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ABSTRACT

Bayesian inference of moment condition

model with Bayesian bootstrap and

constrained Dirichlet process

Jaegui Lee

The Department of Statistics

The Graduate School

Seoul National University

In this thesis, we consider nonparametric Bayesian methods for

moment condition models. In a moment condition model, the pa-

rameter ✓ is defined through a moment condition EF [g(X, ✓)] = 0,

where X is an observation and g(X, ✓) is a moment function. Little

research has been conducted on moment condition models using

the nonparametric Bayesian methods because moment condition

constrains the parameter space, making it di�cult to calculate the

posterior distribution. We suggest using the Bayesian bootstrap

and the constrained Dirichlet process for estimating the parameter
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of the moment condition models. The posterior distributions un-

der both models are defined on manifolds of the parameter space,

which makes the posterior sampling complicated. We solve this

problem by obtaining the posterior samples using the constrained

Hamiltonian Monte Carlo. We illustrate the proposed methods

with various numerical studies.

Keywords: Moment condition model, Bayesian bootstrap, con-

strained Dirichlet process, constrained Hamiltonian Monte Carlo,

Shake algorithm

Student Number: 2016� 20273
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Chapter 1

Introduction

Moment condition models have been widely used in various fields

such as econometrics and statistics. In a moment condition model,

the parameter ✓ 2 ⇥ ⇢ Rp is defined through a moment condition

EF [g(X, ✓)] = 0, where X 2 X is a random variable with un-

known distribution F , and g : X ⇥⇥ 7! Rd is a moment function.

Suppose that the observations X1, · · · , Xn are given and the rela-

tionship of the number of moment restrictions and the dimension

of the parameter ✓ is d � p. In just-identified models (d = p), a

unique solution exists that satisfies the moment condition. There

are various methods to estimate such a solution, and one of the

representative approaches is the Method of Moments (MM). How-

ever, in over-identified models (d > p), some moment restrictions

may be invalid. This is because the number of moment restrictions

exceeds the number of parameters, so the true data-generating pro-

cess F may not satisfy the moment condition EF [g(X, ✓)] = 0 for
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all ✓ 2 ⇥.

A lot of research has been conducted to overcome these over-

identified problems. Traditionally, the two-step generalized method

of moments (GMM) estimator [Hansen, 1982] was suggested for

the moment condition models. The two-step GMM estimator has

large sample properties such as strong consistency and asymptotic

normality under the stationary and ergodic variables. However,

this estimator has a substantial bias [Altonji and Segal, 1996] and

a poor coverage rate [Pagan and Robertson, 1997] when the degree

of over-identification is high in small samples. Various one-step es-

timators such as GMM with continuous updating (CU) [Hansen

et al., 1996], empirical likelihood (EL) [Owen, 1990, 1988, 2001],

and exponential tilting (ET) [Efron, 1981] were suggested to al-

ternate the two-step GMM estimator. These one-step estimators

are invariant to the linear transformations of the moment func-

tions [Imbens, 1997; Owen, 2001]. In addition, these estimators

not only have the first-order e�ciency of the two-step GMM esti-

mator but also have higher-order asymptotic properties superior

to the two-step GMM estimator [Imbens, 2002; Newey and Smith,

2004]. Numerous studies had been conducted on which estimator

is most preferred among the one-step estimators. In the correctly

specified models, EL is more desirable than ET and CU because

EL possesses various good properties [DiCiccio et al., 1991; Hall,

1990; Imbens, 1997; Newey and Smith, 2004; Owen, 2001; Qin and

Lawless, 1994]. For example, EL has a lower bias than ET and CU

in finite samples, and bias-corrected EL is higher-order e�cient
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than any other method of moment estimators. However, in the

misspecified models, EL may behave worse than ET. If the mo-

ment function is unbounded, the asymptotic variance of EL may

not be defined because the denominator of the influence function

may be close to zero in the misspecified models. This can adversely

a↵ect the asymptotic properties of EL if there exists a misspeci-

fication in the model. On the other hand, ET is free from these

problems [Imbens et al., 1995] and maintains asymptotic proper-

ties even under misspecified models. As a way to compensate for

these shortcomings of EL mentioned above, the ETEL estimator

was suggested [Schennach, 2004, 2007]. ETEL possesses the same

O(n�1) bias and O(n�2) variance as EL in the correctly speci-

fied models and whose asymptotic variance can be defined in the

misspecified models.

