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Abstract

In this thesis, we propose an infinite Kuramoto model for a countably
infinite set of Kuramoto oscillators and study its emergent dynamics for
certain classes of network topologies. We explore some network topologies
and identify a critical condition that determines whether phase diameter
analysis is effective or not. Then, we analyze the model with another class of
network where some classical approaches on finite Kuramoto models can be
applied.

We first prove that the phase diameter is nondecreasing. Then, we identify
a condition that allows for a non-example with constant diameter, which is a
novel feature compared to the finite Kuramoto model. Next we describe why
the gradient flow approach worked in finite model cannot be applied here.
Next, we suggest a framework that leads to weak synchronization for hetero-
geneous ensembles and exponential decay of phase diameter for homogeneous
ensembles.

We also analyze a subclass of network topology named the “sender net-
work.” For homogeneous ensembles, we classify the possible asymptotic states
for generic initial conditions. For heterogeneous ensembles, we prove that ex-
ponential frequency synchronization occurs for a certain initial configuration
confined to a quarter arc.

Key words: Asymptotic behavior, concentrate phenomena, Kuramoto model,
infinite particle system.
Student Number: 2016-20243
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Chapter 1

Introduction

Synchronization is one of collective behaviors in which weakly coupled oscil-
lators adjust their rhythms via mutual interactions, and it is often observed
in oscillatory systems such as the collection of fireflies, neurons and pace-
maker cells, etc [8, 16, 18, 34, 38]. However, despite its ubiquitous presence,
its rigorous mathematical studies were begun in only a half century ago by
two pioneers, Arthur Winfree [45, 46] in 1967 and Yoshiki Kuramoto [32] in
1975. Since then, synchronization has been extensively investigated in diverse
scientific disciplines such as an applied mathematics, neuroscience and statis-
tical physics, etc. We refer to survey articles and books [1, 2, 15, 21, 39, 38, 42]
for a brief introduction to the subject. To fix the idea, we restrict our dis-
cussion to Kuramoto oscillators whose dynamics is governed by the sum of
sinusoidal coupling of phase differences.

Consider a lattice A C R? with N lattice points (or nodes), and we
assume that Kuramoto oscillators are stationed on each lattice point, and
interactions are all-to-all with a uniform strength £. To set up stage, let
0; = 6;(t) be the phase of the Kuramoto oscillator at the i-th lattice point.
In this setting, the phase dynamics is governed by the Cauchy problem to
the (finite) Kuramoto model:

éi =v; + Z %sin(ej — 91), t >0,
jevy (1.0.1)
91<0):9;n7 ZG[N] :{17>N}7



CHAPTER 1. INTRODUCTION

where v; is the natural frequency of the i-th oscillator. Since the right-hand
side of (1.0.1) is uniformly bounded and Lipschitz continuous, the standard
Cauchy-Lipschitz theory guarantees a global well-posedness of smooth solu-
tions. Thus, what matters for (1.0.1) lies in the emergent dynamics. In fact,
the emergent dynamics of (1.0.1) has been extensively studied in literature,
to name a few [5, 6, 12, 14, 27, 29, 35, 43| from diverse scientific disciplines
in last decades. In this thesis, we are interested in the Kuramoto dynamics
on the infinitely extended lattice, i.e., the number of Kuramoto oscillators
is equivalent to the cardinality of the natural numbers. More specifically, we
address the following set of questions:

e (Q1): What is suitable system describing dynamics of an infinite num-
ber of Kuramoto oscillators?

e (Q2): If such a dynamical system exists, under what conditions on sys-
tem parameters and initial data, can we rigorously show the emergent
collective dynamics?

The main purpose of this thesis is to answer the above proposed questions. In
collective dynamics community, they often approximate infinite systems with
all-to-all couplings by corresponding Vlasov type equations (see [33]) which
arise from large N-oscillator limit. In this way, mean-field approach can give
approximate results for infinite system under consideration. Therefore, to get
the exact result on the dynamics of infinite set of Kuramoto oscillators, we
are forced to study the infinite set of ordinary differential equations as it is.
In this regard, we propose the following natural extension of the finite model
(1.0.1):

éi:ui—l—ijsin(Qj—Gi), t>0, VieN, (1.0.2)

jEN

where k;; is the coupling strength between the ¢-th and j-th oscillators sat-
isfying nonnegativity and row-summability:

K = (kij), kij >0, [[Klloo1 :=sup» i < oc. (1.0.3)

€N jeN
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Note that without the coupling strength &;;, the infinite sum in the right-
hand side of (1.0.2) will not be well-defined. So introduction of such weight is
needed. Moreover, unlike to the Kuramoto model, uniform coupling strength
ki; = k does not satisfy the condition (1.0.3),. Of course, it is not com-
pletely new to study such an infinite set of ordinary differential equations.
For example, coagulation and fragmentation process for polymer can be de-
scribed by the infinite number of ODEs (see [3, 17, 41]). Recently, Wang
and Xue [44] studied the flocking behaviors of the infinite number of Cucker-
Smale particles, and they found that almost the same results for the original
Cucker-Smale model can be done [11, 26, 30]. As first observed by authors
in [23], the first-order Kuramoto model can be lifted to the Cucker-Smale
model by introducing auxiliary frequency variables. Thus, it is quite reason-
able to study analogous study for the Kuramoto model without resorting on
the corresponding mean-field equation. The global well-posedness of (1.0.2)
on the Banach space (£, || -||~) can be followed from the abstract Cauchy-
Lipschitz theory together with the Lipschitz continuity of the right-hand side
of (1.0.2) (see Proposition 2.3.1 and Lemma A.0.1). For the special situation:

kij =0, and 6; =0, where max{i,j}>N+1,

it is easy to see that the Kuramoto model (1.0.1) corresponds to the special
case of the proposed infinite model (1.0.2). Hence, whether the infinite system
(1.0.2) can exhibit the emergent dynamics as in the Kuramoto model (1.0.1)
or not will be a tempting question. Moreover, it would be very interesting to
analyze distinct features which cannot be seen in the Kuramoto model with
a finite system size.

In what follows, we briefly discuss our main results documented in the
following sections from Chapter 3 to 5. Let N = {1,2,...} be the set of all
natural numbers. For the emergent dynamics of the infinite Kuramoto model
(1.0.2)(1.0.3), we consider two types of coupling gain matrix K = (k;;),

Row-summable network : r;; >0, 4,7 €N, [K|x1 < o0, (1.0.4)
Sender network : k;; =k; >0, 1,7€N, ||K|w1 < oo. o

First, we consider positive and row-summability network topology (1.0.4),.
For a homogeneous ensemble with the same natural frequency v; = v, thanks

3



CHAPTER 1. INTRODUCTION

to translational invariance property of (1.0.2), we may assume that the com-
mon natural frequency v is zero and (1.0.2) reduces to

é,’ = Z Kij sin (9] — 91) , t> O, VieN. (105)

jeEN

In this case, depending on suitable conditions for the network topology K =
(kij), the phase diameter can be constant (see Corollary 3.1.1 and Proposition
3.1.2, respectively). In particular, we can find an explicit example of non-
decreasing phase diameter for some class of coupling gain matrix K. This
is certainly a novel feature of the infinite model which cannot be seen in a
finite system (see also Remark 3.1.2 and Corollary 3.1.1). As can be seen in
Proposition 2.1.1, a gradient flow formulation for (1.0.1) plays a key role in
the rigorous verificaion of phase-locking for a generic initial data in a large
coupling regime [13, 22, 29]. Likewise, the infinite system (1.0.5) can also be
written as a gradient flow on a Banach space ¢* with the potential P (see
Proposition 3.2.1):

P(©) = % Z rij(1 — cos(8; — 6;)).

i,jEN

Although we cannot use the Lojasiewicz gradient inequality in [20] as it is, we

can still use P as a Lyapunov functional to derive complete synchronization
(see Theorem 3.1.1):

lim sup |6;(t) — 6;(t)| = 0. (1.0.6)
t—o0 i,jEN
On the other hand, for a heterogeneous ensemble with distinct natural fre-
quencies, we can obtain a practical synchronization under suitable conditions
on the coupling gain matrix K = (k;;) (Theorem 4.1.1):

lim sup sup |0;(t) — 6;(t)] < sin™! <O(1)ﬂ>

tco ijeN 1] 001

Unfortunately, the complete synchronization estimate (1.0.6) for a heteroge-
neous ensemble is not available yet.
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Second, we consider a row-summable sender network topology (1.0.4),.
In this case, the infinite Kuramoto model reads as

91’ :Vi‘i‘ZHjSin (QJ —91), t > 0, 1€ N. (107)

jEN
Compared to the aforementioned symmetric and summable network topol-
ogy, we have better controls on the emergent dynamics. For a homogeneous
ensemble, there might be two possible asymptotic states (one-point phase

synchrony or bi-cluster configuration). More precisely, let © be a solution to
(1.0.7) with asymptotic configuration ©> = (65°,05°,...). Then, we have

0;)06{90}U{90:|:/117T|Z€N}U{90:|:(]_—I{Z)7T|Z€N},

where

0o =Y rib™.

ieN
We refer to Theorem 5.1.1 and Corollary 5.1.2 for details. On the other hand,
for a heterogeneous ensemble, we can rewrite system (1.0.7) into the second-
order model with row-dimensional initial data:

féi:wi, t>0, VieN,
LUZ' = Zlij COS (91 — 0]) ((,Uj —wi),

JjEN
91(0) = Qin € ]R7 wl(O) =v;+ Z Kj sin (Q;D . Q;n) 7
N jeN
where
O = (B 0 . ) el™ V=(u,u,...)cl®
We set

W= (w1,wa,...) and D(W) :=sup |wm, — wyl.

m,n
In this case, under some restricted class of initial phase configuration con-

fined in a quarter arc, we can show that the frequency diameter D(W) decays
to zero exponentially fast (see Theorem 5.2.1).
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The rest of this thesis is organized as follows. In Chapter 2, we briefly
review the emergent dynamics of the finite Kuramoto model and study basic
properties of the infinite Kuramoto model such as conservation law, transla-
tional invariance and several a priori estimates. In Chapter 3 and Chapter 4,
we study emergent dynamics of (1.0.2) with a symmetric and row-summable
network topologies. In Chapter 5, we investigate the complete synchroniza-
tion of the infinite Kuramoto model with a sender network topology. Finally,
Chapter 6 is devoted to a brief summary of main results and discussion on
some remaining issues for a future work. Prior to continuing, we acknowledge
that this thesis is a revised version of the collaborative work documented in
24].

Notation: Throughout this thesis, we write the phase configuration vector
and natural frequency vector as

@N = (01,...,91\7), CRE (81,92,...),

Vy = (V1,...,vn), V:i=(v,1n,...),

and we denote the set {1,..., N} by [IV] for simplicity. For A = (ay,as,...) €
RN and p € [1,00], we set
1
(Z |ai|p)p, 1 <p< oo,
Al = { e

sup |a,, p = o0,

ieN
and denote ? = (?(N) the collection of all sequences with a finite p-th power
sum:

(N := {A eRY: |4, < oo}, pell, ol

Similarly, for every infinite matrix K = (x;;) € RN and 1 < p,q < oo, we

set,
1
S sl
(kij)sllo| (1 <p <o),
HKHp,q = ieN
sup [[(ki5)jllq (P =00),
€N
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and denote
= {K = (kij) : [[K|lp,q < o0},

which also becomes a normed vector space of infinite matrices. Finally, for
every real vectors Xy and X given by

XN:(ZL‘l,...,CCN)ERN, X:(Il,xg,...)ERN,
we denote the supremum of the difference between their elements by

D(Xy) := max |z; —z;|, D(X):= sup |z; — ],
1,j€[N] i,jEN

and call the diameter of X and X, respectively.



Chapter 2

Preliminaries

In this section, we study basic properties of the Kuramoto model on static
networks with finite and infinite nodes.

