subsection, it suffices to prove (4.142).

By the definition of ψ given in (4.141) and the series of Lemmas 4.7.5-4.7.11,

and the fact that 0 ≤ h ≤ 1, we have∑
σ∈X

h(σ)ψ(σ) =
∑

σ∈N (S(A))

h(σ)ψ1(σ) + o(e−Γβ) =
∑

σ∈N (S(A))

ψ1(σ) + o(e−Γβ),

where the second identity follows from Lemmas 4.7.4. Thus, by applying

Lemma 4.7.11, we can complete the proof of (4.142).

4.8 Remarks on open boundary condition

Thus far, we have only considered the models under periodic boundary con-

ditions. In this section, we consider the same models under open boundary

conditions. The proofs for the open boundary case differ slightly to those

of the periodic case; however, the fundamentals of the proofs are essentially
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identical. Hence, we do not repeat the detail but focus solely on the technical

points producing the different forms of the main results.

Energy Barrier

We start by explaining that for the open boundary case, the energy barrier

is given by

Γ = KL+K + 1. (4.152)

One can observe that the canonical path explained in Figure 4.3 becomes an

optimal path (note that we should start from a corner of box in this case)

with height KL+K + 1 between ground states. This proves that the energy

barrier Γ is at most KL+K+1. Hence, it remains to prove the corresponding

lower bound, i.e., of the fact that Γ ≥ KL + K + 1. Rigorous proof of this

has been developed in [69] for the 2D model, and the same argument also

applies to the 3D model as well using the arguments given in Section 4.5.

Sub-exponential prefactor

As mentioned earlier, the large deviation-type results (Theorems 4.1.4 and

4.1.6) hold under open boundary conditions without modification, except for

the value of Γ. On the other hand, for the precise estimates (Theorems 4.8.1

and 4.1.9), the prefactor κ must be appropriately modified.

For simplicity, we assume that q = 2 and analyze the transition from

1 to 2. To heuristically investigate the speed of this transition in the open

boundary case via a comparison to the periodic one, it suffices to check the

bulk part of the transition, because the edge part is negligible (as K → ∞)

as in the periodic boundary case. The bulk transition must start from a

configuration filled with mK lines of spin 2 at either the bottom or top of

the lattice box Λ. In the periodic case, there are M choices for these starting

clusters (of spins 2) of size KL×mK ; thus, we can observe that the speed of

the transition is slowed by a factor of M/2 under this restriction. Now, let
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us suppose that we are at a configuration such that several floors of spin 2

are located at the bottom of the lattice, as in Figure 4.3. When we expand

this cluster of spin 2 in the periodic case, there are 2 (namely, up and down)

possible choices for the next floor to be filled; on the other hand, there is only

one (namely, up) possible choice in the open boundary case. This further

slows down the transition by a factor of 2. Next, when we expand the floor

at the top of the cluster of spin 2, we may again look at the bulk part of the

spin updates (cf. Definition 3.4.14). Thus, we suppose that there are two lines

filled with spin 2 on that floor. There are L possible choices of the location

in the periodic case, but just two possible choices in the open case. Thus,

this gives us a factor of L/2. Moreover, we may choose one of two directions

of growth of lines in the periodic case, which gives us additional factor of 2.

Finally, there are K possible ways to form a protuberance in the periodic

case; however, we now have only two (at the corners) possible choices. This

further slows down the transition by a factor of K/2. Once the protuberance

has been formed, we have only one direction in which to expand it, whereas

we have two directions in the periodic case. This slows down the transition

by a factor of 2. Summing up, the transition on the bulk is slowed by a factor

of
M

2
× 2× L

2
× 2× K

2
× 2 = KLM.

Turning this into a rigorous argument (via the same logic applied to the

periodic case), we obtain the following Eyring–Kramers formula with a mod-

ified (compared to the periodic case) prefactor. Recall that we assumed

K ≤ L ≤M .

Theorem 4.8.1. Suppose that we impose open boundary conditions on the

model. Then, there exists a constant κ′ = κ′(K, L, M) > 0 such that, for all

s, s′ ∈ S,

Es[τs̆] = (1 + o(1)) · κ′

q − 1
eΓβ and Es[τs′ ] = (1 + o(1)) · κ′eΓβ.
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Moreover, the constant κ′ satisfies

lim
K→∞

KLM · κ′(K, L, M) =


1/8 if K < L < M,

1/16 if K = L < M or K < L = M,

1/48 if K = L = M.

The constant κ′ can be defined in terms of new bulk and edge constants b′(n)

and e′(n), in the exact same manner as done in Section 4.2.

Then, Theorem 4.1.9 also holds for open boundary conditions with modi-

fied limiting Markov chain Y ′(·) with rate rY ′(s, s
′) = (κ′)−1 for all s, s′ ∈ S.
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Large-volume limit

In this chapter, we consider the Ising/Potts models in the large-volume

regime, i.e., the case when the side length grows to infinity. We analyze,

at a highly accurate level, the energy landscape of the Ising/Potts models on

a two-dimensional square or hexagonal lattice of side length L with periodic

boundary conditions.

Lattices

Fix a large positive integer L and denote by Λsq
L and Λhex

L square and hexag-

onal lattices (cf. Figure 5.1) of size L with periodic boundary conditions,

respectively. There is no ambiguity in the definition of Λsq
L , but a further

explanation of Λhex
L is required. To define Λhex

L , we initially select 2L2 vertices

from infinite hexagonal lattice, as shown in Figure 5.1-(left). Then, we iden-

tify the points at the boundary naturally, as illustrated in the figure. This

setting will become intuitively clear when we introduce the dual lattice in

the sequel.
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Figure 5.1: (Left) A hexagonal lattice Λ = Λhex
5 with 2 × 52 = 50 vertices

which are the end points of bold edges. Under the periodic boundary con-
dition, each vertex at the boundary highlighted by the red circle (resp. blue
square) is identified with another one with a red circle (resp. blue square) at
the same horizontal level (resp. same diagonal line with slope π/3). (Middle)
The dual lattice Λ∗ of the hexagonal lattice, which is a triangular lattice. The
vertex x of Λ is identified with the triangular face x∗ (the one highlighted
by the blue bold boundary) in Λ∗. The edge e of Λ is identified with its dual
edge e∗ of Λ∗. In this and the figure on the right, if the spin at a certain ver-
tex is 1 (resp. 2), we show the corresponding triangular face in white (resp.
orange). Specifically, in this figure we consider the Ising case q = 2, and we
have σ(x) = 2. (Right) Edges in A∗(σ) are denoted by blue bold edges and
hence A∗(σ) is a collection of edges at the boundaries of the monochromatic
clusters. Given that the Hamiltonian of σ can be computed as |A∗(σ)|, as we
observed in (5.4), H(σ) is just the sum of the perimeters of the orange (or
white, equivalently) clusters.
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Spin configuration

We henceforth let Λ = Λsq
L or Λhex

L . As before, we define the set of spins as

Ω = Ωq = {1, 2, . . . , q} (5.1)

and write

X = XL = ΩΛ (5.2)

the space of spin configurations1.

Visualization via dual lattice

To visualize spin configurations, it is convenient to consider the dual lattice

Λ∗ of Λ. If Λ = Λsq
L , the dual lattice Λ∗ is again a periodic square lattice of side

length L. On the other hand, if Λ = Λhex
L , the dual lattice Λ∗ is a rhombus-

shaped periodic triangular lattice with side length L, as shown in Figure 5.1-

(middle). Note that the periodic boundary condition of the triangular lattice

inherited from that of the hexagonal lattice simply identifies four boundaries

of the rhombus in a routine manner (as in Z2
L).

Since we can identify a site of Λ with a face of Λ∗ containing it, we can

regard the spins assigned at the sites of Λ as those assigned to the faces of

Λ∗. Thus, by assigning different colors to each set of spins, we can readily

visualize the spin configurations on the dual lattice. For instance, in Figure

5.1-(middle, right), the triangles shown in white and orange correspond to

the vertices of spins 1 and 2, respectively. This visualization is conceptually

more convenient when analyzing the energy of spin configurations, as we

explain in the next subsection.

1As in (5.2), we omit subscripts or superscripts L highlighting the dependency of the
corresponding object to L, as soon as there is no risk of confusion by doing so.
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Ising and Potts models

The Ising and Potts models are defined through the same Hamiltonian (3.2).

Recall also the corresponding Gibbs distribution defined in Definition 2.0.2.

Computing the Hamiltonian via dual-lattice representation

We can identify an edge e in Λ with the unique edge e∗ in the dual lattice Λ∗

intersecting with e (cf. Figure 5.1-(middle)), and we can identify each vertex

x in Λ with the unique face x∗ in the dual lattice Λ∗ containing x. As noted,

we regard each spin in Ω = {1, 2, . . . , q} as a color such that each face x∗ in

the dual lattice is shown in the color corresponding to the spin at x. Thus,

we can identify σ ∈ X with a q-coloring on the faces of the dual lattice Λ∗. In

this coloring representation of σ, each maximal monochromatic connected2

component is called a (monochromatic) cluster of σ.

We now explain a convenient formulation to understand the Hamiltonian

of a spin configuration σ ∈ X with the setting explained above. We refer to

Figure 5.1-(right) for an illustration. Define A(σ) as the collection of edges

e = {x, y} in Λ such that σ(x) 6= σ(y). Then, define

A∗(σ) = {e∗ : e ∈ A(σ)}, (5.3)

such that according to the definition of the Hamiltonian, we have

H(σ) = |A(σ)| = |A∗(σ)|. (5.4)

The crucial observation is that the dual edge e∗ belongs to A∗(σ) if and only

if e∗ belongs to the boundary of a cluster of σ. Hence, as in Figure 5.1-(right),

we can readily compute the energy H(σ) as

H(σ) =
1

2

∑
A∗: cluster of σ

(perimeter of A∗), (5.5)

2Of course, two faces sharing only a vertex are not connected.
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where the factor 1/2 appears since each dual edge e∗ ∈ A∗(σ) belongs to the

perimeter of exactly two clusters.

Heat-bath Glauber dynamics

Next, we introduce a heat-bath Glauber dynamics associated with the Gibbs

distribution µβ(·). We consider herein the continuous-time Metropolis–Hastings

dynamics {σβ(t)}t≥0 on X , whose jump rate from σ ∈ X to ζ ∈ X is given

by

cβ(σ, ζ) =

e−βmax{H(ζ)−H(σ), 0} if ζ = σx, a 6= σ for some x ∈ Λ and a ∈ Ω,

0 otherwise,

(5.6)

where σx, a ∈ X denotes the configuration obtained from σ by flipping the

spin at site x to a. This dynamics is standard in the study of the metastability

of the Ising/Potts model on lattices; see e.g., [16, 71, 72] and the references

therein. For σ, ζ ∈ X , we write

σ ∼ ζ if and only if cβ(σ, ζ) > 0. (5.7)

Note that σβ(·) jumps only through single-spin flips. We use Pβσ to indicate

the law of the Markov process σβ(·) starting from σ ∈ X , and Eβσ as the

corresponding expectation.

From the definitions of µβ(·) and cβ(·, ·), we can directly check the fol-

lowing detailed balance condition:

µβ(σ)cβ(σ, ζ) = µβ(ζ)cβ(ζ, σ) =

min{µβ(σ), µβ(ζ)} if σ ∼ ζ,

0 otherwise.
(5.8)

Hence, the Markov process σβ(·) is reversible with respect to its invariant

measure µβ(·).
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5.1 Main result

In this section, we explain the main results obtained in this article for the

Ising/Potts model explained in the previous section. We assume hereafter

that L ≥ 8 to avoid unnecessary technical difficulties.

5.1.1 Hamiltonian and energy barrier

First, we explain certain results regarding the HamiltonianH(·) of the Ising/Potts

model. As before, we collect the ground states as

S = {1, 2, . . . , q} and S(A) = {a ∈ S : a ∈ A}

for each A ⊆ Ω. Also, recall the definition of the energy barrier in Section

3.1.

Theorem 5.1.1. For both Λ = Λsq
L and Λhex

L , we have Γ = 2L+2. Moreover,

there is no valley of depth larger than Γ in the sense that

min
s∈S

Φ(σ, s)−H(σ) < Γ for all σ ∈ X \ S.

This theorem has been proved for the square lattice [69], and we prove

this theorem for the hexagonal lattice in Section 5.4.

5.1.2 Concentration of the Gibbs distribution

We next investigate the Gibbs distribution µβ. We can readily observe from

definition that if L is fixed and β →∞, the Gibbs distribution µβ is concen-

trated on the ground set S. However, if we consider the large-volume regime

for which both L and β tend to ∞ together, the non-ground states can have

non-negligible masses owing to the entropy effect; that is, there are suffi-

ciently many configurations with high energy that can dominate the mass

of the ground states. With the careful combinatorial analysis carried out in
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Section 5.2, we can accurately quantify this competition between energy and

entropy; consequently, we establish a zero-one law-type result by finding a

sharp threshold determining whether the Gibbs distribution µβ is concen-

trated on S. Before explaining this result, we explicitly declare the regime

that we consider.

Assumption. The inverse temperature β = βL depends on L and we con-

sider the large-volume, low-temperature regime, in the sense that βL →∞ as

L→∞.

The following theorem will be proved in Section 5.2.

Theorem 5.1.2. Let us define the constant γ0 by

γ0 =

1/2 for the square lattice,

2/3 for the hexagonal lattice.
(5.9)

Then, the following estimates hold.

(1) Suppose that Lγ0 � eβ. Then, we have Zβ = q + o(1) and

µβ(S) = 1− o(1).

(2) On the other hand, suppose that eβ � Lγ0. Then, we have

µβ(S) = oL(1).

Henceforth, the constant γ0 always refers to that defined in (5.9). This

theorem implies that a drastic change in the valley structure of the Gibbs

distribution µβ occurs at β/ logL = γ0. Specifically, if β/ logL ≥ γ for some

γ > γ0, most of the mass is concentrated on the ground states, while if

β/ logL ≤ γ for γ < γ0, the mass of the ground states is negligible.
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The second regime can be investigated further. Define, for each i ≥ 0,

Xi = Xi, L = {σ ∈ X : H(σ) = i}, (5.10)

such that X0 = S denotes the set of ground states. For any interval I ⊆ R,

we write

XI =
⋃
i∈I∩Z

Xi.

Then, we have the following refinement of case (2) of Theorem 5.1.2 which

will be proved in Section 5.2 as well.

Theorem 5.1.3. Suppose that eβ � Lγ0 and fix a constant α ∈ (0, 1). Then,

the following statements hold.

(1) Suppose that Lγ0(1−α) � eβ. Then, for every c > 0, we have

µβ
(
X[0, cL2α]

)
= 1− o(1).

(2) Suppose that Lγ0(1−α) � eβ. Then, for every c > 0, we have

µβ
(
X[0, cL2α]

)
= o(1).

In view of Theorem 5.1.1, it is natural to define the valley Va containing

each a ∈ S as the connected component of

{σ ∈ X : H(σ) < 2L+ 2}

containing a, where the connectedness of a set A ⊆ X here refers to the

path-connectedness. Since Theorem 5.1.3 implies that

µβ
(
X[0, 2L+1]

)
=

1− o(1) if Lγ0/2 � eβ,

o(1) if Lγ0/2 � eβ,

230



CHAPTER 5. LARGE-VOLUME LIMIT

we can conclude that the valleys Va, a ∈ S, contain almost all probability

mass if β/ logL ≥ γ for some γ >
γ0

2
. In contrast, if β/ logL ≤ γ for some

γ <
γ0

2
, the Gibbs distribution is concentrated on the complement of these

valleys and the Glauber dynamics therefore spends most of the time on this

complement. Hence, in the latter regime (as long as β exceeds the critical

temperature βc(q) = log(1 +
√
q) of the Ising/Potts model [4]), we deduce

that the metastable set must lie upon configurations with higher energy; this

is the onset at which the entropy starts to play a significant role.

5.1.3 Eyring–Kramers formula

The next main result of this chapter is the following Eyring–Kramers formula

for the MH dynamics. We define the constant κ0 by

κ0 =

1/8 for the square lattice,

1/12 for the hexagonal lattice.
(5.11)

Theorem 5.1.4 (Eyring–Kramers formula). Suppose that β = βL satisfies

L3 � eβ for the square lattice and L10 � eβ for the hexagonal lattice. Then,

for all a, b ∈ S, we have

Ea[τS\{a}] =
κ0 + o(1)

q − 1
eΓβ and Ea[τb] = (κ0 + o(1))eΓβ, (5.12)

where Γ = 2L+ 2 is the energy barrier obtained in Theorem 5.1.1.

The proof of Theorem 5.1.4 is given in Sections 5.6 through 5.8. An outline

of the proof of this theorem is briefly explained in the next subsection.

Remark 5.1.5. We conjecture that this result holds for all β = βL satisfying

Lγ0/2 � eβ, under which the invariant measure is concentrated on the valleys

around ground states. The sub-optimality of the lower bound (of constant or-

der) on β stems from several technical issues arising in the proof (cf. Sections
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5.7 and 5.8), and we surmise that additional innovative ideas are required to

determine the optimal bound.

Remark 5.1.6. The condition on β is relatively tight (L3 � eβ) for the square

lattice, whereas the condition for the hexagonal lattice is slightly loose (L10 �
eβ). This arises because the analysis of dead-ends is much more complicated

for the hexagonal lattice owing to its complicated local geometry. This will

be highlighted in Sections 5.4.2 and 5.4.3.

Remark 5.1.7. One can also obtain the Markov chain convergence of the trace

process of the accelerated process {σβ(eΓβt)}t≥0 on the set S to the Markov

process on S with uniform rate r(a, b) =
1

κ0

for all a, b ∈ S. The proof of

this result, using Theorem 5.6.1, is identical to that of Theorems 3.1.4 and

3.1.5, and is not repeated here.

In the remainder of this chapter, we explain the proof of the theorems

explained above in detail only for the hexagonal lattice, as the proof for

the square lattice is similar to that for the hexagonal lattice and in fact

much simpler; the geometry of the hexagonal lattice is far more complex

and requires careful consideration with additional complicated arguments.

Moreover, the analysis of the square lattice can be helped considerably by

the computations carried out in Chapter 3 that considered the small-volume

regime (where L is fixed and β tends to infinity).

5.1.4 Outline of proof of Theorem 5.1.4

The first step in the proof of Theorem 5.1.4 is devoted to analyzing the en-

ergy landscape of the current model. In particular, we must fully characterize

all configurations which can be visited by a typical trajectory of a metastable

transition. In the bulk of these typical trajectories, the dynamics is found to

behave in a simple manner. The dynamics should fill the sites line by line

while it can visit numerous dead-end configurations in the course of the tran-

sition. On the other hand, in the edges of typical trajectories (i.e., trajectories
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near ground states), we cannot expect such simple behavior, and the analysis

becomes very complicated. We remark that one study [11, 12, 13] success-

fully handles this problem for a two-dimensional fixed square lattice model

and that another (Chapter 4) reveals that the same problem for a three-

dimensional fixed square model is far more difficult to be analyzed explicitly.

The main difference and difficulty with regard to our current problem com-

pared to these occur at the bulk part of the typical trajectories; we encounter

a large amount of dead-ends.

Once we understand the energy landscape, we can construct a suitable

test function and a test flow on top of the characterized structure of the en-

ergy landscape to apply the potential-theoretic approach developed in earlier

work [19] to prove Theorem 5.1.4. Construction of these test objects is far

more complex when compared to the fixed lattice case in Chapter 3 mainly

because configurations with energy higher than 2L + 2 play a role here be-

cause the number of such configurations explodes in the limit β →∞.

5.1.5 Outlook of the remainder of the chapter

The remainder of the chapter is organized as follows. In Section 5.2, we ana-

lyze the Gibbs distribution µβ to prove Theorems 5.1.2 and 5.1.3. In Section

5.3, we provide some preliminary observations to investigate the energy land-

scape in a more detailed manner. We then analyze the energy landscape of

the Hamiltonian in detail in Sections 5.4 and 5.5. As a by-product of our deep

analysis, Theorem 5.1.1 will be proved at the end of Section 5.4. Then, we

finally prove the Eyring–Kramers formula, i.e., Theorem 5.1.4 in remaining

sections.
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5.2 Sharp threshold for the Gibbs distribu-

tion

In this section, we prove Theorems 5.1.2 and 5.1.3. We remark that we will

now implicitly assume that the underlying lattice is the hexagonal one, unless

otherwise specified. We shall briefly discuss the square lattice type in Section

5.2.5.

5.2.1 Lemma on graph decomposition

We begin with a lemma on graph decomposition, which is crucial when esti-

mating the number of configurations having a specific energy level.

Notation 5.2.1. For a graph G = (V, E) and a set E0 ⊆ E of edges, we

denote by G[E0] = (V [E0], E0) the subgraph induced by the edge set E0

where the vertex set V [E0] is the collection of end points of the edges in E0.

The edge set E0 ⊆ E is said to be connected if the induced graph G[E0] is a

connected graph.

Lemma 5.2.2. Let G = (V, E) be a graph such that every connected com-

ponent has at least three edges. Then, we can decompose

E = E1 ∪ · · · ∪ En

such that Ei is connected and |Ei| ∈ {3, 4, 5, 6} for all i = 1, . . . , n.

Proof. It suffices to prove the lemma for a connected graph G with at least

three edges, since we can apply this result to each connected component to

complete the proof for general case. Henceforth, we therefore assume that G

is a connected graph with at least three edges. Then, the proof is proceeded

by induction on the cardinality |E|.
First, there is nothing to prove if |E| ≤ 6 since we can take n = 1

and E1 = E. Next, let us fix k ≥ 7 and assume that the lemma holds if
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Figure 5.2: The left and right figures illustrate (Case 1) and (Case 2) in
the proof of Lemma 5.2.2, respectively. Note that we have D3 = D6 = ∅ in
the right figure.

3 ≤ |E| ≤ k−1. Let G = (V, E) be a connected graph with |E| = k. We will

find E ′ ⊆ E such that

|E ′|, |E \ E ′| ≥ 3 and both E ′ and E \ E ′ are connected. (5.13)

Once finding such an E ′, it suffices to apply the induction hypothesis to the

sets E ′ and E \ E ′ to complete the proof.

(Case 1: G does not have a cycle; i.e., G is a tree) If every vertex of

G has a degree of at most 2, then G is a line graph, and we can thus easily

divide E into two connected subsets E ′ and E \ E ′ satisfying (5.13).

Next, we suppose that a vertex v ∈ V has a degree of at least 3. Since

G is a tree, we can decompose E into connected D1, D2, . . . , Dm with m =

deg(v) ≥ 3, such that the edges in Di and Dj (i 6= j) possibly intersect only

at v (cf. Figure 5.2-(left)). We impose the condition |D1| ≤ · · · ≤ |Dm| for

convenience.

If |Dk| ≥ 3 for k = 1 or 2, it suffices to take E ′ = Dk. If |D1|, |D2| ≤ 2

but |D1| + |D2| ≥ 3, we take E ′ = D1 ∪D2. Finally, if |D1| = |D2| = 1, we

take

E ′ =

D1 ∪D2 ∪ {the edge in D3 having v as an end point} if m = 3,

D1 ∪D2 ∪D3 if m ≥ 4.

235



CHAPTER 5. LARGE-VOLUME LIMIT

(Case 2: G has a cycle) Suppose that (v1, v2, . . . , vn) is a cycle in G in the

sense that {vi, vi+1} ∈ E for all i ∈ J1, nK (with the convention vn+1 = v1).

We denote by E0 the edges belonging to this cycle, i.e.,

E0 =
{
{vi, vi+1} : i ∈ J1, nK

}
.

If E = E0, i.e., G is a ring graph, we can easily divide E into two connected

subsets E ′ and E \ E ′ satisfying (5.13) and hence suppose that E \ E0 6= ∅.
For each i ∈ J1, nK, we denote by Di the connected component of E \ E0

containing the vertex vi so that we have as in Figure 5.2-(right) so that

E = E0 ∪
( n⋃
i=1

Di

)
.

Note that we may have Di = Dj for some i 6= j. Since we assumed E\E0 6= ∅,
we can assume without loss of generality that D1 6= ∅. If |D1| ≥ 3, we take

E ′ = D1. Otherwise, we take E ′ = D1 ∪ {{v1, v2}, {v1, vn}}.
This completes the proof of (5.13) and we are done.

Remark 5.2.3. We remark that the set {3, 4, 5, 6} appearing in the previous

lemma cannot be replaced with {3, 4, 5}. For example, in (Case 1) of the

proof (cf. Figure 5.2-(left)), the graph with m = 3 and |E1| = |E2| = |E3| = 2

provides such a counterexample.

5.2.2 Counting of configurations with fixed energy

The crucial lemma in the analysis of the Gibbs distribution is the following

upper and lower bounds for the number of configurations belonging to the set

Xi, which denotes the collection of configurations with energy i (cf. (5.10)).

Lemma 5.2.4. There exists θ > 1 such that the following estimates hold.
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(1) (Upper bound) For all i ∈ N, we have

|Xi| ≤ qi+1 ×
∑

n3, n4, n5, n6≥0:
3n3+4n4+5n5+6n6=i

(
θL2

n3

)(
θL2

n4

)(
θL2

n5

)(
θL2

n6

)
.

(2) (Lower bound) For all 1 ≤ j < bL
2

2
c, we have

|X3j| ≥ 4j
(
bL2

2
c

j

)
.

Proof. (1) As the assertion is obvious for i = 0 where |X0| = q, we assume i 6=
0 so that i ≥ 3 (since X1 and X2 are empty). Denote by E(Λ∗) the collection

of edges of the dual lattice Λ∗ and let Ei be the collection of E0 ⊆ E(Λ∗)

such that |E0| = i. Then, we can regard A∗(·) defined in (5.3) as a map from

Xi to Ei.
For σ ∈ X , it is immediate that the graph G[A∗(σ)] (cf. Notation 5.2.1)

has no vertex of degree 1, since if there exists such a vertex, then there

is no possible coloring on the six faces of Λ∗ surrounding the vertex which

realizes A∗(σ). Therefore, each vertex of G[A∗(σ)] has degree at least two.

This implies that each connected component of G[A∗(σ)] has a cycle and

hence has at least three edges. Thus, by Lemma 5.2.2, we can decompose an

element of A∗(Xi) by connected components of sizes 3, 4, 5, or 6. Note that

there exists a fixed integer θ > 1 such that there are at most θL2 connected

subgraphs of Λ∗ with at most 6 edges (for all L). Combining the observations

above allows us to conclude that

|A∗(Xi)| ≤
∑

n3, n4, n5, n6≥0:
3n3+4n4+5n5+6n6=i

(
θL2

n3

)(
θL2

n4

)(
θL2

n5

)(
θL2

n6

)
. (5.14)
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Next, we will show that

|(A∗)−1(η)| ≤ qi+1 for all η ∈ A∗(Xi). (5.15)

Indeed, since η ∈ A∗(Xi) has i edges, it divides (the faces of) Λ∗ into at most

i+1 connected components, where each component must be a monochromatic

cluster in each σ ∈ (A∗)−1(η). Therefore, there are at most qi+1 (indeed,

q × (q − 1)i) ways to paint these monochromatic clusters and we obtain

(5.15). Part (1) follows directly from (5.14) and (5.15).

(2) If we take an independent set3 A of size j from Λ (i.e., we take j mutually

disconnected triangle faces in Λ∗), and assign spins 1 and 2 to A and Λ \ A,

respectively, then the energy of the corresponding configuration is 3j by (5.5).

If we select such j vertices one by one, then each selection of a vertex reduces

at most four possibilities of the next choice (specifically the selected one and

the three adjacent vertices). Since the selection does not depend on the order,

there are at least

2L2(2L2 − 4) · · · (2L2 − 4j + 4)

j!
≥ 4j

(
bL2

2
c

j

)
ways of selecting such an independent set of size j. This concludes the proof

of part (2).

5.2.3 Lemma on concentration

In this subsection, we establish a counting lemma which is useful in the proof

of Theorems 5.1.2 and 5.1.3. Here, we regard β = βL to be dependent of L.

Lemma 5.2.5. Suppose that eβ � L2/3 and moreover two sequences (g1(L))L∈N

3Here, a set is called independent if it consists of lattice vertices among which any two
vertices are not connected by a lattice edge.
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and (g2(L))L∈N satisfy

1� g1(L)� L2e−3β � g2(L).

Then, we have

µβ
(
X[g1(L), g2(L)]

)
= 1− o(1).

Proof. It is enough to show that

µβ

( ⋃
i<g1(L)

Xi
)

= o(1) and µβ

( ⋃
i>g2(L)

Xi
)

= o(1). (5.16)

To prove the first one, it suffices to prove that∑
i<g1(L)

|Xi|e−βi �
∑

i≥g1(L)

|Xi|e−βi. (5.17)

By part (1) of Lemma 5.2.4, we have

∑
i<g1(L)

|Xi|e−βi ≤ q ×
∑

n3, n4, n5, n6≥0:
3n3+4n4+5n5+6n6<g1(L)

(
θL2

n3

)(
θL2

n4

)(
θL2

n5

)(
θL2

n6

)

· (qe−β)3n3+4n4+5n5+6n6 .

Let L be large enough so that qe−β < 1. Then, the summation at the right-
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hand side is bounded from above by

∑
n3, n4, n5, n6≥0:

3n3+3n4+3n5+3n6<g1(L)

(
θL2

n3

)(
θL2

n4

)(
θL2

n5

)(
θL2

n6

)
(qe−β)3n3+3n4+3n5+3n6

=
∑

i<
g1(L)

3

∑
n3, n4, n5, n6≥0:
n3+n4+n5+n6=i

(
θL2

n3

)(
θL2

n4

)(
θL2

n5

)(
θL2

n6

)
(qe−β)3i

=
∑

i<
g1(L)

3

(
4θL2

i

)
(qe−β)3i,

(5.18)

where at the last equality we used a combinatorial identity of the form

∑
x+y+z+w=k

(
a

x

)(
b

y

)(
c

z

)(
d

w

)
=

(
a+ b+ c+ d

k

)
. (5.19)

We can further bound the last summation in (5.18) from above by

∑
i<

g1(L)
3

(4θL2)i

i!
(qe−β)3i ≤ g1(L) + 3

3
· (4θL2)

g1(L)
3 · (qe−β)g1(L)

bg1(L)
3
c!

≤ g1(L) ·
(CL2e−3β

g1(L)

) g1(L)
3

using g1(L) � L2e−3β and an elementary bound n! ≥ nn/en. Summing up,

we get ∑
i<g1(L)

|Xi|e−βi ≤ qg1(L) ·
(CL2e−3β

g1(L)

) g1(L)
3
. (5.20)

Next, let g̃1(L) = bg1(L)2/3(L2e−3β)1/3c so that we have g1(L)� g̃1(L)�
L2e−3β. Then, by part (2) of Lemma 5.2.4, we have

∑
i≥g1(L)

|Xi|e−βi ≥ |X3g̃1(L)|e−3βg̃1(L) ≥ 4g̃1(L)

(
bL2

2
c

g̃1(L)

)
× e−3βg̃1(L).
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By Stirling’s formula and g̃1(L)� L2e−3β � L2, this is bounded from below

by, for all large enough L,

1

2
(4e)g̃1(L) (L

2

3
)g̃1(L)

g̃1(L)g̃1(L)
√

2πg̃1(L)
· e−3βg̃1(L) ≥

(L2e−3β

g̃1(L)

)g̃1(L)

�
(L2e−3β

g̃1(L)

)g1(L)

.

(5.21)

Therefore by (5.20) and (5.21), we can reduce the proof of (5.17) into

L2e−3β

g̃1(L)
�
(L2e−3β

g1(L)

)1/3

.

This follows from the definition of g̃1(L) and the fact that g1(L) � L2e−3β.

This proves the first statement in (5.16).

Next, to prove the second estimate of (5.16), it suffices to prove∑
i>g2(L)

|Xi|e−βi � 1

since the partition function Zβ has a trivial lower bound Zβ ≥ q (by only

considering the ground states). By a similar computation leading to (5.20),

we get ∑
i>g2(L)

|Xi|e−βi ≤ q
∑

i>
g2(L)

6

(4θL2)i

i!
(qe−β)3i. (5.22)

Here, Taylor’s theorem on the function x 7→ ex implies that for x > 0 and

M ∈ N, ∑
i>M

xi

i!
≤ max

t∈[0, x]
|et| × xM+1

(M + 1)!
=

exxM+1

(M + 1)!
. (5.23)

Therefore, the right-hand side of (5.22) is bounded from above by

eCL
2e−3β × (CL2e−3β)

g2(L)
6

(g2(L)
6

)
g2(L)

6

≤
[

6C(e6C)
L2e−3β

g2(L) × L2e−3β

g2(L)

] g2(L)
6
.

As L2e−3β � g2(L), this expression vanishes as L → ∞. This concludes the
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proof.

5.2.4 Proof of Theorems 5.1.2 and 5.1.3

Now, we are ready to prove Theorems 5.1.2 and 5.1.3. Note that the constant

γ0 is 2/3 since we consider the hexagonal lattice.

Proof of Theorem 5.1.2. (1) It suffices to prove that, for some constant C >

0, ∑
σ∈X\S

e−βH(σ) =
3L2∑
i=3

|Xi|e−βi � 1, (5.24)

where the identity follows from the observation that the minimum non-zero

value of the Hamiltonian is 3 and the maximum is 3L2. By part (1) of Lemma

5.2.4, we have (for qe−β < 1)

3L2∑
i=3

|Xi|e−βi ≤ q ×
3L2∑
i=3

∑
n3, n4, n5, n6≥0:

3n3+4n4+5n5+6n6=i

(
θL2

n3

)(
θL2

n4

)(
θL2

n5

)(
θL2

n6

)

· (qe−β)3n3+4n4+5n5+6n6 ,

which is further bounded by

q ×
∑

n3, n4, n5, n6≥0:
n3+n4+n5+n6≥1

(
θL2

n3

)(
θL2

n4

)(
θL2

n5

)(
θL2

n6

)

· (qe−β)3n3+3n4+3n5+3n6 .

Summing up and applying (5.19), we get

∑
σ∈X\S

e−βH(σ) ≤ q

∞∑
i=1

(
4θL2

i

)
(qe−β)3i ≤ q

∞∑
i=1

(4θq3L2e−3β)i

i!
.

Again applying Taylor’s theorem on the function x 7→ ex (cf. (5.23)) for
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x = 4θq3L2e−3β, the last summation is bounded by

e4θq3L2e−3β × (4θq3L2e−3β).

This completes the proof of (5.24) since we have L2e−3β � 1 by assumption.

(2) We have eβ � L2/3 and therefore as in Lemma 5.2.5 we can take two

sequences (g1(L))L∈N and (g2(L))L∈N satisfying

1� g1(L)� L2e−3β � g2(L).

Then, by Lemma 5.2.5, the measure µβ is concentrated on X[g1(L), g2(L)] and

therefore µβ(S) = o(1).

Proof of Theorem 5.1.3. (1) Since L
2
3

(1−α) � eβ, we have L2e−3β � cL2α for

any c > 0. Thus, we can complete the proof by recalling Lemma 5.2.5 with

any g1(L) such that 1� g1(L)� L2e−3β (which is possible since we assumed

that eβ � Lγ0) and g2(L) = cL2α.

(2) We can take g1(L) = cL2α (and any g2(L) such that L2e−3β � g2(L)) to

get µβ(X[cL2α, g2(L)]) = 1− o(1). This completes the proof.

5.2.5 Remarks on the square lattice case

For the square lattice case, a slightly different version of Lemma 5.2.2 is

required. More precisely, we need a version which is obtained from Lemma

5.2.2 after replacing set {3, 4, 5, 6} with {4, 5, . . . , 9}. This modification

comes from the fact that the minimal cycle in the dual graph Λ∗ has three

edges in the hexagonal lattice but has four edges in the square lattice case

(cf. proof of Lemma 5.2.4). The proof of this lemma is similar to that of

Lemma 5.2.2, and we will not repeat the proof. As a consequence of this

modification, the upper and lower bounds appearing in Lemma 5.2.4 should
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be replaced with

|Xi| ≤ qi+1 ×
∑

n4, n5, ..., n9≥0:
4n4+5n5+···+9n9=i

(
θL2

n4

)(
θL2

n5

)
· · ·
(
θL2

n9

)

and |X4j| ≥ 5j
(
bL2

5
c

j

)
for 1 ≤ j < bL

2

5
c, respectively. The constant γ0

for the square lattice differs from that for the hexagonal lattice due to this

modification.

5.3 Preliminaries for the energy landscape

In this section, we introduce several preliminary notation and results which

are useful in the subsequent analysis of the energy landscape.

5.3.1 Strip, bridge and cross

In this subsection, we provide some crucial notation regarding the structure

of the dual lattice Λ∗. We refer to Figure 5.3 for illustrations of the notation

defined below and we consistently refer to this figure.

Definition 5.3.1 (Strip, bridge, cross and semibridge). We define the crucial

concepts here.

(1) We denote by a strip the 2L consecutive triangles in Λ∗ as illustrated

in Figure 5.3-(left). We may regard each strip as a discrete torus T2L

via the obvious manner.

(2) There are three possible directions for strips. We call these three di-

rections as horizontal, vertical, and diagonal, and these are highlighted

by black, blue, and red lines in Figure 5.3-(left), respectively. For each

` ∈ TL = {1, 2, . . . , L}, the `-th strip of horizontal, vertical, and diag-
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Figure 5.3: (Left) Strips h4, v2, and d8. (Right) Here and in the following
figures, white, orange, and blue indicate spins a, b, and c, respectively. Strips
h4 and v5 are b-bridges and thus form a b-cross. Strips v2 and d8 are {b, c}-
semibridges.

onal directions are denoted by h`, v`, and d`, respectively, as in Figure

5.3-(left).

(3) A strip s is called a bridge of σ ∈ X if all the spins of σ in s are identical.

If this spin is a, we call s an a-bridge of σ. Furthermore, we can specify

the direction of a bridge by calling it a horizontal, vertical, or diagonal

bridge of σ. Finally, the union of two bridges of different directions (of

spin a) is called a cross (an a-cross). We refer to Figure 5.3-(right).

(4) A strip s is called a semibridge of σ ∈ X , if the strip s in σ consists

of exactly two spins, and moreover if the sites in s with either of these

spins are consecutive. If a semibridge consists of two spins a and b, we

say that it is an {a, b}-semibridge. We refer to Figure 5.3-(right).

5.3.2 Low-dimensional decomposition of energy

For each strip s, the energy of configuration σ on the strip s is defined as

∆Hs(σ) =
∑

{x, y}⊆s:x∼y

1{σ(x) 6= σ(y)}
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so that by the definition of the Hamiltonian H, we have the following de-

composition

H(σ) =
1

2

∑
`∈TL

[
∆Hh`(σ) + ∆Hv`(σ) + ∆Hd`(σ)

]
, (5.25)

where the term 1/2 appears since each edge is counted twice. The following

simple fact is worth mentioning explicitly.

Lemma 5.3.2. Suppose that a strip s is not a bridge of σ. Then, we have

∆Hs(σ) ≥ 2,

and furthermore ∆Hs(σ) = 2 if and only if s is a semibridge of σ.

Proof. The proof is straightforward by identifying a strip s with T2L as in

Definition 5.3.1-(1).

The next lemma provides an elementary lower bound on the number of

bridges based on the energy of the configurations. Let us denote by Ba(σ)

the number of a-bridges in σ ∈ X .

Lemma 5.3.3. For σ ∈ X , there are at least 3L − H(σ) bridges. More-

over, if σ has exactly 3L−H(σ) bridges then all strips are either bridges or

semibridges.

Proof. By (5.25) and Lemma 5.3.2, we have

H(σ) ≥ 1

2
× 2×

[
3L−

∑
a∈Ω

Ba(σ)
]

= 3L−
∑
a∈Ω

Ba(σ). (5.26)

This proves that there are at least 3L−H(σ) bridges. Moreover, by Lemma

5.3.2, a strip which is not a bridge should be a semibridge in order to have

the equality in the bound (5.26). This completes the proof.
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5.4 Energy barrier

This section provides the first level of investigation of the energy landscape

which suffices to prove Theorem 5.1.1; that is, the energy barrier between

ground states is 2L + 2. A deeper analysis of the energy landscape required

to prove the Eyring–Kramers formula will be carried out in Section 5.5.

We collect here notation heavily used in the remainder of the article.

Notation 5.4.1. Here, the letters h, v, d stand for horizontal, vertical, and

diagonal, respectively.

(1) Recall SL from Notation 3.4.11. For each P ∈ SL, we write

h(P ) =
⋃
`∈P

h`, v(P ) =
⋃
`∈P

v`, and d(P ) =
⋃
`∈P

d`.

(2) We regard the dual lattice Λ∗ as the collection of triangles (correspond-

ing to the sites, or vertices of Λ) and hence we say that U is a subset

of Λ∗ (i.e., U ⊆ Λ∗) if U is a collection of triangles in Λ∗. For example,

a strip is a subset of Λ∗ consisting of 2L triangles.

(3) For each U ⊆ Λ∗ and a, b ∈ Ω, we write ξa, bU ∈ X the configuration

whose spins are b on the sites corresponding to the triangles in U and

a on the remainder.

5.4.1 Canonical configurations

In this subsection, we define the canonical configurations between the ground

states. These canonical configurations provide the backbone of the saddle

structure. We shall see in the sequel that the saddle structure is completed

by attaching dead-end structures or bypasses at this backbone. We define

canonical configurations in several steps. The first step is devoted to defin-

ing the regular configurations which are indeed special forms of canonical

configurations.
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Figure 5.4: Example of regular configurations: ξa, b
h(J4, 7K) (left), ξa, b

v(J3, 4K) (middle),

and ξa, b
d(J7, 9K) (right).

Definition 5.4.2 (Regular configurations). Fix a, b ∈ Ω. We recall Notation

5.4.1.

• A configuration of the form ξa, b
h(P ), ξ

a, b
v(P ), or ξa, b

d(P ) for some P ∈ SL is

called a horizontal, vertical, or diagonal regular configuration between

a and b, respectively. We refer to Figure 5.4 for illustrations.

• For n ∈ J0, LK, we define

Ra, b
n =

⋃
P∈SL: |P |=n

{
ξa, b
h(P ), ξ

a, b
v(P ), ξ

a, b
d(P )

}
and Ra, b =

L⋃
n=0

Ra, b
n .

Then for a proper partition (A, B), we write

RA,B
n =

⋃
a∈A

⋃
b∈B

Ra, b
n and RA,B =

⋃
a∈A

⋃
b∈B

Ra, b.

Canonical configurations are now defined as those obtained by adding

suitable protuberances at a monochromatic cluster of a regular configuration.

To carry this out rigorously, we initially define the canonical sets.

Definition 5.4.3 (One-dimensional canonical sets). We say that U ⊆ s for

some strip s is an 1D canonical set if U 6= ∅, s and either U is connected (we

remark again that two triangles sharing only a vertex are not connected) as

in the two left figures below, or |U | is even and U can be decomposed into
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Figure 5.5: Canonical sets and configurations. For the first three figures, the
sets of orange triangles are canonical sets between h(P ) and h(P ′) where
P = J1, 4K and P ′ = J1, 5K. If we assign spins a and b at white and orange
triangles, respectively, the configurations corresponding to the first, second,
and third figures then belong to Ca, b

h(P, P ′), o, C
a, b
h(P, P ′), e, and Ca, b

h(P, P ′), e, respec-
tively. Note that the set of orange triangles in the rightmost figure is not a
canonical set since the condition (5.27) is violated.

two disjoint, connected components U1 and U2 such that |U2| = 1 and that

U1 and U2 share a vertex in Λ∗ as in the rightmost figure below.

We now define the general canonical sets.

Definition 5.4.4 (Canonical sets). Fix a, b ∈ Ω, s ∈ {h, v, d}, and P, P ′ ∈
SL such that P ≺ P ′. Let P ′ \ P = {`}. We now define the canonical sets

between s(P ) and s(P ′). We refer to Figure 5.5.

(1) A set p ⊆ s` is called a protuberance attached to s(P ) if p is an 1D

canonical set. Moreover, for |P | ∈ J1, L− 2K, it holds that

∣∣{x ∈ p : x shares a side with some y ∈ s(P )}
∣∣ ≥ |p|

2
. (5.27)

(2) The set s(P )∪ p, where p is a protuberance attached to s(P ), is called

a canonical set between s(P ) and s(P ′).

We are now finally able to define the canonical configurations. In the

following definition, the letters o and e in the subscripts denote odd and

even, respectively.
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Definition 5.4.5 (Canonical configurations). We define the canonical con-

figurations (we refer to Figure 5.5 for an illustrations).

(1) Fix a, b ∈ Ω, s ∈ {h, v, d} and P, P ′ ∈ SL with P ≺ P ′. We say that

a configuration σ ∈ X is a canonical configuration between two regular

configurations ξa, b
s(P ) and ξa, b

s(P ′) if

σ = ξa, bA for some canonical set A between s(P ) and s(P ′).

We denote by C̃a, b
s(P, P ′) the collection of canonical configurations between

ξa, b
s(P ) and ξa, b

s(P ′).

(a) For each σ = ξa, bA ∈ C̃a, b
s(P, P ′), we can decompose A into s(P ) and

the protuberance attached to it (cf. Definition 5.4.4). We denote

this protuberance as pa, b(σ)4.

(b) We write

Ca, b
s(P, P ′) = C̃a, b

s(P, P ′) ∪
{
ξa, b
s(P ), ξ

a, b
s(P ′)

}
,

Ca, b
s(P, P ′), o =

{
σ ∈ C̃a, b

s(P, P ′) : |pa, b(σ)| is odd
}
,

Ca, b
s(P, P ′), e =

{
σ ∈ C̃a, b

s(P, P ′) : |pa, b(σ)| is even
}
.

(2) For n ∈ J0, L− 1K and a, b ∈ Ω, we define

Ca, bn =
⋃

s∈{h, v, d}

⋃
P≺P ′: |P |=n

Ca, b
s(P, P ′),

and define Ca, bn, o and Ca, bn, e in the same manner. The configurations belong-

ing to Ca, bn for some n ∈ J0, L − 1K are called canonical configurations

between a and b.

4Note that if σ ∈ C̃a, b
s(P, P ′), then we also have σ ∈ C̃b, a

s(TL\P ′,TL\P ) and moreover pb, a(σ) =

s` \ pa, b(σ).
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(3) For each proper partition (A, B), we write

CA,Bn, o =
⋃
a∈A

⋃
b∈B

Ca, bn, o and CA,Bn, e =
⋃
a∈A

⋃
b∈B

Ca, bn, e .

Remark 5.4.6 (Energy of canonical configurations). The following properties

of regular and canonical configurations are straightforward from the defini-

tions. We omit the detail of the proof. Let a, b ∈ Ω.

(1) For n ∈ J1, L− 2K, we can decompose

Ca, bn = Ra, b
n ∪R

a, b
n+1 ∪ Ca, bn, o ∪ Ca, bn, e

and we have

H(σ) =


2L if σ ∈ Ra, b

n ∪R
a, b
n+1,

2L+ 1 if σ ∈ Ca, bn, o,

2L+ 2 if σ ∈ Ca, bn, e .

(2) If σ ∈ Ca, bn for n = 0 or L− 1, we have H(σ) ≤ 2L+ 1.

In conclusion, we have H(σ) ≤ 2L+ 2 for all canonical configurations σ.

Remark 5.4.7 (Canonical paths). Fix a, b ∈ Ω, s ∈ {h, v, d}, and P, P ′ ∈ SL

with P ≺ P ′. Then, it is clear by definition that there are natural paths in

Ca, b
s(P, P ′) from ξa, b

s(P ) to ξa, b
s(P ′) as in the following figure.

These paths are called canonical paths between ξa, b
s(P ) and ξa, b

s(P ′). By attaching

the canonical paths consecutively, one can obtain a path between a and b.

This path is called a canonical path between a and b. Note that there are

numerous possible canonical paths between a and b, and that each canonical

path is a (2L+2)-path (cf. Notation 3.4.4) by Remark 5.4.6 above. See Figure

5.7 for an illustration of the energy level of a canonical path.
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Figure 5.6: Canonical path from ξa, b
h(J4, 7K) to ξa, b

h(J4, 8K).

Figure 5.7: Description of the energy level of canonical paths. The transitions
given in Figure 5.6 serve as an example for the blue region of the energy graph.
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5.4.2 Configurations with low energy

Since the energy barrier between ground states is 2L + 2 (as will be proved

in this section), the saddle structure between ground states is essentially the

N̂ -neighborhood (cf. Definition 3.4.2) of canonical configurations. Therefore,

to understand the saddle structure, it is crucial to characterize the configura-

tions with energy exactly 2L+2. This characterization is relatively simple for

the square lattice (cf. Proposition 3.9.3 and Lemma 3.9.5), as dead-ends are

attached only at the very end of the canonical paths. However, this charac-

terization is highly non-trivial for the hexagonal lattice, as we shall see that

a complicated dead-end structure is attached at each regular configuration.

This and the next subsections are devoted to the study of this structure.

A configuration σ is called cross-free if it does not have a cross (cf. Defi-

nition 5.3.1-(3)). The purpose of the current subsection is to characterize all

the cross-free configurations σ such that H(σ) ≤ 2L+ 2. First, we prove that

a cross-free configuration σ has energy of at least 2L and moreover that the

energy is exactly 2L if and only if σ is a regular configuration (cf. Definition

5.4.2).

Proposition 5.4.8. Suppose that a cross-free configuration σ ∈ X satisfies

H(σ) ≤ 2L. Then, σ is a regular configuration; i.e., σ ∈ Ra, b
n for some

a, b ∈ Ω and n ∈ J1, L− 1K. In particular, we have H(σ) = 2L.

Proof. We fix a cross-free configuration σ ∈ X with H(σ) ≤ 2L. By Lemma

5.3.3, σ has at least L bridges. Since these bridges must be of the same

direction, there are exactly L bridges of the same direction (say, horizontal),

and by the second assertion of Lemma 5.3.3, all the vertical and diagonal

strips must be semibridges of the same form. We can conclude that σ is a

regular configuration by combining the observations above.

It now remains to characterize cross-free configurations with energy 2L+1

or 2L+ 2. The following lemma is useful for these characterizations.
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Lemma 5.4.9. Suppose that a cross-free configuration σ ∈ X satisfies H(σ) ≤
2L+2, has k ∈ {L−2, L−1} horizontal bridges, and has at least one vertical

or diagonal semibridge. Then, the following statements hold for the configu-

ration σ.

(1) There exist two spins a, b ∈ Ω such that all horizontal bridges are either

a- or b-bridges.

(2) Following (1), define two sets Pa and Pb by

Pc = {` ∈ TL : h` is a c-bridge}; c ∈ {a, b}. (5.28)

Suppose that Pa, Pb 6= ∅. Then, we have Pa, Pb ∈ SL and moreover

(a) if k = L−2, then all non-bridge strips are {a, b}-semibridges and

H(σ) = 2L+ 2,

(b) if k = L − 1 and H(σ) ≤ 2L + 1, then all non-bridge strips are

{a, b}-semibridges.

Remark 5.4.10. The conclusion Pa, Pb ∈ SL holds even when either Pa or Pb

is empty, but its proof will be given later in Lemma 5.4.15.

Proof of Lemma 5.4.9. (1) The conclusion is immediate since if the vertical

or diagonal semibridge of σ (which exists given the assumption of the lemma)

is an {a, b}-semibridge for some a, b ∈ Ω, then each horizontal bridge must

be either an a- or a b-bridge.

(2) Suppose first that no a-bridge is adjacent to a b-bridge. Then as Pa, Pb 6= ∅
and k ≤ L−1, we may take one connected subset Ca of Pa so that |Ca| ≤ L−2.

Then, the two strips adjacent to Ca must not be b-bridges, so that they are

not bridges. Then since k ≥ L−2, we conclude that Ca = Pa and all the strips

which are not adjacent to Ca are b-bridges. This implies that Pa, Pb ∈ SL.

Next, suppose that some a-bridge is adjacent to a b-bridge. Without loss of

generality, we assume that 1 ∈ Pa and L ∈ Pb. Let m = max{i ∈ J1, L− 1K :
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i ∈ Pa} and we claim that Pa = J1, mK. There is nothing to prove if m = 1

or 2, since the claim holds immediately. Suppose m ≥ 3 and there exists

i ∈ J2, m − 1K such that i /∈ Pa. Then, there exists a triangle in the i-th

horizontal strip at which the spin is not a. The vertical and diagonal strips

containing this triangle have energy at least 4, because 1 ∈ Pa, m ∈ Pa,

and L ∈ Pb. All the vertical and diagonal strips other than these two have

energy at least 2 (since the configuration σ is cross-free). Since at least one

of the horizontal strip must be a non-bridge and has energy at least 2, we

can conclude from (5.25) that

H(σ) ≥ 1

2

[
2 + [4 + 2(L− 1)] + [4 + 2(L− 1)]

]
= 2L+ 3.

This yield a contradiction and thus we can conclude that Pa = J1, mK ∈ SL.

The proof of Pb ∈ SL is the same.

(2-a) For this case, we first note that there are L−2 bridges. If H(σ) ≤ 2L+1,

by Lemma 5.3.3, there are at least 3L−H(σ) ≥ L− 1 bridges and we get a

contradiction. Hence, we have H(σ) = 2L+2 and there are 3L−H(σ) bridges;

hence, by the second assertion of Lemma 5.3.3 all the non-bridge strips are

semibridges. It is clear that indeed, they must be {a, b}-semibridges.

(2-b) The proof for this part is almost identical to (2-a) and we omit the

detail.

Next, we characterize all of the cross-free configurations with energy 2L+

1. Indeed, they must be canonical configurations.

Proposition 5.4.11. Suppose that a cross-free configuration σ ∈ X satisfies

H(σ) = 2L + 1. Then, σ ∈ Ca, bn, o for some a, b ∈ Ω and n ∈ J0, L − 1K.

Moreover, if n = 0 (resp. n = L−1), then |pa, b(σ)| = 2L−1 (resp. |pa, b(σ)| =
1).

Proof. By Lemma 5.3.3, the configuration σ has at least L−1 bridges. Since

σ is cross-free, these bridges are of the same direction, say horizontal. If
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there are L horizontal bridges, then all the vertical and diagonal strips are

of the same form and thus the energy of σ should be a multiple of L in

view of (5.25). It contradicts H(σ) = 2L + 1, and hence there are exactly

L− 1 = 3L−H(σ) bridges. By the second assertion of Lemma 5.3.3, all the

non-bridge strips are semibridges. At this point, by Lemma 5.4.9, there exist

a, b ∈ Ω such that all the horizontal bridges are either a- or b-bridges. Define

Pa and Pb as in Lemma 5.4.9 and write {`} = TL \ (Pa ∪ Pb).
Suppose first that either Pa or Pb is empty, say Pb = ∅ and Pa = TL \{`}.

Then as all strips are either bridges or semibridges, we conclude that h`

is an {a, c}-semibridge for some c 6= a. As σ is cross-free, we must have

|pa, c(σ)| = 2L− 1. The other case Pa = ∅ can be handled identically.

Next, suppose that Pa, Pb 6= ∅ so that we can apply case (2-b) of Lemma

5.4.9, which implies that h` is an {a, b}-semibridge. As illustrated in the

figure below, since all the vertical and diagonal strips are semibridge, we

can deduce that the set of triangles in h` with spin b should be an odd

protuberance (cf. Definition 5.4.5) between ξa, b
h(P ) and ξa, b

h(P ′). Note that for the

other cases, a vertical strip with a black bold boundary is not a semibridge.

Therefore, we can conclude that σ ∈ Ca, bn, o for some n ∈ J1, L− 2K.

Now, it remains to characterize the cross-free configurations with energy

2L+2. To this end, we introduce six different types of cross-free configurations

with energy 2L+ 2 in the following definition.

Definition 5.4.12 (Cross-free configurations with energy 2L+ 2). The fol-

lowing types characterize the cross-free configurations with energy 2L + 2.

We refer to Figure 5.8 below for illustrations and to (5.25) for the verification

of the fact that these configurations (except (MB)) have energy 2L+ 2.
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• (ODP) One-sided Double Protuberances: two odd protuberances are

attached to one side of a regular configuration.

• (TDP) Two-sided Double Protuberances: two odd protuberances are

attached to different sides of a regular configuration.

• (SP) Superimposed Protuberances: an odd protuberance is attached

to a regular configuration, and another smaller odd protuberance is

attached to the first odd protuberance.

• (EP) Even Protuberance: an even protuberance is attached to a regular

configuration.

• (PP) Peculiar Protuberance: a protuberance of a third spin and of size

1 is attached to a regular configuration.

• (MB) Monochromatic Bridges: all bridges are parallel and of the same

spin, where more refined characterization of this type will be given in

Lemma 5.4.15.

Now, we are finally ready to characterize cross-free configurations with

energy 2L+ 2.

Proposition 5.4.13. Suppose that a cross-free configuration σ ∈ X satisfies

H(σ) = 2L + 2. Then, σ is of one of the six types introduced in Definition

5.4.12.

Proof. By Lemma 5.3.3, σ has at least L − 2 bridges. Since σ is cross-free,

these bridges are of the same direction, say horizontal. Then, as in the proof

of Proposition 5.4.11, we can observe that the number of horizontal bridges

cannot be L and thus the number of horizontal bridges should be either L−1

or L− 2.

(Case 1: σ has L−1 horizontal bridges) If there is no vertical or diagonal

semibridge, we must have ∆Hv`(σ), ∆Hd`(σ) ≥ 3 for all ` ∈ TL and therefore
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Figure 5.8: Six types of cross-free configurations with energy 2L + 2 intro-
duced in Definition 5.4.12. We refer to Figures 5.9 and 5.10 for more refined
characterizations of type (MB).

by (5.25), we get H(σ) ≥ 3L which yields a contradiction. Hence, there exists

at least one vertical or diagonal semibridge and thus by Lemma 5.4.9, there

exist a, b ∈ Ω such that all the horizontal bridges are a- or b-bridges. Let

us define Pa and Pb as in Lemma 5.4.9 and let {`0} = TL \ (Pa ∪ Pb). If

Pa = ∅ or Pb = ∅, then σ is of type (MB) by definition. Now, we assume

that Pa, Pb 6= ∅.

Case 1-1: The strip h`0 contains a triangle with a spin which is not a or b.

If there are two or more such triangles, then there are at least three vertical

or diagonal strips containing these triangles with energy at least 3. Since all

the other vertical and diagonal strips have energy at least 2, we can conclude

from (5.25) that

H(σ) ≥ 1

2

[
2 + 3× 3 + (2L− 3)× 2

]
> 2L+ 2

which yields a contradiction. Therefore, the strip h`0 contains exactly one
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triangle with spin which is not a or b. The vertical and diagonal strips con-

taining this triangle have energy at least 3. Thus, if the strip h`0 has energy

at least 3, we similarly get a contradiction since we should have

H(σ) ≥ 1

2

[
3 + 2× 3 + (2L− 2)× 2

]
> 2L+ 2.

Therefore, the strip h`0 has energy 2. This implies that all the triangles in

this strip other than the one with spin c have the same spin, which is either

a or b. Hence, σ is of type (PP).

Case 1-2: The strip h`0 consists of spins a and b only. By (5.25), the energy

of this strip is at most 4, and hence is either 2 or 4 (since it cannot be an

odd integer). If the energy of this strip is 2, i.e., it is an {a, b}-semibridge by

Lemma 5.3.2, we can check with the argument given in the proof of Proposi-

tion 5.4.11 based on Figure 5.8 that the only possible form of configuration

σ is of type (EP). On the other hand, if the energy of this strip is 4, then in

view of (5.25), all the vertical and diagonal bridges must have energy 2 and

thus must be semibridges. Since this strip h`0 of energy 4 is divided into four

connected components where two of them are of spin a and the remaining

two are of spin b, by the same argument given in Proposition 5.4.11 based

on Figure 5.8, we can readily check that σ is of type (ODP).

(Case 2: σ has L − 2 horizontal bridges) By the second statement of

Lemma 5.3.3, we can still apply Lemma 5.4.9, and we can follow the same

argument with (Case 1) above to handle the case where Pa or Pb is empty.

Hence, let us suppose that Pa, Pb 6= ∅ and write TL \ (Pa∪Pb) = {`1, `2}. By

(2) of Lemma 5.4.9, we have Pa, Pb ∈ SL and hence we can assume without

loss of generality that Pa = J1, mK so that

{`1, `2} ∈
{
{L, m+ 1}, {m+ 1, m+ 2}, {L− 1, L}

}
.
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Note from (2-a) of Lemma 5.4.9 that

all the non-bridge strips of σ are {a, b}-semibridges. (5.29)

If {`1, `2} = {L, m + 1}, by the same argument with Proposition 5.4.11,

strips h`1 and h`2 should be aligned as in the middle one of Figure 5.8 in

order to achieve (5.29), and we can conclude that σ is of type (TDP). A

similar argument indicates that if {`1, `2} = {m + 1, m + 2} or {L− 1, L},
the configuration σ should be of type (SP) to fulfill (5.29).

Hence, we demonstrated that for any cases, σ is one of the six types given

in Definition 5.4.12.

Remark 5.4.14. A careful reading of the proof of the previous proposition

reveals that, if σ is of type (MB) then it has either L− 1 or L− 2 parallel

bridges.

In the next lemmas, we investigate in more depth configurations of type

(MB), since the definition of this type is vague and thus a more detailed

understanding is crucially required to analyze the energy landscape of N -

neighborhoods of the ground states. In the analyses carried out below, we

will omit elementary details in the characterization of possible forms, since

these cases are always reduced to a small number of sub-cases that should

be tediously checked individually.

Lemma 5.4.15. Suppose that σ ∈ X is of type (MB) with parallel bridges

of spin a ∈ Ω. Then, exactly one between (?) and (??) given below holds.

(?) There exists a (2L + 2)-path (ωn)Nn=0 from σ to a so that N ≤ 4L and

each configuration ωn has at least L− 2 a-bridges.

(??) The configuration σ is isolated in the sense that N̂ (σ) = {σ}.

Proof. It is immediate that (?) and (??) cannot hold simultaneously. Hence,

it suffices to prove that σ satisfies (?) or (??). Without loss of generality, we
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Figure 5.9: Types (MB1)-(MB4): We can update the triangles according
to the indicated arrow starting from the one with the red bold boundary
to reach a. One can change the starting triangle to those with a black bold
boundary and then modify the order of updates.

assume that the parallel a-bridges are horizontal, and define Pa as in (5.28)

so that we have |Pa| = L− 1 or L− 2 by Remark 5.4.14.

(Case 1: |Pa| = L− 1) Without loss of generality, write TL \ Pa = {1}.
If there are two adjacent triangles in h1 with spin a, we can find an a-cross

and therefore we get a contradiction to the fact that σ is cross-free. Hence,

the strip h1 cannot have consecutive triangles with spin a. Moreover, since

all the vertical and diagonal strips have energy at least 2, by (5.25), we have

∆Hh1(σ) ≤ 4. From this, we can readily deduce that σ should be of one of

the four types (MB1)-(MB4) as in Figure 5.9.

We now demonstrate that (?) holds for all these types. For types (MB1)-

(MB3), we select any triangle adjacent to a triangle with spin a, and for

type (MB4), we select a triangle adjacent to a triangle with different spin.

Then, we update the spins in h1 to a successively from the selected triangle

to obtain the configuration a (cf. Figure 5.9). This procedure provides a

(2L+ 2)-path connecting σ and a of length at most 2L. It is immediate that

all the configurations visited by this path have at least 2L− 1 a-bridges and

hence we can verify the condition (?) for these types.

(Case 2: |Pa| = L − 2) Write TL \ Pa = {`1, `2}. By the second statement

of Lemma 5.3.3, all the strips which are not bridges must be semibridges.

Moreover, if h`i for some i ∈ {1, 2} is a {b, c}-semibridge for some b, c ∈
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Ω\{a}, then we can find a vertical or diagonal strip which is not a semibridge

(the one which contains the adjacent triangles of spins b and c in h`i) and thus

we obtain a contradiction. Therefore, there exist b1 6= a and b2 6= a so that

h`i is an {a, bi}-semibridge for each i ∈ {1, 2}. We denote by bi-protuberance

in h`i the set of triangles in h`i which have spin bi.

(Claim) Two strips h`1 and h`2 are adjacent.

To prove this claim, suppose the contrary that h`1 and h`2 are not adjacent.

We denote by mi ∈ J1, 2L−1K the number of spins bi in h`i for i = 1, 2. Then

since each bi-protuberance in h`i has perimeter mi + 2, we can deduce from

(5.5) that H(σ) = (m1 +2)+(m2 +2). Since we assumed that H(σ) = 2L+2,

we get

m1 +m2 = 2L− 2. (5.30)

Let us first assume that m2 is even, as in the figure on the left below (where

`2 is assumed to be 5 and spin bi is denoted by orange).

Since the vertical strips contained in blue region must be {a, b2}-semibridges,

set A of triangles in strip h`1 contained in these blue region should be of spin

a. By the same reasoning, the set B of triangles in strip h`1 contained in

the red region should be of spin a. Since |A| = m2, |B| = m2 + 2, and

|A ∩B| ≤ m2 − 3 provided that h`1 and h`2 are not adjacent, we get

m1 ≤ |h`1\(A∪B)| = 2L−|A|−|B|+|A∩B| ≤ 2L−m2−(m2+2)+(m2−3) = 2L−m2−5.
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Figure 5.10: Types (MB5)-(MB13): We refer to the last part of the proof
regarding the explanation of these figures.

This contradicts (5.30). We can handle the case when m2 is odd as in the

figure on the right above in the same manner. In this case, we have |A| =

|B| = m2 + 1 and |A∩B| ≤ m2− 4, and we can conclude m1 ≤ 2L−m2− 6

to get a contradiction to (5.30). Thus, the proof is completed.

Thanks to this claim, we can now assume without loss of generality that

`1 = 1 and `2 = 2. We then show that there are nine possible types as in the

following figure.

To justify this classification, we first consider the case when b1 6= b2. Then, the

b1-protuberance in h1 and the b2-protuberance in h2 must not be adjacent to
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each other, since otherwise there exists a vertical or diagonal non-semibridge

strip. Since σ is a cross-free configuration, we can readily conclude that σ

should be of type (MB5).

Next, we consider the case b1 = b2 = b and we assume without loss of

generality that the size of the b-protuberance in h2 is not smaller than that

in h1. We can then divide the analysis into three sub-cases according to the

shape of the b-protuberance in h2:

(1) it has an odd number of triangles and its lower side is longer than its

upper side,

(2) it has an odd number of triangles and its upper side is longer than its

lower side, or

(3) it has an even number of triangles.

Without loss of generality we assume that the b-protuberance in h2 is located

at the leftmost part of the lattice as in Figure 5.10. For case (1), we can ob-

serve that the protuberance of b in h1 also has an odd number of triangles

and its upper side should be longer than its lower side, since otherwise there

will be a non-semibridge strip. According to five different types of locations

of this protuberance in the strip h1, we get the types (MB6)-(MB10), as

illustrated in Figure 5.10. For case (2), we can similarly observe that the pro-

tuberance of b in h1 also have odd number of triangles and it should be aligned

as in (MB11) or (MB12). (In (MB12), the sizes of the b-protuberances of

h1 and h2 are identical.) Finally, for case (3), the b-protuberance in h1 should

consist of an even number of triangles and should be aligned precisely as in

(MB13). (In particular, it must be right-aligned.)

We have now fully characterized the configurations of type (MB), and it

only remains to investigate the path-connectivity of types (MB6)-(MB13)

to the configuration a. We consider three cases separately.

• (MB10): Any update in this type of configuration increases the energy.

Thus, those of this type satisfy (??).
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• (MB7): First, we flip a spin a in h2 to spin b, so that we obtain

a canonical configuration in Ca, b1 with protuberance size 2L − 1 (cf.

Definition 5.4.5). Then, we can follow a canonical path (cf. Remark

5.4.7) from there to reach the configuration a. The path associated

with these updates is a (2L+2)-path of length 4L. Moreover, a-bridges

in h(J3, LK) are conserved along the path, and we can conclude that

the configurations of this type satisfy (?).

• (MB5), (MB6), (MB8), (MB9), (MB11)-(MB13): We update

spins b to a in the order indicated in Figure 5.10 to obtain the config-

uration a. More precisely, for types (MB5), (MB6), (MB8), and

(MB9), we update the triangles according to the indicated arrow

starting from the one with red bold boundary to reach a. For types

(MB11)-(MB13), we first update the triangle with red bold bound-

ary, then update one of the triangles with black bold boundary, and

then update the remaining spins b to a according to the arrow to reach

a. In all the aforementioned types, one can select the starting triangle

as the ones with black bold boundary. We remark that for (MB13), if

there are same number of orange triangles in h1 and h2, then the black

triangle at h2 is no longer available as a starting triangle. For (MB8),

the red or black triangle might not be available as a starting triangle

if the b-protuberance in h1 is aligned to the right or the left. Then, as

in the previous case, we can readily observe that the path associated

with these updates satisfies all the requirements in (?), and thus the

configurations of these types satisfy (?).

This completes the proof.

We can deduce the following lemma from a careful inspection of the proof

of the previous lemma.

Lemma 5.4.16. Let σ ∈ X be a configuration of type (MB) except (MB7)

with parallel bridges of spin a ∈ Ω, and let ζ ∈ X be a configuration satisfying
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σ ∼ ζ such that either H(ζ) ≤ 2L + 1 or ζ has a cross5. Then, there exists

a (2L + 1)-path of length less than 4L connecting ζ and a. In particular,

ζ ∈ N (a).