However, little research has been conducted on the moment

condition models using nonparametric Bayesian methods. This is

because the moment condition constrains the parameter space,

making it di�cult to calculate the posterior distribution. Bayesian

EL, a method of using EL from a Bayesian perspective, was pro-

posed by Lazar [Lazar, 2003], and Bayesian GMM was proposed

by Shin [Shin, 2015]. In addition, Bayesian ETEL (BETEL), a

method of analyzing ETEL from a Bayesian perspective, was pro-

posed by Schennach [Schennach, 2005] and further developed by

Chib [Chib et al., 2018].

We propose to use the Bayesian bootstrap [Rubin, 1981] and

the constrained Dirichlet process [Ferguson, 1973], the nonpara-

3



metric Bayesian methods, to estimate the parameters of the mo-

ment condition models. When estimating the parameters of the

moment condition models using the constrained Dirichlet process,

we propose two posterior distributions depending on the form of

the data. The first case is when there are observations and co-

variates in the data, and the second case is when there are no co-

variates in the data and only observations exist. In the first case,

we calculate the posterior distribution under the assumption that

the distribution of the error terms is the constrained Dirichlet

process. In the second case, we calculate the posterior distribu-

tion under the assumption that the distribution of observations

is the constrained Dirichlet process. The posterior distributions

obtained using the constrained Dirichlet process under both cases

are largely a↵ected by the base distribution. Therefore, we cal-

culate the posterior distributions using various base distributions

and then choose the base distribution as the distribution that es-

timates parameters well. When estimating the parameters of the

moment condition models using the Bayesian bootstrap, we pro-

pose the same posterior distributions regardless of the form of

data. It is known that the posterior distribution of F obtained

using the Dirichlet process converges to the posterior distribution

of F obtained using the Bayesian bootstrap as the concentration

parameter converges to zero. Therefore, we obtain the posterior

distribution of parameter ✓ using the Bayesian bootstrap from

the equation that is modified from the posterior distribution of

parameter ✓ using the constrained Dirichlet process when the con-

4



centration parameter converges to zero.

The posterior distributions under both proposed methods are

defined on manifolds of the parameter space, which makes the pos-

terior sampling complicated. We solve this problem by obtaining

the posterior samples using the constrained Hamiltonian Monte

Carlo. In the process of updating the posterior samples in the

constrained Hamiltonian Monte Carlo, the Shake [Ryckaert et al.,

1977], an algorithm used when there exist constraints on parame-

ters, is used. We estimate the parameters of the moment condition

models using various methods in several numerical studies. These

examples show that the proposed methods outperform the com-

peting methods by comparing the performance of each method.

The rest of this thesis is organized as follows. In Chapter 2, we

suggest using the Bayesian bootstrap and the constrained Dirichlet

process for estimating the parameter ✓ of the moment condition

models. The posterior samples of both models are obtained by

the constrained Hamiltonian Monte Carlo. We describe the algo-

rithm for obtaining the posterior samples in detail in Chapter 3. In

Chapter 4, we compare the proposed methods with the competing

methods through various numerical studies. Finally, the conclusion

is given in Chapter 5.
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Chapter 2

Model

Suppose that X 2 X is a random variable with unknown distri-

bution F , X1, · · · , Xn are observations of X, and ✓ 2 ⇥ ⇢ Rp is a

parameter of interest. We can express d moment restrictions about

X and ✓ as follows.

EF [g(X, ✓)] = 0. (2.1)

The equation (2.1) is called the moment condition where g : X ⇥

⇥ 7! Rd is a moment function. We want to estimate the parame-

ter ✓ of the moment condition models. However, in over-identified

models, some moment restrictions may be invalid. This is because

the number of moment restrictions exceeds the number of param-

eters, so the true data-generating process F may not satisfy the

equation (2.1) for all ✓ 2 ⇥. To solve this problem, we introduce

the augmented moment condition which is a reformulation of the

moment condition by using a nuisance parameter ⌫ 2 V ⇢ Rd�p.
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Definition 1. (Augmented moment condition) Suppose that ⇠ :=

(✓, ⌫) 2 (⇥ ⇥ V) where ⌫ 2 V is a nuisance parameter. Then, the

following equation is called the augmented moment condition.

EF [g
A(X, ⇠)] =

Z
gA(X, ⇠)dF = 0

where gA(X, ⇠) := g(X, ✓)� V, Vi = ⌫i�pI(i > p).

Little research has been conducted on the moment condition

models using the nonparametric Bayesian methods because the

moment condition constrains the parameter space, making it dif-

ficult to calculate the posterior distributions. We propose to use

the Bayesian bootstrap and the constrained Dirichlet process, the

nonparametric Bayesian methods, to estimate the parameters of

the moment condition models.

