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Abstract 

Groundwater remediation has become a significant challenge in 

maintaining the value of water resources. Pump-and-treat among the various 

remediation methods is widely has been used as a remediation technology for 

trichloroethylene (TCE) contamination in groundwater, but a cost-effective 

remediation design needs to be formulated. The Genetic Algorithm (GA) 

which is one of the optimization methods is commonly has been applied to 

suggest groundwater remediation strategies. However, it has limitations in 

solving multi-objective optimization problems. As an alternative to this 

problem, the Non-Dominated Sorting Genetic Algorithm-II (NSGA-II) is 

being suggested and utilized. This study aims to evaluate the relative 

performance of NSGA-II in groundwater remediation for solving multi-

objective optimization problems and proposes an optimal groundwater 

remediation design for the highly contaminated alluvial aquifer at the Wonju 

Industrial Complex (WIC). MODFLOW and MT3D are used to simulate 

groundwater flow and solute transport in both the benchmark model and the 

alluvial aquifer model. Additionally, a geostatistical model is applied to 

generate a heterogeneous hydraulic conductivity field and the concentration 

distribution of TCE. To assess the performance of NSGA-II, both GA with 

weighting and NSGA-II are applied to solve the multi-objective optimization 

problem in the benchmark model. Furthermore, optimal pump-and-treat 

strategies at WIC are suggested by introducing the Well Contribution Index 

(WCI), which considers the pumping rate and well specification data such as 

length of well screen or depth of well. The performance assessment results 

demonstrate that NSGA-II performs well in solving multi-objective 

optimization problems for groundwater remediation with conflicting 

objectives. The results obtained from the alluvial aquifer model indicate that 

extracting groundwater only during the rainy season can effectively execute 

the pump-and-treat strategy. Finally, the proposed WCI results indicate that 



 

 ii   

well KDPW-7 significantly contributes to the pump-and-treat process. 

Previous pilot tests conducted at KDPW-7 have proved effective remediation, 

and the findings of this study suggest that the WCI can provide valuable 

insights for remediation operation strategies such as the selection of pumping 

wells in real pump-and-treat scenarios. 

Keyword: Groundwater modeling, Pump-and-treat, Non-dominated 

Sorting Genetic Algorithm (NSGA-II), Trichloroethylene (TCE), Well 

Contribution Index (WCI) 

Student Number: 2021-24628 
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1 INTRODUCTION 

1.1 Research Background 

Groundwater is a valuable water resource used for agricultural irrigation, 

drinking water, and as a geothermal heat exchanger for heat pump systems. 

Human activities in agricultural and industrial fields have a significant impact 

on the quality of groundwater, often resulting in groundwater contamination. 

Therefore, it is necessary to derive an effective strategy for the control and 

remediation of contaminated groundwater. Primarily, dry cleaning or car 

engineering factories of industrial complexes commonly utilize 

trichloroethylene(TCE) as a lubricant and an oil degreaser. However, 

contamination in soil and groundwater is occurring due to lack of proper 

management in continuous usage. TCE leakage causes severe groundwater 

contamination due to its toxicity and its ability to penetrate deep into 

groundwater (Jackson 1998; Rivett et al. 2001; Baek and Lee 2011).  

Therefore, from a groundwater remediation perspective, various technologies 

are suggested such as 1) physics-chemical based remediation, 2) biological 

based remediation and 3) natural attenuation, and these methods are adopted 

depending on site characteristics and contaminants reaction (Langwaldt and 

Puhakka 2000; Wang and Mulligan 2006; Reddy 2008; Lien et al. 2016). To 

identify an effective remediation technology for TCE in groundwater, a 

variety of groundwater remediation technologies had been applied to TCE 

contaminated areas (Moon et al. 2005; Rivett et al. 2006; Kim et al. 2007; Lee 

et al. 2007). Although a pump-and-treat method displays better effectiveness 

for TCE removal compared to other methods in an industrial complex (Lee et 

al. 2013), it has a limitation on a significant remediation costs and time. 

Therefore, there is a need to suggest cost-effective optimal remediation 

strategies to improve efficiency. 
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To enhance groundwater remediation efficiency, several optimization 

methods are applied to the contaminated groundwater site and then to find an 

optimal operation plan which can reduce remediation cots (Ahlfeld et al. 1988; 

Sawyer et al. 1995; Jeyakumar et al. 2007; D’Ambrosio et al. 2015). 

Mathematical programming such as Linear Programming (LP) or Non-Linear 

Programming (NLP) deals with convex or concave optimization problem. 

Especially, several theorems state that a strict convex optimization finds an 

unique optimal solution, known as global optimum (Bertsekas 2009). 

However, one of the disadvantages of mathematical programming is its 

requirement for significant computation time to solve optimization problem 

(Silveira et al. 2021). Additionally, it is often limited to specific forms of 

objective functions, which can restrict its applicability. To overcome these 

problems, meta-heuristic algorithm, such as Genetic Algorithm (GA), Particle 

Swarm Optimization (PSO), and Simulated Annealing (SA), is developed to 

solve optimization problem in groundwater remediation (McKinney and Lin 

1994; Huang and Mayer 1997; Wang and Zheng 1999; Ko et al. 2005; 

Mategaonkar and Eldho 2012). McKinney and Lin (1994) evaluated the 

performance of GA in groundwater remediation problem and showed that GA 

is able to ferret out searching the global optimal solution and reduces 

computation time, compared to LP or NLP. Huang and Mayer (1997) stated 

that optimal well locations for pump-and-treat are sensitive variable to solve 

optimization problem in groundwater remediation. Although the meta-

heuristic optimization algorithm presents better computation efficiency, local 

optimum which is pseudo optimal solution could be obtained (Beheshti and 

Shamsuddin 2013). Therefore, a realistic initialization of simulation should 

be coupled with the meta-heuristic optimization for improvement in searching 

the global optimum. 

Previous studies couple the groundwater model with GA to suggest 

optimal operation design for pump-and-treat method (Ko et al. 2005; Park et 

al. 2007, 2011). Especially, Park et al. (2011) suggested optimal pump-and-
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treat strategies in real groundwater contaminated site by coupling the 

groundwater model and GA. An application of GA in groundwater 

contaminated site only considers a single objective optimization problem, 

such as minimizing operation cost or operation time of remediation (Aly and 

Peralta 1999; Ko et al. 2005). Therefore, it is difficult to consider both cost 

and time with conventional approach. Furthermore, GA does not consider 

acceptable cost or target concentration in terms of remediation operation 

strategy. Therefore, there is a need for optimal solutions to multi-objective 

optimization problems, and many previous studies have coupled it with 

groundwater models that suggest optimal solutions (Erickson et al. 2002; 

Mondal et al. 2010; Singh and Chakrabarty 2010; Peralta 2012; Mirzaee et al. 

2021). Peralta (2012) applied the weighting method that deals with multi-

objective optimization problem. However, the weighting method requires lots 

of computational time to obtain optimal solution and does not guarantee that 

suggested solution is the global optimal soltuion (Konak et al. 2006; Asghar 

et al. 2015). To overcome limitations in the weighting method, Non-

Dominated Sorting Genetic Algorithm-II (NSGA-II), which is based on GA 

and handles multi-objectives for optimization, is applied to solve optimization 

problems in groundwater remediation. 

Recently, NSGA-II handles the groundwater remediation problem subject 

to various objectives (Mirzaee et al. 2021; Tabari and Abyar 2022; Zeynali et 

al. 2022). Mirzaee et al. (2021) solved nitrate contamination problem that 

maximizes economic benefits and minimizes the concentration of nitrate in 

groundwater. Zeynali et al. (2022) formulated objective function that handles 

not only cost and concentration but also drawdown and remediation time. 

Furthermore, an uncertainty of hydraulic and contaminant properties is an 

important factor for groundwater remediation (Teramoto et al. 2020; Yang et 

al. 2022). Yang et al. (2022) displayed that co-existing uncertainty of 

hydraulic conductivity and porosity should be considered to suggest optimal 

pump-and-treat strategies. Teramoto et al. (2020) showed that the fluctuation 
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of concentration subject to the water table is an important factor for the pump-

and-treat method. However, these studies are limited on searching sensitive 

parameters such as pumping rate or operation time in the pump-and-treat 

methods. Furthermore, they do not suggest quantitative measurements of the 

importance of these parameters in wells. To reflect the conditions of 

contaminated site for pump-and-treat method, it is necessary to consider the 

integrated uncertainty that is existed at the contaminated site and propose an 

index related to pump-and-treat method. Moreover, solution sets obtained by 

multi-objective optimization could be applied for decision-making subject to 

groundwater remediation. 

1.2  Objectives and Scope 

The objective of this study applies a search-based Simulation-

Optimization model to suggest the optimal design for the pump-and-treat 

method considering uncertainties (i.e. hydraulic conductivity, porosity, solute 

concentration) at TCE contaminated site. First, the benchmark model is 

established to evaluate the performance of multi-objective optimization and 

identify its applicability to the regional scale model. For alluvial aquifer 

model, the optimal design for the pump-and-treat method which considers the 

fluctuation of concentration caused by TCE trapped at the vadose zone is 

suggested. Consequently, in this study, the Well Contribution Index (WCI) 

that indicates the pumping rate and data of the well is proposed not only to 

suggest optimal remediation design considering site characteristics, but also 

to select the optimal pumping well which has priority for groundwater 

remediation. 
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2 METHODOLOGY 

2.1  Site description 

In this study, optimization of the pump-and-treat strategy is applied to one 

benchmark model and one regional scale study site: Wonju Industrial 

Complex (WIC) is highly contaminated at the alluvial aquifer. 