Proof. We can notice from Figures 5.9 and 5.10 that such a ζ exists only

when σ is of type (MB1)-(MB3), (MB5), (MB6), (MB8), (MB9), or

(MB11)-(MB13), and moreover ζ is obtained from σ by one of the following

ways:

(1) Updating the spin at a triangle highlighted by (either black or red)

bold boundary in Figures 5.9 and 5.10 into a.

(2) For type (MB3), ζ can be obtained by flipping spin a at the strip h1

to b. For this case, ζ is a canonical configuration with 2L− 1 triangles

of b at a strip.

(3) For type (MB8) such that the strip h1 contains only one triangle with

spin b, the configuration ζ can additionally obtained by flipping that

spin b to spin a. We note that ζ is of the same type as in case (2) above.

For case (1), if ζ is obtained from σ by flipping the spin at a triangle with red

boundary, then we can continue to update according to the order indicated

in the figure to reach a. Then, the path corresponding to the sequence of

updates provides a (2L + 1)-path of length less than 4L connecting ζ and

a. The case when ζ is obtained from σ by flipping a spin at a triangle with

black boundary can be handled in a similar way. For cases (2) and (3), since

ζ is a canonical configuration, it is connected to a via a canonical path (cf.

Remark 5.4.7) which is a (2L+ 1)-path of length 2L− 1.

Remark 5.4.17. If we consider the Ising case, then type (PP) is unavailable

and also the analysis of type (MB) becomes much simpler.

5In fact, if ζ has a cross, then we can prove that H(ζ) ≤ 2L+ 1.
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As a byproduct of the characterization carried out in the current section,

we derive a rough bound on the number of cross-free configurations which

will be required in subsequent computations. For sequence (aL)∞L=1, we write

aL = O(f(L)) if there exists a constant C > 0 such that |aL| ≤ Cf(L) for

all L.

Lemma 5.4.18. The number of cross-free configuration with energy less than

or equal to 2L+ 2 is O(L6).

Proof. Since we obtain a full characterization of cross-free configurations in

Propositions 5.4.8, 5.4.11, and 5.4.13, the conclusion of the lemma follows

directly from elementary counting.

5.4.3 Dead-ends

In this subsection, we summarize the geometry of the energy landscape near

canonical configurations. As a consequence, we are able to obtain the full

characterization of dead-ends (cf. Definition 5.4.22) encountered by the pro-

cess during the transitions between ground states.

First, we first introduce some notation.

• For configuration σ ∈ X and c ∈ Ω, we say that a subset C of Λ∗ is a

c-cluster if it is a monochromatic cluster consisting of spin c.

• The boundary of a set A ⊆ Λ∗ refers to the collection of triangles in

Λ∗ \A adjacent to triangles in A. An example is given by the following

figure; if A is the collection of orange triangles, the blue triangles are

the boundary of A.
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• For a configuration σ ∈ X , we say that a triangle x ∈ Λ∗ is a boundary

triangle of σ if x belongs to a boundary of a certain cluster of σ. Since a

non-boundary triangle x of σ has the same spin with its three adjacent

triangles, we can observe that

flipping the spin at a non-boundary triangle x of σ increases the energy by 3,

(5.31)

while flipping the spin at a boundary triangle increases the energy by

at most 2 (or decreases the energy by as much as 3).

• Let σ ∈ X be a configuration satisfying H(σ) ≤ 2L + 2. If ζ ∈ X is

obtained by a flip of the spin of σ (i.e., σ ∼ ζ) and H(ζ) ≤ 2L+ 2, we

write σ ≈ ζ and the corresponding flip is called a good flip.

We now characterize all the configurations connected to a canonical configu-

ration σ and having energy at most 2L+ 2. We decompose our investigation

into three cases: σ ∈ Ra, b
n (Lemma 5.4.19), σ ∈ Ca, bn, o (Lemma 5.4.20), and

σ ∈ Ca, bn, e (Lemma 5.4.21). To that end, we define the following collections for

a, b ∈ Ω.

• Pa, bn , n ∈ J2, L−2K: the collection of configurations of type (PP) which

can be obtained by a good flip of a configuration in Ra, b
n .

• Qa, bn , n ∈ J1, L − 2K: the collection of configurations of type (ODP),

(TDP), or (SP) which can be obtained by a good flip of a configura-

tion in Ca, bn, o.
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• R̂a, b
n , n ∈ J2, L− 2K: the collection of configurations ζ such that

either ζ ∈ Ca, bn, o with |pa, b(ζ)| = 1, or ζ ∈ Ca, bn−1, o with |pa, b(ζ)| = 2L−1.

Namely, R̂a, b
n is the collection of canonical configurations obtained by

a good flip of a regular configuration in Ra, b
n .

We now start the characterization. We fix a, b ∈ Ω in the remainder of the

current section.

Lemma 5.4.19. Suppose that σ ∈ Ra, b
n with n ∈ J2, L − 2K and ζ ∈ X

satisfies σ ≈ ζ. Then, we have either ζ ∈ R̂a, b
n or ζ ∈ Pa, bn . In particular, we

have R̂a, b
n = N (Ra, b

n ) \ Ra, b
n .

Proof. Let us fix σ ∈ Ra, b
n . Since H(σ) = 2L and H(ζ) ≤ 2L + 2, by (5.31),

the configuration ζ is obtained from σ by flipping a boundary triangle. First,

we assume that we flip a spin at a boundary triangle of the b-cluster of σ

(which has spin a) to c to get ζ. As one can check from the figure below, we

get ζ ∈ R̂a, b
n (in particular, ζ ∈ Ca, bn, o with |pa, b(ζ)| = 1) or ζ ∈ Pa, bn if c = a

or c /∈ {a, b}, respectively.

The case when we flip a boundary triangle of the a-cluster is identical to

the previous case and we can conclude the proof of the first statement. For

the second statement, first we observe that if ξ ∼ ζ for some ζ ∈ R̂a, b
n and

H(ξ) < 2L+ 2, then we must have ξ ∈ Ra, b
n . Since the configuration of type

(PP) has energy 2L + 2, the second assertion of the lemma is direct from

the first one.
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Figure 5.11: Good flip of a configuration in Ca, bn, o. (Left) |pa, b(σ)| = 1 or

2L− 1. (Right) 3 ≤ |pa, b(σ)| ≤ 2L− 3.

Thanks to Lemma 5.4.19, we will hereafter discard the notation R̂a, b
n and

use N (Ra, b
n ) \ Ra, b

n instead.

Lemma 5.4.20. Suppose that σ ∈ Ca, bn, o with n ∈ J2, L − 2K and ζ ∈ X
satisfies σ ≈ ζ. Then, we have either ζ ∈ Ra, b

n ∪R
a, b
n+1∪Ca, bn, e, ζ ∈ Pa, bn ∪P

a, b
n+1,

or ζ ∈ Qa, bn . In particular, if 3 ≤ |pa, b(σ)| ≤ 2L− 3, we have either ζ ∈ Ca, bn, e

or ζ ∈ Qa, bn .

Proof. We fix σ ∈ Ca, bn, o and first consider the case |pa, b(σ)| = 1. By (5.31),

we can notice that we must flip a boundary triangle of σ to obtain ζ. We can

group the boundary triangles of σ into seven types as in Figure 5.11-(left).

If we flip the triangle of type 1, we get ζ ∈ Ra, b
n or ζ ∈ Pa, bn . If a flip of the

spin of a triangle in types 2-7 is a good flip, the spin must be flipped to either

a or b. Hence, we get a configuration in Ca, bn, e (resp. in Qa, bn ) if we flip the spin

at a triangle of types 2 or 3 (resp. types 4-7). The case |pa, b(σ)| = 2L−1 can

be handled in the exact same way with this case and we get either ζ ∈ Ra, b
n+1,

ζ ∈ Pa, bn+1, ζ ∈ Ca, bn, e , or ζ ∈ Qa, bn .

Next, we consider the case 3 ≤ |pa, b(σ)| ≤ 2L − 3. The proof is similar

to the previous case. In particular, the flip of triangles of types 2-7 are of

the identical nature. The only difference appears in the flip of a triangle of

type 1, i.e., a triangle in the protuberance of spin b. For this case, we have

to flip triangle denoted by bold black boundary in Figure 5.11-(right) to get
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a configuration belonging to Ca, bn, e or Qa, bn .

Lemma 5.4.21. Suppose that σ ∈ Ca, bn, e with n ∈ J2, L − 2K and ζ ∈ X
satisfies σ ≈ ζ. Then, ζ ∈ Ca, bn, o.

Proof. There are essentially two cases (depending on whether the protuber-

ance is connected or not) to be considered as in the figure below.

Since the configuration σ already has energy 2L+ 2, the good flip must not

increase the energy, and therefore should flip the spin at one of the triangles

with bold black boundary in the figure above either from a to b or from b

to a. Since the configuration obtained from this any of such flips belongs to

Ca, bn, o, the proof is completed.

The non-canonical configurations appearing in the preceding three lem-

mas are defined now as the dead-ends.

Definition 5.4.22 (Dead-ends). For a, b ∈ Ω, define

Da, b =
[ L−2⋃
n=2

Pa, bn

]
∪
[ L−3⋃
n=2

Qa, bn
]
.

It is clear that σ ∈ Da, b implies H(σ) = 2L+ 2. We say that a configuration

σ belonging to Da, b is a dead-end between a and b. For each proper partition

(A, B), we write

DA,B =
⋃
a′∈A

⋃
b′∈B

Da′, b′ .

271



CHAPTER 5. LARGE-VOLUME LIMIT

Next, we perform further investigations of the dead-end configurations,

after which we can explain why these configurations are called dead-ends (cf.

Remark 5.4.26).

Lemma 5.4.23. Suppose that σ ∈ Pa, bn with n ∈ J2, L − 2K and ζ ∈ X
satisfies σ ≈ ζ. Then, we have either ζ ∈ N (Ra, b

n ) (two choices) or ζ ∈ Pa, bn

(q − 3 choices).

Proof. A good flip of a configuration σ ∈ Pa, bn must flip the spin at the

peculiar protuberance. By flipping this spin to a or b, we obtain a configura-

tion in N (Ra, b
n ). Otherwise, the result is a configuration in Pa, bn , and we are

done.

Lemma 5.4.24. Suppose that σ ∈ Qa, bn with n ∈ J2, L− 3K is obtained from

ξ ∈ Ca, bn, o by flipping a spin. Suppose also that ζ ∈ X satisfies σ ≈ ζ.

(1) If |pa, b(ξ)| 6= 1, 2L− 1, we have ζ = ξ.

(2) If |pa, b(ξ)| = 1 (so that ξ ∈ N (Ra, b
n )), there are exactly two possible

configurations for ζ, which are both in N (Ra, b
n ) \ Ra, b

n .

(3) If |pa, b(ξ)| = 2L − 1 (so that ξ ∈ N (Ra, b
n+1)), there are exactly two

possible configurations for ζ, which are both in N (Ra, b
n+1) \ Ra, b

n+1.

Proof. If |pa, b(ξ)| 6= 1, 2L − 1. we can notice from the figure below that σ

is obtained from ξ by flipping the spin at one of the triangles with a bold

boundary either from a to b or b to a.
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Then, it is direct from that a good flip of σ must flip back this updated spin,

since otherwise the energy will be further increased to at least 2L+3. Hence,

we obtain ζ = ξ.

Next, we consider the case |pa, b(ξ)| = 1. Then, as in the figure below, σ

should be obtained by adding a protuberance of spin a or b of size one to ξ,

and there are four different types.

Therefore, σ has two protuberances of size one denoted by the bold boundary,

and a good flip must remove one of them. Thus, there are exactly two possible

configurations ζ1, ζ2 for ζ and it is immediate that ζ1, ζ2 ∈ N (Ra, b
n ) \ Ra, b

n .

The proof for the case |pa, b(ξ)| = 2L − 1 is nearly identical to the case

|pa, b(ξ)| = 1, and we omit the details here.

Finally, we provide a summary of the preceding results.

Proposition 5.4.25. Let σ ∈
L−3⋃
n=2

Ca, bn or σ ∈ Da, b and suppose that ζ ∈ X

satisfies ζ ≈ σ. Then, ζ is either a canonical configuration6 or a dead-end in

Da, b.

Proof. This proposition is a direct consequence of Lemmas 5.4.19, 5.4.20,

5.4.21, 5.4.23, and 5.4.24.

6Indeed, we have ζ ∈ [

L−3⋃
n=2

Ca, bn ] ∪N (Ra, b
2 ) ∪N (Ra, b

L−2).
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Remark 5.4.26. Now, we are able to explain why the configurations in Da, b

are called dead-end configurations. According to the definition of Da, b, a

dead-end σ is adjacent to either N (Ra, b
n ) for some n ∈ J2, L− 2K or ξ ∈ Ca, bn, o

such that |pa, b(ξ)| ∈ J3, 2L − 3K for some n ∈ J2, L − 3K. Let σ ≈ ζ. Then,

for the former case, by Lemmas 5.4.23 and 5.4.24-(2)(3), ζ is either another

dead-end configuration adjacent to N (Ra, b
n ) or a configuration in N (Ra, b

n ).

Hence, these ones indeed serve as dead-ends attached to N (Ra, b
n ) (consisting

of canonical configurations only according to Lemma 5.4.19). For the latter

case, ζ = ξ by Lemma 5.4.24-(1); therefore, {σ} is a single dead-end attached

to the canonical configuration ξ.

5.4.4 Energy barrier

Now, we are ready to prove Theorem 5.1.1. First, we establish the upper

bound.

Proposition 5.4.27. For any a, b ∈ Ω, we have Φ(a, b) ≤ 2L+ 2.

Proof. Let P0 = ∅ and let Pn = {1, . . . , n} ⊆ TL for n ∈ J1, LK so that

P0 ≺ P1 ≺ · · · ≺ PL. Since ξa, b
h(P0) = a and ξa, b

h(PL) = b, it suffices to show that

Φ(ξa, b
h(Pn), ξ

a, b
h(Pn+1)) ≤ 2L+ 2 for all n ∈ J0, L− 1K. This follows from Remark

5.4.7.

Next, we turn to the matching lower bound which is the crucial part in

the proof.

Proposition 5.4.28. For any a, b ∈ Ω, we have Φ(a, b) ≥ 2L+ 2.

Proof. Suppose the contrary so that there exists a (2L+ 1)-path (ωn)Nn=0 in

X with ω0 = a, ωN = b. For each n ∈ J0, NK, define u(n) as the number of

b-bridges in ωn so that we have u(0) = 0 and u(N) = 3L. Now, we define

n∗ = min{n ∈ J0, NK : u(n) ≥ 2}, (5.32)
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so that we have a trivial bound n∗ ≥ 3. Notice that a spin flip at a certain

triangle can only affect the three strips containing that triangle and hence

|u(n+ 1)− u(n)| ≤ 3 for all n ∈ J0, L− 1K. (5.33)

From this observation, we know that u(n∗) ∈ J2, 4K. On the other hand, by

Lemma 5.3.3, we have at least 3L − (2L + 1) = L − 1 bridges, and hence

there exists a bridge with a spin that is not b. This implies that ωn∗ does not

have a cross. Then, we must have u(n∗) − u(n∗ − 1) = 1 and therefore we

have u(n∗) = 2.

By Propositions 5.4.8 and 5.4.11, we have either ωn∗ ∈ Ra′, b
2 or ωn∗ ∈ Ca

′, b
2, o

for some a′ ∈ Ω\{b}. If ωn∗ ∈ Ra′, b
2 , then by Lemma 5.4.19 and the minimality

assumption of n∗, we must have ωn∗−1 ∈ Ca
′, b

1, o . Then, since H(ωn∗−2) ≤ 2L+1,

we can deduce from Lemma 5.4.20 that ωn∗−2 ∈ Ra′, b
2 which contradicts the

minimality of n∗ in (5.32). On the other hand, if ωn∗ ∈ Ca
′, b

2, o , then since

H(ωn∗−1) ≤ 2L+1, we can infer from Lemma 5.4.20 that ωn∗−1 ∈ Ra′, b
2 ∪R

a′, b
3 ,

and therefore we again get a contradiction to the minimality of n∗. Since we

got a contradiction for both cases, the proof is completed.

Now, we can conclude the proof of Theorem 5.1.1.

Proof of Theorem 5.1.1. By Propositions 5.4.27 and 5.4.28, it suffices to prove

that Φ(σ, S)−H(σ) < 2L+ 2 for all σ /∈ S. The proof of this bound is iden-

tical to Lemma 3.9.4 and we refer to the detailed proof therein.

5.5 Saddle structure

In order to conduct an Eyring–Kramers-type quantitative analysis of metasta-

bility, we need a more detailed understanding of the energy landscape. We

acquire this in the current section by completely analyzing the saddle struc-

ture between the ground states. We remark that the flavor of the discussion

given in this section is similar to that in Section 3.4, but the detail is quite
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different because we are considering the hexagonal lattice with a complicated

dead-end structure, and also we are working in the large-volume regime.

5.5.1 Typical configurations

Definition 5.5.1 (Typical configurations). Let (A, B) be a proper partition

of Ω.

(1) For a, b ∈ Ω, we define the collection of bulk typical configurations

between a and b as

Ba, b =
L−3⋃
n=2

Ca, bn ∪ Da, b. (5.34)

Then, we define the collection of bulk configurations between S(A) and

S(B) as

BA,B =
⋃
a′∈A

⋃
b′∈B

Ba′, b′ .

(2) For a, b ∈ Ω, we write

Ba, bΓ = {σ ∈ Ba, b : H(σ) = Γ} =
L−3⋃
n=2

Ca, bn, e ∪ Da, b,

BA,BΓ = {σ ∈ BA,B : H(σ) = Γ} =
⋃
a′∈A

⋃
b′∈B

Ba
′, b′

Γ .

Then, we define (cf. Definition 3.4.2)

EA = N̂
(
S(A); BA,BΓ

)
and EB = N̂

(
S(B); BA,BΓ

)
. (5.35)

The collection of edge typical configurations between S(A) and S(B) is

defined as

EA,B = EA ∪ EB.
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In the remainder of the current section, we fix a proper partition (A, B)

of Ω.

Remark 5.5.2. In fact, all canonical configurations are indeed typical con-

figurations. To see this, we let c1, c2 ∈ Ω and demonstrate that Cc1, c2n ⊆
BA,B ∪ EA,B for all n ∈ J0, L− 1K. First, if c1, c2 ∈ A or c1, c2 ∈ B, then by

Remark 5.4.7, it is straightforward that Cc1, c2n ⊆ EA or Cc1, c2n ⊆ EB, respec-

tively. Next, we assume that c1 and c2 belong to different sets, say c1 ∈ A
and c2 ∈ B. We divide these into two cases.

(1) In the bulk part, for n ∈ J2, L − 3K we have Cc1, c2n ⊆ BA,B which is

immediate from the definition (5.34).

(2) Remarks 5.4.6 and 5.4.7 imply that all the canonical configurations in

Cc1, c20 ∪Cc1, c21 are connected by a Γ-path in Cc1, c20 ∪Cc1, c21 to c1 ∈ S(A).

As we clearly have (Cc1, c20 ∪ Cc1, c21 ) ∩ BA,BΓ = ∅, the definition of EA

implies that Cc1, c20 ∪Cc1, c21 ⊆ EA. Similarly, we have Cc1, c2L−2 ∪C
c1, c2
L−1 ⊆ E

B.

Proposition 5.5.3. The following properties hold.

(1) We have EA ∩ BA,B = N (RA,B
2 ) and EB ∩ BA,B = N (RA,B

L−2).

(2) It holds that EA,B ∪ BA,B = N̂ (S).

This proposition explains why we defined the typical configurations as

in Definition 5.5.1. In particular, since N̂ (S) is the collection of all config-

urations connected to the ground states by a Γ-path, we can observe from

part (2) of the previous proposition that the sets EA,B and BA,B are properly

defined to explain the saddle structure between S(A) and S(B).

The proof of Proposition 5.5.3 is identical to that in Proposition 3.4.17,

since the proof therein is robust against the microscopic features of the model.

It suffices to replace Lemma 3.9.5 for the square lattice with Lemmas 5.4.19,

5.4.20, and 5.4.21 for the hexagonal lattice. It should also be mentioned

that in Proposition 3.4.17, it was asserted that EA ∩ BA,B = RA,B
2 and
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EB ∩BA,B = RA,B
L−2 (instead of N (RA,B

2 ) and N (RA,B
L−2)) since in that case it

holds that N (RA,B
i ) = RA,B

i for all i ∈ J2, L− 2K.
The following proposition is the hexagonal version of Proposition 3.4.17

and asserts that EA and EB are disjoint. We provide a proof since it is tech-

nically more difficult than that of Proposition 3.4.17. A union of two strips

of different directions is called a b-semicross of σ ∈ X if all the spins at these

two strips are b, except for the one at the intersection, which is not b, as

shown in the following figure.

Proposition 5.5.4. Let (A, B) be a proper partition. Each configuration

in EA does not have a b-cross for all b ∈ B. In particular, it holds that

EA ∩ EB = ∅.

Proof. Suppose on the contrary that σ ∈ EA has a b-cross for some b ∈ B.

Then since σ ∈ EA, we can find a Γ-path (ωn)Nn=0 in X \BA,BΓ with ω0 ∈ S(A)

and ωN = σ. For n ∈ J0, NK, define u(n) as the number of b-bridges in ωn so

that

u(0) = 0, u(N) ≥ 2, and |u(n+1)−u(n)| ≤ 3 for all n ∈ J0, N−1K, (5.36)

as in the proof of Proposition 5.4.28. Define

n0 = max{n ≥ 1 : u(n− 1) ≤ 1 and u(n) ≥ 2}
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so that, summing up,

(ωn)Nn=0 is a Γ-path in X \ BA,BΓ and u(n) ≥ 2 for all n ≥ n0. (5.37)

We divide the proof into two cases.

(Case 1: u(n0) − u(n0 − 1) ≥ 2) In this case, a single spin update from

ωn0−1 to ωn0 creates at least two b-bridges. This is possible only when we

update the triangle at the intersection of a b-semicross to obtain a b-cross.

Since u(n0 − 1) ∈ {0, 1}, the configuration ωn0−1 cannot have a b-cross.

Moreover, the existence of a b-semicross implies that there is no c-bridge for

all c ∈ Ω\{b}. Hence, ωn0−1 has at most one bridge and its energy is at least

3L− 1 by Lemma 5.3.3. This contradicts the fact that (ωn) is a Γ-path.

(Case 2: u(n0) − u(n0 − 1) = 1) Here, we must have u(n0 − 1) = 1 and

u(n0) = 2. Since ωn0−1 has exactly one b-bridge, it is cross-free. Moreover,

since a single spin update from ωn0−1 to ωn0 should create the second b-bridge,

we can apply Propositions 5.4.8, 5.4.11, and 5.4.13 to assert that there are

only four possible forms of ωn0−1 as in the figure below.

Note that we have to update the spin at a triangle with bold boundary to b

to get ωn0 ,and hence we have ωn0 ∈ R
a, b
2 ∪ C

a, b
2, o . Note that ωn0 does not have

a b-cross so that n0 < N . Now, we consider four sub-cases.

• ωn0 ∈ R
a, b
2 : We can conclude from Lemmas 5.4.19, 5.4.20, 5.4.23, and

5.4.24-(2) along with (5.37) that ωn ∈ N (Ra, b
2 ) for all n ≥ n0. This

contradicts the fact that ωN has a b-cross.
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• ωn0 ∈ C
a, b
2, o with |pa, b(ωn0)| ∈ J3, 2L−3K: Since ωn0 ≈ ωn0+1, by Lemma

5.4.20, we get ωn0+1 ∈ Ca, b2, e ∪Q
a, b
2 ⊆ BA,BΓ . This contradicts (5.37).

• ωn0 ∈ C
a, b
2, o with |pa, b(ωn0)| = 1: The same logic used in the case ωn0 ∈

Ra, b
2 leads to the same conclusion.

• ωn0 ∈ C
a, b
2, o with |pa, b(ωn0)| = 2L − 1: By the same logic applied to

the case ωn0 ∈ R
a, b
2 , we get ωn ∈ N (Ra, b

3 ) for all n ≥ n0. This again

contradicts the fact that ωN has a b-cross.

Since we get a contradiction in all cases, the first assertion of the proposition

is proved. For the second assertion, we first observe from the first part of the

proposition that EA ∩ S(B) = ∅. Then, by the definitions of EA and EB, it

also holds that EA ∩ EB = ∅.

5.5.2 Structure of edge configurations

We fix a proper partition (A, B) throughout this subsection and investigate

the structure of the sets EA and EB more deeply, as in Section 3.4.4.

We start by decomposing EA = IA ∪ OA where

OA = {σ ∈ EA : H(σ) = Γ} and IA = {σ ∈ EA : H(σ) < Γ}.

Further, we take a representative set IArep ⊆ IA in such a way that each

σ ∈ IA satisfies σ ∈ N (ζ) for exactly one ζ ∈ IArep. With this notation, we

can further decompose the set EA into

EA = OA ∪
( ⋃
ζ∈IArep

N (ζ)
)
.

For convenience of the notation, we can assume that S(A), RA,B
2 ⊆ IArep so

that configurations in N (a) with a ∈ S(A) and in N (σ) with σ ∈ RA,B
2 are
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represented by a and σ, respectively7.

We now assign a graph structure to EA based on this decomposition. More

precisely, we introduce a graph G A = (V A, E(V A)) where the vertex set is

defined by V A = OA ∪ IArep and the edge set is defined by {σ, σ′} ∈ E(V A)

for σ, σ′ ∈ V A if and only ifσ, σ′ ∈ OA and σ ∼ σ′ or

σ ∈ OA, σ′ ∈ IArep and σ ∼ ζ for some ζ ∈ N (σ′).

Next, we construct a continuous-time Markov chain {ZA(t)}t≥0 on V A

with rate rA : V A × V A → R defined by

rA(σ, σ′) =


1 if σ, σ′ ∈ OA,

|{ζ ∈ N (σ) : ζ ∼ σ′}| if σ ∈ IArep, σ
′ ∈ OA,

|{ζ ∈ N (σ′) : ζ ∼ σ}| if σ ∈ OA, σ′ ∈ IArep,

(5.38)

and rA(σ, σ′) = 0 if {σ, σ′} /∈ E(V A). Since the rate rA(·, ·) is symmetric,

the Markov chain ZA(·) is reversible with respect to the uniform distribution

on V A.

Notation 5.5.5. We denote by LA(·), hA·, ·(·), capA(·, ·), and DA(·) the gen-

erator, equilibrium potential, capacity, and Dirichlet form, respectively, of

the Markov chain ZA(·).

Configurations in EA

In the following series of lemmas, we study several essential features of the

configurations in EA.

Lemma 5.5.6. Suppose that σ ∈ EA has an a-cross for some a ∈ A. Then,

we have that hAS(A),Ra, b2

(σ) = 1 (cf. Notation 5.5.5).

7We note from Lemma 5.4.19 that N -neighborhoods of two different σ, σ′ ∈ RA,B
2 are

indeed disjoint.
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Proof. We fix σ ∈ EA which has an a-cross for some a ∈ A. It suffices to prove

that any Γ-path from σ to RA,B
2 in X \ BA,BΓ must visit N (S(A)). Suppose

the contrary that there exists a Γ-path (ωn)Nn=0 in X \ [N (S(A)) ∪ BA,BΓ ]

connecting ω0 ∈ RA,B
2 and ωN = σ. Let

n1 = min{n ≥ 1 : ωn has an a-cross} ∈ J1, NK,

so that ωn1−1 is clearly cross-free. Hence, we are able to apply Propositions

5.4.8, 5.4.11, and 5.4.13 to conclude that ωn1−1 is either of type (MB) or

satisfies ωn1−1 ∈ Ca, b0, o with |pa, b(ωn1−1)| = 2L−1. For the former case, ωn1−1 is

clearly not of type (MB7) since ωn1 must have a cross, and thus by Lemma

5.4.16, we have ωn1 ∈ N (a), leading to a contradiction. For the latter case,

since ωn1 has an a-cross, the configurations ωn1−1 and ωn1 must be of the

following form.

Thus, we update each spin b in ωn1 to spin a in a consecutive manner as in the

proof of Lemma 5.4.15 (where we start the update from a triangle highlighted

by a bold boundary), to obtain a (Γ−1)-path from ωn1 to a. Hence, we have

ωn1 ∈ N (a) and we get a contradiction in this case as well.

Lemma 5.5.7. Fix a ∈ A and suppose that σ ∈ N (a) and that there exists

ζ ∈ OA such that σ ∼ ζ and hAS(A),Ra, b2

(ζ) 6= 1. Then, the following statements

hold.

(1) There exists a (Γ− 1)-path from σ to a of length less than 4L.
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(2) We have

∣∣{σ ∈ N (a) : ∃ζ ∈ OA with σ ∼ ζ and hAS(A),Ra, b2

(ζ) 6= 1}
∣∣ = O(L8).

Proof. (1) By Proposition 5.5.4 and Lemma 5.5.6, ζ is a cross-free configura-

tion of energy Γ. Thus, by Proposition 5.4.13, ζ is of type (ODP), (TDP),

(SP), (EP), (PP) or (MB). For the first five types, since σ ∈ N (a), we

can readily infer that the only possible cases are σ ∈ Ra, c
1 or σ ∈ Ca, c1, o with

|pa, c(σ)| = 1 for some c ∈ Ω \ {a}. Then, we clearly have a (Γ− 1)-path from

σ to a of length 2L or 2L+ 1 which is indeed a canonical path (cf. Remarks

5.4.6 and 5.4.7). Next we assume that ζ is of type (MB). If ζ is of type

(MB7), then clearly we have σ ∈ Cc, c
′

1, o for some c, c′ ∈ Ω, which contradicts

σ ∈ N (a) by Lemmas 5.4.19 and 5.4.20. Otherwise, the statement of part

(1) is direct from Lemma 5.4.16.

(2) Since ζ is a cross-free configuration of energy Γ, Lemma 5.4.18 implies

that there are O(L6) possibilities for ζ. As there are O(L2) ways of flipping a

spin, we get a (loose) bound O(L8) for the number of possible configurations

for σ.

Lemma 5.5.8. Let ζ ∈ IArep \ (S(A)∪RA,B
2 ∪CA,B1, o ) and let σ ∈ N (ζ). Then,

σ has an a-cross for some a ∈ A. If ξ ∈ OA satisfies ξ ∼ σ, then ξ also has

an a-cross.

Proof. By Propositions 5.4.8 and 5.4.11, σ cannot be a cross-free configura-

tion. Since σ cannot have a b-cross for b ∈ B by Proposition 5.5.4, it must

have an a-cross for some a ∈ A. For the second part of the lemma, since

ξ ∼ σ, the configuration ξ should be cross-free if it does not have an a-cross.

If ξ is cross-free, then by Proposition 5.4.13, ξ is of type (ODP), (TDP),

(SP), (EP), (PP) or (MB). The first five types are impossible since σ has

a cross. If ξ is of type (MB) other than (MB7), then Lemma 5.4.16 implies

that σ ∈ N (a) which contradicts ζ /∈ S(A). Finally, if ξ is of type (MB7),
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then σ cannot have a cross, and thus we have a contradiction. This concludes

the proof.

Estimate of jump rate

The following proposition explains the reason why we introduced the Markov

chain ZA(·).

Proposition 5.5.9. Define a projection map ΠA : EA → V A by

ΠA(σ) =

ζ if σ ∈ N (ζ) for some ζ ∈ IArep,

σ if σ ∈ OA.

Suppose that L2/3 � eβ. Then, the following statements hold.

(1) For σ1, σ2 ∈ OA with σ1 ∼ σ2, we have

1

q
e−ΓβrA

(
ΠA(σ1), ΠA(σ2)

)
= (1 + o(1))× µβ(σ1)cβ(σ1, σ2).

(2) For σ1 ∈ OA and σ2 ∈ IA with σ1 ∼ σ2, we have

1

q
e−ΓβrA

(
ΠA(σ1), ΠA(σ2)

)
= (1 + o(1))×

∑
ζ∈N (σ2)

µβ(σ1)cβ(σ1, ζ).

Proof. (1) By definition, we have rA
(
ΠA(σ1), ΠA(σ2)

)
= 1 and the conclusion

thus follows immediately from (5.8) and part (1) of Theorem 5.1.2.

(2) For this case, by definition we can write

1

q
e−ΓβrA

(
ΠA(σ1), ΠA(σ2)

)
=

1

q
e−Γβ ×

∣∣{ζ ∈ N (σ2) : ζ ∼ σ1}
∣∣.
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By part (1) of Theorem 5.1.2 and (5.8), the right-hand side equals

(1 + o(1))× µβ(σ1)×
∣∣{ζ ∈ N (σ2) : ζ ∼ σ1}

∣∣
= (1 + o(1))×

∑
ζ∈N (σ2): ζ∼σ1

µβ(σ1)cβ(σ1, ζ),

where we implicitly used the fact that min{µβ(σ1), µβ(σ2)} = µβ(σ1) at the

identity. This proves part (2).

An auxiliary constant

Finally, we define a constant

eA =
1

|V A|capA
(
S(A), RA,B

2

) . (5.39)

Proposition 5.5.10. We have eA ≤ L−1.

Proof. As in the proof of Proposition 4.6.9, the proof is completed by ap-

plying Thomson principle along with a test flow defined along a canonical

path from RA,B
2 to S(A). We do not tediously repeat the proof and refer the

readers to Proposition 4.6.9 for more detailed explanation of this method.

To conclude this section, it should be noted that we can repeat the same

constructions on the other set EB and obviously the same conclusions also

hold for this set as well.

5.6 Capacity estimates

In the remainder of the article, we focus on the proof of the Eyring–Kramers

formula (Theorem 5.1.4) based on our careful investigation of the energy

landscape carried out in the previous section.
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Theorem 5.6.1 (Capacity estimate for hexagonal lattice). Suppose that β =

βL satisfies L10 � eβ and let (A, B) be a proper partition. Then, it holds that

Capβ
(
S(A), S(B)

)
=
[12|A|(q − |A|)

q
+ o(1)

]
e−Γβ. (5.40)

Remark 5.6.2 (Capacity estimate for square lattice). For the square lattice,

we have the same form of capacity estimate under the condition L3 � eβ,

where the only difference is that the constant 12 on the right-hand side of

(5.40) should be replaced by 8.

The proof of this theorem will be given in Sections 5.7 and 5.8. At this

moment, let us conclude the proof of Theorem 5.1.4 by assuming Theorem

5.6.1.

Proof of Theorem 5.1.4. First, we consider the formula in (5.12). Employing

once again the magic formula (3.24), we can write

Ea[τS\{a}] =

∑
σ∈X µβ(σ)ha,S\{a}(σ)

Capβ(a, S \ {a})
for a ∈ S. (5.41)

Since ∣∣∣∑
σ∈S

µβ(σ)ha,S\{a}(σ)− µβ(a)
∣∣∣ ≤ µβ(X \ S) = o(1)

by part (1) of Theorem 5.1.2, we can conclude that the numerator on the

right-hand side of (5.41) is 1/q+o(1). Since the denominator is [12(q−1)/q+

o(1)]e−Γβ by Theorem 5.6.1 with A = {a} and B = Ω \ {a}, we can prove

the first formula in (5.12).

Now, let us turn to the second formula of (5.12). By the symmetry of the

model, we have Pa[σβ(τS\{a}) = b] = 1/(q − 1). If σβ(τS\{a}) 6= b, we can

refresh the dynamics from t = τS\{a}. Then, by the strong Markov property,

we obtain a geometric random variable (with success probability 1/(q − 1))
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structure and thus deduce that

Ea[τb] = (q − 1)Ea[τS\{a}].

For a more rigorous and formal proof of this argument, we refer the readers

to Section 3.2.4. Hence, the first and second formulas in (5.12) are equivalent

to each other and we conclude the proof.

5.7 Upper bound for capacities

Notation 5.7.1. In this and the subsequent sections, we fix a proper parti-

tion (A, B). Then, we define the constants b = b(L, A, B) and c = c(L, A, B)

as

b =
(5L− 3)(L− 4)

60L2|A|(q − |A|)
and c = b + eA + eB (5.42)

where the constants eA and eB are defined in (5.39). Then, by (5.42) and

Proposition 5.5.10,

c = b + eA + eB =
1

12|A|(q − |A|)
(1 + o(1)). (5.43)

The purpose of the current section is to establish a suitable test func-

tion in order to use the Dirichlet principle to get a sharp upper bound of

Capβ(S(A), S(B)). The corresponding computation for the square lattice in

the β →∞ regime was carried out in Section 3.5, where the discontinuity of

the test function along the boundary of N̂ (S) and the set N̂ (S)c was easily

handled since energy is the only dominating factor of the system (as L is

fixed). For the current model, we need to be very careful when controlling

the discontinuity of the test function along this boundary, because the num-

ber of configurations with higher energy also increases as L tends to∞. This

difficulty imposes a sub-optimal condition on β (i.e., L10 � eβ).

287



CHAPTER 5. LARGE-VOLUME LIMIT

5.7.1 Construction of test function

The following definition (Definition 5.7.3) constructs our test function which

approximates the equilibrium potential hS(A),S(B) between S(A) and S(B)

in view of Theorem 3.2.5.

Notation 5.7.2. The following notation will be used in the remainder of the

article.

(1) We simply write hA = hAS(A),Ra, b2

: V A → [0, 1] (cf. Notation 5.5.5) and

naturally extend hA to a function on EA by letting hA(σ) = hA(ζ) if

σ ∈ N (ζ) for some ζ ∈ IArep.

(2) Recall the notation ‖σ‖a from (3.121).

Definition 5.7.3. We now define a function f = fA,B : X → R. Recall

Notation 5.7.1 and 5.7.2.

(1) Construction on EA,B = EA ∪ EB: We define (cf. (5.39))

f(σ) =

1− eA
c

[1− hA(σ)] if σ ∈ EA,
eB
c

[1− hB(σ)] if σ ∈ EB.

(2) Construction on BA,B: Let a ∈ A and b ∈ B. By (5.34), it suffices to

consider the following cases.

• σ ∈ N (Ra, b
n ) with n ∈ J2, L− 2K:

f(σ) =
1

c

[L− 2− n
L− 4

b + eB

]
.

• σ ∈ Ca, bn with n ∈ J2, L − 3K and |pa, b(σ)| ∈ J2, 2L − 2K (the case

|pa, b(σ)| ∈ {0, 1, 2L− 1, 2L} is considered above):

f(σ) =
1

c

[(5L− 3)(L− 2− n)− (3− d(σ))

(5L− 3)(L− 4)
b + eB

]
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if |pa, b(σ)| = 2,

f(σ) =
1

c

[(5L− 3)(L− 3− n) + (3− d(σ))

(5L− 3)(L− 4)
b + eB

]
if |pa, b(σ)| = 2L− 2, and

f(σ) =
1

c

[(5L− 3)(L− 2− n)− 5m−3
2

(5L− 3)(L− 4)
b + eB

]
if |pa, b(σ)| = m ∈ J3, 2L−3K. Here, d(σ) = 1{σ : pa, b(σ) is disconnected}.

• σ ∈ Da, b: By the definition of Da, b, we can find a canonical configura-

tion ζ in Ba, b such that ζ ∼ σ. If this ζ is unique, we set f(σ) = f(ζ).

In view of Lemmas 5.4.23 and 5.4.24, it is also possible that there are

two such canonical configurations ζ1 and ζ2, but in such a case we have

ζ1, ζ2 ∈ N (RA,B
n ) for some n ∈ J2, L− 2K and therefore f(ζ1) = f(ζ2)

by the definition above. We set f(σ) = f(ζ1) = f(ζ2) in this case.

We note at this point that parts (1) and (2) do not collide on the set

EA,B ∩ BA,B = N (RA,B
2 ) ∪ N (RA,B

L−2) (cf. Proposition 5.5.3-(1)), since both

definitions assign the same value (b + eB)/c (resp. eB/c) on N (RA,B
2 ) (resp.

N (RA,B
L−2)).

(3) Construction on N̂ (S)c: For σ ∈ N̂ (S)c, we define

f(σ) =


1 if

∑
a∈A

‖σ‖a ≥ L2,

0 if
∑
a∈A

‖σ‖a < L2.

By Proposition 5.5.3-(2), the constructions above define f on the set X .

In the remainder of the current section, we shall prove the following propo-

sition.
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Proposition 5.7.4. The test function f = fA,B constructed in the previous

definition belongs to C(S(A), S(B)) and moreover satisfies

Dβ(f) =
1 + o(1)

qc
e−Γβ.

5.7.2 Configurations with intermediate energy

The purpose of the current section is to provide some estimates for controlling

the discontinuity of the test function f along the boundary of N̂ (S), which

will be the most difficult part in the proof of Proposition 5.7.4 and was not

encountered in the small-volume regime considered in Chapter 3.

A pair of configurations (σ, ζ) in X is called a nice pair if they satisfy

σ, ζ /∈ N̂ (S), σ ∼ ζ,
∑
a∈A

‖σ‖a = L2, and
∑
a∈A

‖ζ‖a = L2 − 1. (5.44)

The following counting of nice pairs is the main result of the current section.

Proposition 5.7.5. For i ≥ 0, denote by Ui = UA,B,L
i the number of nice

pairs (σ, ζ) satisfying max{H(σ), H(ζ)} = 2L+ i.

(1) We have Ui = 0 for all i ≤ 2.

(2) There exists a constant C = C(q) > 0 such that Ui ≤ (CL)3i+1 for all

i < (
√

6− 2)L− 1.

To prove this proposition, first we establish an isoperimetric inequality.

Lemma 5.7.6. Suppose that σ ∈ X has an a-cross for some a ∈ Ω. Then,

we have
∑

b∈Ω\{a}

‖σ‖b ≤ H(σ)2/6.

Proof. We fix b0 ∈ Ω \ {a} and define σ̃ ∈ X by

σ̃(x) =

a if σ(x) = a,

b0 if σ(x) 6= a.
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Then, it is immediate that H(σ̃) ≤ H(σ) and
∑

b∈Ω\{a}

‖σ‖b = ‖σ̃‖b0 . Therefore,

it suffices to prove that ‖σ̃‖b0 ≤
H(σ̃)2

6
. As σ̃ also has an a-cross, this is a

direct consequence of the isoperimetric inequality [41, Theorem 1.2].

Proof of Proposition 5.7.5. Let (σ, ζ) be a nice pair satisfying max{H(σ), H(ζ)} <√
6L − 1. Suppose now that η ∈ {σ, ζ} has a c-cross for some c ∈ Ω. Then,

by Lemma 5.7.6, we have

∑
c′: c′ 6=c

‖η‖c′ ≤
H(η)2

6
<

(
√

6L− 1)2

6
< L2 − 1.

If c ∈ B, we get a contradiction to
∑
a∈A

‖η‖a ≥ L2 − 1, and we get a similar

contradiction when c ∈ A. Thus, both σ and ζ are cross-free.

(1) Suppose that there exists a nice pair (σ, ζ) such that H(σ), H(ζ) ≤ Γ.

If the cross-free configuration η ∈ {σ, ζ} satisfies H(η) < Γ, we can apply

Propositions 5.4.8 and 5.4.11 to conclude that η ∈ Ra1, a2
n ∪Ca1, a2

n, o for some n

and a1, a2 ∈ Ω. Then by Remark 5.5.2, we obtain η ∈ N̂ (S) which yields a

contradiction. Therefore, we must have that H(σ) = H(ζ) = Γ. Since σ ∼ ζ,

by Proposition 5.4.13, we can notice that σ and ζ must be both of type (PP)

or both of type (MB). If they are both of type (PP), then Lemma 5.4.23

implies that σ, ζ ∈ N̂ (S). If they are both of type (MB), then Lemma 5.4.15

implies that both σ and ζ satisfy (?) and thus σ, ζ ∈ N̂ (S). Hence, we get

contradiction in both cases and the proof of part (1) is completed.

(2) Fix 2 < i < (
√

6− 2)L− 1 and let η ∈ {σ, ζ} be the configuration with

energy 2L + i. Since η is cross-free, all the bridges of η (whose existence is

guaranteed by Lemma 5.3.3) must be of the same direction. Without loss

of generality, we suppose that all bridges of η are horizontal. Denote these

horizontal bridges by

hk1 , . . . , hkL−α where 1 ≤ k1 < · · · < kL−α ≤ L.
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Since 2L+i = H(η) is not a multiple of L by the condition i < (
√

6−2)L−1 <

L, at least one horizontal strip is not a bridge and hence α ≥ 1. Write

TL \ {k1, . . . , kL−α} = {k′1, . . . , k′α} where 1 ≤ k′1 < · · · < k′α ≤ L.

By Lemma 5.3.3, we have that

2L+ α = 3L− (L− α) ≤ H(σ) = 2L+ i and hence α ≤ i. (5.45)

Define δ ∈ N as

δ =
α∑
`=1

∆Hhk′
`

(η) ≥ 2α, (5.46)

where the inequality follows since ∆Hhk′
`

(η) ≥ 2 for all ` ∈ J1, αK (cf. Lemma

5.3.2). Now, we count possible number of nice pairs for fixed α and δ.

(Step 1) There are

(
L

α

)
ways to choose the positions of strips hk1 , . . . , hkL−α .

(Step 2) Number of possible spin configurations on hk1 ∪ · · · ∪ hkL−α:
If these horizontal bridges have three different spins, then all the vertical and

diagonal strips have energy at least 3, and hence by (5.25) we get

H(η) ≥ 1

2
(0 + 3L+ 3L) = 3L. (5.47)

This contradicts H(η) <
√

6L. If all these bridges are of the same spin, there

are q possible choices. If all these bridges consist of two spins, there exist

1 ≤ u < v ≤ L− α and a1, a2 ∈ Ω such that

hk` is an

a1-bridge if u ≤ ` < v,

a2-bridge otherwise,
(5.48)

since otherwise all the vertical and diagonal strips have energy at least 4 and

we get a contradiction as in (5.47). Now, we will see which values of (u, v)
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are available. By counting the number of spins in hk1 ∪ · · · ∪ hkL−α we should

have

‖η‖a1 ≥ 2L(v − u) and ‖η‖a2 ≥ 2L(L− α− v + u).

On the other hand, by (5.44), we have ‖η‖a1 , ‖η‖a2 ≤ L2 +1. Summing these

up, we get
L

2
− α ≤ v − u ≤ L

2
. Therefore, there are at most

q × (q − 1)× L× (α + 1) ≤ 2αLq2

ways of assigning spins on hk1 ∪ · · · ∪ hkL−α satisfying (5.48). Summing up,

there are at most q + 2αLq2 ≤ 3αLq2 possible choices on these strips.

(Step 3) Number of possible spin configurations on hk′1 ∪ · · · ∪ hk′α:

Write δ` = ∆Hhk′
`

(η) for ` ∈ J1, αK so that δ1 + · · ·+ δα = δ. Since each strip

hk′` has energy δ`, it should be divided into δ` monochromatic clusters. There

are

(
2L

δ`

)
ways of dividing hk′` ' T2L into δ` connected clusters, and there

are at most qδ` ways to assign spins to these clusters. Hence, given α and δ,

the number of possible spin choices on hk′1 ∪ · · · ∪ hk′α is at most

∑
δ1, ..., δα≥0: δ1+···+δα=δ

(
2L

δ1

)
· · ·
(

2L

δα

)
qδ1+···+δα =

(
2αL

δ

)
qδ. (5.49)

(Step 4) Since η is one of {σ, ζ} with bigger energy, we next count the

number of possible other configurations. This configuration is obtained from

η by an update which does not increase the energy. Since updating a spin in

a bridge always increases the energy, we have to update a spin in strips hk′` ,

` ∈ J1, αK. For each strip, hk′` has δ` monochromatic clusters as observed in

the previous step, and thus there are at most 2δ` updatable triangles in this

strip (which are located at the edge of each monochromatic cluster). Hence,

we have in total 2δ updatable triangles. Since each spin in the triangle can

be updated to at most three spins in order not to increase the energy, there

are at most 6δ possible ways of updates.
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Summing (Step 1)-(Step 4) up, the number of possible nice pairs for

given α and δ is bounded from above by

3×
(
L

α

)
× 3αLq2 ×

(
2αL

δ

)
qδ × 6δ,

where the first factor 3 reflects three possible directions for parallel bridges.

Since ∆Hv`(η), ∆Hd`(η) ≥ 2 for all ` ∈ TL by Lemma 5.3.2, we can deduce

from (5.25) that

δ =
α∑
`=1

∆Hhk′
`

(η) ≤ 2H(η)− 4L = 2i.

Combining with (5.46), we get δ ∈ J2α, 2iK. Thus, we can finally bound the

number of nice pairs by

i∑
α=1

2i∑
δ=2α

3×
(
L

α

)
× 3αLq2 ×

(
2αL

δ

)
qδ × 6δ. (5.50)

Since i < (
√

6− 2)L− 1, the following bounds hold for α ≤ i:(
L

α

)
≤
(
L

i

)
, 3αLq2 ≤ 3iLq2, and

(
2αL

δ

)
qδ × 6δ ≤ 12i

(
2iL

2i

)
q2i.

Therefore, we can bound the summation (5.50) from above by

i× 2i× 3×
(
L

i

)
× 3iLq2 × 12i

(
2iL

2i

)
q2i ≤ 216Li4q2i+2

(
L

i

)(
2iL

2i

)
.

By Stirling’s formula and the bound

(
L

i

)
≤ Li

i!
, the right-hand side of the

last formula can be bounded from above by

CLi4q2i × Li

i!
× (eL)2i ≤ C(eqL)3i+1
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for some constant C > 0. This concludes the proof.

5.7.3 Computation of Dirichlet form

In turn, we calculate the Dirichlet form Dβ(f) of the test function f = fA,B.

To this end, we decompose Dβ(f) as[ ∑
{σ, ζ}⊆N̂ (S)

+
∑

σ∈N̂ (S)

∑
ζ∈N̂ (S)c

+
∑

{σ, ζ}⊆N̂ (S)c

]
µβ(σ)rβ(σ, ζ)[f(ζ)−f(σ)]2 (5.51)

and we shall estimate three summations separately. We recall that we are

imposing the condition L10 � eβ on β. We write for each A ⊆ X ,

E(A) =
{
{σ, ζ} ⊆ A : σ ∼ ζ

}
. (5.52)

Lemma 5.7.7. We have∑
{σ, ζ}⊆N̂ (S)

µβ(σ)rβ(σ, ζ)[f(ζ)− f(σ)]2 =
1 + o(1)

qc
e−Γβ. (5.53)

Proof. By Propositions 5.5.3 and 5.5.4, we can decompose the left-hand side

of (5.53) as[ ∑
{σ, ζ}∈E(Ba, b)

+
∑

{σ, ζ}∈E(EA)

+
∑

{σ, ζ}∈E(EB)

]
µβ(σ)rβ(σ, ζ)[f(ζ)− f(σ)]2, (5.54)

since the test function f is constant on EA ∩ BA,B = N (RA,B
2 ) and EB ∩

BA,B = N (RA,B
L−2) as remarked in Definition 5.7.3.

Let us consider the first summation of (5.54). Suppose that σ ∈ DA,B.

If σ ∈ PA,Bn for some n ∈ J2, L − 2K, a ∈ A, and b ∈ B, then Lemma

5.4.23 and Definition 5.7.3-(2) assert that f(σ) = f(ζ). If σ ∈ Qa, bn for some

n ∈ J2, L−3K, a ∈ A, and b ∈ B, then Lemma 5.4.24 and Definition 5.7.3-(2)

imply that f(σ) = f(ζ). The similar conclusion holds for the case ζ ∈ DA,B
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by the same logic and hence the summand vanishes if either σ ∈ DA,B or

ζ ∈ DA,B. Thus, we can write the first summation of (5.54) as

∑
a∈A

∑
b∈B

L−3∑
n=2

∑
s∈{h, v, d}

∑
P≺P ′: |P |=n

∑
{σ, ζ}∈E(Ca, b

s(P,P ′))

µβ(σ)rβ(σ, ζ)[f(ζ)− f(σ)]2.

By Lemmas 5.4.19, 5.4.20, 5.4.21, and the definition of f , the last summation

on {σ, ζ} can be rearranged as∑
σ∈Ca, b

s(P,P ′),o, ζ∈C
a, b

s(P,P ′),e:σ∼ζ

µβ(σ)rβ(σ, ζ)[f(ζ)− f(σ)]2.

We now decompose this summation into three parts according to the value of

|pa, b(ζ)|. First suppose that |pa, b(ζ)| 6= 2, 2L− 2. Then, by the definition of

f , (5.8), and Theorem 5.1.2-(1), the summation under this restriction equals

4L×
2L−4∑
m=3

1

Zβ
e−Γβ × b2

c2

25/4

(5L− 3)2(L− 4)2
=

50b2L(L− 3)(1 + o(1))

qc2(5L− 3)2(L− 4)2
× e−Γβ.

Next we suppose that |pa, b(ζ)| = 2. Then the summation under this restric-

tion can be decomposed into[ ∑
ζ: |pa, b(ζ)|=2,

pa, b(ζ) connected

+
∑

ζ: |pa, b(ζ)|=2,

pa, b(ζ) disconnected

] ∑
σ: |pa, b(σ)|∈{1, 3}

µβ(σ)rβ(σ, ζ)[f(ζ)− f(σ)]2.

By the definition of f , (5.8), and part (1) of Theorem 5.1.2, the last display

equals (1 + o(1)) times

2L× 1

q
e−Γβ × b2

c2

9 + 9

(5L− 3)2(L− 4)2
+ L× 1

q
e−Γβ × b2

c2

4 + 4 + 16

(5L− 3)2(L− 4)2

=
60b2L(1 + o(1))

qc2(5L− 3)2(L− 4)2
e−Γβ.
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For the case |pa, b(ζ)| = 2L−2, we get the same result with the case |pa, b(ζ)| =
2 by an identical argument. Gathering the computations above and applying

the definition (5.42) of b, we can conclude that the first summation of (5.54)

is (1 + o(1)) times

∑
a∈A

∑
b∈B

L−3∑
n=2

∑
s∈{h, v, d}

∑
P≺P ′: |P |=n

50b2L(L− 3) + 60b2L+ 60b2L

qc2(5L− 3)2(L− 4)2
e−Γβ

= |A|(q − |A|)× 60b2L2

qc2(5L− 3)(L− 4)
e−Γβ =

b

qc2
e−Γβ.

(5.55)

Next, we turn to the second summation of (5.54). We decompose this

summation as ∑
{σ1, σ2}⊆OA

µβ(σ1)rβ(σ1, σ2)[f(σ2)− f(σ1)]2

+
∑
σ1∈OA

∑
σ2∈IArep

∑
ζ∈N (σ2)

µβ(σ1)rβ(σ1, ζ)[f(ζ)− f(σ1)]2.

By Proposition 5.5.9, this equals (1 + o(1)) times

[ ∑
{σ1, σ2}⊆OA

+
∑
σ1∈OA

∑
σ2∈IArep

]e−Γβ

q
rA(σ1, σ2)[f(σ2)− f(σ1)]2.

By the definition of f , this can be written as

(1 + o(1))
e2
A

c2

∑
{σ1, σ2}⊆V A

e−Γβ

q
rA(σ1, σ2)[hA(σ2)− hA(σ1)]2

= (1 + o(1))
e−Γβe2

A

qc2
× |V A|capA

(
S(A), RA,B

2

)
= (1 + o(1))

eA
qc2

e−Γβ.

(5.56)

In conclusion, we get∑
{σ, ζ}∈E(EA)

µβ(σ)rβ(σ, ζ)[f(ζ)− f(σ)]2 = (1 + o(1))
eA
qc2

e−Γβ.
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By an entirely same computation, the summation
∑

{σ, ζ}∈E(EB)

yields (1 +

o(1))
eB
qc2

e−Γβ. Gathering these results with (5.55), we can finally conclude

that (5.54) equals

(1 + o(1))× b + eA + eB
qc2

e−Γβ =
1 + o(1)

qc
e−Γβ,

as desired. This completes the proof.

Lemma 5.7.8. We have∑
σ∈N̂ (S)

∑
ζ∈N̂ (S)c

µβ(σ)rβ(σ, ζ)[f(ζ)− f(σ)]2 = o(e−Γβ). (5.57)

Proof. If σ ∈ N̂ (S) and ζ ∈ N̂ (S)c, we have that H(σ) ≤ 2L + 2 < H(ζ)

and therefore by (5.8), we can rewrite the left-hand side of (5.57) as[ ∑
σ∈EA

+
∑
σ∈EB

+
∑

σ∈Ba, b\Ea, b

] ∑
ζ∈N̂ (S)c

µβ(ζ)[f(ζ)− f(σ)]2. (5.58)

Let us consider the first summation.

• σ ∈ EA has a cross and ζ ∈ N̂ (S)c is adjacent to σ: By Proposition 5.5.4

and Lemma 5.5.6, σ has an a-cross for some a ∈ A and hAS(A),Ra, b2

(σ) = 1

so that f(σ) = 1 by the definition of f on EA. Moreover, by Lemma

5.7.6, we have

∑
b∈B

‖σ‖b ≤
∑

b∈Ω\{a}

‖σ‖b ≤
H(σ)2

6
≤ 2(L+ 1)2

3
.

Since ζ ∼ σ, we have
∑
b∈B

‖ζ‖b ≤ L2 and thus f(ζ) = 1 by the definition

of f . Hence, we have f(σ) = f(ζ) and we can neglect this case.

• σ ∈ EA is cross-free and ζ ∈ N̂ (S)c is adjacent to σ: By Lemma 5.4.18,
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the number of such σ is O(L6). Since there are at most 2qL2 possible

ζ ∈ N̂ (S)c with σ ∼ ζ, we obtain∑
σ∈EA

∑
ζ∈N̂ (S)c

µβ(ζ)[f(ζ)− f(σ)]2 ≤ O(L6)× qL2 × Ce−(Γ+1)β

= O(L8e−(Γ+1)β).

By the same logic, the second summation of (5.58) is O(L8e−(Γ+1)β) as well.

For the third summation of (5.58), we note that8

BA,B \ EA,B ⊆
L−3⋃
n=3

RA,B
n ∪

L−3⋃
n=2

CA,Bn, o ∪
L−3⋃
n=2

CA,Bn, e ∪ DA,B. (5.59)

Since |f(ζ)− f(σ)| ≤ 1, we have∑
ζ∈N̂ (S)c: ζ∼σ

µβ(ζ)[f(ζ)− f(σ)]2 ≤
∑

ζ∈N̂ (S)c: ζ∼σ

µβ(ζ),

and moreover by a direct computation, we get9

∑
ζ∈N̂ (S)c: ζ∼σ

µβ(ζ) =



O(L2e−(Γ+1)β) if σ ∈ RA,B
n ,

O(Le−(Γ+1)β) +O(L2e−(Γ+2)β) if σ ∈ CA,Bn, o ,

O(Le−(Γ+1)β) +O(L2e−(Γ+3)β) if σ ∈ CA,Bn, e ,

O(Le−(Γ+1)β) +O(L2e−(Γ+3)β) if σ ∈ DA,B.

Since

L−3∑
n=3

|RA,B
n | = O(L2) and

L−3∑
n=2

(
|CA,Bn, o |+ |CA,Bn, e |

)
+ |DA,B| = O(L4),

8This is not an equality; consider e.g., ξ ∈ Ca, b2, o with |pa, b(ξ)| = 1 for some a ∈ A and
b ∈ B.

9It is enough to find the order of the number of configurations adjacent to σ with energy
Γ + 1, Γ + 2, or Γ + 3. We omit tedious and elementary verification.
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we can combine the computations above along with (5.59) to conclude that

(as L� eβ)∑
σ∈Ba, b\Ea, b

∑
ζ∈N̂ (S)c

µβ(σ)rβ(σ, ζ)[f(ζ)− f(σ)]2 = O(L5e−(Γ+1)β).

We can now complete the proof by gathering all the results so far since∑
σ∈N̂ (S)

∑
ζ∈N̂ (S)c

µβ(σ)rβ(σ, ζ)[f(ζ)− f(σ)]2 = e−Γβ ×O(L8e−β) = oL(e−Γβ).

Lemma 5.7.9. We have∑
{σ, ζ}⊆N̂ (S)c

µβ(σ)rβ(σ, ζ)[f(ζ)− f(σ)]2 = oL(e−Γβ). (5.60)

Proof. By Proposition 5.7.5-(1) and the definition of f on N̂ (S)c, the left-

hand side of (5.60) can be written as

3L2−2L∑
i=3

∑
{σ, ζ}⊆N̂ (S)c:

σ∼ζ,max{H(σ), H(ζ)}=2L+i,∑
a∈A ‖σ‖a=L2 and

∑
a∈A ‖ζ‖a=L2−1

1

Zβ
e−(2L+i)β. (5.61)

By Theorem 5.1.2-(1) and Proposition 5.7.5-(2), the summation for 3 ≤ i <

(
√

6− 2)L− 1 is bounded by

CL×
∞∑
i=3

(CL)3ie−(2L+i)β ≤ Le2βe−Γβ

∞∑
i=3

(CL3e−β)i ≤ CL10e−βe−Γβ,

which equals o(e−Γβ). We emphasize that this is the location where the con-

dition L10 � eβ is crucially used.
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Next, by Lemma 5.2.4, there exists a positive integer θ such that

|X2L+i| ≤ q2L+i+1
∑

n3, n4, n5, n6≥0:
3n3+4n4+5n5+6n6=2L+i

(
θL2

n3

)(
θL2

n4

)(
θL2

n5

)(
θL2

n6

)
,

and thus by Theorem 5.1.2-(1), the summation (5.61) for i ≥ (
√

6− 2)L− 1

is bounded from above by

2qL2

3L2∑
j=b
√

6Lc

qj+1
∑

n3, n4, n5, n6≥0:
3n3+4n4+5n5+6n6=j

(
θL2

n3

)(
θL2

n4

)(
θL2

n5

)(
θL2

n6

)
e−βj,

where the factor 2qL2 comes from the trivial bound on the number of possible

ζ (resp. σ) given σ (resp. ζ). Using

(
α

β

)(
γ

δ

)
≤
(
α + γ

β + δ

)
, we bound this by

2q2L2

3L2∑
j=b
√

6Lc

(qe−β)j
∑

n3, n4, n5, n6≥0:
3n3+4n4+5n5+6n6=j

(
4θL2

n3 + n4 + n5 + n6

)
. (5.62)

Since n3 + n4 + n5 + n6 ≤
1

3
(3n3 + 4n5 + 5n5 + 6n6) =

j

3
≤ L2, and since

θ > 1, the last summation is bounded from above by

∑
n3, n4, n5, n6≥0:

3n3+4n4+5n5+6n6=j

(
4θL2

b j
3
c

)
≤
(

4θL2

b j
3
c

)
× CL6 ≤ CL6(4θL2)j/3

for some positive constant C. Hence, (5.62) is bounded from above by

CL8
∑

j>
√

6L−1

(qe−β)j(4θL2)j/3 = CL8
∑

j>
√

6L−1

(CL2/3e−β)j.

Since L2/3e−β � e−
14
15
β by the condition L10 � eβ, we can further bound the
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right-hand side by

CL8(Ce−
14
15
β)
√

6L−1 = oL(e−Γβ)

since
14

15

√
6 > 2.

Finally, we can now conclude the proof of Proposition 5.7.4.

Proof of Proposition 5.7.4. The fact that f ∈ C(S(A), S(B)) is immediate

from the construction of f on EA,B. The estimate of Dβ(f) follows from the

decomposition (5.51) and Lemmas 5.7.7, 5.7.8, and 5.7.9.

Remark 5.7.10. A careful reading of the proof reveals that Lemmas 5.7.7,

5.7.8, and 5.7.9 hold under the conditions L2/3 � eβ (the optimal condition

in view of Theorem 5.1.2), L8 � eβ, and L10 � eβ, respectively. This shows

that the sub-optimality of our result comes essentially from our ignorance of

the behavior of the process σβ(·) outside N̂ (S).

5.8 Lower bound for capacities

The purpose of this section is to establish a suitable test flow to apply the

generalized Thomson principle (Theorem 3.2.8). This yields the lower bound

for the capacity compensating for the upper bound obtained in the previous

section. At the end of the current section, the proof of Theorem 5.6.1 will

finally be presented. We note that Notation 5.7.1 will be consistently used in

the current section as well.

5.8.1 Construction of test flow

In view of Theorem 3.2.8, the test flow should approximate the flow cΨhS(A),S(B)

where hS(A),S(B) denotes the equilibrium potential between S(A) and S(B).
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We provide this approximation below. Since we already know the approxi-

mation of hS(A),S(B) from Definition 5.7.3, the construction of the test flow

follows naturally from it.

Definition 5.8.1 (Test flow). Recall the test function f = fA,B constructed

in Definition 5.7.3. We define the test flow ψ = ψA,B by (cf. Notation 5.7.2)

ψ(σ, ζ) =



µβ(σ)rβ(σ, ζ)[f(σ)− f(ζ)] if σ, ζ ∈ BA,B,
eA
Zβc

e−Γβ × [hA(σ)− hA(ζ)] if σ, ζ ∈ EA with σ ∼ ζ,

eB
Zβc

e−Γβ × [hB(ζ)− hB(σ)] if σ, ζ ∈ EB with σ ∼ ζ,

0 otherwise.

The well-definedness of the definitions on N (RA,B
2 ) and on N (RA,B

L−2) should

be carefully addressed. This can be checked by noting that, for σ, ζ ∈
N (RA,B

2 ) (resp.N (RA,B
L−2)), the definitions of ψ on BA,B and EA,B both imply

that ψ(σ, ζ) = 0, since we have f(σ) = f(ζ) as mentioned in Definition 5.7.3

and hA(σ) = hA(ζ) (resp. hB(σ) = hB(ζ)), as mentioned in Notation 5.7.2.

In the remainder of the current section, we shall prove the following propo-

sition.

Proposition 5.8.2. For the test flow ψ = ψA,B constructed in the previous

definition, it holds that

1

‖ψ‖2

[∑
σ∈X

hβS(A),S(B)(σ)(divψ)(σ)
]2

=
1 + o(1)

qc
e−Γβ. (5.63)

The proof of this proposition is divided into two steps. First, we have to

compute the flow norm ‖ψ‖2. This can be done by a direct computation with

our explicit construction of the test flow ψ and will be presented in Section

5.8.2. Then, it remains to compute the summation appearing in the left-hand
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side (5.63). To that end, we have to suitably estimate hS(A),S(B)(σ) and then

compute the divergence term (divψ)(σ). This will be done in Section 5.8.3.

Finally, in Section 5.8.4, we shall conclude the proof of Proposition 5.8.2 as

well as the proof of Theorem 5.6.1.

The main issue in the large-volume regime in the construction of the test

function carried out in the previous section is the construction on N̂ (S)c.

However, in the test flow, we do not encounter this sort of difficulty as we

simply assign zero flow on this remainder set. Instead, an additional difficulty,

compared to the small-volume regime, appears in the control of hS(A),S(B)(σ).

5.8.2 Flow norm of ψ

Proposition 5.8.3. For L2/3 � eβ, it holds that

‖ψ‖2 =
1 + o(1)

qc
e−Γβ.

Proof. The strategy is to compare the flow norm with the Dirichlet form of

f . Since ψ ≡ 0 on BA,B ∩EA and BA,B ∩EA as mentioned in Definition 5.8.1,

we can write

‖ψ‖2 =
[ ∑
{σ, ζ}⊆Ba, b

+
∑

{σ, ζ}⊆EA
+

∑
{σ, ζ}⊆EB

] ψ(σ, ζ)2

µβ(σ)rβ(σ, ζ)
. (5.64)

Let us consider three summations separately.

• By the definition of ψ on BA,B, we can write the first summation as∑
{σ, ζ}⊆Ba, b

µβ(σ)rβ(σ, ζ)[fA,B(σ)− fA,B(ζ)]2. (5.65)
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• By the definition of ψ on EA, the second summation equals

∑
{σ, ζ}⊆EA

1

µβ(σ)rβ(σ, ζ)
× e2

A

Z2
βc

2
e−2Γβ × [hA(σ)− hA(ζ)]2.

Note from Notation 5.7.2 that {σ, ζ} ⊆ EA with hA(σ) 6= hA(ζ) im-

plies max{H(σ), H(ζ)} = Γ. Thus, by (5.8), we can rewrite the last

summation as ∑
{σ, ζ}⊆EA

µβ(σ)rβ(σ, ζ)× e2
A

c2
[hA(σ)− hA(ζ)]2

=
∑

{σ, ζ}⊆EA
µβ(σ)rβ(σ, ζ)[f(σ)− f(ζ)]2.

(5.66)

Similarly, the third summation equals∑
{σ, ζ}⊆EB

µβ(σ)rβ(σ, ζ)[f(σ)− f(ζ)]2. (5.67)

Gathering (5.54), (5.55), (5.56), and (5.67), we can conclude that

‖ψ‖2 =
∑

{σ, ζ}⊆N̂ (S)

µβ(σ)rβ(σ, ζ)[f(σ)− f(ζ)]2.

The right-hand side is
1 + o(1)

qc
e−Γβ by Lemma 5.7.7 and the proof is com-

pleted.

5.8.3 Divergence of ψ

Next, we compute the summation appearing in (5.63). More precisely, we

wish to prove the following proposition in this section.
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Proposition 5.8.4. Suppose that L10 � eβ. Then, we have that

∑
σ∈X

hS(A),S(B)(σ)(divψ)(σ) =
1

qc
e−Γβ + o(e−Γβ). (5.68)

The proof is divided into several lemmas. We first look at the divergence

term (divψ)(σ). We deduce that this divergence is zero at most of the bulk

configurations.