2.1 Dirichlet process

Dirichlet process (DP) [Ferguson, 1973] is a stochastic process that

is a distribution over distribution. It is well known that samples

drawn from the DP are discrete distributions, which cannot be

described using a finite number of parameters. For this reason,

DP is classified as a nonparametric Bayesian method. However,

due to the problem that samples drawn from DP are discrete,

the application of DP to the analysis was limited. As a solution

to this problem, the Dirichlet process mixture model (DPMM)

was proposed [Antoniak, 1974]. The DPMM can be widely used

7



in nonparametric Bayesian problems thanks to the development

of Markov Chain Monte Carlo (MCMC) techniques [Escobar and

West, 1995; Neal, 2000]. DP is basically used for density estimation

but is widely used for unsupervised learning such as clustering

problems.

DP is the generalization of Dirichlet distribution, its finite-

dimensional marginal distribution is the Dirichlet distribution.

The definition of DP is as follows.

Definition 2. (Dirichlet process) Suppose that ↵ is a finite mea-

sure on (R,X ). Let DP↵ denote the Dirichlet process with the pa-

rameter as ↵. We call ↵(X ) as the concentration parameter and

↵̄ = ↵/↵(X ) as the base distribution of DP. Then, the definition

of the Dirichlet process is as follows.

If F ⇠ DP↵, then (F (B1), · · · , F (Bn)) ⇠ Dir(↵(B1), · · · ,↵(Bn))

where {Bi}ni=1 is a measurable finite partition of X .

DP has various properties. Representative ones are the con-

jugacy property and the Stick-breaking process property, and a

description of them is as follows.

Theorem 2.1.1. (Conjugacy)

Suppose

F ⇠ DP↵

X1, · · · , Xn|F ⇠ F.

Then

F |X1, · · · , Xn ⇠ DP↵+
Pn

i=1 �Xi
.

8



Theorem 2.1.2. (Stick-breaking process) [Sethuraman, 1994]

Suppose that A is a positive real number and G0 is a probability

measure on (R,X ). Let

✓1, ✓2, · · ·
i.i.d⇠ Beta(1, A)

X1, X2, · · ·
i.i.d⇠ G0

and they are independent of each other. Define

w1 = ✓1

w2 = ✓2(1� ✓1)

.

.

.

wn = ✓n

n�1Y

i=1

(1� ✓i)

.

.

.

Then

F =
1X

i=1

wi�Xi ⇠ DPAG0 .

In this thesis, when estimating the parameters of the moment con-

dition models using DP, the above properties are used.

2.1.1 Constrained Dirichlet process

In this subsection, we introduce assumptions, notations, and Lemma

for estimating the parameters of the moment condition models

when F is distributed from the Dirichlet process constrained by

the moment condition.

9



Suppose that F ⇠ DP↵. To prevent the moment condition

models from being over-identified, an augmented moment function

gA : X ⇥ (⇥⇥V) 7! Rd which satisfies the below equation is used.

EF [g
A(X, ⇠)] = 0

where ⇠ = (✓, ⌫) 2 (⇥ ⇥ V) ⇢ Rd. In parameter ⇠, ✓ 2 ⇥ is

the parameter of interest and ⌫ 2 V is a nuisance parameter. For

convenience, we define a function g⇤ : M(X ) 7! Rd as follows

g⇤(F ) = ⇠ ,
Z

gA(x, ⇠)F (dx) = 0

where M(X ) is a collection of probability distributions defined on

X . Since the augmented moment condition uniquely determines

⇠, g⇤ is a one-to-one function. Therefore, if gA is a function that

satisfies the condition that ↵� (gA)�1 is not a Dirac measure, then

g⇤(F ) has a density function on µ which is a Lebesgue measure on

Rd [Ghosal and Van der Vaart, 2017]. Therefore, we assume that

the augmented moment function gA satisfies the condition that

↵ � (gA)�1 is not a Dirac measure, and define h(⇠ : g⇤,↵) as the

density function of g⇤(F ) on µ.

It is known that DP↵ has a (g⇤, µ)-disintegration (DP↵,⇠, ⇠ 2

Rd) where DP↵,⇠ is a finite measure defined on M(X ) [Chang

and Pollard, 1997]. DP↵,⇠ has a fiber (g⇤)�1(⇠) as a support, and

satisfies the equation (2.3) for all measurable function f : X 7! R+.