2.1 Kuramoto model for a finite ensemble

Consider the Cauchy problem to the Kuramoto model with a finite system
size [10, 13, 19, 25]:

éizui+2ﬁijsin(6’j—9i), t>07
JEIN] (2.1.1)
0:(0) = 6", i€ [N],

where k;; is a nonnegative symmetric constant which denotes the strength
between the ¢-th and j-th oscillators:

Rij = Rj; 2 0, Z,j € [N] (212)

First, we recall some terminologies on emergent dynamics in the following
definition.

Definition 2.1.1. Let Oy be a solution to (2.1.1)~(2.1.2).

1. The state O is phase-locked if the phase differences are constant in time:

0i(t) — 0;(t) = 0;;, t>0, 4,j€[N].

8
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2. The state © achieves asymptotic phase-locking if and only if

363 = lim (6,(t) — 0,(t)). .)€ [N].

3. The state © achieves complete synchronization if and only if

lim D(O (1)) = 0.

Next, we study basic preliminaries for (2.1.1) on conservation law and
emergent dynamics. For this, we set

= 0=ty v, >0 (2.1.3)

1€[N] 1€[N]

Proposition 2.1.1. [22, 25, 29] Let Oy = (0y,...,0x) be a solution to
(2.1.1)(2.1.2). Then, the following assertions hold.

1. (Balanced law): The functional C in (2.1.3) is conserved along the flow
(2.1.1).

2. (A gradient flow formulation): If we define a potential Py = Py(Oy):

PN<@N) = — Z ylﬁl +% Z likl(l — COS(@k — 95)),

lE[N] k,l€[N]

system (2.1.1) to (2.1.2) can be rewritten as a gradient flow:

0Oy = —Ve,Py(On), t>0.

3. Suppose that network topology, natural fregencies and initial data satisfy

I{ . eln 1 6
Iiij:N, ZML—O Ro. ’—Z , ﬁ>ﬁD(VN)
1€[N] le[N]
Then, there ezists an equilibrium state OF = (05°,...,0%) such that

lim [©x(t) ~ OF e = 0.



CHAPTER 2. PRELIMINARIES

Proof. (i) We take sum (2.1.1) over all 7 and use (2.1.2) to get
d
LD SRS SESNIRVIES o)
1€[N] 1€[N] 1,jE[N] 1€[N]

This yields the desired conservation law.

(ii) For a fixed i € [N], we rewrite the potential Py as

1 1
Pr(On) = —1ifh + 5 > ka(l— cos(6; — 6))) + 5 > k(1 — cos(6, — 0;))

l€[N] l€[N]
1
_ Z | 1,0, + § Z | Klkl(l - COS(Qk — Ql))
I€[N]—{i} k€[N —{i}

Now, we differentiate the above relation with respect to 6; to find

0p,Pn(On) = —1v; + = Z Kisin(6; — 6;) — = Z Ky sin(6; — 6;)

le[N] le[N
Kil + Kii\ .
= —v; — Z ( l 5 l)sm(é’l—&-)
lE[N]

Z kisin(f; — 6;) using the symmetry of (k;;)

This yields

On = —Vo, Pn(On).
(iii) Detailed argument can be found in [29]. Thus, we just sketch the main
line of idea as follows. First, we show that the phase configuration is uniformly
bounded in the sense that there exists a positive constant 8°° such that

sup [|On (1)l <67

0<t<oco

Then, motivated by gradient flow approach in [13], the authors in [22, 25, 29|
also used the gradient flow formulation (ii) and the analyticity of potential
to say that there exists an equilibrium O% such that

lim |©(t) — OF |l = 0.
t—o00

10



CHAPTER 2. PRELIMINARIES

There are some analytical results on the finite Kuramoto model with
nontrivial network topology in literature. We chose the papers [13, 25].

The authors in [25] analyzed the model (2.1.1). They give on exponential
synchronization result with condition depends on the number of oscillators
N and underlying graph structure. The symmetricity condition a;; = a;; in
{aiﬂ'}i,j €] is for exploiting gradient flow structure of the Kuramoto model.
Their result can be described as follows.

Theorem 2.1.1. [25] Let D™ € (0,7), and © be the smooth solution to
system (2.1.1) on a connected graph G with coupling strength and initial
data that satisfy

(D™)?

£ )<T'

V20 (V)
L.Na,, sin Din’

Then we have

D(O(1) < D", lim

éi(t)‘ —0, ieclN].

Moreover, if Dy € (O,g), then an exponential synchronization occurs
asymptotically and

éi(t)‘ <\/€ (W) exp (—2NKa,, L. (cos D™)t)

where
1/2

eV = 2w L EEm) =21 E @) = 3

1E€[N] 1€[N] 1€[N]

2

Y

a., and L, be constants depending on network topology.

The authors in [13] proved that synchronization occurs for general initial
conditions in the model (2.1.1) by using gradient structure and Lojasiewicz
inequality. Furthermore they proved ACS on half-circle for directed coupling
topology in model (2.1.1). For homogeneous ensemble, they proved conver-
gence to phase-locked state.

11
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Theorem 2.1.2. [13] Let © = {0}, be the solution of system (2.1.1)
with all initial phase differences satisfying |0 — 0| < 27 for 1 <i,j < N.
Then w;i(t) — 0 as t — oo, i € [N]. Moreover, there exists 0;; such that
0;(t) — 0;(t) — 0;; as t — oo.

And the following is convergence result for nonidentical oscillators.

Theorem 2.1.3. Let © = {0}, |y be the solution of system (2.1.1) satisfy-

ing
: D(V)
0<D(O") < C>——
(07) <. sinD (©™)’
where
C = n’;ﬂ] Q5 + aj; + Z min (aik, ajk)
7 ke[N]\{i.j}

Then there exists T > 0 such that
D (w(t)) < D (w(T)) e o PN ¢ > T,

where sinD (©™) = sin D>, D> € (0,%).

2.2 The infinite Cucker-Smale model

In this section we review the paper [44], which is the first to prove clustering
in models of collective phenomena with a countable number of particles.
Authors in [44] studied the flocking behavior of the solutions to the infinite-
particle Cucker-Smale model, which has the form

(
X(t) = {%‘}ieN, V(t) = {Ui}ieNa
r,v; €RY i €N,

jl'i = v, t > O, 1 E N, (224)
=Y miH([la; — will)(v; — v),
JEN

Xin = {x,iin}ieN c foo, Vin = {/Uin}ieN c goo’

12
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ith
wit 1

jeN
The researchers in [44] first established the existence and uniqueness of the

solutions to the infinite-particle Cucker-Smale model by change the system
by letting Banach space

E = (*RY) x (*(RY), Jullp = [zl + 0]l

and changed system (2.2.4) by

Q= FP(u), t>0
u(0) = uy,

and used Cauchy-Lipschitz theory to prove existence of local unique solution.
Then they proved the local unique solution cannot blow-up in finite time.
Hence they can extend local solution to global solution.

Then they establish the boundedness of velocity by showing the non-
increase of the ¢*-norm of v(t) by dividing the cases according to whether
the supremum of the limit point of the particles is isolated or not.

Theorem 2.2.1. [44] Let {z;(t), vi(t) }ien be the solutions to system (2.2.4),
then [|v(t)|lco = sup;ey |[vi(t)|| is non-decreasing in t.

Finally, they obtain the flocking behavior of the infinite-particle Cucker-
Smale model.

Theorem 2.2.2. [44] When 8 € [0, 1], for any given initial data {x0, vio}
the solutions to system (2.2.4) satisfy the following results:

€N

1. There exists some constant Ry > 0 such that sup ||z;(t) — z.(t)|| < Rs.
ieN

2. sup |lv;(t) — ve(t)]] < |Jo(0)]] o~ SH(2R2)t
ieN
We will see the sketch of proof. They defined

RNt;: zt
v (1) gg[fﬁllv()H

13
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and for

1
[+ 4R2(1+ )27

ft) = R = max{[[v(0) oo, [[£(0)[|oo }

they make an inequality

SRV < —1(0) (RY @) + 4% Y my

by using invariance of center of mass

Z m;v; = 0.

jEN
Using Gronwall’s inequality with taking the limit n — oo the obtain

[o(@)[|2, < elo ~F= ||y (0)|?

o0 !

and bound the integral term fot —f(s)ds, while position differences between
particles will be uniformly bounded.

Our purpose for analyzing the countable Kuramoto model is to find a
similar counterpart to these previous results. We observed the diameter func-
tional plays a crucial role in the analysis of the emergent dynamics for (2.1.1).
Hence we set our objective as proving that the diameter decays to zero for
a homogeneous ensemble and finding the condition that guarantees the exis-
tence of a trapping region for a heterogeneous ensemble.

2.3 Kuramoto model for an infinite ensemble

In this section, we present several basic properties of the Kuramoto model
which concerns the dynamics of countably infinite number of oscillators, in
short, ‘infinite Kuramoto model’.

Note that for the following simple modification:

Z K'ij Sin (9] — 92) — Z "iij Sin (0] — 92) s

JE[N] jEN

14
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the infinite sum in the right-hand side of (1.0.2) might not be well-defined,
unless we impose some restrictive asymptotic vanishing conditions on the
network topology K = (k;;); jen. Once the infinite sum becomes well-defined,
we can consider the Cauchy problem to the infinite Kuramoto model:

éi:Vi—i—Z/ﬂijsin(Qj—@i), t >0,
e (2.3.5)
0,(0) =6, €N,

where O™,V and K = (k;;) satisfy
Or e, Ve, Ke' k;>0 VijeN (2.3.6)

for some p € [1, 00]. Unlike in Section 2.1, we allow the asymmetric network
topology K to consider the most general case. Then, the following proposi-
tion guarantees the well-posedness of (2.3.5)—(2.3.6) by using the standard
Cauchy-Lipschitz theory.

Proposition 2.3.1. Suppose that initial configuration, natural frequencies
and network topology satisfy (2.3.6). Then, there exists a unique smooth so-
lution © = O(t) € CY(R,; (P) to the infinite system (2.3.5).

Proof. First of all, we set

fi(©) ==vi+ > kysin(;—0;), i€N, F(O):=(fi(0),£(0)....).

jeN

In order to use the standard Cauchy-Lipschitz theory on the Banach space
7, it suffices to show that for every two solutions © and © to (2.3.5), we
have

Il < IVl 1Kl [[F©) = FO)|| <20Kalle -6, (237)

e (Derivation of (2.3.7),): For each i € N, we have

i(©)] = |vi + > ki sin(f; — 6;)

jEN

JeN

15
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Then by the Minkowski inequality and (2.3.8), we have
[Fllp < IVIlp + 1K lpy for 1 <p < oo.

e (Derivation of (2.3.7),): For 1 < p < oo, every O, Qe satisfy

|7 (© )—J'"(N)Hp
= "1£i(©) - £:(O)F
ieN
P
- Z Z Kij <sin 0, — 6;) — sm(éj é,))
i€N | jeN
P
<D ki |(6,—6:) — (6, — )
TN | en (2.3.9)
0o P
< Z Zﬁijlej - éj‘ + ‘91 - él’ ZFLU
ieN | jeN j=1
< op—1 Z <Z /iijyej — éj|>p + (’91 - é@‘ Z /‘iij)p]
ieN : jeN Jen
S 217—1 Z ||(’L€l])]HZ <Z \Hk — ék|p> + ‘01 - éz”’(Z I{ij>p] )
ieN L keN JEN

where we used the Holder inequality for ¢ = ﬁ in the last inequality. If we
apply the following relations

10, < IXH Y fad < (D) (X lal), v X, v.Z e R

1€N 1€N ieN
0 (2.3.9), then we have desired estimate:

HH@J@mswijww @Nkwﬂﬂwwwz%ﬂ

ieN kel -
<27 K400 - 81+ 10 - Sy
= 2| K| ,[16 - B,
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In addition, we can also obtain desired estimate for p = oc:

|F©) = F®)|_ =suplfi(®) - (&)

S 1€EN

= sup Z/@Zj sin (6; — 6;) — sin(f; — 6;) ‘
ieN | 7en ( )
<sup> i | (0= ) — (65 - )
1€EN jeN
< g 0. C_p.
igg%% 0; = 03] + 16: — 0]
< 2( su Kii 1 |© — Ol|so
(pZ ))le -8

— 2| &]|oc.1|© — O]

Now, once we have (2.3.7), the solution to (2.3.5)—(2.3.6) exists uniquely
in some nonempty finite time interval [0, T'], and the solution never blows up
in finite time due to the boundedness of the image of F so that the local
solution can be extended to the global solution © : [0, 00) — ¢7. O

In the following lemma, we can see the analogous properties of our infinite
model with the finite Kuramoto model. Lemma 2.3.1 (1) gives an invariant of
our model, and (2) gives the translation-invariant property of the Kuramoto
model. Then in Lemma 2.3.2, we discuss two basic sets of estimates to be used
in Chapter 3, 4 and 5, then establish Lipschitz continuity of some functionals.