Lemma 5.8.5. We have (divψ)(σ) = 0 if

(1) σ ∈ DA,B,

(2) σ ∈ Ca, bn, e for some a ∈ A, b ∈ B and n ∈ J2, L− 3K, and

(3) σ ∈ Ca, bn, o with |pa, b(σ)| ∈ J3, 2L − 3K for some a ∈ A, b ∈ B and

n ∈ J2, L− 3K.

Proof. (1) By the definition of f on Da, b in Definition 5.7.3, we have f(σ) =

f(ζ) for all ζ ∼ σ with ζ ∈ N̂ (S). Recalling the definition of ψ in Definition

5.8.1, we have ψ(σ, ζ) = 0 for all σ ∈ Da, b and ζ ∼ σ, and we are done.

(2) For σ ∈ Ca, bn, e with n ∈ J2, L − 3K, by Lemma 5.4.21 and (5.8), we can

write

(divψ)(σ) =
1

Zβ
e−Γβ ×

∑
ζ∈Ca, bn,o : ζ∼σ

[f(σ)− f(ζ)].

The last summation can be computed as

b

c
×
[ 5

2
− 5

2

(5L− 3)(L− 4)

]
= 0 if |pa, b(σ)| ∈ J4, 2L− 4K,

b

c
×
[ 3− 3

(5L− 3)(L− 4)

]
= 0 if |pa, b(σ)| = 2 and pa, b(σ) is connected,

b

c
×
[ 4− 2− 2

(5L− 3)(L− 4)

]
= 0 if |pa, b(σ)| = 2 and pa, b(σ) is disconnected,

and we can similarly handle the case |pa, b(σ)| = 2L−2. This proves part (2).
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(3) For σ ∈ Ca, bn, o with |pa, b(σ)| ∈ J3, 2L− 3K and n ∈ J2, L− 3K, by Lemma

5.4.20 and (5.8), we can write

(divψ)(σ) =
1

Zβ
e−Γβ ×

∑
ζ∈Ca, bn,e ∪Qa, bn : ζ∼σ

[f(σ)− f(ζ)].

For ζ ∈ Qa, bn , the summation vanishes by Lemma 5.4.24 and Definition 5.7.3-

(2). For ζ ∈ Ca, bn, e , the last summation is calculated as

b

c
×
[ 5

2
× 4− 5

2
× 4

(5L− 3)(L− 4)

]
= 0. (5.69)

This concludes the proof.

In the previous lemma, it has been shown that the divergence of ψ is zero

on all bulk configurations except in N (RA,B
n ) with n ∈ J2, L− 2K. We next

show that the divergences on these sets are canceled out with each other.

Lemma 5.8.6. Let ζ ∈ RA,B
n for some n ∈ J2, L− 2K. Then, we have∑
σ∈N (ζ)

(divψ)(σ) = 0.

Proof. Let a ∈ A, b ∈ B and n ∈ J2, L− 2K and then fix ζ ∈ Ra, b
n .

First, by definitions of f and ψ, we can readily deduce that ψ(ζ, ξ) = 0

for all ξ ∈ X and therefore we immediately have (divψ)(ζ) = 0. Next let

σ ∈ N (ζ) \ {ζ} so that, by Lemma 5.4.19,σ ∈ Ca, bn, o with |pa, b(σ)| = 1 or

σ ∈ Ca, bn−1, o with |pa, b(σ)| = 2L− 1.
(5.70)

(Case 1: n ∈ J3, L − 3K) By (5.8) and explicit definitions of f and ψ, we
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can check through elementary computations that

(divψ)(σ) =


1

Zβ

10be−Γβ

c(5L− 3)(L− 4)
if σ ∈ Ca, bn, o, |pa, b(σ)| = 1,

− 1

Zβ

10be−Γβ

c(5L− 3)(L− 4)
if σ ∈ Ca, bn−1, o, |pa, b(σ)| = 2L− 1.

(5.71)

Hence, we have

∑
σ∈N (ζ)

(divψ)(σ) = 0+
[ 1

Zβ

10be−Γβ

c(5L− 3)(L− 4)
− 1

Zβ

10be−Γβ

c(5L− 3)(L− 4)

]
×2L = 0.

(Case 2: n = 2 or L − 2) First, we let n = 2. By the same computation

above, we can check

(divψ)(σ) =
1

Zβ

10be−Γβ

c(5L− 3)(L− 4)
if σ ∈ Ca, b2, o with |pa, b(σ)| = 1. (5.72)

On the other hand, by the definition of ψ on EA, we can write∑
σ∈Ca, b1, o ∩N (ζ)

(divψ)(σ) =
∑

σ∈Ca, b1, o ∩N (ζ)

∑
ξ∈OA: ξ∼σ

ψ(σ, ξ) =
∑

σ∈N (ζ)

∑
ξ∈OA: ξ∼σ

ψ(σ, ξ),

where the first equality holds since, for σ ∈ Ca, b1, o ∩N (ζ), we have ψ(σ, ξ) = 0

unless ξ ∈ OA, and the second equality holds since the configurations in

Ca, b2, o ∪ {ζ} is not connected with OA. By (5.8), we can write

∑
σ∈N (ζ)

∑
ξ∈OA: ξ∼σ

ψ(σ, ξ) =
∑

σ∈N (ζ)

∑
ξ∈OA: ξ∼σ

eA
Zβc

e−Γβ[hA(σ)− hA(ξ)]

=
eA
Zβc

e−Γβ
∑
ξ∈OA

rA(ζ, ξ)[hA(ζ)− hA(ξ)]

= − eA
Zβc

e−Γβ × (LAhA)(ζ),

where the second equality follows from Notation (5.7.2) and the definition of
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rA (cf. (5.38)). By the property of capacities (e.g. [16, Lemmas 7.7 and 7.12])

and the definition of eA (cf. (5.39)), we get

∑
ζ∈Ra, b2

(LAhA)(ζ) = |V A|capA
(
S(A), RA,B

2

)
=

1

eA
, (5.73)

and therefore by symmetry, we get

(LAhA)(ζ) =
1

|RA,B
2 |eA

=
1

3L|A|(q − |A|)eA
,

where the factor 3 comes from three possible directions. By gathering the

computations above, we can conclude that

∑
σ∈Ca, b1, o ∩N (ζ)

(divψ)(σ) =
1

Zβc
e−Γβ × 1

3L|A|(q − |A|)
. (5.74)

By (5.72) and (5.74), Theorem 5.1.2-(1), and by recalling the definitions

(5.42) of b and c, we finally get

∑
σ∈N (ζ)

(divψ)(σ) =
1

Zβ

10be−Γβ

c(5L− 3)(L− 4)
×2L− 1

Zβc
e−Γβ× 1

3L|A|(q − |A|)
= 0.

Since the proof for the case n = L−2 is identical, the proof is completed.

Next, we turn to the divergences of ψ on the edge typical configurations.

Lemma 5.8.7. For all σ ∈ OA ∪ OB, we have (divψ)(σ) = 0.

Proof. We only consider the case σ ∈ OA since the proof for OB is identical.

By definition of ψ, we can write

(divψ)(σ) =
∑

ζ∈EA: ζ∼σ

ψ(σ, ζ) =
∑

ζ∈EA: ζ∼σ

eA
Zβc

e−Γβ ×
[
hA(σ)− hA(ζ)

]
= − eA

Zβc
e−Γβ × (LAhA)(σ).
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Since OA ⊆ EA \ (S(A)∪RA,B
2 ), we have (LAhA)(σ) = (LAhAS(A),Ra, b2

)(σ) = 0

by the elementary property of equilibrium potentials. This completes the

proof.

Lemma 5.8.8. For a ∈ A, b ∈ B, and σ ∈ Ca, b1, o ∪ C
a, b
L−2, o with |pa, b(σ)| ∈

J3, 2L− 3K, we have (divψ)(σ) = 0.

Proof. By symmetry, we may assume σ ∈ Ca, b1, o and |pa, b(σ)| ∈ J3, 2L − 3K.
Then as N (σ) = {σ}, we may write

(divψ)(σ) =
∑

ζ∈EA: ζ∼σ

ψ(σ, ζ) =
∑

ζ∈OA: ζ∼σ

eA
Zβc

e−Γβ ×
[
hA(σ)− hA(ζ)

]
= − eA

Zβc
e−Γβ × (LAhA)(σ).

Since σ /∈ S(A) ∪ RA,B
2 , we again have (LAhA)(σ) = (LAhAS(A),Ra, b2

)(σ) = 0

and the proof is completed.

Lemma 5.8.9. We have (divψ)(σ) = 0 for all σ ∈ N (ζ) with ζ ∈ IArep \
(S(A) ∪RA,B

2 ∪ CA,B1, o ).

Proof. For all ξ ∈ N̂ (S) with σ ∼ ξ, by Lemma 5.5.8, both σ and ξ have an

a-cross for some a ∈ A. Therefore, we have by Lemma 5.5.6 that hA(σ) =

hA(ξ) = 1 and therefore we have ψ(σ, ξ) = 0. This concludes the proof.

Lemma 5.8.10. We have∑
σ∈N (S(A))

(divψ)(σ) =
1

Zβc
e−Γβ and

∑
σ∈N (S(B))

(divψ)(σ) = − 1

Zβc
e−Γβ.

Proof. We focus only on the first one since the proof for the second one is

identical. As in the previous proof, we can write∑
σ∈N (S(A))

(divψ)(σ) =
∑

σ∈S(A)

∑
ζ∈EA: ζ∼σ

eA
Zβc

e−Γβ ×
[
hA(σ)− hA(ζ)

]
= − eA

Zβc
e−Γβ ×

∑
σ∈S(A)

(LAhA)(σ).
(5.75)
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By the same reasoning with (5.73), we have that

∑
σ∈S(A)

(LAhA)(σ) = −|V A|capA
(
S(A), RA,B

2

)
= − 1

eA
,

and injecting this to (5.75) completes the proof.

Since we only have the control on the summation of divergences in the

N -neighborhoods of ground states or regular configurations, we need the

following flatness result on the equilibrium potential hβS(A),S(B) on these N -

neighborhoods to control the summation at the left-hand side of (5.68).

Lemma 5.8.11. There exists C > 0 such that the following results hold.

(1) For s ∈ S and σ ∈ N (s), denote by Nσ the shortest length of (Γ− 1)-

paths connecting s and σ. Then, it holds that

∣∣hS(A),S(B)(σ)− hS(A),S(B)(s)
∣∣ ≤ CNσe

−β. (5.76)

(2) For all n ∈ J2, L− 2K and ζ ∈ RA,B
n , it holds that

max
σ∈N (ζ)

∣∣hS(A),S(B)(σ)− hS(A),S(B)(ζ)
∣∣ ≤ CL2e−β.

The proof of this lemma follows from a well-known standard renewal

argument (cf. [16, Lemma 8.4]) along with rough estimate of capacities based

on the Dirichlet–Thomson principles. Moreover, the proof is identical to that

of Lemma 3.5.8. Thus, we omit the detail of the proof. The reason why

we have the L2-term in the right-hand side of part (2) comes from explicit

computation, i.e., the number of pairs of configurations (ξ1, ξ2) with ξ1 ∈
N (ζ), ξ2 /∈ N (ζ), and ξ1 ∼ ξ2.

We next control the factor Nσ appearing in (5.76). Note that this quan-

titative result was not needed in small-volume regime.
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Lemma 5.8.12. In the notation of Lemma 5.8.11 with s = a for some

a ∈ A, we have Nσ < 4L if (divψ)(σ) 6= 0.

Proof. By the definition of ψ that for σ ∈ N (s),

(divψ)(σ) =
∑

ζ∈OA: ζ∼σ

ψ(σ, ζ) =
∑
ζ∈OA

eA
Zβc

e−Γβ × [1− hA(ζ)]. (5.77)

Therefore, (divψ)(σ) 6= 0 if and only if there exists ζ ∈ OA with hA(ζ) 6= 1.

Therefore, the statement of lemma is a direct consequence of Lemma 5.5.7.

Lemma 5.8.13. There exists C > 0 such that∑
σ∈N (ζ)

|(divψ)(σ)| ≤ CL2e−Γβ for all ζ ∈ RA,B
n with n ∈ J2, L− 2K,

(5.78)∑
σ∈N (s)

|(divψ)(σ)| ≤ CL9e−Γβ for all s ∈ S. (5.79)

Proof. First, suppose that ζ ∈ RA,B
n with n ∈ J3, L− 3K. Then, we have by

(5.71) that

∑
σ∈N (ζ)

|(divψ)(σ)| = 8L× 1

Zβ

10be−Γβ

c(5L− 3)(L− 4)
≤ CL−1e−Γβ,

where the factor 8L denotes the number of σ ∈ N (ζ)\{ζ}. This proves (5.78)

in this case.

Next, suppose that ζ ∈ RA,B
2 , say ζ ∈ Ra, b

2 for some (a, b) ∈ A × B.

In this case, as above, we again have (divψ)(ζ) = 0 and for σ ∈ N (ζ) with

σ ∈ Ca, b2, o and |pa, b(σ)| = 1,

|(divψ)(σ)| = 1

Zβ

10be−Γβ

c(5L− 3)(L− 4)
≤ CL−2e−Γβ. (5.80)
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Moreover, if σ ∈ N (ζ) with σ ∈ Ca, b1, o and |pa, b(σ)| = 2L − 1, then by the

definition of ψ, we have

|(divψ)(σ)| ≤
∑
ξ: ξ∼σ

|ψ(σ, ξ)| =
∑
ξ: ξ∼σ

eA
Zβc

e−Γβ × |hA(σ)− hA(ξ)|.

Since number of such ξ is trivially bounded by 2qL2, we can bound the right-

hand side using Proposition 5.5.10 by

2qL2 × CL−1e−Γβ = 2qCLe−Γβ, (5.81)

where we used |hA(σ)− hA(ξ)| ≤ 1. Therefore by (5.80) and (5.81), we have∑
σ∈N (ζ)

|(divψ)(σ)| ≤ 4L× CL−2e−Γβ + 4L× 2qCLe−Γβ = O(L2e−Γβ),

where the two factors 4L denote the number of such possible σ. This con-

cludes (5.78) in the case ζ ∈ RA,B
2 . The case RA,B

L−2 can be proved in the same

manner. Thus, we conclude the proof of (5.78).

Finally, we prove (5.79). We may assume s = a for some a ∈ A. By the

definition of ψ, we have∑
σ∈N (a)

|(divψ)(σ)| =
∑

σ∈N (a)

∑
ζ∈OA:σ∼ζ

eA
Zβc

e−Γβ × |hA(σ)− hA(ζ)|.

Since the summand vanishes if hA(ζ) = hA(σ), we can bound the right-hand

side by∑
σ∈N (a)

∑
ζ∈OA:σ∼ζ, hA(ζ)6=1

eA
Zβc

e−Γβ ≤
∑

σ∈N (a)

∑
ζ∈OA:σ∼ζ, hA(ζ) 6=1

CL−1e−Γβ,

where the inequality is induced by Proposition 5.5.10 and Theorem 5.1.2-(1).

By Lemma 5.5.7, the number of such σ so that the summand does not vanish

is O(L8), and for each such σ, the corresponding ζ has at most 2qL2 choices.
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Thus, we conclude∑
σ∈N (a)

|(divψ)(σ)| ≤ O(L8)× 2qL2 × CL−1e−Γβ = O(L9e−Γβ).

This concludes the proof of Lemma 5.8.13.

Now, we are ready to prove Proposition 5.8.4.

Proof of Proposition 5.8.4. It is clear from the definition of ψ that divψ = 0

on N̂ (S)c. Hence, by Lemmas 5.8.5, 5.8.7, 5.8.8, and 5.8.9, we can write the

left-hand side of (5.68) as

[ L−2∑
n=2

∑
ζ∈Ra, bn

∑
σ∈N (ζ)

+
∑
ζ∈S

∑
σ∈N (ζ)

]
hS(A),S(B)(σ)(divψ)(σ). (5.82)

By Lemmas 5.8.6, 5.8.10, 5.8.11, 5.8.12, and 5.8.13, this equals

1

Zβc
e−Γβ+L2×O(L2e−β)×O(L2e−Γβ)+O(Le−β)×O(L9e−Γβ) =

1 + o(1)

Zβc
e−Γβ,

since L10 � eβ, where the factor L2 takes the possibility of selecting a regular

configuration in RA,B
n , n ∈ J2, L − 2K into account. By Theorem 5.1.2-(1),

the proof is completed.

5.8.4 Proof of Theorem 5.6.1

First, by gathering the previous proposition with Proposition 5.8.3, we can

conclude the proof of Proposition 5.8.2.

Proof of Proposition 5.8.2. By Propositions 5.8.3 and 5.8.4, we have

‖ψA,B‖2 =
1 + o(1)

qc
e−Γβ,

∑
σ∈X

hS(A),S(B)(σ)(divψA,B)(σ) =
1 + o(1)

qc
e−Γβ.
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Inserting these to the left-hand side of (5.63) completes the proof.

Then, we can now complete the proof of the capacity estimate.

Proof of Theorem 5.6.1. By Theorem 3.2.5 and Proposition 5.7.4, we get the

upper bound as

Capβ
(
S(A), S(B)

)
≤ Dβ(fA,B) =

1 + o(1)

qc
e−Γβ.

On the other hand, by Theorem 3.2.8 and Proposition 5.8.2, we get the

matching lower bound as

Capβ
(
S(A), S(B)

)
≥ 1

‖ψA,B‖2

[∑
σ∈X

hS(A),S(B)(σ)(divψA,B)(σ)
]2

=
1 + o(1)

qc
e−Γβ.

The proof is completed by combining these upper and lower bounds.
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Chapter 6

Blume–Capel model

6.1 Main results

6.1.1 Model definition

Blume–Capel model

We define the Blume–Capel model on the finite 2D lattice box Λ = J1, KK×
J1, LK, where K and L are fixed positive integers. For convenience, we assume

that

5 ≤ K ≤ L. (6.1)

We impose either open or periodic boundary conditions on Λ. If K = L

under the periodic boundary conditions, the lattice is indeed TL × TL as in

the previous studies [26, 28, 53]. For x, y ∈ Λ, we write x ∼ y if they are

nearest neighbors; that is, |x− y| = 1.

We have three spins in this model, namely −1, 0, and +1. We denote by

X = {−1, 0, +1}Λ the space of the spin configurations on Λ. Subsequently,

we define the Hamiltonian H : X → R as

H(σ) =
∑
x∼y

{σ(x)− σ(y)}2 − λ
∑
x∈Λ

σ(x)2 − h
∑
x∈Λ

σ(x). (6.2)
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Here, σ(x) is the spin of configuration σ ∈ X at site x ∈ Λ. Moreover, we

assume that the chemical potential λ and external field h are both zero, so

that

H(σ) =
∑
x∼y

{σ(x)− σ(y)}2. (6.3)

We denote by µβ the Gibbs distribution on X associated with the Hamilto-

nian H at the inverse temperature β > 0:

µβ(σ) =
1

Zβ
e−βH(σ), Zβ =

∑
σ∈X

e−βH(σ). (6.4)

We denote by −1, 0, +1 ∈ X the monochromatic configurations, of which

all spins are −1, 0, +1, respectively. We write

S = {−1, 0, +1}. (6.5)

When we select spins a or b, the corresponding monochromatic configuration

is denoted by a ∈ S or b ∈ S, respectively. It is precisely on S that H(·)
attains its minimum 0, and hence, S denotes the collection of ground states.

The following estimates are straightforward:

Zβ = 3 +O(e−2β) and lim
β→∞

µβ(s) =
1

3
for all s ∈ S. (6.6)

Also, recall the continuous-time MH dynamics σβ(·) = σMH
β (·).

Remark 6.1.1. We remark on the model symmetry. First, our model is fully

symmetric with respect to the spin correspondence −1↔ +1. However, our

model is not symmetric with respect to −1↔ 0 or 0↔ +1. Therefore, spins

−1 and +1 play the same role, but spin 0 does not. This is the main difference

from the Potts model studied in Chapter 3, in which all of the spins play the

same role. More specifically, we present the following differentiated features

in this chapter:
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• The canonical transitions occur only along good pairs of spins (cf. No-

tation 6.3.1). Thus, when analyzing the relevant configurations, care

should be taken with this underlying asymmetry of the model.

• The typical configurations are defined individually for each good pair,

whereas the corresponding ones are globally defined in Section 3.4.3.

This is because the edge typical configurations near −1 and +1 possess

a different structure compared to those near 0 (cf. Section 6.5; see also

Remark 6.5.1).

• We cannot estimate the capacities in a unified manner owing to the

model asymmetry; thus, we first construct fundamental test functions

and flows in Section 6.6, which serve as the building blocks for the actual

test objects. Subsequently, in Section 6.7, we construct individual test

objects for each capacity (cf. Theorem 6.2.2).

6.1.2 Main results: large deviation-type results

In this subsection, we explain the large deviation-type main results on the

metastable behavior.

Theorem 6.1.2 (Energy barrier). Define a constant Γ by

Γ =

2K + 2 under periodic boundary conditions,

K + 1 under open boundary conditions.
(6.7)

Then, it holds that

Γ−1, 0 = Γ0,+1 = Γ−1,+1 = Γ. (6.8)

The proof of Theorem 6.1.2 is provided in Section 6.3.2.

Large deviation-type results

Recall the concepts defined before Theorem 4.1.4.
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Theorem 6.1.3 (Large deviation-type results). The following statements

hold.

(1) (Transition time) For all s, s′ ∈ S and ε > 0, we have

lim
β→∞

Ps[eβ(Γ−ε) < τS\{s} ≤ τs′ < eβ(Γ+ε)] = 1, (6.9)

lim
β→∞

1

β
logEs[τS\{s}] = lim

β→∞

1

β
logEs[τs′ ] = Γ. (6.10)

Moreover, under Ps, as β →∞,

τS\{s}
Es[τS\{s}]

⇀ Exp(1) and
τs′

Es[τs′ ]
⇀ Exp(1), (6.11)

where Exp(1) represents the exponential distribution with parameter 1.

(2) (Mixing time) For all ε ∈ (0, 1/2), the mixing time tmix
β (ε) satisfies

lim
β→∞

1

β
log tmix

β (ε) = Γ.

(3) (Spectral gap) There exist constants 0 < c1 = c1(K, L) ≤ c2 =

c2(K, L) such that

c1e
−βΓ ≤ λβ ≤ c2e

−βΓ.

Remark 6.1.4. The connection between Theorems 6.1.2 and 6.1.3 is that the

concepts discussed in Theorem 6.1.3 (the transition time, mixing time, and

inverse spectral gap) have an exponential scale with respect to the inverse

temperature β → ∞, and the precise scale is the energy barrier Γ between

the ground states that are determined in Theorem 6.1.2.

Remark 6.1.5. We remark that in Theorem 6.1.3, the only difference between

the two boundary types (periodic and open) relates to the exact value of

Γ, whereas the other features regarding the three concepts are identical.

Thus, we state that they share the same exponential features in the study
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of metastability. However, crucial differences between them arise in more

quantitative analyses of the metastable transitions, which are presented in

Section 6.1.3. That is, the sub-exponential prefactor differs between the two

boundary types because it depends on the number of possible metastable

transition paths between the ground states. The reason for this difference is

briefly discussed in Section 6.8.

The proof of Theorem 6.1.3 is provided in Section 6.3.4.

Metastable transition paths between ground states

We obtain the following theorem for the metastable transition paths. We

remark that part (1) of Theorem 6.1.6 implies the same behavior of the

metastable transition from −1 to +1 as that demonstrated in [53, Proposi-

tion 2.1], where the authors investigated the case of λ = 0 and h > 0.

Theorem 6.1.6 (Transition paths). We have the following asymptotics for

the metastable transitions:

(1) Starting from −1, the chain must visit 0 on its way to visiting +1:

lim
β→∞

P−1[τ0 < τ+1] = 1.

Similarly, we have lim
β→∞

P+1[τ0 < τ−1] = 1.

(2) Starting from 0, the probability of hitting −1 before +1 is equal to the

opposite case; that is,

lim
β→∞

P0[τ−1 < τ+1] = lim
β→∞

P0[τ+1 < τ−1] =
1

2
.

Using the potential-theoretic terminology, the above theorem is equivalent

to

lim
β→∞

h0,+1(−1) = lim
β→∞

h0,−1(+1) = 1 and lim
β→∞

h−1,+1(0) =
1

2
.
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We remark that part (2) of Theorem 6.1.6 is straightforward based on the

symmetry of our model (cf. Remark 6.1.1). The proof of part (1) of this

theorem is presented in Section 6.4.3.

6.1.3 Main results: potential-theoretic results

A crucial difference between the results in the current and preceding subsec-

tions is that the quantitative results in this subsection are dependent on the

selection of the boundary conditions. For simplicity, we assume open boundary

conditions in this subsection. The periodic case can be handled in a similar

manner; thus, we briefly discuss the periodic case in Section 6.8.

Eyring–Kramers formula

The following result generalizes (6.10), in the sense that it characterizes the

sub-exponential prefactor with respect to the exponential factor eβΓ that

appears in the quantities in Theorem 6.1.3.

Theorem 6.1.7 (Eyring–Kramers law). Under open boundary conditions on

Λ, there exists a constant κ = κ(K, L) > 0 such that the following estimates

hold:

(1) E−1[τ{0,+1}] = E+1[τ{−1,0}] ' κeβΓ and E0[τ{−1,+1}] '
κ

2
eβΓ.

(2) E−1[τ0] = E+1[τ0] ' κeβΓ.

(3) E0[τ−1] = E0[τ+1] ' 2κeβΓ.

(4) E−1[τ+1] = E+1[τ−1] ' 3κeβΓ.

Moreover, the constant κ satisfies (cf. (6.1))

lim
K→∞

κ(K, L)

KL
=

1/4 if K < L,

1/8 if K = L.
(6.12)
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The proof of Theorem 6.1.7 is discussed in Section 6.2.

Remark 6.1.8. The limit (6.12) provides the aforementioned prefactor esti-

mate of the metastable transition times. According to Remark 6.1.5, it can

be expected that in the periodic boundary case, a different estimate on the

prefactor κ = κ(K, L) will be obtained. This is indeed the case and the

precise estimate in the periodic case is (6.55) provided in Section 6.8. The

asymptotic factor difference between the conditions on the boundaries is

KL, which is fundamentally owing to the number of possible paths for the

canonical transitions (cf. Definition 6.3.3). We refer to Section 6.8 for a more

detailed explanation of this comparison.

Remark 6.1.9. A notable feature that only the open boundary model pos-

sesses is that we can explicitly compute the constant κ, which is provided

in Definition 6.2.1. More specifically, the edge constant e = e(K) can be

completely characterized, which is described in Section 6.9 by solving the

symmetric recurrence formulas (cf. (6.61) and (6.62)). This is not the case

in the periodic boundary case; we can clearly characterize the asymptotic

limit (6.55), but we cannot obtain such an explicit formula for the edge con-

stant e′ = e′(K, L) (note that e′ depends on both K and L). We overcome

this drawback in the periodic case by providing a sufficient upper bound on

e′ (cf. (6.57)).

Remark 6.1.10. We compare the precise asymptotics obtained in Theorem

6.1.7 to those obtained in [53, Propositions 2.4 and 2.5] and [28, Theorems 5

and 6] for the case of λ = 0 and h > 0. The main observable difference is that

the asymptotics are dependent on the lattice size K × L, which was not the

case in previous studies. This is because in our setting, canonical metastable

transitions (cf. Definition 6.3.3) occur by updating the spins of the entire

lattice line by line; each spin update of a line constitutes a positive portion

of the expected transition time. Hence, the exact lattice size is relevant in

this case. However, in the case of λ = 0 and h > 0, the essence of the

metastable transition is the construction of a specific form of critical saddle

322



CHAPTER 6. BLUME–CAPEL MODEL

configurations. Following the formulation, the process rapidly proceeds to

the target ground state. Hence, the lattice only needs to be sufficiently large

to contain such critical configurations and the exact size is irrelevant to the

sharp transition time.

Remark 6.1.11. An interesting phenomenon occurs in [53, Propositions 2.4

and 2.5] for the case of λ = 0 and h > 0, which is that the time scale of the

expected transition time E−1[τ0] is larger than the time scale of E−1[τ+1] and

E0[τ+1]. This is owing to the fact that the main contribution to the quantity

E−1[τ0] originates from the event that the process (starting from −1) first

hits +1 and subsequently arrives at 0, which means that the valley with

respect to +1 is much deeper than the others. This is not the case in our

model, because the valley depths are all equal to Γ according to Theorem

6.1.2. Hence, we determine that all of the relevant expected transition times

share the same time scale, which is eβΓ.

Markov chain model reduction

Again, recall the accelerated process σ̃β(t), t ≥ 0 and the accelerated trace

process Yβ(t), t ≥ 0 defined as in Section 3.1.2. We define the limiting Markov

chain {Y (t)}t≥0 on S as the continuous-time Markov chain that is associated

with the transition rate

rY (s, s′) =

κ−1 if {s, s′} = {−1, 0} or {0, +1},

0 otherwise.
(6.13)

Theorem 6.1.12 (Markov chain reduction). Under open boundary condi-

tions on Λ, the following statements hold.

(1) For s ∈ S, the law of the Markov chain Yβ(·) starting from s converges

to the law of the limiting Markov chain Y (·) starting from s in the limit

β →∞.
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(2) The accelerated process spends negligible time outside S; that is,

lim
β→∞

sup
s∈S

Es
[ ∫ t

0

1{σ̃β(u) /∈ S}du
]

= 0.

The proof of Theorem 6.1.12 is discussed in Section 6.2.

6.2 Outline of proofs

In this section, we provide an outline of the proofs of the main theorems

presented in Section 6.1. Henceforth, we assume that the lattice Λ is given

open boundary conditions; that is, Λ = J1, KK × J1, LK ⊆ Z2, except in

Section 6.8, where we briefly discuss the case of periodic boundaries. The

basic story of the proofs is as explained in Section 3.2.

We define the following constants that characterize the constant κ that

appears in Theorem 6.1.7.

Definition 6.2.1. We define the constants b, e, and κ.

• The bulk and edge constants b = b(K, L) and e = e(K) are defined as

b =


K(L− 4)

4
if K < L

K(L− 4)

8
if K = L

and e =

1/(4cK) if K < L,

1/(8cK) if K = L,

(6.14)

where cK is the constant defined in (6.59).

• The constant κ = κ(K, L) is defined as

κ = b + 2e. (6.15)

We thus obtain the following theorem, which provides the main capacity

estimate.
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Theorem 6.2.2 (Capacity estimates). The following estimates hold for the

relevant capacities:

(1) Capβ(−1, {0, +1}) = Capβ(+1, {−1, 0}) ' 1

3κ
e−βΓ.

(2) Capβ(−1, 0) = Capβ(+1, 0) ' 1

3κ
e−βΓ.

(3) Capβ(0, {−1, +1}) ' 2

3κ
e−βΓ.

(4) Capβ(−1, +1) ' 1

6κ
e−βΓ.

The fact that theses capacity estimates readily provide the proof of the

Eyring–Kramers formulas are now routine; we refer the readers to Section

3.2.4 and omit the details. Thus, it suffices to prove Theorem 6.2.2, which

can be done by applying the strategies explained in Section 3.2.

The remainder of this chapter is organized as follows. In Section 6.3, we

define several basic concepts that are crucial to understanding the natural

metastable transitions between the ground states. During this process, we

prove Theorems 6.1.2 and 6.1.3. In Sections 6.4 and 6.5, we define and in-

vestigate the typical and gateway configurations that are the building blocks

of the overall energy landscape of our model. Such thorough investigation

results in the proof of Theorem 6.1.6 in Section 6.4. In Section 6.6, we con-

struct the fundamental test functions and flows, which are the components of

the actual test objects, to estimate the capacities. Thereafter, in Section 6.7,

we prove the capacity estimates in Theorem 6.2.2. Finally, in Section 6.8, we

discuss the periodic boundary case. Section 6.9 is devoted to investigating

the auxiliary process, which is used to handle the edge typical configurations

in Section 6.5.
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Figure 6.1: In the figures in this article, white, gray, and orange colors denote
the spins −1, 0, and +1, respectively. (Left) canonical configurations for
(K, L) = (4, 5); ζ+

2 , ζ+−
2,1 (upper-right), ζ−3 (lower-left), and ζ−+

3,3 . (Right) a
canonical path from 0 to +1 for (K, L) = (4, 5).

6.3 Canonical configurations and energy bar-

rier

The following notation is frequently used throughout the remainder of the

chapter.

Notation 6.3.1. A pair (a, b) of spins is called good, if {a, b} = {−1, 0} or

{0, +1}.

Throughout the article, we use v and h to denote vertical and horizontal

lengths, respectively.

6.3.1 Canonical configurations and paths

Definition 6.3.2 (Pre-canonical configurations and paths). Here, we define

pre-canonical configurations between −1 and 0. We refer to Figure 6.1 (left)

for an illustration.
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• For v ∈ J0, LK, we denote by ζ+
v ∈ X the spin configuration whose

spins are 0 on J1, KK × J1, vK and −1 on the remainder. Moreover,

we denote by ζ−v ∈ X the spin configuration whose spins are 0 on

J1, KK × JL − v + 1, LK and −1 on the remainder. Hence, we have

ζ+
0 = ζ−0 = −1 and ζ+

L = ζ−L = 0. For v ∈ J0, LK, we write

Rv = {ζ+
v , ζ

−
v }. (6.16)

• For v ∈ J0, L− 1K and h ∈ J0, KK, we denote by ζ++
v, h ∈ X the configu-

ration whose spins are 0 on

[
J1, KK× J1, vK

]
∪
[
J1, hK× {v + 1}

]
and −1 on the remainder. Similarly, we denote by ζ+−

v, h ∈ X the config-

uration whose spins are 0 on

[
J1, KK× J1, vK

]
∪
[
JK − h+ 1, KK× {v + 1}

]
and −1 on the remainder. Namely, we obtain ζ++

v, h (resp. ζ+−
v, h ) from ζ+

v

by attaching a protuberance of spin 0 of size h at its upper-left (resp.

upper-right) corner of the cluster of spin 0. Similarly, we define ζ−+
v, h

and ζ−−v, h by attaching a protuberance of spin 0 of size h in ζ−v . For

v ∈ J0, L− 1K, we write

Qv =
K−1⋃
h=1

{ζ++
v, h , ζ

+−
v, h , ζ

−+
v, h , ζ

−−
v, h}. (6.17)

Concisely, Qv consists of the configurations which connect the ones in

Rv and Rv+1.
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• We define the collection C of pre-canonical configurations as

C =
L⋃
v=0

Rv ∪
L−1⋃
v=0

Qv.

• Finally, a sequence (ωn)KLn=0 of configurations is a pre-canonical path if

it satisfies the following conditions; see Figure 6.1 (right).

– ωKv = ζ+
v for all v ∈ J0, LK (Type 1) or ωKv = ζ−v for all v ∈ J0, LK

(Type 2).

– (Type 1) For each v ∈ J0, L− 1K, ωKv+h = ζ++
v, h for all h ∈ J0, KK

or ωKv+h = ζ+−
v, h for all h ∈ J0, KK.

– (Type 2) For each v ∈ J0, L− 1K, ωKv+h = ζ−+
v, h for all h ∈ J0, KK

or ωKv+h = ζ−−v, h for all h ∈ J0, KK.

We can readily verify that a pre-canonical path is indeed a path. Moreover,

pre-canonical paths characterize all the possible paths from −1 to 0 in C if

K < L. However, more possible paths exist if K = L; that is, the transposed

pre-canonical paths.

Based on this observation, we define canonical configurations and paths

between the ground states as follows:

Definition 6.3.3 (Canonical configurations and paths). For two spins a and

b, we denote by X a, b ⊆ X the collection of configurations of which all spins

are either a or b. Then, we define the natural one-to-one correspondence

Ξa, b : X−1, 0 → X a, b which maps spins −1 and 0 to a and b, respectively.

Now, we fix a good pair (a, b) (cf. Notation 6.3.1). Then, we divide into

the cases of K < L and K = L.

• (Case K < L) We define the collection Ca, b of canonical configurations

between a and b as

Ca, b = Ξa, b(C).
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By symmetry, using Ξb, a instead of Ξa, b yields the same result, so that

Ca, b = Cb, a. Then, we define (cf. (6.16) and (6.17))

Ra, b
v = Ξa, b(Rv); v ∈ J0, LK, Qa, bv = Ξa, b(Qv); v ∈ J0, L− 1K.

• (Case K = L) We define a transpose operator Θ : X → X by, for

σ ∈ X ,

(Θ(σ))(k, `) = σ(`, k); k ∈ J1, KK and ` ∈ J1, LK.

Then, we define the collection Ca, b of canonical configurations between

a and b as

Ca, b = Ξa, b(C) ∪ (Θ ◦ Ξa, b)(C).

We enlarge the collection of canonical configurations in this case, be-

cause the transposed configurations also have the same energy due to

the condition K = L. Again, we have Ca, b = Cb, a. Moreover, we define

Ra, b
v = Ξa, b(Rv) ∪ (Θ ◦ Ξa, b)(Rv); v ∈ J0, LK,

Qa, bv = Ξa, b(Qv) ∪ (Θ ◦ Ξa, b)(Qv); v ∈ J0, L− 1K.

A sequence (ωn)KLn=0 of configurations is a canonical path from a to b if there

exists a pre-canonical path (ω̃n)KLn=0 such that ωn = Ξa, b(ω̃n) for all n ∈
J0, KLK (or additionally ωn = (Θ ◦ Ξa, b)(ω̃n) for all n ∈ J0, KLK if K = L).

Remark 6.3.4. It holds that H(σ) ≤ Γ for all σ ∈ C−1, 0 ∪ C0,+1 and

H(σ) =

Γ− 1 if σ ∈ R−1, 0
v ∪R0,+1

v for v ∈ J1, L− 1K,

Γ if σ ∈ Q−1, 0
v ∪Q0,+1

v for v ∈ J1, L− 2K.

These facts imply that canonical paths are Γ-paths.

Remark 6.3.5. One may be tempted to define similar objects between −1
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and +1 by choosing (a, b) = (−1, +1) or (+1, −1). However, the resulting

configurations have too high energy to be considered in our investigation. To

explain this, recall Ξ−1,+1 : X−1, 0 → X−1,+1 from Definition 6.3.3. Then, we

can deduce that

H(σ) =

4Γ− 4 if σ ∈ Ξ−1,+1(Rv) for v ∈ J1, L− 1K,

4Γ if σ ∈ Ξ−1,+1(Qv) for v ∈ J1, L− 2K,

where 4Γ−4 > Γ. Hence, we cannot connect −1 and +1 by a direct canonical

Γ-path, and thus it is natural to expect that Γ-paths between −1 and +1

must visit at least a certain neighborhood of 0. Rigorously, this is exactly part

(1) of Theorem 6.1.6.

6.3.2 Proof of Theorem 6.1.2

Based on the canonical configurations, we are now ready to prove that the

energy barrier of the dynamics is exactly Γ.

Proof of Theorem 6.1.2. First, we claim that for two spins a and b,

Γa, b = Φ(a, b) ≤ Γ. (6.18)

Indeed, the canonical paths between −1 and 0 assert that Γ−1, 0 = Φ(−1, 0) ≤
Γ. Similarly, the canonical paths between 0 and +1 imply Γ0,+1 ≤ Γ. Hence,

Γ−1,+1 = Φ(−1, +1) ≤ max{Φ(−1, 0), Φ(0, +1)} ≤ Γ.

Thus, we get (6.18). Therefore, to conclude the proof of Theorem 6.1.2, it

suffices to prove that for distinct spins a and b,

Γa, b = Φ(a, b) ≥ Γ. (6.19)

To provide a simple proof of (6.19), we recall the MH dynamics of the 2D
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Potts model for q = 3 with zero external field defined in Chapter 3. In this

model, everything is defined in the same way as in Section 6.1.1, except that

the Hamiltonian is given by (3.2). Comparing this to our Hamiltonian (6.3),

we can easily notice that

H(σ) ≥ HPotts(σ); σ ∈ X . (6.20)

Moreover, it is proved in [69, Theorem 2.1] that the energy barrier ΦPotts(s, s
′),

s, s′ ∈ S, of the Potts dynamics is exactly Γ. Therefore, as the energy land-

scapes of the two models are identical, we deduce from (6.20) that

Φ(s, s′) ≥ ΦPotts(s, s
′) = Γ; s, s′ ∈ S.

This is exactly (6.19), and thus we conclude the proof of Theorem 6.1.2.

6.3.3 Neighborhoods and configurations with small en-

ergy

Recall the concept of neighborhoods defined in Definition 3.4.2, with the

energy barrier Γ as in Theorem 6.1.2, and also Lemma 3.8.1.

We verified in Section 6.3.2 that the energy barrier is exactly Γ. Now, we

fully characterize the spin configurations with energy less than Γ. This result

is an analogue of Proposition 3.9.3 and can be proved in a similar manner;

thus, we omit the proof. We refer to Figure 6.2 for some examples of such

configurations.

Proposition 6.3.6. Suppose that σ ∈ X satisfies H(σ) < Γ. Then, exactly

one of (T1) or (T2) below holds.

• (T1) There exist a good pair (a, b) and v ∈ J2, L − 2K such that σ ∈
Ra, b
v . In particular, N (σ) is a singleton, i.e., N (σ) = {σ}.
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Figure 6.2: Configurations with energy smaller than Γ; type (T1) (the first
three) and type (T2) (the last three).

• (T2) The configuration σ belongs to N (a) for exactly one spin a, so

that N (σ) = N (a).

6.3.4 Proof of Theorem 6.1.3

In this subsection, we prove Theorem 6.1.3. To this end, we need the following

result regarding the valley depths of the entire energy landscape.

Lemma 6.3.7. We have the following upper bounds for the depths of the

valleys:

(1) For all σ ∈ X and s ∈ S, it holds that Φ(σ, s)−H(σ) ≤ Γ.

(2) For all σ ∈ X \ S, it holds that Φ(σ, S)−H(σ) < Γ.

Proof. The same assertions for the Metropolis dynamics on the Potts model

are proved in [69, Theorem 2.1]. Because the same arguments work for our

Blume–Capel model as well, we omit the proof.

Remark 6.3.8. An alternative proof can be found in Lemma 3.9.4 which

provides an explicit path that guarantees the upper bounds stated in Lemma

6.3.7.

Based on the previous lemma, we give a formal proof of Theorem 6.1.3.

Proof of Theorem 6.1.3. By the general theory developed in [69, 70], Theo-

rem 6.1.2 and Lemma 6.3.7 are sufficient to conclude the assertions on the

transition time, mixing time, and spectral gap given in Theorem 6.1.3.
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Figure 6.3: Typical configurations; bulk ones (the first three) and edge ones
(the last three).

6.4 Typical and gateway configurations

In this section, we define the concepts of typical and gateway configurations

and investigate their several basic properties. The concepts are analogues

of those defined in Section 3.4. We note that even though the results are

similar, we still thoroughly review the notation here because there indeed

exist technical differences due to the non-symmetry of the Blume–Capel model

(cf. Remark 6.1.1).

6.4.1 Typical configurations

Definition 6.4.1 (Typical configurations). Here, we define typical configu-

rations. We refer to Figure 6.3 for a visualization.

• Fix a good pair (a, b). The collection of bulk typical configurations be-

tween a and b is defined as

Ba, b =
L−2⋃
v=2

Ra, b
v ∪

L−3⋃
v=2

Qa, bv . (6.21)

Moreover, we define (cf. Remark 6.3.4)

Ba, bΓ =
L−3⋃
v=2

Qa, bv = {σ ∈ Ba, b : H(σ) = Γ}.

Clearly, we have Ba, b = Bb, a and Ba, bΓ = Bb, aΓ .
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• For a spin a, the collection of edge typical configurations near a is

defined as

Ea = N̂ (a; B−1, 0
Γ ∪ B0,+1

Γ ). (6.22)

• Finally, the collection of typical configurations is defined as

T = B−1, 0 ∪ B0,+1 ∪ E−1 ∪ E0 ∪ E+1. (6.23)

Then, we summarize the following properties for the typical configura-

tions. Rigorous verifications can be found in Section 3.9 and thus we do not

repeat them.

Proposition 6.4.2. The following properties hold for the typical configura-

tions.

(1) The collections E−1, E0, and E+1 are disjoint.

(2) We have

E−1 ∩ B−1, 0 = R−1, 0
2 , E0 ∩ B−1, 0 = R−1, 0

L−2 ,

E+1 ∩ B0,+1 = R0,+1
L−2 , E0 ∩ B0,+1 = R0,+1

2 .

(3) We have E−1 ∩ B0,+1 = E+1 ∩ B−1, 0 = ∅.

(4) Recall the definition (6.23) of T . Then, N̂ (S) = T .

Remark 6.4.3 (Edge structure of typical configurations). Based on Propo-

sition 6.4.2, we have the following decomposition of E(N̂ (S)) = E(T ) (see

Figure 6.4 for the full energy landscape):

E(N̂ (S)) = E(B−1, 0) ∪ E(B0,+1) ∪ E(E−1) ∪ E(E0) ∪ E(E+1).

To prove this fact, we check that the members constituting T (cf. (6.23)) are

separated, in the sense that for members A and A′,

{σ, σ′} ∈ E(A ∪A′) implies σ, σ′ ∈ A or σ, σ′ ∈ A′.
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Figure 6.4: Energy landscape of N̂ (S) for the case of K < L. Green regions
represent the configurations with energy exactly Γ, and yellow regions rep-
resent the ones with energy less than Γ.

Indeed, Ea for spins a are separated by part (1) of Proposition 6.4.2. The

collections B−1, 0 and B0,+1 are clearly separated.

To check that a bulk collection Ba, b and an edge collection Ea′ are sepa-

rated, it suffices to prove that if σ ∈ Ba, b and σ′ ∈ Ea′ \ Ba, b with σ ∼ σ′,

then σ ∈ Ea′ . To this end, as σ′ /∈ Ba, b, we must have σ ∈ Ra, b
2 or σ ∈ Ra, b

L−2.

For the former case, as Ra, b
2 ⊆ Ea, by part (1) of Proposition 6.4.2 we obtain

a = a′ and thus σ ∈ Ea′ . For the latter case, as Ra, b
L−2 ⊆ E

b, we obtain b = a′

and thus σ ∈ Ea′ .

6.4.2 Gateway configurations

Here, we define gateway configurations of the dynamics. We again refer to

Figure 6.4 for a visualization of the role and examples of gateway configura-

tions.

Definition 6.4.4 (Gateway configurations). As for the typical configura-

tions, we define gateway configurations between a and b for good pairs (a, b).
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Thus, we fix a good pair (a, b). We define Za, b as

{σ ∈ X :∃a path (ωn)Nn=0 in X \ Ba, bΓ with N ≥ 1 such that

ω0 ∈ Ra, b
2 , ωN = σ, and H(ωn) = Γ for all n ∈ J1, NK}.

(6.24)

Note that Za, b 6= Zb, a. Then, we define the collection of gateway configura-

tions between a and b as

Ga, b = Za, b ∪ Ba, b ∪ Zb, a, (6.25)

which is indeed a decomposition of Ga, b. As Ba, b = Bb, a, we have Ga, b = Gb, a.

Then, we have the following properties for the gateway configurations.

Lemma 6.4.5. Fix a good pair (a, b) and suppose that σ, ζ ∈ X satisfy

σ ∈ Ga, b, ζ /∈ Ga, b, σ ∼ ζ, and H(ζ) ≤ Γ.

Then, we have either ζ ∈ N (a) and σ ∈ Za, b or ζ ∈ N (b) and σ ∈ Zb, a.

Proof. This lemma can be proved in an identical manner to Lemma 3.9.10.

6.4.3 A lemma and proof of Theorem 6.1.6

In this subsection, we prove Theorem 6.1.6. Before providing the proof, we

give an elementary estimate on equilibrium potentials, which is a generaliza-

tion of Lemma 3.5.8. This lemma is used in the proof of Theorem 6.1.6 and

later in Section 6.7 to estimate the test flow. We refer to Lemmas 3.5.8 and

4.7.4 for the proof.

Lemma 6.4.6. For disjoint and non-empty subsets A and B of S, there

exists C = C(K, L) > 0 such that for all s ∈ S,

max
ζ∈N (s)

∣∣Pζ [τA < τB]− Ps[τA < τB]
∣∣ ≤ Ce−β. (6.26)
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Then, we provide a proof of Theorem 6.1.6.

Proof of Theorem 6.1.6. Part (2) is obvious from the model symmetry. Thus,

to conclude the proof, we prove part (1). We first prove that

lim
β→∞

P−1[τN (0) < τ+1] = 1. (6.27)

We denote by τ ∗ the hitting time of the set {σ ∈ X : H(σ) ≥ Γ + 1}. Then,

[70, Theorem 3.2] implies that

P−1[τ ∗ > eβ(Γ+1/2)] = 1− o(1).

Hence, by part (1) of Theorem 6.1.3 with ε = 1/2, we have

P−1[τ+1 < τ ∗] = 1− P−1[τ+1 ≥ τ ∗] = 1− o(1)− P−1[τ+1 ≥ τ ∗ > eβ(Γ+1/2)]

≥ 1− o(1)− P−1[τ+1 > eβ(Γ+1/2)]

= 1− o(1).

Therefore, it suffices to prove that a Γ-path from −1 to +1 must visit N (0).

To this end, we fix a Γ-path (ωn)Nn=0 with ω0 = −1 ∈ E−1 and ωN = +1 ∈
E+1. Then, by Proposition 6.4.2 and Remark 6.4.3, starting from −1 ∈ E−1,

this path must successively visit E−1 ∩ B−1, 0 = R−1, 0
2 , B−1, 0, B−1, 0 ∩ E0 =

R0,−1
2 , E0, E0 ∩ B0,+1 = R0,+1

2 , B0,+1, and B0,+1 ∩ E+1 = R+1, 0
2 to finally

arrive at +1 ∈ E+1. Thus, the following time is well defined:

n0 = max{n : ωn ∈ R0,−1
2 }.

Then, by the definition of gateway configurations, we have ωn0+1 ∈ Z0,−1.

Then, by defining

n1 = min{n > n0 : ωn /∈ G0,−1},
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we have ωn1 ∈ N (0) by Lemma 6.4.5, which concludes the proof of (6.27).

Moreover, Lemma 6.4.6 with A = {0}, B = {+1}, and s = 0 implies

that

max
σ∈N (0)

Pσ[τ0 < τ+1] = 1− o(1).

This is equivalent to

lim
β→∞

max
σ∈N (0)

Pσ[τ0 < τ+1] = 1. (6.28)

Therefore, we conclude the proof of the first assertion of part (1) with (6.27)

and (6.28) by the casual argument using the strong Markov property. The

second assertion follows identically.

6.5 Edge typical configurations

In this section, we focus on the edge typical configurations defined in Defi-

nition 6.4.1, which have much more complex geometry than the bulk typical

configurations. This section is an analogue of Section 3.4.4, but we provide

here a much more detailed and quantitative analysis on the behavior of the

edge typical configurations.

6.5.1 Projected graph

We consistently refer to Figure 6.5 for an illustration of the notions defined

in this subsection. For each spin a, we decompose Ea = Ia ∪ Oa where

Oa = {σ ∈ Ea : H(σ) = Γ} and Ia = {σ ∈ Ea : H(σ) < Γ}.

By Proposition 6.3.6, we notice that

Ia = N (a) ∪
[ ⋃
b: (a, b) is good

Ra, b
2

]
. (6.29)

338



CHAPTER 6. BLUME–CAPEL MODEL

Figure 6.5: Edge typical configurations in the case of K < L. (Left) structure
of E−1. (Right) structure of E0.

We further define

Ia0 = {a} ∪
[ ⋃
b: (a, b) is good

Ra, b
2

]
, (6.30)

so that each σ ∈ Ia satisfies σ ∈ N (ζ) for exactly one ζ ∈ Ia0 . Hence, we get

the following alternative decomposition of Ea:

Ea = Oa ∪
[ ⋃
ζ∈Ia0

N (ζ)
]
. (6.31)

We chose the set of representatives Ia0 because configurations belonging to

the sameN -neighborhood are not distinguished in the study of metastability,

in the sense of Lemma 6.4.6.

Remark 6.5.1. We remark on the display (6.29). In details, we have

I−1 = N (−1) ∪R−1, 0
2 and I+1 = N (+1) ∪R0,+1

L−2 ,
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whereas

I0 = N (0) ∪R−1, 0
L−2 ∪R

0,+1
2 .

Hence, the structures of E−1 and E+1 are exactly the same, but they differ

from the structure of E0. Figure 6.5 illustrates this difference.

Now, we define a graph structure on Oa ∪ Ia0 .

Definition 6.5.2. We fix spin a and introduce a graph structure and a

Markov chain on Oa ∪ Ia0 .

• (Graph) Vertex set V a is defined by

V a = Oa ∪ Ia0 . (6.32)

Then, the edge set E(V a) is defined as follows: {σ, σ′} ∈ E(V a) if and

only if either σ, σ′ ∈ Oa and σ ∼ σ′, or σ ∈ Oa, σ′ ∈ Ia0 , and σ ∼ ζ for

some ζ ∈ N (σ′).

• (Markov chain) We define a transition rate ra : V a × V a → [0, ∞)

as follows: If {σ, σ′} /∈ E(V a), then ra(σ, σ′) = 0. If {σ, σ′} ∈ E(V a),

then

ra(σ, σ′) =


1 if σ, σ′ ∈ Oa,

|{ζ ∈ N (σ) : ζ ∼ σ′}| if σ ∈ Ia0 , σ′ ∈ Oa,

|{ζ ∈ N (σ′) : ζ ∼ σ}| if σ ∈ Oa, σ′ ∈ Ia0 .

(6.33)

Then, we define {Za(t)}t≥0 as the continuous-time Markov chain on

V a with transition rate ra(·, ·). As the rate is symmetric, the Markov

chain Za(·) is reversible with respect to its invariant distribution, which

is the uniform distribution on V a.

Next, we prove that the process Za(·) approximates the Metropolis dy-

namics on the edge typical configurations.
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Proposition 6.5.3. For each spin a, define a projection map Πa : Ea → V a

by

Πa(σ) =

σ if σ ∈ Oa,

ζ if σ ∈ N (ζ) for some ζ ∈ Ia0 .

Then, there exists a constant C = C(K, L) > 0 such that

(1) for σ1, σ2 ∈ Oa, we have∣∣∣1
3
e−βΓra(Πa(σ1), Πa(σ2))− µβ(σ1)rβ(σ1, σ2)

∣∣∣ ≤ Ce−β(Γ+1),

(2) for σ1 ∈ Oa and σ2 ∈ Ia0 , we have∣∣∣1
3
e−βΓra(Πa(σ1), Πa(σ2))−

∑
ζ∈N (σ2)

µβ(σ1)rβ(σ1, ζ)
∣∣∣ ≤ Ce−β(Γ+1).

Proof. As the proof is identical to that of Proposition 3.4.22, we omit the

details.

6.5.2 Approximation to auxiliary process

In this subsection, we prove that the auxiliary process analyzed in Section

6.9.1 successfully represents the Markov chain Za(·). First, we handle the

case of K < L.

Lemma 6.5.4. Suppose that K < L. Fix a good pair (a, b) and recall the

projected auxiliary process in Section 6.9.2. Then, there exists a surjective

mapping Φa, b : V a → VK which satisfies:

(1) for each {σ, σ′} ∈ E(V a) with {σ, σ′} ∩ Za, b = ∅, we have Φa, b(σ) =

Φa, b(σ′),

(2) for each {σ, σ′} ∈ E(V a) with {σ, σ′}∩Za, b 6= ∅, we have {Φa, b(σ), Φa, b(σ′)} ∈
E(VK) and ra(σ, σ′) = rK(Φa, b(σ), Φa, b(σ′)),
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Figure 6.6: Visualization of Lemma 6.5.4 for (K, L) = (5, 6).

(3) for each {x, y} ∈ E(VK), there exist exactly four edges {σ, σ′} ∈
E(V a) such that {Φa, b(σ), Φa, b(σ′)} = {x, y}.

Proof. First, we assume that (a, b) = (−1, 0). We refer to Figure 6.6 to pro-

vide insight of the proof given here. We haveR−1, 0
2 = {ζ+

2 , ζ
−
2 } (cf. Definition

6.3.3). First, we focus on the landscape between N (−1) and ζ+
2 .

There are two possible σ ∈ Z−1, 0 with σ ∼ ζ+
2 ; that is, ζ++

1,K−1 and ζ+−
1,K−1.

we first consider ζ++
1,K−1. All the possible paths from ζ++

1,K−1 to N (−1) are

illustrated in Figure 6.6 (right) for the case of K = 5 and L = 6. Rigorously,

we temporarily denote by ξh ∈ X , h ∈ J1, K − 1K the configuration which

has spins 0 on [
J1, K − 1K× {1}

]
∪
[
J1, hK× {2}

]
and spins−1 on the remainder. Then, we define Φ−1, 0

1 : {−1}∪
K−1⋃
h=1

{ζ++
1, h , ξh}∪

{ζ+
2 } → VK by Φ−1, 0

1 (ζ+
2 ) = 0, Φ−1, 0

1 (−1) = d, and for h ∈ J1, K − 1K,

Φ−1, 0
1 (ζ++

1, h ) = (0, K − h), Φ−1, 0
1 (ξh) = (1, K − h).
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Then from Figures 6.6 and 6.7, it is straightforward that Φ−1, 0
1 is bijective

and that it preserves the edge structure.

If we consider ζ+−
1,K−1, we deduce as in the previous case another separated

landscape of configurations between −1 and ζ+−
1,K−1. Then, we can define a

similar bijective function Φ−1, 0
2 defined on the relevant configurations to VK

that preserves the edge structure.

Similarly, by examining the landscape between −1 and ζ−2 , we obtain two

more bijective functions Φ−1, 0
3 and Φ−1, 0

4 that preserve the edge structure.

Moreover, it is clear that the union of domΦ−1, 0
i , the domain of Φ−1, 0

i , for

i ∈ J1, 4K is indeed {−1} ∪ Z−1, 0 ∪R−1, 0
2 .

Now, we define Φ−1, 0 : V −1 → VK by

Φ−1, 0(σ) =

Φ−1, 0
i (σ) if σ ∈ domΦ−1, 0

i ,

d if σ /∈ {−1} ∪ Z−1, 0 ∪R−1, 0
2 .

In this way, the function Φ−1, 0 is well defined because the only possible

intersection among domΦ−1, 0
i , i ∈ J1, 4K is {−1}, on which Φ−1, 0

i is uniformly

defined as d.

Finally, we prove the assertions. Φ−1, 0 is clearly surjective as each Φ−1, 0
i

is bijective. For part (1), if {σ, σ′} ∈ E(V −1) with {σ, σ′} ∩ Z−1, 0 = ∅ then

we have σ, σ′ ∈ E−1 \ (Z−1, 0 ∪ R−1, 0
2 ), so that Φ−1, 0(σ) = Φ−1, 0(σ′) = d.

Part (2) is obvious from the bijective functions Φ−1, 0
i . As we have four such

bijections, part (3) is now verified.

The other good pairs (a, b) can be dealt with in a similar way; thus, we

do not repeat the tedious proof.

Next, we deal with the case of K = L.

Lemma 6.5.5. Suppose that K = L and fix a good pair (a, b). Then, there

exists a surjective mapping Φa, b : V a → VK which satisfies:

(1) for each {σ, σ′} ∈ E(V a) with {σ, σ′} ∩ Za, b = ∅, we have Φa, b(σ) =

Φa, b(σ′),
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(2) for each {σ, σ′} ∈ E(V a) with {σ, σ′}∩Za, b 6= ∅, we have {Φa, b(σ), Φa, b(σ′)} ∈
E(VK) and ra(σ, σ′) = rK(Φa, b(σ), Φa, b(σ′)),

(3) for each {x, y} ∈ E(VK), there exist exactly eight edges {σ, σ′} ∈
E(V a) such that {Φa, b(σ), Φa, b(σ′)} = {x, y}.

Proof. First, we assume that (a, b) = (−1, 0). The only difference to Lemma

6.5.4 is that we now have R−1, 0
2 = {ζ+

2 , ζ
−
2 , Θ(ζ+

2 ), Θ(ζ−2 )}, where Θ is the

operator defined in Definition 6.3.3. Thus, the corresponding number of edges

are exactly doubled compared to Lemma 6.5.4. The rest of the proof is iden-

tical.

6.6 Construction of fundamental test func-

tions and flows

6.6.1 Fundamental test objects

In this subsection, we construct two fundamental test functions which are the

main ingredients of the actual test functions to approximate the capacities

via the Dirichlet principle (cf. Theorem 3.2.5). More specifically, we construct

two real test functions, namely, g−1, 0 and g+1, 0 on X . Concisely, g−1, 0 (resp.

g+1, 0) describes the dynamical transitions from −1 (resp. +1) to 0 in the

sense of equilibrium potentials. Then, we define two fundamental test flows

according to (3.35).

Definition 6.6.1 (Test function g−1, 0). Here, we construct the function

g−1, 0 : X → R which describes the metastable transition from −1 to 0.

For the construction, we recall (6.23) and define g−1, 0 on the members of T
separately, and then define on X \ T .

• B−1, 0: For σ ∈ B−1, 0, where the number of spins 0 in σ is z ∈ J2K, K(L−
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2)K, we define

g−1, 0(σ) =
1

κ

[K(L− 2)− z
K(L− 4)

b + e
]
.

• E−1: We define (cf. Proposition 6.5.3, Lemmas 6.5.4 and 6.5.5)

g−1, 0(σ) = 1− e

κ
· hK0, d

(
(Φ−1, 0 ◦ Π−1)(σ)

)
.

• E0: We define

g−1, 0(σ) =
e

κ
· hK0, d

(
(Φ0,−1 ◦ Π0)(σ)

)
.

• B0,+1 ∪ E+1 ∪ (X \ T ): We define g−1, 0 ≡ 0.

Definition 6.6.2 (Test function g+1, 0). We define g+1, 0 in exactly the same

manner. Rigorously, we define Ξ : X → X by

(Ξ(σ))(x) =


+1 if σ(x) = −1,

−1 if σ(x) = +1,

0 if σ(x) = 0.

Then, we define g+1, 0(σ) = g−1, 0(Ξ(σ)).

Definition 6.6.3 (Test flows φ−1, 0 and φ+1, 0). We define φ−1, 0 = Ψg−1, 0

and φ+1, 0 = Ψg+1, 0 (cf. (3.35)) on the typical configurations and zero on the

remainder.

Remark 6.6.4. To check that the functions are well defined, it suffices to

recognize that g−1, 0 is defined as 1− e/κ on R−1, 0
2 = B−1, 0 ∩E−1 and e/κ on

R−1, 0
L−2 = B−1, 0 ∩ E0.

Remark 6.6.5. We remark that if σ, σ′ ∈ N̂ (S) with σ ∼ σ′, then either

g−1, 0(σ) = g−1, 0(σ′) or g+1, 0(σ) = g+1, 0(σ′) must hold. To prove this, recall
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from Remark 6.4.3 that

E(N̂ (S)) = E(B−1, 0) ∪ E(B0,+1) ∪ E(E−1) ∪ E(E0) ∪ E(E+1).

By Definitions 6.6.1 and 6.6.2, we only need to consider the case of {σ, σ′} ∈
E(E0). Then, by the proof of Lemma 6.5.4, g−1, 0(σ) = g−1, 0(σ′) unless

{σ, σ′} ∈ E(N (0)∪Z0,−1∪R0,−1
2 ) and g+1, 0(σ) = g+1, 0(σ′) unless {σ, σ′} ∈

E(N (0) ∪ Z0,+1 ∪R0,+1
2 ). As

E(N (0) ∪ Z0,−1 ∪R0,−1
2 ) ∩ E(N (0) ∪ Z0,+1 ∪R0,+1

2 ) = E(N (0))

and both functions are constantly zero on N (0), we obtain the desired result.

In turn, if σ, σ′ ∈ N̂ (S) with σ ∼ σ′, then we have either φ−1, 0(σ, σ′) = 0 or

φ+1, 0(σ, σ′) = 0.

6.6.2 Properties of fundamental test functions

Now, we calculate the Dirichlet form of the test functions.

Proposition 6.6.6. We have

Dβ(g−1, 0) =
1 + o(1)

3κ
e−βΓ and Dβ(g+1, 0) =

1 + o(1)

3κ
e−βΓ.

Proof. By symmetry, it suffices to estimate Dβ(g−1, 0). By definition, we write

Dβ(g−1, 0) as[ ∑
{σ, ζ}⊆T

+
∑
σ∈T

∑
ζ∈X\T

+
∑

{σ, ζ}⊆X\T

]
µβ(σ)rβ(σ, ζ)[g−1, 0(ζ)−g−1, 0(σ)]2. (6.34)

The third summation of (6.34) vanishes because g−1, 0 ≡ 0 on X \T . For the

second (double) summation of (6.34), if σ ∈ T and ζ ∈ X \ T with σ ∼ ζ,

then as T = N̂ (S) by part (4) of Proposition 6.4.2, we have H(ζ) ≥ Γ + 1.
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Hence,

µβ(σ)rβ(σ, ζ) = min{µβ(σ), µβ(ζ)} = µβ(ζ) = O(e−β(Γ+1)).

Therefore, the second (double) summation is of scale O(e−β(Γ+1)).

It remains to calculate the first summation of (6.34). By Remark 6.4.3

and the fact that g−1, 0 is constant on B0,+1 and on E+1, we can rewrite the

summation as[ ∑
{σ, ζ}⊆B−1, 0

+
∑

{σ, ζ}⊆E−1

+
∑

{σ, ζ}⊆E0

]
µβ(σ)rβ(σ, ζ)[g−1, 0(ζ)−g−1, 0(σ)]2. (6.35)

We first deal with the first summation of (6.35). Recall from Definition 6.4.1

that B−1, 0 =
L−2⋃
v=2

R−1, 0
v ∪

L−3⋃
v=2

Q−1, 0
v . If K < L, then the first summation of

(6.35) becomes

L−3∑
v=2

K−1∑
h=0

µβ(ζ+±
v, h )rβ(ζ+±

v, h , ζ
+±
v, h+1)[g−1, 0(ζ+±

v, h+1)− g−1, 0(ζ+±
v, h )]2

+
L−3∑
v=2

K−1∑
h=0

µβ(ζ−±v, h )rβ(ζ−±v, h , ζ
−±
v, h+1)[g−1, 0(ζ−±v, h+1)− g−1, 0(ζ−±v, h )]2,

where the signs ± indicate shorthands for + and − (so that the above formula

actually consists of four double summations). By (6.6) and Definition 6.6.1,

this asymptotically equals (cf. (6.14))

4
L−3∑
v=2

K−1∑
h=0

1

3
e−βΓ · 1

κ2

b2

K2(L− 4)2
=

4b2

3κ2K(L− 4)
e−βΓ =

b

3κ2
e−βΓ.

If K = L, then the first summation of (6.35) must be counted twice the pre-

ceding computation due to the presence of transposed configurations obtained

by the operator Θ (cf. Definition 6.3.3). Thus, the summation asymptotically
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equals (cf. (6.14))

8
L−3∑
v=2

K−1∑
h=0

1

3
e−βΓ · 1

κ2

b2

K2(L− 4)2
=

8b2

3κ2K(L− 4)
e−βΓ =

b

3κ2
e−βΓ.

Summing up, we have

∑
{σ, ζ}⊆B−1, 0

µβ(σ)rβ(σ, ζ)[g−1, 0(ζ)− g−1, 0(σ)]2 ' b

3κ2
e−βΓ. (6.36)

Next, we calculate the second summation of (6.35). Recalling the decom-

position (6.31), we rewrite this as∑
{σ, ζ}⊆O−1

µβ(σ)rβ(σ, ζ)[g−1, 0(ζ)− g−1, 0(σ)]2

+
∑
σ∈O−1

∑
ζ⊆I−1

0

∑
ζ′∈N (ζ)

µβ(σ)rβ(σ, ζ ′)[g−1, 0(ζ ′)− g−1, 0(σ)]2.

By Proposition 6.5.3 and Definition 6.6.1, this is asymptotically equal to[ ∑
{σ, ζ}⊆O−1

+
∑
σ∈O−1

∑
ζ∈I−1

0

]1

3
e−βΓr−1(σ, ζ)[g−1, 0(ζ)− g−1, 0(σ)]2.

By Definition 6.6.1, this becomes

1

3
e−βΓ

∑
{σ, ζ}∈E(V −1)

r−1(σ, ζ) · e
2

κ2

[
hK0,d(Φ

−1, 0(ζ))− hK0,d(Φ−1, 0(σ))
]2
. (6.37)

If K < L, then by Lemma 6.5.4, this becomes

4

3
e−βΓ

∑
{x,y}∈E(VK)

rK(x, y) · e
2

κ2

[
hK0,d(y)− hK0,d(x)

]2
=

4e2

3κ2
e−βΓ · |VK |capK(0, d) =

4e2

3κ2
e−βΓ · cK =

e

3κ2
e−βΓ.
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The last two equalities hold by (6.70) and (6.14), respectively. If K = L,

then by Lemma 6.5.5, term (6.37) equals

8

3
e−βΓ

∑
{x, y}∈E(VK)

rK(x, y) · e
2

κ2

[
hK0, d(y)− hK0, d(x)

]2
=

e

3κ2
e−βΓ,

which is again by (6.70) and (6.14). Therefore, in any cases, we have that∑
{σ, ζ}⊆E−1

µβ(σ)rβ(σ, ζ)[g−1, 0(ζ)− g−1, 0(σ)]2 ' e

3κ2
e−βΓ. (6.38)

Similarly, we have that the third summation of (6.35) is asymptotically equal

to the last displayed term. Gathering this fact, (6.35), (6.36), and (6.38), we

have that the first summation of (6.34) is asymptotically equal to

b

3κ2
e−βΓ +

2e

3κ2
e−βΓ =

1

3κ
e−βΓ.