(g⇤)�1(⇠) := {F 2 M(X ) : g⇤(F ) = ⇠}, ⇠ 2 Rd

10



Z

M
f(F )DP↵(dF ) =

Z

Rd

Z

(g⇤)�1(⇠)
f(F )DP↵,⇠(dF )µ(d⇠) (2.2)

=

Z

Rd

Z

(g⇤)�1(⇠)
f(F )

DP↵,⇠(dF )

DP↵,⇠(M)
DP↵,⇠(M)µ(d⇠)

=

Z

Rd

Z

(g⇤)�1(⇠)
f(F )DP↵(dF |g⇤(F ) = ⇠)h(⇠ : g⇤,↵)µ(d⇠)

(2.3)

where

DP↵(dF |g⇤(F ) = ⇠) =
DP↵,⇠(dF )

DP↵,⇠(M)

h(⇠ : g⇤,↵) = DP↵,⇠(M) = DP↵,⇠((g
⇤)�1(⇠)).

The equation (2.2) is satisfied by the Disintegration theorem. We

can express more simply the equation (2.3) as

DP↵(dF ) = DP↵,⇠(dF )µ(d⇠)

=
DP↵,⇠(dF )

DP↵,⇠(M)
DP↵,⇠(M)µ(d⇠)

= DP↵(dF |g⇤(F ) = ⇠)h(⇠ : g⇤,↵)µ(d⇠)

Suppose that F ⇠ DP↵ and X1, · · · , Xn|F
i.i.d.⇠ F . Then Q

which is the joint distribution of F and Xn = (X1, · · · , Xn) can

be expressed as

Q(dxn, dF ) =
nY

i=1

F (dxi)DP↵(dF )

= DP↵+
Pn

i=1 �xi
(dF )Polya↵(dxn).

where xn = (x1, · · · , xn) and Polya↵(dxn) is the distribution of

Pȯlya sequence. Using the above equation, we can establish the

following Lemma.
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Lemma 2.1.3. Suppose that F ⇠ DP↵ and X1, · · · , Xn|F ⇠ F .

Then the following equation is satisfied.

nY

i=1

F (dxi)DP↵,⇠(dF ) = DP↵+
Pn

i=1 �xi ,⇠
(dF )Polya↵(dxn), µ�a.a. ⇠.

Proof. To prove this Lemma, we calculate the (g⇤, µ)-disintegration

of measure Q. Since the equation (2.4) holds, Q has a (g⇤, µ)-

disintegration (
Qn

i=1 F (dxi)DP↵,⇠(dF ), ⇠ 2 Rd).

Q(dxn, dF ) =
nY

i=1

F (dxi)DP↵(dF )

=
nY

i=1

F (dxi)DP↵,⇠(dF )µ(d⇠) (2.4)

On the one hand, since the equation (2.5) holds, Q has a (g⇤, µ)-

disintegration (DP↵+
Pn

i=1 �xi ,⇠
(dF )Polya↵(dxn), ⇠ 2 Rd).

Q(dxn, dF ) = DP↵+
Pn

i=1 �xi
(dF )Polya↵(dxn)

= DP↵+
Pn

i=1 �xi ,⇠
(dF )µ(d⇠)Polya↵(dxn)

= DP↵+
Pn

i=1 �xi ,⇠
(dF )Polya↵(dxn)µ(d⇠) (2.5)

Because of the uniqueness of the (g⇤, µ)-disintegration, the equa-

tion (2.4) and (2.5) are equivalent. Therefore, the equation (2.6)

is satisfied.

nY

i=1

F (dxi)DP↵,⇠(dF ) = DP↵+
Pn

i=1 �xi ,⇠
(dF )Polya↵(dxn), µ� a.a ⇠

(2.6)
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2.1.2 Dirichlet process posterior

In this subsection, we estimate the parameter of the moment con-

dition models using the constrained Dirichlet process. We propose

two posterior distributions depending on the form of the data. The

first case is when there are observations and covariates in the data,

and the second case is when there are no covariates in the data

and only observations exist.

First, we calculate the posterior distribution of ✓ when there

are observations and covariates in the data.

Model

Suppose that yi 2 Rdy is an observation, xi 2 Rdx is a covariate

for i = 1, · · · , n, and ✓ 2 ⇥ is a parameter of interest. Define the

error terms as

✏i := t(yi, xi, ✓)
i.i.d.⇠ F, i = 1, · · · , n.

Since the expectation of the error term is zero, the distribution F

and the parameter ✓ satisfy the moment condition EF [g(✏, ✓)] = 0.

As mentioned in the previous subsection, we use an augmented

moment function gA to prevent the moment condition models from

being over-identified. Therefore, we redefine the error term as

✏i := t(yi, xi, ⇠)
i.i.d.⇠ F, i = 1, · · · , n.

and the distribution F and the parameter ⇠ = (✓, ⌫) satisfy the

below augmented moment condition.