Lemma 2.3.1. Let p,q € [1,00] with %—I—% = 1, and let © be a global
(P-solution to (2.3.5)~(2.3.6). Then, the following assertions hold.

1. If the network topology K = (ki;) is given by
Rij = QijRy, 4 Z,] S N, (2310)
for some symmetric A = (a;;) € (PP and (k1, kg, . ..) € {1, we have
i Z Kliei = Z R;iV;.
dt \ 4 ,
1€EN 1eN

17
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2. If we set
Hz(t) :ez(t)—Vt, ZEN, tZO,

then © = (0, ég, ...) satisfies
= —V—i-ZIiUSlIlé é t >0,
JEN
0;(0)=0"€cR, VieN.
Proof. (1) First, we multiply x; to (2.3.5); to obtain
d .
% <K192> = R;V; + Z RiRij S (9] — 02) . (2311)
jEN

Then, we take a summation of (2.3.11) over all ¢ and use the exchange sym-
metry i <— j to get

pr Z Ki0; = Z KilV; + Z Kikij sin ( Z Kil — Z Kkikj;sin (6, — 6;) .

€N ieN jeN €N jeN

Therefore, we employ (2.3.10) to get the desired balanced law.

(2) Since the second assertion is obvious, we omit its proof. O

Remark 2.3.1. (1) If we set p =1 and k; = 1, then the network topology
K satisfying (2.3.10) is a symmetric summable infinite matriz (see Chapter

3):

K= (Ii@') c fl’l, KRij = Kjs, 1,] € N.

(2) If we set p = oo and a;; = 1, then the network topology K satisfying
(2.3.10) is a sender network (see Chapter 5):

1 . .
(K1, Ke,...) €L, ki =rkj, 1,j€N

Lemma 2.3.2. Let © = O(t) be a global {>-solution to (2.3.5) - (2.3.6).
Then, the following assertions hold.

18
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1. © and 6 are uniformly bounded: for every i € N,
sup [0:()] < [[Vlloo + 1K lloox < [VIlp + 1K 11,

0<t<o0o

Sup 10:(8)] < 21K oo (Voo + 1K [loo,1) < 20K [lp1 (VI + 1K 1p,1)-
B (2.3.12)

2. Extremals and phase-diameter functionals

D(©) := sup |0; — 0|, supb, and infé,
i,jEN ieN 1€N

are Lipschitz continuous in time t.

Proof. (1) The first estimate follows from (2.3.8). Now, we differentiate (2.3.5),
with respect to ¢ and use (2.3.12), to obtain

92 = Z liij(éi — 6’]) COSs (01 — 03)
JEN
<2(Vll + 1Elo01) D 5 (2.3.13)

jeN
< 2[[Kfor (Voo + 18 o0,2)
< 2/ Kl (VI + [T ]p,0)-
(2) We first consider the Lipschitz continuity of

t — supb;(t).
ieN

For every s < t, we use Lemma 2.3.2 (1) to get
0i(t) < 0i(s) + (Voo + [ K [c,) (t = 5) < Sup 0i(s) + (Voo + [ Koo, (E = 5).
Then, we take the supremum of the L.H.S. of the above relation to obtain

sup 0;(t) < sup0;(s) + (|| V|loo + | K |loo1)(t — 5), (2.3.14)
ieN ieN

and a similar argument also yields

sup 0;(t) > sup 0i(s) = ([Vlloo + [[K[co) (2 = 5)- (2.3.15)

€N

19
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Therefore, we combine (2.3.14) and (2.3.15) to obtain

sup 0(t) — sup i(s)| < (Vlloo + [ Klloc,1)lt = 5|, ¥ £,5 > 0.
1€EN 1€EN

In addtion, the Lipschitz continuity of
inf6:(?)

can be also shown in a similar manner. Finally, the phase-diameter D(0),
which can be given by the difference between these two extremals, is also
Lipschitz. O

Remark 2.3.2. Note that the relation (2.3.13) yields

sup
0<t<o0o

@(t)) <2(IV|lo + 11K lso,1) Z Kij, Vi€N. (2.3.16)

jeN

Lemma 2.3.3. Let © = O(t) be a global solution to (2.3.5)—(2.3.6). Then
for every i,j € N, we have

d2

0; — 0;) pril

<DWV)+2[K|loo1, 0; — 0;)

d
\w

Proof. For every i,j € N, the first and the second derivatives of 0; — 6; are
given by

d
7
d2

dt?

0, —0;) =v, —v; — Z [Kik sin(0; — Ok) + ki sin(0, — 0;)]
keN
d
dt dt
(2.3.17)

Then, we have the boundedness of <4 (¢; — 6;) from the following inequalities:

keN

‘%(Qi — ;)

<DV + Y (ki + ki) < DWV) + 2| Kloor-  (2.3.18)

keN

20

< 2[|Klca (P (V) + 2[[Kloo,1) -
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Finally, we combine (2.3.17) and (2.3.18) to obtain the boundedness of

S |

keN
< 2K lca (P (V) + 2[[Kloo,1) -

d? d d
o (0: — 0;) pr (05 — Ok) ‘ + k| 2 (Or — 0;)

21
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Chapter 3

Emergent dynamics of a
homogeneous ensemble

In this chapter, we prove the infinite Kuramoto model with a homogeneous
ensemble consisting of oscillators with identical natural frequencies can admit
a “quasi-stationary” state. More precisely,there is a condition that the config-
uration X'(t) has a fixed diameter and can achieve complete synchronization.
Furthermore, we describe why the gradient flow approach is unsuitable for
the countable Kuramoto model.

From Lemma 2.3.1 (2), we may assume that v; = 0 without loss of gen-
erality. In other words, we consider the phase configuration © satisfying

éi:ZHijSiH(ej—ei), t>0,
JEN
0;(0) =0 cR, VieN,
Om = (g on . .)er K= (kj) €', pe][l, o0

(3.0.1)

Since ¢* C (> C --- C £ and Mt C ¢*t C ... C !, all results for (P-
solution © can also be applied to other ¢4-solutions with ¢ < p. In the sequel,
we will study the dynamics of £>°-solution and ¢P-solution (p < co) to (3.0.1)
and provide some results corresponding to each part of Proposition 2.1.1.
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3.1 [(*°-solution: complete synchronization

In this section, we will study the complete synchronization of the homoege-
neous ensemble with /> initial data. As aforementioned, all results in this
section can be applied to other ¢P-solutions.

3.1.1 Dynamics of phase diameter

At a heuristic level, it is natural to expect that D(O(t)) is ‘non-increasing’
in ¢t whenever D(O(t)) < 7, since the oscillators near the extremal phases

0(t) == supby(t), O(t) := inf 6;(t),
ieN ieN
are pulled inward the region in which the majority of the group is located.
In fact, for the finite Kuramoto ensemble, it is easy to check that 6 and 6 are
nonincreasing and nondecreasing, respectively, and their difference converges
to zero exponentially, so that Proposition 2.1.1 (3) holds. For the infinite Ku-
ramoto ensemble, however, a such argument has to be refined. The following
lemma shows that such a heuristic argument holds, when the interaction net-

work K = (k;;) satisfies some structural condition uniformly in 4.

Throughout this thesis, we refer to the following frameworks to guarantee
the synchronization behavior of the infinite Kuramoto model:

e (F1): The initial phase-diameter is smaller than 7: the initial phase
configuration ©" satisfies

D(O™) < T.

e (F2): There exists a sequence & := {&;}jen € £' such that

/ﬁ;,. _
=— >Fk; >0,

ZkeN Kik

for all 7,5 € N.
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Lemma 3.1.1. Suppose that network topology K = (k;;) and initial data ©™
satisfy (F1)=(F2), and let © be a solution to (3.0.1) with p = oco. If initial
phase diameter D(O™) is nonzero, there exist two positive constants 0 and ¢
such that

e For every index i € N satisfying 0" < 0(0) — ¢, one has

0:(t) < 0(0), Vte(0,0).

e For every index i € N satisfying 0" > 0(0) — ¢, one has

0:(t) <0, Vte(0,0).

Proof. Since the proof is very lengthy and technical, we leave its proof in
Appendix B. O]

Note that the natural frequency )V and initial phase diameter D(O%)
satisfy the same condition in Proposition 2.1.1 (3), and only the positivity
condition x;; > 0 has been modified to (F2).

Remark 3.1.1. Below, we provide several remarks on the framework (F1)-

(F2).

1. An interaction network (k;;) satisfying (F2) can be easily constructed
from a sequence in £ whose components are all positive real numbers.
More precisely, for a positive sequence {a;}ien € 11, we set

Rij = Q;Qj, \V/Z,j € N.
Then, the framework (F2) holds true by the following relation:

Rij a; a; -

= 2 > = Fu'j.
ZkeN Kik Zk;eN Qg ZkeN ar + 1

2. The sequence k = {k;j}jen in (F2) is always contained in (*. In fact,
its (*-norm is always smaller than 1.
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3. For the trivial initial data with D(©™) = 0, we have
0:(t)=0, VYieN, t>0.
Thus, the solution © 1is a steady state solution where whole phases are

concentrated in a singleton.

As a consequence of Lemma 3.1.1, one can see that the phase diameter
D(O) is also nonincreasing in ¢ as in Proposition 2.1.1, though we do not
have any estimate on the decay rate yet.

Corollary 3.1.1. Suppose that network topology K = (k;j) and initial data
O satisfy (F1)~(F2), and let © = 0(t) be a solution to (3.0.1) with p = oco.
Then, the following assertions hold:

1. The phase-diameter D(O(t)) is non-increasing t:

DO®) < DO™) <7, ¥it>0.

2. © is a phase-locked state if and only if

Proof. (1) We split the proof into two cases:

DO™) =0, 0<DO") <.

o Case A (D(O™) = 0): In this case, as discussed in Remark 3.1.1(3), we
have
D(O(t)) =D(O™) =0, >0,

which yields the desired result.
o Case B (0 < D(O™) < 7): From Lemma 2.3.2(2), the set

{t>0:D(O(t)) < D(O™)}
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is closed in [0, 00). On the other hand, Lemma 3.1.1 implies that it is also a
nonempty open subset of [0, 00). Therefore, we have

{t>0:D(6(1) < DO™)} = [0, 00),

which is our desired result.

(2) It is sufficient to prove the ‘only if” part. If D(O(¢y)) > 0, then Lemma
3.1.1 can be applied, so that there exists a neighborhood of @(to) such that
every 6; in the neighborhood decreases strictly. Similarly, there exists a neigh-
borhood of (%) such that every 6, in the neighborhood increases strictly.
This contradicts the phase-locked assumption, as it is necessary to satisfy

d
dt
for the phase-locked state ©. O

01—0]: (61—91):0, Z,]GN,

Note that Corollary 3.1.1 does not guarantee that the phase diameter is
strictly decreasing. If 6(t,) is not a limit point of {6;(#o) }sen, then there exists
a neighborhood U of 6(t,) which contains only finitely many 6;’s, and the
supremum 6(t) is determined by those finitely many 6,’s for all ¢ sufficiently
close to ty. Therefore, Lemma 3.1.1 implies that the supremum @ decreases
strictly at time ¢ = o if 6(t,) is not a limit point of {6;(to)}ien. However,
if both A(ty) and 6(t,) are the limit points of {6;(to)}ien, Lemma 3.1.1 does
not imply that the phase diameter is strictly decreasing at t = t;. We can
construct a solution © in which phase-diameter is nondecreasing in time,
even if the framework (F1) - (F2) are satisfied.