WIC is located approximately 120 km away from Seoul, and 

southwestern part of Gangwon province (Figure 2-1). The left side of the 

study area has a higher elevation which is near Road Administrative Office 

(RAO), and the right side of the study area is near the Wonju stream. 

Geologically, the study area is composed of Jurassic biotite granite(Jbgr) and 

Quaternary alluvial deposits (Qa) (Figure 2-1). In addition, weathered rock 

and little fractured rock are included in bedrock aquifers (Korea water 

resources and corporation, 2011; Yang and Lee, 2012; Lee et al., 2013). In 

WIC, TCE is the main contaminant. RAO is highly contaminated by TCE, 

and hot source zone is located. Besides, it has been researched that several 

local TCE sources exist along the downstream direction from the RAO (Yang 

and Lee 2012). Due to the fact that there are main source and several local 

sources along groundwater flow direction that cause TCE contamination, 

groundwater remediation has been recognized as one of the major tasks to be 

carried out urgently in this area. 

Figure 2-2 shows the concentration variation related to rainfall at the hot 

source zone. In this figure, the concentration of TCE is increased subject to 

rainfall. This is due to the fact that trapped TCE at the unsaturated zone is 

dissolved when the water table rises. In WIC, there is a positive correlation 

between hydraulic head variation and the concentration of TCE at the hot 

source zone (Yang and Lee 2012; Yang et al. 2012; Cho et al. 2020). To 

simulate the transport of TCE at WIC, concentration variation should be 
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considered, and mass loading at the source zone is assumed to show variation 

of TCE related to rainfall.
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Figure 2-1. Site properties which are about (a) location and the source zone of the study area where is Woosan Industrial Complex (WIC) (b) 

Geological map of the study area. Red box indicates hot source zone and black dots indicate observation wells in this area. Qa and Jbgr indicate 

Quaternary alluvial deposits and biotite granite, respectively. 

 

 



 

 ８   

 
Figure 2-2. Monthly rainfall data and changes in TCE concentration at observation wells at Woosan Industrial Complex (WIC) site. 
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2.2  Numerical model 

Two numerical models are adopted to simulate 1) groundwater flow and 

2) dissolved phase of TCE transport. MODFLOW (Harbaugh 2005) is used 

to simulate groundwater flow, and MT3D (Zheng and Wang 1999) is used to 

simulate TCE transport. 

2.2.1 MODFLOW 

MODFLOW is widely used numerical model code that employs a finite 

difference method to solve a three-dimensional groundwater flow equation: 

𝜕

𝜕𝑥
(𝐾𝑥𝑥

𝜕ℎ

𝜕𝑥
) +

𝜕

𝜕𝑦
(𝐾𝑦𝑦

𝜕ℎ

𝜕𝑦
) +

𝜕

𝜕𝑧
(𝐾𝑧𝑧

𝜕ℎ

𝜕𝑧
) − W = 𝑆𝑠

𝜕ℎ

𝜕𝑡
 

 
(Eq.2-1) 

where 𝐾 is hydraulic conductivity for each direction, ℎ denotes hydraulic 

head, 𝑊 is volumetric flux per unit volume which represents source and sink 

term, 𝑡  is time, and Ss is specific storage. Source and sink term include 

recharge rate (i.e., rainfall), pumping or injection from wells, river, and drain. 

MODFLOW is modular simulator, and specific packages are activated to 

simulate groundwater flow. RCH package is used to input data related to 

recharge rate. WEL package is used to simulate pumping or injection of wells 

at specific location. RIV package enables to simulate interaction between 

groundwater and river, and requires head stage, bottom elevation, and 

conductance of each cell. The conductance of river (𝐶𝑟𝑖𝑣) is calculated using 

Eq.2-2. 

𝐶𝑟𝑖𝑣 =
𝑘𝑟𝑖𝑣𝐴

𝐿𝑟𝑖𝑣

 
 

(Eq.2-2) 

where 𝐿𝑟𝑖𝑣  is flow length, 𝐴  is cross-sectional area of grid, and 𝑘𝑟𝑖𝑣  is 

hydraulic conductivity of river bottom. 

Figure 2-3 shows brief description of benchmark problem with boundary 
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conditions, including constants head, no flow boundary, and pumping or 

injection wells. Analysis of benchmark problem is performed to identify 

whether optimal pump-and-treat design could be simulated. Benchmark 

problem assumes a rectangular shaped domain (4500 m × 5000 m) and the 

size of grid is 250 m × 250 m. In this model, constant head boundaries are 

assigned at upper and lower boundary, and no flow boundaries are assigned 

at left and right side of model domain. Also, there are two pumping wells with 

1000 m3/day, and these pumping rates are reduced to a quarter of current state 

for searching optimal pumping rate. At initial state, TCE source zone with a 

concentration of 1 mg/L is assigned to the right upper side of the model 

domain, while the rest of the area has no TCE contamination. Table 2-2 shows 

parameters used in benchmark analysis. Upper and lower boundary assigned 

as specified head boundaries to show direction of groundwater flow. A 

simulation time of benchmark problem is 1820 days (≈5 years). 

A regional scale model of WIC consists of 19,474 horizontal grids, and 

two vertical layers that include an alluvial at top and a bedrock layer at bottom 

(Figure 2-4). The horizontal fine grid is adopted near observation wells. For 

boundary conditions, specified head boundary is assigned in the left side of 

the model and the right side of the model boundary is assigned as a river 

boundary (Figure 2-5). Rest of boundaries are set as no-flow boundary. 
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Figure 2-3. Model domain and boundary conditions for benchmark problem. Blue 

cross dots indicate the location of pumping wells. Black rectangular box is TCE source 

zone. 
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Table 2-1. Parameters assigned in the benchmark model. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Parameter Value 

Hydraulic Conductivity (cm/sec) 1.2 × 10−2 

Recharge rate (m/day) 5.0 × 10−5 

Longitudinal Dispersivity (m) 10 

Transverse Dispersivity (m) 1 

Pumping rate for pre-existed well (m3/day) 1000 
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Coordinate system: EPSG 5186 

 
Figure 2-4. Model grid and boundary conditions for Wonju Industrial Complex (WIC); (a) Model grid design for horizontal direction. (b) Model grid 

design for vertical direction. Black dots in (a) indicate observation wells. Yellow and red color in (b) indicate alluvial and bedrock layer, respectively. 
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Figure 2-5. Boundary conditions assigned for groundwater flow model in WIC. 
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2.2.2 MT3D 

MT3D is one of the solute transport model coupled with MODFLOW. 

The three-dimensional solute transport is expressed as follows: 

𝜕(𝜃𝐶𝑘)

𝜕𝑡
=

𝜕

𝜕𝑡
(𝜃𝐷𝑖𝑗

𝜕𝐶𝑘

𝜕𝑥𝑗
) −

𝜕

𝜕𝑥𝑖

(𝜃𝑣𝑖𝐶
𝑘) + 𝑞𝑠𝐶

𝑘
𝑠 + ∑𝑅𝑛 

 
(Eq.2-3) 

where 𝐶𝑘  is the concentration of dissolved k species, 𝐷  is dispersion 

coefficient, 𝑣 is linear pore water velocity, 𝛳 is porosity, 𝑞𝑠 is the mass 

transfer rate, 𝐶𝑠
𝑘 is the concentration of the source or sink flux for k species, 

𝑅𝑛 is chemical reaction including sorption and decay and given by 

∑ 𝑅𝑛 = −𝜌𝑏

𝜕𝐶̅𝑘

𝜕𝑡
− 𝜆1𝜃𝐶𝑘 − 𝜆2𝜌𝑏𝐶̅𝑘 

 
(Eq.2-4) 

where 𝜌𝑏 is the bulk density, 𝐶̅𝑘 is the sorbed concentration of species k, 

and 𝜆  is the first-order reaction rate for the dissolved and sorbed phase. 

MT3D is also modular simulator, therefore, several packages are required to 

active. ADV and DSP packages are used to simulate advection and dispersion, 

respectively. To improve computation efficiency, a Third-order total Variation 

Diminishing (TVD) is used. A dispersion coefficient (𝐷) of solution transport 

includes mechanical dispersion and molecular diffusion is given by  

𝐷𝑥𝑥 =∝𝐿

𝑣𝑥
2

|𝑣|
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(Eq.2-5) 

𝐷𝑧𝑧 =∝𝐿
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2

|𝑣|
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where 𝐷  is dispersion tensor, 𝛼𝐿  is longitudinal dispersivity, 𝛼𝑇  is 

transverse dispersivity along with horizontal (𝐻) and vertical direction (𝑉), 



 

 １６   

𝐷∗ is effective molecular diffusion coefficient, 𝑣 is the component of the 

velocity vector. To estimate mass removal after remediation, total mass of 

contaminant 𝑀(𝑡) at specific time is calculated. 