Therefore, we deduce that (6.34) asymptotically equals e−βΓ/(3κ), which

concludes the estimate of Dβ(g−1, 0).

6.6.3 Properties of fundamental test flows

We first estimate the flow norm.

Proposition 6.6.7. We have

‖φ−1, 0‖2 =
1 + o(1)

3κ
e−βΓ and ‖φ+1, 0‖2 =

1 + o(1)

3κ
e−βΓ.

Proof. The formulas are straightforward from (3.35) and the last display of

the proof of Proposition 6.6.6.

Now, we deal with the divergence of the fundamental test flows. As φ−1, 0

and φ+1, 0 have the same structure, we focus on estimating the former test

flow φ−1, 0.
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Lemma 6.6.8. For σ ∈ B−1, 0 \ (E−1 ∪ E0), it holds that (div φ−1, 0)(σ) = 0.

Proof. By (6.21) and Proposition 6.4.2, we have

B−1, 0 \ (E−1 ∪ E0) =
L−3⋃
v=3

R−1, 0
v ∪

L−3⋃
v=2

Q−1, 0
v .

If σ ∈ R−1, 0
v , v ∈ J3, L−3K, then σ ∈ {ζ+

v , ζ
−
v } (or additionally in {Θ(ζ+

v ), Θ(ζ−v )}
if K = L). Taking σ = ζ+

v for instance, (div φ−1, 0)(σ) equals

φ−1, 0(ζ+
v , ζ

++
v, 1 ) + φ−1, 0(ζ+

v , ζ
+−
v, 1 ) + φ−1, 0(ζ+

v , ζ
++
v−1,K−1) + φ−1, 0(ζ+

v , ζ
+−
v−1,K−1)

=
1

Zβ
e−βΓ · b

κ

[ 1

K(L− 4)
+

1

K(L− 4)
− 1

K(L− 4)
− 1

K(L− 4)

]
= 0.

Same computation works for the other cases as well. If σ ∈ Q−1, 0
v , v ∈

J2, L− 3K, then σ ∈
K−1⋃
h=1

{ζ++
v, h , ζ

+−
v, h , ζ

−+
v, h , ζ

−−
v, h} (or additionally in

K−1⋃
h=1

{Θ(ζ++
v, h ), Θ(ζ+−

v, h ), Θ(ζ−+
v, h ), Θ(ζ−−v, h )}

if K = L). Taking σ = ζ++
v, h for instance, (div φ−1, 0)(σ) equals

φ−1, 0(ζ++
v, h , ζ

++
v, h+1) + φ−1, 0(ζ++

v, h , ζ
++
v, h−1)

=
1

Zβ
e−βΓ · b

κ

[ 1

K(L− 4)
− 1

K(L− 4)

]
= 0.

Again, same computation works for the remaining cases. Thus, we conclude

that φ−1, 0 is divergence-free on B−1, 0 \ (E−1 ∪ E0).

Lemma 6.6.9. For σ ∈ R−1, 0
2 ∪R0,−1

2 , it holds that (div φ−1, 0)(σ) = 0.

Proof. We only consider the set R−1, 0
2 , as the latter set can be handled
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similarly. We claim that ∑
σ∈R−1, 0

2

(div φ−1, 0)(σ) = 0, (6.39)

which in turn implies (div φ−1, 0)(σ) = 0 for all σ ∈ R−1, 0
2 because of the

model symmetry. Elements of R−1, 0
2 are connected to elements of both B−1, 0

and E−1, so that∑
σ∈R−1, 0

2

(div φ−1, 0)(σ) =
∑

σ∈R−1, 0
2

[ ∑
ζ∈E−1

+
∑

ζ∈B−1, 0

]
φ−1, 0(σ, ζ). (6.40)

First, we consider the former double summation. By definition, this is

e

κ

∑
σ∈R−1, 0

2

∑
ζ∈E−1

µβ(σ)rβ(σ, ζ)
[
hK0, d

(
(Φ−1, 0 ◦ Π−1)(ζ)

)
− 1
]

= − e

Zβκ
e−βΓ

∑
σ∈R−1, 0

2

∑
ζ∈O−1

[
1− hK0, d(Φ−1, 0(ζ))

]
.

By Lemmas 6.5.4, 6.5.5, and an elementary property of capacities (cf. [16,

(7.1.39)]), this equals 
− e

Zβκ
e−βΓ · 4cK if K < L,

− e

Zβκ
e−βΓ · 8cK if K = L.

Therefore, by (6.14), we have

∑
σ∈R−1, 0

2

∑
ζ∈E−1

φ−1, 0(σ, ζ) = − 1

Zβκ
e−βΓ. (6.41)

Next, we consider the latter double summation of (6.40). We divide into

two cases.
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• Suppose that K < L, so that R−1, 0
2 = {ζ+

2 , ζ
−
2 }. Then, we have by

Definition 6.6.3 that the summation equals

φ−1, 0(ζ+
2 , ζ

++
2, 1 ) + φ−1, 0(ζ+

2 , ζ
+−
2, 1 ) + φ−1, 0(ζ−2 , ζ

−+
2, 1 ) + φ−1, 0(ζ−2 , ζ

−−
2, 1 )

=
1

Zβ
e−βΓ · b

κ

[ 1

K(L− 4)
+

1

K(L− 4)
+

1

K(L− 4)
+

1

K(L− 4)

]
=

1

Zβκ
e−βΓ.

The last equality holds by (6.14).

• Suppose that K = L, so that R−1, 0
2 = {ζ+

2 , ζ
−
2 , Θ(ζ+

2 ), Θ(ζ−2 )}. Then,

the above summation must be exactly doubled, so that

∑
σ∈R−1, 0

2

∑
ζ∈B−1, 0

φ−1, 0(σ, ζ) =
1

Zβκ
e−βΓ · 8b

K(L− 4)
=

1

Zβκ
e−βΓ,

where the last equality still holds by (6.14).

Therefore, in any cases we have

∑
σ∈R−1, 0

2

∑
ζ∈B−1, 0

φ−1, 0(σ, ζ) =
1

Zβκ
e−βΓ. (6.42)

Combining (6.40), (6.41), and (6.42) yields (6.39), which concludes the proof.

Lemma 6.6.10. For σ ∈ O−1 ∪ O0, it holds that (div φ−1, 0)(σ) = 0.

Proof. By symmetry, we only prove (div φ−1, 0)(σ) = 0 for each σ ∈ O−1. If

σ ∈ O−1 \ Z−1, 0, then there is nothing to prove because by Lemmas 6.5.4

and 6.5.5, we have g−1, 0(σ) = g−1, 0(σ′) = 1 for all σ′ ∈ E−1 with σ ∼ σ′.
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Now, assume that σ ∈ Z−1, 0. To this end, we may rewrite as

(div φ−1, 0)(σ) =
∑
ζ∈V −1

φ−1, 0(σ, ζ) =
∑
ζ∈O−1

φ−1, 0(σ, ζ)+
∑
ζ∈I−1

0

∑
ζ′∈N (ζ)

φ−1, 0(σ, ζ ′).

(6.43)

The summation of ζ ∈ O−1 in (6.43) becomes∑
ζ∈O−1

e

Zβκ
e−βΓ

[
hK0,d
(
(Φ−1, 0 ◦ Π−1)(ζ)

)
− hK0,d

(
(Φ−1, 0 ◦ Π−1)(σ)

)]
. (6.44)

The double summation in (6.43) becomes∑
ζ∈I−1

0

∑
ζ′∈N (ζ):σ∼ζ′

e

Zβκ
e−βΓ

[
hK0,d
(
(Φ−1, 0 ◦ Π−1)(ζ)

)
− hK0,d

(
(Φ−1, 0 ◦ Π−1)(σ)

)]
.

(6.45)

By (6.44) and (6.45), we have that (6.43) equals∑
ζ∈V −1

e

Zβκ
e−βΓr−1(σ, ζ)

[
hK0, d((Φ

−1, 0(ζ))− hK0, d(Φ−1, 0(σ))
]
.

By Lemmas 6.5.4 and 6.5.5, the last displayed term equals four (if K < L)

or eight (if K = L) times

e

Zβκ
e−βΓ

∑
y∈VK

rK(Φ−1, 0(σ), y)
[
hK0, d(y)− hK0, d(Φ−1, 0(σ))

]
= 0,

where the equality holds by an elementary property of stochastic generators

(e.g., [16, (7.1.15)]). This concludes the proof.

Gathering the preceding lemmas, we have the following proposition.

Proposition 6.6.11. For σ ∈ X \(N (−1)∪N (0)), we have (div φ−1, 0)(σ) =

0. Similarly, for σ ∈ X \ (N (0) ∪N (+1)), we have (div φ0,+1)(σ) = 0.

Proof. We only prove the first statement. By Definition 6.6.3, the test flow

φ−1, 0 is divergence-free on X \ (B−1, 0 ∪ E−1 ∪ E0). By Lemmas 6.6.8, 6.6.9,
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and 6.6.10, φ−1, 0 is divergence-free on

[
B−1, 0 \ (E−1 ∪ E0)

]
∪
[
R−1, 0

2 ∪R0,−1
2

]
∪
[
O−1 ∪ O0

]
.

By Proposition 6.4.2 and (6.29), the above set is precisely (B−1, 0∪E−1∪E0)\
(N (−1) ∪N (0)). This observation concludes the proof.

Finally, we provide estimates for the divergence on the remainder.

Proposition 6.6.12. We have

∑
σ∈N (−1)

(div φ−1, 0)(σ) ' 1

3κ
e−βΓ and

∑
σ∈N (0)

(div φ−1, 0)(σ) ' − 1

3κ
e−βΓ.

(6.46)

Similarly, we have

∑
σ∈N (+1)

(div φ+1, 0)(σ) ' 1

3κ
e−βΓ and

∑
σ∈N (0)

(div φ+1, 0)(σ) ' − 1

3κ
e−βΓ.

(6.47)

Proof. First, we focus on the first formula of (6.46). By Definition 6.6.3, this

becomes ∑
σ∈N (−1)

∑
ζ∈O−1:σ∼ζ

φ−1, 0(σ, ζ) =
∑
ζ∈O−1

∑
σ∈N (−1):σ∼ζ

φ−1, 0(σ, ζ).

Substituting the exact value of φ−1, 0 and from the fact that φ−1, 0 is anti-

symmetric, we compute this as∑
ζ∈O−1

∑
σ∈N (−1):σ∼ζ

e

Zβκ
e−βΓ

[
hK0, d(Φ

−1, 0(ζ))− hK0, d(Φ−1, 0(−1))
]

=
∑
ζ∈O−1

e

Zβκ
e−βΓr−1(ζ, −1)

[
hK0, d(Φ

−1, 0(ζ))− hK0, d(Φ−1, 0(−1))
]
.
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By Lemmas 6.5.4 and 6.5.5, this becomes
e

Zβκ
e−βΓ · 4cK if K < L,

e

Zβκ
e−βΓ · 8cK if K = L,

which is exactly e−βΓ/(Zβκ) by (6.14). This proves the first formula of (6.46)

by (6.6). The second formula of (6.46) similarly follows as

∑
σ∈N (0)

(div φ−1, 0)(σ) = − 1

Zβκ
e−βΓ.

Finally, the formulas in (6.47) can be proved in the same manner.

6.7 Capacity estimates

In this section, we provide precise estimates of the relevant capacities and

thereby prove Theorem 6.2.2.

6.7.1 Proof of parts (1) and (2) of Theorem 6.2.2

By symmetry, it suffices to estimate Capβ(−1, {0, +1}) and Capβ(−1, 0).

For both objects, we use the test function g−1, 0 (cf. Definition 6.6.1) and the

test flow φ−1, 0 (cf. Definition 6.6.3).

Proof of parts (1) and (2) of Theorem 6.2.2. First, note that

g−1, 0 ∈ C({−1}, {0, +1}) ⊆ C({−1}, {0}).

Hence, by the Dirichlet principle and Proposition 6.6.6, we have

Capβ(−1, {0, +1}), Capβ(−1, 0) ≤ Dβ(g−1, 0) =
1 + o(1)

3κ
e−βΓ. (6.48)
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Next, we consider the lower bounds using the generalized Thomson principle.

First, by Proposition 6.6.7, we have

‖φ−1, 0‖2 =
1 + o(1)

3κ
e−βΓ.

Next, Proposition 6.6.11 implies that (div φ−1, 0)(σ) = 0 for all σ /∈ N (−1)∪
N (0). Moreover, by Lemma 6.4.6, there exists a constant C = C(K, L) > 0

such that we have

max
ζ∈N (−1)

∣∣h(ζ)− h(−1)
∣∣ ≤ Ce−β, max

ζ∈N (0)

∣∣h(ζ)− h(0)
∣∣ ≤ Ce−β

for both h = h−1, {0,+1} and h−1,0. Thus, we have∑
σ∈X

h(σ)(div φ−1, 0)(σ) =
∑

σ∈N (−1)∪N (0)

h(σ)(div φ−1, 0)(σ)

' h(−1)
∑

σ∈N (−1)

(div φ−1, 0)(σ) + h(0)
∑

σ∈N (0)

(div φ−1, 0)(σ).

By Proposition 6.6.12, the last formula asymptotically equals

1

3κ
e−βΓ[h(−1)− h(0)] =

1

3κ
e−βΓ,

because h−1, {0,+1}(−1) = h−1,0(−1) = 1 and h−1, {0,+1}(0) = h−1,0(0) =

0. Summing up, we have

1

‖φ−1, 0‖2

[∑
σ∈X

h(σ)(div φ−1, 0)(σ)
]2

' 1

3κ
e−βΓ,

which holds for both h = h−1, {0,+1} and h−1,0. Hence, by the generalized

Thomson principle in Theorem 3.2.8, we have

Capβ(−1, {0, +1}), Capβ(−1, 0) ≥ 1 + o(1)

3κ
e−βΓ. (6.49)
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Therefore, by (6.48) and (6.49), we conclude the proof.

6.7.2 Proof of part (3) of Theorem 6.2.2

In this subsection, we compute Capβ(0, {−1, +1}).

Proof of part (3) of Theorem 6.2.2. Here, we use the test objects

g = 1− g−1, 0 − g+1, 0 and φ = −φ−1, 0 − φ+1, 0.

First, Definitions 6.6.1 and 6.6.2 imply that

g−1, 0(s) =

1 if s = −1

0 if s = 0, +1
and g+1, 0(s) =

1 if s = +1,

0 if s = −1, 0.

(6.50)

Thus, g ∈ C({0}, {−1, +1}). Moreover, we write

Dβ(g) =
∑

{σ, ζ}∈E(X )

µβ(σ)rβ(σ, ζ){g(ζ)− g(σ)}2

=
∑

{σ, ζ}∈E(X )

µβ(σ)rβ(σ, ζ){g−1, 0(σ)− g−1, 0(ζ) + g+1, 0(σ)− g+1, 0(ζ)}2.

By Remark 6.6.5, if σ ∼ ζ, then g−1, 0(σ) = g−1, 0(ζ) or g+1, 0(σ) = g+1, 0(ζ).

This implies that the last summation equals∑
{σ, ζ}∈E(X )

µβ(σ)rβ(σ, ζ)
[
{g−1, 0(σ)− g−1, 0(ζ)}2 + {g+1, 0(σ)− g+1, 0(ζ)}2

]
= Dβ(g−1, 0) +Dβ(g+1, 0).

Hence, by the Dirichlet principle and Proposition 6.6.6, we have

Capβ(0, {−1, +1}) ≤ Dβ(g) = Dβ(g−1, 0) +Dβ(g+1, 0) =
2 + o(1)

3κ
e−βΓ.

(6.51)
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Next, we handle the lower bound. By Remark 6.6.5, we have

‖φ‖2 =
∑

{σ, ζ}∈E(X )

φ(σ, ζ)2

µβ(σ)rβ(σ, ζ)
=

∑
{σ, ζ}∈E(X )

φ−1, 0(σ, ζ)2

µβ(σ)rβ(σ, ζ)
+

∑
{σ, ζ}∈E(X )

φ+1, 0(σ, ζ)2

µβ(σ)rβ(σ, ζ)
,

which is exactly ‖φ−1, 0‖2 + ‖φ+1, 0‖2. Hence, by Proposition 6.6.7, we have

‖φ‖2 = ‖φ−1, 0‖2 + ‖φ+1, 0‖2 =
2 + o(1)

3κ
e−βΓ.

Moreover, we temporarily denote by h = h0, {−1,+1}. Then, the same deduc-

tion as in the proof of parts (1) and (2) of Theorem 6.2.2 implies that

∑
σ∈X

h(σ)(div φ−1, 0)(σ) ' 1

3κ
e−βΓ[h(−1)− h(0)] = − 1

3κ
e−βΓ

and ∑
σ∈X

h(σ)(div φ+1, 0)(σ) ' 1

3κ
e−βΓ[h(+1)− h(0)] = − 1

3κ
e−βΓ.

Hence, we have

∑
σ∈X

h(σ)(div φ)(σ) ' 1

3κ
e−βΓ +

1

3κ
e−βΓ =

2

3κ
e−βΓ.

Summing up, we have

1

‖φ‖2

[∑
σ∈X

h(σ)(div φ)(σ)
]2

' 2

3κ
e−βΓ.

Hence, by the generalized Thomson principle in Theorem 3.2.8, we have

Capβ(0, {−1, +1}) ≥ 2 + o(1)

3κ
e−βΓ. (6.52)

Therefore, by (6.51) and (6.52), we conclude the proof.
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6.7.3 Proof of part (4) of Theorem 6.2.2

Finally, we prove part (4) of Theorem 6.2.2 and thereby conclude the proof

of the main theorems.

Proof of part (4) of Theorem 6.2.2. Here, we use the test objects

g =
1

2
(1 + g−1, 0 − g+1, 0) and φ = φ−1, 0 − φ+1, 0.

First, (6.50) implies that g ∈ C({−1}, {+1}). Moreover, as in the preceding

proof, Remark 6.6.5 and Proposition 6.6.6 imply that

Dβ(g) =
1

4

[
Dβ(g−1, 0) +Dβ(g+1, 0)

]
=

1 + o(1)

6κ
e−βΓ.

Hence, by the Dirichlet principle, we have

Capβ(−1, +1) ≤ Dβ(g) =
1 + o(1)

6κ
e−βΓ. (6.53)

Next, again using Remark 6.6.5 and Proposition 6.6.7, we first have

‖φ‖2 = ‖φ−1, 0‖2 + ‖φ+1, 0‖2 =
2 + o(1)

3κ
e−βΓ.

Moreover, we temporarily denote by h = h−1,+1. Then, the same deduction

as above and Theorem 6.1.6 imply that

∑
σ∈X

h(σ)(div φ−1, 0)(σ) ' 1

3κ
e−βΓ[h(−1)− h(0)] ' 1

6κ
e−βΓ

and ∑
σ∈X

h(σ)(div φ+1, 0)(σ) ' 1

3κ
e−βΓ[h(+1)− h(0)] ' − 1

6κ
e−βΓ.
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Hence, we have

∑
σ∈X

h(σ)(div φ)(σ) =
1

6κ
e−βΓ +

1

6κ
e−βΓ =

1

3κ
e−βΓ.

Summing up, we have

1

‖φ‖2

[∑
σ∈X

h(σ)(div φ)(σ)
]2

' 1

6κ
e−βΓ.

Hence, by the generalized Thomson principle, we have

Capβ(−1, +1) ≥ 1 + o(1)

6κ
e−βΓ. (6.54)

Therefore, by (6.53) and (6.54), we conclude the proof.

6.8 Periodic boundary conditions

In this section, we briefly discuss the model with periodic boundary con-

ditions imposed. Thus, throughout this section, we assume that Λ is given

periodic boundary conditions; that is, Λ = TK × TL. Compared to the logic

established thus far for the open boundary case, the storyline for the periodic

boundary case is nearly the same, although certain slight technical differences

exist between the two. We provide a short summary in this section.

We handle two issues here: the energy barrier between the ground states

that appears in Theorem 6.1.2 and the sub-exponential prefactor that appears

in Theorem 6.1.7.

Energy barrier between ground states

Recall that Theorem 6.1.2 in the periodic case is interpreted as

Γ−1, 0 = Γ0,+1 = Γ−1,+1 = 2K + 2.
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It can be observed that the energy barrier in this case is twice that of the

open boundary model. To explain this, we recall the canonical path defined

in Definition 6.3.3. The exact same canonical path also attains the energy

barrier in the periodic case. However, in the periodic case, the maximal energy

of the canonical path is doubled, because the sites on the edges of Λ are also

connected to the corresponding sites on the other end of Λ. Therefore, in the

periodic case, we can easily determine that (cf. Remark 6.3.4)

H(σ) =

2K if σ ∈ R−1, 0
v ∪R0,+1

v for v ∈ J1, L− 1K,

2K + 2 if σ ∈ Q−1, 0
v ∪Q0,+1

v for v ∈ J1, L− 2K,

so that the canonical paths are (2K + 2)-paths connecting the ground states

in S. Moreover, the deduction in Section 6.3.2 can be modified slightly to

verify that the energy barrier is precisely 2K + 2.

As noted in Remark 6.1.5, once the energy barrier Γ = 2K + 2 is settled,

the large deviation-type main results in Theorem 6.1.3 hold without any

modification. Theorem 6.1.6 follows in the same manner.

Sub-exponential prefactor

As explained in Remark 6.1.5, the exact quantitative estimates of the metastable

transitions differ between the two boundary conditions. The constant κ in

Theorem 6.1.7, which constitutes the sub-exponential prefactor of the Eyring–

Kramers law, must be modified to κ′ in this case. We provide the correct

versions of Theorems 6.1.7 and 6.1.12 in the periodic case.

Theorem 6.8.1. Under periodic boundary conditions on Λ, there exists a

constant κ′ = κ′(K, L) > 0 such that parts (1) to (4) of Theorem 6.1.7 hold

with κ′ instead of κ. Moreover, the constant κ′ satisfies (cf. (6.1))

lim
K→∞

κ′(K, L) =

1/4 if K < L,

1/8 if K = L.
(6.55)
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Moreover, as an analogue of (6.13), we define the limiting Markov chain

{Y ′(t)}t≥0 on S as the continuous-time Markov chain associated with the

transition rate given by

rY ′(s, s
′) =

(κ′)−1 if {s, s′} = {−1, 0} or {0, +1},

0 otherwise.
(6.56)

Theorem 6.8.2. Under periodic boundary conditions on Λ, parts (1) and

(2) of Theorem 6.1.12 hold with X ′(·) instead of X(·).

As can be observed from Theorems 6.8.1 and 6.8.2, the difference between

the two boundary conditions lies in the constants κ and κ′. That is, according

to (6.12) and (6.55), the constants κ and κ′ differ by the factor KL (in the

limit K →∞). We refer to Section 4.8 for a thorough heuristic explanation of

this factor KL. We provide the precise definition of κ′, which is an analogue

of Definition 6.2.1. The constant κ′ satisfies κ′ = b′ + 2e′, where the bulk

constant b′ = b′(K, L) is defined as

b′ =


(K + 2)(L− 4)

4KL
if K < L

(K + 2)(L− 4)

8KL
if K = L

and the edge constant e′ = e′(K, L) is defined in the same manner as e which

satisfies

e′ ≤ C

KL
for some constant C > 0. (6.57)

Thus, the estimate (6.55) holds for κ′.
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Figure 6.7: (Left) graph structure (V̂K , E(V̂K)). (Right) graph structure
(VK , E(VK)).

6.9 Auxiliary process

6.9.1 Original auxiliary process

In this subsection, we define an auxiliary process which successfully repre-

sents the Metropolis dynamics on the edge typical configurations. For K ≥ 5,

we define a graph structure (V̂K , E(V̂K)) (see Figure 6.7 (left) for an illus-

tration for the case of K = 5). First, the vertex set V̂K ⊆ R2 is defined

by

V̂K = {(a, b) ∈ R2 : 0 ≤ b ≤ a ≤ K and b ≤ 2} \ {(K, 2)}. (6.58)

Then, the edge structure E(V̂K) is inherited by the Euclidean lattice. We

abbreviate by 0 = (0, 0) ∈ V̂K and define

ÂK = {(a, b) ∈ V̂K : a = K or b = 2}.

Then, we define {ẐK(t)}t≥0 as the continuous-time random walk on the afore-

mentioned graph whose transition rate is uniformly 1. In other words, the

transition rate r̂K : V̂K × V̂K → [0, ∞) is given by

r̂K(x, y) =

1 if {x, y} ∈ E(V̂K),

0 otherwise.
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Obviously, the process is reversible with respect to the uniform distribution

on V̂K .

We denote by ĥK·,·(·) and ĉapK(·, ·) the equilibrium potential and capacity

with respect to ẐK(·), respectively. We define a constant cK > 0 by

cK = |V̂K |ĉapK(0, ÂK). (6.59)

Then, we have the following asymptotic lemma.

Lemma 6.9.1. There exists a positive constant δ with |δ − 0.435| < 0.0001

such that

lim
K→∞

cK = δ.

Proof. We explicitly compute the equilibrium potential ĥK
0,ÂK

(·). For simplic-

ity, we write h = ĥK
0,ÂK

and abbreviate by h(a, b) = h((a, b)) for (a, b) ∈ V̂K .

We define

ai = h(K − i, 0); i ∈ J0, KK and bi = h(K − i, 1); i ∈ J0, K − 1K.

Then, we trivially have aK = h(0, 0) = 1,

a0 = h(K, 0) = 0 and b0 = h(K, 1) = 0. (6.60)

Moreover, by the Markov property, the following recurrence relations hold:

3ai = ai+1 + ai−1 + bi; i ∈ J1, K − 1K, (6.61)

4bi = bi+1 + bi−1 + ai; i ∈ J1, K − 2K, (6.62)

2bK−1 = bK−2 + aK−1 and 3aK−1 = 1 + aK−2 + bK−1. (6.63)
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Then, (6.61) and (6.62) induce the following relations:

ai+2 − 7ai+1 + 13ai − 7ai−1 + ai−2 = 0; i ∈ J2, K − 3K, (6.64)

bi+2 − 7bi+1 + 13bi − 7bi−1 + bi−2 = 0; i ∈ J2, K − 3K. (6.65)

Hence, we solve t4−7t3 +13t2−7t+1 = 0, which is equivalent to (t+ t−1)2−
7(t + t−1) + 11 = 0. This gives t + t−1 = (7 ±

√
5)/2. Thus, we define the

positive constants α1, α2, α3, α4 > 0 such that α1 > α2 are the solutions of

t+ t−1 = (7 +
√

5)/2 and α3 > α4 are the solutions of t+ t−1 = (7−
√

5)/2.

Then, there exist constants pn and qn, n ∈ J1, 4K such that we have, for

i ∈ J0, K − 1K,

ai =
4∑

n=1

pnα
i
n and bi =

4∑
n=1

qnα
i
n. (6.66)

Based on the last formula, (6.60) implies

p1 + p2 + p3 + p4 = q1 + q2 + q3 + q4 = 0, (6.67)

and (6.61) implies, for i ∈ J1, K − 1K,

4∑
n=1

αi−1
n {pnα2

n − (3pn − qn)αn + pn} = 0.

As K ≥ 5, this implies that
1 1 1 1

α1 α2 α3 α4

α2
1 α2

2 α2
3 α2

4

α3
1 α3

2 α3
3 α3

4



p1α

2
1 − (3p1 − q1)α1 + p1

p2α
2
2 − (3p2 − q2)α2 + p2

p3α
2
3 − (3p3 − q3)α3 + p3

p4α
2
4 − (3p4 − q4)α4 + p4

 = 0.

As the square matrix is invertible (cf. Vandermonde matrix), we must have
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pnα
2
n − (3pn − qn)αn + pn = 0 for all n ∈ J1, 4K, which implies that

3pn − qn =
7 +
√

5

2
pn; n = 1, 2, and 3pn − qn =

7−
√

5

2
pn; n = 3, 4.

Hence, substituting (6.67) and the last display to (6.66) gives, for i ∈ J0, K−
1K,

ai = p1(αi1−αi2)+p3(αi3−αi4), bi = −1 +
√

5

2
p1(αi1−αi2)+

−1 +
√

5

2
p3(αi3−αi4).

(6.68)

Substituting the last formula to (6.63) implies

(2 +
√

5)p1(αK−1
1 − αK−1

2 ) + (2−
√

5)p3(αK−1
3 − αK−1

4 )

=
1 +
√

5

2
p1(αK−2

1 − αK−2
2 ) +

1−
√

5

2
p3(αK−2

3 − αK−2
4 )

and

7 +
√

5

2
p1(αK−1

1 − αK−1
2 ) +

7−
√

5

2
p3(αK−1

3 − αK−1
4 )

= 1 + p1(αK−2
1 − αK−2

2 ) + p3(αK−2
3 − αK−2

4 ).

Solving the last two equations, we can express p1 and p3 in terms of α1, α2, α3, α4.

Substituting these to the first equation of (6.68) for i = K − 1, we deduce

that aK−1 equals

−
[
(2−

√
5)− 1−

√
5

2

αK−2
3 − αK−2

4

αK−1
3 − αK−1

4

]
+
[
(2 +

√
5)− 1 +

√
5

2

αK−2
1 − αK−2

2

αK−1
1 − αK−1

2

]
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divided by

[
(2 +

√
5)− 1 +

√
5

2

αK−2
1 − αK−2

2

αK−1
1 − αK−1

2

][7−
√

5

2
− αK−2

3 − αK−2
4

αK−1
3 − αK−1

4

]
−
[
(2−

√
5)− 1−

√
5

2

αK−2
3 − αK−2

4

αK−1
3 − αK−1

4

][7 +
√

5

2
− αK−2

1 − αK−2
2

αK−1
1 − αK−1

2

]
.

As α1 > α2 and α3 > α4, we have (α2/α1)K−1 → 0 and (α4/α3)K−1 → 0 as

K →∞. Thus, we may calculate

lim
K→∞

aK−1 =
−
[
(2−

√
5)− 1−

√
5

2
1
α3

]
+
[
(2 +

√
5)− 1+

√
5

2
1
α1

]
[
(2 +

√
5)− 1+

√
5

2
1
α1

][
7−
√

5
2
− 1

α3

]
−
[
(2−

√
5)− 1−

√
5

2
1
α3

][
7+
√

5
2
− 1

α1

]
=

2
√

5− 1+
√

5
2
α2 + 1−

√
5

2
α4

5
√

5 + 3−5
√

5
2

α2 + −3−5
√

5
2

α4 +
√

5α2α4

.

In the second equality, we used that α1α2 = α3α4 = 1. By substituting

the exact values of αi, this is asymptotically 0.5649853624. Moreover, as

0 = (0, 0) ∈ V̂K is connected only to (1, 0) ∈ V̂K , we have by [16, (7.1.39)]

that

ĉapK(0, ÂK) =
1

|V̂K |
[h(0, 0)− h(1, 0)] =

1− aK−1

|V̂K |
.

Therefore, we have

lim
K→∞

cK = lim
K→∞

|V̂K |ĉapK(0, ÂK) = 1− lim
K→∞

aK−1 ≈ 0.4350146376,

which concludes the proof.

Remark 6.9.2. In the periodic boundary case, we need a completely different

auxiliary process to estimate the structure of edge typical configurations.

Namely, the desired process is a Markov chain on the collection of subtrees

of a K×2-shaped ladder graph with semi-periodic boundary conditions (i.e.,

open on the horizontal boundaries and periodic on the vertical ones). In this
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case, we deduce an upper bound for the corresponding capacity, which is

sufficient to obtain the bound (6.57). We refer to Proposition 4.6.9 for more

information on this estimate.

6.9.2 Projected auxiliary process

Based on the original auxiliary process defined in the preceding subsection, we

define a projected auxiliary process which is obtained by simply projecting

the elements in ÂK to a single element d. Rigorously, we define a graph

structure (VK , E(VK)) (see Figure 6.7 (right) for an illustration for the case

of K = 5). The vertex set VK ⊆ R2 is defined by

VK = (V̂K \ ÂK) ∪ {d}. (6.69)

Then, the edge structure E(VK) is inherited by E(V̂K); we have {x, y} ∈
E(VK) for {x, y} ∈ E(V̂K), x, y ∈ V̂K \ ÂK , and we have {x, d} ∈ E(VK) for

x ∈ V̂K \ ÂK satisfying ∃y ∈ ÂK with {x, y} ∈ E(V̂K).

Then, we define {ZK(t)}t≥0 as the continuous-time Markov chain on (VK , E(VK))

whose transition rate rK is defined by rK(x, y) = r̂K(x, y) if x, y 6= d and

rK(x, d) = rK(d, x) =
∑
y∈ÂK

r̂K(x, y).

This process is reversible with respect to the uniform distribution on VK .

We denote by hK·,·(·), capK(·, ·), DK(·) the equilibrium potential, capacity,

and Dirichlet form with respect to ZK(·), respectively. Then, by the strong

Markov property, it is immediate from the definition that

hK0, d(x) = ĥK
0, ÂK

(x); x ∈ V̂K \ ÂK and hK0, d(d) = ĥK
0, ÂK

(y) = 0; y ∈ ÂK .
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Therefore, we have (cf. (6.59))

|VK |capK(0, d) = |V̂K |ĉapK(0, ÂK) = cK . (6.70)
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Chapter 7

General interaction constants

In this chapter, we consider a generalized three-state Potts model on a fi-

nite two-dimensional rectangular lattice graph Λ = (V, E), where V =

{0, . . . , K − 1} × {0, . . . , L − 1} is the vertex set and E is the edge set.

Without loss of generality, we assume throughout the article that

K ≤ L.

To fix ideas, we assume periodic boundary conditions; more precisely, we

also include each pair of vertices lying on opposite sides of the lattice in

the edge set, so that we obtain a two-dimensional torus TK × TL. We say

that two vertices v, w ∈ V are nearest neighbors (or simply neighbors) and

denote by v ∼ w when they share an edge of Λ, i.e., when {v, w} ∈ E.

To each vertex v ∈ V is associated a spin taking value in Ω := {1, 2, 3},
and thus X := ΩV denotes the set of spin configurations. We denote by

1, 2, 3 ∈ X those configurations in which all the vertices have spin value

1, 2, 3, respectively.

To each configuration σ ∈ X we associate the energy H(σ) ∈ R given by
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H(σ) := −
∑
i∈S

Jii
∑

{v, w}∈E

1{σ(v)=σ(w)=i}+
∑

i, j∈S: i<j

Jij
∑

{v, w}∈E

1{{σ(v), σ(w)}={i, j}},

(7.1)

where for any i, j ∈ S, Jij > 0 are the coupling or interaction constants. We

remark that our techniques would also work if the Hamiltonian includes an

external field, leading to similar results. For simplicity we decided to focus

on the case of zero external field.

We assume that

J11 > J22 = J33 and J12 = J13, (7.2)

so that, intuitively, spin 1 is more stable than spins 2 and 3, and the Hamil-

tonian is symmetric with respect to the spin exchange 2 ↔ 3. Then, we

write

γ1 := J11−J22 > 0, γ12 := J12 +J22 > 0 and γ23 := J23 +J22 > 0. (7.3)

We assume the following conditions throughout this article. Recall the defi-

nition of function fh(x) from (7.43).

Assumption 7.0.1. The following conditions hold.

A.
2γ12 + γ1

2γ1

is not an integer.

B. fγ1(γ12) = 2(K + 1)γ23.

C. 2γ12 ≥ 4γ23 + γ1.

Intuitively, condition A corresponds to the familiar condition 2/h /∈ N,

where h > 0 is the external field of the original Ising model, first proposed

in [71, standard case]. Condition B implies that the energy barriers of the

canonical transitions 2→ 1 and 2→ 3 are the same. It is clear that condition
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C is satisfied if there exists a constant k > 0 sufficiently large so that γ12 ≥
kγ1 and γ12 ≥ kγ23. This is a natural selection of constants which will be

justified in more detail in Section 7.5.3. We refer to Section 7.5.3 for more

detailed explanation on each of our specific choices.

Remark 7.0.2. Condition C is an optimal condition on the coefficients and

used in the proof of Lemma 7.2.2 only. This inequality has the following

interpretation. Keeping (7.3) in mind, we can rewrite condition C as

2J12 − J11 + 3J22 ≥ 4J23 + 4J22. (7.4)

By a simple algebraic computation, we can see that the left-hand side of (7.4)

is the energy needed to add a protuberance to a cluster of spins 1 in the sea

of spins 2, and the right-hand side of (7.4) is the energy needed to add a new

spin 3 in the sea of spins 2. Thus, (7.4) suggests that the dynamics favor a

single appearance of an unrelated spin (in this case, 3) over the enlargement of

a cluster of spins 1. This subtle dynamical behavior constitutes a significant

challenge that is not present in the ferromagnetic Ising and Potts models

analyzed in, say, [13].

Recall the Gibbs distribution µβ from Definition 2.0.2 and the MH dy-

namics σβ(·) from (2.1).

7.1 Main results

7.1.1 Stable and metastable states

We denote by X s the set of global minima of the Hamiltonian (7.1). A simple

algebraic computation implies the following proposition.

Proposition 7.1.1 (Identification of X s). It holds that X s = {1}.

Proof. By the definition (7.1) and the assumption (7.2), it is straightforward
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that

H(σ) ≥ −
∑
i∈S

Jii
∑

{v, w}∈E

1{σ(v)=σ(w)=i} ≥ −J11

∑
i∈S

∑
{v, w}∈E

1{σ(v)=σ(w)=i}.

The last double summation is exactly
∑

{v, w}∈E

1{σ(v)=σ(w)}, which is clearly

bounded above by |E| = 2KL. Therefore, we conclude thatH(σ) ≥ −2J11KL.

The equality holds if and only if σ(v) = σ(w) = 1 for all {v, w} ∈ E, which

is equivalent to σ = 1.

Next, we identify the metastable configurations. We denote by Ωσ, σ′ the

set of all paths between σ and σ′. For convenience of notation, we sometimes

write ω : σ → σ′ to indicate ω ∈ Ωσ, σ′ . For any path ω = (ω0, . . . , ωn), we

define the height of ω as

Φω := max
i=0, ..., n

H(ωi). (7.5)

For any pair of configurations σ, σ′ ∈ X , the communication height Φ(σ, σ′)

between σ and σ′ is defined as the minimal height among all paths ω : σ → σ′,

i.e.,

Φ(σ, σ′) := min
ω:σ→σ′

Φω = min
ω:σ→σ′

max
η∈ω

H(η). (7.6)

We define the set of optimal paths between σ, σ′ ∈ X as

Ωopt
σ, σ′ := {ω ∈ Ωσ, σ′ : Φω = Φ(σ, σ′)}. (7.7)

Accordingly, for disjoint subsets A and B of X , we define

Φ(A, B) := min
σ∈A

min
σ′∈B

Φ(σ, σ′)

and

Ωopt
A,B := {ω ∈ Ωσ, σ′ : σ ∈ A, σ′ ∈ B, Φω = Φ(A, B)}.
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For any σ ∈ X , let Iσ := {η ∈ X : H(η) < H(σ)} be the set of configurations

with energy strictly smaller than H(σ). Then, we define the stability level of

σ as

Vσ := Φ(σ, Iσ)−H(σ). (7.8)

If Iσ = ∅ (i.e. if σ ∈ X s), we set Vσ := ∞. Finally, we define the collection

of metastable states as

Xm :=
{
η ∈ X : Vη = max

σ∈X\X s
Vσ
}
. (7.9)

Furthermore, for any σ ∈ X and any ∅ 6= A ⊂ X , we set

Γ(σ, A) := Φ(σ, A)−H(σ).

From the definition it immediately follows that Vσ = Γ(σ, Iσ).

First, we investigate the stability level of configurations 2 and 3. We

define (cf. Assumption 7.0.1-B)

`? :=
⌈2γ12 + γ1

2γ1

⌉
and Γ? := fγ1(γ12) = 2(K + 1)γ23. (7.10)

By definition (7.43) we have that

Γ? = 4`?
(
γ12 +

γ1

2

)
− 2γ1(`?2− `? + 1) = 4`?γ12− 2γ1(`?2− 2`? + 1). (7.11)

The result below shows that the communication height between stable and

metastable states is exactly Γ? above the energy level of metastable configu-

rations.

Theorem 7.1.2 (Communication height). It holds that

Γ(2, 1) = Γ(3, 1) = Γ(2, 3) = Γ?.

By definition, the previous theorem is equivalent to Φ(2, 1) = Φ(3, 1) =
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Φ(2, 3) = H(2) + Γ?. This theorem is proved in Section 7.4.1.

Next, we claim that stability levels of any other configurations are signif-

icantly smaller than Γ?. We present a proof of the following proposition in

Section 7.4.2.

Proposition 7.1.3 (Stability level of other configurations). For any config-

uration η ∈ X \ {1, 2, 3},

Vη ≤ 2(`? − 1)(γ23 + γ1).

Remark 7.1.4. By (7.10), it holds that `? <
2γ12 + γ1

2γ1

+ 1. Employing this

inequality to the formula of Γ? given in (7.11), we obtain

Γ? > 4`?γ12 − 2γ1
2γ12 + γ1

2γ1

(`? − 1) = (2γ12 − γ1)`? + (2γ12 + γ1).

Again using `? <
2γ12 + γ1

2γ1

+ 1 on the last term, we have

Γ? > (2γ12 − γ1)`? + 2γ1(`? − 1) = 2γ12`
? + γ1(`? − 2) ≥ 2γ12`

?.

On the other hand, the upper bound appearing in Proposition 7.1.3 is esti-

mated via Assumption 7.0.1-C as

2(`? − 1)(γ23 + γ1) < 2`? × 2γ12

k
=

4

k
γ12`

?

where k is sufficiently large. Therefore, we conclude that

Γ? >
k

2
× 2(`? − 1)(γ23 + γ1),

which implies that the stability levels of configurations other than 1, 2, and 3

are significantly smaller than the stability level of metastable configurations

2 and 3.

By combining Theorem 7.1.2 and Proposition 7.1.3, we now identify the
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set Xm.

Theorem 7.1.5 (Identification of Xm). We have V2 = V3 = Γ? and Xm =

{2, 3}.

Proof. To prove the theorem, it suffices to demonstrate that

V2 = Γ?. (7.12)

Indeed, then by symmetry we also have V3 = Γ?, and combining these with

Proposition 7.1.3 we conclude that Xm = {2, 3}.
Before proving (7.12), we claim that

Γ(η, 1) < Γ? for all η ∈ X \ {1, 2, 3}. (7.13)

To prove the claim, we fix η ∈ X \{1, 2, 3}. Starting from η, we find another

configuration η1 with lower energy such that an optimal path from η to η1

realizes the stability level Vη. Repeating this algorithm, since X is finite

and X s = {1}, we can take a finite sequence η = η0, η1, . . . , ηm = 1 of

configurations such that H(ηi) > H(ηi+1) and Vηi = Γ(ηi, ηi+1) for all 0 ≤
i ≤ m− 1. Then, we estimate

Γ(η, 1) = Φ(η, 1)−H(η) ≤ max
0≤i≤m−1

Φ(ηi, ηi+1)−H(η),

where the inequality holds by concatenating the m − 1 optimal paths from

ηi to ηi+1. By construction, the last term equals

max
0≤i≤m−1

[Vηi +H(ηi)]−H(η).

By Theorem 7.1.2 and Proposition 7.1.3, Vσ ≤ Γ? for all σ 6= 1. Thus, the

last display is bounded by

Γ? +H(η0)−H(η) = Γ?.
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This concludes the proof of (7.13).

Finally, we prove V2 = Γ?. Theorem 7.1.2 readily implies that V2 ≤ Γ?.

If, on the contrary, V2 < Γ? then by definition, there exists σ ∈ X with

H(σ) < H(2) such that Φ(2, σ) < Γ? + H(2), where clearly σ 6= 1, 2, 3.

Then by the claim (7.13), we have Φ(σ, 1) < Γ? +H(σ). Thus,

Φ(2, 1) ≤ max{Φ(2, σ), Φ(σ, 1)} < Γ? +H(2),

which contradicts Theorem 7.1.2. This conclude the proof of Theorem 7.1.5.

We have a following another important consequence of Proposition 7.1.3,

which is called the recurrence property. With probability tending to one in

the limit β → ∞, starting from any configuration in X , the process visits

X s ∪Xm within a time of order e[2(`?−1)(γ23+γ1)]β which is much smaller than

the metastable timescale eΓ?β.

Theorem 7.1.6 (Recurrence property). For any σ ∈ X and for any ε > 0,

there exists κ > 0 such that for β sufficiently large, we have

P
[
τσ{1,2,3} > eβ[2(`?−1)(γ23+γ1)+ε]

]
≤ e−e

κβ

.

Proof. We apply [67, Theorem 3.1] for the level set with respect to 2(`? −
1)(γ23 + γ1). This concludes the proof since X s = {1} by Proposition 7.1.1,

V2 = V3 = Γ? > 2(`?−1)(γ23 +γ1) by Theorem 7.1.5 and Vη ≤ 2(`?−1)(γ23 +

γ1) for all η ∈ X \ {1, 2, 3} by Proposition 7.1.3.

7.1.2 Transition time, mixing time, and spectral gap

Our next goal is to study the large deviation-type results. Recall the objects

defined before Theorem 4.1.4.
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Theorem 7.1.7 (Metastable transition time, mixing time, and spectral gap).

For any m ∈ {2, 3} the following statements hold.

(1) For every ε > 0, lim
β→∞

Pm(eβ(Γ?−ε) < τ1 < eβ(Γ?+ε)) = 1.

(2) lim
β→∞

1

β
logEm[τ1] = Γ?.

(3) For every ε ∈ (0, 1), lim
β→∞

1

β
log tmix

β (ε) = Γ? and there exist two con-

stants 0 < c1 ≤ c2 < ∞ independent of β such that for any β > 0,

c1e
−βΓ? ≤ λβ ≤ c2e

−βΓ?.

Proof. Item (1) follows by [67, Theorem 4.1], while item (2) follows by [67,

Theorem 4.9]. In both cases we applied the model-independent results with

η0 = m and Γ = Γ?. To prove item (3), by [70, Proposition 3.24], it suffices

to demonstrate in our model that Γ̃(X \ {1}) = Γ? (see equation (21) in [70]

for the definition of Γ̃). Indeed, by [70, Lemma 3.6] we know that

Γ̃(X \ {1}) = max
η∈X\{1}

Γ(η, 1).

By Theorem 7.1.2, Γ(2, 1) = Γ(3, 1) = Γ?. Moreover, by the claim (7.13) we

have that Γ(η, 1) < Γ? for all η 6= 1, 2, 3. This concludes the proof.

7.1.3 Minimal gates

Next we are interested in identifying the set of minimal gates for the metastable

transitions. First, we need a few more model-independent definitions.

The set

S(A, B) :=
{
ξ ∈ X : ∃ω ∈ Ωopt

A,B, ξ ∈ argmaxωH
}
. (7.14)

is known as the set of minimal saddles between A, B ⊆ X . In particular, any

ξ ∈ S(A, B) is called an essential saddle if there exists ω ∈ Ωopt
A,B such that
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Figure 7.1: Examples of configurations on a grid graph 12 × 9 belonging to
(a) B4

1,K(r, s) ⊂ H4(r, s), (b) R2,K−1(r, s) ⊂ Q(r, s), (c) BK−1
1,K (r, s) ⊂

P(r, s) and (d) B5
8,K(r, s) ⊂ W 5

8 (r, s). Spins r and s are represented by
colors white and gray, respectively.

ξ ∈ argmaxωH and

argmaxω′H 6⊆ argmaxωH \ {ξ} for all ω′ ∈ Ωopt
A,B \ {ω}.

A saddle ξ ∈ S(A, B) which does not satisfy the condition is said to be

unessential. One can easily check that this definition coincides with the classic

one [67] but is simpler.

A collection W of configurations is a gate for the transition between

A, B ∈ X if W ⊆ S(A, B) and ω ∩W 6= ∅ for all ω ∈ Ωopt
A,B. Moreover, W is

said to be a minimal gate for the transition A → B if it is a gate and for any

W ′ (W there exists ω′ ∈ Ωopt
A,B such that ω′∩W ′ = ∅. The set G = G(A, B)

denotes the union of all minimal gates for the transition A → B.

Let us now focus on some model-dependent definitions concerning our

setting. We refer to Figures 7.1 and 7.2 for illustrations.

• We say that R ⊆ V is a rectangle of shape a× b if the sites in R form

a rectangle with a columns and b rows. It is a strip if it wraps around

Λ, i.e., if a = L or b = K.

• For r, s ∈ S, we denote by Ra, b(r, s) the collection of configurations in

which all vertices have spins r, except for those in a rectangle a × b,
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Figure 7.2: Local geometry of the configurations belonging to P(2, 3),
Q(2, 3) and Hi(2, 3), 1 ≤ i ≤ K − 3, where K = 8 and L = 10. We
refer to (7.32) for the definition of initial cycles.

which have spins s. Note that Ra, b(r, s) 6= Rb, a(r, s) if a 6= b. Moreover,

we write Bl
a, b(r, s) (resp. B̂l

a, b(r, s)) the collection of configurations in

which all vertices have spins r, except for those which have spins s, in

a rectangle a× b with a bar of length l adjacent to one of the sides of

length b (resp. a), with 1 ≤ l ≤ b− 1 (resp. 1 ≤ l ≤ a− 1).

• We set

P(r, s) :=

BK−1
1,K (r, s), if K < L,

BK−1
1,K (r, s) ∪ B̂K−1

K,1 (r, s), if K = L.

• We define

Q(r, s) :=

R2,K−1(r, s) ∪BK−2
1,K (r, s), K < L,

R2,K−1(r, s) ∪BK−2
1,K (r, s) ∪RK−1,2(r, s) ∪ B̂K−2

K,1 (r, s), K = L.
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• For 1 ≤ i ≤ K − 3, we define Hi(r, s) as
Bi

1,K(r, s) ∪
K−2⋃
j=i+1

Bj
1,K−1(r, s), K < L,

Bi
1,K(r, s) ∪

K−2⋃
j=i+1

Bj
1,K−1(r, s) ∪ B̂i

K,1(r, s) ∪
K−2⋃
j=i+1

B̂j
K−1,1(r, s), K = L.

• Finally, for 2 ≤ j ≤ L− 3 and 1 ≤ h ≤ K − 1 we set

W h
j (r, s) :=

Bh
j,K(r, s), if K < L,

Bh
j,K(r, s) ∪ B̂h

K,j(r, s), if K = L.

Using the sets defined above, we now formulate all the possible minimal gates

for the metastable transitions. For m ∈ {2, 3}, we write

W(m, 1) := B1
`?−1, `?(m, 1) ∪ B̂1

`?, `?−1(m, 1). (7.15)

Moreover, we abbreviate

W(2, 3) :=
K−3⋃
i=1

Hi(2, 3) ∪Q(2, 3) ∪P(2, 3)

∪
L−3⋃
j=2

K−1⋃
h=1

W h
j (2, 3) ∪P(3, 2) ∪Q(3, 2) ∪

K−3⋃
i=1

Hi(3, 2).

First, we address the metastable transition from m ∈ {2, 3} to 1. We

refer to Figure 7.3 for a viewpoint from above the energy landscape.

Theorem 7.1.8 (Minimal gates for 2 → 1 and 3 → 1). Fix m ∈ {2, 3}
and consider the metastable transition from m to 1. Take any set A in

{
W h
j (2, 3)

}
j,h
∪
{
Q(2, 3),P(2, 3),P(3, 2),Q(3, 2)

}
∪
{
Hi(2, 3)

}
i
∪
{
Hi(3, 2)

}
i
,
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Figure 7.3: Viewpoint from above of the energy landscape cut at the energy
level Φ(2, 1) = Φ(3, 1) = Φ(2, 3) = Γ? + H(2). Here, Cr denotes the initial
cycle of r; see (7.32) for the exact definition. The gates W(m, 1) between
m ∈ {2, 3} and 1 consist of singletons, whereas the gate W(2, 3) between
2 and 3 is a complex union of essential saddles.

where the collections are over all 2 ≤ j ≤ L − 3, 1 ≤ h ≤ K − 1 and

1 ≤ i ≤ K − 3. Then,

(1) W(2, 1) ∪W(3, 1) is a minimal gate;

(2) W(m, 1) ∪A is a minimal gate;

(3) moreover, these are all the minimal gates in the sense that

G(2, 1) = G(3, 1) =W(2, 1) ∪W(3, 1) ∪W(2, 3).

Next, we state a theorem regarding the minimal gates for the transition

between 2 and 3.

Theorem 7.1.9 (Minimal gates for 2→ 3). Consider the transition from 2

to 3. Take any set A in

{
W h
j (2, 3)

}
j,h
∪
{
Q(2, 3),P(2, 3),P(3, 2),Q(3, 2)

}
∪
{
Hi(2, 3)

}
i
∪
{
Hi(3, 2)

}
i
,
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as in Theorem 7.1.8. Then,

(1) W(2, 1) ∪A is a minimal gate;

(2) W(3, 1) ∪A is a minimal gate;

(3) these are all the minimal gates in the sense that

G(2, 3) =W(2, 1) ∪W(3, 1) ∪W(2, 3).

We prove Theorems 7.1.8 and 7.1.9 in Section 7.4.4.

Finally, in the last result of this section we show that during the metastable

transition, the process typically visits the corresponding gates identified in

Theorems 7.1.8 and 7.1.9.

Corollary 7.1.10. Take a set A in the collection

{
W h
j (2, 3)

}
j,h
∪
{
Q(2, 3),P(2, 3),P(3, 2),Q(3, 2)

}
∪
{
Hi(2, 3)

}
i
∪
{
Hi(3, 2)

}
i

as we did in Theorems 7.1.8 and 7.1.9.

(1) For the transition from m ∈ {2, 3} to 1,

lim
β→∞

Pm[τW(2,1)∪W(3,1) < τ1] = 1 and lim
β→∞

Pm[τW(m,1)∪A < τ1] = 1.

(2) For the transition 2→ 3,

lim
β→∞

P2[τW(2,1)∪A < τ3] = 1 and lim
β→∞

P2[τW(3,1)∪A < τ3] = 1.

Proof. By Theorems 7.1.8 and 7.1.9, the four sets in the subscripts are gates

for the corresponding transitions. Thus, [67, Theorem 5.4] implies the desired

equations.
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7.2 Projection operator

In this section, we introduce the notion of projection operators which act on

the configuration space X . These operators are extremely useful for analyzing

the energy landscape, especially when we want to focus only on two given

spin values. First, we introduce some notation which will be useful in this

section and following ones. For each σ ∈ X and i, j ∈ S, we define the number

of spins i in σ as

Ni(σ) :=
∣∣{v ∈ V : σ(v) = i}

∣∣. (7.16)

Then we define, for n ≥ 0, the set of configurations which have exactly n

spins i:

V i
n := {η ∈ X : Ni(η) = n}. (7.17)

Moreover, for an edge e ∈ E, we say that e is an ij-edge of σ if the corre-

sponding two spins are i and j in σ. We write

nij(σ) :=
∣∣{e ∈ E : e is an ij-edge of σ}

∣∣. (7.18)

Finally, for spin values r, s ∈ S, we define the projection operator Prs : X →
X as

(Prsσ)(x) =

s, if σ(x) = r,

σ(x), if σ(x) 6= r.
(7.19)

The operator Prs projects all spins r to s and preserves all the other spins.

Intuitively, one would expect the projected configuration to have lower energy

than the original configuration, since all disagreeing edges between r and s

disappear. This is in fact the case, unless the spin value r is more stable than

s (for example, if r = 1 and s = 2), in which case the projected configuration

may still have higher energy than the original configuration.

Two projections which are important for us are P32 and P12. We begin

by analyzing P32. The analysis is simpler because spins 2 and 3 have the

same level of stability.
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Lemma 7.2.1 (Projection 3→ 2). For any σ ∈ X , we have

H(P32σ) ≤ H(σ).

Moreover, equality holds if and only if n23(σ) = 0.

Proof. By the definition of P32, it is easy to check that n11(P32σ) = n11(σ),

n12(P32σ) = n12(σ) +n13(σ), n13(P32σ) = 0, n22(P32σ) = n22(σ) +n23(σ) +

n33(σ) and n23(P32σ) = n33(P32σ) = 0. Thus, using the interpretation

(7.41) we may write

H(P32σ) = H(2)− γ1n11(σ) + γ12[n12(σ) + n13(σ)]

and

H(σ) = H(2)− γ1n11(σ) + γ12n12(σ) + γ13n13(σ) + γ23n23(σ).

Recalling that γ12 = γ13 from (7.2) and (7.3), we deduce

H(P32σ)−H(σ) = −γ23n23(σ) ≤ 0.

This proves the first statement. Moreover, from (7.3) it follows that the equal-

ity holds if and only if n23(σ) = 0. This concludes the proof.

For a configuration σ ∈ X , we say that a row (resp. column) in Λ is

a horizontal bridge (resp. vertical bridge) of σ if all spins on it have the

same value. If there exist both a horizontal bridge and a vertical bridge

simultaneously (in which case the spin value must be the same), we call the

union a cross.

Given a configuration σ ∈ X and a spin r ∈ S, we say that A ⊆ V is an

r-cluster of σ if it is a maximal connected subset of V on which all spins are

r; i.e., if A is connected, σ(v) = r for all v ∈ A and σ(v) 6= r for all v ∈ ∂A,
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where ∂A is the outer boundary of A:

∂A :=
{
w ∈ V \ A : ∃w′ ∈ A, {w,w′} ∈ E

}
. (7.20)

Next we deal with the projection P12. In this case, as we mentioned in

the beginning of this section, the statement becomes much more restrictive

because spin 1 is more stable than spin 2. Indeed, the next lemma shows that

the projection P12 lowers the energy of a configuration only when this has

a low number of spins 1.

Lemma 7.2.2 (Projection 1 → 2). Suppose that σ ∈ X satisfies H(σ) −
H(2) ≤ Γ? and N1(σ) ≤ `?2. Then, we have

H(P12σ) ≤ H(σ).

Moreover, equality holds if and only if N1(σ) = 0.

Proof. Abbreviate σ̃ := P12σ and σ̄ := P32σ. Clearly, we have N1(σ̄) =

N1(σ). We divide into three cases according to the type of 1-bridges of σ.

• If σ has an 1-cross, then we can regard σ̄ as a configuration of spins 2

in the sea of spins 1. Applying the well-known isoperimetric inequality

(e.g. [1, Corollary 2.5]) to the 2-clusters, the perimeter is at least

4
√

N2(σ̄) = 4
√
KL−N1(σ̄) ≥ 4

√
KL− `?2.

Since the perimeter is exactly n12(σ), we have

n12(σ̄) ≥ 4
√
KL− `?2.

Next, since N1(σ̄) ≤ `?2 and each vertex with spin 1 is contained in at

most four 11-edges, we have that

n11(σ̄) ≤ 1

2
× 4×N1(σ̄) ≤ 2`?2, (7.21)
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where the factor
1

2
appears because there are two spins 1 in a single

11-edge. Therefore, by (7.41) we deduce that

H(σ̄)−H(2) = −γ1n11(σ̄) + γ12n12(σ̄) ≥ 4
√
KL− `?2γ12 − 2`?2γ1.

This is strictly bigger than Γ? = 4`?γ12− (2`?2− 4`? + 2)γ1 (cf. (7.11)).

Indeed, we have to verify that

[2
√
KL− `?2 − 2`?]γ12 > (2`? − 1)γ1.

This holds since by Assumption 7.0.1-C we have γ12 > γ1, and since

the lattice size K and L are assumed to be sufficiently larger than the

critical length `? we have that 2
√
KL− `?2− 2`? ≥ 2`?− 1. Therefore,

in this case, by Lemma 7.2.1 we always have H(σ) −H(2) ≥ H(σ̄) −
H(2) > Γ?, which contradicts the assumption.

• If σ has an 1-bridge but no 1-cross, then there are at least K rows or L

columns in σ̄ which are not bridges. In each non-bridge of σ̄, there are

at least two 12-edges. Moreover, by the same logic as in (7.21) there

are at most 2`?2 11-edges. Therefore, we have

H(σ̄)−H(2) ≥ 2 min{K,L}γ12 − 2`?2γ1 = 2Kγ12 − 2`?2γ1.

Similarly, this is strictly bigger than Γ? due to Assumption 7.0.1-C, so

that we get a contradiction.

• If σ does not have an 1-bridge, then all 1-clusters of σ do not wrap

around the periodic lattice, and thus we may apply the isoperimetric

inequality. By the projection σ 7→ σ̃ = P12σ, only the 11-, 12- and

13-edges of σ are affected. Thus, by (7.41) we may write

H(σ̃)−H(σ) = γ1n11(σ)− γ12n12(σ) + (γ23 − γ13)n13(σ).
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Since γ12 = γ13 > 0 and γ23 > 0 by (7.3),

H(σ̃)−H(σ) ≤ γ1n11(σ)− [n12(σ) + n13(σ)]× (γ12 − γ23).

By (7.42), it holds that 2n11(σ) + n12(σ) + n13(σ) = 4N1(σ). Again by

the isoperimetric inequality, n12(σ) + n13(σ) ≥ 4
√

N1(σ) and thus the

last-displayed formula is bounded above by

2
[
N1(σ)−

√
N1(σ)

]
γ1 − 4

√
N1(σ)(γ12 − γ23).

Thus to prove H(σ̃) ≤ H(σ), it suffices to verify that

2(γ12 − γ23) > (
√

N1(σ)− 1)γ1.

Since N1(σ) ≤ `?2 and `? = d2γ12 + γ1

2γ1

e < 2γ12 + γ1

2γ1

+ 1 (cf. (7.10)),

we have

(
√

N1(σ)− 1)γ1 <
2γ12 + γ1

2γ1

× γ1 = γ12 +
γ1

2
≤ 2(γ12 − γ23). (7.22)

The last inequality follows from Assumption 7.0.1-C. Therefore, we

conclude the proof of the first statement.

Finally, we investigate the equality condition. Carefully inspecting the proof

above, the equality holds if and only if σ does not have an 1-bridge, n12(σ) = 0

and N1(σ) = 0. This is equivalent to saying that N1(σ) = 0, in which case

σ̃ = σ and thus the equality is obvious.

Remark 7.2.3. The last inequality in (7.22) is where the exact condition C

is required. Indeed,

γ12 +
γ1

2
≤ 2(γ12 − γ23) if and only if 2γ12 ≥ 4γ23 + γ1.
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7.3 Comparison with the original Ising path

In this section, we prove that if a path is restricted to only two spins, then it

is equivalent, in the sense of communication height and gates, to the original

Ising path with positive external field (if the spins are {1, 2} or {1, 3}) or the

original Ising path with zero external field (if the spins are {2, 3}).
We say that a path ω is an ij-path if it involves spins i and j only, i.e.,

ωn(v) ∈ {i, j} for all n and v ∈ V . According to the notation (7.44), this is

equivalent to ω ⊆ X ij.

Proposition 7.3.1 (Gate property 1). Suppose that ω = (ωn)Nn=0 is an 1r-

path from r to 1 for some r ∈ {2, 3}.

(1) Φω ≥ H(2) + Γ?.

(2) If Φω = H(2) + Γ?, then ω ∩W(r,1) 6= ∅ (cf. (7.15)).

Remark 7.3.2. Item (1) in Proposition 7.3.1, along with the reference path

constructed in Section 7.5.4, corresponds to the communication height. More-

over, item (2) implies that W(r,1) works as a gate.

Proof of Proposition 7.3.1. For σ ∈ X 1r, we have by (7.41) and (7.42) that

H(σ) = H(2)−γ1n11(σ)+γ1rn1r(σ) = H(2)−2γ1N1(σ)+
(1

2
γ1 +γ1r

)
n1r(σ).

Therefore, X 1r is isomorphic to the original Ising configuration space {+1, −1}V

via correspondence of spins 1 ↔ +1 and r ↔ −1, and moreover the Hamil-

tonian is the same as the original Ising Hamiltonian with coupling constant

J :=
1

2
γ1 + γ1r and external field h := 2γ1, translated by a fixed real num-

ber H(2). Therefore, provided that the Glauber transitions happen inside

the restricted set X 1r, we may refer to the previous well-known results. Item

(1) is equivalent to the lower bound of the communication height, which is

provided in [71, Theorem 3]. Moreover, item (2) is equivalent to saying that
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the collection of critical configurations in the Ising model is a gate for the

metastable transition. This is also a very classic result which was first proved

in [67, Theorem 5.10].

Similarly, we argue that a 23-path behaves in the same way as the original

Ising path with zero external field. Recall the sets defined in Section 7.1.3.

Proposition 7.3.3 (Gate property 2). Suppose that ω = (ωn)Nn=0 is a 23-path

from 2 to 3.

(1) Φω ≥ H(2) + Γ?.

(2) Suppose that Φω = H(2) + Γ?. Take A in

{
W h
j (2,3)

}
j,h
∪
{
Q(2,3),P(2,3),P(3,2),Q(3,2)

}
∪
{
Hi(2,3)

}
i
∪
{
Hi(3,2)

}
i
,

where the collections are over all 2 ≤ j ≤ L − 3, 1 ≤ h ≤ K − 1 and

1 ≤ i ≤ K − 3. Then,

ω ∩A 6= ∅.

Proof. We may use the same argument as in the proof of Proposition 7.3.1,

with the modification that here we identify X 23 with the Ising model with

zero external field [11, 69]. This is possible since we have an alternative

expression of energy for σ ∈ X 23, which is

H(σ) = H(2) + γ23n23(σ).

Thus, item (1) is equivalent to [69, Proposition 2.6] and item (2) is proved

in [11, Theorem 3.3].
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7.4 Proofs

7.4.1 Communication height

In this subsection we prove Theorem 7.1.2. We divide the proof into three

propositions. Specifically, Proposition 7.4.1 establishes the upper bound Γ?+

H(2) for the communication heights, and Propositions 7.4.2 and 7.4.4 estab-

lish the matching lower bound.

Proposition 7.4.1. It holds that Γ(2,1) ≤ Γ?, Γ(3,1) ≤ Γ? and Γ(2,3) ≤
Γ?.

Proof. The reference paths constructed in Section 7.5.4 have height Γ? +

H(2). From this, the upper bounds immediately follow.

Proposition 7.4.2. We have Γ(2,1) = Γ(3,1) ≥ Γ?.

Proof. By the model symmetry between spins 2 and 3, it suffices to prove

that Γ(2,1) ≥ Γ?. To this end, take an arbitrary path ω = (ωn)Nn=0 so that

ω0 = 2 and ωN = 1. Then, define (cf. (7.19))

ω̄n := P32ωn for each 0 ≤ n ≤ N.

It holds automatically that ω̄0 = 2, ω̄N = 1 and ω̄n ∈ X 12 (cf. (7.44)). Since

ωn and ωn+1 differ in exactly one site, ω̄n and ω̄n+1 differ in at most one

site. These observations imply that ω̄ = (ω̄n)Nn=0 is an 12-path (possibly with

non-updating instances) from 2 to 1. Therefore, Proposition 7.3.1-(a) implies

that

Φω̄ ≥ H(2) + Γ?.

Then, Lemma 7.2.1 implies that H(ωn) ≥ H(ω̄n) for all n and thus

Φω ≥ Φω̄ ≥ H(2) + Γ?.

Since our choice of ω was arbitrary, we deduce that Γ(2,1) ≥ Γ?.
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All it remains is to provide a lower bound for Γ(2,3). Before this, we state

a lemma. Recall the notion of V i
n defined in (7.17). Moreover, for m ∈ {2, 3}

we define

W ′(m,1) := B̂1
`?−1,`?(m, 1) ∪B1

`?,`?−1(m, 1).

Intuitively,W ′(m,1) is the collection of configurations that have a protuber-

ance of spin 1 on a wrong side of the rectangular 1-cluster, in the sense that

we cannot proceed further to reach 1 without returning to a protocritical

configuration in R`?−1,`?(m, 1) ∪R`?,`?−1(m, 1).

Lemma 7.4.3. Suppose that η ∈ V 1
`?(`?−1)+1.

(1) It holds that H(η)−H(2) ≥ Γ?.

(2) Equality in (1) holds if and only if η ∈
3⋃

m=2

[W(m,1) ∪W ′(m,1)].

Proof. (1) We abbreviate η̄ := P32η ∈ X 12, where clearly η̄ ∈ V 1
`?(`?−1)+1.

We divide into three cases as we did in the proof of Lemma 7.2.2.

• If η̄ has an 1-cross, then we may regard η̄ as a configuration of spins

2 in the sea of spins 1. Recalling (7.16) and (7.18) and applying the

isoperimetric inequality (cf. [1, Corollary 2.5]), we have

n12(η̄) ≥ 4
√
N2(η̄) = 4

√
KL−N1(η̄) = 4

√
KL− `?(`? − 1)− 1.