Lemma 3.1.2. Suppose there are two increasing sequences {i, }nen and {Jn nen
of N such that

dirm ) ki =0, fim D w0, lim 67 =sup6i?, -t 657 = fuf 6
(3.1.2)

and let © = (01,0,,...) be a solution to (3.0.1) with p = oo. Then, the
phase-diameter D(O) is nondecreasing along (3.0.1).
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Proof. From Lemma 2.3.2, one has

sup [60:(6)] <Y kik,  [0i(t) = 0" <t ki, VieN

Ost<oo kEN keN

Then, we use the triangle inequality and the above relations to obtain

10; (t) = 0; (1) > |0 = 07| = 6" — 0; ()] — |65 — 0, (¢)]
. . 3.1.3
> ‘9;n_9;n| — <Z’%ik+zﬁjk> t. ( )
keN keN

On the other hand, we use the first two conditions in (3.1.2) to see that for
every £1 > 0, there exists a natural number N = N (1) € N such that

n>N — Z/ﬁink <e; and Zﬁjnk < £5. (3.1.4)
keN keN

For every €5 > 0, one can also find M = M (e2) € N such that for n > M,

01‘" > g — &9 and an < Q + €. (315)
Then, by using (3.1.4)—(3.1.5) to the relation (3.1.3) with the index pair
(in, jn) with n > N, M, we have

D(O(t) = sup |0, (t) — 0, (1)) > |63 — 6™ | - (Z%HZ@M)t

m,neN keN keN
Z D(@m) — 2€1t — 252.

Since €, and €9 can be arbitrary positive numbers, we can take €;,e5 — 0 for
each fixed ¢ to obtain the desired result. Therefore, we have

D(O(t)) >DO™), t>0.

Remark 3.1.2. Below, we provide network topology and initial data satisfy-
ing a set of relations in (F1)~(F2) and (3.1.2). More precisely, we set

kij =370 and 0" = (-1)'n/3, i,j€N.
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Then, one has

sup
0<t<o0o

. 1
9i(t>‘ = ZHU T 9.3i1
JeN
which yields
- t
o — 0,(t)] < ———, > 0.
‘ ? ( )‘ — 9. 3@—1 0
Therefore, we have

10: (£) = 0; ()] = |07 — 0" — |67 — 0: (1) | — [65" — 6; (2)]

n n 3t 1 1
> |6; _9j|_5(§+§>.

This gives
n n 3t 1 1 .
By letting i = 2k + 1 and j = 2k, we obtain

3t/ 1 1\ 21 2t
D (O(t)) > ‘92k+1 _0%’ D) (W‘F@) =3 "3 ke N.

Since D (©™) = 2, we have D (O(t)) > 3 =D (O™).

Combining the results we have obtained so far, we can characterize the
sufficient framework which makes the phase-diameter D(O(t)) constant with
respect to .

Corollary 3.1.2. Suppose that network topology and initial data satisfy
(F1)~(F2) and (3.1.2), and let © be a solution to (3.0.1) with p = co. Then,
the phase-diameter of the configuration © is constant along time:

D(O(t)) =D(O™), t>0.

This counterintuitive example is the case when all particles are moving
away from the boundary, but other particles closer to the boundary than we
just observed continue to appear with a slower speeds. Macroscopically, it
will look as if there is a fixed boundary continuously emitting new particles
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which velocities are slower for particles emitted later.

This is a unique feature of the countable Kuramoto model compared to the
original Kuramoto model with finitely many particles. The sufficient frame-
work leading to the exponential convergence of phase for the homogeneous
ensemble as in Proposition 2.1.1(3) will be presented at the end of Chapter 4.

3.1.2 Lyapunov functional

Now, we will analyze the dynamics of (3.0.1) with the following symmetric
summable network topology, which is the first case of Remark 2.3.1:

K= (/{ij) € El’l, Kij = Kji >0, i,5¢€ N. (316)

Since (11 C P! for all p € [1,00], one can construct an ¢P-solution by just
considering an ¢” initial data ©™ under (3.1.6). In addition, under the con-
dition (3.1.6), every ¢*>°-solution © to (3.0.1) satisfy

o) e, t>0,

even when O itself is not contained in ¢'. Note that the condition r;; = kj;
also makes the finite Kuramoto model a gradient flow (see Proposition 2.1.1).

Theorem 3.1.1. Suppose that the network topology (ki;) satisfies (3.1.6),
and let © be a solution to (3.0.1) with p = co. Then, we have

lim [6(8)]2 = 0.
Proof. We will apply a Lyapunov functional approach.

e Step A: First, we suggest the following function as the Lyapunov functional

to (3.0.1):
P(©) = % > k(L — cos(0; — 0;)) > 0. (3.1.7)

1,JEN
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Then, we claim:

d . )
SP©) = =10 =~ |63,

€N

d

SP(el \Z(Z) 1513, < KR (3.18)
€N \jeN

\dﬁ ] <2 K| K s < 20K

Below, we derive the above estimates in (3.1.8) one by one.

(i) We differentiate (3.1.7) with respect to ¢ and use (3.0.1) to find

— % Z Kij sin (0; — Hj) <91 - 9])

1,JEN
1
= 5 Z Rij sin ((91 — 03) Rik sin (Hk — 91)
1,5,k€EN
1 . .
— 5 ij;eN Kij s1n ((91 — 8]) Rjk S111 (Gk - (9]) (319>
— Z Rij sin (91 — 9]) Rik sin (01 — Qk)
1,5,k€EN
=—Z<Zﬁwsm0—9 ) Z|6|2<0,
€N \jeN S

This also yields

&©) =

S (z ) K2,

€N \jeN

Z (Z Rij sin (9, — 93>>

In addition, we differentiate (3.1.9) and apply Lemma 2.3.2, Remark 2.3.2
and (3.1.6) to get

2
ZP(O)] <23 16l16:] < 1K oo Y018 < 201K )20, Y iy = 2K 11K
i€EN 1€EN 1,7EN
30



CHAPTER 3. EMERGENT DYNAMICS OF A HOMOGENEOUS
ENSEMBLE

e Step B: Next, we will show that P satisfies all the conditions for Barbalat’s
lemma, i.e.,

(©)
dt
The convergence of P(©) comes from the fact that P(©) is a nonincreasing
and bounded from below, which we have already verified in (3.19) and (3.20).
In addition, the uniform continuity of % is a consequence of the boundedness
of €2 which we have already verified in (3.20). From (3.1.7) and (3.1.8),,

PR
P (©(t)) is a nonincreasing function bounded from below. Thus, P(©(t)) con-

is uniformly continuous.

5 Jim P(O()

verges as t — 00.

Finally, we apply the differential version of Barbalat’s lemma (see Lemma

A.0.2) to conclude
dP(e(?))

fim === =0, ie, lim [[O()]: =0.

3.2 (P-solution: extra properties for p < oo

In this section, we will study some special properties for ¢P-solutions which
cannot be found from generic £*°-solutions.

3.2.1 Strictly decreasing diameter

If ©(t) € ¢ for some 1 < p < oo, the only possible limit point for the

set {0;(t)}ien is @ = 0, so that either 6(¢) or §(t) is not a limit point for all

time ¢t. Then, Lemma 3.1.1 implies that under the framework (F1)—(F2), the

diameter D(O(t)) is strictly decreasing for all ¢ > 0. However, if there are

symmetric matrix A = (a;;) € PP and (ky, ko, . ..) € (7 satisfying (2.3.10):
Kij = aijkj, V1,5 €N,

where ¢ is the Holder conjugate of p. Lemma 2.3.1 implies that the weighted

Z Hiei

1€EN

average
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is a constant of motion of the flow © € C'(Ry, ). Therefore, if >, k0"
is nonzero, ¢P-solution © can never converge to a point (0,0, ...) in P-norm.

However, there exists a possibility for © to converge in £>°-norm (see Chapter
4).

3.2.2 Gradient flow formulation

In the finite Kuramoto model, the gradient flow approach plays an essential
role in the proof of Proposition 2.1.1. Therefore, we reckoned whether this
approach would yield similar results when applied to an infinite-dimensional
model. To study the gradient flow structure of model (3.0.1), a suitable space
should be equipped with an inner product structure. We found the reason in
differential manifold theory.

For a differential Riemannian manifold (M, g;;), let f : M — R be a
smooth function. Then, the gradient vector V f is obtained by identifying
differential df : T,M — T,R = R by a covector (V f, —)p.. Hence in this
subsection, we will consider the Cauchy problem for (3.0.1) in ¢?-space. We
will begin with a Lemma from calculus.

Lemma 3.2.1. For 6,h € R with |h| < 1, one has
. . h : 2
2sin (0 + h) sin o — hsinf| < 2h°.
Proof. We use elementary inequality:
23
z—ggsinxgm, Vx>0,

and mean-value theorem to get

h
QSin(9+h)sin§ — hsind

<

h
2sin(9+h)sin§ - hsin(«9+h)’ + |hsin (0 + h) — hsin 6|

< 2|sin(9—|—h)|‘sing — g‘ + |h|‘sin (0 + h) —sind
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h3
< — 4+ h? < 2R%

24
O
Proposition 3.2.1. Suppose that the network topology K satisfies
K= (/im‘) S 81’1, KRij = Kji > 0, 4,5€N.
Then, every (*-solution to (3.0.1) is a gradient flow with the potential
1
P(©) =3 > ki (1= cos (6; — 6;)).
i,jEN
Proof. Let b = {hy.}, oy € (% with ||k, < 75 and
= {—Z/@'kjsin(Gj—Gk)} €.
JeN keN
From direct calculation, we have
P(©+h)—P(0) - (,h),
1
=3 Z Kij (cos (0; — 0, 4+ h; — h;))
i,jEN
+ = Z/—i” (cos (6; — ;) Z/ithHl@—@)
1,JEN i,jEN
1
:—52/%((:03( —0; + h; — hj) —cos (6 Zm”hsm —6;)
i,jEN 7,7€EN
& -5 Z kij (cos (0; — 0; + h; — hj) — cos (0; — 0;) + (h; — h;) sin (6; — 6;))
i,jEN

= —— Z Rij ( 2(308( —49]+ hl;hj) COS(hZ‘ —h])+ (hz —hj)sm(é’, —HJ)) .

ZJEN
Here, Lemma 3.2.1 implies

P(©+h)—P(©)~ (®,h),| <3 riylhi— Iyl

i,jEN

D wiglh = bt < 2wy (B +05) <2 ki |Rl;.

i,jEN i#j i,jEN
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where we used 1
bl < —= = |hi—hy| <1,

V2

to meet the assumption in Lemma 3.2.1. Therefore, we conclude dP(0) =
(®, -),, which is equivalent to say that ® is the gradient of P. O

Even if we have a gradient structure of (3.0.1), we cannot show the con-
vergence of phases as in Proposition 2.1.1, as the Lojaciewicz inequality in
Lemma A.0.4 is not applicable under the condition (3.1.6). To see this, we
first assume

ki =0, €N,

without loss of generality. Then, for each ¢ € N, we have

Vo, P(©) = = kysin (6 — 6;),

keN

and the hessian matrix V2P(0) =: {hi;}, ;o is given as

3 | Kij cos (6; — 60;) i J
hij = 8_‘9]<kGZN Kik Sln<9k - 9z)) -y - Z KiJ COS (Hk — Qi) , 1= 7.
ki

In particular, the hessian matrix at © = 0 is

H::VQP(@)(O):{/%: ) zfj
T Lk ik - J-

Next, we determine the kernel of this Hessian matrix. Suppose we have two
vectors

v={Viteny, W={Wi};ey € 2.

By direct computation, one has

(w, Hv), = Zw" (Z KijUj — Z /iijvl.) e _% Z Kkij (v; — v;) (w; — w;) .

ieN jeN jeN i,jEN
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Therefore, we have

1
v = {Ui}iEN ckerH <— <’U,H'U>2 = —5 Kij (Ui — Uj>2 =0

—= vi=v; VijeN, ie, v:(v,v,...)€€2
<~ wv=0.