𝑀(𝑡) = ∑(𝐻𝑖
𝑡𝑜𝑝

− 𝐻𝑖
𝑏𝑜𝑡𝑡𝑜𝑚) × 𝐴𝑖 × 𝜃𝑖 × 𝐶𝑖(𝑡)

𝑛𝑔𝑟𝑑

𝑖=1

 

 
 

(Eq.2-6) 

where 𝑀(𝑡)  is the mass of contaminant at specific time, and 𝑛𝑔𝑟𝑑  is 

number of grid, 𝐻𝑡𝑜𝑝 and 𝐻𝑏𝑜𝑡𝑡𝑜𝑚 are a height of top and bottom elevation 

of specific grid. 𝐴 is area of grid, 𝛳 is porosity, 𝐶(𝑡) is the concentration 

at specific time. TCE is a by-product of tetrachloroethylene (PCE) 

dechlorinatation (Figure 2-6). A first-order irreversible decay reaction is 

considered and Eq.2-7 includes dechlorination term for chlorinated solvent 

which expressed as form of matrix equation. 

[
𝑅1 0
0 𝑅2

] [

𝜕𝑐1

𝜕𝑡
𝜕𝑐2

𝜕𝑡
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−
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 𝐷𝑦

𝜕2𝑐1

𝜕𝑦2

𝐷𝑦

𝜕2𝑐2

𝜕𝑦2 ]
 
 
 
 

−
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 𝐷𝑧

𝜕2𝑐1

𝜕𝑧2

𝐷𝑧

𝜕2𝑐2

𝜕𝑧2 ]
 
 
 

= [
−𝑘1 0
0 −𝑘2

] [
𝑐1

𝑐2
] 

 

 

(Eq.2-7) 

where 𝑐1 and 𝑐2 are a concentration of PCE and TCE, respectively. 𝑅 is a 

retardation factor of PCE and TCE. 𝑘1 is decay rate of PCE and 𝑘2 is decay 

rate of TCE.  

Table 2-2 shows parameters spatially assigned in the model. The 

storativity is estimated with a hydraulic test in this study site. Both 

dispersivity and decay rate are assigned from literature-based values. 
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Table 2-2. Constant parameters assigned in Wonju Industrial Complex (WIC) model. 

Parameter Value 

Specific yield in layer 1 (-) 0.1 

Specific storage in layer 1 (m-1) 1.0 × 10−4 

Specific yield in layer 2 (-) 0.05 

Specific storage in layer 2 (m-1) 1.0 × 10−5 

Longitudinal dispersivity (m) 10 

Transverse dispersivity (m) 1 

Decay rate (day-1) 5.0 × 10−4 
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Figure 2-6. Chemical reaction procedure of PCE and TCE. 
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2.3  Geostatistical model 

A geostatistical model is generally used to generate heterogeneity in 

aquifers, such as hydraulic conductivity and specific storage coefficient, and 

concentration distribution of solute. Here, kriging and Inverse Distance 

Weighting (IDW) are used to generate the heterogeneous hydraulic 

conductivity field, and initial concentration distribution of TCE, respectively. 

2.3.1 Kriging 

Kriging is used to predict value at specific points using linear weighting 

combination with known value (Choe 2013). Eq.2-8 is an equation that 

applied the simple kriging method to predict unknown value and Eq.2-9 is an 

equation that shows the relationship between variance of error and covariance. 

𝑧∗ = ∑𝜆𝑖

𝑛

𝑖=1

𝑧𝑖 

 

(Eq.2-8) 

𝜎2
𝑆𝐾 = Var(z) − 2Cov(z, 𝑧∗) + Var(𝑧∗) (Eq.2-9) 

where 𝑧∗ is unknown value at specific point, 𝜆𝑖 is weight and 𝑧𝑖 is known 

value, 𝜎2
𝑆𝐾 is error variance, Var(z) is a variance function of known value, 

Var(z∗)  is a variance function of predicted value, and Cov(z, z∗)  is a 

covariance function estimated with spatial distance. A strong constraint on the 

simple kriging is that sum of weights is equal to one, therefore, the simple 

kriging derives biased predicted values (Choe 2013). Due to this shortcoming 

of the simple kriging, the ordinary kriging is applied to minimize the bias for 

predicted value and variance of error. Ordinary kriging employs a form of 

Lagrangian equation that minimizes error in variance. As minimizes the error 

in variance, the ordinary kriging suggests a more reliable predicted value, 

compared to the simple kriging. The equation of the ordinary kriging is given 

as 
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L(𝜆1, 𝜆2, … . , 𝜆𝑛; 𝑤) = 𝜎2 − 2∑𝜆𝑖𝜎
2
0𝑖 + ∑∑𝜆𝑖𝜆𝑗𝜎

2
𝑖𝑗 + 2𝑤(1 − ∑𝜆𝑖

𝑛

𝑖=1

)

𝑛

𝑗=1

𝑛

𝑖=1

𝑛

𝑖=1

 

 

(Eq.2-10) 

where 𝐿 is the lagrangian objective function, 𝑤 is a Lagrange factor, and 

𝜎 is the variance of error in each factor. The ordinary kriging requires a semi-

variogram model, therefore, a spherical model is applied in this study: 

γ(h) = {
𝐶0 [1.5 (

ℎ

𝑎
) − 0.5 (

ℎ

𝑎
)
3

] , ℎ ≤ 𝑎     

𝐶0,                  ℎ > 𝑎

 

 

(Eq.2-11) 

where C0 is nugget value, a is correlation distance, and h is spatial distance. 

The nugget value is 0.103, the range is 79.3 m and the partial sill is 1.84. A 

point value of hydraulic conductivity and concentration is described in Table 

2-3. The value of hydraulic conductivity is obtained by the slug test performed 

in this study site.  
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Table 2-3. Measured groundwater head, hydraulic conductivity and the concentration of TCE at each observation well. 

Coordinate system: EPSG 5186 

Well X Y Head (m) K (cm/sec) TCE (mg/L) 

GW-1 282,720.00 531,386.71 123.20 1.60E-04 0.024 

GW-3 282,918.22 531,426.64 108.69 2.26E-03 0.510 

GW-7 282,852.23 531,236.46 112.64 3.53E-04 0.006 

GW-8 282,968.22 531,277.39 107.80 1.44E-02 0.060 

GW-9 283,057.72 531,338.98 107.03 1.29E-03 0.088 

GW-10 283,310.08 531,594.57 104.31 1.31E-02 0.095 

GW-12 283,210.18 531,479.24 105.13 6.80E-04 0.2 

GW-17 282,786.51 531,360.84 115.09  2.05E-04 0.001 

GW-19 283,385.22 531,459.91 104.67  6.17E-03 0.079 

MW-2 283,027.54 531,669.21 107.99 1.09E-03 0.003 

MW-4 283,063.72 531,592.17 107.10 6.02E-04 0.016 

MW-5 283,386.95 531,528.92 104.49 1.56E-02 0.004 

MW-9 282,840.11 531,524.85 108.68 1.76E-03 0.104 

MW-11 283,079.01 531,478.60 106.70 1.24E-03 0.341 

MW-12 282,821.99 531,300.06 114.72 5.96E-03 0.221 

MW-15 283,037.00 531,184.26 107.67 5.70E-04 0.001 

MW-21 282,820.32 531,421.13 109.26 2.40E-03 0.271 

MW-22 282,785.29 531,425.81 109.81 9.59E-04 0.097 

MW-23 282,748.74 531,288.77 126.68 1.43E-04 0.013 

KDMW-1 282,690.37 531,281.06 126.50 2.76.E-04 0.386 
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Table 2-3. Continued. 