EF [g
A(✏, ⇠)] =

Z
gA(✏, ⇠)dF (✏) = 0.

13



If ⌫ = 0, the augmented moment condition is equivalent to

the moment condition. Therefore, the form of the final model is as

given in equation (2.7).

✏i = t(yi, xi, ⇠)
i.i.d.⇠ F, i = 1, 2, · · · , n

Z
gA(✏, ⇠)dF (✏) = 0

⌫ = 0.

(2.7)

We define an assumption to calculate the posterior distribution

of ⇠ using the constrained Dirichlet process. Before describing the

assumption, we denote some notations. Define the error term ✏n

for given xn, yn, and ⇠ as

✏n = t(yn,xn, ⇠) = (t(y1, x1, ⇠), · · · , t(yn, xn, ⇠))T .

Also, define ✏⇤ = (✏⇤1, . . . , ✏
⇤
k) as distinct values of ✏n, and define

⇧(✏n) as a partition of ✏n on the [n] = {1, 2, · · · , n}. Then, as-

sumption A1 is as follows.

A1 Suppose that ⇧(✏n) is uniquely determined by the given xn

and yn. Therefore, ⇧(✏n)s are equivalent for all ⇠.

If the function t does not depend on the parameter ⇠ and has

the inverse function for given xn and yn, assumption A1 is satis-

fied.

14



Prior

Suppose that ↵, a finite measure defined on X , satisfies the below

function

↵(dx) = AG0(x)dx

where A is a positive real number and G0(·) is a density function

on X . We set the prior of (F, ⇠) as follows.

⇡(dF, d⇠) = DP↵(dF |g⇤(F ) = (✓, ⌫))⇡(✓)d✓�0(d⌫)

=
DP↵,(✓,⌫)(dF )

DP↵,(✓,⌫)(M)
⇡(✓)d✓�0(d⌫)

=
DP↵,(✓,⌫)(dF )

h(✓, ⌫ : g⇤,↵)
⇡(✓)d✓�0(d⌫).

where h(⇠ : g⇤,↵) is a density function of g⇤(F ) when F ⇠ DP↵.

Posterior

We would like to calculate the posterior distribution of (F, ⇠).

Suppose that b(y : x, ✓) is the density function of y when ✏ =

t(y, x, ✓) ⇠ G0(·). Then, the density function b can be calculated

as follows.

b(y : x, ✓) = G0(t(y, x, ✓))|t0(y, x, ✓)|.

If the function t does not depend on ✓, the density function b does

not depend on ✓, either.
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Theorem 2.1.4. (Posterior distribution) Suppose that the model

is equation (2.7) and the assumption A1 holds. Then, the posterior

distributions of F and ✓ are

⇡(dF, d✓|yn) / DP↵n(✓)(dF |g⇤(F ) = (✓, 0))
kY

i=1

b(y⇤i : x⇤i , ✓)
h(✓, 0 : g⇤,↵n(✓))

h(✓, 0 : g⇤,↵)
⇡(✓)d✓

= DP↵n(✓),(✓,0)(dF )
kY

i=1

b(y⇤i : x⇤i , ✓)
⇡(✓)

h(✓, 0 : g⇤,↵)
d✓

⇡(d✓|yn) /
kY

i=1

b(y⇤i : x⇤i , ✓)
h(✓, 0 : g⇤,↵n(✓))

h(✓, 0 : g⇤,↵)
⇡(✓)d✓.

where ↵n(✓) := ↵+
Pn

i=1 �✏i .

Proof. First, ⇡(dF, d⇠, d✏n) is calculated as follows.

⇡(dF, d⇠, d✏n)

=
nY

i=1

F (d✏i)⇡(dF, d⇠)

=
nY

i=1

F (d✏i)
DP↵,(✓,⌫)(dF )

h(✓, ⌫ : g⇤,↵)
⇡(✓)d✓�0(d⌫)

= DP↵n(✓),(✓,⌫)(dF )Polya↵(d✏n)
⇡(✓)

h(✓, ⌫ : g⇤,↵)
d✓�0(d⌫) (2.8)

=
DP↵n(✓),(✓,⌫)(dF )

h(✓, ⌫ : g⇤,↵n(✓))
h(✓, ⌫ : g⇤,↵n(✓))Polya↵(d✏n)

⇡(✓)

h(✓, ⌫ : g⇤,↵)
d✓�0(d⌫)

= DP↵n(✓)(dF |g⇤(F ) = (✓, ⌫))Polya↵(d✏n)
h(✓, ⌫ : g⇤,↵n(✓))

h(✓, ⌫ : g⇤,↵)
⇡(✓)d✓�0(d⌫)

= DP↵n(✓)(dF |g⇤(F ) = (✓, ⌫))
h nX

k=1

kY

i=1

G0(✏
⇤
i )d✏

⇤
i pA(⇧(✏n))

i

⇥ h(✓, ⌫ : g⇤,↵n(✓))

h(✓, ⌫ : g⇤,↵)
⇡(✓)d✓�0(d⌫).