Now, let e; be a infinite sequence such that all but ith element is zero, and
the only nonzero element is 1. Then, we have

Kij | 1
(Hei)j =14 " j#
- Zk;ﬁi Rig ] =1
Therefore, the ¢?>-norm of He; can be written as
2
2 2
el = 3 s+ (o)
jEN jeN
However, since K € (%!, we can have

fm D =0 =l |Heul, =0,
J

which violates the second condition of (A.0.2).
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Chapter 4

Emergent dynamics of a
heterogeneous ensemble

4.1 Practical synchronization

In this chapter, we study emergent dynamics of the infinite Kuramoto en-
semble which might have several heterogeneous oscillators with nonidentical
natural frequencies,

éizui+2/<cijsin(9j—9i), t>0,
jeN

0;(0) =0 cR, VieN,

O el>, Vel>® K= (k) €l

(4.1.1)

In addition to the framework (F1)—(F2), we also consider the following
framework in this chapter:

e (F3): The network topology K = (k;;) satisfies

gzw = || K| —01 > 0.

jEN

In the sequel, we first prove the existence of a trapping set for infinite
heterogeneous ensembles, and then we apply the same argument to prove the
convergence of diameter to zero in a homogeneous ensemble as corollary.
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Lemma 4.1.1. Let a,b and c be positive constants satisfying the relations
0<c—a<m—¢g, a—e<b<c+e, 0<eg <e.
Then, one has
sin (¢ — a) +sin (a — b) +sin (b — ¢) < 4sin%.
Proof. We use the additive law for trigonometric function to obtain

sin (¢ — a) + sin (a — b) + sin (b — ¢)

) ) a—c a—2b+c
=sin(c—a)+2sin | —— | cos | ————
2 2
_ 9sin c—a a—c\ a—2b+c
=25 5 cos 5 cos —

If a <b < c, then 52, b%, Tb [0, 75=t] and therefore f(a,b,c) < 0. On the
other hand, if a —e; < b <aorc<b<c+ey, then 5% € [ ,”_251] and one
of 5%, <2t is contained in [O m=<1t22] and the other is contained in [—£2,0].
Therefore, we have f(a,b,c) < 4sin % in both cases. ]

Lemma 4.1.2. Let © be a solution to (4.1.1). For everyt > 0 and €5 > 0,
consider the following partition of the index set N:

Ji(eat) = {k : 05 (1) > O(t) — &2},
Ja(e,t) = {k : 0k (t) < O(t )+€2}
j3(€2,t) {]{JQ( + &9 <‘9k( —82}
Then, if D(O(ty)) = O(ty) — O(ty) = © — &1 for some £1 > 0, we have

Qz(t()) — 0](750) S Vi —Vj — Z [min(nik, "ijk) [sm(&z(to) — Qj(to)) — 4sin %]
keN

— |Kix — Kji| sin 52} ,

(4.1.2)
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for every (i,7) € Ji(e2,to) X Ja(g2,t0) and sufficiently small e5 satisfying
g9 <&y, €142 <m, sineg; > 4sin %, sin(e;+2e9) > 4sin %2 (4.1.3)

Proof. One can apply Lemma 4.1.1 to
a = 9j<t0), b= ek(t(]), Cc = Qz(to),

for all i € Ji(ea9,t0),7 € Ja(ea,tp) and k € N whenever g5 < £;. Since
0i(to) — 0;(ty) can be written as

0i(to)=0;(t0) = vi—v;— Y _ (rusin (0; (o) — Ok (to)) — K sin (O (to) — ; (o)),

keN
it is sufficient to verify that
Rik sin (91 (to) — Qk (to)) + Rjk sin (Hk (to) — Qj (to))

> min (K, Kjk) [sin(@i(to) —0;(ty)) — 4sin %2 — |Kir — Kjk| sines
for all k£ € N. Note that for sufficiently small €5 satisfying (4.1.3), we have

sinD(O(ty)) > 4sin %2, sin(D(O(ty)) — 2e2) > 4sin —.

This implies .
sin(6;(to) — 0;(to)) — 4sin 52 >0

from the concavity of the sine function on the domain [0, 7]. Below, we show
the above inequality for k € Jy(e9,ty), k € Ja(e2,t0) and k € J3(e2,ty) one
by one.

e Case A (k € Ji(e2,tp)): In this case, we use Lemma 4.1.1 to get

Rik sin (01 (to) — Qk (to)) + lijk sin (Qk (to) — Gj (to))
= £ [sin (0; (to) — Ok (o)) + sin (6 (fo) — 0; (to))]
+ (K'ik — ij) sin ((91 (to) — Ok (to))

> Kijk [Sin(ei(to) —0;(to)) — 4Sin% — |Kik, — Kji| siney
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Z min(ﬁik, Fdjk) sin(Qi(to) - Qj (to)) — 4sin %] - |"1ik - Iijk| sin 9.

e Case B (k € Ja(eq,tp)): Similar to the first case, we use Lemma 4.1.1 to
get

Kk sin (0; (to) — Ox (to)) + ki sin (O (to) — 0; (to))
= Kk, [8in (0; (to) — Ok (to)) + sin (6 (to) — 0; (t))]
+ (Iijk — liik) sin <9k (to) — 6)]' (to))

> Kik [Sin(ei(to) —0;(ty)) — 4sin %} — |Kix — Kjk| sines
> min(k, Kjk) [sin(@i(to) —0;(ty)) — 4sin %] — |Kik — Kjx| sines.
e Case C (k € J3(e2,1p)): Again, in this case, we use Lemma 4.1.1 to get

Rik sin (92 (t()) — 9k (to)) + /fjk sin (Qk (to) — 9j (to))

> min(Kig, k%) [sin (0; (to) — Ok (to)) + sin (O (to) — 05 (to))]
> min(k, ~jx) sin(b;(to) — 0;(to))
(

€
> min(Kik, Kjk) [Sin(ei(to) —0,(tp)) — 4sin 52] — |Kik — Kjk| sinesg.
Finally, we combine estimates in Case A ~ Case C to obtain

Qz(tO) — 9]‘ (to) =V —V; — Z (Iiik sin (GZ (to) — Ok (to)) — Kjk sin (Qk (to) — ‘9]‘ (to)))

keN

<vi-p-% {min(mk, k) [sin(Bi(to) — 05 (to)) — 4sin %2]

keN
— |Kik — Kjx| sin 52}
for every g9 < g1 and (4,7) € Ji(e2,t0) X Jo(€2,t0), which is our desired
result. O

If © is a solution to (4.1.1) under the framework (F1)—(F3), one can
further estimate the right-hand side of (4.1.2) to obtain the following result,
so-called ‘practical synchronization’.
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Theorem 4.1.1. Assume that the initial data ©™ and network topology (ki;)
satisfy (F1)~(F3). Assume further that

) D
0 < DY) < |RIIK] oo, D(@m)e(%ﬂ—v),VZSm‘l( 0) )<”

1B K-/ 2
Then, if © is an (*-solution to (4.1.1), the phase diameter D(O(t)) has the
following asymptotic upper bound:

limsup D(O(t)) < 7.
t—o00
Proof. Fix a sufficiently small g3 > 0 satisfying
st (POl
1Rl [ K] o0,

)—I—E—O <DO") < 7—sin? (

DY) + HKHoo,leo)
3 Y

1Bl [ 00

and define a positive number ¢, as

. (siny &g
go=min | —,— | .
? 2 76

Then, we claim that the following:
Whenever the phase diameter D(O) at time t = to satisfy

(2 i) (204 1K)
[RITKT ENEEA

+%° < D(O(ty)) < m—sin"!

we have
€2
2(D(V) +2||Kloe1)

D(O(t)) < D(O(to))— [ Kl 182(t—t0), Vio <t <lot

To see this, we first verify that e satisfies the condition (4.1.3) for given
g1 =m —D(O(ty)). If 4 is a positive number satisfying

269 < siney, 29 < —gyq, (4.1.4)
one can easily see that e, satisfies (4.1.3). However, (4.1.4) follows from the
fact that

2e9 < siny <sinD(O(ty)) = siney,

D(V) + HKHoolé‘o) €0
= : + — <D(O(ty)) =71 —¢;.
BN 3 ° '

€
289 < go < sin~! (

40
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CHAPTER 4. EMERGENT DYNAMICS OF A HETEROGENEOUS
ENSEMBLE

Now, consider any index pair (i,7) € Ji(e2,t0) X Ja(€2,t). Then, Lemma
4.1.2 yields

0(to) — 0;(to)

<y —v;— Z {min(/@-k, Kijk) [Sin<0i(t0) — 0;(to)) — 4sin %]

keN
— |Iiik — Iijk| sin 82}

<DWV) - (Z /%k> min (Z Kil, Z mﬂ) [sin(é’,-(to) —0;(tg)) — 4sin %2}

keN leN leN

+ Z |Kik — Kjk| sin ey
keN

~ . . € .
< DY) = IR -t [sin(@h(to) = 05(ts)) = 4sin 2| + 2| K |, sin e,

. & ~ .
< (D(V) + 8[| K01 sin 52) — B[ 001 sin(Bi(t0) — 0;(F0)),

where we used
&l <1, [[K[-con <[ K]0

in the last inequality. Then, by using Lemma 2.3.3, we have
; ; . €2 ~ .
0i(t) = 0;(t) < (D(V) + 8| Klloo1 810 ) = |Bll1]| K| -cc,1 sin(Bi(to) — 8;(t0))
+2(t = t0)[| K loo.n(D(V) + 2[| K[ 001)

for all £ € R,. In particular, we have

0;(t) — 0;(t) < (D(V) + 5| K]|ss122) — IR 1] K || —oo,1 sin(6:(t0) — 0;(t0))
<5||K o082 = [[ K][00,120
<

[ K ls0,122,

for all |t —to| < B R On the other hand, if (7, 4'") is not contained

in Ji(ea,t0) X Ja(e, to) or Ja(ea,to) X Ji(e2,to), we have

|05 (to) — 0 (to)| < D(O(to)) — €2
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Therefore, by using Lemma 2.3.3, we have

6:(2) = 03 (1)] < 16:(t0) = 0 ()| + (DY) + 2] K )t o
< D(6(t) ~ 5

- To sum up, the phase diameter D(0O) satisfies

for all |t —to| < smEEmEI—

E2

D(O(t) < max (D(O(ty)) — || K||ec162(t — to), D(O(ty)) — —

(©(t) < max (D(O(t)) = K |lmazalt ). DOC) = F) |
= D(O(to)) = [[K|[cc122(t — to),

for all ¢ € [to, to + spmpyramrT= ) Where we used

€2
2(D(V) + 2| K]l0,1)
to find a bigger one in (4.1.5).

<

IR

| K || o012 - <

IR

Once we prove the aforementioned claim, we can conclude that D(O(t))
reaches the lower bound

- (D(V) + HKHoo,l&o) €0
S1n = -
1Rl oo, 3

in a finite time. Since ¢y can be chosen arbitrary small, we have
. . . 1 (D) + [|K||s,150 €0
limsupD(O(t)) < inf {sm 1( — : + = =1,
R POW) = 3K, ALK s ) T3] 77

which is our desired result. O

Remark 4.1.1. Note that the quantity || K|| -1 measures the degree of cou-
pling strengths. Therefore, Theorem 4.1.1 yields that the phase-diameter can
be made as small as we want by increasing the quantity ||K||—1. This is
in fact called “practical synchronization” as discussed in [28, 31, 36, 37] for
synchronization models with finite system size.

Corollary 4.1.1. Suppose that the initial data O™ and network topology (k;;)
satisfy (F1)~(F3), and we assume that all natural frequencies are identical:

D(V) = 0.
If © is an (*°-solution to (4.1.1), the phase diameter D(O(t)) converges to

zero exponentially.
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Proof. In this case, we do not fix a constant ¢y, but instead define

&[] K| o1 .
£y 1= L0 sin D(O(ty))
(10| K [Joo,1 + 4[R2 ][ K[| ~o0,1)

and verify (4.1.4) immediately:

29 <sinD(O(ty)) = sin(m — 1) =siney, sin(r—e1) <7 —ey.