 

Well X Y Head (m) K (cm/sec) TCE (mg/L) 

KDMW-2 282,721.84 531,242.66 134.62 6.21.E-05 0.004 

KDMW-4 282,627.41 531,269.07 128.28 1.74.E-04 0.003 

KDMW-6 282,769.52 531,268.06 116.67  2.63.E-05 0.040 

KDMW-7 282,739.49 531,306.63 125.68  3.51.E-04 0.435 

KDMW-8 282,764.54 531,333.87 117.10  8.74.E-05 0.319 

KDMW-9 282,728.68 531,346.48 123.92  1.32.E-04 0.177 

KDMW-10 282,733.26 531,356.08 116.52  5.24.E-04 0.154 

KDMW-11 282,700.40 531,360.73 125.04  7.13.E-03 0.024 

KDMW-12 282,745.43 531,331.04 121.12  4.90E-04 0.030 

KDMW-13 282,783.92 531,335.61 119.41  5.82E-05 0.376 

KDPW-2 282,707.76 531,276.17 126.32 4.17.E-04 2.005 

KDPW-4 282,705.32 531,266.80 127.16 1.50.E-04 1.547 

KDPW-5 282,678.37 531,322.31 125.73 1.54.E-04 0.017 

KDPW-6 282,761.82 531,383.65 125.20 1.22.E-03 0.124 

KDPW-7 282,752.59 531,320.85 120.34  8.75.E-05 0.394 

KDPW-8 282,725.99 531,328.17 125.08  3.16.E-04 1.059 

KDPW-10 282,743.53 531,323.80 122.71  8.59E-05 0.043 

KDPW-11 282,766.39 531,315.04 117.69  6.41E-06 0.375 

 MLW1-1 282,707.10 531,271.79 126.67 1.24.E-04 1.005 

 MLW1-2 282,707.07 531,271.70 126.75 9.30.E-04 0.318 

 MLW1-3 282,707.14  531,271.66  126.36 1.26.E-03 0.787 

Well X Y Head (m) K (cm/sec) TCE (mg/L) 

KDMW-2 282,721.84 531,242.66 134.62 6.21.E-05 0.004 

KDMW-4 282,627.41 531,269.07 128.28 1.74.E-04 0.003 

KDMW-6 282,769.52 531,268.06 116.67  2.63.E-05 0.040 

KDMW-7 282,739.49 531,306.63 125.68  3.51.E-04 0.435 

KDMW-8 282,764.54 531,333.87 117.10  8.74.E-05 0.319 

KDMW-9 282,728.68 531,346.48 123.92  1.32.E-04 0.177 

KDMW-10 282,733.26 531,356.08 116.52  5.24.E-04 0.154 

KDMW-11 282,700.40 531,360.73 125.04  7.13.E-03 0.024 

KDMW-12 282,745.43 531,331.04 121.12  4.90E-04 0.030 

KDMW-13 282,783.92 531,335.61 119.41  5.82E-05 0.376 

KDPW-2 282,707.76 531,276.17 126.32 4.17.E-04 2.005 

KDPW-4 282,705.32 531,266.80 127.16 1.50.E-04 1.547 

KDPW-5 282,678.37 531,322.31 125.73 1.54.E-04 0.017 

KDPW-6 282,761.82 531,383.65 125.20 1.22.E-03 0.124 

KDPW-7 282,752.59 531,320.85 120.34  8.75.E-05 0.394 

KDPW-8 282,725.99 531,328.17 125.08  3.16.E-04 1.059 

KDPW-10 282,743.53 531,323.80 122.71  8.59E-05 0.043 

KDPW-11 282,766.39 531,315.04 117.69  6.41E-06 0.375 

 MLW1-1 282,707.10 531,271.79 126.67 1.24.E-04 1.005 

 MLW1-2 282,707.07 531,271.70 126.75 9.30.E-04 0.318 

 MLW1-3 282,707.14  531,271.66  126.36 1.26.E-03 0.787 
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Table 2-3. Continued. 

Well X Y Head (m) K (cm/sec) TCE (mg/L) 

SKW-3 282,715.77 531,274.03 126.60 3.46.E-04 0.386 

SKW-4 282,711.85 531,274.95 126.28 4.99.E-04 0.225 

SKW-6 282,715.14 531,286.89 126.14  2.40.E-03 2.650 

SKW-7 282,719.73 531,285.52 126.02  3.37.E-03 0.637 

PTW-1 282,732.70 531,412.09 113.35  9.55.E-05 0.022 

PTW-2 282,724.55 531,424.71 113.29  2.94.E-04 0.030 
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2.3.2 Inverse Distance Weighting (IDW) 

Kriging has a shortcoming in that predicted value converges to the 

average value which indicates variance is minimized (Choe 2013). For 

example, some solutes such as TCE and other contaminants, is limited in 

specific area or points and scarcely observed in non-leaked place. However, 

an application of the kriging in these concentration data generates non-zero 

concentration in non-leaked areas. On the other hand, IDW is one of the 

alternative interpolation methods to overcome shortcomings in concentration 

data, and is applied to estimate initial concentration distribution of TCE. IDW 

is the other geostatistical model which estimates unknown values using 

estimated values. In contrast to kriging, IDW does not require a semi-

variogram model, and weight is estimated as inversely proportional to 

distance (Choe 2013). Eq.2-12 is used to calculate weight in IDW. Due to its 

properties, values near observed value show higher accuracy. However, IDW 

does not include spatial correlation and difference. 

𝜆𝑖 =
(
1
𝑑𝑖

)𝛼

∑ (
1
𝑑𝑗

)𝛼𝑛
𝑗=1

 

 

(Eq.2-12) 

where λi is weight, and 𝑑 is distance between observed and predicted value. 
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2.4  Optimization for pump-and-treat 

A meta-heuristic optimization algorithm is an iterative method that is 

applied to reduce the computation time for searching optimal solutions. 

Especially, metaheuristic optimization solves the objective function that 

subjects to restrictive space (Silveira et al. 2021) and evolutionary algorithm, 

such as Genetic Algorithm (GA) or Simulated Annealing (SA). In this study, 

NSGA-II is used to deal with multi-objective optimization problems consider 

reducing both costs and concentration. 

NSGA-II considers an elitism and sorting process, and enhances 

computational speed in solving multi-objective optimization problems, 

compared to other evolutionary algorithms. NSGA-II is based on a genetic 

algorithm scheme that involves several key procedures, including generation, 

mutation, and crossover. Additionally, it incorporates non-dominated sorting 

and crowding distance sorting as its main procedures. (Figure 2-7). The 

crossover means that numbers in the other two strings are exchanged (Figure 

2-7a). The mutation means that the number in one string is changed within a 

certain probability (Figure 2-7b). The non-dominated sorting is to sort 

population in order of level of non-domination and domination expresses 

differently from other cases (Deb et al. 2002; Yusoff et al. 2011). The 

crowding distance is to calculate the distance between populations in the 

Pareto front, and maintains a diversity of solutions in the population at each 

generation. 

In the first generation of NSGA-II, the population is randomly generated, 

and the values of two objectives are calculated using the numerical model 

(Figure 2-8). To generate the next step generation (referred to “children”), the 

crossover and mutation procedures are sequentially applied to the previous 

population (referred to “parents”). Once the children are generated, both 

children and parents are merged. The non-dominated is then applied to rank 
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the merged population, and crowding-distance sorting is used to select the 

same number of parents’ population from the merged population. 

The best non-dominated solution set has a priority in selection. Figure 2-

8 shows the brief procedure of Simulation-Optimization (S-O) modeling with 

NSGA-II. As the population is evolved, Pareto front is generated at each 

generation. A final generation shows the Pareto optimal front which is 

optimal solution set in the multi-objective optimization problem. 

Theoretically, it would be near to the global optimal solution, but reliable 

initial condition could generate the global optimal solution. 

Here, the multi-objective function in NSGA-II focuses on minimizing 

both the cost of operating pump-and-treat and mass at the end of the 

simulation. The total concentration mass could be calculated with 

concentration at specific wells, and includes the same objective of reducing 

the concentration. Multi-objective functions are given by 

Minimize Cost = nwel Costinst + 𝑎𝑝𝑚𝑝 ∑ 𝑄𝑖(𝑡) × 𝑡𝑓𝑖𝑛

𝑛𝑤𝑒𝑙

𝑖=1

 

 
(Eq.2-13) 

Minimize Concentration = ∑ 𝐶𝑖(𝑡𝑒𝑛𝑑)

𝑛𝑤𝑒𝑙

𝑖=1

 
(Eq.2-14) 

where 𝑛𝑤𝑒𝑙 is number of wells, 𝐶𝑜𝑠𝑡𝑖𝑛𝑠𝑡 is cost for additional installation 

of one pumping well, 𝑎𝑝𝑚𝑝 is the operation of pumping well cost, 𝑄(𝑡) is 

pumping rate at specific time, 𝑡𝑓𝑖𝑛 is operation time, and 𝐶(𝑡𝑒𝑛𝑑)  is the 

concentration at specific point at end of simulation time. 
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Figure 2-7. (a) Crossover and (b) Mutation operators 
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Figure 2-8. Flowchart of Simulation coupled with optimization modeling that uses NSGA-II for optimization. 
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2.5  Relative performance assessment 

In the evaluation of the performance of meta-heuristic optimization 

algorithms, criteria such as effectiveness, efficiency, and reliability are 

commonly considered (Maier et al., 2014). The performance assessment 

involves comparing the relative effectiveness and efficiency of different 

algorithms, such as GA and NSGA-II. 

GA has been widely used and has shown good performance in solving 

optimization problems related to groundwater remediation (McKinney and 

Lin 1994; Wang and Zheng 1999). Therefore, in the performance assessment, 

the relative Effectiveness (EF) and Efficiency (EY) of NSGA-II can be 

evaluated by comparing them to GA. This comparison allows us to 

understand how well NSGA-II performs in relation to GA. 

To assess the EF, the convergence of GA can be examined, indicating 

how close its solutions are to the global optimal solution. For NSGA-II, the 

obtained pareto front can be compared to the optimal solution obtained by 

GA to evaluate its effectiveness. EY is evaluated based on the elapsed time 

taken by each algorithm to find optimal solutions. A faster algorithm is 

considered more efficient in finding solutions. 