The equation (2.8) holds by the Lemma 2.1.3. Using the above
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equation, we can calculate the following equation using the vari-

able transformation.

⇡(dF, d⇠, dyn)

= DP↵n(✓)(dF |g⇤(F ) = (✓, ⌫))
h nX

k=1

kY

i=1

G0(t(y
⇤
i , x

⇤
i , ✓))|t0(y⇤i , x⇤i , ✓)|dy⇤i pA(⇧(yn))

i

⇥ h(✓, ⌫ : g⇤,↵n(✓))

h(✓, ⌫ : g⇤,↵)
⇡(✓)d✓�0(d⌫)

= DP↵n(✓)(dF |g⇤(F ) = (✓, ⌫))
h nX

k=1

kY

i=1

b(y⇤i : x⇤i , ✓)dy
⇤
i pA(⇧(yn))

i

⇥ h(✓, ⌫ : g⇤,↵n(✓))

h(✓, ⌫ : g⇤,↵)
⇡(✓)d✓�0(d⌫) (2.9)

From the equation (2.9), we can get the posterior distribution of

F and ⇠ as

⇡(dF, d⇠|yn) / DP↵n(✓)(dF |g⇤(F ) = (✓, ⌫))
kY

i=1

b(y⇤i : x⇤i , ✓)

⇥ h(✓, ⌫ : g⇤,↵n(✓))

h(✓, ⌫ : g⇤,↵)
⇡(✓)d✓�0(d⌫). (2.10)

The posterior distribution of F and ✓ is calculated as follows by

integrating out the nuisance parameter ⌫ in equation (2.10)

⇡(dF, d✓|yn) / DP↵n(✓)(dF |g⇤(F ) = (✓, 0))
kY

i=1

b(y⇤i : x⇤i , ✓)

⇥ h(✓, 0 : g⇤,↵n(✓))

h(✓, 0 : g⇤,↵)
⇡(✓)d✓. (2.11)

and the posterior distribution of ✓ is calculated as follows by inte-

grating out the distribution F in equation (2.11)

⇡(dF, d✓|yn) /
kY

i=1

b(y⇤i : x⇤i , ✓)
h(✓, 0 : g⇤,↵n(✓))

h(✓, 0 : g⇤,↵)
⇡(✓)d✓. (2.12)
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Corollary 2.1.5. Suppose that the model is equation (2.7) and

assumption A1 holds. If ⇠ = ✓, and the error term ✏ does not

depend on ✓, then the posterior distributions of F and ✓ are

⇡(dF, d✓|yn) / DP↵n(dF |g⇤(F ) = ✓)
h(✓ : g⇤,↵n)

h(✓ : g⇤,↵)
⇡(✓)d✓

= DP↵n,✓(dF )
⇡(✓)

h(✓ : g⇤,↵)
d✓ (2.13)

⇡(d✓|yn) /
h(✓ : g⇤,↵n)

h(✓ : g⇤,↵)
⇡(✓)d✓ (2.14)

⇡(dF |yn) /
⇡(g⇤(F ))

h(g⇤(F ) : g⇤,↵)
DP↵n(dF ). (2.15)

where ↵n := ↵+
Pn

i=1 �✏i does not depend on ✓.

Proof. First, we derive the equation (2.13) and (2.14). According

to the assumptions, ⇠ = ✓, and each error term ✏i does not depend

on ✓. Hence, ↵n(✓) does not depend on ✓ and we denote ↵n(✓) =

↵n. Also, the distribution of yn does not depend on ✓. Therefore,

we can derive the equation (2.13) and (2.14).

Next, we derive the equation (2.15). Suppose that r(F ) is a

bounded and continuous real-valued function. Then, the following

equation holds.