Then, for every (i,j) € Ji(e2,t0) X Jo(£2,10), one can apply Lemma 4.1.2 as

in Theorem 4.1.1 to obtain

0i(t) = 0;(1) < 5/|Klloc ez — [1R][1 ]| K| -oc,1 sin(Bi(to) — 65(t0))

< 5[ [oc 182 = B[ K| oo ymin (sin(D(O(to)) — 2¢2), sin D(O(t)))

< 5[[Kloon82 = [[E[I [ K]l -oo 1 (sin(D(O(t0))) — 2e2)

= (Ol[Klcon + 2[RI Kl -sc1)e2 = Bl K]l 001 sin(D(O(to)))

_ —%H"%Hl | K|| oo sin(D(O(ty))),

3
for all |t - to’ S m

Now, define ¢y := 0 and set t,ts, ... iteratively by using the relation

1
the1 = t, + ————sin D(O(t,,)).
+1 56||K||oo71 ( ( ))

Then, we have the following series of inequalities:

D(O(tn:1)) < D(O(t)) 1—; sin® D(O(n)) < D(O(tn)) — %

Therefore, we have

D(O(ta)) < — Top@n: in S illnﬂ?(gm); 56] K
ORI C -

which shows the exponential convergence of D(O(t)) with respect to ¢.
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Chapter 5

Kuramoto ensemble on a
sender network

In this chapter, we consider a network topology in which capacity at the i-th
node depends only on neighboring nodes:

Kij = Kj > 0, 4,5¢€ N, (501)

which represents the second case of Remark 2.3.1. For this network topol-
ogy, we can derive synchronization estimates for an infinite homogeneous
Kuramoto ensemble without any restriction on the size of the initial config-
uration. Furthermore, we can also derive an exponential synchronization for
a heterogeneous ensemble.

Consider the Cauchy problem for an infinite Kuramoto model over sender
network (5.0.1):

éi:Vi+ijsin(9j—0i), t >0,
jEN (5.0.2)
6:(0) = 6" VieN.

In the following two sections, we study the emergent dynamics of (5.0.2) for
homogeneous and heterogeneous ensembles, respectively.
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5.1 Homogeneous ensemble

In this section, we consider the homogeneous ensemble with the same natural
frequencies and normalized coupling:

vi=v, €N, Z/@zl.
ieN

Then, as discussed in Chapter 2, we may assume that v = 0 without loss of
generality.

Qi:ansin(Qj—Qi), t >0,
jEN (5.1.3)

0;(0) =6, VieN.
5.1.1 Order parameters

This part introduces the order parameters associated with (5.1.3). A polar
representation of the weighted sum of z; gives the order parameters (r, ¢) for
the phase configuration ©:

re? = Z Fope'%. (5.1.4)

keN

This is equivalent to
rel(@=0) — Z /ikei(ek_ei). (5.1.5)
keN

We now compare the imaginary part of (5.1.5) to obtain

rsin (¢ — 0;) = ka sin (0, — 6;) .

keN

Then, we use the above relation and (5.1.3); to rewrite infinite Kuramoto
model using order parameters:

0; = rsin(¢ — 6;). (5.1.6)

In the following lemma, we study the governing system for (r, ¢).
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Lemma 5.1.1. Let © be a solution to (5.1.3). Then, the order parameters
(r,¢) satisfy
7= 7‘Z/<aksin2 O — ), t>0,

keN

ézZ/{kcos(Hk—qb)sin(Qk—qﬁ).

keN
Proof. We differentiate (5.1.4) to find
rel? + irei‘% = iz Ke% - 0y,
keN
Now, we divide the above relation by €'® to see
P+ irg = iz kpe =0 g, = — Z KOs, sin(0, — @) + iz K0y, cos(Ox — ).
keN keN keN

We compare the real and imaginary parts of the above relation and use
(5.1.6). More precisely,

e (Real part): From direct calculation, we have

T = Z lﬁkék sin(gzﬁ — Qk) =7r Z Rk sin2(¢ — Gk)
keN keN
e (Imaginary part): Similarly, one has
ro = Z kil cos(Op — @) =7 Z K sin(¢ — 0x) cos(¢ — Oy).
keN keN

Therefore, we have the desired dynamics for ¢ as long as r > 0. [

From the asymptotic behavior of the order parameter or related functional
in sender network, we can describe a different kind of collective behavior than
in Chapter 3 or Chapter 4. For now, we present a converging functional.

Proposition 5.1.1. Let © be a solution to (5.1.3). Then, the following di-
chotomy holds:

Either r(¢) =0 or lim Z Ky sin® (0(t) — ¢(t)) = 0.

t—o00
keN
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Proof. Below, we consider two cases:

e Case A (r(0) = 0): In this case, we employ the uniqueness of ODEs to
(5.1.6) and obtain

0;(t) =0", €N, ie, 7(t)=r(0)=0.

e Case B (r(0) > 0): In this case, r is uniformly bounded by one and mono-
tonically increasing in time ¢ (Lemma 5.1.1) :

r(t) <Y k=1, #(t) >0, t>0.
keN

Therefore, there exists a positive real number > € [r(0), 1] such that

tliglo r(t) = re.

Now, we claim that

/OO Z ki sin? (0.(t) — () dt < oo and

0 keN

% (2}; Ky sin? (60, — gb))

(5.1.7)

¢ (Derivation of the first relation in (5.1.7)): By using Lemma 5.1.1, we have
r_ Z Ky sin? (0, — @)
,
k

= In(r(t)) —In(r(0)) = / Z Ky sin® (O, (s) — ¢ (s)) ds.

0 keN

Therefore, we take a limit ¢t — oo to obtain (5.1.7),.

o (Derivation of the second relation in (5.1.7)): By direct calculation, we have

d 9
pr (Z K, sin (Gk—¢)>‘

keN
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23"k (61 = &) sin (65 — 6) cos (6, — )

B ()

keN
= 22/% ( Z Fmsin(0, — 0x)| + Z Km €08 (0, — @) sin (0, — ¢)'>
keN m=1 m—1

< 4(2@2 — 4.

keN

Finally, we apply the integral version of Barbalat’s lemma for

Z ki sin® (0, (t) — B(t))

keN

to get the zero convergence. O

As a direct application of Proposition 5.1.1, we have the complete syn-
chronization of (5.1.3).

Theorem 5.1.1. Let © be a solution to (5.1.3). Then, the following asser-
tions hold.

1. Complete synchronization emerges asymptotically:

Jim 00) — 6, = 0. 7.j €N

2. If r(0) > 0, then for each pair (i,j), there exists an integer n;; such
that

t—o00

Proof. (i) For the case in which r(0) = 0, we have

which is indeed a steady-state solution. Now, we consider a generic case in
which 7(0) > 0. In this case, the dichotomy in Proposition 5.1.1 yields

lim > risin® (Bx(t) — (1)) = 0. (5.1.8)
keN
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On the other hand, it follows from Lemma 5.1.1 and (5.1.6) that
. 6
sin(¢ — 60;) = —. (5.1.9)
T

Finally, we combine (5.1.8) and (5.1.9) to obtain

This implies
lim |6;(t)] =0, VieN,
t—o00

so that complete synchronization emerges:

lim |6;(t) — 6;(t)| =0, i,j€N.

t—o00

(i) From (5.1.8), we have

r(t)>0 and  lim sin (6(t) — 6(t)) = sin (tlim (Ok(t)—qé(t))) =0, VkeN.
—00 —00

Hence, we have

lim (0x(t) — ¢(t)) = nym, for some n;; € Z.

t—o00

5.1.2 Constant of motion

In this part, we provide two time-invariants for the dynamical system (5.1.3)
that allow us to identify synchronized states.

e (Constant of motion I): Let © be a phase configuration whose dynamics is
governed by (5.1.3). Then, the weighted sum S(©, A) is given as follows:

S(@, A) = Z nka, K = (Iik)

keN
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Then, it is easy to see that S(©, A) is time-invariant:

—S 0, A) Z/{kﬁk = Z Kk sin (6; — 0) = 0. (5.1.10)

keN 7,k=1

In the following proposition, we are ready to verify the convergence of 6; for
each ¢ € N. First we present the collision avoidance between oscillators.

Lemma 5.1.2. Let © be a solution to (5.1.3). Then for each i,j € N,
0" <0 = 0;(t) < 0:(t) < 0;(t)+ 27 for t>0.

Proof. Suppose that there exists a first collision time ¢, > 0 between 6; and
Gj, i.e.,
9j(t0) < Qz(to), t < i, (9](250) = 01<t0) (5111)

Then, it follows from (5.1.3) that
0i(to) — d(t0) = ((sin (6(t0) — Bi(to)) — sin (6(to) — b5 (t0)) ) = 0.
Inductively, one can see that

are;
dtm

_d;

= n > 2.
t=to dtm

3
t=to

Since 0; — 0, is analytic at ¢t = ¢, by Proposition 2.3.1, there exists § > 0 such
that
Gz(t) :ej(t), te (to-é,to‘i‘(”,

which is contradictory to (5.1.11),. O

The result of Lemma 5.1.2 implies that if oscillators’ phases are differ-
ent initially, they can not cross each other in any finite time. On the other
hand, Theorem 5.1.1 does not imply the convergence of each phase itself.
By combining the conservation of the weighted sum, one can show that each
oscillator is converging.

Proposition 5.1.2. Let © be a solution to (5.1.3) with initial data satisfying
the following conditions:

0<6™<2m, i€N.
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Then, there ezists a constant state ©> = {0°} such that
lim 6;(t) =6, ieN.
t—o0
Proof. By Theorem 5.1.1 and Lemma 5.1.2, one has
0;(t) —0;(t)| <2m, Vi,jeN and
3 057 € (—2m,2m) such that tlim (0:(t) — 0;(t)) = 05 .
—00

On the other hand, note that
D Rl =0 (t) =D ki (1) = 0;(t) = > ki (6: (1) = 0; (1)) . (5.1.12)
ieN ieN ieN

Next, we show that the R.H.S. of (5.1.12) converges as t — o0o. More precisely,

we claim
lim D ki (0:(t) = 0; (1) = > kb5, (5.1.13)
i€N ieN
Proof of (5.1.13): Since Y, a, = 1, for any ¢ > 0, there exists a n. € N
such that .
P < —. 5.1.14
; Fi < (5.1.14)

For 7 < n., we can choose t, such that
E>t. = |6:(t)—0; (1) — 6% < g (5.1.15)

Now, we use (5.1.14) and (5.1.15) to obtain

Do (0:(t) = 0;(0) = Y w3y

1€N 1€[N]
<37 Jri (6: (1) — — w5+ ) i (0: (8) — 05 (1)) — iy
i<Ne 1>ne
< Zf{,zg—i—zl‘@?ﬂ'gg‘}'%:tf
i<ne 12N

for t > t.. Hence we verified (5.1.13). Finally, it follows from (5.1.12) and
(5.1.13) that

lim 6;(¢) = R = ki =607, jeN

€N €N
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CHAPTER 5. KURAMOTO ENSEMBLE ON A SENDER NETWORK

e (Constant of motion II): As a second choice for the constant of motion, we
consider a cross-ratio-like quantity for four distinct points on the unit circle.
Before we discuss the second constant of motion, we recall the complex lifting
of the Kuramoto model in (5.1.16). For this, we set a point on the unit circle
associated with the phase 6;:

zi = eiei, 1 € N.
Then, it is easy to check that the Kuramoto model (5.0.2), can cast as follows.

Zi =z + g Z ki (25 — (25, 2i) i), where (z;,2;) = Z;2;. (5.1.16)
jeN

We set .
W(t) = Knzn(t).
n=1
Lemma 5.1.3. Let {z;} be a solution to (5.1.16) such that
% # 2, Vi#j v,=0, 1N,

Then, we have the following relations: for any i # j € N,

d 1y d( 1 > w (2 = )
—(z—z)=—zw (2 — %), — =——z
it =73 ( /) dt \ z; — z; 2 (2 — )
Proof. Note that (5.1.16) can be rewritten as
1
2 = —<w - wzf)
2
This yields the desired estimates:
s Py AL N L d @ H
ST 2 (Zl Zj)’ dt <Z7, — Zj) N (ZZ — Zj)2 dt (ZZ ZJ) N 2 (ZZ — Zj)z.