In this study, the performance of NSGA-II is evaluated using the global 

optimal solutions obtained by GA. Optimal solutions obtained by GA serve 

as a benchmark to assess the EF and EY of NSGA-II. Figure 2-9 is a flowchart 

that illustrates the process of relative performance assessment for GA and 

NSGA-II. It highlights the evaluation of EF and EY using the approaches 

mentioned above. 
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Figure 2-9. Flowchart of relative performance assessment for NSGA-II. 
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2.6  Factors of optimal pump-and-treat 

The Well Contribution Index (WCI) is determined by utilizing optimal 

solutions obtained from multi-objective optimization and considering site 

characteristics that are relevant to pump-and-treat operations. Various data 

related to each well, such as the length of well screen, casing, and depth, are 

taken into account during the calculation process. By using the Pareto optimal 

front, it becomes possible to estimate the variation in pumping rates for each 

well based on the corresponding concentration, which serves as a measure of 

the remediation effect. Table 2-3 provides the well data for the Wonju 

Industrial Complex (WIC), and Eq.2-15 is applied to compute the WCI for 

each well. In this equation, the weights assigned to each factor sum up to 1, 

as described in Eq.2-16. The WCI is calculated for a total of 18 observation 

wells in the WIC, and the locations of these wells can be observed in Figure 

2-9. The selection of these specific wells was based on the findings obtained 

from the TCE transport analysis conducted using the base model. 

WCI = ∑𝑎𝑥𝑃𝑥 

 

(Eq.2-15) 

∑𝑎𝑥 = 1 

 

(Eq.2-16) 

where ax is the weighting for each item and Px is the score for each item. In 

the calculation of the Well Contribution Index (WCI), several factors should 

be considered based on the data of wells in the Wonju Industrial Complex 

(WIC). These factors include: 

Factor 1: Length of screen 

A longer well screen allows for increased contact area with the aquifer, 

resulting in more efficient water extraction. Wells with longer screen have a 

higher potential to contribute to effective groundwater remediation. Therefore, 
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a higher index score and weight can be assigned to wells with longer screen 

lengths. 

Factor 2: Depth of the well  

The concentration of DNAPL (dense non-aqueous phase liquid) generally 

increases with depth. However, in the case of the WIC, studies have shown a 

decrease in TCE concentration with depth (Yang et al. 2012). Wells with 

greater depth may have lower TCE concentrations and thus can be assigned a 

higher index score and lower weight. 

Factor 3: Diameter of the well 

Larger well diameters allow for the use of different types of pumps in 

pump-and-treat operations, which can affect the efficiency of water extraction. 

Wells with larger diameters can be assigned a higher index score and lower 

weight. 

Considering these factors, the WCI calculation takes into account the 

specific characteristics of each well in terms of its length of screen, depth, and 

diameter. The assigned index scores and weights reflect the importance of 

these factors in determining the potential contribution of each well to 

effective groundwater remediation. 

Taking into account the specific conditions of the WIC site, two scenarios 

are considered for the calculation of the WCI. The first scenario involves 

continuous extraction of groundwater from the wells throughout the 

simulation period, while the second scenario considers extraction only during 

the rainy season between June and August from 2009 to 2014. This seasonal 

extraction accounts for the effect of rainwater infiltration through the vadose 

zone, which can dissolve trapped TCE and result in higher TCE 

concentrations in groundwater during the rainy season. The operation time 

for both scenarios is set to 450 days, and the cost is proportional to the 
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pumping rate. This approach takes into consideration previous pilot tests of 

pump-and-treat conducted in the WIC, as described in the studies by Lee et 

al. (2013) and Jeon et al. (2013). By evaluating the WCI based on these factors 

and scenarios, the most effective wells for groundwater remediation can be 

identified. 
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Table 2-4. Data of well in WIC. 

Well  X Y Depth of well (m) Length of screen (m) Well diameter (inch) 

KDMW-7 282739.5 531306.6 21 15 4 

MW-23 282748.7 531288.8 20 12 2 

KDMW-6 282769.5 531268.1 24 18 4 

GW-7 282852.2 531236.5 24 13.5 2 

MW-12 282822 531300.1 9.4 7.5 2 

GW-18 282779.4 531303.4 17 12 2 

KDPW-11 282766.4 531315 21 16 2 

KDPW-7 282752.6 531320.8 30 24 4 

KDPW-10 282743.5 531323.8 30 25 4 

KDPW-8 282726 531328.2 28.5 22.5 4 

KDMW-9 282728.7 531346.5 27 21 4 

KDMW-10 282733.3 531356.1 27 21 4 

KDMW-12 282745.4 531331 27 22 2 

KDMW-8 282764.5 531333.9 28 22 4 

KDMW-13 282783.9 531335.6 30 25 3 

KDMW-14 282795.1 531342.7 10 8 2 

KDMW-15 282802.3 531352 14 12 2 

KDMW-16 282803.8 531362.6 14 12 2 
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Figure 2-10. The location of wells which are applied to calculate the WCI. Red shaded 

box indicates hot source zone and black dots, triangular dots indicate pre-existed wells 

in WIC and wells located in hot source zone, respectively. 
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3 RESULTS AND DISCUSSION 

3.1  Benchmark problem  

3.1.1 Initial state of benchmark problem 

Figure 3-1 presents the initial distribution of groundwater head and the 

concentration of TCE in a benchmark problem. The figure includes cross dots 

to indicate the locations of existing pumping wells, while a black square 

represents the source zone of TCE. The simulation time for the benchmark 

model is set at 1820 days. The groundwater flow simulation in the benchmark 

model reveals that the flow direction is from top to bottom. This flow pattern 

is primarily influenced by the constant head boundary at the upper and lower 

boundaries of the aquifer. Additionally, the presence of two pumping wells in 

the system affects the distribution of hydraulic head, leading to drawdown in 

the pumping wells. Regarding TCE transport model, the simulation assumes 

no degradation of TCE and considers only advection and dispersion as the 

TCE transport. This implies that the movement of TCE is mainly driven by 

the flow of groundwater and the spreading effects caused by dispersion. 
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Figure 3-1. Initial distribution of (a) head and (b) TCE concentration. Cross dot indicate existing pumping well. Black box at (b) indicates TCE 

source zone with value of 1 mg/L. 
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3.1.2 Results of optimized model 

Figure 3-2 illustrates the Pareto optimal front obtained through the 

application of NSGA-II for TCE solute transport model after 200 generations.  

In this multi-objective optimization problem, a set of optimal solutions is 

obtained that minimizes both the total mass of TCE and the associated cost, 

resulting in the Pareto optimal front. As the evolution progresses, the Pareto 

optimal front becomes more ideal, and the tradeoff between two objectives 

can be identified. In the figure, the green solid line represents the mean cost 

of all points, while the blue and red solid lines represent ±30% deviation from 

the mean cost. Three solution points, labeled as Point A, B, and C, are selected 

from the 200 generations to visualize the groundwater flow and TCE transport 

with their respective optimized pumping rates. Points A, B, and C correspond 

to -30%, 0%, and +30% deviation from the mean cost value. 

Figure 3-3 shows the groundwater flow modeling result for Points A, B, 

and C. Since there is a positive correlation between cost and pumping rate, 

Point C exhibits a higher drawdown compared to the other two points. 

However, for all points, the pre-existing pumping well does not induce 

significant drawdown at their respective locations. 

Figure 3-4 presents the TCE transport modeling results for each optimal 

solution. As Point C has a higher pumping rate in the additional pumping well, 

the concentration of TCE is lower in the center of the plume, and the plume 

itself becomes smaller compared to other solutions. However, Points A and 

B show less reduction in concentration compared to Point C. Table 3-1 

provides the locations of wells for each solution depicted in Figure 3-4. The 

pumping rate for the two pre-existing pumping wells (EP) located outside the 

hot source zone is reduced, while the pumping rate for the additional pumping 

well (AP) that is located in the hot source zone increases, resulting in a 

decrease in the total mass of TCE. These results demonstrate that NSGA-II 

performs well in addressing the multi-objective optimization problem 
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associated with groundwater remediation, considering the conflicting 

objectives involved. 
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Figure 3-2. Pareto optimal front of NSGA-II at final generation with value of 100. 

Green solid line indicates the mean cost of all points. Blue and red line are set to 

30 % boundaries of average cost, respectively. Point A, B, and C indicate optimal 

solutions at -30%, mean, and +30% costs. 



 

 ４１   

 
Figure 3-3. Best results of NSGA-II subject to (a) decreased cost (b) mean cost (c) increased cost; Head distribution. Black cross dots denote pre-

existed pumping well and red cross dot indicates additional pumping well installs after optimization. 
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Figure 3-4. Best results of NSGA-II subject to (a) decreased cost (b) mean cost (c) increased cost; TCE concentration distribution. Black cross dots 

denote pre-existed pumping well, blue cross dot indicates additional pumping well installs after optimization and black box indicates TCE source 

zone. 
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Table 3-1. Optimal pumping well locations and pumping rate for solutions selected in Figure 3-2. EP and AP are pumping rate for pre-existed, and 

additional pumping well, respectively. 