Z
r(F )⇡(dF |yn) =

Z Z
r(F )⇡(dF, d⇠|yn)

=

Z Z
r(F )DP↵n(dF |g⇤(F ) = ⇠)

h(⇠ : g⇤,↵n)

h(⇠ : g⇤,↵)
⇡(⇠)d⇠

=

Z Z
r(F )

⇡(⇠)

h(⇠ : g⇤,↵)
DP↵n(dF |g⇤(F ) = ⇠)h(⇠ : g⇤,↵n)d⇠

=

Z
r(F )

⇡(g⇤(F ))

h(g⇤(F ) : g⇤,↵)
DP↵n(dF ). (2.16)
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The equation (2.16) is satisfied by the equation (2.3). Therefore,

we can derive the equation (2.15).

Calculation of the posterior distribution

For the calculation of the posterior distribution, the equation (2.17)

obtained in Theorem 2.1.4 is used.

⇡(dF, d✓|yn) / DP↵n(✓),(✓,0)(dF )
kY

i=1

b(y⇤i : ✓, x⇤i )
⇡(✓)

h(✓, 0 : g⇤,↵)
d✓.

(2.17)

However, generating posterior samples using the equation (2.17) is

a complex issue. Hence, we use the Stick-breaking process [Sethu-

raman, 1994] to simplify the posterior distribution of F and ✓.

F ⇠ DP↵n(✓) in the equation (2.17) can be decomposed as

F = u
1X

i=1

[⌧i
Y

j<i

(1� ⌧i)]�Zi + (1� u)
nX

i=1

wi�Xi

by using the Stick-breaking process [Sethuraman, 1994] where

u ⇠ Beta(A, n)

⌧1, ⌧2, · · ·
i.i.d.⇠ Beta(1, A)

(w1, · · · , wn) ⇠ Dir(1, · · · , 1)

Z1, Z2, · · ·
i.i.d.⇠ G0

Therefore, if we express the posterior distributions of F and ✓

as the posterior distribution of (✓, u, ⌧, Z, w), then we can get the

below equation.
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⇡(✓, u, ⌧, Z, w|yn) / Beta(u|A, n)
m�1Y

i=1

Beta(⌧i|1, A)
mY

i=1

G0(Zi)

⇥Dir(w|1, 1, . . . , 1)⇥
kY

i=1

b(y⇤i : x⇤i , ✓)⇥
⇡(✓)

h(✓, 0 : g⇤,↵)

for su�ciently large m 2 N. We use the posterior distribution of

(✓, u, ⌧, Z, w) instead of the posterior distribution of (F, ✓) for com-

putational convenience.

Second, we calculate the posterior distribution of ✓ when there

are no covariates in the data and only observations exist.

Model

Suppose that yi 2 Rdy is an observation for i = 1, · · · , n, and

✓ 2 ⇥ is a parameter of interest. We define the distribution of the

observations as

yi
i.i.d.⇠ F, i = 1, · · · , n.

The distribution F and the parameter ✓ satisfy the moment con-

dition EF [g(y, ✓)] = 0, and we use an augmented moment function

gA as in the case where there are observations and covariates in

the data. Hence, the distribution F and the parameter ⇠ = (✓, ⌫)

satisfy the below augmented moment condition.

EF [g
A(y, ⇠)] =

Z
gA(y, ⇠)dF (y) = 0.

For the augmented moment condition to be equivalent to the

moment condition, it must be ⌫ = 0. Therefore, the form of the
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final model is as given in equation (2.18)

yi
i.i.d.⇠ F, i = 1, 2, · · · , n

Z
gA(y, ⇠)dF (y) = 0

⌫ = 0.

(2.18)

Prior

We set the prior of (F, ⇠) as follows.

⇡(dF, d⇠) = DP↵(dF |g⇤(F ) = (✓, ⌫))⇡(✓)d✓�0(d⌫)

=
DP↵,(✓,⌫)(dF )

DP↵,(✓,⌫)(M)
⇡(✓)d✓�0(d⌫)

=
DP↵,(✓,⌫)(dF )

h(✓, ⌫ : g⇤,↵)
⇡(✓)d✓�0(d⌫).

where h(⇠ : g⇤,↵) is a density function of g⇤(F ) when F ⇠ DP↵.

Posterior

The posterior distributions of F and ✓ can be obtained using The-

orem 2.1.4. However, since observations yn do not depend on ✓, we

can apply Corollary 2.1.5 to calculate the posterior distributions.