For {z; :== eiai}ieN, we define a cross ratio-like functional C;;; as

Zi TRk & T &

Cz‘jkzl = . .
Zi — Zj Rk — A
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CHAPTER 5. KURAMOTO ENSEMBLE ON A SENDER NETWORK

Proposition 5.1.3. Let O be a solution to (5.1.3) with non-collisional initial
data:

i 9;" fori # j.
Then, for any four-tuple (i, j,k,1) € N, Cyji; is well-defined for allt > 0 and
constant:

Cijkl<t) = Cijkl(o); t > 0.

Proof. Since all points {eigi} are distinct, C;ji; is well-defined at ¢ = 0. More-
over, by the continuity of solution, there exists 7 > 0 such that for ¢ # j,

0i(t) # 0;(t) € (0,n).

Thus, the cross-ratio like functional C;jp; is well-defined in the time interval
(0,m). Now we introduce a temporal set 7 and its supremum 7 :

T :={7€(0,00) : Ciji is well-defined in the time interval (0,7)}, 7" := sup7.

Then, the set T is not empty and 7 € (0, oo]. In what follows, we show that
7" =00 and Cijk:l(t) = Cijkl(0)7 t>0.

Suppose that the contrary holds, not, i.e.,

*

T < Q.

First, we show that the functional C;;i; is constant in the interval (0, 7*). For
this, we use Lemma 5.1.3 to get

30l = = (510 (50) + 21(0) + 38(0) (50 + (1)) Com 0
4 (%w(t) (2i(t) + 2 (1) + %w(t) (2(t) + zl(’f))) Clia(?)
=0, te(0,77).

Thus, as long as C;ji; is well-defined, it is constant. Certainly, it is continuous
with respect its arguments. Therefore,

E' Cijkl(T*) = tiig‘lf Cijkl(t)-
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CHAPTER 5. KURAMOTO ENSEMBLE ON A SENDER NETWORK

By continuity, there exists a § > 0 such that
Cijri(-) is well-defined in the time-interval [0, 7* + §)
which is contradictory to the choice of 7*. Therefore we have
7" = 00,
i.e., Cijri(-) is well-defined on the whole time interval [0, 00) and
Cijui(t) = Cijia(0). t € (0,00).
O

As a direct corollary of Proposition 5.1.3, we have the following results
on the asymptotic configurations of the set {¢%} and {6;}. First, we will
see that asymptotic configuration of {e%} is either a singleton or bi-polar
configuration.

Corollary 5.1.1. Let {z;} be a solution to (5.1.16) with asymptotic config-
uration {z°}. Then, the following dichotomy holds.

1. There exists a k € N such that 2° = —z° fori € N\ {k}.
2. 27 =2z foralli,j € N.

)

Proof. Suppose that there exists a 1 # k € N such that

By Corollary 5.1.1 and Proposition 5.1.2, 67° — 6;° is an integer multiple of
m, which implies 20° = —2;°. Then we set a partition I; U I; of N by

L ={ieN|z —z2fast—o0}, L:={ieN]|z— —2Fast— oo}.

Suppose that
’[1’ 2 2 and ’IQ’ 2 2.

Then, we can choose
Z#]e[l and k#lEIQ
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For such pairs (7, 5) and (k,1),

o 1G] = T |ZE =2 2 —a))
tlggo Cigna ()] = tLoo zi(t) — zi(t)  z(t) — 2(t) ’

which is contradictory to the constancy of C;jx:

Cijia(t) = Cijra(0), t>0.
Therefore, we have
|Il| S 1 and ’]2| S 1.

Without loss of generality, we may assume I; < 1. Then there are two cases:

If |I;| = 0, then asymptotic state is in complete phase synchrony:

lim z;(t) = 27°, > 2.

t—o00

If |I;] = 1, then we have bi-polar asymptotic state:

lim z(t) = —27°, @>2.
t—r00

O

Now we are ready to study the asymptotic configuration of (5.1.3) that
emerges from the given initial configuration {#"}. For a given initial config-
uration {0i"}, we set

Oy := Z KO (5.1.17)
ieN
Then, it follows from (5.1.10) that
O = > kibi(t), t>0. (5.1.18)
ieN

Corollary 5.1.2. Let © be a solution to (5.1.3) with asymptotic configuration

{07}

lim 0;(t) =6, ieN.
t—o0
Then, for each v € N,

Q?E{GQ}U{Q():E/%W‘ZEN}U{eoi(l—HZ)T("ZEN}
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Proof. 1t follows from Corollary 5.1.2 that we have two possible asymptotic
configurations:

Complete phase synchrony and bi-polar configuration.

e Case A: Suppose that

lim 6;(t) = 0, VieN.

t—o00

In this case, we use the above relation, (5.1.17) and (5.1.18) to get

1€EN > 1€N ieN €N

e Case B: Suppose that

tlim 0;(t) = 0 £ 7 for some j and tlim 0;(t) = 0 for all i # j.
—00 —00

(5.1.19)
Then, we use the above relations and the same idea as Case A to find

0y = Z kif;(t) = Z Kb = Z Kkboo £ KjT = O £ Ky (5.1.20)

ieN 1€EN keN

Then (5.1.19) and (5.1.20) imply

Gi—>«900:002|2nj7r, Qj—>901(1—/<aj)7r.
Finally, we combine all the results in Case A and Case B to obtain the desired
estimate. 0
5.2 Heterogeneous ensemble

In this section, we study the frequency synchronization of the heterogeneous
ensemble for a restricted class of initial configurations confined in a half circle.
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CHAPTER 5. KURAMOTO ENSEMBLE ON A SENDER NETWORK

Note that the Cauchy problem (5.0.2) is equivalent to the following Cauchy
problem:

IQZ:WZ, t>0, VZ€N7
Wi =Y kjeos (0; — 0;) (w; —wi) |

Jen (5.2.21)
9z‘(0> = Q;H € R, wi(O) =y + Z i sin (0}11 . ein) 7
. jEN
where
O = (B0 . ) el™ V=(u,m,...)eEl®
We set

W = (wi,ws,...) and DW) :=sup |w, — wyl.

m,n

Note that for our sender network,
1K oy = 1K ey = D 5
jEN
Here the Theorem 4.1.1 can be applied to trap ©(t) into a quarter arc.
Proposition 5.2.1. Suppose that the initial condition D(O™) and network
topology (k;;) satisfy

~ ; . D(V) T
0<DW) <&l K], D(O™) € (v,m—7), ~=sin"" (~—) < Z
I e Kl ) < 2

for

||K||oo,1 + 6’

Then there exists a tg > 0 and 0 < d < 1 such that

e l, ke Ke = {I%«%i}iEN'
s -1
D(O(t)) < 5 ~sin 9, t>1.

Proof. The conclusion is straightforward from Theorem 4.1.1. m

Next, we state our last main results on the complete synchronization of
(5.2.21).
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CHAPTER 5. KURAMOTO ENSEMBLE ON A SENDER NETWORK
Theorem 5.2.1. Let (©,W) be a solution to (5.2.21) with conditions in
Proposition 5.2.1. Then, there exists to > 0 such that

3| K ||, log 2

D(O(1) < 3. DOV() < DOV() - exp | ===

(t—to)+1

holds for t > t,.

Proof. Since the proof is very lengthy, we leave its proof in Appendix C. [
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Chapter 6

Conclusion

In this thesis, we propose a generalized synchronization model for the infinite
set of Kuramoto oscillators and studied its emergent asymptotic dynamics.
The original Kuramoto model describes the synchronous dynamics of a finite
set of Kuramoto oscillators, and it has been extensively studied in the last
decade.

However, as far as the authors know, the dynamics of an infinite number
of Kuramoto oscillators have not been addressed in literature as it is. For the
dynamics of an infinite ensemble, the Kuramoto-Sakaguchi equation derived
by a mean-field approximation is often used to describe the temporal-phase
space dynamics of a one-particle distribution function. However, this is only
an approximation for the dynamics of the infinite set of Kuramoto oscillators.

The significance of our work is that we have observed emergent dynamics
of the infinite-dimensional Kuramoto model without suppressing the informa-
tion of each oscillator. For our model to be well-posed, we gave the coupling
weights from an infinite matrix whose row sums are uniformly finite. In such
a system, some methods that work well in finite-dimensional models can be
applied well, but some fundamental differences exist.

For example, we cannot use the Dini derivative of phase diameter because
we cannot estimate how many crossings occur at the end-point of phase
space. Similarly, the gradient flow structure of the Kuramoto model cannot
be applied even for a symmetric network. We show that there exists a network
topology that leads to the constancy of phase diameter (see Corollary 3.1.1).
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CHAPTER 6. CONCLUSION

For a symmetric network topology and homogeneous ensemble, we show
that complete synchronization occurs asymptotically (see Theorem 3.1.1).
Meanwhile, for a heterogeneous ensemble, we cannot show complete synchro-
nization. Instead, we obtain a practical synchronization, i.e., we can make the
size of phase diameter as small as we want by increasing the size of coupling
strength (see Theorem 4.1.1).

On the other hand, for a sender network topology in which coupling
strength depends on neighboring oscillators, a homogeneous ensemble either
evolves toward complete phase synchrony or a specific type of bi-cluster con-
figuration (see Theorem 5.1.1). In contrast, for a heterogeneous ensemble, we
show that complete synchronization emerges asymptotically (see Theorem
5.1.1).

There are several interesting remaining questions. For example, the rela-
tion between finite collisions and phase-locking is not clear. For the Kuramoto
model for a finite ensemble, the aforementioned relations are equivalent. In
addition, we did not show the emergence of complete synchronization for a
heterogeneous ensemble in a large coupling regime. We leave these interesting
questions as future work.
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Appendix A

Some useful lemmas

In appendix A, we collect some useful results which are used explicitly and
implicitly in the main body of the thesis without detailed explanation and
proofs. Detailed proofs can be found in quoted references and any reasonable
book on mathematical analysis, e.g., [40].

First, we begin with the abstract Cauchy problem on a Banach space

(B[~ 1D):

{% =F(u(t), t>0, (A.0.1)
u(0) = u'™.

Lemma A.0.1. (Global well-posedness [7, 9]) The following assertions hold.

1. (Existence): Let F': E — E be a Lipschitz map, i.e. there is a nonneg-
ative constant L such that

||Fu— Fv|| < Lllu—v|| YuuveE.

Then, for any given u™ € E, there exists a global solution u € C'([[0,00); )

to (A.0.1).

2. (Uniqueness): For U C E, let F: U — E be a locally Lipschitz map;
let I be an interval contained in R not necessarily compact. If there are
two exact local solutions @1 and @y : I — E to (A.0.1). Then, they are
identical in the entire interval I.
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Remark A.0.1. This lemma has been used to guarantee the global well-
posedness of the infinite Kuramoto model on the Banach space (*°; || - ||o0)
in Proposition 2.3.1.

Next, we present a differential version of Barbalat’s lemma which has
been used in the proof of Proposition 5.1.1.

Lemma A.0.2. (Barbalat [4]) Let F': [0,00) — R be a continuously differ-
entiable function satisfying the following two properties:

3 tlim F(t) and F' is uniformly continuous.
—00

Then, I’ tends to zero, as t — oo.

Lemma A.0.3. [40] Let F,, be a sequence of real-valued differentiable func-
tions on [a,b] with the following two properties:

1. (Pointwise convergence at one-point): For some o € [a, b],

3 lim F,(zo).

n—o0

2. (Uniform convergence of derivatives): the sequence {F} converges uni-
formly on [a,b].

Then, {F,}converges uniformly on [a,b] to a function F and

F'(z) = lim F(z) (a<z<b).

n—oo

Remark A.0.2. The proof can be found in Theorem 7.17 of [40].

Finally, we state the Lojasiewicz gradient inequality on a Hilbert space

(H,(-,-)): We set
lull := v/ {u,u), wem.

Lemma A.0.4. (Lojasiewicz gradient inequality [20]) For an open neigh-
borhood U C H of 0 € H, let F' : U — R be an analytic function such
that

F(0)=0, DF(0)=0.