Coordinate System: Cartesian coordinate system  

Point Additional well location 
EP_1 

(m3/day) 

EP_2 

(m3/day) 

AP 

(m3/day) 

Cost 

(108 KRW) 

Total 

mass 

(kg) 

 X Y      

A 1125.0 3625.0 250 250 827 2.07 4.56 

B 1125.0 3625.0 258 252 1396 2.97 3.47 

C 1125.0 3625.0 250 250 1981 3.87 2.68 
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3.1.3 Relative performance assessment 

Figure 3-5 provides a comparison of the performance between the Genetic 

Algorithm (GA) and NSGA-II. The results obtained from GA, denoted as 

Solution X, Y, Z, and W in Figure 3-5, are achieved by adjusting the weight 

for a single objective function that combines the pumping cost and total mass 

term. These GA results are found to be close to the Pareto optimal front 

obtained by NSGA-II, indicating their EF in approximating the optimal 

solutions. According to Wang and Zheng (1999), it has been established that 

the convergence of GA to the global optimal solution can be ensured by using 

an adequate number of generations and populations. The results in Figure 3-

6 show the plot of the objective function value with respect to the generation 

number demonstrates convergence after 80 generations. Considering that the 

global optimal solution obtained by GA closely align with the Pareto optimal 

front obtained by NSGA-II, both GA and NSGA-II exhibit EF for the given 

optimization problem. Based on these results, it can be concluded that the 

NSGA-II algorithm has shown applicability to optimization problems related 

to pump-and-treat. 
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Figure 3-5. Comparison of solutions using GA and NSGA-II. Blue dots indicate 

optimal solution sets obtained by NSGA-II and red star indicates optimal solution 

obtained by GA. Black solid line indicates the linear fit line for the Pareto optimal 

front. 
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Figure 3-6. Plot of objective function value versus generation number for each optimal 

solution obtained by GA. 
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3.2  Regional scale model 

3.2.1 Distribution of hydrogeological and initial concentration 

Figure 3-7 displays the distribution of hydraulic conductivity field at the 

alluvial layer using the kriging method. With the exception of specific well 

regions such as SKW-7 or KDMW-8, the estimated hydraulic conductivity 

near the RAO exhibits low values compared to other parts of the model. 

According to Park et al. (2011), the hydraulic conductivity near the Wonju 

stream displays high values, and the kriging method effectively illustrates the 

distribution of hydraulic conductivity in this area. 

In this study, the IDW method is employed to estimate the concentration 

distribution of TCE, as depicted in Figure 3-8. The region near the RAO 

displays a higher concentration of TCE, compared to other areas. Previous 

studies indicate that the RAO serves as the hot source zone for TCE, and the 

IDW method effectively captures the initial concentration distribution of TCE 

in this area (Yang et al. 2012; Lee et al. 2013). 
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Figure 3-7. Distribution of hydraulic conductivity at alluvial aquifer of WIC site. 



 

 ４９   

 
Figure 3-8. Initial concentration distribution of TCE in WIC. Black dots indicate observation well and black box indicate source zone of TCE. 
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3.2.2 Calibration of regional scale model 

Figure 3-9 shows the initial simulation result of groundwater head and TCE 

transport model at the Wonju Industrial Complex (WIC). A suggestion for 

drinking water is that the concentration of TCE should be under 0.03 mg/L. 

In view of modeled initial condition, the WIC region is highly contaminated 

that is over 3.00 mg/L of TCE concentration at the alluvial aquifer. 

A notable change in hydraulic head is observed near the RAO, whereas the 

changes in hydraulic head are less prominent towards the Wonju stream. The 

simulation result showed that the predominant direction of groundwater flow 

is from the RAO towards the Wonju stream. 

The initial calculated head with a steady state is compared to the observed 

head as shown in Figure 3-10a. To evaluate the performance of the steady-

state model, two metrics, namely the Root Mean Square Error (RMSE) and 

Mean Absolute Error (MAE), are used. The RMSE represents the average 

magnitude of the residuals between the observed and simulated hydraulic 

heads. On the other hand, the MAE quantifies the average absolute difference 

between the observed and simulated hydraulic heads. The RMSE and MAE 

are 3.10 m and 1.97 m, respectively. These metrics collectively indicate that 

the steady-state flow model performs well in capturing the dynamics of the 

system and provides a reasonable representation of the observed data. 

After initialization of groundwater head and concentration, transient 

simulation is performed to identify that the current status of the regional scale 

model is a good agreement with time series groundwater and concentration 

at hot source zone, where the higher concentration is observed, compared to 

other regions (Figure 3-10b, c). In the groundwater flow model, the 

groundwater head varies in response to rainfall events. Although the 

concentration of TCE gradually decreases over time, there is a seasonal 
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fluctuation in concentration during rainfall events. This fluctuation is 

attributed to the dissolution of TCE that is trapped in the vadose zone. 
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Figure 3-9. (a) Modeled head distribution of steady state flow. (b) modeled TCE concentration distribution with MT3D model. Black dots indicate 

observation wells and black box indicates TCE source zone. 
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Figure 3-10. (a) Comparison between modeled and observed head with steady state groundwater flow. (b,c) Time series modeled and observed of 

head at GW-17 and concentration at KDPW-2 where located at hot source zone. 
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3.2.3 Optimization in pump-and-treat operation 

The optimal solution set for the pump-and-treat operation with the two 

different scenarios is shown in Figure 3-11. It displays the trade-off 

relationship between cost and concentration, indicating the challenges in 

achieving an ideal trade-off. The complexity of input terms, particularly the 

reactive term of the solute, contributes to a non-ideal trade-off relationship. 

Comparing the optimal solution sets of the different remediation scenarios, 

the pump-and-treat operation under the rainy season exhibits a significant 

reduction in concentration compared to continuous operation (Figure 3-11). 

However, when considering a low remediation cost, which implies a low 

pumping rate, both scenarios show a similar reduction in total concentration.  

To evaluate the performance of the pump-and-treat operation, the 

optimized pumping rate for both scenarios at maximum cost in each 

remediation scenario is assigned to the initial groundwater flow model for 

1740 days (Figure 3-12). The total pumping rate is 505 m3/day for continuous 

operation and 387 m3/day for rainy season operation. The transient simulation 

with the optimized pumping rate displays a reduction in the size of the 

contaminant plume and a decrease in concentration. Rainy season operation 

shows a greater reduction in both size of the contaminant plume and the 

maximum concentration at the hot source zone. 

Figure 3-13 illustrates the total mass for each scenario. The base model 

without any pumping displays a continuous reduction in the total TCE 

concentration due to natural degradation factors. The rainy season operation 

shows a greater reduction in the total concentration. This is due to the fact 

that pumping during the rainy season could remove not only the pre-existing 

dissolved phase of TCE but also the trapped TCE that has come into contact 

with water table. Although the continuous operation does not display a 

significant reduction in the total mass before 1300 days, both scenarios 
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exhibit a similar total mass at the final simulation time. This is because the 

pump-and-treat operation is only conducted near the hot source zone and local 

source zone, which are not included in the observation wells. 

Based on these findings, it is evident that operating the pump-and-treat 

system specifically during the rainy season can yield great remediation 

performance compared to continuous operation in this study site. Especially, 

this operation system would be applicable at the contaminated site where 

trapped contaminants exist in the vadose zone. Additionally, accounting for 

the uncertain variation of TCE with respect to the water table is important 

when determining optimal pump-and-treat strategies. 
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Figure 3-11. Pareto optimal front in final generation. Blue and red dot indicate the 

different remediation scenarios. 
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Figure 3-12. Optimized simulation result at final time that is related to (a) first pump-and-treat scenario with the greatest decreasing of TCE (b) second 

pump-and-treat scenario with the greatest decreasing of TCE.
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Figure 3-13. Total mass change of TCE depending on maximum cost in pump-and-

treat scenarios. The black line indicates the total concentration change of the base 

model without pumping. The red and blue lines represent continuous and rainy 

season operation scenarios, respectively. 
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3.2.4 Well Contribution Index at alluvial aquifer 

The analysis of the Well Contribution Index (WCI) is performed to obtain 

the optimal solutions for different cost scenarios. The optimal solution for the 

minimum cost and median cost is used to calculate the WCI. However, when 

the optimal solution for the maximum cost is applied, the pumping rates reach 

their maximum values, making it difficult to identify which wells 

significantly contribute to groundwater remediation, as all wells are operating 

at their maximum pumping rate. By considering only the pumping rate, 

different wells show significant contributions in the two remediation 

scenarios. First scenario assumed continuous operation, while second 

scenario assumed operating only at the rainy season. In the first scenario, 

wells GW-7, GW-8, and KDMW-13 have notable contributions, while in the 

second scenario, wells MW-12, GW-18, and MW-23 contribute more to the 

pump-and-treat system. Wells that exhibit notable contribution in the second 

remediation scenario are closer to the hot source zone compared to those in 

the first remediation scenario. This can be attributed to the fact that the pump-

and-treat was implemented during the initial stage. Also during the pump-

and-treat, trapped TCE in the vadose zone is removed before it disperses. The 

locations of these wells can be observed in Figure 3-14. 