(7.23)

Using the same argument as in (7.21), it holds that n11(η̄) ≤ 2N1(η̄) =

2`?(`? − 1) + 2. Thus, by (7.41) we have

H(η̄)−H(2) = −γ1n11(η̄)+γ12n12(η̄) ≥ 4
√
KL− `?2 + `? − 1γ12−(2`?2−2`?+2)γ1.

By Assumption 7.0.1-C, it can be shown that this is strictly larger than

Γ? = 4`?γ12 − (2`?2 − 4`? + 2)γ1 via a similar argument as in the first
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case in the proof of Lemma 7.2.2. Therefore, by Lemma 7.2.1 we obtain

H(η) ≥ H(η̄) > H(2) + Γ?.

• If η̄ has an 1-bridge but no 1-cross, then proceeding similarly to the

second case in proof of Lemma 7.2.2, we obtain

H(η)−H(2) ≥ H(η̄)−H(2) ≥ 2Kγ12 − (2`?2 − 2`? + 2)γ1 > Γ?.

• If η̄ does not have an 1-bridge, then all 1-clusters of η̄ are in the sea of

spins 2. By (7.42) and since n13(η̄) = 0 and N1(η̄) = `?(`? − 1) + 1, we

have

2n11(η̄) + n12(η̄) = 4`?(`? − 1) + 4.

Then by (7.41),

H(η̄)−H(2) = γ12n12(η̄)−γ1n11(η̄) = (4`?2−4`?+4)γ12−n11(η̄)(γ1+2γ12).

Since N1(η̄) = `?(`?−1)+1, by the isoperimetric inequality, the perime-

ter of the 1-clusters is at least 4`?. This is equivalent to n12(η̄) ≥ 4`?

and thus equivalent to n11(η̄) ≤ 2`?2 − 4`? + 2. Hence,

H(η̄)−H(2) ≥ (4`?2 − 4`? + 4)γ12 − (2`?2 − 4`? + 2)(γ1 + 2γ12) = Γ?,

which concludes the proof of item (1) since, by Lemma 7.2.1, we have

H(η) ≥ H(η̄).

(2) By the proof above, the equality holds if and only if η̄ does not have an

1-bridge, the equality in the isoperimetric inequality holds and H(η) = H(η̄).

By Lemma 7.2.1, this is equivalent to

η = η̄ ∈
3⋃

m=2

[W(m,1) ∪W ′(m,1)],
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which proves item (2).

Now we are ready to prove the lower bound of Γ(2,3).

Proposition 7.4.4. It holds that Γ(2,3) ≥ Γ?.

Proof. Assume by contradiction that there exists a path (ωn)Nn=0 from 2 to

3 such that H(ωn)−H(2) < Γ? for all n. Recall P12 from (7.19) and define

ω̃n := P12ωn.

It is clear that ω̃0 = 2 and ω̃N = 3. Thus, (ω̃n)Nn=0 is a 23-path (possibly

with some non-updating instances) from 2 to 3. Then, Proposition 7.3.3-(a)

indicates that

max
0≤n≤N

H(ω̃n) ≥ H(2) + Γ?.

To conclude the proof, it is enough to show that N1(ωn) ≤ `?2 for all n.

Indeed, if the claim holds then we may apply Lemma 7.2.2 to each ωn, so

that along with the last display we have

max
0≤n≤N

H(ωn) ≥ max
0≤n≤N

H(ω̃n) ≥ H(2) + Γ?.

This contradicts the original assumption.

It remains to prove the claim. We prove that N1(ωn) ≤ `?(`?−1) for all n,

which is clearly sufficient. If not, N1(ωM) ≥ `?(`?− 1) + 1 for some M . Since

N1(ω0) = 0 and |N1(ωn+1)−N1(ωn)| ≤ 1 for any n, there exists n0 such that

N1(ωn0) = `?(`?−1)+1. Then by Lemma 7.4.3-(a),H(ωn0) ≥ H(2)+Γ? which

contradicts our assumption. Thus, we conclude the proof of the claim.

Proof of Theorem 7.1.2. The statement now follows directly from Proposi-

tions 7.4.1, 7.4.2, and 7.4.4.
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Figure 7.4: All possible stable tiles for r, s ∈ {2, 3}, r 6= s. The tiles are
depicted up to rotations and reflections.

7.4.2 Stability level

In this subsection, we prove Proposition 7.1.3, i.e., we estimate the stabil-

ity level of configurations other than 1, 2 and 3. First we introduce some

notation.

• For σ ∈ X and v ∈ V , we denote by tile centered at v, or v-tile, the

collection of five vertices consisting of v and its four nearest neighbors.

• A v-tile is stable for σ if any spin flip on v from σ(v) to any other spin

does not decrease the energy.

• Moreover, we say that a stable v-tile is strictly stable if any spin flip on

v from σ(v) to any other spin strictly increases the energy.

First, we can characterize all the stable and strictly stable tiles. Since the

following lemma can be proved by simple algebra, we omit the proof.

Lemma 7.4.5 (Stable and strictly stable tiles). Let σ ∈ X and v ∈ V . Then,

v-tile is strictly stable for σ if and only if the following statements hold.

• If σ(v) = 1, then v has at least two neighbors with spin 1, as in Figure

7.4-(a)(c)(f)(g)(i)(j).

• If σ(v) = r ∈ {2, 3}, then v has either at least three neighbors with spin

r, or exactly two neighbors with spin r and one neighbor with spin 1,

as in Figure 7.4-(b)(d)(e)(h)(k).
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Moreover, v-tile is stable but not strictly stable for σ if and only if σ(v) =

r ∈ {2, 3} and v has exactly two neighbors with spin r and no neighbor with

spin 1, as in Figure 7.4-(l)(m).

Given a spin configuration σ, an edge e = {x, y} ∈ E is called an interface

of σ if σ(x) 6= σ(y). Moreover, two different clusters C1 and C2 of σ are said

to interact with each other if there exists v /∈ C1∪C2 such that v is connected

to both C1 and C2, i.e.,

∃w1 ∈ C1 and ∃w2 ∈ C2 such that {v, w1} ∈ E and {v, w2} ∈ E. (7.24)

Moreover, we define the set of local minima M as

M :=
{
σ ∈ X : H(σ) < H(σ′) for all σ′ 6= σ with Pβ(σ, σ′) > 0

}
, (7.25)

and the set of plateaux M̄ as

M̄ :=
⋃

D is a stable plateaux

D. (7.26)

Here, a subset D ⊂ X is a stable plateau if it is a maximal connected subset of

equal energy, so that for any σ ∈ D and σ′ ∈ ∂D it holds that H(σ) < H(σ′).

It is obvious by definition that

σ ∈M ⇔ every tile is strictly stable for σ. (7.27)

and

σ ∈M ∪ M̄ → every tile is stable for σ. (7.28)

First, we prove that all the 1-clusters of the configurations in M ∪ M̄

must be rectangles.

Lemma 7.4.6. Suppose that σ ∈ M ∪ M̄ . Then, each 1-cluster of σ is a

rectangle.
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Figure 7.5: Illustrations regarding the proof of Lemma 7.4.6.

Proof. We fix σ ∈ M ∪ M̄ so that by (7.28), all tiles of σ must be of the

form in Figure 7.4. We fix an 1-cluster C of σ. Consider the border of C,

which is defined as

{
{v, w} ∈ E : v ∈ C and w ∈ ∂C

}
.

We refer to Figure 7.5-(a) for an illustration. If C is not a rectangle, then there

exists at least one internal angle of
3

2
π in the border, as one can see in Figure

7.5-(b) where w1, w2 ∈ C and v /∈ C. This implies that σ(w1) = σ(w2) = 1

whereas σ(v) 6= 1. Then by Lemma 7.4.5, v-tile is not stable for σ. This

contradicts the fact that σ ∈M ∪ M̄ due to (7.28). Therefore, we conclude

that C is a rectangle.

Remark 7.4.7. It would possible to investigate further the equivalent condi-

tions on the 1-clusters for a configuration to belong to M ∪M̄ . However, we

do not pursue this further because it is not required for proving main results.

Now, we are ready to prove Proposition 7.1.3.

Proof of Proposition 7.1.3. To calculate the stability level of η ∈ X\{1,2,3},
suppose first that η /∈ M ∪ M̄ . Then by definition (cf. (7.25) and (7.26)),

there exists η′ ∈ X such that H(η′) < H(η) and Pβ(η, η′) > 0. Thus, clearly
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Vη = 0. Therefore, we may assume that η ∈ (M ∪ M̄ ) \ {1,2,3}. It suffices

to prove that

Vη ≤ max
{

2γ12 − γ1, 2(`? − 1)(γ23 + γ1), 2γ23

}
since clearly the maximum among the constants in the right-hand side is

2(`? − 1)(γ23 + γ1). We divide into two cases.

(Case 1: η has an 1-cluster) In this case, by Lemma 7.4.6 η has an 1-cluster

C which is a rectangle. Since η 6= 1, we have C ( V .

• (If C has a side of length ` ≥ `?) Since C ( V , we can define a path

ω = (ω0, . . . , ω`), where ω0 = η and ω` = η̄, that flips consecutively

those spins adjacent to a side of C of length ` to spin 1. Then, a simple

computation shows that

H(ω1)−H(η) ≤ 2γ12−γ1 and H(ωi)−H(ωi−1) ≤ −2γ1 for any 2 ≤ i ≤ `.

(7.29)

Thanks to (7.29), we have that

H(η̄)−H(η) ≤ 2γ12 − (2`? − 1)γ1 < 0.

The last inequality holds since `? = d2γ12 + γ1

2γ1

e > 2γ12 + γ1

2γ1

by As-

sumption 7.0.1-A. Moreover, the height of ω is attained by either ω0 = η

or ω1, which has energy at most H(η)+(2γ12−γ1). Therefore, we deduce

in this case that Vη ≤ 2γ12 − γ1.

• (If all sides of C have lengths smaller than `?) Suppose that C is

a rectangle p× q. Since |∂C| = 2(p+ q) and all spins on ∂C are either

2 or 3, N2(∂C) + N3(∂C) = 2(p + q). Without loss of generality, we

assume that

N2(∂C) ≥ p+ q and N3(∂C) ≤ p+ q. (7.30)
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Figure 7.6: The 4 × 3 rectangle represents the 1-cluster whose spins are se-
quentially flipped to 2.

We define a path ω = (ωn)pqn=0 from ω0 = η to ωpq =: η′ as follows:

starting from the upper-left corner of C, we update each spin 1 in C

to spin 2 consecutively in a clockwise manner, until all the spins 1 in

C are updated to spins 2, see Figure 7.6.

First, we calculate H(η′) − H(η). To this end, note that the edges

contained in V \ C are not affected by the pq spin updates. Thus,

H(η′)−H(η) = (2pq − p− q)γ1

[
−N2(∂C)γ12 + N3(∂C)(γ23 − γ13)

]
.

Here, 2pq − p − q is the number of internal edges in C. Hence, along

with (7.30),

H(η′)−H(η) ≤ (2pq − p− q)γ1 + (p+ q)γ23 − 2(p+ q)γ12

= 2pqγ1 − (p+ q)(2γ12 − γ23 + γ1).

Subjected to the condition 1 ≤ p, q < `?, a simple algebraic com-

putation reveals that the maximum of the last term is attained on

(p, q) = (1, 1) or (`? − 1, `? − 1). If (p, q) = (1, 1) then the value

equals −4γ12 + 2γ23 < 0 by Assumption 7.0.1-C, whereas if (p, q) =

(`? − 1, `? − 1) then the value becomes

2(`?−1)[(`?−1)γ1−2γ12 +γ23−γ1] < 2(`?−1)
(
−γ12 +γ23−

γ1

2

)
< 0,

where we used `? <
2γ12 + γ1

2γ1

+1 in the first inequality and Assumption
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7.0.1-C in the second inequality. Thus, we deduce that

H(η′)−H(η) < 0.

Therefore, to estimate the stability level of η we may focus on the

maximal energy attained along the path ω : η → η′. By (7.41), for each

1 ≤ n ≤ pq it holds that

H(ωn)−H(η) = −γ1[n11(ωn)− n11(η)] +
∑
i<j

γij[nij(ωn)− nij(η)].

Note that the edges contained in V \C are unchanged along the path.

Thus, we may write

H(ωn)−H(η) = g1(n) + g2(n),

where

g1(n) :=− γ1

[ ∑
{x,y}∈E: {x,y}∩C 6=∅

1{ωn(x)=ωn(y)=1} − (2pq − p− q)
]

+ γ12

[ 3∑
j=2

∑
{x,y}∈E: {x,y}∩C 6=∅

1{{ωn(x),ωn(y)}={1,j}} − 2(p+ q)
]

and

g2(n) := γ23

∑
{x,y}∈E: {x,y}∩C 6=∅

1{{ωn(x),ωn(y)}={2,3}}. (7.31)

First, note that g1 records precisely the energy of the (reversed) refer-

ence path from 2 to a configuration with a single 1-cluster C, translated

by a fixed real number which is (2pq − p− q)γ1 − 2(p + q)γ12 + H(2).

Since p, q ≤ `? − 1, it can be inferred from Definition 7.5.2 that

max
0≤n≤pq

g1(n) = g1(p− 1) = 2(p− 1)γ1.
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Next, note that g2 is monotone increasing. Hence, we apply a crude

bound via assumption (7.30) by

max
0≤n≤pq

g2(n) = g2(pq) = γ23 ×N3(∂C) ≤ (p+ q)γ23.

Therefore, we estimate

max
n
{H(ωn)−H(η)} ≤ max

n
g1(n)+max

n
g2(n) ≤ 2(p−1)γ1 +(p+q)γ23.

Since p, q ≤ `? − 1, this is bounded above by

2(`? − 2)γ1 + 2(`? − 1)γ23 < 2(`? − 1)(γ23 + γ1).

Hence, we deduce that

Vη ≤ max
0≤n≤pq

{H(ωn)−H(η)} < 2(`? − 1)(γ23 + γ1)

and this concludes the proof of Case 1.

(Case 2: η does not have an 1-cluster) In this case, η ∈ X 23 (cf. (7.44)).

We claim that

Vη ≤ 2γ23.

To this end, we take a 2-cluster C ′ of η which is possible since η 6= 3. If there

is an internal angle of
3

2
π in the border of C ′, as in the proof of Lemma 7.4.6

we can find w1, w2 ∈ C ′ and v ∈ ∂C ′ such that η(v) = 3, η(w1) = η(w2) = 2

and w1 ∼ v ∼ w2. Thus, by updating the spin 3 at site v to spin 2, the

energy difference is at most 2γ23 − 2γ23 = 0, which means that the energy

does not increase. Moreover, the number of spins 2 increases. If we repeat

this procedure as long as there remains an internal angle of
3

2
π in the border

of some 2-cluster, we either obtain 2 (then there is nothing to prove since

in this case Vη = 0), or obtain a configuration η̂ where all internal angles of

2-clusters are at most π. We may assume the latter case.
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Figure 7.7: Light-gray and dark-gray colors represent spins 2 and 3, respec-
tively.

All that remains to be proved is that Vη̂ ≤ 2γ23. There are two sub-cases

depending on the internal angles of the 2-clusters of η̂.

• (If the internal angles are all π) In this sub-case, all the 2-clusters

are strips and in turn all the 3-clusters are also strips. Thus, taking

any 3-bridge in η̂ which is adjacent to a 2-cluster, we can update con-

secutively the spins 3 to spins 2, so that the maximal energy along the

updates are H(η̂) + 2γ23, which can be attained only at the first step.

Repeating this, we eventually obtain 2. Therefore, we have proved that

Vη̂ ≤ 2γ23.

• (If an internal angle is
1

2
π) By simple inspection, there always exists

a collection of spin dispositions which have the form as in Figure 7.7.

Thus, by updating consecutively the indicated light-gray (spin 2) colors

to dark-gray (spin 3) colors, the energy does not increase along the

path and at the last step the energy decreases by at least 2γ23. Thus,

we deduce that Vη̂ = 0 in this case. Therefore, we are done.

7.4.3 Initial cycle and restricted gate

In this subsection, we define the initial cycle for each metastable and stable

configurations. Then, we prove some key lemmas regarding restricted gates,

which are crucial to prove the main results in Section 7.1.3 regarding the

minimal gates.
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For each r ∈ S, we define the initial cycle of r as

Cr := {σ ∈ X : Φ(r, σ) < H(2) + Γ?}. (7.32)

By Theorem 7.1.2, 1, 2 and 3 are mutually separated by the energy barrier

H(2) + Γ?. Therefore, it follows that C1, C2 and C3 are mutually disjoint.

First, we show that the domains of attraction are stable under projections.

Lemma 7.4.8. It holds that

(1) P32C1 ⊂ C1 and P32C2 ⊂ C2.

(2) P12C2 ⊂ C2 and P12C3 ⊂ C3.

Proof. (1) Suppose that σ ∈ Cr for some r ∈ {1, 2}. Then, there exists a

path ω : σ → r whose height is strictly less than H(2)+Γ?. Then by Lemma

7.2.1, the projected path P32ω : P32σ → r has height also strictly less than

H(2) + Γ?. This proves that P32σ ∈ Cr.

(2) First, we claim that for any η ∈ X ,

η ∈ C2 ∪ C3 implies N1(η) ≤ `?(`? − 1). (7.33)

To this end, assume by contradiction that N1(η) > `?(`? − 1) and, without

loss of generality, assume that η ∈ C2. Take a path ω0 : η → 2 whose height

is strictly less than H(2) + Γ?. Then since N1(2) = 0, there exists ζ ∈ ω0

such that N1(ζ) = `?(`? − 1) + 1. Then by Lemma 7.4.3, H(ζ) ≥ H(2) + Γ?

and we obtain a contradiction.

Now, assume σ ∈ Cs for some s ∈ {2, 3}. Then, there exists a path

ω : σ → s whose height is less than H(2) + Γ?. By the claim above, the

number of spins 1 of every configuration in ω does not exceed `?(`? − 1).

Thus by Lemma 7.2.2, the projected path P12ω : P12σ → s also has height

less than H(2) + Γ? and we conclude that P12σ ∈ Cs.
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Now, the first result in this subsection analyzes the optimal paths from

m ∈ {2,3} to 1 which do not visit C3. Such paths are called restricted-paths

in [11].

Proposition 7.4.9. Suppose that ω = (ωn)Nn=0 is an optimal path from m

to 1 which does not visit Cm′ where {m,m′} = {2, 3}. Then, we have

ω ∩W(m,1) 6= ∅.

Proof. Without loss of generality, assume that m = 2. As ω0 = 2 /∈ C1 and

ωN = 1 ∈ C1, we can define

N ′ := min{1 ≤ n ≤ N : ωn ∈ C1}.

Then, ωN ′ ∈ C1 and

ω0, . . . , ωN ′−1 /∈ C1 ∪ C3. (7.34)

Define ω̄n := P32ωn for each 0 ≤ n ≤ N ′. Then, ω̄0 = 2 and by Lemma

7.4.8-(a), ω̄N ′ ∈ C1, so that ω̄ = (ω̄n)N
′

n=0 is an 12-path from 2 to C1. As the

height of (ωn)N
′

n=0 is at most H(2) + Γ?, Lemma 7.2.1 implies that the height

of ω̄ is at most H(2) + Γ?. Thus by Proposition 7.3.1-(a), the height of ω̄

must be exactly H(2) + Γ? and in turn by Proposition 7.3.1-(b),

ω̄ ∩W(2,1) 6= ∅.

Hence, there exists 0 ≤ m ≤ N ′ so that ω̄m ∈ W(2,1). It readily holds that

H(ω̄m) = H(2) + Γ?. Moreover, by Lemma 7.2.1, H(ωm) ≥ H(ω̄m). Thus,

H(2) + Γ? ≥ H(ωm) ≥ H(ω̄m) = H(2) + Γ?,

so that equalities must hold in all places. Then, Lemma 7.2.1 again implies

that

ωm ∈ W(2,1) or ωm ∈ W(3,1).
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We conclude the proof of this lemma by showing that the latter is impos-

sible. To this end, suppose on the contrary that ωm ∈ W(3,1). Then since

Pβ(ωm, ωm−1) > 0 and H(ωm) = H(2) + Γ?, we readily deduce that

ωm−1 ∈ R`?−1,`?(3, 1) ∪R`?,`?−1(3, 1) (7.35)

or

ωm−1 ∈ B2
`?−1,`?(3, 1) ∪ B̂2

`?,`?−1(3, 1), (7.36)

since any other possibility implies that H(ωm−1) > H(ωm) = H(2) + Γ?,

which is impossible. If (7.35) holds, then a part of the reference path 3→ 1

with respect to ωm guarantees that ωm−1 ∈ C3 which contradicts the condition

(7.34). If (7.36) holds then the other side of the reference path guarantees

that ωm−1 ∈ C1, and we again obtain a contradiction with (7.34).

Next, we deal with the optimal paths from 2 to 3 which do not visit C1.

Proposition 7.4.10. Suppose that ω = (ωn)Nn=0 is an optimal path from 2

to 3 which does not visit C1. Choose any set A in

{
W h
j (2,3)

}
j,h
∪
{
Q(2,3),P(2,3),P(3,2),Q(3,2)

}
∪
{
Hi(2,3)

}
i
∪
{
Hi(3,2)

}
i
.

Then, we have

ω ∩A 6= ∅.

Proof. First, we claim that

N1(ωn) ≤ `?2 − 1 for all 0 ≤ n ≤ N.

To prove the claim, suppose the contrary that there exists M such that

N1(ωM) ≥ `?2. Then since N1(ω0) = N1(2) = 0, we can take the largest

n0 ∈ [0,M ] such that N1(ωn0) = `?2 − `? + 1. Then, N1(ωn) ≥ `?2 − `? + 2
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for n0 < n ≤M . Then by Lemma 7.4.3, H(ωn0) = H(2) + Γ? and

ωn0 ∈
3⋃

m=2

[W(m,1) ∪W ′(m,1)].

If ωn0 ∈ W(m,1) for some m ∈ {2, 3} then since N1(ωn0+1) = N1(ωn0) + 1,

the only possible option (so that H(ωn0+1) ≤ H(2) + Γ?) is

ωn0+1 ∈ B2
`?−1,`?(m, 1) ∪ B̂2

`?,`?−1(m, 1).

Then, a suitable reference path from ωn0+1 to 1 guarantees that ωn0+1 ∈ C1,

which contradicts the assumption of the proposition. Hence, we may assume

that

ωn0 ∈
3⋃

m=2

W ′(m,1).

We denote by R0 the rectangle of side lengths `?− 1 and `? + 1, which is the

smallest rectangle containing the 1-cluster of ωn0 . We will demonstrate that

{v ∈ V : ωn(v) = 1} ⊆ R0 for all n0 ≤ n ≤M,

which contradicts N1(ωM) ≥ `?2 and thus proves the first claim. Let us

suppose the contrary. Then, there exists m0 ∈ (n0,M ] such that {v ∈ V :

ωn(v) = 1} ⊆ R0 for all n0 ≤ n < m0 and {v ∈ V : ωm0(v) = 1} * R0. As

usual, we write ω̄n := P32ωn.

• (Step 1) H(ω̄n)−H(2) ≥ 4`?γ12−2γ1(`?2−`?−1) for all n0 ≤ n < m0.

Since N1(ω̄n) ≥ `?2− `? + 1 for n0 ≤ n < m0, every row and column of

R0 must have at least one spin 1. Indeed, if not then we would have

N1(ω̄n) ≤ max{(`? − 1)(`? + 1− 1), (`? + 1)(`? − 1− 1)} = `?2 − `?,

which contradicts N1(ω̄n) ≥ `?(`?−1)+1. Thus, in each corresponding
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row and column there exists at least two 12-edges in ω̄n, so that we

have

n12(ω̄n) ≥ 2(`? − 1) + 2(`? + 1) = 4`?. (7.37)

Moreover, clearly the maximum of n11(ω̄n) is attained when the box R0

is full of spins 1:

n11(ω̄n) ≤ (`? − 1)`? + (`? + 1)(`? − 2) = 2`?2 − 2`? − 2. (7.38)

Thus, by (7.37), (7.38) and (7.41) we deduce

H(ω̄n)−H(2) = n12(ω̄n)γ12 − n11(ω̄n)γ1 ≥ 4`?γ12 − 2γ1(`?2 − `? − 1).

• (Step 2) H(ωm0) > H(2) + Γ?, which yields a contradiction.

Consider the spin flip from ω̄m0−1 to ω̄m0 . Since this spin flip happens

outside R0, the energy difference is at least 2γ12− γ1 and at most 4γ12.

Therefore, by Step 1, we deduce that

H(ω̄m0)−H(2) ≥ H(ω̄m0−1)−H(2) + (2γ12 − γ1)

≥ (4`? + 2)γ12 − γ1(2`?2 − 2`? − 1) > Γ?.

Indeed, the last inequality is equivalent to (cf. (7.11)) 2γ12 > (2`?−3)γ1,

which can be rearranged as

2γ12 + γ1

2γ1

> `? − 1.

This is obvious by (7.10). Hence, by Lemma 7.2.1 we have H(ωm0) ≥
H(ω̄m0)) > H(2) + Γ?.

Now, we return to the proof of Proposition 7.4.10. The idea is similar to the
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proof of Proposition 7.4.9. As ω0 = 2 /∈ C3 and ωN = 3 ∈ C3, we may define

N ′ := min{1 ≤ n ≤ N : ωn ∈ C3},

so that ωN ′ ∈ C3 and

ω0, . . . , ωN ′−1 /∈ C1 ∪ C3. (7.39)

Define ω̃n := P12ωn for each 0 ≤ n ≤ N ′. Then, ω̃0 = 2 and by Lemma

7.4.8-(b) ω̃N ′ ∈ C3, so that ω̃ = (ω̃n)N
′

n=0 is an 23-path from 2 to C3. As the

height of (ωn)N
′

n=0 is at most H(2) + Γ?, Lemma 7.2.2, which is applicable by

the first claim, implies that the height of ω̃ is also at most H(2) + Γ?. Thus

by Proposition 7.3.3-(a), the height of ω̃ must be exactly H(2) + Γ? and thus

by Proposition 7.3.3-(b),

ω̃ ∩A 6= ∅.

Hence, there exists 0 ≤ m ≤ N ′ so that ω̃m ∈ A . It holds that H(ω̃m) =

H(2) + Γ?. Moreover, by Lemma 7.2.2, H(ωm) ≥ H(ω̃m). Thus,

H(2) + Γ? ≥ H(ωm) ≥ H(ω̃m) = H(2) + Γ?,

so that equalities must hold in all places. Then Lemma 7.2.2 again implies

that

ωm = ω̃m ∈ A ,

which concludes the proof.

7.4.4 Minimal gates for the metastable transition

In this final subsection, we prove the results stated in Section 7.1.3. Referring

to the landscape given in Figure 7.3 shall be helpful to understand the gist

of the ideas given here.

First, we focus on Theorem 7.1.8. Since the situation is totally symmetric

between spins 2 and 3, we prove Theorem 7.1.8 for m = 2.
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Proof of Theorem 7.1.8-(a). We prove that W(2,1) ∪W(3,1) is a minimal

gate for the transition 2→ 1. First, suppose that ω = (ωn)Nn=0 is an optimal

path 2→ 1. Consider the last visit of ω to C2∪C3, which is possible because ω

starts from 2 ∈ C2∪C3. If the last visit is to C2, so that after then it does not

visit C3, then by Proposition 7.4.9 we deduce that ω∩W(2,1) 6= ∅. If the last

visit is to C3, then similarly by Proposition 7.4.9, we have ω ∩W(3,1) 6= ∅.

This proves that W(2,1) ∪W(3,1) is a gate.

To show that it is minimal, take any σ ∈ W(2,1)∪W(3,1). It suffices to

show that [W(2,1) ∪W(3,1)] \ {σ} is not a gate. If σ ∈ W(2,1), then the

reference path 2 → 1 with respect to σ defined in Definition 7.5.2 does not

visit W(2,1) ∪W(3,1) except at σ, and thus we are done. If σ ∈ W(3,1),

we can concatenate any reference path from 2 to 3 (given in Definition 7.5.3)

and the reference path 3 → 1 with respect to σ (given in Definition 7.5.2)

to obtain an optimal path from 2 to 1. This path does not visit W(2,1) ∪
W(3,1) except at σ. In these two cases we proved that W(2,1)∪W(3,1) is

indeed a minimal gate.

Proof of Theorem 7.1.8-(b). As stated in the theorem, we fix a set A in

{
W h
j (2,3)

}
j,h
∪
{
Q(2,3),P(2,3),P(3,2),Q(3,2)

}
∪
{
Hi(2,3)

}
i
∪
{
Hi(3,2)

}
i
.

We prove that W(2,1)∪A is a minimal gate. First, we demonstrate that it

is a gate. Take an arbitrary optimal path ω = (ωn)Nn=0 from 2 to 1. As we did

in the proof of part (a), we divide into two cases, but in this case we consider

the first visit to C1 ∪ C3 which is possible since 1 ∈ C1 ∪ C3. If the first visit

to C1 ∪ C3 is to C1, then by Proposition 7.4.9 it holds that ω ∩W(2,1) 6= ∅.

If the first visit to C1 ∪ C3 is to C3, then by Proposition 7.4.10 it holds that

ω ∩A 6= ∅.

Finally, we prove thatW(2,1)∪A is minimal. Take any σ ∈ W(2,1)∪A .

If σ ∈ W(2,1), then the reference path 2 → 1 with respect to σ defined in

Definition 7.5.2 does not visitW(2,1)∪A except at σ, and thus we are done.
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If σ ∈ A , we can concatenate the reference path from 2 to 3 with respect

to σ (given in Definition 7.5.3) and any reference path from 3 to 1 (given in

Definition 7.5.2) to obtain an optimal path from 2 to 1. This path does not

visit W(2,1) ∪A except at σ. Therefore, we conclude that W(2,1) ∪A is

minimal.

Next, we prove that there are no configurations, other than the ones

characterized above, that form another minimal gate. This is exactly the

content of item (c).

Proof of Theorem 7.1.8-(c). By the equivalent characterization of unessen-

tial saddles given in [67, Theorem 5.1], it suffices to prove that every σ /∈
W(2,1)∪W(3,1)∪W(2,3) is unessential, i.e., for any ω ∈ Ωopt

2,1 with σ ∈ ω,

there exists another ω′ ∈ Ωopt
2,1 such that argmaxω′H ⊆ argmaxωH \ {σ}.

The idea is nearly the same as the one presented in [11, Proof of Theorem

3.2], so we will briefly sketch the proof. We fix such σ and ω ∈ Ωopt
2,1. Then,

as we demonstrated above, W(2,1) ∪W(3,1) is a gate for 2→ 1, and thus

ω ∩ [W(2,1) ∪W(3,1)] 6= ∅.

If there exists ζ ∈ ω ∩ W(2,1), then we may construct ω′ as the reference

path 2→ 1 with respect to ζ, so that

argmaxω′H = {ζ} ⊆ argmaxωH \ {σ}.

If ω ∩ W(2,1) = ∅, then ω must visit C3 before C1; otherwise, there is a

subpath of ω from 2 to C1 which does not visit C3, and then Proposition

7.4.9 implies that ω ∩ W(2,1) 6= ∅ which yields a contradiction. Thus by

Proposition 7.4.10, ω ∩ A 6= ∅ where A is any collection chosen as in

Proposition 7.4.10. Therefore, we can apply the argument given in [11, Proof

of Theorem 3.2], where we record the last visit to H1(2,3) and then the first

visit to H1(3,2). Then, we can record all the gate configurations visited by ω

410



CHAPTER 7. GENERAL INTERACTION CONSTANTS

during this period, and then glue them together to construct a reference path

ω′1 from 2 to 3. Next, since ω ∩W(2,1) = ∅ it holds that ω ∩W(3,1) 6= ∅.

Thus, there exists a reference path ω′2 : 3→ 1 which visits the configuration

belonging to ω∩W(3,1). Concatenating ω′1 and ω′2, we obtain a new optimal

path ω′ so that

argmaxω′H ⊆ argmaxωH.

Moreover, argmaxω′H is clearly a subset of W(2,3) ∪W(3,1), so that σ /∈
argmaxω′H. Therefore, we conclude that

argmaxω′H ⊆ argmaxωH \ {σ}.

This concludes the proof. For a more detailed explanation of the construction

of ω′1, we refer to [11, Proof of Theorem 3.2].

Proof of Theorem 7.1.9. The proof follows the same steps as the previous

one; the main ingredients are Propositions 7.4.9 and 7.4.10. We omit the

details of the proof to avoid unnecessary repetitions of the technical details.

7.5 Appendix

7.5.1 Alternative form of the Hamiltonian

Recall the definition (7.1) of the Hamiltonian function H : X → R, which is

H(σ) = −
∑
i∈S

Jii
∑
{v,w}∈E

1{σ(v)=σ(w)=i} +
∑

i,j∈S: i<j

Jij
∑
{v,w}∈E

1{{σ(v),σ(w)}={i,j}}.

(7.40)

Recall the definitions (7.18), (7.16). Since the total number of edges is 2KL,

it is clear that ∑
i∈S

nii(σ) +
∑
i<j

nij(σ) = 2KL.

411



CHAPTER 7. GENERAL INTERACTION CONSTANTS

Then, we may rewrite (7.40) as

H(σ) = −
∑
i∈S

Jiinii(σ) +
∑
i<j

Jijnij(σ)

= −2KLJ22 −
∑
i∈S

(Jii − J22)nii(σ) +
∑
i<j

(Jij + J22)nij(σ).

Note that by (7.2), J22 = J33. By (7.3) and since H(2) = −2KLJ22, we

deduce that

H(σ) = H(2)− γ1n11(σ) +
∑
i<j

γijnij(σ). (7.41)

For a final remark, fix a configuration σ ∈ X and a spin i ∈ S. Consider

the number of ij-edges in σ for all j ∈ S. If we count according to the fixed

spin i, since each spin has exactly four neighboring spins, this is simply four

times Ni(σ). Alternatively, using the definition (7.18), this equals 2nii(σ) +∑
j 6=i

nij(σ) where the factor 2 appears in front of nii(σ) since each ii-edge must

be counted twice. Therefore, we conclude that

4Ni(σ) = 2nii(σ) +
∑
j: j 6=i

nij(σ) for all σ ∈ X and i ∈ S. (7.42)

7.5.2 Auxiliary function

In this subsection, we provide an estimate on an auxiliary function which is

used in Assumption 7.0.1. For every real number h > 0, we define a function

fh : (0,∞)→ R by

fh(x) := 4
(
x+

h

2

)⌈x+ h
2

h

⌉
− 2h

(⌈x+ h
2

h

⌉2

−
⌈x+ h

2

h

⌉
+ 1
)
. (7.43)

Here, dαe is the least integer not smaller than α.

Lemma 7.5.1. The following statements hold for h > 0.

(1) The function fh is continuous, piece-wise linear and strictly increasing
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on (0,∞).

(2) We have fh(
h

2
) = 2h and lim

x→∞
fh(x) =∞.

(3) For all x ∈ (0,∞),

0 ≤ fh(x)−
(2x2

h
+ 4x− h

2

)
≤ h

2
.

The left (resp. right) equality holds if and only if (x+
h

2
)/h ∈ N (resp.

x/h ∈ N).

Proof. For each integer m ≥ 0, if x ∈ ((m− 1

2
)h, (m+

1

2
)h] then d

x+ h
2

h
e =

m+ 1 and thus

fh(x) = 4(m+ 1)
(
x+

h

2

)
− 2h(m2 +m+ 1) = 4(m+ 1)x− 2hm2.

In turn, we have for each m ≥ 1 that

lim
x→(m− 1

2
)h+

fh(x) = 4(m+ 1)
(
m− 1

2

)
h− 2hm2 = fh

((
m− 1

2

)
h
)
.

These formulas verify both (1) and (2) of the lemma. Finally, to prove (3)

notice that if x ∈ ((m− 1

2
)h, (m+

1

2
)h], we have

fh(x)−
(2x2

h
+ 4x− h

2

)
= −2

h
(x−mh)2 +

h

2
.

This concludes the proof of (3).
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7.5.3 Heuristics behind Assumption 7.0.1

Here, we provide a brief explanation which justifies each condition given in

Assumption 7.0.1. We introduce a notation for convenience. For spins i, j ∈ S,

X ij :=
{
η ∈ X : η(v) ∈ {i, j} for all v ∈ V

}
. (7.44)

In other words, X ij is the collection of configurations in which all spins are

either i or j.

A. First, we focus on the (potentially metastable) transition from 2 to 1.

If σ(v) ∈ {1, 2} for all v ∈ V , formula (7.41) can be rewritten as

H(σ) = H(2)− γ1n11(σ) + γ12n12(σ).

By (7.42) and since n13(σ) = 0, we have 2n11(σ) + n12(σ) = 4N1(σ).

Thus,

H(σ) = H(2) +
(1

2
γ1 + γ12

)
n12(σ)− 2γ1N1(σ).

The right-hand side is, modulo translation by a real number, equiva-

lent to the Hamiltonian of the original Ising model (where spin 1 corre-

sponds to +1 and spin 2 corresponds to −1), with interaction constant

J :=
1

2
γ1+γ12 and external field h := 2γ1. To avoid technical difficulties

it is standard to assume that
2J

h
is not an integer (e.g., [71, standard

case]). In our context, this is equivalent to

2γ12 + γ1

2γ1

is not an integer,

which is exactly condition A.

B. In the original Ising metastable transition, the energy barrier is known

to be 4Jd2J
h
e − h(d2J

h
e2 − d2J

h
e + 1) (cf. [71]). In our context, this
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becomes

(4γ12+2γ1)
⌈2γ12 + γ1

2γ1

⌉
−2γ1

(⌈2γ12 + γ1

2γ1

⌉2

−
⌈2γ12 + γ1

2γ1

⌉
+1
)

= fγ1(γ12).

(7.45)

The last equality follows from the definition (7.43).

Next, we consider the (potentially metastable) transition from 2 to 3.

If σ(v) ∈ {2, 3} for all v ∈ V , the representation (7.41) becomes

H(σ) = H(2) + γ23n23(σ).

The right-hand side is, modulo translation by a real number, equivalent

to the Hamiltonian of the original Ising model with interaction constant

J := γ23 and zero external field. The energy barrier in this setting is

known to be 2J(K + 1) (cf. [69]). In our context, this equals

2(K + 1)γ23. (7.46)

Gathering (7.45) and (7.46), to have the same energy barrier between

2→ 1 and 2→ 3, we obtain the condition

fγ1(γ12) = 2(K + 1)γ23,

which is condition B.

C. First, the size of the protocritical droplet d2γ12 + γ1

2γ1

e (cf. (7.45)) is

assumed to be large enough:

γ12

γ1

is sufficiently large. (7.47)
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Next, we start from condition B. By Lemma 7.5.1-(c), we obtain that

2(K + 1)γ23 = fγ1(γ12) ≤ 2γ2
12

γ1

+ 4γ12 <
2(γ12 + γ1)2

γ1

.

The above display implies

(K + 1)γ1

γ12 + γ1

<
γ12 + γ1

γ23

.

The lattice size is large enough compared to the fixed coefficients, and

thus
(K + 1)γ1

γ12 + γ1

can be assumed sufficiently large. This also implies that

γ12 + γ1

γ23

is sufficiently large. (7.48)

Conditions (7.47) and (7.48) imply the desired condition C.

7.5.4 Reference paths

Reference paths in our new model are defined in the same manner as in the

original Ising model. Since the reference paths for Ising/Potts models with

both non-zero [12, Definition 5.1] or zero [69, Proposition 2.4] external fields

are very well known, we will give our definitions in a concise manner.

Definition 7.5.2 (Reference path between m ∈ {2,3} and 1). Recall from

(7.15) that

W(m,1) = B1
`?−1,`?(m, 1) ∪ B̂1

`?,`?−1(m, 1).

For any η ∈ W(m,1), we construct a reference path ω : m → 1 satisfying

argmaxωH = {η} as follows. Denote by Rη the rectangle of side lengths

`? and `? − 1 contained in the 1-cluster of η. Starting from ω0 = m, we
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consecutively update spins m in Rη to spins 1 to form ω`?(`?−1) = η0, where

η0(v) =

1, if v ∈ Rη,

m, if v /∈ Rη.

Next, from η0 we create the corresponding protuberance to obtain ω`?(`?−1)+1 =

η. Then, we resume to enlarge the 1-cluster in the usual consecutive manner

to obtain ωKL = 1. By the isomorphism argument given in Section 7.5.3-

A, it is standard to observe that the height of ω is obtained uniquely at

ω`?(`?−1)+1 = η, and that the corresponding height is

H(η) = H(2) + 4`?
(
γ12 +

γ1

2

)
− 2γ1(`?2 − `? + 1) = H(2) + Γ?.

Definition 7.5.3 (Reference path between 2 and 3). First, we choose an

arbitrary column c. Starting from 2, we update spins 2 in c to 3 in a consec-

utive manner. Then, we choose one of its neighboring column and repeat the

process. Iterating this procedure, we obtain 3. Similarly, by the isomorphism

argument given in Section 7.5.3-B, we observe that the height of this path is

obtained multiple times and that the height is

H(2) + (2K + 2)γ23 = H(2) + Γ?.

For the reference path, we are able to select any order of columns, as long

as the consecutive ones are neighboring, and also we may select any order of

updates in each column, as long as the updates are consecutive. Thus, one

can see that there are a huge number of possible reference paths from 2 to

3.

Consider any selection A from the collection

{
W h
j (2,3)

}
j,h
∪
{
Q(2,3),P(2,3),P(3,2),Q(3,2)

}
∪
{
Hi(2,3)

}
i
∪
{
Hi(3,2)

}
i
,

as in Theorem 7.1.8. By the diagram illustrated in Figure 7.2 and by the
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freedom to choose an arbitrary order of spin updates, it is clear that for any

σ ∈ A we can construct a reference path 2 → 3 so that it visits A only at

σ.

Finally, we remark that in the case K = L, we may also choose an ar-

bitrary row and proceed as described above, which also gives the height

(2L + 2)γ23 = (2K + 2)γ23 = Γ?. Thus in this case, there are exactly two

times more reference paths compared to the case K < L. This fact is not

taken into account in the qualitative analysis of metastability via pathwise

approach done in this paper; however, this will be crucial in the quantitative

analysis, when one intends to investigate the exact prefactor of the mean

metastable transition time [12, 22]. This serves as a fruitful future research

topic.
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Part II

Inclusion process
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Chapter 8

Reversible inclusion process

An interacting particle system was introduced in [35, 36] as a dual process

of a certain class of energy diffusion models, known as Brownian momentum

(energy) processes. In [37], this process was first named as the (symmet-

ric) inclusion process, which was treated as a bosonic1 counterpart of the

well-known exclusion process. Since then, this particular random system has

gathered the interest of numerous researchers. A general overview on the

study of inclusion processes is provided in [25, Chapters 2 and 6].

Inclusion process

We fix a finite state space S which represents our collection of sites. Sup-

pose that r : S × S → [0,∞) is a transition rate function which defines

a continuous-time irreducible random walk on S. For convenience, we let

r(x, x) = 0 for all x ∈ S.

Assumption 8.0.1. In Chapters 8 and 9, we assume that the random walk

is reversible with respect to a probability distribution m, namely,

m(x)r(x, y) = m(y)r(y, x) for all x, y ∈ S.
1Bosonic particle systems represent dynamics in which particles tend to attract each

other. They are mostly used to represent dynamical systems in low temperatures.
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On the other hand, in Chapter 10, this reversibility assumption will be dropped

and we will handle the general non-reversible situation.

In case where the underlying random walk is reversible, the sites with

maximal measure deserve particular attention, as they are precisely the sites

where particles condensate (cf. Proposition 8.0.5). We define

M? = max{m(x) : x ∈ S}, S? = {x ∈ S : m(x) = M?}, and m?(·) =
m(·)
M?

.

(8.1)

Notably, m?(x) ≤ 1 for all x ∈ S, and the equality holds if and only if x ∈ S?.
Based on the underlying random walk introduced above, we introduce

the inclusion process on S. First, the set of configurations corresponding to

the distribution of N particles on S is denoted by

HN =
{
η ∈ NS :

∑
x∈S

ηx = N
}
.

Hence, ηx is regarded as the number of particles at x ∈ S of η.

Now, we define the inclusion process to be a continuous-time Markov

chain {ηN(t)}t≥0 on HN associated with generator LN acting on functions

f : HN → R by

(LNf)(η) =
∑
x, y∈S

ηx(dN + ηy)r(x, y){f(σx, yη)− f(η)} for η ∈ HN . (8.2)

Here, σx, yη is the configuration obtained from η by sending a particle, if

possible, from x to y. Hence, if ηx = 0, then σx, yη = η and if ηx ≥ 1,

then (σx, yη)x = ηx − 1, (σx, yη)y = ηy + 1, and (σx, yη)z = ηz for z 6= x, y.

Moreover, {dN}N≥1 is a sequence of positive real numbers converging to 0.

We will further assume that dN decays more quickly than the logarithmic

scale;

lim
N→∞

dN logN = 0. (8.3)
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A typical choice for dN in practice is the polynomial scale, dN = 1/Nα, α > 0.

One can readily verify that ηN(·) is irreducible. We denote the transition rate

of this process by rN : HN ×HN → [0, ∞).

We briefly explain the dynamical characteristics of the inclusion process.

Given a configuration η ∈ HN , a particle moves from site x to site y at rate

rN(η, σx, yη) = ηx(dN + ηy)r(x, y) = dNηxr(x, y) + ηxηyr(x, y).

Here, dNηxr(x, y) denotes the diffusive part and ηxηyr(x, y) denotes the in-

clusive part of the dynamics. More specifically, the diffusive part represents

the random walk of each particle with respect to r(·, ·), which is controlled

by a parameter dN . In contrast, the inclusive part represents the attractive

behavior of particles, because the rate from x to y increases as ηy increases,

and particles tend to prefer more occupied sites. As dN decays to 0, the inclu-

sive behavior is expected to dominate the dynamics. Consequently, particles

are very likely to assemble at a single site, forming a condensate (cf. Propo-

sition 8.0.5). However, the small diffusive interactions trigger a long-term

evolution of this condensate among sites, which is referred to as tunneling

or metastable behavior (cf. Theorem 8.0.7). Precise interpretation of these

concepts is provided in the following.

Condensation of reversible inclusion process

Because the process ηN(·) is irreducible, it exhibits a unique invariant distri-

bution. We denote the unique distribution by µN . The great advantage we

gain by assuming reversibility of the underlying random walk is that ηN(·)
likewise becomes reversible with respect to µN , and that µN admits an ex-

plicit formula. This is stated in the following proposition, whose proof is

straightforward. Hereafter, Γ(·) denotes the typical Gamma function.

Proposition 8.0.2. The inclusion process {ηN(t)}t≥0 is reversible with re-
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spect to the invariant distribution µN , which satisfies

µN(η) =
1

ZN

∏
x∈S

wN(ηx)m?(x)ηx for η ∈ HN , (8.4)

where

wN(n) =
Γ(dN + n)

n!Γ(dN)
for n ∈ N, and ZN =

∑
η∈HN

∏
x∈S

wN(ηx)m?(x)ηx .

Remark 8.0.3. The following asymptotics hold for the functions introduced

in Proposition 8.0.2:

1 ≤ (dN + k)wN(k)

dN
=

(k + 1)wN(k + 1)

dN
≤ edN logN for k ∈ J0, N − 1K,

lim
N→∞

NZN
dN

= |S?|.
(8.5)

In particular, (dN + k)wN(k) = (k + 1)wN(k + 1) ' 1 by (8.3), which is

uniform in k ∈ J0, N − 1K. These convergence results are frequently applied

in the following. The proofs are provided in [15, Lemma 3.1 and Proposition

3.2].

Next, we define the metastable valleys of the process.

Definition 8.0.4 (Metastable configurations). For each x ∈ S, define

ExN := {ξxN} := {η ∈ HN : ηx = N}.

Hence, ξxN represents the configuration where all particles are concentrated

on the site x. Each ExN is referred to as a valley of the system. Moreover, we

denote byEN(A) =
⋃
x∈A

ExN for A ⊆ S.

Valleys of further special interest are ExN for x ∈ S?, as explained by the

following proposition. The proof of this is provided in [15, Proposition 2.1].
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Proposition 8.0.5. For each x ∈ S?, it holds that

lim
N→∞

µN(ExN) =
1

|S?|
. (8.6)

Consequently, we have lim
N→∞

µN(HN \ EN(S?)) = 0.

Remark 8.0.6. In particular, ExN , x ∈ S?, are referred to as metastable valleys

of the process.

For simplicity, we write E?N = EN(S?). Proposition 8.0.5 implies that the

(static) condensation occurs on S?, i.e.,

lim
N→∞

µN(E?N) = 1. (8.7)

This fact depends heavily on the explicit formula (8.4). If the underlying

random walk is non-reversible, then the right-hand side of (8.4) is not nec-

essarily the invariant distribution of the system. In fact, we do not have a

closed formula of the invariant distribution in this case. Thus, even the basic

condensation result on valleys is not a simple issue for the non-reversible

inclusion process. Nevertheless, condensation on EN(S) can be demonstrated

for the non-reversible system by adding a few minor conditions on dN and

r(·, ·). For a recent result on this topic, we refer to Theorem 10.2.14.

First time scale of the metastable behavior of reversible dynamics

The first time scale is fully characterized in [15]. Recall the trace process

defined in Definition 3.1.3. Here, we trace the original process ηN(·) on E?N ,

where condensation occurs. For simplicity, it is denoted by

η?N(·) = η
E?N
N (·). (8.8)
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As we are concerned only with the superscripts of the sets {ExN : x ∈ S?}, we

define a projection function Ψ1, N : E?N → S? as

Ψ1, N(ξxN) = x for x ∈ S?.

The symbol 1 in the subscript of Ψ1, N denotes the first time scale of metasta-

bility. Using this function, we define a process {XN(t)}t≥0 on S? by

XN(t) = Ψ1, N(η?N(t)) for t ≥ 0. (8.9)

In general, XN(·) is non-Markovian, as it is merely a process of labeling of the

metastable valleys. However, in the current case, XN(·) is indeed a Markov

process, as Ψ1, N is a bijection between E?N and S?.

Here, we can formulate the first metastable behavior in terms of the pro-

jected trace process XN(·). Proof of the following theorem is provided in [15,

Section 4].

Theorem 8.0.7 (First time scale of reversible inclusion process). Fix a site

x0 ∈ S? and let θN, 1 = 1/dN .

(1) The law of the rescaled process {XN(θN, 1t)}t≥0 starting from x0 con-

verges (with respect to the Skorokhod topology) on the path space D([0, ∞); S?)

to the law of the Markov process {Xfirst(t)}t≥0 on S? starting from x0,

which is defined by the generator

(L1f)(x) =
∑
y∈S?

r(x, y){f(y)− f(x)} for x ∈ S? and f : S? → R.

(2) The process spends negligible time outside the metastable valleys, i.e.,

for all t > 0,

lim
N→∞

sup
η∈E?N

Eη
[ ∫ t

0

1{ηN(θN, 1s) /∈ E?N}ds
]

= 0.
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Figure 8.1: (Left) Model where the first time scale of metastability does not
occur (Remark 8.0.8). Red points denote the metastable sites and yellow ones
denote the rest. (Right) Simple model for the second time scale of metasta-
bility (Condition 9.1.1). The line between y1 and y2 implies that there is no
restriction on r(y1, y2) and r(y2, y1).

Remark 8.0.8. In Theorem 8.0.7, the limiting dynamics Xfirst(·) is exactly

the underlying random walk restricted to S?. Here, we must note that even

though the underlying system is irreducible, Xfirst(·) can still not be irre-

ducible. For example, let S = {1, 2, 3}, r(1, 2) = r(3, 2) = 1, and r(2, 1) =

r(2, 3) = 2, as in the left part of Figure 8.1. Then, we have S? = {1, 3}; thus,

Xfirst(·) on S? represents the null Markov chain. This phenomenon suggests

additional time scales of the metastable behavior of the reversible inclusion

process.

We further remark that the non-reversible inclusion process exhibits a

completely different scheme of metastability in the first time scale. Namely,

the time scale is 1/dN if the limiting Markov chain of the process (cf. Xfirst(·)
in Theorem 8.0.7) is symmetric, and it is 1/(dNN) if the limiting Markov
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chain is not symmetric. This is a remarkable difference in the metastability of

reversible and non-reversible inclusion processes, and the details are provided

in Theorems 10.2.9 and 10.2.11.

Since the scaling limit Xfirst(t) is not necessarily irreducible on S?, even

though the original underlying random walk on the full set S is assumed

to be irreducible. This implies that on the first time scale θN, 1, there may

exist condensed states that are not transferable from one to another. This

encourages us to search for the succeeding bigger time scales relevant to the

metastable transitions. This is indeed the topic explained in the next chapter.
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Chapter 9

Second time scale of

metastability

9.1 Main results

9.1.1 Simple case

In this subsection, we present a simple case of our general main result.

Namely, we assume that the following condition holds throughout this sub-

section.

Condition 9.1.1. S = {x1, x2, y1, y2} with

r(yp, xi) > r(xi, yp) > 0 for i, p ∈ J1, 2K, (9.1)

r(x1, x2) = r(x2, x1) = 0, (9.2)

m(x1) = m(x2). (9.3)

In this setting, because the process is reversible, we have m?(x1) = m?(x2) =

1, m?(y1) < 1, and m?(y2) < 1, so that S? = {x1, x2}. See the right part of

Figure 8.1 for a visualization of this simple model.
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There are two reasons for providing a simple version of the theorem first,

instead of directly addressing the general main result. The first reason is

that this simple model already covers most of the mathematical essentials of

the second level of metastable behavior. The second reason is that proposing

the proof of the general main result in a straightforward manner would be

confusing to the readers, while inspecting the proof of the simple case first

is helpful.

We add the term spl, which denotes simple, in the superscripts of some

quantities defined in this subsection to avoid possible confusion with the

general main result in the following subsection.

By (9.2), we do not observe any movements in the first time scale by

Theorem 8.0.7. Thus, it is natural to seek the following time scale, in which

metastable behavior is exhibited between x1 and x2. Similar to the first scale,

we define a projection function Ψspl
2, N : E?N → {1, 2} by

Ψspl
2, N(ξxiN ) = i for i ∈ J1, 2K.

Then, we define a process Y spl
N (·) on {1, 2} by (cf. (8.8))

Y spl
N (t) = Ψspl

2, N(η?N(t)) for t ≥ 0. (9.4)

Following the notation of [15], we state that dN decays subexponentially, if

lim
N→∞

dNe
εN =∞ for any ε > 0. (9.5)

Hence, (9.5) indicates that dN decays more slowly relative to any exponential

scales. Moreover, we define a positive constant R by

R =

∫ 1

0

1∑2
p=1

1
(1−m?(yp))( 1−t

r(x1, yp)
+ t
r(x2, yp)

)

dt. (9.6)

Theorem 9.1.2 (Second time scale of reversible inclusion process: simple
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case). Assume Condition 9.1.1. Suppose that dN decays subexponentially, and

that

lim
N→∞

dNN
2(logN)2 = 0. (9.7)

Define the second time scale as θN, 2 = N/d2
N and fix i0 ∈ {1, 2}. Then, the

law of the rescaled process {Y spl
N (θN, 2t)}t≥0 starting from i0 converges to the

law of the Markov process on {1, 2}, starting from i0 and jumping back and

forth at rate 1/R.

Remark 9.1.3. Note that Theorem 9.1.2 slightly generalizes [15, Theorem

2.5], and there is a sole additional non-metastable site in the system. How-

ever, the approach used in [15, Section 5] fails even in this simplest case, due

to two important drawbacks. First, the test function given in [15, Subsection

5.2] does not provide a direct clue of the test function we need for this gen-

eralized model, as this step requires a high-level understanding of the whole

landscape of the transition rates. This is provided in Section 9.4.2. Second, it

is impossible to apply the Cauchy–Schwarz inequality consecutively as in [15,

Subsection 5.1]. This is because the inequalities used there do not provide a

consistent equality condition; hence, this merely yields a weaker lower bound

for the capacities. To overcome this, we employ Theorem 3.2.8-(2) to obtain

the lower bound; see Section 9.5 for further detail.

9.1.2 General case

In this subsection, we present the main result of this article in the most

general setting. To this end, we decompose S? into irreducible components

with respect to Xfirst(·), which is the limiting dynamics in the first scale (see

the left part of Figure 9.1):

S? =
κ?⋃
i=1

S
(2)
i , where S

(2)
i = {xi, 1, . . . , xi, n(i)} for 1 ≤ i ≤ κ?. (9.8)
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Figure 9.1: (Left) General model with four irreducible components S
(2)
1 , S

(2)
2 ,

S
(2)
3 , and S

(2)
4 according to the first time scale (cf. (9.8)). (Right) Same model,

in which {S(2)
1 , S

(2)
2 } and {S(2)

3 , S
(2)
4 } form two irreducible components S

(3)
1

and S
(3)
2 , respectively, according to the second time scale (Theorem 9.1.4).

Here, we use the second label (1 to n(i)) in the elements of S
(2)
i to em-

phasize that they belong to the same set S
(2)
i . The common superscript (2)

denotes the second time scale. More specifically, the system with transi-

tion rates r(·, ·) restricted to S
(2)
i is irreducible for each i ∈ J1, κ?K, and

r(xi, n, xj,m) = 0 for all i 6= j, 1 ≤ n ≤ n(i), and 1 ≤ m ≤ n(j). By defini-

tion, we have

|S?| =
κ?∑
i=1

|S(2)
i | =

κ?∑
i=1

n(i).

In this setting, our dynamics in the second scale θN, 2 = N/d2
N takes place on

the set of κ? elements; {EN(S
(2)
i ) : i ∈ J1, κ?K}. All elements in S

(2)
i that are

connected in the first scale θN, 1 form a metastable group in the second scale

(Theorem 9.1.4-(1)). If κ? = 1, we observe all possible metastable movements

in the first time scale; thus, the metastable behavior is fully characterized

by Theorem 8.0.7, and there is no need for an additional time scale. Hence,
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hereafter we assume that κ? ≥ 2. Moreover, we write S \S? = {y1, . . . , yκ0},
such that we have

S = {xi, n : i ∈ J1, κ?K and n ∈ J1, n(i)K} ∪ {y1, . . . , yκ0}.

From κ? ≥ 2 and irreducibility of the underlying random walk, it is straight-

forward that κ0 ≥ 1. For A ⊆ J1, κ?K, we introduce the notation E (2)
N (A) =⋃

i∈A

EN(S
(2)
i ). If A = {a}, we abbreviate E (2)

N ({a}) as E (2)
N (a).

As in the simple case, we define a projection function. Let Ψ2, N : E?N →
J1, κ?K be defined by

Ψ2, N(ξ
xi, n
N ) = i for i ∈ J1, κ?K and n ∈ J1, n(i)K.

Then, we define a process YN(·) on J1, κ?K by (cf. (8.8))

YN(t) = Ψ2, N(η?N(t)) for t ≥ 0.

In contrast to XN(·) defined in (8.9) (and Y spl
N (·) defined in (9.4)), YN(·) is

not necessarily Markovian, since Ψ2, N is generally not bijective.

We are ready to state our main theorem. We define constants Ri, j for

i, j ∈ J1, κ?K:

Ri, j =

∫ 1

0

1∑n(i)
n=1

∑n(j)
m=1

∑κ0

p=1
1

(1−m?(yp))( 1−t
r(xi, n, yp)

+ t
r(xj,m, yp)

)

dt. (9.9)

In (9.9), we regard the fraction in the denominator as 0 if r(xi, n, yp)r(xj,m, yp) =

0. In this sense, we write Ri, j = ∞ if r(xi, n, yp)r(xj,m, yp) = 0 for all

n ∈ J1, n(i)K, m ∈ J1, n(j)K, and p ∈ J1, κ0K1. It is clear that Ri, j = Rj, i.

Theorem 9.1.4 (Second time scale of reversible inclusion process: general

1We take 1/∞ to be 0 in the following.
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case). Suppose that dN decays subexponentially, and that

lim
N→∞

dNN
2(logN)2 = 0. (9.10)

Then, with θN, 2 = N/d2
N , the following statements hold.

(1) For each i ∈ J1, κ?K, EN(S
(2)
i ) thermalizes before reaching another

metastable set, i.e.,

lim
N→∞

inf
η, ζ∈EN (S

(2)
i )

Pη
[
τ{ζ} < τEN (S?\S(2)

i )

]
= 1. (9.11)

(2) Fix i0 ∈ J1, κ?K. Then, the law of the rescaled process {YN(θN, 2t)}t≥0

starting from i0 converges to the law of the Markov process Xsecond(·)
on J1, κ?K starting from i0 and defined by the generator, acting on func-

tions f : J1, κ?K→ R, given by

(L2f)(i) =
∑

j∈J1, κ?K\{i}

1

|S(2)
i |Ri, j

{f(j)− f(i)} for i ∈ J1, κ?K. (9.12)

Consequently, S? is decomposed into irreducible components with respect

to Xsecond(·). We denote this partition by

S? = S
(3)
1 ∪ · · · ∪ S(3)

γ? . (9.13)

(3) Fix i ∈ J1, κ?K and n ∈ J1, n(i)K. From (9.13), there is a unique î ∈
J1, γ?K such that S

(2)
i ⊆ S

(3)

î
(see the right part of Figure 9.1). Then,

starting from ξ
xi, n
N , the process spends negligible time outside EN(S

(3)

î
),

which is uniform in all choices of (i, n), i.e., for all t > 0,

lim
N→∞

sup
i∈J1, κ?K, n∈J1, n(i)K

E
ξ
xi, n
N

[ ∫ t

0

1
{
ηN(θN, 2s) /∈ EN(S

(3)

î
)
}
ds
]

= 0.
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Remark 9.1.5. We remark several issues regarding the main theorem.

(1) Note that Theorem 9.1.2 is indeed a special case of Theorem 9.1.4,

where κ? = 2, n(1) = n(2) = 1, x1, 1 = x1, x2, 1 = x2, κ0 = 2, and

r(x1, 1, yp)r(x2, 1, yp) > 0 for p = 1, 2.

(2) Theorem 9.1.4 proves the conjecture in [15] that θN, 2 = N/d2
N is indeed

the second time scale in the metastability of reversible inclusion pro-

cesses, in the sense that there are no intermediate time scales between

θN, 1 and θN, 2.

(3) Remarkably, the condition (9.10) is purely technical, and it is believed

that the same results hold without this minor assumption. This condi-

tion is applied in Sections 9.4.4 and 9.6.4.

(4) By (9.12), for i, j ∈ J1, κ?K, the limit transition rate from S
(2)
i to S

(2)
j is

1/(|S(2)
i |Ri, j). This vanishes if and only if Ri, j =∞, which is equivalent

to state that the graph distance2 between S
(2)
i and S

(2)
j is bigger than

2. In this sense, we cannot observe a metastable movement between

S
(3)
i and S

(3)
j , i, j ∈ J1, γ?K, in the second time scale θN, 2 = N/d2

N .

Because the original underlying random walk is irreducible, it is natural

to suggest the existence of a third time scale, where we can detect

metastable movements among S
(3)
i , i ∈ J1, γ?K. In [15], this scale is

strongly expected to be θN, 3 = N2/d3
N . Moreover, even though θN, 3 is

proved to be the longest scale possible in [15], there is a possibility that

an intermediate time scale exists between θN, 2 and θN, 3. This can be

considered a fruitful future research topic.

(5) According to the previous remark, we attempted to apply the methodol-

ogy used in this chapter to address the third time scale of metastability

2For two subsets A and B of S, the graph distance between A and B is defined as
min{n ≥ 0 : ∃x0, . . . , xn ∈ S such that x0 ∈ A, xn ∈ B, and r(xi, xi+1) > 0 for i ∈
J0, n− 1K.
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of the inclusion process. The first obstacle is encountered in construct-

ing an exquisite test function which approximates the equilibrium po-

tential, as in Section 9.6.2. This becomes far more complicated when

compared to what is done here, as the geometric property of the typical

path is highly complex in the third time scale. The other obstacle is that

the asymptotic value of the equilibrium potential, which is successfully

determined in the second time scale in Sections 9.5.3 and 9.7.3, is un-

known in the third time scale. In order to apply a similar methodology

in the third scale, a precise information on the equilibrium potential of

the entire typical path between metastable valleys is needed. At this

point, this is a technically difficult task.

(6) Note that (9.11) is not included in the previous metastability results,

i.e., Theorems 8.0.7 and 9.1.2. This is because in the setting of the

previous theorems, each metastable valley is a singleton; hence, ther-

malization is obvious.

(7) Here, all convergence results are provided in terms of convergence of the

trace process in the Skorokhod topology. In fact, there are alternatives

to the stated results, represented by convergence of the original process

in the soft topology [51] and convergence of finite-dimensional marginal

distributions [55]. We remark that given our result, the other modes of

convergence may be easily proved by verifying some additional technical

conditions presented in the aforesaid studies. In Section 9.9, we prove

the convergence of finite-dimensional marginal distributions using [55,

Proposition 2.1]. This result is needed to prove (3) of Theorem 9.1.4.
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9.2 Outline of proof of Theorems 9.1.2 and

9.1.4

In this section, we explain how to prove the main theorems, namely Theorems

9.1.2 and 9.1.4, using the general methodologies summarized in Section 3.2.

Martingale approach and outline of proof

Recall from (8.8) the trace process η?N(t), t ≥ 0 on E?N . We denote by r?N :

E?N×E?N → [0, ∞) the transition rate of the trace process η?N(·), and we define

the mean transition rate r?N : J1, κ?K× J1, κ?K→ [0, ∞) by r?N(i, i) = 0 and

r?N(i, j) =
1

µN(EN(S
(2)
i ))

∑
η∈EN (S

(2)
i )

µN(η)
∑

ζ∈EN (S
(2)
j )

r?N(η, ζ) for i, j ∈ J1, κ?K.

Then, for i, j ∈ J1, κ?K, it holds that (cf. [5, Lemma 6.8] and (3.28))

µN(EN(S
(2)
i ))r?N(i, j) =

1

2

[
CapN(E (2)

N (i), E?N \ E
(2)
N (i))

+ CapN(E (2)
N (j), E?N \ E

(2)
N (j))

− CapN(E (2)
N ({i, j}), E?N \ E

(2)
N ({i, j}))

]
.

(9.14)

The asymptotics on r?N(·, ·) is the main ingredient to describe the metastable

behavior. This is explained in the following proposition, which is a conse-

quence of the martingale approach developed in [5]. We refer to [5, Theorem

2.7] for its proof.

Proposition 9.2.1. Suppose that there exists a sequence {θN}N≥1 of positive

real numbers such that

lim
N→∞

θNr
?
N(i, j) = a(i, j) for all i, j ∈ J1, κ?K, (9.15)

for some a : J1, κ?K× J1, κ?K→ [0, ∞). Moreover, suppose that the following
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estimate holds for each i ∈ J1, κ?K:

lim
N→∞

CapN(E (2)
N (i), E?N \ E

(2)
N (i))

inf
η, ζ∈E(2)

N (i)
CapN(η, ζ)

= 0. (9.16)

Then, for each i ∈ J1, κ?K, the following statements hold.

(1) E (2)
N (i) thermalizes before reaching another metastable set, i.e.,

lim
N→∞

inf
η, ζ∈E(2)

N (i)

Pη
[
τ{ζ} < τE?N\E

(2)
N (i)

]
= 1.

(2) For each i ∈ J1, κ?K, the law of the rescaled process {YN(θN t)}t≥0 start-

ing from i converges to the law of the Markov process on J1, κ?K starting

from i with transition rates a(·, ·).

To prove statement (3) of Theorem 9.1.4, we also must know the mode of

convergence of finite-dimensional distributions of the rescaled process ηN(θN, 2·).
[55, Proposition 2.1] provides a simple approach of proving this result.

Proposition 9.2.2. Suppose that statement (2) of Theorem 9.1.4 holds, and

that the process spends negligible time outside the metastable valleys, i.e., for

t > 0,

lim
N→∞

sup
η∈E?N

Eη
[ ∫ t

0

1{ηN(θN, 2s) /∈ E?N}ds
]

= 0.

In addition, suppose that the following holds:

lim
δ→0

lim sup
N→∞

sup
2δ≤s≤3δ

sup
η∈E?N

Pη
[
ηN(θN, 2s) /∈ E?N

]
= 0. (9.17)

Then, the rescaled original process ηN(θN, 2·) converges to Xsecond(·) in the

sense of finite-dimensional marginal distributions, i.e., for all 0 ≤ t1 < · · · <
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tk, i ∈ J1, κ?K, n ∈ J1, n(i)K, and A1, . . . , Ak ⊆ J1, κ?K, it holds that

lim
N→∞

P
ξ
xi, n
N

[
ηN(θN, 2t1) ∈ E (2)

N (A1), . . . , ηN(θN, 2tk) ∈ E (2)
N (Ak)

]
= Pi

[
Xsecond(t1) ∈ A1, . . . , Xsecond(tk) ∈ Ak

]
,

where Pi denotes the law of Xsecond(·) starting from i.

The remainder of this chapter is organized as follows. In Section 9.3,

we provide some preliminaries regarding hitting times on the tubes. These

are used in Sections 9.5 and 9.7. Subsequently, in Sections 9.4 and 9.5, we

calculate the upper and lower bounds for the capacities, respectively, in the

simple case of Theorem 9.1.2. This procedure is performed by the variational

principles given in Theorems 3.2.5 and 3.2.8. In Sections 9.6 and 9.7 we

provide the estimate of the capacities in the general case of Theorem 9.1.4.