Suppose F' satisfies the following two conditions:
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1. N :=ker(D?F(0)) is finite-dimensional.
2. There is p > 0 such that
|ID?F(0)u| > pllul|, YueVNN*, (A.0.2)
where N'tstands for the orthogonal complement of N .

Then there ezist 6 € (0,1/2), a neighborhood W of 0 and ¢ > 0 such that

1-6

|DF(u)|| > c\F<u> . Yue.

Remark A.0.3. See the discussions right after the proof of Theorem 3.1.1.
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Proof of Lemma 3.1.1

In appendix B, we provide a lengthy proof of Lemma 3.1.1. Since 6(0) =
sup 0, the following dichotomy holds:
ieN

(1) 6(0) is an isolated point of the set {i"}icn,

(2) 6(0) is a limit point of the set {61 }ien.

In the sequel, we show that the desired assertions hold for each case.

(1) First of all, suppose that

6(0) is not a limit point of the set {6 };cn.
In this case, the index set
is nonempty (possibly infinite) subset of N, and there exists € > 0 such that

DO +e<m and Lgg) g0y = {i €N: 6;" € (0(0) — £,6(0)} = 0.

¢ Case A.1: Let ¢ € N be an index such that
0" < 0(0) — e.
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We set
€

1K oo1

For t € (0,d1), we use the above relation and Lemma 2.3.2 to obtain

> 0.

(51 =

ISl —

0:(t) < O + || K|looat < 0(0) — & + || K| oo - W = 6(0). (B.0.1)
00,1

¢ Case A.2: Let ¢ € N be an index such that

o > 6(0) —

In this case, it is easy to see that 6" = 6(0) and

t 0+ Z Kij sin( 9 — 0 Z Kij sin(0]" — 6(0))

jEN

Z Kij sin( Om —0 Z kg sin(6 — 6(0))

€T5(0) 0 J¢I 9(0)

= Y kysin(0P —0(0)) < — | 3wy | sine,

1%T5(0) 7 %5(0)

dt

(B.0.2)

where ¢ E is the Dini derivative, and we used (3.0.1), (B.0.2) and the relation:
&L = -—-mte< 07" —6(0) < —e.
On the other hand, for ¢ € Zg;, and sufficiently small ¢ satisfying
- sin e
t<dy:= jﬂzg(o) K| - MK’ (B.0.3)
we apply (2.3.16) and (B.0.2) to obtain

Bi8) < 6:00) + (2K llen D )

jEN
. [— S et (X)X ,gj)] ne<o. (B0
JET, 0(0) JEN j%IE(o)

N J/
-~

<o from (r1)
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Note that Z k; is always strictly positive except the trivial case Ty = N,
7% %5(0) .

which we have already excluded by using the condition D(©™) > 0. This

guarantees the positivity of the constant ds in (B.0.3). Finally, we set

0= min{dl, 52} > O,

and combine (B.0.1) and (B.0.4) to conclude the desired result.

(2) Suppose that
0(0) is a limit point of the set {#i"},cy.

In this case, we can exclude the singleton case with {6}, = {0(0)}, since
every neighborhood of the limit point #(0) must contain a point of {6i"}cx
other than 6(0) itself. Therefore, there exists a natural number 4 such that

6(0) — 6* =: &9 € (0,7),
so that the index set
Tiow)(0) =0 = 111 0(0) < 6;* <8(0) — o}

is nonempty. Now, we define an auxiliary function f : (0,&9) — R which will
appear in (B.0.6):

B _ | sin(eg — )
f(,T) = ' Z /ij v, V xr € (0,50).
7€219(0),8(0) <o)

Then, it is easy to see that f is a monotone decreasing continuous function
such that

f(x) <0, ze€(0,g), lim f(z)=+4o00, lim f(z)=0.

r—0+ r—reQ—

Therefore, there exists a unique ¢ € (0, &g) such that

fle) =2, ie., Z R; | sin(eg —e) = 2sine. (B.0.5)

7€Z19(0),5(0) <o)
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o Case B.1: Let © € N be an index such that
0" < 0(0) — e.
Then, for every positive t < §; = m, we use Lemma 2.3.2 to see
0:(t) < O + || K|looat < 0(0) — & + || K||00101 = 6(0).
¢ Case B.2: Let + € N be an index such that
0" > 0(0) — e.
Note that the whole index set N can be rewritten as
N={i: 0(0)<6"<0(0)—e} U{i 0 0(0) —go < 0 < 0(0) — ¢}
J{i: 6(0) —e < 6" <6(0)}

=: Lo(0) 5(0)~<0] | Z(0(0)—c0 50~ L Z@(0)-<3000
Then, we have

d+o;
dt lt=0+
= Z ki sin (0 — OF) + Z ki sin (0 — 0)")
3€L19(0),3(0) <o) TE€L(9(0)—e0,(0)—] T

+ Z Kij sin(@}“ — 0

TEL(H(0)—,8(0)]

< Z Kij sin(@}n —0") + Z Kij Sin(e}n - 6;")

7€116(0),5(0) <o) T€L{H(0)—2,8(0))
< — Z Kijsin(eg — €) + Z Kijsine
7€116(0).9(0) <o) 7€L@(0)-2.8(0))
< — Z Kijsin(eg — ) + Z Kijsine
7€716(0),5(0) e JEN
< Z Kij | sine — Z Rjsin(gp — ¢) from (F1) and (B.0.5)
jeN 7€116(0).8(0) <o)

= — ( E Iiij> SiH€,
JEN

(B.0.6)
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where we used (B.0.5) in the last equality. Now, we set

~ sine

0y = .
2] K|,

Then, for t < b5, we apply Lemma 2.3.2 as in Case A.2 to (B.0.6) to obtain

6,(t) < 6;(0) + (2\|Kuoo,1 Z/@ij)t < 6;(0) + (Z nij> sine < 0.

jeN jEN

Finally, we define 6 = min{d;,d,} to get the desired result when 6(0) is a
limit point. O
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Proof of Theorem 5.2.1

In appendix C, we provide a lengthy proof of Theorem 5.2.1. By Proposition

5.2.1, we may assume that there exists an entrance time ¢, such that
T .
D(O(t)) < 5 sin= 4, t>t

for some 0 < § < 1. For the derivation of desired exponential decay, we split

its proof into four steps.

e Step A (A differential inequality for some w;): We set

W(t) := supwy(t).

neN
Let 7 € N be an index such that
3
Since
Z /ﬁ]jw]'(t()) =0 with {wi}ieN 7_é O, (CO2)
jeN
such 7 exists. We set
J(to) = {j eEN: w]‘(t()) Z wl(to)} . (COB)
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Note that
i(to) = Zf-@] cos (0;(to) — 0;(t0)) (w;(to) — wi(to))
= ) kjcos (0;(t) — 0;(tn)) (w;(to) — wi(to))
€I (t0) (C.0.4)
+ Z K; cos (0;(to) — 0;(t0)) (w;(to) — wi(to))
JEN\J (o)
= Izl + IQQ.

Below, we estimate the term Z,; with ¢ = 1, 2.

o (Estimate of Zy1): We use (C.0.2) and (C.0.3) to get

T = Y rjcos(bi(to) — 0;(to)) (wj(te) — wi(to))

JE€J(to)
< kg (wlte) —wilte)) = — Y Kjwilte) — D kjwilto).
Jj€J(to) JEN\J(to) JE€JI(to)
(C.0.5)
o (Estimate of Zys): Again we use (C.0.2) to obtain
Tyn= Y, #jeos(0(to) — 0;(to)) (w;(to) — wilto))
JEN\J(to)
<4 Z ;i (w;(to) — wi(to) :—5Z/<o]w]t0 )—0 Z Kw;(to),
JEN\J (to) Jj€J(to) JEN\J(to)
(C.0.6)

the equality in (C.0.6) holds by (C.0.2). In (C.0.4), we combine all the esti-
mates (C.0.5) and (C.0.6) to get

wl(to) S - Z Iijwi(to) - Z Iiju)j(t()) -0 Z Kjo(lfo) -0 Z :‘ijwi(to)

J€J (to) JEN\J(to) J€J(to) FEN\J (to)
=— Z kjw;(to) — 0 Z kw;(to) — (1 —9) Z r;wj(to)
J€J(to) JEN\J(to) JEN\J(t0)
= =6 Klsoawi(to) + (1=6) Y (w;(to) — wilt)) < =6 K [lsorwi(to)-
JEJ(to)
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e Step B (Estimate w;(t) for t < 1): For i € N satisfying the relation
(C.0.1), we set

) 1
C) = min 1, ——— ». C.0.7
L TG (VT + 21K ) { ||K||oo,1} (07

In the sequel, we estimate w; in the time interval [to, ¢y + C1@(p)].

First, we use Lemma 2.3.2 and (C.0.1) to find
wi(t) < wilto) + 2/ Ko (Ve + 1 Kl00,1) (£ = o)

30 _
< = B llooa@(to) + 2[[ Kllooa (VI + 1K loc,1) (2 = to)

IN

36 _
—§|]K||oo71w(t0),
where we used (C.0.7). This yields
_ 30 _
wi(t) < W(to) — gHKHoo,lw(to) (t —to)-
Next, we consider an index ¢ € N such that

Wi (to) é w(to) .

A~ w

In this case, we use (C.0.7) to get

w;i(t) < wilto) + 2| Kloo (Voo + 2 K| 0,1) (t —to)
3 1
< Z—lw(to) + gw(to).
Hence we obtain
w(t) < max {g, (1 — 3§5||K||Oo,1(t — tg)) } w(to) (C.0.8)

for to S t < to + Clw(t(])
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e Step C (w(t) is nonincreasing for ¢ > ty): Let t; > ¢y and
I={t:w(t) <w(t1)}

in [t;,00). By Lemma 2.3.2, © = W is uniformly bounded and w;(t) is glob-
ally Lipschitz. Applying similar process with Lemma 2.3.2 gives @ is also
Lipschitz. Hence I is nonempty closed subset of [t;,00), and Step B proves
that I is open in [t1, 00). Hence wW(t) is globally decreasing.

e Final step: @ is exponentially decreasing for t > t.

Let
tn = tn—l + Clw(tn_l), n € N.
Then,
30 7 1
1 — — | K||oo.1Cro0(t,— <= = < W,
(1= K eaCB ) ) < § = gor—r <l
gives
D(t) < “B(t,)) = L o)
w(ty, =0 (tp,— — < W(t,—
g\t 30][ K [loenCr 1

in (C.0.8). Combined with
too1 — by <tp —th1 <= W(ty) <W(tn_1),

we can conclude that

W(t+n(ty —ty)) <w(ty) < (g)nw(to)

for

1
nedmeN: ——— < (t,) v.
{ e ”}

Now it is enough to show the conclusion with assuming m > w(to).
We choose k£ € N such that

1 _ 1
k-1 > w (to) > ?

Suppose that

w(t) > for t > 1.

2k
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By induction on n, we can show that

3 1

wo(t) <w(ton) — =

9k
where fo,n =tg+n- g—k

This implies

3 1
w(t) <w(ty) — §||K||oo71 -—-n, VneN,

2k

which is contradictory to @ (t) > 5.

Furthermore, we have

1 1
[Kllooa - 5 -1 < i3

w(t) <w(ty) — - —||K

oy y
32 32

forn > |22+ 1.

This implies

2k

1
||oo,1 : @

inf{t:w(t)gi}gtwﬂ 32 J+1.

3K [loo,n

Inductively, we can derive

0<T(t) < ~B(ty),  t>to+ [ 52
w —W n||lz=———
Similarly, we set
w(ty) == Tllrellgwn(to).
This yields
1 32
0>w(t)> —w(ty), fort>t {—
02 giato, ort 2t |

Finally, we combine (C.0.9) and (C.0.10) to find

J+1).

J+1).

n <

1K oot - = - (t — 7§o,n) , tom <t <tonst,

1

2

k’

(C.0.9)

(C.0.10)

D W(D) = B(0) ~ wlt) < o, (Blt0) ~ (b)) = 5,0 W(ta)),
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for t >ty +n (Lﬁj + 1) . In this case, we have exponential synchro-

nization:
311Kl 1o 2

t—1 1 t > tg.

D (W(H) < D (W(t)) - exp [—
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