To calculate the WCI, well specification data such as the length of the 

screen is taken into account. The results of the WCI analysis can be found in 

Table 3-2 and Table 3-3. These tables show that, compared to considering 

only the pumping rate, different wells exhibit significant contributions in each 

scenario. In the first scenario, wells KDMW-13, KDMW-6 and GW-7 are 

prominent contributors, while in the second scenario, wells KDPW-7, 

KDMW-8, and KDPW-11 have higher contributions. Notably, well KDPW-

7, located near the hot source zone, demonstrates better performance in the 

pump-and-treat based on long-term monitoring and pilot-test results related 

to remediation in the Wonju Industrial Complex (Jeon et al. 2013; Lee et al. 
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2013). Overall, the proposed Well Contribution Index (WCI) provides 

valuable insights into prioritizing wells for optimal pump-and-treat 

operations in contaminated alluvial aquifers. By considering simulation 

results and site characteristics, the WCI can help find the most effective wells 

for groundwater remediation efforts. 
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Figure 3-14. Location of wells which contribute much to pump-and-treat subject to 

several scenarios. Blue labeled points, red labeled points, triangular point indicate 

contribute much for pump-and-treat only considered pumping rate, considered both 

specification of well and pumping rate, and well located in hot source zone, 

respectively. 
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Table 3-2. Calculation of the WCI for continuous operation. 
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Table 3-3. Calculation of the WCI for optimal pumping rate of rainy season 

operation. 
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4 CONCLUSION 

Simulation-Optimization modeling, coupling MODFLOW and MT3D 

with NSGA-II, was used to suggest an optimal groundwater remediation plan 

for the benchmark problem and a real contamination site such as the Wonju 

Industrial Complex (WIC). First, the performance of NSGA-II was evaluated 

in the benchmark problem by applying two metrics; Effectiveness (EF) and 

Efficiency (EY) which evaluate algorithm convergence and improvement of 

computation cost. After confirming the application of NSGA-II in the 

benchmark problem, the Well Contribution Index (WCI) was proposed for 

two remediation scenarios in WIC. 

The results from the benchmark problem showed that NSGA-II performed 

well for conflicting objectives, such as cost and remaining contaminations. 

Furthermore, those showed that a good EF indicates the attainment of global 

optimal solution and good EY which means reducing computation cost. 

Based on the relative performance assessment, NSGA-II algorithm shows an 

improvement in computation cost with obtaining the global optimal solution 

and it indicates the applicability of the algorithm to the optimal operation of 

pump-and-treat. 

For the alluvial aquifer model, operating pump-and-treat only during the 

rainy season proved to reduce the concentration of TCE and effectively 

prevent plume migration in this study site. This result indicates that operating 

only during the rainy season could additionally extract trapped TCE in the 

vadose zone because the rising of the water table by rainfall leads to the 

contacting of the trapped TCE. Moreover, the results of WCI considering the 

well data and differences of pumping rate showed that KDPW-7 which is 

located near the hot source zone along the groundwater flow direction can be 

contributed significantly to the pump-and-treat operation. Previous pilot tests 

of pump-and-treat performed at KDPW-7 have shown good performance of 
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the operation, indicating that the WCI proposed in this study could be used to 

prioritize the selection of pumping wells in real pump-and-treat operations. 

Overall, results obtained from this study can be utilized to derive effective 

pump-and-treat strategies not only in general DNAPL contaminated site and 

site-specific condition where contaminants trapped in the vadose zone have 

existed but also support the optimal decision-making for groundwater 

remediation.



 

 ６６   

5  REFERENCE 

Ahlfeld DP, Mulvey JM, Pinder GF (1988) Contaminated groundwater 

remediation design using simulation, optimization, and sensitivity 

theory: 2. Analysis of a field site. Water Resour Res 24:443–452. 

https://doi.org/10.1029/WR024i003p00443 

Aly AH, Peralta RC (1999) Comparison of a genetic algorithm and 

mathematical programming to the design of groundwater cleanup 

systems. Water Resour Res 35:2415–2425. 

https://doi.org/10.1029/1998WR900128 

Asghar E, Baqai AA, Khaleeq uz Zaman U (2015) Performance of NSGA-II 

and WGA in Macro Level Process Planning considering 

Reconfigurable Manufacturing System. Int Conf Flex Autom Intell 

Manuf 2:320–327 

Baek W, Lee JY (2011) Source apportionment of trichloroethylene in 

groundwater of the industrial complex in Wonju, Korea: A 15-year 

dispute and perspective. Water Environ J 25:336–344. 

https://doi.org/10.1111/j.1747-6593.2010.00226.x 

Beheshti Z, Shamsuddin SMH (2013) A Review of Population-based Meta-

Heuristic Algorithm. Int J Adv Soft Comput its Appl 5:1–35 

Bertsekas DP (2009) Convex optimization theory 

Cho I, Ju YJ, Lee SS, et al (2020) Characterization of a NAPL-contaminated 

site using the partitioning behavior of noble gases. J Contam Hydrol 

235:103733. https://doi.org/10.1016/j.jconhyd.2020.103733 

Choe J (2013) Geostatistics, Sigmapress, Seoul, Korea 

D’Ambrosio C, Lodi A, Wiese S, Bragalli C (2015) Mathematical 

programming techniques in water network optimization. Eur J Oper 

Res 243:774–788. https://doi.org/10.1016/j.ejor.2014.12.039 

Deb K, Pratap A, Agarwal S, Meyarivan T (2002) A fast and elitist 

multiobjective genetic algorithm: NSGA-II. IEEE Trans Evol Comput 



 

 ６７   

6:182–197. https://doi.org/10.1109/4235.996017 

Erickson M, Mayer A, Horn J (2002) Multi-objective optimal design of 

groundwater remediation systems: Application of the niched Pareto 

genetic algorithm (NPGA). Adv Water Resour 25:51–65. 

https://doi.org/10.1016/S0309-1708(01)00020-3 

Harbaugh A (2005) MODFLOW-2005 , The U . S . Geological Survey 

Modular Ground-Water Model — the Ground-Water Flow Process 

MODFLOW-2005 , The U . S . Geological Survey Modular Ground-

Water Model — the Ground-Water Flow Process. Open-File Report, 

US Geol Surv 

Huang C, Mayer AS (1997) Pump-and-treat optimization using well 

locations and pumping rates as decision variables. Water Resour Res 

33:1001–1012. https://doi.org/10.1029/97WR00366 

Jackson RE (1998) The migration, dissolution, and fate of chlorinated 

solvents in the urbanized alluvial valleys of the southwestern USA. 

Hydrogeol J 6:144–155. https://doi.org/10.1007/s100400050140 

Jeon W-H, Lee J-Y, Kwon H-P, et al (2013) Evaluation of Contaminant 

Concentrations in Wet and Dry Seasons during Pump-and-Treat Pilot 

Tests. J Soil Groundw Environ 18:18–31. 

https://doi.org/10.7857/jsge.2013.18.6.018 

Jeyakumar V, Rubinov AM, Wu ZY (2007) Non-convex quadratic 

minimization problems with quadratic constraints: Global optimality 

conditions. Math Program 110:521–541. 

https://doi.org/10.1007/s10107-006-0012-5 

Kim H-M, Hyun Y, Lee K-K (2007) Remediation of TCE-Contaminated 

Groundwater in a Sandy Aquifer Using Pulsed Air Sparging: 

Laboratory and Numerical Studies. J Environ Eng 133:380–388. 

https://doi.org/10.1061/(asce)0733-9372(2007)133:4(380) 

Ko NY, Lee KK, Hyun Y (2005) Optimal groundwater remediation design 

of a pump and treat system considering clean-up time. Geosci J 9:23–



 

 ６８   

31. https://doi.org/10.1007/BF02910551 

Konak A, Coit DW, Smith AE (2006) Multi-objective optimization using 

genetic algorithms: A tutorial. Reliab Eng Syst Saf 91:992–1007. 

https://doi.org/10.1016/j.ress.2005.11.018 

Korea water resources and corporation (2011) Report of the basic 

investigation research of groundwater in Wonju 

Langwaldt JH, Puhakka JA (2000) On-site biological remediation of 

contaminated groundwater: A review. Environ Pollut 107:187–197. 

https://doi.org/10.1016/S0269-7491(99)00137-2 

Lee S-S, Kim H-M, Lee SH, et al (2013) Evidences of in Situ Remediation 

from Long Term Monitoring Data at a TCE-contaminated Site, Wonju, 

Korea. J Soil Groundw Environ 18:8–17. 

https://doi.org/10.7857/jsge.2013.18.6.008 

Lee YC, Kwon TS, Yang JS, Yang JW (2007) Remediation of groundwater 

contaminated with DNAPLs by biodegradable oil emulsion. J Hazard 

Mater 140:340–345. https://doi.org/10.1016/j.jhazmat.2006.09.036 

Lien PJ, Yang ZH, Chang YM, et al (2016) Enhanced bioremediation of 

TCE-contaminated groundwater with coexistence of fuel oil: 

Effectiveness and mechanism study. Chem Eng J 289:525–536. 

https://doi.org/10.1016/j.cej.2016.01.011 

Maier HR, Kapelan Z, Kasprzyk J, et al (2014) Evolutionary algorithms and 

other metaheuristics in water resources: Current status, research 

challenges and future directions. Environ Model Softw 62:271–299. 

https://doi.org/10.1016/j.envsoft.2014.09.013 

Mategaonkar M, Eldho TI (2012) Groundwater remediation optimization 

using a point collocation method and particle swarm optimization. 