Then, we prove the condition (9.16) in the general case in Section 9.8. Finally,

in Section 9.9, we use the estimates given in Propositions 9.2.1 and 9.2.2 to

prove our main result, stated in Theorem 9.1.4. This simultaneously proves

Theorem 9.1.2 as well.

9.3 Hitting times on tubes

In this section, we provide sharp estimates of hitting times on the tubes.

These are used in Sections 9.5 and 9.7 to compute the asymptotic equilibrium

potential (Lemmas 9.5.4 and 9.7.3). These are special (reversible) cases of

more general (non-reversible) results formulated and proved in Section 10.3.2.

Thus, we highlight the essential results, and refer to Section 10.3.2 for detailed

proofs.

To state the results, we first define some relevant subsets of HN .

Definition 9.3.1.
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(1) For every subset R of S, define the R-tube ARN as

ARN = {η ∈ HN : ηx = 0 for all x ∈ S \R}. (9.18)

For example, ASN = HN and A{x}N = ExN .

(2) Especially, if R = {x, y}, we write

Ax, yN = ARN = {η ∈ HN : ηx + ηy = N}.

(3) For x, y ∈ S and i ∈ J0, NK, define the configuration ζx, yi = ζx, yi,N by

(ζx, yi )z =


N − i if z = x,

i if z = y,

0 otherwise,

such that Ax, yN = {ζx, y0 , ζx, y1 , . . . , ζx, yN }. Note that ζx, y0 = ξxN and ζx, yN =

ξyN .

(4) Finally, for x, y ∈ S, define

Âx, yN = {η ∈ HN : ηx + ηy = N and ηx, ηy ≥ 1}.

Clearly, Âx, yN = {ζx, y1 , . . . , ζx, yN−1} and Ax, yN = Âx, yN ∪ {ξ
x
N , ξ

y
N}.

The tube ARN with R = {x, y} has the advantage that it is an 1D bridge

of typical paths between two valleys, ξxN and ξyN . More precisely, the following

estimate holds.

Lemma 9.3.2. Suppose that E is a subset of the path space which depends

only on the hitting times of subsets of HN \ Âx, yN . Moreover, suppose that

x, y ∈ S satisfy r(x, y) + r(y, x) > 0. Then, there is a fixed constant C > 0
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such that∣∣∣Pζx, yi
[E]− r(x, y)

r(x, y) + r(y, x)
Pζx, yi+1

[E]− r(y, x)

r(x, y) + r(y, x)
Pζx, yi−1

[E]
∣∣∣ ≤ C

dNN

i(N − i)

for all i ∈ J1, N − 1K.

Remark 9.3.3. In the above lemma, typical examples of subsets E are the

following.

{
τExN < τEyN

}
,
{
τEyN = τEN (A)

}
for A ⊆ S, and

{
τExN = τHN\Âx, yN

}
.

Lemma 9.3.2 can be iterated to formulate Pζx, yi
[E], i ∈ J1, N−1K in terms

of the boundary values PξxN [E] and PξyN [E]. This imperatively relies on the

fact that the system is approximated to be 1D.

We conclude this section with the following lemma, which estimates the

equilibrium potential on one-dimensional tubes. This lemma is the main in-

gredient to estimate the divergence of the test flow in Lemma 9.5.4.

Lemma 9.3.4. Suppose that A and B are two disjoint subsets of S. Further,

assume that a ∈ A, b ∈ B, and c ∈ S satisfy

r(c, a) > r(a, c) > 0 and r(c, b) > r(b, c) > 0.

Then, we have

sup
i∈J0, bN/2cK

∣∣hEN (A), EN (B)(ζ
a, c
i )− 1

∣∣ = o(1) (9.19)

and

sup
i∈J0, bN/2cK

hEN (A), EN (B)(ζ
b, c
i ) = o(1). (9.20)

Proof. It must be noticed that {τEN (A) < τEN (B)} is a subset of the path space

satisfying the assumption of Lemma 9.3.2; thus, we may apply Lemma 9.3.2

to the equilibrium potential hEN (A), EN (B).
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It suffices to prove (9.19) and (9.20) for i ∈ J1, bN/2cK, as they are trivial

for i = 0. We abbreviate hEN (A), EN (B) as h. Because a ∈ A and b ∈ B, we

have h(ξaN) = 1 and h(ξbN) = 0. Next, write q = r(a, c)/r(c, a) < 1 and

αi = h(ζa, ci−1)− h(ζa, ci ) for i ∈ J1, NK.

Then, Lemma 9.3.2 implies∣∣∣αi+1 −
1

q
αi

∣∣∣ ≤ C
dNN

i(N − i)
for i ∈ J1, N − 1K. (9.21)

Now, fix i ∈ J1, bN/2cK. Because h(ξaN) − h(ξcN) = α1 + · · · + αN , we may

estimate, ∣∣∣h(ξaN)− h(ξcN)− 1− qN

qN−i(1− qi)
(α1 + · · ·+ αi)

∣∣∣
=

1− q
qN−i − qN

∣∣∣ i∑
j=1

N∑
k=i+1

(qN−jαk − qN−kαj)
∣∣∣. (9.22)

Applying (9.21), the last formula is bounded by

1− q
qN−i − qN

i∑
j=1

N∑
k=i+1

qN−j
k−1∑
`=j

CdNN

q`−j`(N − `)
.

By simple double counting, this is bounded from above by

CdNN

qN−i − qN
( i−1∑
`=1

qN−`

N − `
+

N−i∑
`=i

iqN−`

`(N − `)
+

N−1∑
`=N−i+1

qN−`

`

)
. (9.23)

From α1 + · · ·+ αi = h(ξaN)− h(ζa, ci ), by (9.22) and (9.23), we have

∣∣∣h(ζa, ci )− 1− qN−i

1− qN
h(ξaN)− qN−i − qN

1− qN
h(ξcN)

∣∣∣
≤ 2CdNN

(qN−i+1(1− q)−1

N − i+ 1
+

2qi(1− q)−1

N
+

(1− q)−1

N − i+ 1

)
≤ 16C(1− q)−1dN .
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Because h(ξaN) = 1 and 0 ≤ h(ξcN) ≤ 1, (9.19) follows. Moreover, by a similar

computation, we deduce that∣∣∣h(ζb, ci )− 1− q̃N−i

1− q̃N
h(ξbN)− q̃N−i − q̃N

1− q̃N
h(ξcN)

∣∣∣ ≤ 16C(1− q̃)−1dN ,

where q̃ = r(b, c)/r(c, b) < 1. Because h(ξbN) = 0 and 0 ≤ h(ξcN) ≤ 1, we

have (9.20).

9.4 Upper bound for capacities: simple case

In this section, we assume Condition 9.1.1 and establish the upper bound for

CapN(Ex1
N , E

x2
N ). As previously mentioned, this and the succeeding subsec-

tions have most of the mathematical essentials for proving the general main

result. Notions from Section 9.1.1 are frequently employed.

Proposition 9.4.1 (Upper bound for capacities: simple case). Under the

conditions of Theorem 9.1.2, the following inequality holds.

lim sup
N→∞

N

d2
N

CapN(Ex1
N , E

x2
N ) ≤ 1

2R
.

9.4.1 Preliminary notions

Let m? =
2

max
p=1

m?(yp) < 1 and recall the notation (9.18). For all N , we define

the following discretized version of the constant R given in (9.6):

RN =
N∑
t=1

1∑2
p=1

1
(1−m?(yp))( N−t

r(x1, yp)
+ t−1
r(x2, yp)

)

.

Clearly, we have N−2RN → R as N tends to infinity.

The constant RN has the shape of an inverse effective conductance of an

electrical network consisted of conductors. In this sense, RN can be regarded

as the inverse conductance of N serially connected conductors (t ∈ J1, NK).
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Moreover, each conductor can be decomposed into two parallelly connected

conductors (p ∈ {1, 2}), and each of them corresponds to the motion of

a particle from site x1 to site x2, passing through yp, for p = 1, 2. In each

individual conductance (1−m?(yp))
−1((N−t)/r(x1, yp)+(t−1)/r(x2, yp))

−1,

the former term corresponds to the sum of geometric series of ratio m?(yp),

and the latter term corresponds to the serial connection of particle motions

x1 ↔ yp and x2 ↔ yp with conductances r(x1, yp)/(N − t) and r(x2, yp)/(t−
1), respectively. These heuristic explanations are rigorously formulated in the

proof of Lemma 9.4.2.

Moreover, we define

UN =
2⋃
p=1

A{x1, yp, x2}
N and VN = HN \ UN . (9.24)

9.4.2 Construction of test function ftest

In this subsection, we define a test function f = ftest on HN , which approxi-

mates the equilibrium potential hEx1
N , Ex2

N
. To this end, f is constructed in four

steps. See Figure 9.2 for a graphical explanation of this process.

• First, we define f on EN(S):

f(ξx1
N ) = 1 and f(ξx2

N ) = f(ξy1

N ) = f(ξy2

N ) = 0, (9.25)

so that f ∈ C1, 0(Ex1
N , E

x2
N ) (cf. (3.33)).

• Second, we define f on A{xi, yp}N for i ∈ {1, 2} and p ∈ {1, 2} by

f(η) = f(ξxiN ) if ηxi ∈ J1, N − 1K. (9.26)

• Next, we define f on UN , i.e., on A{x1, yp, x2}
N for p ∈ {1, 2}. The main

contribution to the Dirichlet form occurs in this part. If η ∈ A{x1, yp, x2}
N
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with ηx1 ≥ 1 and ηx2 ≥ 1, then

f(η) =
K
ηx1 , ηyp
p

RN
, (9.27)

where for k ≥ 0 and ` ≥ 0,

Kk, `
p =

k∑
t=1

N−t
r(x1, yp)

/
( N−t
r(x1, yp)

+ t−1
r(x2, yp)

)∑2
q=1

1
(1−m?(yq))(

N−t
r(x1, yq)

+ t−1
r(x2, yq)

)

+
k+∑̀
t=1

t−1
r(x2, yp)

/
( N−t
r(x1, yp)

+ t−1
r(x2, yp)

)∑2
q=1

1
(1−m?(yq))(

N−t
r(x1, yq)

+ t−1
r(x2, yq)

)

.

By substituting ηyp = 0, one can verify that (9.27) is well defined on

A{x1, x2}
N .

• Finally, we define f on VN . Taking η ∈ VN ,

f(η) =

1 if ηx1 > bN/2c,

0 if ηx1 ≤ bN/2c.
(9.28)

• By the above construction, 0 ≤ f(η) ≤ 1 for all η ∈ HN .

Here, we divide the Dirichlet form into four parts:

DN(f) =
∑

{η, ζ}⊆HN

µN(η)rN(η, ζ){f(ζ)− f(η)}2

= Σ1(f) + Σ2(f) + Σ3(f) + Σ4(f).

The four summations are defined as follows, according to where the movement

η ↔ ζ occurs.

• The first part Σ1(f) consists of movements inside A{x1, yp, x2}
N for p ∈

{1, 2}.
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Figure 9.2: (Left) Distribution of the test function in a model satisfying
Condition 9.1.1 with N = 4. (Right) More detailed landscape of the test

function on the tube A{x1, y1, x2}
N .

• The second part Σ2(f) consists of movements between the set differ-

ences of A{x1, y1, x2}
N and A{x1, y2, x2}

N .

• The third part Σ3(f) consists of movements between UN and VN .

• The last part Σ4(f) consists of movements inside VN .

From (9.24), the above four members are disjoint, and they characterize

DN(f) completely. As shown below, Σ1(f) is the main contribution to DN(f),

whereas the other summations vanish (compared to Σ1(f)) as N tends to

infinity.

9.4.3 Main contribution of Dirichlet form

In this subsection, we calculate the main contribution to the Dirichlet form,

which is provided by Σ1(f). This is executed in Lemma 9.4.2.
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Lemma 9.4.2. Under the conditions of Theorem 9.1.2, it holds that

Σ1(f) ≤ d2
N

2N

[ 1

R
+O

( 1

N

)]
.

Proof. To calculate Σ1(f), we write down all movements inside A{x1, yp, x2}
N

and sum it up for p ∈ {1, 2}. More precisely,

Σ1(f) =
2∑
p=1

∑
η∈A{x1, yp, x2}

N

2∑
i=1

µN(η)rN(η, σxi, ypη){f(σxi, ypη)− f(η)}2.

There are no overlaps because r(x1, x2) = r(x2, x1) = 0. By (8.4) and (8.5),

the right-hand side is asymptotically equal to

dNN

2

2∑
p=1

N−1∑
`=0

N−`−1∑
k=0

m?(yp)
`
[
wN(k)r(x2, yp){f(σx2, ypη)− f(η)}2

+ wN(N − `− k − 1)r(x1, yp){f(σx1, ypη)− f(η)}2
]
,

(9.29)

where we use ηx1 = k, ηyp = `, and ηx2 = N−`−k. Here, we fix p ∈ {1, 2} and

divide the range {` ∈ J0, N − 1K} into {` > bN/2c} and {` ≤ bN/2c}. First,

using (8.5) and summing up the geometric series with respect to m?(yp),

summation in the first range {` > bN/2c} is easily bounded from above by

C
∑

`>bN/2c

m?(yp)
` = O(m

N
2
? ). (9.30)

Second, we calculate summation in the range {` ≤ bN/2c}. By (9.26), we

discard the movements inside A{x1, yp}
N and A{x2, yp}

N . Hence, we rewrite this
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summation as

bN/2c∑
`=0

m?(yp)
`
[N−`−2∑

k=1

wN(N − `− k − 1)r(x1, yp){f(σx1, ypη)− f(η)}2

+
N−`−2∑
k=1

wN(k)r(x2, yp){f(σx2, ypη)− f(η)}2

+ wN(N − `− 1)r(x1, yp){f(σx1,ypη)− f(η)}2

+ wN(N − `− 1)r(x2, yp){f(σx2,ypη)− f(η)}2
]
,

(9.31)

where, with slight abuse of notation, in the third line we set ηx1 = 1, ηyp = `,

and ηx2 = N − `− 1, and in the fourth line we set ηx1 = N − `− 1, ηyp = `,

and ηx2 = 1. By (8.5) and (9.27), the first line of (9.31) is given by

bN/2c∑
`=0

m?(yp)
`

N−`−2∑
k=1

wN(N − `− k − 1)r(x1, yp){f(σx1, ypη)− f(η)}2,

which is asymptotically equivalent to

dN
(RN)2

bN/2c∑
`=0

m?(yp)
`

N−`−2∑
k=1

r(x1, yp)

N − `− k − 1

{ N−k−1
r(x1, yp)

/
( N−k−1
r(x1, yp)

+ k
r(x2, yp)

)∑2
q=1

(1−m?(yq))−1

( N−k−1
r(x1, yq)

+ k
r(x2, yq)

)

}2

.

Dividing
1

N − `− k − 1
=

1

N − k − 1
+

`

(N − `− k − 1)(N − k − 1)
and us-

ing
N − k − 1

N − `− k − 1
≤ `+ 1, the last line is bounded by

dN
(RN)2

bN/2c∑
`=0

m?(yp)
`

N−`−2∑
k=1

[ N−k−1
r(x1, yp)

/
( N−k−1
r(x1, yp)

+ k
r(x2, yp)

)2

{
∑2

q=1
1

(1−m?(yq))(
N−k−1
r(x1, yq)

+ k
r(x2, yq)

)
}2

+ C`2
]
.
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By the theory of Riemann integration, this is further bounded by

dN
(RN)2

bN/2c∑
`=0

m?(yp)
`
[
N2

∫ 1

0

1−t
r(x1, yp)

/
( 1−t
r(x1, yp)

+ t
r(x2, yp)

)2

{
∑2

q=1
(1−m?(yq))−1

( 1−t
r(x1, yq)

+ t
r(x2, yq)

)
}2

dt+O(N) + CN`2
]
.

Calculating the geometric series in ` ∈ J0, bN/2cK, this asymptotically equals

dN
R2N2

1

1−m?(yp)

[ ∫ 1

0

1−t
r(x1, yp)

/
( 1−t
r(x1, yp)

+ t
r(x2, yp)

)2

{
∑2

q=1
(1−m?(yq))−1

( 1−t
r(x1, yq)

+ t
r(x2, yq)

)
}2

dt+O
( 1

N

)]
. (9.32)

Similarly, the second line of (9.31) is asymptotically bounded from above by

dN
R2N2

1

1−m?(yp)

[ ∫ 1

0

t
r(x2, yp)

/
( 1−t
r(x1, yp)

+ t
r(x2, yp)

)2

{
∑2

q=1
(1−m?(yq))−1

( 1−t
r(x1, yq)

+ t
r(x2, yq)

)
}2

dt+O
( 1

N

)]
. (9.33)

The remaining parts of (9.31) are asymptotically equal to

dN

bN/2c∑
`=0

m?(yp)
`
[ r(x1, yp)

N − `− 1
{f(σx1, ypη)− f(η)}2

+
r(x2, yp)

N − `− 1
{f(σx2, ypη)− f(η)}2

]
.

(9.34)

By (9.26) and (9.27), if ηx1 = 1, ηyp = ` and ηx2 = N − `− 1, then

|f(σx1, ypη)− f(η)| =
K1, `
p

RN
≤ 1

RN

`+1∑
t=1

1∑2
q=1

1
(1−m?(yq))(

N−t
r(x1, yq)

+ t−1
r(x2, yq)

)

,

which is of order (` + 1) × O(1/N), and if ηx1 = N − ` − 1, ηyp = `, and

ηx2 = 1, then

|f(σx2, ypη)− f(η)| =
RN −KN−`−1, `

p

RN
≤ 1

RN

N∑
t=N−`

1∑2
q=1

(1−m?(yq))−1

( N−t
r(x1, yq)

+ t−1
r(x2, yq)

)

,
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which is again of order (`+1)×O(1/N). Hence, (9.34) is bounded from above

by

CdN
N

bN/2c∑
`=0

m`
?

(`+ 1)2

N2
= O

(dN
N3

)
. (9.35)

Therefore, by (9.32), (9.33), and (9.35), we have the following asymptotic

upper bound for (9.31):

dN
R2N2

[ ∫ 1

0

(1−m?(yp))
−1( 1−t

r(x1, yp)
+ t

r(x2, yp)
)−1

{
∑2

q=1
1

(1−m?(yq))(
1−t

r(x1, yq)
+ t
r(x2, yq)

)
}2

dt+O
( 1

N

)]
. (9.36)

Collecting (9.29), (9.30), and (9.36), and the fact that dN decays subexpo-

nentially, Σ1(f) has the following asymptotic upper bound:

d2
N

2R2N

[ ∫ 1

0

∑2
p=1(1−m?(yp))

−1( 1−t
r(x1, yp)

+ t
r(x2, yp)

)−1

{
∑2

q=1
1

(1−m?(yq))(
1−t

r(x1, yq)
+ t
r(x2, yq)

)
}2

dt+O
( 1

N

)]
=

d2
N

2R2N

[ ∫ 1

0

1∑2
q=1

1
(1−m?(yq))(

1−t
r(x1, yq)

+ t
r(x2, yq)

)

dt+O
( 1

N

)]
.

The integral in the last line is exactly R. Hence, we have

Σ1(f) ≤ d2
N

2N

[ 1

R
+O

( 1

N

)]
.

The last formula yields our exact expectations.

9.4.4 Remainder of Dirichlet form

Next, we deal with the remaining terms in the Dirichlet form, Σ2(f), Σ3(f),

and Σ4(f). Lemma 9.4.3 deals with Σ2(f).

Lemma 9.4.3. Under the conditions of Theorem 9.1.2, it holds that

Σ2(f) = O
(d3

N logN

N2

)
= o
(d2

N

N

)
.
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Proof. Recall that Σ2(f) consists of dynamics between the set differences of

A{x1, y1, x2}
N and A{x1, y2, x2}

N . This happens when a sole particle moves between

y1 and y2. Precisely,

Σ2(f) =
N−1∑
k=0

µN(η)dNr(y1, y2){f(σy1, y2η)− f(η)}2, (9.37)

where η in summation satisfies ηx1 = k, ηy1 = 1, and ηx2 = N − k − 1. If

k = 0 or N − 1, then f(η) = f(σy1, y2η) by (9.26). If k ∈ J1, N − 2K, then by

(9.27),

f(σy1, y2η)− f(η) =

`
r(x2, y2)

/
( N−`−1
r(x1, y2)

+ `
r(x2, y2)

)− `
r(x2, y1)

/
( N−`−1
r(x1, y1)

+ `
r(x2, y1)

)

RN
∑2

q=1
1

(1−m?(yq))(
N−`−1
r(x1, yq)

+ `
r(x2, yq)

)

,

which is O(1/N). Thus, (9.37) is bounded by

C
N−2∑
k=1

Nd3
Nm?

k(N − k − 1)
× 1

N2
= O

(d3
N logN

N2

)
.

This concludes the proof.

Next, we consider Σ3(f).

Lemma 9.4.4. Under the conditions of Theorem 9.1.2, it holds that

Σ3(f) = O(d2
Nm

N
3
? + d3

NN logN) = o
(d2

N

N

)
.

Proof. We can formulate

Σ3(f) =
∑
η∈UN

∑
ζ∈VN

µN(η)rN(η, ζ){f(ζ)− f(η)}2.

We divide the summation into three cases, depending on which subset η

belongs to.
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(Case 1) η ∈ A{x1, x2}
N : In this case, there are no particle movements with

ζ ∈ VN .

(Case 2) η ∈ A{xi, yp}N \ ExiN for some i ∈ {1, 2} and p ∈ {1, 2}: We divide

again according to types of the particle movement.

• (Case 2-1) ζ = σyp, yqη, where q ∈ {1, 2} \ {p}: The corresponding

summation becomes

2∑
i=1

2∑
p=1

N∑
`=1

wN(N − `)wN(`)

ZN
m?(yp)

``dNr(yp, yq){f(σyp, yqη)− f(η)}2,

where η in the summation is the configuration with ηxi = N − ` and

ηyp = `. If ` > bN/3c, then as in (9.30), the summation is O(d2
Nm

N
3
? ).

If ` ∈ J1, bN/3cK, then f(η) = f(ξxiN ) by (9.26) and

f(σyp, yqη) =

1 if i = 1,

0 if i = 2,

by (9.28), since N − ` > bN/2c; hence, f(σyp, yqη) = f(η). Therefore,

the total summation is O(d2
Nm

N
3
? ) in this case.

• (Case 2-2) ζ = σxi, yqη, where q ∈ {1, 2} \ {p}: The corresponding

summation becomes

2∑
i=1

2∑
p=1

N∑
`=1

wN(N − `)wN(`)

ZN
m?(yp)

`(N−`)dNr(xi, yq){f(σxi, yqη)−f(η)}2,

where η in the summation satisfies ηxi = N − ` and ηyp = `. If ` >

bN/3c, then as in (9.30), the summation isO(d2
Nm

N
3
? ). If ` ∈ J1, bN/3cK,
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then f(η) = f(ξxiN ) by (9.26) and

f(σxi, yqη) =

1 if i = 1,

0 if i = 2,

by (9.28), since N−`−1 > bN/2c; hence, f(σxi, yqη) = f(η). Therefore,

the total sum is O(d2
Nm

N
3
? ).

Concluding, (Case 2) yields a contribution O(d2
Nm

N
3
? ).

(Case 3) η ∈ A{x1, yp, x2}
N \ (A{x1, x2}

N ∪A{x1, yp}
N ∪A{x2, yp}

N ) for some p ∈ {1, 2}:
In this case, we can write the summation as

2∑
p=1

N−2∑
`=1

N−`−1∑
k=1

µN(η)
∑

z∈{x1, yp, x2}

ηzdNr(z, yq){f(σz, yqη)− f(η)}2, (9.38)

where in the summation, q ∈ {1, 2} \ {p} and ηx1 = k, ηyp = `, and ηx2 =

N − `− k. As ∑
z∈{x1, yp, x2}

ηz = N,

(9.38) can be bounded from above by

C
2∑
p=1

N−2∑
`=1

N−`−1∑
k=1

µN(η)NdN .

From (8.5), this is bounded by

CN2d3
N

N−2∑
`=1

N−`−1∑
k=1

m?(yp)
`

k`(N − `− k)
≤ CN2d3

N

N−2∑
`=1

m?(yp)
`

`(N − `)
logN = O(d3

NN logN).

Collecting all cases, we conclude that Σ3(f) = O(d2
Nm

N
3
? + d3

NN logN).
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Finally, we deal with Σ4(f).

Lemma 9.4.5. Under the conditions of Theorem 9.1.2, it holds that

Σ4(f) = O(d2
NN logNm

N
2
? + d3

NN(logN)2) = o
(d2

N

N

)
.

Proof. By definition, we have

Σ4(f) =
1

2

∑
η, ζ∈VN

µN(η)rN(η, ζ){f(ζ)− f(η)}2.

By (9.28), f remains unchanged unless one of {η, ζ} has bN/2c+ 1 particles

on x1 and the other has bN/2c particles on x1. Thus, we write

Σ4(f) =
∑

η∈VN : ηx1=bN/2c+1

µN(η)
2∑
p=1

rN(η, σx1, ypη)

=
∑

η∈VN : ηx1=bN/2c+1

µN(η)
(⌊N

2

⌋
+ 1
) 2∑
p=1

(dN + ηyp)r(x1, yp).

(9.39)

Now, we divide the summation with respect to η in the last line by the non-

empty sites. Because we already have 0 < ηx1 = bN/2c + 1 < N , at least 3

sites must be non-empty.

(Case 1) Non-empty sites are {x1, y1, y2}: Writing ηy1 = ` and ηy2 = b(N −
1)/2c − `, this part is asymptotically equivalent to

bN−1
2
c−1∑

`=1

Nd2
N

2

m?(y1)`m?(y2)b
N−1

2
c−`

`(bN−1
2
c − `)

2∑
p=1

(dN + ηyp)r(x1, yp)

≤ CN2d2
N

bN
2
c−1∑

`=1

m
N
2
?

`(bN−1
2
c − `)

= O(d2
NN logNm

N
2
? ).
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(Case 2) Non-empty sites are {x1, x2, y1, y2}: In this case, we use

2∑
p=1

(dN + ηyp)r(x1, yp) ≤ CN

to bound the summation from above by

CN2
∑

η∈VN : ηx1=bN/2c+1,
η has 4 non-empty sites

µN(η) ≤ C
N3

dN

∑
η∈HN : ηx1=bN/2c+1,
η has 4 non-empty sites

∏
z∈S

wN(ηz).

In the inequality above, we use m? ≤ 1. Here, we divide S into {x1} and

{x2, y1, y2}; then, the last line is asymptotically equivalent to

C
N3

dN
wN

(⌊N
2

⌋
+ 1
) ∑
ζ∈Hb(N−1)/2c, S\{x1}:
ζ has 3 non-empty sites

∏
z∈S\{x1}: ζz≥1

dN
ζz
.

Here, HM,R denotes the set of configurations on R with M particles. By (8.5)

and Lemma 10.8.1, this is bounded by

Cd3
NN

2 ×
(3 log(bN−1

2
c+ 1))2

bN−1
2
c

= O(d3
NN(logN)2).

Therefore, collecting all above cases and (9.39),

Σ4(f) = O(d2
NN logNm

N
2
? + d3

NN(logN)2).

This completes the proof of Lemma 9.4.5.

9.4.5 Proof of Proposition 9.4.1

Thus, we are in the position to prove Proposition 9.4.1.
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Proof of Proposition 9.4.1. By Lemmas 9.4.2, 9.4.3, 9.4.4, and 9.4.5,

DN(ftest) ≤
d2
N

2NR
+ o
(d2

N

N

)
+O(d2

Nm
N
3
? ) +O(d3

NN(logN)2).

Sending N →∞, as lim
N→∞

dNN
2(logN)2 = 0 and dN decays subexponentially,

we have

lim sup
N→∞

N

d2
N

DN(ftest) ≤
1

2R
.

Therefore, by Theorem 3.2.5, we obtain the desired result.

9.5 Lower bound for capacities: simple case

In this section, we assume Condition 9.1.1 and establish the lower bound for

CapN(Ex1
N , E

x2
N ). Once more, we recall the notions from Section 9.1.1. The

following proposition is our main objective.

Proposition 9.5.1 (Lower bound for capacities: simple case). Under the

conditions of Theorem 9.1.2, the following inequality holds.

lim inf
N→∞

N

d2
N

CapN(Ex1
N , E

x2
N ) ≥ 1

2R
. (9.40)

In terms of applying Theorem 3.2.8-(2) with g ≡ 0, it holds that

CapN(Ex1
N , E

x2
N ) ≥ 1

‖ψ‖2

[ ∑
η∈HN

hEx1
N , Ex2

N
(η)(divψ)(η)

]2

. (9.41)

Thus, the main difficulty is to find a suitable flow ψ such that∑
η∈HN

hEx1
N , Ex2

N
(η)(divψ)(η)

can be easily calculated. Here, the major obstacle is that the exact values of

hEx1
N , Ex2

N
are unknown except on the 1D tubes, Aa, bN for a, b ∈ S, as shown in
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Section 9.3. Thus, the objective is to find a proper approximating flow ψtest

whose divergence can be neglected outside those tubes.

9.5.1 Construction of test flow ψtest

In this subsection, we build the test flow ψ = ψtest on HN . As mentioned

above, the key here is as follows: We must construct ψ such that

(1) the flow norm of ψ is asymptotically equal to cΦftest , c 6= 0 (cf. (3.35));

(2) the divergence of ψ can be summed up in the sense of the right-hand

side of (9.41).

To overcome both issues, we modify Φftest properly, so that the divergence

vanishes on A{x1, yp, x2}
N \ (A{x1, yp}

N ∪ A{x2, yp}
N ). It is convenient to introduce

the following notation. We denote by ζ
x1ypx2

k, ` the configuration in A{x1, yp, x2}
N

so that (ζ
x1ypx2

k, ` )x1 = k, (ζ
x1ypx2

k, ` )yp = `, and (ζ
x1ypx2

k, ` )x2 = N − `− k.

• We define, for p ∈ {1, 2}, ` ∈ J0, bN/2c − 1K, and k ∈ J1, N − `− 1K,

ψ0(ζ
x1ypx2

k, ` , ζ
x1ypx2

k−1, `+1) =
m?(yp)

`
/

(N−`−k−1
r(x1, yp)

+ k+`
r(x2, yp)

)

R
∑2

q=1
1

(1−m?(yq))(
N−`−k−1
r(x1, yq)

+ k+`
r(x2, yq)

)

, (9.42)

ψ0(ζ
x1ypx2

k, ` , ζ
x1ypx2

k, `+1 ) =
−m?(yp)

`
/

(N−`−k−1
r(x1, yp)

+ k+`
r(x2, yp)

)

R
∑2

q=1
1

(1−m?(yq))(
N−`−k−1
r(x1, yq)

+ k+`
r(x2, yq)

)

, (9.43)

and 0 otherwise.

Observe that by the above construction, (divψ0)(ξxiN ) = 0 for i ∈ {1, 2} and

(divψ0)(η) = 0 for all η ∈ VN .

However, it holds that (divψ0)(ζ
x1ypx2

k, ` ) 6= 0 for ` ∈ J1, bN/2cK and k ∈
J0, N−`K. We overcome this issue by adding correction flows to ψ0 and make

the divergence to be zero.
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Before the exact definition, we calculate the non-zero term (divψ0)(ζ
x1ypx2

k, ` ).

We define, for k ∈ J1, N − 1K,

A(N, k) :=
1

R

N − 1

(
N−k

r(x1, y2)
+ k−1
r(x2, y2)

1−m?(y1)
+

N−k
r(x1, y1)

+ k−1
r(x2, y1)

1−m?(y2)
)(

N−k−1
r(x1, y2)

+ k
r(x2, y2)

1−m?(y1)
+

N−k−1
r(x1, y1)

+ k
r(x2, y1)

1−m?(y2)
)
.

(9.44)

Then, by the estimate

N − k
r(x1, y2)

+
k − 1

r(x2, y2)
≥ N − k

C
+
k − 1

C
=
N − 1

C

and three additional similar bounds, it is straightforward that

A(N, k) ≤ C

N
. (9.45)

The next lemma represents (divψ0)(ζ
x1ypx2

k, ` ) in terms of A(N, k + `).

Lemma 9.5.2. For p ∈ {1, 2}, ` ∈ J1, bN/2cK, and k ∈ J1, N − `− 1K, we

have

(divψ0)(ζ
x1ypx2

k, ` ) =
m?(yp)

`−1

1−m?(ys)

[ 1

r(x1, ys)r(x2, yp)
− 1

r(x2, ys)r(x1, yp)

]
A(N, k+`),

(9.46)

where s is the other element in {1, 2} so that {p, s} = {1, 2}.

Proof. By (9.42) and (9.43), (divψ0)(ζ
x1ypx2

k, ` ) equals

ψ0(ζ
x1ypx2

k, ` , ζ
x1ypx2

k+1, `−1) + ψ0(ζ
x1ypx2

k, ` , ζ
x1ypx2

k, `−1 )

= −
m?(yp)

`−1
/

(N−`−k−1
r(x1, yp)

+ k+`
r(x2, yp)

)

R
∑2

q=1
1

(1−m?(yq))(
N−`−k−1
r(x1, yq)

+ k+`
r(x2, yq)

)

+
m?(yp)

`−1
/

( N−`−k
r(x1, yp)

+ k+`−1
r(x2, yp)

)

R
∑2

q=1
1

(1−m?(yq))(
N−`−k
r(x1, yq)

+ k+`−1
r(x2, yq)

)

,

where the first line holds since the other two flow values cancel out with

each other. Noting that {p, s} = {1, 2}, we rearrange the right-hand side as
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m?(yp)
`−1/R times

−
N−`−k−1
r(x1, ys)

+ k+`
r(x2, ys)

N−`−k−1
r(x1, ys)

+ k+`
r(x2, ys)

1−m?(yp)
+

N−`−k−1
r(x1, yp)

+ k+`
r(x2, yp)

1−m?(ys)

+

N−`−k
r(x1, ys)

+ k+`−1
r(x2, ys)

N−`−k
r(x1, ys)

+ k+`−1
r(x2, ys)

1−m?(yp)
+

N−`−k
r(x1, yp)

+ k+`−1
r(x2, yp)

1−m?(ys)

.

Reducing to a common denominator, the last display equals

−
(N − `− k − 1

r(x1, ys)
+

k + `

r(x2, ys)

)( N−`−k
r(x1, ys)

+ k+`−1
r(x2, ys)

1−m?(yp)
+

N−`−k
r(x1, yp)

+ k+`−1
r(x2, yp)

1−m?(ys)

)
+
(N − `− k
r(x1, ys)

+
k + `− 1

r(x2, ys)

)( N−`−k−1
r(x1, ys)

+ k+`
r(x2, ys)

1−m?(yp)
+

N−`−k−1
r(x1, yp)

+ k+`
r(x2, yp)

1−m?(ys)

)
(9.47)

divided by

( N−`−k−1
r(x1, ys)

+ k+`
r(x2, ys)

1−m?(yp)
+

N−`−k−1
r(x1, yp)

+ k+`
r(x2, yp)

1−m?(ys)

)( N−`−k
r(x1, ys)

+ k+`−1
r(x2, ys)

1−m?(yp)
+

N−`−k
r(x1, yp)

+ k+`−1
r(x2, yp)

1−m?(ys)

)
.

Thus, according to (9.44), it remains to prove that (9.47) equals

N − 1

1−m?(ys)
×
[ 1

r(x1, ys)r(x2, yp)
− 1

r(x2, ys)r(x1, yp)

]
.

In (9.47), the two terms involving 1 − m?(yp) cancel out with each other.

Thus, (9.47) becomes (1−m?(ys))
−1 times

−
(N − `− k − 1

r(x1, ys)
+

k + `

r(x2, ys)

)(N − `− k
r(x1, yp)

+
k + `− 1

r(x2, yp)

)
+
(N − `− k
r(x1, ys)

+
k + `− 1

r(x2, ys)

)(N − `− k − 1

r(x1, yp)
+

k + `

r(x2, yp)

)
.

Again, the terms cancel out with each other so that (9.47) equals

(1−m?(ys))
−1
[ N − 1

r(x1, ys)r(x2, yp)
− N − 1

r(x2, ys)r(x1, yp)

]
,
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as wanted.

Now, for all p ∈ {1, 2} and k ∈ J1, N − 1K, we define a correction flow

φp, k as follows.

• Suppose that k ∈ JbN/2c+ 1, N − 1K. Then, for ` ∈ J1, bN/2cK,

φp, k(ζ
x1ypx2

k−`, ` , ζ
x1ypx2

k−`+1, `−1) := −
bN/2c∑
t=`

(divψ0)(ζ
x1ypx2

k−t, t ), (9.48)

and φp, k = 0 on all other edges.

• Suppose that k ∈ J1, bN/2cK. Then, for ` ∈ J1, k − 1K,

φp, k(ζ
x1ypx2

k−`, ` , ζ
x1ypx2

k−`+1, `−1) := −
k−1∑
t=`

(divψ0)(ζ
x1ypx2

k−t, t ), (9.49)

and φp, k = 0 on all other edges.

Finally, we define a flow

ψ = ψtest := ψ0 +
2∑
p=1

N−1∑
k=1

φp, k.

Then, the flows φp, k for p ∈ {1, 2} and k ∈ J1, N − 1K cancel the divergence

of ψ0 at each ζ
x1ypx2

k−`, ` ∈ A
{x1, yp, x2}
N . Thus, we obtain that (divψ)(η) = 0 for

all η in

A{x1, yp, x2}
N \

(
A{x1, yp}
N ∪ A{x2, yp}

N ∪ A{x1, x2}
N

)
for p ∈ {1, 2}.

9.5.2 Flow norm of ψtest

In this subsection, we calculate the flow norm of the test flow ψ.
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Lemma 9.5.3. Under the conditions of Theorem 9.1.2, it holds that

‖ψ‖2 ≤ (1 + o(1))
2N

d2
NR

.

Proof. By (9.42), (9.43), and Definition 3.2.6, we have

‖ψ0‖2 =
2∑
p=1

bN/2c−1∑
`=0

N−`−1∑
k=1[ (ψ(η, σx1, ypη))2

µN(η)k(dN + `)r(x1, yp)
+

(ψ(η, σx2, ypη))2

µN(η)(N − `− k)(dN + `)r(x2, yp)

]
,

(9.50)

where ηx1 = k, ηyp = `, and ηx2 = N − ` − k in the last line. By (8.5)

and (9.42), the part of (9.50) including the first fraction inside bracket is

asymptotically equivalent to

2

d2
NN

2∑
p=1

bN/2c−1∑
`=0

m?(yp)
`

R2

N−`−1∑
k=1

N−`−k
r(x1, yp)

/
(N−k−`−1
r(x1, yp)

+ k+`
r(x2, yp)

)2

{
∑2

q=1
1

(1−m?(yq))(
N−k−`−1
r(x1, yq)

+ k+`
r(x2, yq)

)
}2
.

Divide N − ` − k = (N − k − ` − 1) + 1. Then, as in obtaining (9.32), the

last formula can be bounded from above by

2

d2
NN

2∑
p=1

N2R−2

1−m?(yp)

[ ∫ 1

0

1−t
r(x1, yp)

/
( 1−t
r(x1, yp)

+ t
r(x2, yp)

)2

{
∑2

q=1
1

(1−m?(yq))(
1−t

r(x1, yq)
+ t
r(x2, yq)

)
}2
dt+ o(1)

]
.

(9.51)

Similarly, the part of (9.50) including the second fraction inside bracket is

asymptotically bounded from above by

2

d2
NN

2∑
p=1

N2R−2

1−m?(yp)

[ ∫ 1

0

t
r(x2, yp)

/
( 1−t
r(x1, yp)

+ t
r(x2, yp)

)2

{
∑2

q=1
1

(1−m?(yq))(
1−t

r(x1, yq)
+ t
r(x2, yq)

)
}2
dt+ o(1)

]
.

(9.52)

Hence, by (9.50), (9.51), and (9.52), we have the following asymptotic upper
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bound for ‖ψ0‖2:

2N

d2
N

2∑
p=1

R−2

∫ 1

0

(1−m?(yp))
−1( 1−t

r(x1, yp)
+ t

r(x2, yp)
)−1

{
∑2

q=1
1

(1−m?(yq))(
1−t

r(x1, yq)
+ t
r(x2, yq)

)
}2

dt =
2N

d2
N

× 1

R
.

Thus, by the triangle inequality of the flow norm, it suffices to prove that

2∑
p=1

N−1∑
k=1

‖φp, k‖ = o
(√N
dN

)
. (9.53)

First, we consider k ∈ JbN/2c+1, N−1K. By definition, we calculate ‖φp, k‖2

as
bN/2c∑
`=1

(φp, k(ζ
x1ypx2

k−`, ` , ζ
x1ypx2

k−`+1, `−1))2

µN(ζ
x1ypx2

k−`, ` )`(dN + k − `)r(yp, x1)
.

By (9.48) and (8.5), this is equal to

(|S?|+ o(1))

bN/2c∑
`=1

N − k
Nd2

Nm?(yp)`−1r(x1, yp)

[ bN/2c∑
t=`

(divψ0)(ζ
x1ypx2

k−t, t )
]2

.

By (9.46) and the fact that N − k ≤ N , this is bounded by

C

d2
N

bN/2c∑
`=1

1

m?(yp)`−1

[ bN/2c∑
t=`

m?(yp)
t−1

1−m?(ys)

[ 1

r(x1, ys)r(x2, yp)
− 1

r(x2, ys)r(x1, yp)

]
A(N, k)

]2

.

By (9.45) and the fact that
∞∑
t=`

m?(yp)
t−1 = m?(yp)

`−1/(1 − m?(yp)), we

further bound this by

C

d2
N

bN/2c∑
`=1

1

m?(yp)`−1
×

[ m?(yp)
`−1

(1−m?(yp))(1−m?(ys))

[ 1

r(x1, ys)r(x2, yp)
− 1

r(x2, ys)r(x1, yp)

]C
N

]2

.
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Taking out the constants, we obtain that for k ∈ JbN/2c+ 1, N − 1K,

‖φp, k‖2 ≤ C

d2
N

bN/2c∑
`=1

m?(yp)
`−1

N2
≤ C

N2d2
N

. (9.54)

We can apply the same logic for k ∈ J1, bN/2cK, which implies

‖φp, k‖2 ≤ C

d2
N

k−1∑
`=1

m?(yp)
`−1

N2
≤ C

N2d2
N

. (9.55)

Therefore, by (9.54) and (9.55), we conclude that for every k ∈ J1, N − 1K,

‖φp, k‖ ≤
C

NdN
,

and thus

2∑
p=1

N−1∑
k=1

‖φp, k‖ ≤ 2(N − 1)× C

NdN
= O

( 1

dN

)
= o
(√N
dN

)
.

This proves (9.53) and thus concludes the proof.

9.5.3 Remaining terms

Here, we address the remaining terms on the right-hand side of (9.41) with

respect to ψ. To this end, Lemma 9.3.4 is used to calculate the equilibrium

potential near the metastable valleys.

Lemma 9.5.4. Under the conditions of Theorem 9.1.2, it holds that

∑
η∈HN\EN (S?)

hEx1
N , Ex2

N
(η)(divψ)(η) =

1 + o(1)

R
. (9.56)

Proof. We will abbreviate hEx1
N , Ex2

N
as h. It follows from the last observation in

Section 9.5.1 that we only need to sum up the configurations in A{x1, yp}
N \Ex1

N ,
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A{x2, yp}
N \ Ex2

N , and A{x1, x2}
N \ (Ex1

N ∪ E
x2
N ). First, we claim that

2∑
p=1

[ ∑
η∈A{x1, yp}

N \Ex1
N

+
∑

η∈A{x2, yp}
N \Ex2

N

]
h(η)(divψ0)(η) =

1 + o(1)

R
. (9.57)

The left-hand side of (9.57) is

2∑
p=1

bN/2c∑
`=1

h(ζ
x1, yp
` )(divψ0)(ζ

x1, yp
` ) +

2∑
p=1

bN/2c∑
`=1

h(ζ
x2, yp
` )(divψ0)(ζ

x2, yp
` ). (9.58)

By Lemma 9.3.4, we have

sup
1≤`≤bN/2c

∣∣h(ζ
x1, yp
` )− 1

∣∣ = o(1), (9.59)

and

sup
1≤`≤bN/2c

h(ζ
x2, yp
` ) = o(1). (9.60)

Hence, (9.58) is equal to

(1 + o(1))
2∑
p=1

bN/2c∑
`=1

(divψ0)(ζ
x1, yp
` ) + o(1)

2∑
p=1

bN/2c∑
`=1

(divψ0)(ζ
x2, yp
` ). (9.61)

By (9.42), the first term of (9.61) is asymptotically equivalent to

1

R

2∑
p=1

bN/2c∑
`=1

m?(yp)
`−1
/

N−1
r(x2, yp)∑2

q=1
1

(1−m?(yq))
N−1

r(x2, yq)

=
1

R

2∑
p=1

bN/2c∑
`=1

m?(yp)
`−1r(x2, yp)∑2

q=1
r(x2, yq)

1−m?(yq)

.

Summing for ` ∈ J1, bN/2cK, the last formula equals 1/R. Similarly, the

second part of (9.61) equals o(1)/R = o(1). This concludes the proof of

(9.57).
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Next, from the definition, note that (div φp, k)(η) vanishes unless

η ∈ A{x1, yp, x2}
N \

(
A{x1, yp}
N ∪ A{x2, yp}

N

)
.

Moreover, it is verified right after the definition of ψ that divψ vanishes in

A{x1, yp, x2}
N \

(
A{x1, yp}
N ∪ A{x2, yp}

N ∪ A{x1, x2}
N

)
for p ∈ {1, 2}.

Finally, it is straightforward that (divψ0)(η) = 0 for η ∈ A{x1, x2}
N . Combining

these observations, it remains to prove that

N−1∑
k=1

2∑
p=1

∑
η∈A{x1, x2}

N \(Ex1
N ∪E

x2
N )

h(η)(div φp, k)(η) = o(1).

This can be rewritten as

N−1∑
k=1

2∑
p=1

h(ζx1, x2

k )(div φp, k)(ζ
x1, x2

k ) = o(1).

Since 0 ≤ h ≤ 1, it suffices to prove that

N−1∑
k=1

∣∣∣ 2∑
p=1

(div φp, k)(ζ
x1, x2

k )
∣∣∣ = o(1).

For k ∈ JbN/2c+ 1, N − 1K, by (9.48) it holds that

2∑
p=1

(div φp, k)(ζ
x1, x2

k ) =
2∑
p=1

bN/2c∑
t=1

(divψ0)(ζ
x1ypx2

k−t, t ).

By (9.46), for fixed p ∈ {1, 2}, the summation in 1 ≤ t ≤ bN/2c is calculated
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as

bN/2c∑
t=1

m?(yp)
t−1

1−m?(ys)
×
[ 1

r(x1, ys)r(x2, yp)
− 1

r(x2, ys)r(x1, yp)

]
× A(N, k)

=
A(N, k)

1−m?(ys)
×
[ 1

r(x1, ys)r(x2, yp)
− 1

r(x2, ys)r(x1, yp)

]
×
[ 1

1−m?(yp)
+O(m?(yp)

N
2 )
]

=
A(N, k)

(1−m?(yp))(1−m?(ys))

[ 1

r(x1, ys)r(x2, yp)
− 1

r(x2, ys)r(x1, yp)

]
+O

(m?(yp)
N
2

N

)
,

where {p, s} = {1, 2}, where in the first equality we used

bN/2c∑
t=1

m?(yp)
t−1 =

1

1−m?(yp)
+
∑

t>bN/2c

m?(yp)
t−1 =

1

1−m?(yp)
+O(m?(yp)

N
2 ),

and where in the second equality we used (9.45). Summing up for p ∈ {1, 2},
the two terms involving the square bracket cancel out with each other. Hence,

we conclude that

N−1∑
k=bN/2c+1

∣∣∣ 2∑
p=1

(div φp, k)(ζ
x1, x2

k )
∣∣∣ ≤ N

2
×

2∑
p=1

O
(m?(yp)

N
2

N

)
= O(m?(yp)

N
2 ) = o(1).

Therefore, it remains to prove that

bN/2c∑
k=1

∣∣∣ 2∑
p=1

(div φp, k)(ζ
x1, x2

k )
∣∣∣ = o(1).

By a similar calculation, we obtain that the left-hand side is bounded by

bN/2c∑
k=1

2∑
p=1

O
(m?(yp)

k−1

N

)
= O

( 1

N

)
= o(1).

Thus, we conclude the proof.
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9.5.4 Proof of Proposition 9.5.1

We are now ready to prove Proposition 9.5.1.

Proof of Proposition 9.5.1. By Lemmas 9.5.3 and 9.5.4, we have

1

‖ψtest‖2

[ ∑
η∈HN\E?N

hEx1
N , Ex2

N
(η)(divψtest)(η)

]2

≥ (1 + o(1))
d2
N

2NR
.

Therefore, we deduce from Theorem 3.2.8-(2) that

CapN(Ex1
N , E

x2
N ) ≥ (1 + o(1))

d2
N

2NR
.

This concludes the proof of Proposition 9.5.1.

9.6 Upper bound for capacities: general case

In this section, we omit Condition 9.1.1 and extend the results of Section

9.4 to the most general setting of Theorem 9.1.4, described in Section 9.1.2.

Because proofs of the assertions here are fundamentally similar to those in

Section 9.4, they will be written in a brief manner.

Proposition 9.6.1 (Upper bound for capacities: general case). Assume the

conditions of Theorem 9.1.4. Then, for any non-trivial partition {A, B} of

J1, κ?K, the following inequality holds.

lim sup
N→∞

N

d2
N

CapN(E (2)
N (A), E (2)

N (B)) ≤ 1

|S?|
∑
i∈A

∑
j∈B

1

Ri, j

.

Remark 9.6.2. In Proposition 9.6.1, it is crucial to have A∪B = J1, κ?K; if A∪
B ( J1, κ?K, then the equilibrium potential is significantly more complicated.

Moreover, we remark that if Ri, j = ∞ for all i ∈ A and j ∈ B, then
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Proposition 9.6.1 asserts that

CapN(E (2)
N (A), E (2)

N (B)) = o
(d2

N

N

)
.

This equality indicates that we do not observe metastable transitions in the

time scale N/d2
N . Therefore, in this case, we expect that yet another time

scale is required to observe the metastable transitions. This is conjectured to

be N2/d3
N in [15].

9.6.1 Preliminary notions

Once more, we define m? =
κ0

max
p=1

m?(yp) < 1. Because there are too many

subscripts in the general case, we introduce a convenient notation that helps

us calculate the objects.

Notation 9.6.3. Recall (9.18); for R ⊆ S,

ARN = {η ∈ HN : ηx = 0 for all x ∈ S \R}.

For the case R = {xi, n, yp, xj,m}, where i 6= j, n ∈ J1, n(i)K, m ∈ J1, n(j)K,
and p ∈ J1, κ0K, we will simply denote η ∈ A{xi, n, yp, xj,m}N by η = (ηxi, n , ηyp)i, n, p, j,m.

For example, if η ∈ A{x1, 1, y5, x3, 2}
N such that ηx1, 1 = N − 3, ηy5 = 1, and

ηx3, 2 = 2, we write η = (N − 3, 1)1, 1, 5, 3, 2.

Next, we define the following discretized version of the constant Ri, j for

i, j ∈ J1, κ?K given in (9.9):

RN
i, j =

N∑
t=1

1∑n(i)
n=1

∑n(j)
m=1

∑κ0

p=1
1

(1−m?(yp))( N−t
r(xi, n, yp)

+ t−1
r(xj,m, yp)

)

.

As in the special case in Section 9.4.1, we write RN
i, j =∞ if r(xi, n, yp)r(xj,m, yp) =

0 for all n ∈ J1, n(i)K, m ∈ J1, n(j)K, and p ∈ J1, κ0K. Clearly, we have
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N−2RN
i, j → Ri, j as N tends to infinity. Moreover, define

I = {(i, j) ∈ J1, κ?K× J1, κ?K : i 6= j and Ri, j <∞},

and for i, j ∈ J1, κ?K with n ∈ J1, n(i)K and m ∈ J1, n(j)K,

Pi, n, j,m = {p : r(xi, n, yp)r(xj,m, yp) > 0}

and

Qi, n, j,m = {p : r(xi, n, yp) + r(xj,m, yp) > 0}.

For example, (i, j) ∈ I if and only if r(xi, n, yp)r(xj,m, yp) > 0 for some n,

m, and p, which is also equivalent to

n(i)⋃
n=1

n(j)⋃
m=1

Pi, n, j,m 6= ∅.

Moreover, we have Pi, n, j,m ⊆ Qi, n, j,m. Finally, we define

UN =
⋃

i, j∈J1, κ?K

n(i)⋃
n=1

n(j)⋃
m=1

κ0⋃
p=1

A{xi, n, yp, xj,m}N and VN = HN \ UN . (9.62)

9.6.2 Construction of test function fAtest

In this subsection, we define a test function f = fAtest on HN , which approx-

imates the equilibrium potential hE(2)
N (A), E(2)

N (B)
. This procedure is a natural

extension of the definition in Section 9.4.2.

• First, we define f on EN(S):

f(ξ
xi, n
N ) = 1 for i ∈ A, f(ξzN) = 0 for z ∈ S\{xi,n : i ∈ A and n ∈ J1, n(i)K},

(9.63)

such that we have f
∣∣
E(2)
N (A)

= 1 and f
∣∣
E(2)
N (B)

= 0.
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• Second, we define f on A{xi, n, yp}N for i ∈ J1, κ?K, n ∈ J1, n(i)K, and

p ∈ J1, κ0K by

f(η) = f(ξ
xi, n
N ) if ηxi, n ∈ J1, N − 1K. (9.64)

• Next, we define f on UN , i.e., onA{xi, n, yp, xj,m}N for i, j ∈ J1, κ?K, n, m ≥
1, and p ∈ J1, κ0K. This part is the main technical obstacle in the

definition of fAtest. There are four types, (U1) through (U4).

(U1) If (i, j) ∈ I and n, m ≥ 1 with p ∈ Qi, n, j,m, then for ` ∈ J0, N−2K
and k ∈ J1, N − `− 1K,

f((k, `)i, n, p, j,m) =
1

RN
i, j

[
Kk, `
i, n, p, j,mf(ξ

xi, n
N )+(RN

i, j−K
k, `
i, n, p, j,m)f(ξ

xj,m
N )

]
,

(9.65)

where

Kk, `
i, n, p, j,m =

k∑
t=1

N−t
r(xi, n, yp)

/
( N−t
r(xi, n, yp)

+ t−1
r(xj,m, yp)

)∑n(i)
ñ=1

∑n(j)
m̃=1

∑κ0

q=1
1

(1−m?(yq))(
N−t

r(xi, ñ, yq)
+ t−1
r(xj, m̃, yq)

)

+
k+∑̀
t=1

t−1
r(xj,m, yp)

/
( N−t
r(xi, n, yp)

+ t−1
r(xj,m, yp)

)∑n(i)
ñ=1

∑n(j)
m̃=1

∑κ0

q=1
1

(1−m?(yq))(
N−t

r(xi, ñ, yq)
+ t−1
r(xj, m̃, yq)

)

.

One may switch between (i, n) and (j, m) to verify that (9.65) is

well defined. By substituting ` = 0, one can verify that (9.65) is

well defined on A{xi, n, xj,m}N . The fractions inside summations are

well defined, as (i, j) ∈ I implies that the common denomina-

tor is strictly positive. The numerators of the fractions must be

understood naturally if r(xi, n, yp)r(xj,m, yp) = 0. Indeed, if e.g.,

r(xi, n, yp) > 0 and r(xj,m, yp) = 0, then the first one (“0/∞”) is

0, and the second one (“∞/∞”) is 1.

(U2) If (i, j) ∈ I and n, m ≥ 1 with p /∈ Qi, n, j,m, then for ` ∈ J0, N−2K
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and k ≤ J1, N − `− 1K,

f((k, `)i, n, p, j,m) =
1

RN
i, j

[
Lk, `i, n, p, j,mf(ξ

xi, n
N )+(RN

i, j−L
k, `
i, n, p, j,m)f(ξ

xj,m
N )

]
,

(9.66)

where

Lk, `i, n, p, j,m =
k∑
t=1

(N − t)/(N − 1)∑n(i)
ñ=1

∑n(j)
m̃=1

∑κ0

q=1
1

(1−m?(yq))(
N−t

r(xi, ñ, yq)
+ t−1
r(xj, m̃, yq)

)

+
k+∑̀
t=1

(t− 1)/(N − 1)∑n(i)
ñ=1

∑n(j)
m̃=1

∑κ0

q=1
1

(1−m?(yq))(
N−t

r(xi, ñ, yq)
+ t−1
r(xj, m̃, yq)

)

.

Note that (9.66) is well defined on A{xi, n, xj,m}N and consistent with

(9.65). One can substitute ` = 0 to verify the equality.

(U3) If (i, j) /∈ I and n, m ≥ 1 with p ∈ Qi, n, j,m \ Pi, n, j,m, say

r(xi, n, yp) > 0 and r(xj,m, yp) = 0, then for ` ∈ J0, N − 2K and

k ∈ J1, N − `− 1K,

f((k, `)i, n, p, j,m) =
1

N

[
(k + `)f(ξ

xi, n
N ) + (N − `− k)f(ξ

xj,m
N )

]
.

(9.67)

As done previously, one can substitute ` = 0 to verify that (9.67)

is well defined on A{xi, n, xj,m}N .

(U4) If (i, j) /∈ I and n, m ≥ 1 with p /∈ Qi, n, j,m, then for ` ∈ J0, N−2K
and k ∈ J1, N − `− 1K,

f((k, `)i, n, p, j,m) =
1

N

[(
k +

`

2

)
f(ξ

xi, n
N ) +

(
N − k − `

2

)
f(ξ

xj,m
N )

]
.

(9.68)

(9.68) is well defined on A{xi, n, xj,m}N and consistent with (9.67);

substitute ` = 0.

• Finally, we define f on VN . Assume η ∈ VN . There are three types,
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(V1), (V2), and (V3) denoted by V1
N , V2

N , and V3
N , respectively, such

that

VN = V1
N ∪ V2

N ∪ V3
N . (9.69)

(V1) If η ∈ A{xi, n, xi, ñ, yp}N for some i ∈ J1, κ?K, n, ñ ∈ J1, n(i)K, and

p ∈ J1, κ0K: Because η ∈ VN , we necessarily have ηxi, n ≥ 1 and

ηxi, ñ ≥ 1. We define

f(η) = f(ξ
xi, n
N ) = f(ξ

xi, ñ
N ). (9.70)

The meaning of this definition is that we do not distinguish mem-

bers of Si for each i ∈ J1, κ?K in the second time scale θN, 2 =

N/d2
N . Hence, configurations of this type must be defined in a

same manner as in (9.64).

(V2) If η ∈ A{xi, n, xi, ñ, xj,m}N \ A{xi, n, xi, ñ}N for some i, j ∈ J1, κ?K, n, ñ ∈
J1, n(i)K, and m ∈ J1, n(j)K: As η ∈ VN , we necessarily have

ηxi, n ≥ 1, ηxi, ñ ≥ 1, and ηxj,m ≥ 1. We obtain a novel configuration

η̃ ∈ A{xi, n∧ñ, xj,m}N by concentrating the particles in {xi, n, xi, ñ} to

xi, n∧ñ. Here, n ∧ ñ = min{n, ñ}. Then, we define

f(η) = f(η̃). (9.71)

Like (V1), the meaning here is that we do not distinguish η and

η̃ in θN, 2 = N/d2
N .

(V3) Otherwise, we define

f(η) =


1 if

n(i)∑
n=1

ηxi, n > bN/2c for some i ∈ A,

0 if

n(i)∑
n=1

ηxi, n ≤ bN/2c for all i ∈ A.
(9.72)
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• By construction, we have 0 ≤ f(η) ≤ 1 for all η ∈ HN .

We divide the Dirichlet form into four parts:

DN(f) = Σ1(f) + Σ2(f) + Σ3(f) + Σ4(f).

• The first part Σ1(f) consists of movements inside A{xi, n, yp, xj,m}N for all

i, j ∈ J1, κ?K, n ∈ J1, n(i)K, m ∈ J1, n(j)K, and p ∈ J1, κ0K.

• The second part Σ2(f) consists of movements between the set differ-

ences of two distinct A{xi, n, yp, xj,m}N -type sets for same i, j, n, m, p.

• The third part Σ3(f) consists of movements between UN and VN .

• The last part Σ4(f) consists of movements inside VN .

9.6.3 Main contribution of Dirichlet form

In this subsection, we calculate Σ1(f), which is the main ingredient of DN(f).

Lemma 9.6.4. Under the conditions of Theorem 9.1.4, it holds that

Σ1(f) ≤ d2
N

|S?|N

[∑
i∈A

∑
j∈B

1

Ri, j

+ o(1)
]
.

Proof. We write down all movements inside A{xi, n, yp, xj,m}N and sum it up for

all i, j, n, m, p. Namely,

Σ1(f) ≤ 1

2

∑
i, j∈J1, κ?K

∑
n,m, p

∑
η∈A

{xi, n, yp, xj,m}
N

µN(η)×

[
rN(η, σxi, n, ypη){f(σxi, n, ypη)− f(η)}2 + rN(η, σxj,m, ypη){f(σxj,m, ypη)− f(η)}2

]
is the desired equation. The only overlapping terms on the right-hand side

above are movements along A{xi, n, yp}N for i ∈ J1, κ?K, n ∈ J1, n(i)K, and
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p ∈ J1, κ0K. In fact, by (9.64), these terms have an exponentially small effect

on the entire summation. Thus, the inequality used above is actually sharp.

By (8.4) and (8.5), the right-hand side is asymptotically equal to

dNN

2|S?|
∑

i, j∈J1, κ?K

∑
n,m

∑
p∈Qi, n, j,m

N−1∑
`=0

N−`−1∑
k=0

m?(yp)
`×

[
wN(N − `− k − 1)r(xi, n, yp){f((k, `+ 1)i, n, p, j,m)− f((k + 1, `)i, n, p, j,m)}2

+ wN(k)r(xj,m, yp){f((k, `+ 1)i, n, p, j,m)− f((k, `)i, n, p, j,m)}2
]
.

We only need to consider p ∈ Qi, n, j,m, as otherwise r(xi, n, yp) = r(xj,m, yp) =

0. Next, if p ∈ Qi, n, j,m \ Pi, n, j,m, then the terms inside the bracket vanish

due to (9.65) and (9.67). If i, j ∈ A or i, j ∈ B, then by (9.64), (9.65), and

(9.67), f remains constant unless ` = N − 1; in which case the summation is

of order O(dNNm
N
? ). Gathering the preceding observations, the last formula

is asymptotically equal to

dNN

|S?|
∑

(i, j)∈I∩(A×B)

∑
n,m

∑
p∈Pi, n, j,m

N−1∑
`=0

N−`−1∑
k=0

m?(yp)
`×

[
wN(N − `− k − 1)r(xi, n, yp){f((k, `+ 1)i, n, p, j,m)− f((k + 1, `)i, n, p, j,m)}2

+ wN(k)r(xj,m, yp){f((k, `+ 1)i, n, p, j,m)− f((k, `)i, n, p, j,m)}2
]
.

The rest of the proof is almost identical to that of Lemma 9.4.2; we obtain

Σ1(f) ≤ d2
N

|S?|N

[ ∑
(i, j)∈I∩(A×B)

1

Ri, j

+ o(1)
]
.

Because Ri, j =∞ if (i, j) /∈ I, the last formula is exactly what we expect.
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9.6.4 Remainder of Dirichlet form

Here, we deal with the remaining terms in the Dirichlet form, Σ2(f), Σ3(f),

and Σ4(f). Lemma 9.6.5 deals with Σ2(f).

Lemma 9.6.5. Under the conditions of Theorem 9.1.4, it holds that

Σ2(f) = O
(d3

N logN

N2

)
= o
(d2

N

N

)
.

Proof. Recalling that Σ2(f) consists of dynamics between the set differences

of two distinct A{xi, n, yp, xj,m}N -type sets, there are two such types of move-

ments.

(Case 1) The first case is represented when a sole particle moves between

xi, n and xi, ñ. More specifically, this is written as

1

2

∑
i, j∈J1, κ?K

∑
n, ñ,m, p

N−1∑
`=0

µN((1, `)i, n, p, j,m)×

dNr(xi, n, xi, ñ){f((1, `)i, ñ, p, j,m)− f((1, `)i, n, p, j,m)}2.

(9.73)

If ` = 0, then this vanishes by (9.65) and (9.67). If ` = N − 1, then this

vanishes by (9.63) and (9.64). If ` ∈ J1, N − 2K, then

f((1, `)i, ñ, p, j,m)− f((1, `)i, n, p, j,m) =

`×O(1/N) if (i, j) ∈ I,

0 if (i, j) /∈ I,

by (9.65), (9.66), (9.67), and (9.68). Therefore, (9.73) is bounded from above

by

C
∑

i, j∈J1, κ?K

∑
n, ñ,m, p

N−2∑
`=1

Nd3
Nm

`
?

`(N − `− 1)
`2 1

N2
= O

(d3
N

N2

)
. (9.74)

(Case 2) The second case is represented when a sole particle moves between
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yp and yq. This case is identical to Lemma 9.4.3, which is bounded by

C
∑

i, j∈J1, κ?K

∑
n,m

∑
p, q∈J1, κ0K

N−2∑
k=1

Nd3
Nm?

k(N − k − 1)

1

N2
= O

(d3
N logN

N2

)
. (9.75)

Gathering the cases, we have by (9.74) and (9.75) that Σ2(f) = O(d3
NN

−2 logN).

This concludes the proof.

Next, we consider Σ3(f).

Lemma 9.6.6. Under the conditions of Theorem 9.1.4, it holds that

Σ3(f) = O(d2
Nm

N
3
? + d3

NN logN) = o
(d2

N

N

)
.

Proof. We formulate

Σ3(f) =
∑
η∈UN

∑
ζ∈VN

µN(η)rN(η, ζ){f(ζ)− f(η)}2.

We divide this into several cases depending on which subset η belongs to.

(Case 1) η ∈ A{xi, n, xj,m}N for some i, j ∈ J1, κ?K and n, m ≥ 1: In this

case, the movement must occur between sites in S
(2)
i or between sites in S

(2)
j .

Otherwise, ζ /∈ VN . Hence, f remains unchanged by (9.64) and (9.71).

(Case 2) η ∈ A{xi, n, yp}N \ Exi, nN for some i ∈ J1, κ?K and n, p ≥ 1: We divide

again by types of the particle movement.

• (Case 2-1) Movement from yp into S
(2)
i \{xi, n}: We have ηyp ≤ N −1.

Otherwise, ζ /∈ VN . Hence, f remains unchanged by (9.64) and (9.70).

• (Case 2-2) Movement from yp into S \ (S?∪{yp}): This is identical to

(Case 2-1) of Lemma 9.4.4. We obtain the upper bound O(d2
Nm

N
3
? ).

• (Case 2-3) Movement from xi, n into S
(2)
i \{xi, n}: f remains unchanged

by (9.64) and (9.70).
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• (Case 2-4) Movement from xi, n into S \ (S?∪{yp}): This is same with

(Case 2-2) of Lemma 9.4.4. We obtain the upper bound O(d2
Nm

N
3
? ).

In conclusion, (Case 2) yields O(d2
Nm

N
3
? ).

(Case 3) η ∈ A{xi, n, yp, xj,m}N \ (A{xi, n, xj,m}N ∪A{xi, n, yp}N ∪A{xj,m, yp}N ) for some

i, j ∈ J1, κ?K and n, m, p ≥ 1: This case is identical to (Case 3) of Lemma

9.4.4 that we can bound by O(d3
NN logN).

Summarizing all cases, we conclude that Σ3(f) = O(d2
Nm

N
3
? +d3

NN logN).

Our final aim of this subsection is Σ4(f).

Lemma 9.6.7. Under the conditions of Theorem 9.1.4, it holds that

Σ4(f) = O(d2
NN logNm

N
2
? + d3

NN(logN)2 = o
(d2

N

N

)
.

Proof. By definition, we have

Σ4(f) =
1

2

∑
η, ζ∈VN

µN(η)rN(η, ζ){f(ζ)− f(η)}2.

Recalling (9.69), we divide the summation in η, ζ ∈ VN by where η and ζ

belong.

(Case 1) η, ζ ∈ V1
N : f remains unchanged by (9.70).

(Case 2) η, ζ ∈ V2
N : Because {xi, n, xi, ñ} and {xj,m} are isolated with respect

to r(·, ·), only xi, n ↔ xi, ñ is possible. Thus, f remains unchanged by (9.65),

(9.67), and (9.71).

(Case 3) One of {η, ζ} is in V1
N and the other is in V2

N : The only possible
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case is when a sole particle moves between yp and xj,m. Thus, we formulate

1

2

∑
i, j∈J1, κ?K

∑
n, ñ∈J1, n(i)K

n(j)∑
m=1

κ0∑
p=1

N−2∑
k=1

µN(η)dNr(yp, xj,m){f(σyp, xj,mη)− f(η)}2,

(9.76)

where η satisfies ηxi, n = k, ηxi, ñ = N − k− 1, and ηyp = 1. By (9.64), (9.65),

(9.67), (9.70), and (9.71), we have

f(σyp, xj,mη)− f(η) = O
( 1

N

)
.