Environ Model Softw 32:37–48. 

https://doi.org/10.1016/j.envsoft.2012.01.003 

McKinney DC, Lin M ‐D (1994) Genetic algorithm solution of groundwater 

management models. Water Resour Res 30:1897–1906. 



 

 ６９   

https://doi.org/10.1029/94WR00554 

Mirzaee M, Safavi HR, Taheriyoun M, Rezaei F (2021) Multi-objective 

optimization for optimal extraction of groundwater from a nitrate-

contaminated aquifer considering economic-environmental issues: A 

case study. J Contam Hydrol 241:103806. 

https://doi.org/10.1016/j.jconhyd.2021.103806 

Mondal A, Eldho TI, Rao VVSG (2010) Multiobjective Groundwater 

Remediation System Design Using Coupled Finite-Element Model and 

Nondominated Sorting Genetic Algorithm II. J Hydrol Eng 15:350–

359. https://doi.org/10.1061/(asce)he.1943-5584.0000198 

Moon J-W, Moon H-S, Kim H, Roh Y (2005) Remediation of TCE-

contaminated groundwater using zero valent iron and direct current: 

experimental results and electron competition model. Environ Geol 

48:805–817. https://doi.org/10.1007/s00254-005-0023-1 

Park DK, Ko NY, Lee KK (2007) Optimal groundwater remediation design 

considering effects of natural attenuation processes: Pumping strategy 

with enhanced-natural-attenuation. Geosci J 11:377–385. 

https://doi.org/10.1007/BF02857053 

Park YC, Jeong JM, Eom S Il, Jeong UP (2011) Optimal management 

design of a pump and treat system at the industrial complex in Wonju, 

Korea. Geosci J 15:207–223. https://doi.org/10.1007/s12303-011-

0018-8 

Peralta RC (2012) Multiobjective Optimization Approaches. Groundw 

Optim Handb 190–215. https://doi.org/10.1201/b11866-13 

Reddy K (2008) Physical and chemical groundwater remediation 

technologies. In: Darnault CJG (ed) Overexploitation and 

contamination of shared groundwater resources. Springer 257–274 

Rivett MO, Chapman SW, Allen-King RM, et al (2006) Pump-and-treat 

remediation of chlorinated solvent contamination at a controlled field-

experiment site. Environ Sci Technol 40:6770–6781. 



 

 ７０   

https://doi.org/10.1021/es0602748 

Rivett MO, Feenstra S, Cherry JA (2001) A controlled field experiment on 

groundwater contamination by a multicomponent DNAPL: Creation of 

the emplaced-source and overview of dissolved plume development. J 

Contam Hydrol 49:111–149. https://doi.org/10.1016/S0169-

7722(00)00191-1 

Sawyer CS, Ahlfeld DP, King AJ (1995) Groundwater Remediation Design 

Using a Three‐Dimensional Simulation Model and Mixed‐Integer 

Programming. Water Resour Res 31:1373–1385. 

https://doi.org/10.1029/94WR02740 

Silveira CLB, Tabares A, Faria LT, Franco JF (2021) Mathematical 

optimization versus Metaheuristic techniques: A performance 

comparison for reconfiguration of distribution systems. Electr Power 

Syst Res 196:. https://doi.org/10.1016/j.epsr.2021.107272 

Singh TS, Chakrabarty D (2010) Multi-objective optimization for optimal 

groundwater remediation design and management systems. Geosci J 

14:87–97. https://doi.org/10.1007/s12303-010-0010-8 

Tabari MMR, Abyar M (2022) Development a Novel Integrated Distributed 

Multi-objective Simulation-optimization Model for Coastal Aquifers 

Management Using NSGA-II and GMS Models. Water Resour Manag 

36:75–102. https://doi.org/10.1007/s11269-021-03012-0 

Teramoto EH, Pede MAZ, Chang HK (2020) Impact of water table 

fluctuations on the seasonal effectiveness of the pump-and-treat 

remediation in wet–dry tropical regions. Environ Earth Sci 79:1–15. 

https://doi.org/10.1007/s12665-020-09182-1 

Wang M, Zheng C (1999) Groundwater management optimization using 

genetic algorithms and simulated annealing: Formulation and 

comparison. J Am water resouces Assoc 34:519–530 

Wang S, Mulligan CN (2006) Natural attenuation processes for remediation 

of arsenic contaminated soils and groundwater. J Hazard Mater 



 

 ７１   

138:459–470. https://doi.org/10.1016/j.jhazmat.2006.09.048 

Yang JH, Lee KK (2012) Locating plume sources of multiple chlorinated 

contaminants in groundwater by analyzing seasonal hydrological 

responses in an industrial complex, Wonju, Korea. Geosci J 16:301–

311. https://doi.org/10.1007/s12303-012-0028-1 

Yang JH, Lee KK, Clement TP (2012) Impact of seasonal variations in 

hydrological stresses and spatial variations in geologic conditions on a 

TCE plume at an industrial complex in Wonju, Korea. Hydrol Process 

26:317–325. https://doi.org/10.1002/hyp.8236 

Yang Y, Wu J, Luo Q, Wu J (2022) An effective multi-objective 

optimization approach for groundwater remediation considering the 

coexisting uncertainties of aquifer parameters. J Hydrol 609:127677. 

https://doi.org/10.1016/j.jhydrol.2022.127677 

Yusoff Y, Ngadiman MS, Zain AM (2011) Overview of NSGA-II for 

optimizing machining process parameters. Procedia Eng 15:3978–

3983. https://doi.org/10.1016/j.proeng.2011.08.745 

Zeynali MJ, Pourreza-Bilondi M, Akbarpour A, et al (2022) Optimizing 

pump-and-treat method by considering important remediation 

objectives. Appl Water Sci 12:1–18. https://doi.org/10.1007/s13201-

022-01785-2 

Zheng C, Wang PP (1999) MT3DMS - A Modular Three-Dimensional 

Multispecies Transport Model. Strateg Environ Res Dev Progr 1–40 

 



 

 ７２   

국문 초록 

 지하수를 수자원으로서 그 가치를 유지하기 위한 오염 정화는 필수이다. 

특히, 트리클로로에틸렌 (TCE) 오염 정화 시에는 양수-처리 기술이 많이 

활용되는데, 이 기술에 대해서는 비용 및 시간 효과적인 정화 설계안을 

제안하는 것이 필요하다. 이를 위해, 유전 알고리즘 (GA) 라는 최적화 

알고리즘을 많이 활용했지만, 다목적 최적화 문제를 다루는 데 있어 한

계점이 존재하고 있다. 기존 GA의 한계점을 극복하고자 Non-dominated 

Sorting Genetic Algorithm-II (NSGA-II) 라는 다목적 최적화 문제를 다루는 

알고리즘이 대안으로 활용되고 있다. 본 연구에서는 NSGA-II 알고리즘의 

상대적인 수행 능력을 검증해보고, 충적 대수층이 TCE로 오염된 원주 

우산공단 지역에서 최적의 지하수 정화 설계안을 제안하고자 한다. 

MODFLOW와 MT3D를 활용하여 가상의 대수층 모델과 충적 대수층 모

델에서의 지하수 유동과 TCE 운송을 모의하였다. 추가적으로, 지구통계 

모델을 활용하여 이질적인 수리전도도 분포와 초기 농도 분포를 구하였

다. 가상의 대수층 모델에서는 NSGA-II의 상대적인 수행능력을 검증하기 

위해 가중치를 포함한 유전알고리즘과 NSGA-II를 다목적 최적화 문제에 

적용해 보았다. 충적 대수층 모델에서는 양수량 차이 및 관정 스크린 혹

은 관정의 심도 등의 관정 제원을 고려한 Well Contribution Index (WCI) 라

는 지수를 도입하여 최적의 양수-처리 전략을 제안하고자 하였다. 상대

적인 수행능력을 평가 결과, NSGA-II 는 지하수 정화 관련 상반되는 목

적함수들에 대한 다목적 최적화 문제를 풀 때의 수행 능력이 기존 가중

치를 추가한 GA보다 괜찮은 것을 검증할 수 있었다. 충적 대수층 모델

에서는 우기 때만 집중적으로 양수하였을 때에 효과적인 양수-처리 설계

를 할 수 있는 것을 확인하였다. 마지막으로, WCI를 계산했을 때 KDPW-

7 관정이 양수-처리에 가장 많이 기여하는 관정임을 확인할 수 있었다. 

이전 연구에서 수행한 KDPW-7 관정에서의 양수-처리 시험에서 효과적

인 오염정화가 수행한 결과를 제시하였고, 본 연구에서 도입한 WCI가 

실제 양수-처리 시나리오에서 우선 선택해야 하는 양수정을 제안할 수 
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있을 것으로 기대한다. 

주요어: 지하수 모델링, 양수-처리, Non-dominated Sorting Genetic Algorithm 

(NSGA-II), 트리클로로에틸렌 (TCE), 관정별 기여도 지수 (WCI) 
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