Therefore, with (8.5), (9.76) is bounded from above by

C

N−2∑
k=1

Nd3
N

k(N − k − 1)
× 1

N2
= O(d3

NN
−2 logN).

(Case 4) One of {η, ζ} is in V1
N and the other is in V3

N : Let η ∈ V1
N and

ζ ∈ V3
N . If η ∈ A{xi, n, xi, ñ}N , then f remains unchanged by (9.63), (9.70) and

(9.72). Hence, we can bound this case from above by

1

2

κ?∑
i=1

∑
n, ñ∈J1, n(i)K

κ0∑
p=1

N−2∑
`=1

N−`−1∑
k=1

µN(η)×

∑
z∈{xi, n, xi, ñ, yp}

ηz
∑

z̃ /∈{xi, n, xi, ñ, yp}

dNr(z, z̃){f(σz, z̃η)− f(η)}2,

where ηxi, n = k, ηxi, ñ = N − ` − k, and ηyp = ` in the last line. Because we

have
∑

z∈{xi, n, xi, ñ, yp}

ηz = N , we can bound this with (8.5) by

C

N−2∑
`=1

N−`−1∑
k=1

Nd2
N

k`(N − `− k)
m`
?NdN = O(d3

NN logN).
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(Case 5) One of {η, ζ} is in V2
N and the other is in V3

N : We can bound from

above by

1

2

∑
i, j∈J1, κ?K

∑
n, ñ∈J1, n(i)K

n(j)∑
m=1

N−2∑
k=1

N−k−1∑
`=1

µN(η)×

∑
z∈{xi, n, xi, ñ, xj,m}

ηz
∑

z̃ /∈{xi, n, xi, ñ, xj,m}

dNr(z, z̃){f(σz, z̃η)− f(η)}2,

where ηxi, n = k, ηxi, ñ = N − `− k, and ηxj,m = ` in the last line. Because we

have
∑

z∈{xi, n, xi, ñ, xj,m}

ηz = N , we can bound this with (8.5) by

C

N−2∑
k=1

N−k−1∑
`=1

Nd2
N

k`(N − `− k)
×NdN = O(d3

NN(logN)2).

(Case 6) η, ζ ∈ V3
N : This case is similar to Lemma 9.4.5. We note (9.72) to

write

Σ4(f) =
∑
i∈A

∑
η∈V3

N :
∑
ñ ηxi, ñ=bN/2c+1

µN(η)

n(i)∑
n=1

κ0∑
p=1

rN(η, σxi, n, ypη)

=
∑
i∈A

∑
η∈V3

N :
∑
ñ ηxi, ñ=bN/2c+1

µN(η)

n(i)∑
n=1

ηxi, n

κ0∑
p=1

(dN + ηyp)r(xi, n, yp).

(9.77)

Now, we fix i ∈ A and divide the summation with respect to η in the last line

by the non-empty sites. As we already have 0 <
∑
ñ

ηxi, ñ = bN/2c+ 1 < N ,

at least 3 sites must be non-empty.

• (Case 6-1) One is in S
(2)
i and two are in S \ S?: This is identical to

(Case 1) of Lemma 9.4.5; it is bounded by O(d2
NN logNm

N
2
? ).

• (Case 6-2) Two are in S
(2)
i and one is in S \S?: There are b(N −1)/2c
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particles on S \ S?; hence, similarly to (Case 6-1), the summation is

of order O(d2
NN logNm

N
2
? ).

• (Case 6-3) One is in S
(2)
i and two are in S? \ S(2)

i : Labeling the non-

empty sites as xi, n, xj,m, and xj̃, m̃, it is asymptotically equivalent to

∑
j: j 6=i

∑
j̃: j̃ 6=i

∑
n,m, m̃

b(N−1)/2c−1∑
`=1

Nd2
N

|S?|
1

`(bN−1
2
c − `)

κ0∑
p=1

dNr(xi, n, yp)

≤ C

b(N−1)/2c−1∑
`=1

Nd3
N

`(bN−1
2
c − `)

= O(d3
N logN).

• (Case 6-4) Two are in S
(2)
i and one is in S? \ S(2)

i : Labeling the non-

empty sites as xi, n, xi, ñ, and xj,m, it is bounded by

C
∑
j: j 6=i

∑
n, ñ∈J1, n(i)K

∑
m

bN/2c∑
`=1

N

dN

d3
N

`(bN
2
c+ 1− `)

· dN

= O(d3
N)

bN/2c∑
`=1

N

`(bN
2
c+ 1− `)

= O(d3
N logN).

• (Case 6-5) At least four sites are non-empty: This case is similar to

(Case 2) of Lemma 9.4.5. Using

κ0∑
p=1

(dN + ηyp)r(xi, n, yp) ≤ CN , the

summation is bounded by

CN2
∑

η∈V3
N :

∑
ñ ηxi, ñ=bN/2c+1

and η has at least 4 non-empty sites

µN(η)

≤ CN3

dN

∑
η∈V3

N :
∑
ñ ηxi, ñ=bN/2c+1

and η has at least 4 non-empty sites

∏
z∈S

wN(ηz).
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In the inequality above, we employ m? ≤ 1. We divide S into S
(2)
i and

S \ S(2)
i . Then, the last line is asymptotically equivalent to

C
N3

dN

∑
α, β≥1:

4≤α+β≤|S|

[( ∑
ζ∈H

bN/2c+1, S
(2)
i

:

ζ has α non-empty sites

∏
z: ζz≥1

dN
ζz

)( ∑
ζ̃∈H

b(N−1)/2c, S\S(2)
i

:

ζ̃ has β non-empty sites

∏
z̃: ζ̃z̃≥1

dN

ζ̃z̃

)]
.

Here,HM,R denotes the set of configurations on R with M particles. By

Lemma 10.8.1, and replacing a = α− 1 and b = β − 1, this is bounded

by

CdNN
3

∑
a, b∈N:

2≤a+b≤|S|−2

da+b
N

(3 log(bN/2c+ 2))a

bN
2
c+ 1

(3 log(b(N − 1)/2c+ 1))b

bN−1
2
c

≤ CdNN
∑

a, b∈N: a+b≥2

(dN logN)a+b.

The last displayed term is calculated via c = a+ b as

CdNN
∞∑
c=2

(c+1)(dN logN)c = O(dNN)×O((dN logN)2) = O(d3
NN(logN)2).

Therefore, collecting all above cases and (9.77),

Σ4(f) = O(d2
NN logNm

N
2
? + d3

NN(logN)2).

This completes the proof of Lemma 9.6.7.

9.6.5 Proof of Proposition 9.6.1

Now, we are in position to prove Proposition 9.6.1.
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Proof of Proposition 9.6.1. By Lemmas 9.6.4, 9.6.5, 9.6.6, and 9.6.7,

DN(fAtest) ≤
d2
N

|S?|N
∑
i∈A

∑
j∈B

1

Ri, j

+ o
(d2

N

N

)
+O(d2

Nm
N
3
? ) +O(d3

NN(logN)2).

Sending N →∞, as lim
N→∞

dNN
2(logN)2 = 0 and dN decays subexponentially,

we have

lim sup
N→∞

N

d2
N

DN(fAtest) ≤
1

|S?|
∑
i∈A

∑
j∈B

1

Ri, j

.

Therefore, by Theorem 3.2.5, we obtain the desired result.

9.7 Lower bound for capacities: general case

In this section, we establish the lower bound for the capacities in the most

general setting given in Section 9.1.2. The following proposition explains the

result. The proofs in this section will be stated concisely.

Proposition 9.7.1 (Lower bound for capacities: general case). Assume the

conditions of Theorem 9.1.4. Suppose that {a, b} is a non-trivial partition

J1, κ?K. Then, the following inequality holds.

lim inf
N→∞

N

d2
N

CapN(E (2)
N (A), E (2)

N (B)) ≥ 1

|S?|
∑
i∈A

∑
j∈B

1

Ri, j

. (9.78)

We construct a test flow, whose divergence can be handled outside the

one-dimensional tubes.

9.7.1 Construction of test flow ψAtest

In this subsection, we build the test flow ψ = ψAtest on HN . As we did in

Section 9.5.1, we use the notation ζ
xi, nypxj,m
k, ` ∈ A{xi, n, yp, xj,m}N when

(ζ
xi, nypxj,m
k, ` )xi, n = k, (ζ

xi, nypxj,m
k, ` )yp = `, and (ζ

xi, n,yp,xj,m
k, ` )xj,m = N−`−k.
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• We define, for (i, j) ∈ I ∩ (A × B), n, m ≥ 1, p ∈ Pi, n, j,m, k ≥ 1,

N − `− k ≥ 1, and ` ∈ J0, bN/2c − 1K,

ψA0 (ζ
xi, nypxj,m
k, ` , ζ

xi, nypxj,m
k−1, `+1 ) =

m?(yp)
`
/

(N−k−`−1
r(xi, n, yp)

+ k+`
r(xj,m, yp)

)

Ri, j

∑n(i)
n=1

∑n(j)
m=1

∑κ0

q=1
1

(1−m?(yq))(
N−k−`−1
r(xi, n, yq)

+ k+`
r(xj,m, yq)

)

,

(9.79)

ψA0 (ζ
xi, nypxj,m
k, ` , ζ

xi, nypxj,m
k, `+1 ) =

−m?(yp)
`
/

(N−k−`−1
r(xi, n, yp)

+ k+`
r(xj,m, yp)

)

Ri, j

∑n(i)
n=1

∑n(j)
m=1

∑κ0

q=1
1

(1−m?(yq))(
N−k−`−1
r(xi, n, yq)

+ k+`
r(xj,m, yq)

)

,

(9.80)

and 0 otherwise.

• Then, for all (i, j) ∈ I ∩ (A × B), n, m ≥ 1, p ∈ Pi, n, j,m, and k ∈
J1, N − 1K, we define a correction flow φAi, j, p, k as follows.

– Suppose that k ∈ JbN/2c+ 1, N − 1K. Then, for ` ∈ J1, bN/2cK,

φAi, j, p, k(ζ
xi, nypxj,m
k−`, ` , ζ

xi, nypxj,m
k−`+1, `−1) := −

bN/2c∑
t=`

(divψ0)(ζ
xi, nypxj,m
k−t, t ),

and φAi, j, p, k = 0 on all other edges.

– Suppose that k ∈ J1, bN/2cK. Then, for ` ∈ J1, k − 1K,

φAi, j, p, k(ζ
xi, nypxj,m
k−`, ` , ζ

xi, nypxj,m
k−`+1, `−1) := −

k−1∑
t=`

(divψ0)(ζ
xi, nypxj,m
k−t, t ),

and φAi, j, p, k = 0 on all other edges.

• Finally, we define a flow

ψ = ψAtest := ψA0 +
∑

(i, j)∈I∩(A×B)

n(i)∑
n=1

m(j)∑
m=1

∑
p∈Pi, n, j,m

N−1∑
k=1

φAi, j, p, k.
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Then, observe that (divψ)(ξ
xi, n
N ) = 0 for all i ∈ J1, κ?K and n ∈ J1, n(i)K.

Moreover, it holds that (divψ)(η) = 0 for all η in

A{xi, n, yp, xj,m}N \ (A{xi, n, yp}N ∪ A{xj,m, yp}N ) for i 6= j and n, m, p ≥ 1.

9.7.2 Flow norm of ψAtest

In this subsection, we calculate the flow norm of the test flow ψ.

Lemma 9.7.2. Suppose that I ∩ (A × B) 6= ∅. Then, under the conditions

of Theorem 9.1.4,

‖ψ‖2 ≤ (1 + o(1))
|S?|N
d2
N

(∑
i∈A

∑
j∈B

1

Ri, j

)
.

Proof. The proof is almost identical to that of Lemma 9.5.3; therefore, we

omit it.

9.7.3 Remaining terms

We estimate the remaining terms on the right-hand side of (9.41) with respect

to ψ. Lemma 9.3.4 is employed once more.

Lemma 9.7.3. Suppose that I ∩ (A × B) 6= ∅. Then, under the conditions

of Theorem 9.1.4,

∑
η∈HN\E?N

hE(2)
N (A), E(2)

N (B)
(η)(divψ)(η) = (1 + o(1))

(∑
i∈A

∑
j∈B

1

Ri, j

)
.

Proof. We omit the proof due to its similarity to Lemma 9.5.4.

9.7.4 Proof of Proposition 9.7.1

We are now ready to prove Proposition 9.7.1.
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Proof of Proposition 9.7.1. There remains nothing to prove if I ∩ (A×B) =

∅, as then the right-hand side of (9.78) equals 0. Thus, we may assume

I ∩ (A×B) 6= ∅. Then, by Lemmas 9.7.2 and 9.7.3, we have

1

‖ψAtest‖2

[ ∑
η/∈E?N

hE(2)
N (A), E(2)

N (B)
(η)(divψAtest)(η)

]2

≥ (1+o(1))
d2
N

|S?|N
∑
i∈A

∑
j∈B

1

Ri, j

.

Therefore, we deduce from Theorem 3.2.8-(2) that

CapN(E (2)
N (A), E (2)

N (B)) ≥ (1 + o(1))
d2
N

|S?|N
∑
i∈A

∑
j∈B

1

Ri, j

.

This concludes the proof of Proposition 9.7.1.

9.8 Proof of condition (9.16)

In this section, we prove the condition (9.16) formulated in Proposition 9.2.1.

Proposition 9.8.1. The condition (9.16) holds for every i ∈ J1, κ?K.

Proof. The numerator in (9.16) can be dealt with using Proposition 9.6.1;

CapN(E (2)
N (i), E?N \ E

(2)
N (i)) =

d2
N

N
·O(1). (9.81)

For the denominator in (9.16), fix η, ζ ∈ E (2)
N (i) and write η = ξxN and ζ = ξyN

with x, y ∈ S(2)
i . By the definition of S

(2)
i , there exist x = x0, x1, . . . , xt = y

in S
(2)
i so that t ≤ |S(2)

i | and

r(xn, xn+1) = r(xn+1, xn) > 0

for all n ∈ J0, t − 1K. Take any F : HN → R with F (η) = 1 and F (ζ) = 0.
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Recalling Definition 9.3.1, and by reversibility, we calculate DN(F ) by

1

2

∑
η∈HN

∑
a, b∈S

µN(η)ηa(dN + ηb)r(a, b){F (σa, bη)− F (η)}2

≥
t−1∑
n=0

N−1∑
j=0

µN(ζ
xn, xn+1

j )j(dN +N − j)r(xn, xn+1){F (ζ
xn, xn+1

j+1 )− F (ζ
xn, xn+1

j )}2.

By Proposition 8.0.2 and (8.5), the last line equals

(1 + o(1))
t−1∑
n=0

NdN
|S?|

r(xn, xn+1)
N−1∑
j=0

{F (ζ
xn, xn+1

j+1 )− F (ζ
xn, xn+1

j )}2.

By the Cauchy–Schwarz inequality on j ∈ J0, N − 1K, the above is bounded

from below by

(1 + o(1))
t−1∑
n=0

dN
|S?|

r(xn, xn+1){F (ξ
xn+1

N )− F (ξxnN )}2.

Using the Cauchy–Schwarz inequality once more on n ∈ J0, t−1K, we obtain

the following lower bound for DN(F ):

(1+o(1))
dN
|S?|
{F (ζ)− F (η)}2∑t−1

n=0
1

r(xn, xn+1)

≥ (1+o(1))
dN
|S?|

min{r(u, v) > 0 : u, v ∈ S(2)
i }

|S(2)
i |

.

As F was arbitrary, by the Dirichlet principle given in Theorem 3.2.5, we

have

CapN({η}, {ζ}) ≥ (1 + o(1))
dN
|S?|

min{r(u, v) > 0 : u, v ∈ S(2)
i }

|S(2)
i |

. (9.82)
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Therefore, by (9.81) and (9.82), we obtain

lim sup
N→∞

CapN(E (2)
N (i), E?N \ E

(2)
N (i))

inf
η, ζ∈E(2)

N (i)
CapN({η}, {ζ})

≤ C lim sup
N→∞

d2
N/N

dN
= C lim sup

N→∞

dN
N

= 0.

The last formula concludes the proof of Proposition 9.8.1.

9.9 Proof of the main theorem

Now, we are in position to prove the main theorem given in Theorem 9.1.4.

First, we provide sharp asymptotics for the transition rate of the trace process

η?N(·).

Proposition 9.9.1 (Transition rates of the trace process). Assume (9.10)

and suppose that dN decays subexponentially. Then, for i, j ∈ J1, κ?K,

lim
N→∞

N

d2
N

r?N(i, j) =
1

|S(2)
i |Ri, j

.

Proof. By Proposition 8.0.5, lim
N→∞

µN(E (2)
N (i)) = |S(2)

i |/|S?| for each i ∈ J1, κ?K.
Hence, by Propositions 9.6.1, 9.7.1, and (9.14), we have

|S(2)
i |
|S?|

r?N(i, j) =
d2
N

2|S?|N

[ ∑
k: k 6=i

1

Ri, k

+
∑
k: k 6=j

1

Rj, k

−
∑

k: k 6=i, j

( 1

Ri, k

+
1

Rj, k

)
+ o(1)

]
=

d2
N

2|S?|N

[ 2

Ri, j

+ o(1)
]

=
d2
N

|S?|N

[ 1

Ri, j

+ o(1)
]
.

Multiplying (|S?|N)/(|S(2)
i |d2

N) on both sides, we obtain the desired result.

Finally, we provide the proof of Theorem 9.1.4.

Proof of Theorem 9.1.4. By Propositions 9.8.1 and 9.9.1, the conditions (9.15)
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and (9.16) are verified for

a(i, j) =
1

|S(2)
i |Ri, j

for i, j ∈ J1, κ?K and θN = θN, 2 =
d2
N

N
.

Therefore, Proposition 9.2.1 establishes the thermalization result stated in

(1) and the convergence result stated in (2).

For the last statement in (3), we first show that

lim
N→∞

sup
i∈J1, κ?K, n∈J1, n(i)K

E
ξ
xi, n
N

[ ∫ t

0

1{ηN(θN, 2s) /∈ E?N}ds
]

= 0. (9.83)

To this end, fix i and n. Note that

P
ξ
xi, n
N

[
ηN(θN, 2s) /∈ E?N

]
≤ 1

µN(Exi, nN )
PµN

[
ηN(θN, 2s) /∈ E?N

]
=
µN(HN \ E?N)

µN(Exi, nN )
.

(9.84)

Here, PµN is the law of the process whose initial distribution is µN . The

identity holds, as µN is the invariant distribution. Therefore,

E
ξ
xi, n
N

[ ∫ t

0

1{ηN(θN, 2s) /∈ E?N}ds
]

=

∫ t

0

P
ξ
xi, n
N

[
ηN(θN, 2s) /∈ E?N

]
ds

≤
∫ t

0

µN(HN \ E?N)

µN(Exi, nN )
ds = t · µN(HN \ E?N)

µN(Exi, nN )
,

which vanishes uniformly in the limit N → ∞ by Proposition 8.0.5. This

proves (9.83).

It remains to show that

lim
N→∞

sup
i∈J1, κ?K, n∈J1, n(i)K

E
ξ
xi, n
N

[ ∫ t

0

1{ηN(θN, 2s) ∈ E?N \ EN(S
(3)

î
)}ds

]
= 0.

(9.85)

We apply Proposition 9.2.2. Because the first two conditions are already

proved, it suffices to prove (9.17). This is clear from (9.84). Hence, we have

the convergence of finite-dimensional marginal distributions. Therefore, for
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each pair (i, n) and s ∈ [0, t],

lim
N→∞

P
ξ
xi, n
N

[
ηN(θN, 2s) ∈ E?N \ EN(S

(3)

î
)
]

= Pi

[
Xsecond(s) ∈ S? \ S(3)

î

]
= 0.

The last equality holds, as starting from i, Xsecond(·) never visits S? \S(3)

î
by

(9.13). Because S? is finite, we have (9.85). Finally, (9.83) and (9.85) conclude

the proof of Theorem 9.1.4.
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Chapter 10

Non-reversible inclusion

process

In this chapter, we turn our attention to the general non-reversible inclu-

sion process. Namely, we drop the reversibility assumption of the underlying

random walk as explained in Assumption 8.0.1.

10.1 Condensation of non-reversible inclusion

process

In this section, we explain the condensation phenomenon in the general non-

reversible context.

Condensation on metastable sets

Recall the metastable valleys defined in Definition 8.0.4. Moreover, define

EN := EN(S) =
⋃
x∈S

ExN .
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In the non-reversible context, we need to formulate the condensation in a

more abstract manner.

Definition 10.1.1 (Condensation). The inclusion process exhibits conden-

sation if

lim
N→∞

µN(EN) = 1;

and to exhibit condensation on R ⊆ S if

lim
N→∞

µN(EN(R)) = 1.

If the condensation occurs, we define the maximal condensing set S? (which

is redefined from the one given in (8.1)) as

S? =
{
x ∈ S : lim inf

N→∞
µN(ExN) > 0

}
6= ∅. (10.1)

Hence, S? denotes the smallest set on which the condensation occurs. Finally,

we write the remainder set as

∆N = HN \ EN(S?).

Formula for invariant measure: two special conditions

Now, we introduce two special conditions for the underlying random walk

r(·, ·) that enable us to write the invariant measure in an explicit form.

• (Rev) The underlying random walk is reversible with respect to its

invariant measure, i.e.,

m(x)r(x, y) = m(y)r(y, x) for all x, y ∈ S, (10.2)

such that the inclusion process is also reversible with respect to its

invariant measure µN(·); see Proposition 8.0.2.
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• (UI) The invariant measure m(·) for the underlying random walk is

the uniform measure on S.

To explain the invariant measure for these cases, we define several notations.

On the basis of the invariant measure m(·) for the underlying random walk,

we introduce the following notations:

M? = max{m(x) : x ∈ S} and Smax = {x ∈ S : m(x) = M∗}. (10.3)

Finally, we recall the auxiliary function wN : N → (0, ∞) from Proposition

8.0.2.

Then, we deduce the following formula under (Rev) or (UI).

Proposition 10.1.2. Under the condition (Rev) or (UI), the invariant

distribution µN(·) can be written as

µN(η) =
1

ZN

∏
x∈S

(m(x)

M?

)ηx
wN(ηx) for all η ∈ HN , (10.4)

where the partition function ZN is given by

ZN =
∑
η∈HN

∏
x∈S

(m(x)

M?

)ηx
wN(ηx).

We remark that m(x) = M? for all x ∈ S under the condition (UI). The

proof for the case (Rev) is straightforward, as the following detailed balance

condition holds:

µN(η)rN(η, η′) = µN(η′)rN(η′, η).

This implies that the inclusion process is also reversible with respect to µN(·).
For the case (UI), the proof is presented in [39, Theorem 2.1(a)]; nevertheless,

we provide a short proof in Section 10.4 for completeness. Based on the

explicit formula (10.4), the following result is established in [15, Proposition

2.1].
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Proposition 10.1.3. Suppose that µN(·) admits the formula (10.4) and

lim
N→∞

dN logN = 0. Then, it holds that

lim
N→∞

µN(ExN) =
1

|Smax|
for all x ∈ Smax.

In other words, the inclusion process exhibits the condensation on Smax; more-

over, S? = Smax. In particular, for the case (UI), we have S? = S.

Here, we emphasize that the proof of this proposition is based entirely on

the formula (10.4). Without this expression, proving the condensation phe-

nomenon becomes a completely non-trivial task; we confront this difficulty

in the remainder of this chapter.

10.2 Main results

In this section, we explain the main results obtained in this chapter. Our

primary concern is the metastable behavior of the condensate of the inclusion

process in the following unexplored settings:

(1) inclusion process satisfying (UI) (cf. Section 10.2.2),

(2) inclusion process for which jump rate r(·, ·) is uniformly positive (cf.

Section 10.2.3),

(3) inclusion process in the thermodynamic limit regime for which the un-

derlying graph (d-dimensional discrete torus) grows together with the

number of particles (cf. Section 10.2.4).

For these cases, the inclusion process can be non-reversible. In particular,

for case (2), even the invariant distribution cannot be written in an explicit

form; hence, the existence of the condensation is unknown. We shall establish

this existence of the condensation in Theorem 10.2.14.
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10.2.1 Description of metastable behavior

Description of movements of condensate

Using the trace process formulated in Definition 3.1.3, we are now ready to

rigorously formulate the metastable behavior of the inclusion process. Denote

simply by

η?N(·) = η
EN (S?)
N (·)

the trace process on the metastable set EN(S?) = {ξxN : x ∈ S?}. For the sake

of simplicity, define an identification function Ψ : EN(S?)→ S? as

Ψ(ξxN) = x for x ∈ S?.

Using this function, we define a process {YN(t)}t≥0 on S? by

YN(t) = Ψ(η?N(t)). (10.5)

Thus, the process YN(·) is obtained by taking the label of the metastable set

at which the process η?N(·) is staying.

The long-time movement of the condensate can be characterized by prov-

ing the convergence of the process YN(·) with a proper acceleration factor θN

to a certain limiting Markov chain on S?. Let {Y (t)}t≥0 denote a continuous-

time Markov chain on S?, which is the candidate for the limiting Markov

chain.

Definition 10.2.1 (Description of metastable behavior). Suppose that the

inclusion process exhibits condensation in the sense of Definition 10.1.1.

Then, the dynamical movement of the condensate of an inclusion process

is said to be described by a Markov chain {Y (t)}t≥0 on S? with scale θN

(which may not diverge to infinity) if the law of the process YN(θN ·) starting
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from ξxN converges to that of Y (·) starting from x for all x ∈ S?, and if

lim
N→∞

sup
η∈EN (S?)

Eη
[ ∫ T

0

1{ηN(θNs) /∈ EN(S?)}ds
]

= 0 for all T > 0. (10.6)

Remark. Note that the condition (10.6) implies that the inclusion process

does not spend too much time outside the metastable sets and hence guar-

antees that there exist only fast transitions between the metastable sets. In

general models, proving (10.6) is not a trivial issue; however, in the inclusion

process case, it directly follows from the definition of condensation (Definition

10.1.1), as one can see from Proposition 10.3.1.

The main objective is to prove the requirements of Definition 10.2.1 for

a wide class of non-reversible inclusion processes.

Movements of condensate: reversible and non-reversible cases

Now, we explain the known result and the conjectures for the limiting chain

Y (·) and the factor θN appearing in Definition 10.2.1.

First, we define a Markov chain Y rv(t) on S? (cf. Proposition 10.1.3) with

rate

arv(x, y) = r(x, y) for all x, y ∈ S?. (10.7)

Note that r(·, ·) is the jump rate of the original underlying random walk;

thus, Y rv(·) can be regarded as the underlying random walk restricted on S?.

We also remark that Y rv(·) is not necessarily an irreducible chain. Further,

we define

θrv
N =

1

dN
.

Then, in the terminology of Definition 10.2.1, the following result is equivalent

to Theorem 8.0.7.

Theorem 10.2.2. Suppose that the underlying random walk is reversible

with respect to its invariant measure m(·) and that lim dN logN = 0. Then,
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the movement of the condensate is described by a Markov chain Y rv(·) on

S? = Smax (cf. (10.3)) with scale θrv
N .

For the non-reversible case, we expect a completely different result com-

pared to the reversible case. Suppose that we have characterized the set S?.

Define Y nrv(·) as a Markov chain on S? with rate

anrv(x, y) = [r(x, y)− r(y, x)]1{r(x, y) > r(y, x)} for x, y ∈ S?; (10.8)

and define the time scale as

θnrv
N =

1

NdN
. (10.9)

Conjecture 10.2.3. Suppose that lim dN logN = 0. Then, the movement of

the condensate is described by the Markov chain Y nrv(·) with scale θnrv
N .

We try to directly estimate the so-called mean-jump rate by exploiting

several model-dependent features of the inclusion process. This is mainly

because we wish to tackle the general case without the formula (10.4) on µN .

Indeed, one of the main difficulties in the study of the non-reversible case is

the lack of such an explicit formula for µN ; in this case, it is even unclear

what S? is. Specifying S? itself seems to be an extremely difficult problem.

Remark 10.2.4. In general, it is anticipated that the metastable transition

of non-reversible dynamics occurs faster than that of its reversible counter-

part. For instance, such a phenomenon has been verified for the stochastic

discrete gradient descent [60], small random perturbation of dynamical sys-

tems [58], and zero-range processes [6, 50, 78]. These results show that the

non-reversible dynamics is faster than the reversible one by a constant (i.e.,

Θ(1)) factor, while Conjecture 10.2.3 indicates that the non-reversible dy-

namics of the inclusion process is expected to be Θ(N) times faster than the

reversible one. This observation is supported by [23, Section 4.3] which per-

formed heuristic computations for the inclusion process on one-dimensional
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tori in the thermodynamic limit.

Finally, suppose that the relation r(x, y) = r(y, x) holds for all x, y ∈ S?.
In this case, we have anrv(x, y) = 0 for all x, y ∈ S?; hence, Conjecture 10.2.3

implies that the scale θnrv
N = 1/(NdN) is too short to observe the transitions.

We expect that the correct scale for this case is θrv
N = 1/dN .

Conjecture 10.2.5. Suppose that r(x, y) = r(y, x) for all x, y ∈ S? and

lim dN logN = 0. Then, the movement of the condensate is described by the

Markov chain Y rv(·) on S? with scale θrv
N .

Here, we emphasize that Theorem 10.2.2 is a special case of this conjec-

ture. To see this, observe that S? = Smax for the reversible case; thus, we

have

r(x, y) =
m(y)

m(x)
r(y, x) =

M?

M?

r(y, x) = r(y, x) for all x, y ∈ S?.

This implies that, if the previous conjecture is true, the scale θrv
N and the

limiting Markov chain Y rv(·) appear in the reversible case because r(·, ·) is

symmetric on S? = Smax, and the reversibility is not a fundamental reason.

We verify the validity of Conjectures 10.2.3 and 10.2.5 for wide-class of

non-reversible inclusion processes.

Comments on convergence of finite-dimensional distributions

Before proceeding to the main results of this article, we remark on the mode

of convergence regarding Definition 10.2.1. Although the convergence of the

trace process is natural in the study of metastability, an alternative descrip-

tion has been presented [55], which does not need to recall the trace process

in the description and is hence more intuitive to understand. To see this, fix

a cemetery state o and define a map Ψ̂ : HN → S? ∪ {o} as

Ψ̂(η) =

x if η = ξxN with x ∈ S?,

o otherwise.
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Then, define a process {ŶN(t)}t≥0 on S? ∪ {o} by

ŶN(t) = Ψ̂(ηN(t)).

In other words, we trace each metastable configuration to its label and all

the other configurations to the cemetery state o.

Definition 10.2.6. The dynamical movement of the condensate of an inclu-

sion process is said to be described by a Markov chain {Y (t)}t≥0 on S? with

scale θN in the finite-dimensional marginal sense if, for all k ≥ 1, we have

lim
N→∞

PξxN
[
ŶN(θN t1) ∈ A1, . . . , ŶN(θN tk) ∈ Ak

]
= Px

[
Y (t1) ∈ A1, . . . , Y (tk) ∈ Ak

]
for all 0 ≤ t1 < · · · < tk and A1, . . . , Ak ⊆ S?, where Px denotes the law of

the process Y (·) starting from x.

To establish this convergence of marginal distributions from that of the

trace process defined in Definition 10.2.1, it is known from [55, Proposition

2.1] that the verification of the following technical condition is sufficient:

lim
δ→0

lim sup
N→∞

sup
2δ≤s≤3δ

sup
η∈EN (S?)

Pη
[
ηN(θNs) /∈ EN(S?)

]
= 0. (10.10)

For the inclusion process, this condition is straightforward to check (cf.

Proposition 10.3.1); thus, the convergence of the trace process immediately

implies the convergence of the finite-dimensional distributions.

10.2.2 Main result 1: under condition (UI)

In this subsection, we explain our result of the analysis of the metastable

behavior of the inclusion process under the condition (UI). For this case, as

mentioned in Proposition 10.1.2, the invariant measure admits the expression

(10.4); therefore condensation occurs owing to Proposition 10.1.3. Moreover,
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as the invariant measure for the underlying random walk is uniform, we have

S? = Smax = S, i.e., condensation occurs on the entire state set S.

The metastable behavior of the inclusion process for this case was known

only when r(·, ·) is completely symmetric (as in case (1) of the theorem

below). The following theorem extends this result for the general case under

(UI).

Theorem 10.2.7. Suppose that the underlying random walk satisfies the

condition (UI) and that lim
N→∞

dN logN = 0.

(1) Suppose that r(x, y) = r(y, x) for all x, y ∈ S. Then, Conjecture 10.2.5

holds.

(2) Suppose that r(x, y) 6= r(y, x) for some x, y ∈ S. Then, Conjecture

10.2.3 holds.

We remark that, for case (1), the underlying random walk is reversible;

hence, this result is a consequence of [15] (i.e., Theorem 10.2.2). Our new

result focuses on case (2), which is essentially the first rigorous analysis of

the metastable behavior of the non-reversible inclusion process. The proof

of this result relies on careful analysis of the mean-jump rates established in

Section 10.3. We explain the proof in Section 10.4.

Inclusion process on torus

An interesting example satisfying condition (UI) is the simple random walk

on the discrete torus. Suppose that the underlying random walk is a simple

random walk on the torus TL = Z/(LZ) with jump rate

r(x, y) =


p if y = x+ 1 (modL),

1− p if y = x− 1 (modL),

0 otherwise.
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As the uniform measure on TL is the invariant measure for this random walk,

the condition (UI) is valid. We can prove that the dynamical transition of

the condensate can be described as follows. For simplicity we may assume

that p ≥ 1/2 since the case p ≤ 1/2 can be treated in the same manner.

Corollary 10.2.8. Suppose that lim
N→∞

dN logN = 0. Then, the dynamical

movement of the condensate for the inclusion process on TL defined above is

described by the following limiting Markov chain and the time scale:

(1) for p = 1/2, a Markov chain {Y sym(t)}t≥0 with jump rate

asym(x, y) =

1/2 if |y − x| = 1,

0 otherwise,

and scale θrv
N = 1/dN .

(2) for p > 1/2, a Markov chain {Y asym(t)}t≥0 with jump rate

aasym(x, y) =

2p− 1 if y = x+ 1,

0 otherwise,

and scale θnrv
N = 1/(NdN).

We note that the transition scale for the asymmetric case is 1/(NdN),

and it is Θ(N) times faster than that of the symmetric case, i.e., 1/dN .

This observation verifies the statement in Remark 10.2.4. Furthermore, it is

interesting that the limiting dynamics for the partially asymmetric case (i.e.,

p ∈ (1/2, 1)) is totally asymmetric.

10.2.3 Main result 2: uniformly positive rates

As mentioned earlier, condensation of the inclusion process without condition

(Rev) or (UI) is unknown. For instance, whether condensation occurs on S,
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i.e., lim
N→∞

µN(EN) = 1, is an open question. This is mainly because of the lack

of the explicit formula of µN . Under suitable assumptions, we now describe

both static and dynamical analyses of condensation in such general cases.

Metastable behavior for general non-reversible inclusion processes

We assume first that the occurrence of the condensation has been verified,

and then focus on the analysis of the metastable behavior. We will return to

the condensation issue later in this subsection.

To prove Conjecture 10.2.3, we should first characterize S?. To this end,

let us consider an auxiliary Markov chain {Z1(t)}t≥0 on S with jump rate

b(x, y) = [r(x, y)− r(y, x)]1{r(x, y) > r(y, x)} for all x, y ∈ S, (10.11)

which is an extension of anrv(·, ·) defined in (10.8) to the set S. Let S0 denote

the set of recurrent states (including absorbing states; refer to Figure 10.1) of

the Markov chain Z1(·). We say that S0 has only one irreducible component if

the Markov chain Z1(·) restricted to S0 is irreducible, i.e., for any x, y ∈ S0,

there exists some k ≥ 1 such that∑
z1, ..., zk−1∈S0

b(x, z1)b(z1, z2) · · · b(zk−1, y) > 0.

This assumption is equivalent to the uniqueness of the invariant measure for

Z1(·), and for such a case S0 is the support of the invariant measure. Then,

the following result describes the metastable behavior of the inclusion process

when S0 has only one irreducible component.

Theorem 10.2.9. Suppose that condensation occurs and that S0 defined

above has only one irreducible component. Then, S? = S0 and Conjecture

10.2.3 holds.

Now, we turn to Conjecture 10.2.5. To this end, we assume that r(x, y) =

r(y, x) for all x, y ∈ S0. Then, consider another auxiliary Markov chain
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Figure 10.1: (Left) The set S0 is given by S0 = A ∪ B. In this case, Z1(·)
restricted to S0 has two irreducible components A and B; thus, it does not
satisfy the condition of Theorem 10.2.9. The set A is semi-attracting since
r(u, v) = r(v, u). (Middle) The set S0 satisfies the condition of Theorem
10.2.9, since S0 has only one irreducible component with respect to Z1(·).
(Right) The set S0 is attracting; hence S0 satisfies all the conditions of The-
orem 10.2.11.
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{Z2(t)}t≥0 on S0 whose rate between x ∈ S0 and y ∈ S0 is just r(x, y). We

need to introduce additional simple concepts to state our result.

Notation 10.2.10. The set A ⊆ S is called attracting if it holds that

r(x, y) < r(y, x) for all x ∈ A and y ∈ Ac with r(x, y) + r(y, x) > 0.

Moreover, A is called semi-attracting if it holds that r(x, y) ≤ r(y, x) for all

x ∈ A and y ∈ Ac with r(x, y) + r(y, x) > 0. We refer to Figure 10.1 for the

illustration.

Note that attracting sets are semi-attracting as well. For the symmetric

case, we obtain the following result.

Theorem 10.2.11. Suppose that condensation occurs and that the Markov

chain {Z2(t)}t≥0 on S0 defined above is irreducible. Further, assume that S0

is attracting. Then, S? = S0 and Conjecture 10.2.5 holds.

Remark. Since S? = S0 in this case, the Markov chain Z2(·) is indeed Y rv(·).
The condition that S0 is attracting is required to guarantee that S0 is the set

of states at which the transition occurs.

As a consequence of Theorems 10.2.9 and 10.2.11, we can provide the

following non-trivial asymptotic limit of µN(ξxN) for x ∈ S? = S0.

Theorem 10.2.12. Under the conditions of Theorem 10.2.9 (resp. Theorem

10.2.11), it holds that

lim
N→∞

µN(ξxN) = ν(x) for all x ∈ S?,

where ν(·) is the unique invariant measure of the irreducible Markov chain

Y nrv(·) (resp. Y rv(·)).

Remark 10.2.13. Several remarks regarding the irreducibility of Z1(·) and

Z2(·) on S0 are stated below.

(1) When there exist multiple irreducible components of Z1(·) on S0, a

certain linear combination of the invariant measure on each component
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is expected to equal the limit of µN on EN . However, at this moment, it

is unclear as to which linear combination is the correct one. Moreover,

characterizing S? is not possible at this moment. The sites in S \ S0

will be discarded in the long-time limit; however, it is unclear as to

which sites of S0 will survive, partially or completely, in the accelerated

process.

(2) The reversible case in which there exist multiple irreducible components

of Z2(·) on S0 has been investigated in Chapter 9. In these longer scaling

limits, each irreducible component is expected to act as a single element

in the limiting dynamics, and the long-time movement will occur among

these component-wise elements. If the graph distance between these

components is exactly 2, then the transition occurs in the second scale

N/d2
N . If the distance is greater than 2, then the transition occurs in

the third scale N2/d3
N . However, such generality has not been analyzed

even for the reversible inclusion process on general graphs, and it is

currently being handled in ongoing work.

Condensation

Previously, we analyzed the metastable behavior of the inclusion process by

assuming that the condensation occurs. However, without the closed-form

expression for the invariant measure, the verification of the condensation is

not a simple task. Here, we prove the existence of condensation under the

following assumption:

• (UP) The jump rate of the underlying random walk is uniformly pos-

itive in the sense that

r(x, y) > 0 for all x, y ∈ S. (10.12)

With this assumption, we can establish the existence of condensation for
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inclusion process. We emphasize that this is the first verification of the con-

densation for the inclusion process without explicit formula (10.4) for µN .

Theorem 10.2.14. Suppose that the assumption (UP) holds and

lim
N→∞

dNN
|S|+2(logN)|S|−3 = 0. (10.13)

Then, the condensation occurs for the inclusion process, i.e.,

lim
N→∞

µN(EN) = 1. (10.14)

Remark 10.2.15. We remark that the stringent condition (10.13) appeared

because the estimates used in Section 10.6 are partially sub-optimal. We

conjecture that Theorem 10.2.14 still holds when (10.13) is substituted by the

standard condition lim
N→∞

dN logN = 0 without changing the current setting.

We expect that refining the arguments carried out in Section 10.6 regarding

the analysis of the inner core (cf. Notation 10.6.1) of the configuration space

is crucial to get an optimal result. We believe that a totally different idea is

required to get such an optimal result.

The following corollary is now immediate.

Corollary 10.2.16. Theorems 10.2.9, 10.2.11, and 10.2.12 hold under the

conditions (UP) and (10.13).

The proof of Theorem 10.2.14 is given in Section 10.6 and relies on the

results on mean-jump rates established in Section 10.3 along with a weak

result on the nucleation of condensation stated below in Theorem 10.2.17.

In general, the nucleation regime explains the typical behavior of particles,

starting from an arbitrary distribution among sites to condensation at a sole

site. The only rigorous result regarding the nucleation was obtained in [40],

where it was proved that the nucleation procedure of the inclusion process

satisfying both (Rev) and (UI) can be explained by a Wright–Fisher-type

slow-fast diffusion. We refer to [40] for further information on nucleation;
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although our nucleation result explained hereafter is much weaker, it is the

first quantitative result in the study of nucleation of non-reversible inclusion

processes. Let δ > 0 be an arbitrary fixed number and define

UN = {η ∈ HN : ηx ≤ δ logN for some x ∈ S}.

Then, the nucleation result can be formulated as follows.

Theorem 10.2.17. Suppose that the assumption (UP) holds and lim
N→∞

dNN
2/(logN)2 =

0. Then, there exists a constant C = C(δ) > 0 such that

sup
η∈HN

Eη[τUN ] ≤ CN.

Suppose that the inclusion process starts from a configuration containing

Θ(N) particles at all sites. Then, the first stage of the nucleation of conden-

sation is to empty a site, which can be deduced by studying the typical path

to the set {η ∈ HN : ηx = 0 for some x ∈ S} and examining the mean of

the hitting time. The theorem above provides a weak form of such a result,

and its proof will be given in Section 10.6.4. It is strongly expected that the

actual scale of the nucleation of particles is Θ(logN), which serves as an

important topic of future research.

10.2.4 Main result 3: thermodynamic limit regime

In the previous models, we fixed the state space S. In this subsection, we

consider a slightly different model for which the space given by the multi-

dimensional discrete torus grows together with the number of particles. Then,

a suitable time-space rescaling of the movements of the condensate converges

to a continuous process on a multi-dimensional torus; this type of result is

referred to as the thermodynamic limit of condensation (cf. [2]).

The thermodynamic limit of condensation has been thoroughly studied

for zero-range processes in [2]. In [2], the thermodynamic limit of condensa-
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tion of the symmetric zero-range process on the torus has been investigated

by the martingale approach. For the simple inclusion process, the thermo-

dynamic limit of the inclusion process whose underlying random walk is ei-

ther a symmetric or totally asymmetric random walk on the one-dimensional

torus has been investigated in [23]. The authors used exquisitely constructed

heuristic simulations to derive various time scales related to the nucleation

regime of the process, which is divided into four parts: nucleation, coarsening,

saturation, and stationary. Readers may refer to [23] for further details.

Our contribution to the study of condensation in the thermodynamic limit

regime is to establish the scaling limit of the movement of condensation, and

we find three different time scales according to the level of asymmetry. We

explain these results in the remainder of this subsection.

Model

We start by introducing our model, which is distinguished from previous

models by the characteristic that the underlying state space is growing. Recall

that TL = Z/(LZ) denotes a discrete torus of length L. Now, we consider the

inclusion process consisting of N interacting particles that move according

to a random walk on the multi-dimensional torus TdL where L and N grow

together such that

L→∞, N = NL →∞, and
N

Ld
→ ρ for some ρ > 0. (10.15)

Henceforth, we assume that ρ > 0 is fixed and regard N as a variable that is

dependent on L; hence, the only control variable is L. With this convention,

the condition (10.15) implies that the total density is maintained to be close

to ρ as L→∞.

To get a scaling limit, we will assume that the underlying system is a

translation-invariant random walk on TdL, i.e., the jump rate of the underlying
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random walk on TdL is given by

r(x, y) = h(y − x) (10.16)

for some nonnegative function h : Zd → [0, ∞) with compact support, i.e.,

there exists M > 0 such that h(x) = 0 if |x| > M . We assume that this

random walk is irreducible, i.e., the support of h spans Zd.

Remark 10.2.18. Now, we state several remarks on this model:

(1) It should be emphasized that the simple nearest-neighbor random walk

on TdL is an example of a translation-invariant random walk.

(2) By the translation invariance, it can immediately be verified that the

random walk satisfies the condition (UI), i.e., the invariant measure m

of the underlying random walk is the uniform measure on TdL. Moreover,

this random walk is reversible with respect to this invariant measure

only when the function h is symmetric, i.e., h(x) = h(−x) for each

x ∈ Zd.

(3) Throughout the remainder of this subsection, we shall implicitly assume

L > 2M so that the state space TdL is much larger than the support of

h.

The inclusion process {ηL(t)}t≥0 on TdL consisting of N particles where

N and L satisfy (10.15) is defined as a continuous-time Markov chain on the

configuration space given by

HL =
{
η ∈ NTdL :

∑
x∈TdL

ηx = N
}
.

If the inclusion process consists of the translation-invariant underlying ran-

dom walks described above, then the generator corresponding to the inclusion
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process is defined, for f : HL → R, by

(LLf)(η) =
∑

x, y∈TdL

ηx(dL + ηy)r(x, y){f(σx, yη)− f(η)} for η ∈ HL,

where {dL}∞L=1 is a sequence of positive real numbers converging to 0.

Condensation

We are primarily interested in the limiting behavior of the condensate of the

model explained above as L tends to infinity. As before, define the metastable

set corresponding to the condensation of the inclusion process as

ExL = {ξxL} for each x ∈ TdL,

where ξxL denotes the configuration containing all the particles at site x ∈ TdL.

Write

EL =
⋃
x∈TdL

ExL. (10.17)

Let µL(·) denote the invariant distribution for this model. As this model

satisfies the condition (UI) as mentioned in Remark 10.2.18-(2), we can use

Proposition 10.1.2 to write the invariant distribution as

µL(η) =
1

ZL

∏
x∈TdL

wL(ηx) for η ∈ HL, (10.18)

where

wL(n) =
Γ(n+ dL)

n!Γ(dL)
, n ∈ N, and ZL =

∑
η∈HL

∏
x∈TdL

wL(ηx).

Owing to this expression, we can prove the occurrence of condensation pro-

vided that dL converges to 0 sufficiently fast.
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Theorem 10.2.19. Suppose that lim
L→∞

dLL
d logL = 0. Then, we have

lim
L→∞

µL(EL) = 1.

Consequently, by the symmetry of the invariant measure (10.18), we have

µL(ExL) = (1 + o(1))
1

Ld
for all x ∈ TdL.

We remark that this result has been proved in [42, Proposition 2] using

the technique of size-biased sampling. However, we propose an alternative

proof of this theorem in Section 10.7.1 for completeness.

Description of metastable behavior

Now, we turn to the dynamics of the condensate. In this model, we rescale

the state space so that we can identify x ∈ TdL as a point L−1x ∈ Td. By

rescaling the time appropriately, we expect the dynamics of the condensate

to converge to a process on Td as L→∞. Our result presented below verifies

that three different time scales appear according to the level of asymmetry

of the underlying random walk. To rigorously formulate this result, we start

by defining a map ΘL : EL → Td by

ΘL(ξxL) =
x

L
for x ∈ TdL.

Define a process {YL(t)}t≥0 on Td by

YL(t) = ΘL(ηELL (t)),

where ηELL (·) is the trace process of ηL(·) on the set EL. The following is a

variant of Definition 10.2.1.

Definition 10.2.20. The movement of the condensate of the inclusion pro-

cess on TdL defined above is said to be described by a process {Y (t)}t≥0 on Td
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with scale θL if the following conditions hold simultaneously.

(1) For each sequence (xL)∞L=1 such that xL ∈ TdL for all L ≥ 1 and

lim
L→∞

(xL/L) = u, the law of the rescaled trace process YL(θL·) start-

ing from ξxLL converges to that of the process Y (·) + u on Td.

(2) The excursions outside EL are negligible at the scale θL in the sense

that

lim
L→∞

sup
η∈EL

Eη
[ ∫ T

0

1{ηL(θLs) /∈ EL}ds
]

= 0 for all T > 0. (10.19)

Main results for thermodynamic limit of metastable behavior

Let v denote the mean displacement (hence, the velocity) of the underlying

random walk:

v =
∑
y∈Zd

h(y)y.

We decompose the model into three cases as follows:

(1) If v 6= 0, the model is referred to as totally asymmetric.

(2) If v = 0 and h is not symmetric, then the model is referred to as

mean-zero asymmetric.

(3) If v = 0 and h is symmetric, then the model is referred to as symmetric.

Then, the relevant time scales for these three cases are different, as we will

see below. The following is the first main result.

Theorem 10.2.21 (First time scale for the totally asymmetric case). Sup-

pose that v 6= 0 and assume that lim dLL
d+1 logL = 0. Then, the movement

of the condensate of the inclusion process on TdL is described by the deter-

ministic motion V (t) = ρvt with scale θL = 1/(dLL
d−1).
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Note that the limiting dynamics V (t) obtained in the last theorem is

non-degenerate only when the dynamics is totally asymmetric, i.e., v 6= 0.

Hence, if v = 0, we have to wait for more time to observe the transitions of

the condensation. Now, we formulate this result in a rigorous form. For each

y ∈ Rd, let y ⊗ y denote the outer product, i.e., y ⊗ y = yy†1. Hence, y ⊗ y
is a d× d matrix. Consider a non-negative symmetric matrix S1 given by

S1 = ρ
∑

y∈Zd:h(y)>h(−y)

(h(y)− h(−y))y ⊗ y,

and let Σ1 denote its square root2.

Theorem 10.2.22 (Second time scale for the mean-zero asymmetric case).

Suppose that v = 0 and assume that lim dLL
d+2 logL = 0. Then, the move-

ment of the condensate of the inclusion process on TdL is described by the

Brownian motion with diffusion matrix Σ1 and scale θL = 1/(dLL
d−2).

This theorem explains the diffusive behavior of condensation when the

underlying random walk is mean-zero such that the local drift at the time

scale 1/(dLL
d−1) is canceled out. However, note that the matrix S1, and hence

Σ1 is a zero matrix when the underlying random walk is symmetric. This

indicates that we still have to wait for more time to observe the macroscopic

movements of the condensate for the symmetric case. Indeed, we should wait

for much longer to observe these movements. To formulate this, define a

positive definite matrix S2 by

S2 =
∑
y∈Zd

h(y)y ⊗ y,

and let Σ2 denote its square root.

1Given a matrix A, let A† denote the transpose of A.
2Let U†ΛU denote the diagonalization of the symmetric matrix S1, where Λ =

diag(λ1, . . . , λd). Define Λ1/2 = diag(λ
1/2
1 , . . . , λ

1/2
d ) which is well defined since S1 is

non-negative definite. Then, Σ1 is defined by U†Λ1/2U . Note that Σ1Σ1 = S1.
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Theorem 10.2.23 (Third time scale for the symmetric case). Suppose that

h(x) = h(−x) for all x ∈ Zd and assume that lim dLL
2d+2 logL = 0. Then,

the movement of the condensate of the inclusion process on TdL is described

by the Brownian motion with diffusion matrix Σ2 and scale θL = L2/dL.

The proofs of Theorems 10.2.21, 10.2.22, and 10.2.23 are given in Section

10.7. We conclude this section with several remarks on these theorems re-

garding the metastable behavior of the inclusion process in thermodynamic

limit regime.

Remark 10.2.24. Few remarks are in order.

(1) It should be noted that the limiting particle density ρ affects the lim-

iting dynamics of the asymmetric cases. This is mainly because the

higher density facilitates the first escape of one particle from a con-

densate. Subsequently, the movement of the remaining particles occurs

instantaneously because of the asymmetry of the system. However, for

the symmetric case, this acceleration of the first jump by the higher ρ

is canceled out by the fact that we have to move more particles to the

adjacent site for the higher ρ. These two effects are exactly matched

for the symmetric case; consequently, the limiting dynamics becomes

independent of ρ.

(2) Our conditions on dL appeared in Theorems 10.2.21, 10.2.22, and 10.2.23

are sub-optimal for technical reasons. We believe that all the results

must hold under the condition lim dLL
d logL = 0 as in Theorem 10.2.19.

(3) Condensation of the zero-range process in the thermodynamic regime

exhibits phase transition in terms of ρ (e.g., see [2]). More precisely,

there exists ρc > 0 such that condensation occurs if and only if ρ >

ρc. However, in the inclusion process, we do not observe such a phe-

nomenon. We refer to [42, Proposition 1] for further details.
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10.3 Movements of condensate: general re-

sults

The results obtained in this section directly imply Theorem 10.2.7 regarding

the metastable behavior of the inclusion process under (UI), as we are aware

of the appearance of condensation for this case. We explain this in Section

10.4. However, for the general case, considerable effort is required to prove the

existence of condensation to apply the results obtained in this section. This

will be done under the condition (UP) in Sections 10.6 and 10.5. We also

discuss the thermodynamic limit in Section 10.7 on the basis of the results

obtained in this section.

10.3.1 Applications of the martingale approach

Here, we explain the application of the martingale approach for the inclusion

setting.

Preliminary: negligibility of excursions on ∆N

As a preliminary step, we first verify the two conditions given by (10.6) and

(10.10) for the inclusion process under static condensation.

Proposition 10.3.1. Suppose that the inclusion process exhibits condensa-

tion and let S? be the maximal condensing set defined in (10.1). Then, for

any sequence (αN)∞N=1 of positive real numbers, we have

lim
N→∞

sup
η∈EN (S?)

Eη
[ ∫ T

0

1{ηN(αNs) ∈ ∆N}ds
]

= 0 for all T > 0, (10.20)

lim
δ→0

lim sup
N→∞

sup
2δ≤s≤3δ

sup
η∈EN (S?)

Pη
[
ηN(αNs) ∈ ∆N

]
= 0, (10.21)

where ∆N = EN(S?)
c. In other words, the two conditions given by (10.6) and

(10.10) hold.
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Proof. For x ∈ S?, we have

PξxN
[
ηN(αNs) ∈ ∆N

]
≤ 1

µN(ExN)
PµN

[
ηN(αNs) ∈ ∆N

]
=
µN(∆N)

µN(ExN)
= o(1),

where the last identity follows from µN(∆N) = o(1) and (10.1). Now, (10.20)

directly follows from the Fubini theorem, as does (10.21).

Estimation of the mean-jump rate

For A ⊆ S, we consider the trace process η
EN (A)
N (·) as defined in Definition

3.1.3, which is a Markov chain on EN(A). Denote the jump rate of this Markov

chain by rAN(·, ·) : EN(A) × EN(A) → [0, ∞). In view of the theory summa-

rized in Section 3.2.2, the analysis of the metastable behavior of the inclusion

process is reduced to finding a suitable scaling limit for the mean-jump rates.

Such a scaling limit stated as Proposition 10.3.2 below is the main result of

this section. Write

`N = dN logN + qN ,

where q ∈ (0, 1) is a fixed constant that will be specified later in (10.27).

Proposition 10.3.2. Suppose that lim
N→∞

dN logN = 0. Fix a non-empty set

A ⊆ S and define

rAN(x, y) =
1

dNN
rAN(ξxN , ξ

y
N) for x, y ∈ A.

(1) If A is a semi-attracting set, we have

rAN(x, y) =


(1 +O(N−1 + `N))(r(x, y)− r(y, x)) if r(x, y) > r(y, x),

O(N−1 + `N) if r(x, y) < r(y, x),

N−1r(x, y) +O(N−1 + `N) if r(x, y) = r(y, x).

(10.22)
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(2) If A is an attracting set, we have

rAN(x, y) =


(1 +O(`N))(r(x, y)− r(y, x)) if r(x, y) > r(y, x),

O(`N) if r(x, y) < r(y, x),

N−1r(x, y) +O(`N) if r(x, y) = r(y, x).

(10.23)

It should be noted that the only difference between (10.22) and (10.23)

is the appearance of the additional Θ(1/N)-order error term. Note that the

error term Θ(1/N) can be ignored when we consider the time scale θnrv
N =

1/(NdN). Hence, in view of the following lemma, part (1) of the previous

theorem provides sufficient control regarding the proof of Theorem 10.2.9.

Lemma 10.3.3. The set S0 defined right after (10.11) is a semi-attracting

set.

Proof. By contrast, suppose that some x ∈ S0 and y ∈ Sc0 satisfy r(x, y) >

r(y, x). Pick an invariant measure π of Z1(·) such that π(x) > 0 and π(y) = 0.

Then, we have

0 =
∑
z∈S

π(y)b(y, z) =
∑
z∈S

π(z)b(z, y) ≥ π(x)b(x, y) = π(x)(r(x, y)−r(y, x)) > 0,

which is a contradiction.

Meanwhile, we cannot afford this error when we consider the time scale

θrv
N = 1/dN . Hence, we need to assume the attractiveness of A in Theorem

10.2.11 to eliminate this error in (10.23).

The remainder of this section is devoted to proving Proposition 10.3.2.

We establish several preliminary estimates in Section 10.3.2, and the proof

of Proposition 10.3.2 is then given in Section 10.3.3.
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Figure 10.2: Visualization of the objects introduced in Notation 10.3.4 when
S = {x, y, z} and r(y, z) = r(z, y) = 0.

10.3.2 Hitting times on the tubes

A set playing a significant role in the estimate of rAN(ξxN , ξ
y
N) for x, y ∈ A is

the tube Ax, yN between ξxN and ξyN , defined in Definition 9.3.1, as the transition

from ξxN to ξyN takes place only along this tube with dominating probability.

Notation 10.3.4 (Tube between metastable sets). Here, we gather all the

relevant notation related to the tube that will be frequently used in the

remainder of this chapter. We refer to Figure 10.2 for the illustration of the

notation introduced here.

Recall the notions of tubes defined in Definition 9.3.1.

If x, y ∈ S satisfy r(x, y) + r(y, x) > 0, then we write x ∼ y. With this

notation, we write

AN =
⋃

x, y∈S :x∼y

Ax, yN and ÂN =
⋃

x, y∈S :x∼y

Âx, yN . (10.24)

Note that AN = ÂN ∪ EN . The remainder set is denoted by RN :

RN = HN \ AN .
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Finally, we define several constants for convenience:

R1 = min{r(x, y) : x, y ∈ S such that r(x, y) > 0} > 0,

R2 = max{r(x, y) : x, y ∈ S},

Λ = max{λ(x) : x ∈ S},

(10.25)

where λ(x) =
∑
y∈S

r(x, y) denotes the holding rate of the underlying random

walk. For x, y ∈ S satisfying x ∼ y, we write

qx, y =
min{r(x, y), r(y, x)}
max{r(x, y), r(y, x)}

∈ [0, 1]. (10.26)

Then, we define

q = max{qx, y : x, y ∈ S, x ∼ y and r(x, y) 6= r(y, x)} < 1. (10.27)

In the remainder of this section, we fix A ⊆ S and x, y ∈ A. Then, we

define an event E0 = Ey,A
0 by

E0 = {τEyN = τEN (A)}.

Now, we provide a sequence of lemmas regarding the probability of the event

E0. We remark that these lemmas are also valid for a wide class of events that

depend only on the hitting times of subsets of (Âx, yN )c such as {τExN < τEyN}.
The first lemma asserts that, provided dN is sufficiently small, the inclu-

sion process on Âx, yN behaves as a nearest-neighbor random walk whose jump

rate from ζxyi to ζxyi+1 is r(x, y) and from ζxyi+1 to ζxyi is r(y, x), especially when

we are only concerned with the event E0.

Lemma 10.3.5. Suppose that x, y ∈ S satisfy x ∼ y. Then, there exists
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C > 0 such that∣∣∣Pζxyi [E0]− r(x, y)

r(x, y) + r(y, x)
Pζxyi+1

[E0]− r(y, x)

r(x, y) + r(y, x)
Pζxyi−1

[E0]
∣∣∣ ≤ C

dNN

i(N − i)

for all i ∈ J1, N − 1K.

Proof. Denote by λN(·) and pN(·, ·) the holding rate and the transition prob-

ability of the inclusion process:

λN(η) :=
∑
ζ∈HN

rN(η, ζ) and pN(η, ζ) :=
rN(η, ζ)

λN(η)
.

Then, we can write

rN(ζxyi , ζ
xy
i+1) = (N − i)(dN + i)r(x, y), (10.28)

rN(ζxyi , ζ
xy
i−1) = i(dN +N − i)r(y, x), (10.29)

rN(ζxyi , σ
x, zζxyi ) = (N − i)dNr(x, z) for z 6= x, y,

rN(ζxyi , σ
y, zζxyi ) = idNr(y, z) for z 6= x, y.

Thus, the holding rate at ζxyi is given by

λN(ζxyi ) = i(N − i){r(x, y) + r(y, x)}+ dN{(N − i)λ(x) + iλ(y)}. (10.30)

Hence, by (10.28) and (10.30),∣∣∣pN(ζxyi , ζ
xy
i+1)− r(x, y)

r(x, y) + r(y, x)

∣∣∣
=

dNr(x, y) · |(N − i){r(x, y) + r(y, x)} − {(N − i)λ(x) + iλ(y)}|
[i(N − i){r(x, y) + r(y, x)}+ dN{(N − i)λ(x) + iλ(y)}]{r(x, y) + r(y, x)}

≤ 2R2Λ

R2
1

dN
N

i(N − i)
,

(10.31)

where the last line follows from the definition (10.25). Similarly, by (10.29)
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and (10.30),∣∣∣pN(ζxyi , ζ
xy
i−1)− r(y, x)

r(x, y) + r(y, x)

∣∣∣ ≤ 2R2Λ

R2
1

dN
N

i(N − i)
. (10.32)

The last two bounds imply that

∑
z: z 6=x, y

pN(ζxyi , σ
x, zζxyi ) +

∑
z: z 6=x, y

pN(ζxyi , σ
y, zζxyi ) ≤ 4R2Λ

R2
1

dN
N

i(N − i)
.

(10.33)

By the Markov property, we have

Pζxyi [E0] =pN(ζxyi , ζ
xy
i+1)Pζxyi+1

[E0] + pN(ζxyi , ζ
xy
i−1)Pζxyi−1

[E0]

+
∑

z: z 6=x, y

pN(ζxyi , σ
x, zζxyi )Pσx, zζxyi [E0]

+
∑

z: z 6=x, y

pN(ζxyi , σ
y, zζxyi )Pσy, zζxyi [E0].

Finally, inserting the estimates (10.31), (10.32), and (10.33) into the last

identity completes the proof.

On the basis of the previous estimate, we can estimate the probabilities

Pζxy1
[E0] and PζxyN−1

[E0] in terms of PξxN [E0] and PξyN [E0]. We divide this esti-

mate into three cases according to the relation between r(x, y) and r(y, x)

as follows.

Lemma 10.3.6. Suppose that x, y ∈ S satisfy r(x, y) > r(y, x) > 0. Then,

it holds that∣∣∣Pζxy1
[E0]−

qx, y − qNx, y
1− qNx, y

PξxN [E0]− 1− qx, y
1− qNx, y

PξyN [E0]
∣∣∣ = O(dN logN),∣∣∣PζxyN−1

[E0]−
qN−1
x, y − qNx, y
1− qNx, y

PξxN [E0]−
1− qN−1

x, y

1− qNx, y
PξyN [E0]

∣∣∣ = O(dN logN).

519



CHAPTER 10. NON-REVERSIBLE INCLUSION PROCESS

Proof. Following (10.26) and Lemma 10.3.5, it holds for i ∈ J1, N − 1K that∣∣∣Pζxyi [E0]− 1

1 + qx, y
Pζxyi+1

[E0]− qx, y
1 + qx, y

Pζxyi−1
[E0]

∣∣∣ ≤ C
dNN

i(N − i)
. (10.34)

Write

bi = Pζxyi−1
[E0]− Pζxyi [E0] for i ∈ J1, NK;

so that we can rewrite (10.34) as

|bi+1 − qx, ybi| ≤ C
dNN

i(N − i)
(1 + qx, y),

and therefore, for i ∈ J1, NK,

|bi − qi−1
x, y b1| ≤ CdNN(1 + qx, y)

i−1∑
j=1

qi−1−j
x, y

j(N − j)
.

Since PξxN [E0]− PξyN [E0] = b1 + · · ·+ bN , the previous bound implies that

∣∣∣PξxN [E0]− PξyN [E0]−
N∑
i=1

qi−1
x, y b1

∣∣∣ ≤ CdNN(1 + qx, y)
N∑
i=1

i−1∑
j=1

qi−1−j
x, y

j(N − j)

= CdNN(1 + qx, y)
N−1∑
j=1

1

j(N − j)

N∑
i=j+1

qi−1−j
x, y

≤ CdN

N−1∑
j=1

[1

j
+

1

N − j

]1 + qx, y
1− qx, y

≤ CdN logN.

From this computation, we can deduce that∣∣∣b1 −
1− qx, y
1− qNx, y

(
PξxN [E0]− PξyN [E0]

)∣∣∣ ≤ CdN logN.

By inserting b1 = PξxN [E0] − Pζxy1
[E0], we obtain the first estimate of the
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lemma. The second one can be proved similarly.

Now, we consider the second case in which the jump from y to x is ex-

cluded.

Lemma 10.3.7. Suppose that x, y ∈ S satisfy r(x, y) > r(y, x) = 0. Then,

it holds that

∣∣Pζxy1
[E0]− PξyN [E0]

∣∣ = O(dN logN) and
∣∣PζxyN−1

[E0]− PξyN [E0]
∣∣ = O(dN).

Proof. By Lemma 10.3.5, it holds that

∣∣Pζxyi [E0]− Pζxyi+1
[E0]

∣∣ ≤ C
dNN

i(N − i)
for all i ∈ J1, N − 1K.

By inserting i = N − 1, we immediately obtain the second estimate. For the

first estimate, it suffices to apply the triangle inequality such that

∣∣Pζxy1
[E0]− PξyN [E0]

∣∣ ≤ N−1∑
i=1

C
dNN

i(N − i)
= O(dN logN).

This completes the proof of the first estimate.

Now, we consider the last case, i.e., the symmetric case.

Lemma 10.3.8. Suppose that x, y ∈ S satisfy r(x, y) = r(y, x) > 0. Then,

it holds that∣∣∣Pζxy1
[E0]− N − 1

N
PξxN [E0]− 1

N
PξyN [E0]

∣∣∣ = O(dN logN). (10.35)

Proof. For i ∈ J1, N − 1K, write

ci = Pζxyi−1
[E0]− Pζxyi [E0]− 1

N
(PξxN [E0]− PξyN [E0]). (10.36)
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Then, we can observe that

c1 + · · ·+ cN = 0, (10.37)

and that the left-hand side of (10.35) is |c1|. Thus, it suffices to show that

|c1| = O(dN logN).

By Lemma 10.3.5, it holds that∣∣∣Pζxyi [E0]− 1

2
Pζxyi+1

[E0]− 1

2
Pζxyi−1

[E0]
∣∣∣ ≤ C

dNN

i(N − i)
for all i ∈ J1, N − 1K.

By (10.36) , this inequality can be written as

|ci − ci+1| ≤ C
dNN

i(N − i)
.

Therefore, by the triangle inequality, we obtain

|c1 − ci| ≤
i−1∑
j=1

|cj − cj+1| ≤ CdN

i−1∑
j=1

N

j(N − j)
≤ CdN logN.

Hence, by (10.37),

|Nc1| = |Nc1 − (c1 + · · ·+ cN)| ≤
N∑
i=2

|c1 − ci| ≤ CdNN logN.

This completes the proof of |c1| = O(dN logN).
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10.3.3 Proof of Proposition 10.3.2

Proof of Proposition 10.3.2. Fix A ⊆ S and fix x, y ∈ A. By [5, Corollary

6.2], we can write the jump rate rAN(ξxN , ξ
y
N) as

rAN(ξxN , ξ
y
N) =rN(ξxN , ξ

y
N) +

∑
η∈HN\EN (A)

rN(ξxN , η)Pη[τEyN = τEN (A)]

=
∑
z: z 6=x

NdNr(x, z)Pζxz1
[E0].

(10.38)

Hence, it suffices to estimate Pζxz1
[E0] for z 6= x with r(x, z) > 0 to estimate

rAN(ξxN , ξ
y
N).

Suppose first that z 6= y. Then, we divide the estimate of Pζxz1
[E0] into

two cases:

(Case 1: z ∈ A) Since PξzN [E0] = 0, we deduce from Lemmas 10.3.6, 10.3.7,

and 10.3.8 that

Pζxz1
[E0] = O(dN logN). (10.39)

(Case 2: z /∈ A) We divide this case into two as following:

• If A is attracting, we have r(x, z) < r(z, x). Thus by Lemma 10.3.6 we

obtain

Pζxz1
[E0] = O(qN)PξzN [E0] +O(dN logN) = O(`N). (10.40)

• If A is semi-attracting, we only have r(x, z) ≤ r(z, x). Thus by Lemmas

10.3.6 and 10.3.8 we obtain

Pζxz1
[E0] = O

( 1

N
+qN

)
·PξzN [E0]+O(dN logN) = O

( 1

N
+`N

)
. (10.41)

Now it remains to estimate Pζxy1
[E0] when r(x, y) 6= 0 to estimate (10.38).

To this end, we consider four cases separately:
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(1) r(x, y) > r(y, x) > 0: By Lemma 10.3.6 and the fact that

PξxN [E0] = 0 and PξyN [E0] = 1, (10.42)

we have that∣∣∣Pζxy1
[E0]−

qx, y − qNx, y
1− qNx, y

· 0− 1− qx, y
1− qNx, y

· 1
∣∣∣ = O(dN logN).

Thus, we have that

Pζxy1
[E0] =

1− qx, y
1− qNx, y

+O(dN logN) = (1 +O(`N))(1− qx, y). (10.43)

(2) r(y, x) > r(x, y) > 0: By Lemma 10.3.6 and (10.42),

∣∣∣Pζxy1
[E0]−

1− qN−1
x, y

1− qNx, y
· 0−

qN−1
x, y − qNx, y
1− qNx, y

· 1
∣∣∣ = O(dN logN).

Therefore, we obtain that

Pζxy1
[E0] =

qN−1
x, y − qNx, y
1− qNx, y

+O(dN logN) = O(`N). (10.44)

(3) r(x, y) > r(y, x) = 0: By Lemma 10.3.7 and (10.42),

Pζxy1
[E0] = 1 +O(dN logN). (10.45)

(4) r(x, y) = r(y, x) > 0: By Lemma 10.3.8 and (10.42),∣∣∣Pζxy1
[E0]− N − 1

N
· 0− 1

N
· 1
∣∣∣ = O(dN logN).
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Hence, we can conclude that

Pζxy1
[E0] =

1

N
+O(dN logN). (10.46)

Finally, we can combine (10.39)-(10.46) along with the identity (10.38) to

complete the proof of the proposition.

10.4 Metastable behavior of inclusion process

under condition (UI)

In this section, we investigate the metastable behavior of the inclusion process

under the condition (UI). We first show that the invariant measure µN(·)
admits the expression (10.4).

Proof of Proposition 10.1.2 for case (UI). It suffices to prove that, for η ∈
HN ,∑
x, y∈S: ηy≥1

µN(σy, xη)(σy, xη)x(dN+(σy, xη)y)r(x, y) = µN(η)
∑
x, y∈S

ηy(dN+ηx)r(y, x).

(10.47)

Calculating the left-hand side of (10.47), it holds that∑
x, y∈S: ηy≥1

µN(σy, xη)(σy, xη)x(dN + (σy, xη)y)r(x, y)

=
∑

y∈S: ηy≥1

∑
x∈S

µN(σy, xη)(ηx + 1)(dN + ηy − 1)r(x, y)

= µN(η)
∑
y: ηy≥1

∑
x∈S

ηy(dN + ηx)r(x, y) = µN(η)
∑
x, y∈S

(ηxηy + dNηy)r(x, y).

Comparing to the right-hand side of (10.47), it suffices to show that∑
x, y∈S

ηyr(x, y) =
∑
x, y∈S

ηyr(y, x).
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This identity holds since∑
x, y∈S

ηyr(x, y) =
∑
y∈S

ηy
∑
x∈S

r(x, y)
(UI)
=
∑
y∈S

ηy
∑
x∈S

r(y, x) =
∑
x, y∈S

ηyr(y, x).

Now, we can prove Theorem 10.2.7 by gathering the results obtained so

far.

Proof of Theorem 10.2.7. As we mentioned before, part (1) follows from the

investigation of the reversible case. Hence, we shall only concentrate on part

(2). By Propositions 10.1.2 and 10.1.3, we know that condensation occurs on

the entire set S, i.e., S = S?. Then, the condition (H0) (of the form (3.26))

follows from Proposition 10.3.2 with A = S, with θN =
1

NdN
and

a(x, y) = [r(x, y)− r(y, x)]1{r(x, y) > r(y, x)} for all x, y ∈ S.

These scale and limiting chain correspond to (10.8) and (10.9) of Conjecture

10.2.3, and the proof is completed.

10.5 Metastable behavior of inclusion process

with condensation

In this section, we are concerning on the metastable behavior of the con-

densate of non-reversible inclusion processes under the condition that the

condensation occurs, namely Theorems 10.2.9, 10.2.11 and 10.2.12. By as-

suming several irreducibility conditions on the limiting Markov chain, we

derive the followings in this section based on the results obtained in Section

10.3:

• characterization of the maximal condensing set S? ⊆ S,
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• asymptotic limit of µN(ξxN) for x ∈ S? as N →∞,

• limiting Markov chain on S? describing the movement of condensate.

We prove these main results in Section 10.5.2 based on a lemma introduced

in 10.5.1.

10.5.1 A preliminary lemma

In this short subsection, we introduce an elementary lemma. We believe that

this result is not new, but we include the full proof since we were not able to

find an exact reference that states the exact result that we need.

Lemma 10.5.1. Let (ZN(·))∞N=1 be a sequence of continuous-time Markov

chains on a finite set S. Denote the jump rate of ZN(·) by aN(·, ·) and fix

an invariant measure πN(·) of ZN(·) for each N . Suppose in addition that

lim
N→∞

aN(x, y) = a(x, y) for all x, y ∈ S. (10.48)

Then each limit point of {πN} becomes an invariant measure for the Markov

chain Z(·) with jump rate a(·, ·). Moreover, if Z(·) admits the unique invari-

ant measure π, then we have that

lim
N→∞

πN(x) = π(x) for all x, y ∈ S. (10.49)

Remark. In the second statement above, note that we did not assume the

irreducibility of Z(·). However, the uniqueness of the invariant measure for

Z(·) is a crucial condition for this statement.

Proof of Lemma 10.5.1. Suppose that a subsequence (πNk)
∞
k=1 converges to

π0. Note that π0 must be a probability measure on S as well. Since πNk is

an invariant measure for the chain ZNk , we have∑
y∈S

πNk(x)aNk(x, y) =
∑
y∈S

πNk(y)aNk(y, x) for all x, y ∈ S.
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By letting k →∞ at the last identity, we obtain that∑
y∈S

π0(x)a(x, y) =
∑
y∈S

π0(y)a(y, x) for all x, y ∈ S.

Therefore, π0 is an invariant measure of Z(·). This concludes the first state-

ment.

Next we consider the second statement. Since {πN : N ≥ 1} is a bounded

subset of RS, we know that this set is precompact. Moreover, we have shown

above that every convergent subsequence converges to an invariant measure

of Z(·), which should be π by the uniqueness assumption for this case. This

completes the proof.

10.5.2 Proof of main results

Now, we are ready to prove Theorems 10.2.9, 10.2.11, and 10.2.12. We con-

sider the asymmetric case and the symmetric case separately. Recall two

Markov chains {Z1(t)}t≥0 and {Z2(t)}t≥0 and the set S0 ⊆ S from Section

10.2.3. We start with the asymmetric case.

Proof of Theorem 10.2.9 and the asymmetric case of Theorem 10.2.12. To start

the proof, we first prove Theorem 10.2.9 by using Proposition 10.3.2. It suf-

fices to verify condition (H0) (convergence of the jump rate of the trace pro-

cess, as in (3.26)) and the fact that S? = S0. We recall the invariant measure

ν of Y nrv(·) on S0 (cf. Theorem 10.2.12), and the rate b(·, ·) : S×S → [0, ∞)

defined in (10.11). Recalling the remark after Notation 10.2.10, the set S0 is

semi-attracting. Thus, by Proposition 10.3.2, we know that

lim
N→∞

θnrv
N rSN(ξxN , ξ

y
N) = b(x, y) for all x, y ∈ S,

where θnrv
N = 1/(NdN). We assumed that the Markov chain Z1(·) with jump

kernel b has the only irreducible component S0, and this guarantees the

uniqueness of the invariant measure of Z1(·), which will be denoted by π.
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Since the invariant measure of the trace process ηENN (θnrv
N ·) is the conditioned

measure µN(·|EN) = µN(·)/µN(EN) on EN , we can deduce from Lemma 10.5.1

that

lim
N→∞

µN(ξxN)

µN(EN)
= π(x) for all x ∈ S.

Since condensation occurs, i.e., lim
N→∞

µN(EN) = 1, we obtain that

lim
N→∞

µN(ξxN) = π(x). (10.50)

Since S0 is the unique irreducible component of the chain Z1(·), we know

that π(x) = 0 for x ∈ S \ S0, and that π(x) > 0 for x ∈ S0. From this and

(10.50), we can conclude that S? = S0. Next, using Proposition 10.3.2 with

A = S0, we obtain

lim
N→∞

θnrv
N rS0

N (ξxN , ξ
y
N) = b(x, y) for all x, y ∈ S0,

Hence, the jump rate of the speeded-up trace process η
EN (S0)
N (θnrv

N ·) converges

to b(·, ·), by identifying ξxN with x. This concludes Theorem 10.2.9.

Finally, note that π conditioned on the irreducible component S0 is the

invariant measure of the Markov chain Z1(·) conditioned on S0, which is

indeed the Markov chain Y nrv(·) defined in the paragraph preceding (10.8).

Thus, we can conclude that π(x) = ν(x) for x ∈ S0 as well. This and (10.50)

finish the proof of the asymmetric case of Theorem 10.2.12.

Now, we consider the symmetric case, for which the time scale is now

1/dN instead of 1/(NdN).

Proof for Theorem 10.2.11 and the symmetric case of Theorem 10.2.12. As in

the previous proof, we prove condition (H0) and the fact that S? = S0.

We first prove that condensation occurs on S0. By Proposition 10.3.2, we
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know that

lim
N→∞

1

NdN
rSN(ξxN , ξ

y
N) = b(x, y) for all x, y ∈ S.

Here, the Markov chain Z1(·) does not necessarily admit a unique invariant

measure. Nevertheless, all the invariant measures of Z1(·) do share the char-

acteristic that they should vanish on S \S0, which is clear from the definition

of S0. Hence, it follows from the first statement of Lemma 10.5.1 that

lim
N→∞

µN(ξxN)

µN(EN)
= 0 for all x ∈ S \ S0.

By the above and the assumption of condensation on S, we have lim
N→∞

µN(EN(S0)) =

1, so that condensation occurs on S0.

Next, using part (1) of Proposition 10.3.2 with A = S0, which is possible

since S0 is assumed to be attracting, we obtain that

lim
N→∞

θrv
N rS0

N (ξxN , ξ
y
N) = r(x, y) for all x, y ∈ S0,

which establishes the convergence of the jump rate of the trace process.

Since the Markov chain Z2(·) on S0 with jump kernel b is irreducible by

the condition of the theorem, it admits the unique invariant measure ν on

S0. Hence, Lemma 10.5.1 implies that

lim
N→∞

µN(ξxN)

µN(EN(S0))
= ν(x) for all x ∈ S0.

Since condensation occurs on S0, this implies that lim
N→∞

µN(ξxN) = ν(x); thus,

S? = S0. Therefore, Theorem 10.2.12 is proved for the symmetric case. Fi-

nally, Theorem 10.2.11 is concluded via Proposition 10.3.2.
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10.6 Condensation under condition (UP)

In this section, we establish condensation of the inclusion process under the

condition (UP), i.e., prove Theorem 10.2.14. With this result on the occur-

rence of condensation, the analysis of the metastable behavior, as well as the

characterization of S? and asymptotic mass of the invariant measure, follows

immediately from the results obtained in Section 10.5. We mention that we

do not have an explicit formula of the invariant measure µN for this case as

well, and hence all the proof should follow the ways that have never been

explored before.

We assume the condition (UP) throughout this section, i.e., r(x, y) > 0

for all x, y ∈ S. We start by summarizing several sets that are repeatedly

used in the proof of the main result of this section. We refer to Figure 10.3

for the illustration of these sets. Some of the notions overlap with the ones

in Definition 9.3.1.

Notation 10.6.1. Let R be a non-empty subset of S.

Define the R-tube as

ARN = {η ∈ HN : ηx = 0 for all x ∈ S \R}.

For example, ASN = HN , A{x}N = ExN , and A{x, y}N = Ax, yN for all x, y ∈ S.

We decompose each R-tube ARN into its boundary ∂ARN and the core RR
N

where

∂ARN ={η ∈ ARN : ηx = 0 for some x ∈ R},

RR
N ={η ∈ ARN : ηx > 0 for all x ∈ R}.

For example, we have ∂A{x, y}N = ExN ∪ E
y
N and R{x, y}N = Âx, yN .

We further decompose the core RR
N into the inner core IRN and the outer
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core ORN where

IRN = {η ∈ RR
N : ηx > ε logN for all x ∈ R},

ORN = {η ∈ RR
N : ηx ≤ ε logN for some x ∈ R},

where ε is a small enough number that will be specified later (cf. (10.69)).

We stress that ε does not depend on N . For the convenience of notation, we

assume in this and the next subsections that ε logN is an integer. (For general

case, it suffices to replace all ε logN below with bε logNc.) For instance, a

configuration η belonging to IRN does not have particles at S \ R while have

more than ε logN particles at each site of R. Summing up, we decompose

each R-tube ARN into the following disjoint union:

ARN = ∂ARN ∪ ORN ∪ IRN . (10.51)

Write |S| = κ. For k ∈ J1, κK, we define

BkN =
⋃

R⊆S, |R|=k

ARN .

Namely, BkN is a collection of configurations that have at most k sites with

at least one particle. For instance, B1
N = EN , B2

N = AN (by the assumption

(UP)), and BκN = HN .

In this section, we are mainly focusing on the following proposition.

Proposition 10.6.2. Suppose that (10.13) holds. Then, for all ` ∈ J2, κK,

we have that

lim
N→∞

µN(B`N)

µN(B`−1
N )

= 1. (10.52)

Proof. We explain the proof based on the results that will be proved in the

remaining part of this section. We prove this proposition by means of the

backward induction on ` from κ to 2. We note that the initial case ` = κ
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Figure 10.3: Visualization of the notation introduced in Notation 10.6.1 when
S = {x, y, z, w} and R = {x, y, z}.

is proved by Propositions 10.6.3 and 10.6.7 (cf. discussion between (10.54)

and (10.55)). Then, by the induction step proved in Proposition 10.6.15, the

assertion of the proposition holds for all ` ∈ J2, κK.

With this proposition, Theorem 10.2.14 is immediate.

Proof of Theorem 10.2.14. Since B1
N = EN and BκN = HN , it suffices to check

that

lim
N→∞

µN(BκN)

µN(B1
N)

= 1. (10.53)

This is immediate from (10.52) and we are done.

Now, we explain our plan to prove the detailed ingredients appeared in the

proof of Proposition 10.6.2. The initial step ` = κ for the backward induction

is proved in Sections 10.6.1 and 10.6.2, and the induction step is established

in Section 10.6.3. For the proof of these steps, an auxiliary Markov chain

introduced in Definition 10.6.9 of Section 10.6.2 is crucially used. As a by-

product of our investigation of the hitting time of this Markov chain carried
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out in Lemma 10.6.11, we prove the nucleation result presented as Theorem

10.2.17 in Section 10.6.4 as well.

10.6.1 Initial step (1): negligibility of the outer core

Now, we prove the case ` = κ for Proposition 10.6.2. Since BκN = ASN(= HN)

and Bκ−1
N = ∂ASN by the definition of the boundary, it suffices to prove

lim
N→∞

µN(ASN)

µN(∂ASN)
= 1. (10.54)

Since µN(ASN) = µN(∂ASN)+µN(OSN)+µN(ISN) by (10.51), it suffices to prove

that

lim
N→∞

µN(OSN)

µN(∂ASN)
= 0 and lim

N→∞

µN(ISN)

µN(∂ASN)
= 0. (10.55)

The proof of The latter one is considered in the next subsection, and we focus

only on the former one in the current subsection. Thus, the main object now

is to prove the following proposition.

Proposition 10.6.3. Suppose that lim
N→∞

dNN = 0. Then, for sufficiently

small ε > 0, we have that

lim
N→∞

µN(OSN)

µN(∂ASN)
= 0.

To prove this, we decompose the outer core OSN into more refined objects,

and estimate each of them carefully.

Decomposition of outer core

For x ∈ R ⊆ S and k ∈ J1, NK, we define

CRN(x, k) = {η ∈ ARN : ηx = k}.
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For instance, we have

CRN(x, N) = ExN and CRN(x, 0) = AR\{x}N . (10.56)

Then, it holds that

ORN ⊆
⋃
x∈R

ε logN⋃
k=1

CRN(x, k); (10.57)

thus,

µN(OSN) ≤
∑
x∈S

ε logN∑
k=1

µN(CSN(x, k)). (10.58)

Hence, it suffices to estimate µN(CSN(x, k)) for k ∈ J1, ε logNK and x ∈ S.

Estimation of µN(CSN(x, k))

For k ∈ J0, N − 1K and x ∈ R ⊆ S, we define

FR
N(x; k → k + 1) =

∑
η∈CRN (x, k), ζ∈CRN (x, k+1)

µN(η)rN(η, ζ),

FR
N(x; k + 1→ k) =

∑
η∈CRN (x, k+1), ζ∈CRN (x, k),

µN(η)rN(η, ζ).

Lemma 10.6.4. For all k ∈ J0, N − 1K and x ∈ S, it holds that

FS
N(x; k → k + 1) = FS

N(x; k + 1→ k).

Proof. Since µN is the invariant measure for the inclusion process, we have

that,∑
x, y∈S

µN(η)rN(η, σx, yη) =
∑
x, y∈S

µN(σx, yη)rN(σx, yη, η) for all η ∈ HN .

(10.59)

Here, we use the convention that rN(η, η) = 0 for η ∈ HN . By summing
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(10.59) over η ∈ CSN(x, k),∑
η∈CSN (x, k)

∑
y, z∈S\{x}

µN(η)rN(η, σy, zη) +
∑

η∈CSN (x, k)

∑
y∈S\{x}

µN(η)rN(η, σy, xη)

+
∑

η∈CSN (x, k)

∑
y∈S\{x}

µN(η)rN(η, σx, yη)

=
∑

η∈CSN (x, k)

∑
y, z∈S\{x}

µN(σy, zη)rN(σy, zη, η) +
∑

η∈CSN (x, k)

∑
y∈S\{x}

µN(σy, xη)rN(σy, xη, η)

+
∑

η∈CSN (x, k)

∑
y∈S\{x}

µN(σx, yη)rN(σx, yη, η).

(10.60)

Note that the first summations in the respective sides of (10.60) are canceled

out with each other. Therefore, (10.60) can be simply rewritten as

FS
N(x; k → k+1)+FS

N(x; k → k−1) = FS
N(x; k → k+1)+FS

N(x; k−1→ k),

(10.61)

where FS
N(x; −1 → 0) and FS

N(x; 0 → −1) are defined to be 0. Inserting

k = 0 to (10.61) implies

FS
N(x; 0→ 1) = FS

N(x; 1→ 0). (10.62)

Therefore, (10.61) and (10.62) along with induction on k finish the proof.

Lemma 10.6.5. For k ∈ J0, N − 1K and x ∈ S, we have that

µN(CSN(x, k + 1)) ≤ R2(k + dN)(N − k)

R1(k + 1)(N − k − 1 + dN)
µN(CSN(x, k)),

where the constants R1 and R2 are introduced in (10.25).

Proof. Looking at FS
N(x; k → k + 1) more carefully, we get the following
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bound:

FS
N(x; k → k + 1) =

∑
η∈CSN (x, k), ζ∈CSN (x, k+1)

µN(η)rN(η, ζ)

=
∑

η∈CSN (x, k)

∑
y∈S\{x}

µN(η)rN(η, σy, xη)

=
∑

η∈CSN (x, k)

[
µN(η)

∑
y∈S\{x}

ηy(dN + ηx)r(y, x)
]

= (k + dN)
∑

η∈CSN (x, k)

µN(η)
∑

y∈S\{x}

r(y, x)ηy

≤ R2(k + dN)(N − k)µN(CSN(x, k)).

(10.63)

Similarly, we can get

FS
N(x; k + 1→ k) =

∑
η∈CSN (x, k+1)

∑
y∈S\{x}

µN(η)rN(η, σx, yη)

=
∑

η∈CSN (x, k+1)

[
µN(η)

∑
y∈S\{x}

ηx(dN + ηy)r(x, y)
]

≥ R1(k + 1)(N − k − 1 + dN)µN(CSN(x, k + 1)).

(10.64)

Combining (10.63), (10.64) with Lemma 10.6.4, we can complete the proof

of the lemma.

In the proof above, it is crucial to have r(x, y) > 0 for all x, y ∈ S to

deduce (10.64). Hence, the condition (UP) is critically used.

Lemma 10.6.6. For sufficiently small ε > 0, we have that

ε logN∑
k=1

µN(CSN(x, k)) ≤ O(NdN)µN(AS\{x}N ).

Proof. Inserting k = 0 to Lemma 10.6.5 yields that, for some constant C1 >
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0,

µN(CSN(x, 1)) ≤ C1dNµN(CSN(x, 0)), (10.65)

while inserting k ∈ J1, N − 2K provides us that for some constant C2 > 0,

µN(CSN(x, k + 1)) ≤ C2µN(CSN(x, k)). (10.66)

Let C0 = max{C1, C2}. Then, (10.65) and (10.66) imply that

µN(CSN(x, k)) ≤ Ck
0dNµN(CSN(x, 0)) for k ∈ J1, N − 1K. (10.67)

Summing this up for k = 1, 2, . . . , ε logN , we get

ε logN∑
k=1

µN(CSN(x, k)) ≤ C
(ε logN)+1
0 − C0

C0 − 1
dNµN(CSN(x, 0)). (10.68)

Take ε small enough so that

C
(ε logN)+1
0 − C0

C0 − 1
= O(N). (10.69)

The proof is completed since CSN(x, 0) = AS\{x}N by (10.56).

Now, we are ready to prove the main goal of this subsection.

Proof of Proposition 10.6.3. By (10.57) and the previous lemma, we get

µN(OSN) ≤
∑
x∈S

ε logN∑
k=1

µN(CSN(x, k)) ≤ CdNN
∑
x∈S

µN(AS\{x}N ).

The proof is completed since∑
x∈S

µN(AS\{x}N ) = µN(∂ASN),
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and since lim
N→∞

dNN = 0 by the assumption of the proposition.

10.6.2 Initial step (2): negligibility of the inner core

In this subsection, we prove the negligibility of the inner core ISN via the

following proposition.

Proposition 10.6.7. Suppose that lim
N→∞

dNN
κ+2(logN)κ−3 = 0. Then, we

have that

lim
N→∞

µN(ISN)

µN(∂ASN)
= 0.

The proof of this part is more demanding than that of the outer core, and

we have to introduce a sequence of new concepts.

Define the closure and the (outer) boundary of IRN for R ⊆ S as

IRN = {η ∈ ARN : rN(ζ, η) > 0 for some ζ ∈ IRN},

∂IRN = IRN \ IRN .

Thus, ISN consists of configurations η such that ηx ≥ ε logN for all x and

there exists at most one x ∈ S with ηx = ε logN , while ∂ISN consists of

configurations η such that ηx ≥ ε logN for all x and there exist exactly one

x ∈ S with ηx = ε logN . Therefore, we have the following decomposition for

∂ISN
∂ISN ⊆

⋃
x∈S

CSN(x, ε logN).

Therefore, by (10.67) and (10.69), we have that

µN(∂ISN) ≤
∑
x∈S

µN(CSN(x, ε logN)) ≤ CNdN
∑
x∈S

µN(CSN(x, 0)) = O(NdN)µN(∂ASN).

(10.70)

Hence, Proposition 10.6.7 is the consequence of the following proposition.

539



CHAPTER 10. NON-REVERSIBLE INCLUSION PROCESS

Proposition 10.6.8. Suppose that lim
N→∞

dNN
κ+2(logN)κ−3 = 0. Then, we

have that

µN(ISN) = O(Nκ−2(logN)κ)µN(∂ISN). (10.71)

Proof of Proposition 10.6.7. By (10.70) and (10.71), we get that

µN(ISN) = O(Nκ−2(logN)κ)µN(∂ISN) = O(Nκ−1(logN)κdN)µN(∂ASN).

By the condition dNN
κ+2(logN)κ−3 = o(1), we are done.

The remaining part of this subsection is devoted to prove Proposition

10.6.8.

Auxiliary Markov chain η̂RN(·) and its hitting time estimate

The crucial ingredient in the proof of Proposition 10.6.8 is an auxiliary dis-

crete time Markov chain on ISN = ISN ∪ ∂ISN and the estimate of the hitting

time of the set ∂ISN when the chain starts from ISN . To use these results at

the induction step in Section 10.6.3, we will work on IRN for R ⊆ S.

Definition 10.6.9. For R ⊆ S, let (η̂RN(t))t∈N denote the discrete-time

Markov chain on IRN whose transition probability p̂RN is given by

p̂RN(η, σx, yη) =
ηy(dN + ηx)r(y, x)∑
a, b∈R ηa(dN + ηb)r(a, b)

for η, σx, yη ∈ IRN , (10.72)

and set

p̂RN(η, η) = 1−
∑
ζ: ζ 6=η

p̂RN(η, ζ) for η ∈ ∂IRN .

In other words, η̂RN(·) is attained from the discrete version of the inclusion

process by changing the jump rate ηx(dN + ηy)r(x, y) to ηy(dN + ηx)r(y, x)

and then restricting to IRN . This chain is well defined since ηx, ηy > 0 for

η ∈ IRN .
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Let L̂R
N denote the corresponding generator and by ÊRη the expectation

with respect to the chain η̂RN(·) starting from η ∈ IRN . Finally, let σR :=

τ∂IRN be the hitting time the set ∂IRN by the chain η̂RN(·). Then, the primary

purpose is to estimate ÊRη [σR] for η ∈ IRN . The crucial step for this estimate

is the following construction of a test function, which based on the so-called

Gordan’s lemma.

Lemma 10.6.10. Suppose that R ⊆ S and lim
N→∞

dNN
2/(logN)2 = 0. Then,

there exist a constant C = C(ε) > 0 and a test function f0 = fR0 : IRN → R
such that

max
IRN

f0 −min
IRN

f0 ≤ C logN, (10.73)

(L̂R
N f0)(η) ≥ logN

CN3
for all η ∈ IRN . (10.74)

Proof. Fix R ⊆ S and consider a |R|× |R| skew-symmetric matrix Q defined

by

Qx, y = r(x, y)− r(y, x), x ∈ R and y ∈ R.

By Gordan’s lemma stated in Lemma 10.8.2 at the appendix, we have that

∃α = (αx)x∈R ∈ R|R| such that (Qα)1, . . . , (Qα)|R| < 0, (10.75)

or

∃β( 6= 0) = (βx)x∈R ∈ R|R| so that β1, . . . , β|R| ≤ 0 and Qβ = 0. (10.76)

We consider these two cases separately.

(Case 1: (10.75)) In this case, define f0 : IRN → R as

f0(η) =
∑
x∈R

αx

(
1 +

1

2
+ · · ·+ 1

ηx

)
.
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Then, for each η ∈ IRN ,

|f0(η)| ≤ C
∑
x∈R

|αx| log ηx ≤ C ′ logN ;

hence, the condition (10.73) follows immediately. To check the condition

(10.74), we define

w(η) =
∑
a, b∈R

ηa(dN + ηb)r(a, b),

so that

(L̂R
N f0)(η) =

1

w(η)

∑
x, y∈R

ηy(dN + ηx)r(y, x)
( αy
ηy + 1

− αx
ηx

)
=

1

w(η)

{ ∑
x, y∈R

r(y, x)ηxηy

( αy
ηy + 1

− αx
ηx

)
+O

(
dN

N

logN

)}
=

1

w(η)

{ ∑
x, y∈R

r(y, x)ηxηy

(αy
ηy
− αx
ηx

)
+O

( N

logN

)
+O

(
dN

N

logN

)}
.

(10.77)

The seemingly not so serious last identity is indeed the main reason that we

introduced the inner core IRN . The error coming from this identity is not able

to control if ηy is close to 0. In this case the bound ηy ≥ ε logN provides us

the small error term of O(N/ logN).

Now the last summation can be computed as∑
x, y∈R

r(y, x)(αyηx − αxηy) =
∑
x∈R

[
ηx
∑
y∈R

αy{r(y, x)− r(x , y)}
]

=
∑
x∈R

[
ηx
∑
y∈R

−Qx, yαy

]
=
∑
x∈R

ηx(−Qα)x ≥
N

C
.

where the last inequality is due to (10.75). Since w(η) = O(N2), applying

the last inequality to (10.77) verifies the condition (10.74) because clearly

1/N ≥ 1/N3.
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(Case 2: (10.76)) Define f0 : IRN → R by

f0(η) =
∑
x∈R

βx

(
1 +

1

2
+ · · ·+ 1

ηx

)
.

Then, the condition (10.73) follows similarly as (Case 1). By a similar cal-

culation, for η ∈ IRN ,

(L̂R
N f0)(η)

=
1

w(η)
·
∑
x, y∈R

ηy(dN + ηx)r(y, x)
( βy
ηy + 1

− βx
ηx

)
=

1

w(η)
·
[ ∑
x, y∈R

r(y, x)ηxηy

(βy
ηy
− βx
ηx

)
+
∑
x, y∈R

r(y, x)
−βyηx
ηy + 1

+O
(
dN

N

logN

)]
=

1

w(η)
·
[∑
x∈R

ηx(−Qβ)x +
∑
x, y∈R

r(y, x)
ηx

ηy + 1
(−βy) +O

(
dN

N

logN

)]
.

The first summation in the last line vanishes sinceQβ = 0. Hence by (10.76),

(L̂R
N f0)(η) ≥ 1

w(η)

[ 1

C

∑
x, y∈R

ηx
ηy + 1

(−βy) +O
(
dN

N

logN

)]
≥ 1

C ′
N−3 logN,

(10.78)

where the last inequality holds because w(η) = O(N2), and lim
N→∞

dNN
2/(logN)2 =

0 along with η ∈ IRN imply that the first term inside the bracket dominates

the second term.

We remark that, at the first inequality of (10.78), the condition (UP) is

strongly used again. Now, we estimate the expectation of the hitting time σR

of the outer boundary ∂IRN .

Lemma 10.6.11. Suppose that R ⊆ S and that lim
N→∞

dNN
2/(logN)2 = 0.

Then, there exists C = C(ε) > 0 such that

sup
η∈IRN

ÊRη [σR] ≤ CN3.
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Proof. For f : IRN → R, we know that

M (n) = f(η̂RN(n))− f(η̂RN(0))−
n−1∑
k=0

(L̂R
N f)(η̂RN(k)) for n ∈ N

is a discrete-time martingale with initial value 0. Therefore, by the optional

stopping theorem, we have for all η ∈ IRN and n ≥ 0 that

ÊRη [f(η̂RN(σR ∧ n))] = f(η) + ÊRη
[ (σR∧n)−1∑

k=0

(L̂R
N f)(η̂RN(k))

]
. (10.79)

Now, we insert f = f0 where f0 is the test function obtained in Lemma 10.6.10.

Using the bounds in (10.73) and (10.74), it holds for all n ≥ 0 that

C logN ≥ÊRη [f0(η̂RN(σR ∧ n))]− f0(η)

=ÊRη
[ (σR∧n)−1∑

k=0

(L̂R
N f0)(η̂RN(k))

]
≥ logN

CN3
ÊRη [σR ∧ n].

Thus, the proof is completed by letting n→∞.

Remark 10.6.12. A careful reading of the proofs shows that Lemmas 10.6.10

and 10.6.11 holds for any ε > 0.

Lemma 10.6.13. Fix a set R ⊆ S and a constant δ ≥ 0. Suppose that

lim
N→∞

dNN
2/(logN)2 = 0, and that a function f : IRN → R satisfies

f(η) ≤
∑
ζ∈IRN

p̂RN(η, ζ)f(ζ) + δ for all η ∈ IRN . (10.80)

Then, for each η ∈ IRN , we have that

f(η) ≤ max
∂IRN

f + CN3δ.
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Proof. Define g : IRN → R by

g(η) = ÊRη [f(η̂RN(σR)) + δσR].

For η ∈ IRN , the Markov property gives us that

g(η) =
∑
ζ∈IRN

p̂RN(η, ζ)Eζ [f(η̂RN(σR)) + δ(σR + 1)]

=
∑
ζ∈IRN

p̂RN(η, ζ)g(ζ) + δ.
(10.81)

Let h = f − g. Then, by (10.80) and (10.81), we have that

h(η) ≤
∑
ζ∈IRN

p̂RN(η, ζ)h(ζ) for all η ∈ IRN .

On the other hand, we have h ≡ 0 on ∂IRN since σR = 0 on ∂IRN . Therefore,

since η̂RN(·) is irreducible, the maximum principle implies that h ≤ 0, i.e.,

f ≤ g on IRN . Since g(η) ≤ max
∂IRN

f + δÊRη [σR] by the definition of g, the proof

is completed by Lemma 10.6.11.

Now, we define m : HN → R by

m(η) = µN(η)
∏
x∈S

ηx. (10.82)

Then we can obtain the following estimate on m based on the maximum

principle given in Lemma 10.6.13.

Lemma 10.6.14. There exists C = C(ε) such that for each η ∈ ISN ,

m(η) ≤ max
∂ISN

m + C
dNN

3

(logN)2
max
ISN

m.
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Proof. We can deduce from (10.59) that, for each η ∈ ISN ,∑
x, y∈S

µN(η)ηx(dN + ηy)r(x, y) =
∑
x, y∈S

µN(σy, xη)(ηx + 1)(dN + ηy − 1)r(x, y).

Inserting µN(η) = m(η)(
∏
x∈S

ηx)
−1 and rearranging it yield that

m(η) =
∑
x, y∈S

ηx(dN + ηy)r(x, y) ηy(dN+ηy−1)

(dN+ηy)(ηy−1)∑
a, b∈S ηa(dN + ηb)r(a, b)

m(σy, xη).

By recalling the definition of p̂SN (cf. (10.72)), we can rewrite the last identity

as

m(η) =
∑
x, y∈S

[
1 +

dN
(dN + ηy)(ηy − 1)

]
p̂SN(η, σy, xη)m(σy, xη). (10.83)

For η ∈ ISN , we have

∑
x, y∈S

dN
(dN + ηy)(ηy − 1)

p̂SN(η, σy, xη)m(σy, xη) ≤ CdN
(logN)2

max
ISN

m (10.84)

since ηx ≥ ε logN for all x ∈ S. By (10.83) and (10.84), m satisfies

m(η) ≤
∑
ζ∈ISN

p̂SN(η, ζ)m(ζ) +
CdN

(logN)2
max
ISN

m. (10.85)

Hence, the proof is completed by Lemma 10.6.13 with R = S and f = m.

Now, we are ready to prove Proposition 10.6.8 by combining results ob-

tained in Lemmas 10.6.10-10.6.14.
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Proof of Proposition 10.6.8. By Lemma 10.6.14,

µN(ISN) =
∑
η∈ISN

µN(η) =
∑
η∈ISN

m(η)∏
x∈S ηx

≤
∑
η∈ISN

1∏
x∈S ηx

{
max
∂ISN

m +
dN

(logN)2
CN3 max

ISN
m
}

≤CN−1(logN)κ−1
{

max
∂ISN

m +
dN

(logN)2
CN3 max

ISN
m
}
,

(10.86)

where the last line follows from Lemma 10.8.1 (note that κ = |S|). Recall

the definition of m from (10.82) and note that

∏
x∈S

ηx =

O(Nκ−1 logN) for η ∈ ∂ISN ,

O(Nκ) for η ∈ ISN .

Based on this, we can further deduce from (10.86) that

µN(ISN) ≤ CNκ−2(logN)κ max
∂ISN

µN + CdNN
κ+2(logN)κ−3 max

ISN
µN

≤ CNκ−2(logN)κµN(∂ISN) + CdNN
κ+2(logN)κ−3µN(ISN).

By the condition on dN given at the statement of the proposition, we complete

the proof.

10.6.3 Induction step

Next, we consider the induction step. We shall prove the following two state-

ments together by the backward induction: there exists C > 0 such that, for

all i ∈ J2, κK,

lim
N→∞

µN(BiN)

µN(Bi−1
N )

= 1, (10.87)
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and for all R ⊆ S with |R| = i, and for all z ∈ R,

µN(CRN(z, 1)) ≤ CdNµN(Bi−1
N ). (10.88)

Note that the initial case i = κ for (10.87) is proved in Propositions 10.6.3,

10.6.7, and for (10.88) is proved in Lemma 10.6.5.

Now, we will assume the following condition throughout this subsection:

lim
N→∞

dNN
κ+2(logN)κ−3 = 0. (10.89)

Proposition 10.6.15. Suppose that the induction hypotheses (10.87) and

(10.88) hold for i = `+ 1. Then, (10.87) and (10.88) hold for i = ` as well.

The overall outline of the proof is similar to the initial step, but several

additional technical difficulties arise in the course of the proof. As before, we

investigate the outer core and inner core separately in Lemmas 10.6.16 and

10.6.19, respectively.

Estimation of the outer core

For the outer core ORN with R ⊆ S, we will prove the following bound.

Lemma 10.6.16. For all R ⊆ S, it holds that

µN(ORN) = o(1)[µN(∂ARN) + µN(ARN)].

We first prove two preliminary lemmas before proving this lemma. Recall

the notions introduced after Proposition 10.6.7.

Lemma 10.6.17. For all R ⊆ S, x ∈ R, and j ∈ J0, N − 1K, it holds that

FR
N(x; j + 1→ j)− FR

N(x; j → j + 1) ≤ CdNNµN(ARN). (10.90)
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Proof. By summing (10.59) over η ∈ CRN(x, k),∑
η∈CRN (x, k)

∑
y, z∈R\{x}

µN(η)rN(η, σy, zη) +
∑

η∈CRN (x, k)

∑
y∈R\{x}

µN(η)rN(η, σy, xη)

+
∑

η∈CRN (x, k)

∑
y∈R\{x}

µN(η)rN(η, σx, yη) +
∑

η∈CRN (x, k)

∑
y∈R, z∈Rc

µN(η)rN(η, σy, zη)

=
∑

η∈CRN (x, k)

∑
y, z∈R\{x}

µN(σy, zη)rN(σy, zη, η) +
∑

η∈CRN (x, k)

∑
y∈R\{x}

µN(σy, xη)rN(σy, xη, η)

+
∑

η∈CRN (x, k)

∑
y∈R\{x}

µN(σx, yη)rN(σx, yη, η) +
∑

η∈CRN (x, k)

∑
y∈R, z∈Rc

µN(σy, zη)rN(σy, zη, η).

(10.91)

Compared to the corresponding computations in Lemma 10.6.4, the last

terms in both sides of (10.91) should be handled in addition. The term in

the left-hand side is bounded above by∑
η∈CRN (x, k)

∑
y∈R, z∈Rc

µN(η)rN(η, ηy, z) = O(dNN)
∑

η∈CRN (x, k)

µN(η)

= O(dNN)µN(CRN(x, k)).

The term in the right-hand side of (10.91) is bounded below by 0. Hence, we

can obtain from (10.91) that

[FR
N(x; k + 1→ k)− FR

N(x; k → k + 1)]− [FR
N(x; k → k − 1)− FR

N(x; k − 1→ k)]

≤ CdNNµN(CRN(x, k)).

By summing the bound over k = 0, 1, . . . , j, we obtain (10.90).

Lemma 10.6.18. There exists C > 0 such that for all R ⊆ S, x ∈ R, and
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k ∈ J0, N − 1K, we have

µN(CRN(x, k + 1)) ≤C (k + dN)(N − k)

(k + 1)(N − k − 1 + dN)
µN(CRN(x, k))

+ C
dNN

(k + 1)(N − k − 1 + dN)
µN(ARN).

Proof. The proof is identical to Lemma 10.6.5 if we replace the role of Lemma

10.6.4 with that of Lemma 10.6.17.

Now, we prove Lemma 10.6.16 based on Lemmas 10.6.17 and 10.6.18.

Proof of Lemma 10.6.16. Fix x ∈ R. Inserting k = 0 in Lemma 10.6.18

implies that there exists a constant C1 > 1 such that

µN(CRN(x, 1)) ≤ C1dNµN(CRN(x, 0)) + C1dNµN(ARN). (10.92)

On the other hand, inserting k ∈ J1, N − 1K to Lemma 10.6.18 implies that

there exists a constant C2 > 1 such that

µN(CRN(x, k + 1)) ≤ C2µN(CRN(x, k)) + C2dNµN(ARN). (10.93)

Let C0 = max{C1, C2}. Then, by (10.92) and (10.93), we obtain that

µN(CRN(x, k)) ≤ Ck
0dNµN(CRN(x, 0))+

Ck+1
0 − C0

C0 − 1
dNµN(ARN) for k ∈ J1, N−1K.

(10.94)

Summing this up for for k ∈ J1, ε logNK, it holds that

ε logN∑
k=1

µN(CRN(x, k)) ≤ C × Cε logN
0 dN [µN(CRN(x, 0)) + µN(ARN)].

Take ε small enough so that

Cε logN
0 � N. (10.95)
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Therefore, by (10.57),

µN(ORN) ≤
∑
x∈R

ε logN∑
k=1

µN(CRN(x, k)) ≤ CdNN
∑
x∈R

{µN(AR\{x}N ) + µN(ARN)}

= O(dNN)[µN(∂ARN) + µN(ARN)].

This finishes the proof.

Estimation of the inner core

Next, we control the inner core IRN . The proof of the following lemma also

relies on Lemma 10.6.11 regarding the estimate of the hitting time.

Lemma 10.6.19. Suppose that (10.88) holds for i = ` + 1. Then, for all

R ⊆ S with |R| = `, we have that

µN(IRN) = o(1)[µN(∂ARN) + µN(B`N)].

Proof. Fix R ⊆ S and define mR : HN → R by

mR(η) = µN(η)
∏
x∈R

ηx. (10.96)

Similarly to Lemma 10.6.14, for η ∈ IRN , we get

µN(η) =
∑

y∈R, x∈S\{y}

(ηx + 1)(dN + ηy − 1)r(x, y)∑
a∈R, b∈S\{a} ηa(dN + ηb)r(a, b)

µN(σy, xη).

In the denominator of the right-hand side, we discard the transitions escaping
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R to get the following upper bound for µN(η):

µN(η) ≤
∑
x, y∈R

(ηx + 1)(dN + ηy − 1)r(x, y)∑
a, b∈R ηa(dN + ηb)r(a, b)

µN(σy, xη)

+
∑

y∈R, x∈S\R

(dN + ηy − 1)r(x, y)∑
a, b∈R ηa(dN + ηb)r(a, b)

µN(σy, xη).

(10.97)

By the assumption that (10.88) holds for i = `+ 1, the last term is bounded

by ∑
x∈S\R

C

logN
µN(CR∪{x}N (x, 1)) ≤ CdN

logN
µN(B`N).

Inserting this to (10.97) and using the formula (10.96) of mR, we can deduce

that

mR(η) ≤
∑
x, y∈R

ηx(dN + ηy)r(x, y) ηy(dN+ηy−1)

(dN+ηy)(ηy−1)∑
a, b∈R ηa(dN + ηb)r(a, b)

mR(σy, xη) +
CdNN

`

logN
µN(B`N).

(10.98)

Now, as in the proof of Lemma 10.6.14 (cf. (10.83), (10.84), and (10.85)), we

can obtain from the previous inequality that

mR(η) ≤
∑
x, y∈R

pRN(η, σy, xη)mR(σy, xη)+
2dN

(logN)2
max
IRN

mR+
CdNN

`

logN
µN(B`N).

Therefore, Lemma 10.6.13 with f = mR and Lemma 10.6.11 give that,

mR(η) ≤ max
∂IRN

mR + max
IRN

mR CdNN
3

(logN)2
+
CdNN

`+3

logN
µN(B`N) (10.99)

for all η ∈ IRN . Now recalling the definition (10.96) and applying Lemma
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10.8.1,

µN(IRN) ≤
∑
η∈IRN

1∏
x∈R ηx

{
max
∂IRN

mR + max
IRN

mR CdNN
3

(logN)2
+
CdNN

`+3

logN
µN(B`N)

}
≤C(logN)`−1

N

{
N `−1 logN max

∂IRN
µN + dN

N `+3

(logN)2
max
IRN

µN + dN
N `+3

logN
µN(B`N)

}
=CN `−2(logN)`µN(∂IRN) + CdNN

`+2(logN)`−3µN(IRN)

+ CdNN
`+2(logN)`−2µN(B`N).

By (10.89), we can finally deduce that

µN(IRN) = O(N `−2(logN)`)µN(∂IRN) +O(dNN
`+2(logN)`−2)µN(B`N).

(10.100)

Recall the notation defined after Proposition 10.6.3 to see that

∂IRN ⊆
⋃
x∈R

CRN(x, ε logN).

Therefore by (10.94),

µN(∂IRN) ≤
∑
x∈R

µN(CRN(x, ε logN)) = O(dNN)[µN(∂ARN) + µN(ARN)].

(10.101)

(10.100) and (10.101) give

µN(IRN) = O(dNN
`−1(logN)`)µN(∂ARN) +O(dNN

`+2(logN)`−2)µN(B`N).

By (10.89), we finish the proof.

Proof of Proposition 10.6.15. Take R ⊆ S with |R| = `. Since RR
N is de-

composed into ORN and IRN , and since ∂ARN ⊆ B`−1
N , we can derive from
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Propositions 10.6.16 and 10.6.19 that

µN(RR
N) = o(1)[µN(∂ARN) + µN(B`N)] ≤ o(1)[µN(B`−1

N ) + µN(B`N)].

Summing the last bound over all R ⊆ S with |R| = ` yields that

µN(B`N \ B`−1
N ) = o(1)[µN(B`−1

N ) + µN(B`N)].

We can deduce (10.87) with i = ` from here. On the other hand, we can

verify (10.88) with i = ` from (10.87) and (10.94). To be more specific, for

x ∈ R, inserting k = 1 in (10.94) gives us

µN(CRN(x, 1)) ≤ CdNµN(CRN(x, 0)) + CdNµN(ARN).

Since CRN(x, 0) ⊆ B`−1
N and µN(ARN) ≤ µN(B`N) = (1 + o(1))µN(B`−1

N ) by

(10.87), we conclude that µN(CRN(x, 1)) ≤ CdNµN(B`−1
N ) and thus conclude

the proof of Proposition 10.6.15.

Remark 10.6.20. We remark that the final step in (10.52), i.e., ` = 2, can

be proved in a completely independent way without assumption (UP), and

with a much weaker assumption on dN . To be more specific, we can prove

the following result:

Theorem. Suppose that lim
N→∞

dNN logN = 0. Then, we have

lim
N→∞

µN(EN)

µN(AN)
= 1.

Note that under condition (UP), this is exactly the case ` = 2 in (10.52).

We omit the proof of this statement, and only remark that it can be proved

by tracing the original process on AN and calculating the transition rates of

the trace process, as done in Section 10.3.3.
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10.6.4 Proof of Theorem 10.2.17

Now, we explain the proof of Theorem 10.2.17 whose main idea of proof is

nearly identical to that of Lemma 10.6.11. Slight difference is that here we are

dealing with the original continuous-time chain ηN(·), instead of the reversed

discrete-time chain η̂RN(·).

Proof of Theorem 10.2.17. We recall the definition of UN from the display

before Theorem 10.2.17. Let us identify ε in the definition of ISN with δ in

the definition of UN . Then, in the terminology introduced in this section, we

have UN = (ISN)c and thus τUN = τ∂ISN provided that the chain starts in U cN .

Thus a deduction similar to that in Lemma 10.6.10 guarantees the existence

of test function g0 : ISN → R such that

max
ISN

g0 −min
ISN

g0 ≤ C logN and (LNg0)(η) ≥ logN

CN
for all η ∈ ISN .

Here, the denominator of the lower bound of (LNg0)(η) is CN instead of

CN3, since there is no w(η) term as in Lemma 10.6.10 in the calculation of

the continuous-time generator LN . Let us consider an arbitrary extension of

g0 to a function on HN and then consider the continuous-time martingale

Mg0(t) := g0(ηN(t))− g0(ηN(0))−
∫ t

0

(LNg0)(ηN(s))ds, t ≥ 0.

Then, proceeding as in Lemma 10.6.11, we can conclude that Eη[τUN ] ≤
CN .

10.7 Inclusion process in thermodynamic limit

regime

In this section, we consider the inclusion process in the thermodynamic limit

regime and prove the condensation (Theorem 10.2.19) and the metastable
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behavior (Theorems 10.2.21-10.2.23).

Organization of the section

In Section 10.7.1, we prove the existence of the condensation (Theorem

10.2.19), which is indeed not very far from that of the fixed L case un-

der (UI). On the other hand, the metastable behavior is more delicate than

the fixed L case, mainly because the limiting dynamic is now a continu-

ous process on Td, while the trace process is a jump process on TdL. The

proof of this convergence is based on two ingredients: the convergence of the

generator (Proposition 10.7.1) and the tightness (Proposition 10.7.3). These

ingredients are obtained in Sections 10.7.2 and 10.7.3, respectively. Finally,

we prove Theorems 10.2.21-10.2.23 in Section 10.7.4.

10.7.1 Condensation

We first establish condensation by proving Theorem 10.2.19. This should be

distinguished from the former cases by the fact that the graph grows along

with the number of particles. Although the proof is given in [42, Proposition

2], we present a proof here for the completeness of the article.

Proof of Theorem 10.2.19. Recall EL from (10.17). Then, it suffices to show

that

lim
L→∞

µL(HL \ EL)

µL(EL)
= 0. (10.102)

Since the inclusion process that we consider here satisfies the condition (UI),

thanks to Proposition 10.1.2, the invariant measure of the process denoted

by µL can be expressed explicitly by

µL(η) =
1

ZL

∏
x∈TdL

wL(ηx), η ∈ HL, (10.103)
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where

wL(n) =
Γ(n+ dL)

n!Γ(dL)
for n ∈ N and ZL =

∑
η∈HL

∏
x∈TdL

wL(ηx).

Recall the inequality from (8.5). Since we assumed that lim
L→∞

dLL
d logL = 0,

it implies that

wL(k) = (1 + o(1))
dL
k

uniformly for k ∈ J1, LK. (10.104)

Decompose

HL \ EL =
L⋃
i=2

∆i (10.105)

where, for each i ∈ J2, LK,

∆i = {η ∈ HL : exactly i coordinates of η = (ηx)x∈TL are non-zero}.

By (10.104) and the definition of Sn, k in Lemma 10.8.1, for large enough L,

µL(∆i) ≤
1

ZL
(2dL)iSN, i ×

(
Ld

i

)
,

where the last term appears since there are

(
L

i

)
ways to select i coordinates

that are non-zero. By Lemma 10.8.1, it holds for all large enough L that

µL(∆i) ≤
1

ZL

1

3N log(N + 1)
(6dL log(N + 1))i

(
Ld

i

)
≤ 1

ZL

1

N logN
(7dL logLd)i

(
Ld

i

)
.

(10.106)

For convenience, write uL = 7dL logLd. Then, by combining (10.105) and
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(10.106), we obtain for all large enough L that

µL(HL \ EL) =
L∑
i=2

µL(∆i) ≤
1

ZL

1

N logN
{(1 + uL)L

d − 1− LduL}

≤ 1

ZL

1

N logN
{eLduL − 1− LduL}

≤ 1

ZL

1

N logN
(LduL)2,

where the last inequality follows because limLduL = 0. Thus,

µL(HL \ EL) ≤ C

ZL
d2
LL

d logL. (10.107)

On the other hand, by the explicit formula (10.103) and the asymptotic

(10.15), we have that

µL(EL) = Ld× 1

ZL
wL(N)wL(0)L

d−1 = (1+o(1))Ld× 1

ZL

dL
N

= (1+o(1))
1

ρZL
dL.

(10.108)

Now, (10.102) is straightforward from (10.107) and (10.108).

10.7.2 Convergence of the generator

Now, we consider the metastable behavior associated with the condensa-

tion proved above. The generator LTd associated with the limiting object

presented in Theorems 10.2.21-10.2.23 can be written as, for all sufficiently

558



CHAPTER 10. NON-REVERSIBLE INCLUSION PROCESS

smooth f : Td → R,

(LTdf)(x)

=



ρ(
∑
y∈Zd

h(y)y) · ∇f(x) for totally asym. case,

ρ

2

∑
y∈Zd:h(y)>h(−y)

(h(y)− h(−y))y†[∇2f(x)]y for mean-zero asym. case,

1

2

∑
y∈Zd

h(y)y†[∇2f(x)]y for symmetric case,

(10.109)

where (∇2f)(x) denotes the Hessian of f at x. The main objective of this

subsection is to prove the convergence of the generator of the trace process to

the generator LTd in an appropriate sense as L→∞ (cf. Proposition 10.7.2).

The proof of this result again relies on the asymptotics of the mean-jump

rate.

Asymptotics of mean-jump rate

We start by introducing several notations related to the mean-jump rate.

Recall that ηELL (·) denotes the trace process of ηL(·) on the set EL. We let

rELL (·, ·), LELL , and µELL denote the jump rate, the infinitesimal generator and

the invariant measure of the trace process ηELL (·), respectively. For x, y ∈ TdL,

we write

bL(x, y) = rELL (ξxL, ξ
y
L). (10.110)

With these notation, we summarize the asymptotic relations for bL(·, ·)
which are immediate from Proposition 10.3.2.

Proposition 10.7.1. The followings hold for the inclusion process on TdL
with N ' ρLd particles:
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(1) for (either totally or mean-zero) asymmetric case, we have that

bL(x, x+y) =

(1 +O(dL logL+ qN))dLN(h(y)− h(−y)) if h(y) > h(−y),

O(dL logL+ qN)dLN otherwise;

(10.111)

(2) for symmetric case, we have that

bL(x, x+y) =

(h(y) +O(dLL
d logL+ LdqN))dL if h(y) = h(−y) > 0,

O(dLL
d logL+ LdqN)dL otherwise.

(10.112)

Convergence of generator of speeded-up trace process

Now, we are ready to proceed to the main result regarding the convergence of

the generator. We are primarily interested in the convergence of the speeded-

up (Markov) process defined by

WL(t) = YL(θLt), (10.113)

where

θL =


1/(dLL

d−1) for totally asymmetric case,

1/(dLL
d−2) for mean-zero asymmetric case,

L2/dL for symmetric case.

Let LWL denote the infinitesimal generator associated with the continuous-

time Markov chain WL(·). Then, we can write this generator as, for all F :

Td → R,

(LWLF )
(x
L

)
= θLLELL (F ◦ΘL)(ξxL)

= θL
∑
y∈TdL

bL(x, x+ y)
{
F
(x+ y

L

)
− F

(x
L

)}
.

(10.114)
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The following is the main result of the current subsection.

Proposition 10.7.2. Under the conditions of Theorems 10.2.21-10.2.23, it

holds for all f ∈ C3(Td) that

lim
L→∞

sup
x∈TdL

∣∣∣(LWLf)
(x
L

)
− (LTdf)

(x
L

)∣∣∣ = 0.

Proof. We fix f ∈ C3(Td) and consider three cases separately.

(Case 1: Totally asymmetric case) For this case, θL = 1/(dLL
d−1). Hence,

by (10.114) and by part (1) of Proposition 10.7.1, we can deduce that

(LWLf)(ξxL)− (LTdf)
(x
L

)
=

1

dLLd−1

∑
y∈TdL

bL(x, x+ y)
{
f
(x+ y

L

)
− f

(x
L

)}
− ρ

∑
y∈Zd

h(y)y · ∇f
(x
L

)
=

∑
y∈Zd:h(y)>h(−y)

N

Ld
(h(y)− h(−y))y · ∇f

(x
L

)
+ o(1)− ρ

∑
y∈TdL

h(y)y · ∇f
(x
L

)
.

The second equality holds by the first-order Taylor expansion and the con-

dition lim
L→∞

dLL
d+1 logL = 0. Since N/Ld → ρ, the last line converges to 0 as

L→∞ and we are done.

(Case 2: Mean-zero asymmetric case) For this case, θL = 1/(dLL
d−2);

thus, by (10.114) and part (1) of Proposition 10.7.1, we obtain that

(LWLf)(ξxL)− (LTdf)
(x
L

)
=

1

dLLd−2

∑
y∈TdL

bL(x, x+ y)
[
f
(x+ y

L

)
− f

(x
L

)]
− (LTdf)

(x
L

)
=

1

dLLd−2

∑
y∈Zd:h(y)>h(−y)

dLN(h(y)− h(−y))
[
f
(x+ y

L

)
− f

(x
L

)]
+ o(1)− (LTdf)

(x
L

)
.
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In this case, unlike in (Case 1), the first-order terms at the Taylor expansion

cancel out each other. Thus, we apply the second-order Taylor expansion to

get

N

2Ld

∑
y∈Zd:h(y)>h(−y)

(h(y)− h(−y))y†∇2f
(x
L

)
y − (LTdf)

(x
L

)
+ o(1).

This concludes the proof for this case since N/Ld → ρ.

(Case 3: Symmetric case) For this case, θL = L2/dL. Thus by (10.114)

and by part (2) of Proposition 10.7.1, we obtain

(LWLf)(ξxL)− (LTdf)
(x
L

)
=
L2

dL

∑
y∈TdL

bL(x, x+ y)
[
f
(x+ y

L

)
− f

(x
L

)]
− (LTdf)

(x
L

)
=

L2

2dL

∑
y∈Zd

dLh(y)
[
f
(x+ y

L

)
+ f
(x− y

L

)
− 2f

(x
L

)]
− (LTdf)

(x
L

)
+ o(1).

Note that the last error term is o(1), since lim
L→∞

dLL
2d+2 logL = 0. Hence, we

apply the second-order Taylor expansion to deduce that the last expression

is equal to
1

2

∑
y∈Zd

h(y)y†∇f 2
(x
L

)
y − (LTdf)

(x
L

)
+ o(1).

This finishes the proof the definition of LTd .

10.7.3 Tightness

The last ingredient for the proof of the convergence stated in part (1) of

Definition 10.2.20 is the tightness of the process WL(t) = YL(θLt). Let QL
η ,

η ∈ EL denote the law of the process WL(·) on the path space D([0, ∞), Td)
when the inclusion process starts from η, i.e., associated with the law PLη .
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Proposition 10.7.3. Let (xL)∞L=1 be a sequence such that xL ∈ TdL for all

L ≥ 1. Then, under the conditions of Theorems 10.2.21-10.2.23, the sequence

{QL
ξ
xL
L
}L≥1 of path measures is tight in D([0, ∞), Td).

The natural way of proving this proposition is to use the Aldous crite-

rion. Of course, we found a proof of the tightness based on this criterion,

but controlling errors coming from the non-regularity of distance function

d(x, 0) = |x| around 0 requires complicated computations based on the large-

deviation principle and the local central limit theorem for the random walk on

the discrete torus. Instead, we realized that the criterion presented as Propo-

sition 10.8.3 is more adequate to apply, in that it only considers smooth

functions F , which guarantees sufficiently small error terms via Taylor ex-

pansion.

Proof of Proposition 10.7.3. The condition (1) of Proposition 10.8.3 is straight-

forward, since Td is compact. Now let us check the condition (2). To this end,

fix f ∈ C∞c (Td) and δ > 0. Then, by the martingale problem associated with

the Markov chain WL(·), we know that the process given by

ML
f (t) = f(WL(t))− f(WL(0))−

∫ t

0

(LWLf)(WL(s))ds (10.115)

is a QL
ξ
xL
L

-martingale. Let (FL
t )t≥0 denote the canonical filtration associated

with the process WL(·) and by EL
η the expectation associated with QL

η . Then,

the previous observation implies that, for all t ≥ 0 and 0 ≤ u ≤ δ, we have

that

EL
ξ
xL
L

[
f(WL(t+ u))− f(WL(t))

∣∣FL
t

]
= EL

ξ
xL
L

[ ∫ t+u

t

(LWLf)(WL(s))ds
∣∣∣FL

t

]
.

Hence, in view of Proposition 10.8.3, it suffices to check

lim
δ→0

lim sup
L→∞

EL
ξ
xL
L

sup
0≤u≤δ

∣∣∣ ∫ t+u

t

(LWLf)(WL(s))ds
∣∣∣ = 0. (10.116)
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By Proposition 10.7.2, it suffices to prove that

lim
δ→0

lim sup
L→∞

EL
ξ
xL
L

sup
0≤u≤δ

∣∣∣ ∫ t+u

t

(LTdf)(WL(s))ds
∣∣∣ = 0.

This is obvious since LTdf is a bounded function on Td.

10.7.4 Proof of the main results

Proof of Theorems 10.2.21-10.2.23. Fix a sequence (xL)∞L=1 that satisfies xL ∈
TdL for all L ≥ 1 and lim

L→∞
(xL/L) = u, as in part (1) of Definition 10.2.20.

For simplicity, we write QL = QL
ξ
xL
L

and EL = EL
ξ
xL
L

.

Let us first identify the limit points of the sequence {QL}L≥1. Let Q
denote an arbitrary limit point of {QL}L≥1. Fix f ∈ C3(Td) and consider

Mf (t) = f(ω(t))− f(ω(0))−
∫ t

0

(LTdf)(ω(s))ds, t ≥ 0,

where ω(t) is the canonical coordinate process on D([0, ∞), Td). Then, we

claim that {Mf (t)}t≥0 is a Q-martingale, i.e.,

EQ
[
g((ω(u) : 0 ≤ u ≤ s))(Mf (t)−Mf (s))

]
= 0 (10.117)

for all 0 ≤ s ≤ t and for all bounded, continuous function g on D([0, s], Td).
To prove (10.117), we recall the QL-martingale ML

f (t) defined in (10.115) so

that we have

EL
[
g((ω(u) : 0 ≤ u ≤ s))(ML

f (t)−ML
f (s))

]
= 0. (10.118)

By Proposition 10.7.2, we have

lim
L→∞

∣∣∣ML
f (t)−

[
f(WL(t))−f(WL(0))−

∫ t

0

(LTdf)(WL(s))ds
]∣∣∣ = 0 (10.119)
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for all t ≥ 0, and hence by (10.118) and (10.119), we obtain that

lim
L→∞

EL
[
g((ω(u) : 0 ≤ u ≤ s))(Mf (t)−Mf (s))

]
= 0. (10.120)

Therefore, the proof of (10.117) is completed if we can establish the following

limit:

EL
[
g((ω(u) : 0 ≤ u ≤ s))(Mf (t)−Mf (s))

]
→ EQ

[
g((ω(u) : 0 ≤ u ≤ s))(Mf (t)−Mf (s))

]
as L→∞.

(10.121)

This is not trivial since the map H : ω 7→ g((ω(u) : 0 ≤ u ≤ s))(Mf (t) −
Mf (s)) is not continuous on D([0, ∞), Td). However, in [2, Proposition 3.2],

this limiting procedure has been robustly confirmed and can be applied to our

situation as well. Thus, the claim is proved. It completes the identification of

limit points since the solution of the martingale problem is unique and since

C3(Td) consists the core of the generator LTd given in (10.109) because Td is

compact. Finally, along with the tightness established in Proposition 10.7.3,

we can conclude the convergence of the process WL(·) to Y (·) +u where Y (·)
is the process generated by LTd and starting from 0. This finally completes

the verification of part (1) of Definition 10.2.20.

Now, we turn to part (2) of Definition 10.2.20, i.e., we prove

lim
L→∞

sup
η∈EL

ELη
[ ∫ t

0

1HL\EL(ηL(θLs))ds
]

= 0 for all t > 0. (10.122)

To this end, let us first fix x ∈ TdL and t > 0. Then, by the translation

invariance of the model, we have

ELξxL
[ ∫ t

0

1HL\EL(ηL(θLs))ds
]

= EL
µ
EL
L

[ ∫ t

0

1HL\EL(ηL(θLs))ds
]

since the invariant measure µELL (·) of the trace process is a uniform measure
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on EL = {ξxL : x ∈ TdL}. Now, we can deduce from Fubini theorem that

EL
µ
EL
L

[ ∫ t

0

1HL\EL(ηL(θLs))ds
]
≤ 1

µL(EL)
ELµL

[ ∫ t

0

1HL\EL(ηL(θLs))ds
]

=
1

µL(EL)
· t · µL(HL \ EL).

Thus, (10.122) follows from static condensation established in Theorem 10.2.19.

10.8 Appendix

In the appendix, we collect several known results for the completeness of the

article.

10.8.1 A lemma on the sum of reciprocals

The following elementary lemma is repeatedly used throughout the article.

Lemma 10.8.1. For integers n ≥ k ≥ 1, define

An, k =
{

(a1, . . . , ak) ∈ Nk : a1, . . . , ak ≥ 1 and
k∑
i=1

ai = n
}
,

and define

Sn, k =
∑

(a1, ..., ak)∈An, k

k∏
i=1

1

ai
.

Then, it holds that

Sn, k ≤
(3 log(n+ 1))k−1

n
for all n ≥ k ≥ 1. (10.123)

Proof. We proceed by the mathematical induction on k. Note that the in-

equality (10.123) is trivial for the initial case k = 1. Now, we fix k ≥ 2 and
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assume that (10.123) holds for Sn, ` with ` = k − 1 and n ≥ `. Then, look at

the inequality for Sn, k for some fixed n.

Since ak can take values from 1 to n− (k − 1), we can write

Sn, k =

n−(k−1)∑
m=1

∑
(a1, ..., ak−1)∈An−m, k−1

1

m

k∏
i=1

1

ai
=

n−(k−1)∑
m=1

1

m
Sn−m, k−1.

Thus, by the induction hypothesis, we get that

Sn, k ≤
n−(k−1)∑
m=1

1

m

(3 log(n−m+ 1))k−2

n−m
≤ (3 log(n+1))k−2

n−(k−1)∑
m=1

1

m(n−m)
.

(10.124)

The proof of the inequality (10.123) is completed since the last summation

can be estimated by

n−(k−1)∑
m=1

1

m(n−m)
=

1

n

n−(k−1)∑
m=1

( 1

m
+

1

n−m

)
≤ 3

n
log(n+ 1). (10.125)

Inserting (10.125) to (10.124) finishes the proof of the induction step, and

thus concludes the proof.

10.8.2 Gordan’s lemma

The following elementary lemma is used in the proof of Lemma 10.6.10. This

lemma has many equivalent statements, which include the one known as

Farkas’ lemma.

Lemma 10.8.2 (Gordan’s lemma). Let A be an m × n matrix for integers

m, n ≥ 1. Then, exactly one of the following statements holds.

• There exists a vector α ∈ Rm such that all the components of A†α are

positive.
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• There exists a vector 0 6= β ∈ Rn such that all the components of β

are non-positive and such that Aβ = 0.

Proof. We refer to e.g., [30, Section 3].

10.8.3 A criterion for the tightness

We introduce a criterion for the tightness of the random process which is

used in the proof of tightness of the speeded-up trace process in the thermo-

dynamic limit case in Section 10.7. This criterion is thoroughly explained in

[81], and is also used in [40] to prove the metastable behavior of symmetric

inclusion processes.

Proposition 10.8.3. For each N ≥ 1, let XN
· be a continuous-time Markov

chain on Ω = Rd or Td, and let FNt , t ≥ 0 be its natural filtration. Fix

{xN}N≥1 ⊆ Ω and let PxN and ExN denote the law and expectation of XN
·

starting from xN , respectively. Then, the collection of laws {PxN}N≥1 is tight

in the path space D([0, ∞); Ω) provided that both of the following conditions

hold.

(1) The sequence {XN
· }N≥1 is stochastically bounded in D([0, ∞); Ω).

(2) For all F ∈ C∞c (Ω), there exists a family of non-negative random vari-

ables ZN(δ, F ), δ > 0, such that, for all t ≥ 0 and 0 ≤ u ≤ δ,

∣∣ExN [F (XN
t+u)− F (XN

t )|FNt ]
∣∣ ≤ ExN [ZN(δ, F )|FNt

]
PxN -a.s.,

(10.126)

and

lim
δ→0+

lim sup
N→∞

ExNZN(δ, F ) = 0. (10.127)

Proof. See [81, Lemma 3.11] for the proof for the Euclidean case, i.e., Ω =

Rd. The proof for the case Ω = Td is obviously the same with that of the

Euclidean space.
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국문초록

이 박사학위논문에서는 복잡한 확률시스템, 특히 강자기성 스핀시스템 또는

상호작용입자계에서 일어나는 메타안정성 현상의 정량적 분석을 다룬다. 추

가로, 메타안정성을 분석하는 새로운 방법론인 H1-근사이론을 소개한다. 이

방법론은 특히 비가역적 시스템을 분석할 때 유용하다. 정량적 분석으로 크게

두 가지를 다루는데, 하나는 메타안정 전이시간의 기댓값을 정확히 추산하는

Eyring–Kramers 공식이며, 다른 하나는 연이은 메타안정 전이들을 마르코프

체인으로묘사하는이론이다.결과는크게두범주로나누어기술되어있는데,

첫번째로저온에서의강자성이징/포츠모델과관련된모델들에대해다루고,

두 번째로 응축하는 포함 과정이 가역적일 때와 비가역적일 때 어떻게 다른

양태를 나타내는지 분석한다.

주요어휘: 메타안정성, H1-근사, 이징 모델, 포츠 모델, 포함 과정

학번: 2018-26714
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