Therefore, the posterior distributions of F and ✓ are calculated as

follows

⇡(dF, d✓|yn) / DP↵n,(✓,0)(dF )
⇡(✓)

h(✓, 0 : g⇤,↵)
d✓

⇡(d✓|yn) /
h(✓, 0 : g⇤,↵n)

h(✓, 0 : g⇤,↵)
⇡(✓)d✓

where ↵n := ↵+
Pn

i=1 �yi .
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2.2 Bayesian bootstrap

The Bayesian bootstrap (BB) [Rubin, 1981] is a Bayesian alter-

native to the Bootstrap, which is a technique used for estimating

uncertainty in a model or parameter of interest. In Bootstrap, the

sampling distribution is estimated by resampling the original data

sets. On the other hand, in the Bayesian bootstrap, the probabil-

ity of each original sample being generated is set as a parameter,

and then the posterior distribution is calculated.

A lot of research on BB has been done, including studies on

various models such as the finite population model [Lo, 1988],

right censored data [Hjort, 1991; Lo, 1993], and the proportional

hazard model [Kim and Lee, 2003]. As in Bootstrap, BB does

not require distributional assumptions for random variables. In

addition, BB has several advantages over Bootstrap. First, the

posterior distribution obtained using BB has a much smoother

shape than the sampling distribution obtained using Bootstrap.

Second, BB can infer the parameter of interest, whereas Bootstrap

cannot.

Various theoretical studies about BB also have been conducted.

BB and Bootstrap are first-order asymptotically equivalent [Lo,

1987]. Furthermore, BB approximation to the posterior distribu-

tion of the population mean is more accurate than Bootstrap and

standard normal approximations in the second-order sense [Weng,

1989].

In this section, we estimate the parameter of the moment con-
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dition models using BB. Unlike when calculating the posterior

distributions using DP in the previous section, we propose the

same posterior distribution regardless of the form of the data.

When proposing the posterior distribution using BB, we use the

posterior distributions obtained using DP. This is because there

is a relationship between the posterior distribution of F obtained

using DP and BB. Before proposing the posterior distribution of

the parameters of the moment condition model, we introduce BB

briefly.

2.2.1 Bayesian bootstrap

Suppose that w = (w1, · · · , wn) is a probability of observations

being generated as follows.

P(X = Xi|w) = wi, i = 1, · · · , n.

The prior of w is set as

⇡(w) /
nY

i=1

wli
i

and the likelihood function is

L(X1, · · · , Xn|w) /
nY

i=1

wi.

Therefore, the posterior distribution of w is calculated as

⇡(w|X1, · · · , Xn) /
nY

i=1

wli+1
i ⇠ Dir(l1 + 2, · · · , ln + 2).

The hyperparameters of the prior of w can get various values,

but commonly, l1 = · · · = ln = �1 is used. There are two main
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reasons for using the hyperparameters this way: the consistency

of the posterior distribution and the relationship between BB and

DP. The first reason is related to the consistency of the poste-

rior distribution. It is well known that if ⇡(w) is a proper prior,

then the posterior distribution of w is inconsistent. Therefore, in

order for the posterior distribution of w to be consistent, all hy-

perparameters, l1, · · · , ln, should be negative. The second reason

is related to the relationship between the posterior distribution of

BB and DP. If l1 = · · · = ln = �1, then the posterior distribution

of w is

⇡(w|X1, · · · , Xn) ⇠ Dir(1, · · · , 1).

Hence, the posterior distribution of F in BB is

F |X1, · · · , Xn =
nX

i=1

wi�Xi , w ⇠ Dir(1, · · · , 1).

The above equation is related to the posterior distribution of F in

DP. When F ⇠ DP↵, the asymptotic posterior distribution of F

in DP is calculated as follows

F |X1, · · · , Xn ⇠ DP↵+
Pn

i=1 �Xi

↵(X )!0 DPPn
i=1 �Xi

.

Therefore, the posterior distribution of F in DP converges to the

posterior distribution of F in BB as ↵(X ) converges to 0.

For these reasons, the prior and the posterior distribution of

w in BB are as follows

⇡(w) /
nY

i=1

wli
i

⇡(w|X1, · · · , Xn) ⇠ Dir(1, · · · , 1).
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2.2.2 Asymptotic posterior when ↵(X ) ! 0

We would like to calculate the asymptotic posterior distribution

of ✓ obtained in Theorem 2.1.4 as the concentration parameter of

DP converges to 0. Suppose that

FA ⇠ DP↵

We denote the base measure of DP as

↵(dx) = AG0(x)dx

where A is a positive real number and G0(x) is a density function

on X . To calculate the asymptotic posterior distribution obtained

using DP, we assume two conditions.

B1 (Existence of the density function)

Define as

F✏,✓ :=
1

n

nX

i=1

�t(yi,xi,✓)

↵n(✓) := ↵+ nF✏,✓

and suppose that

FA ⇠ DP↵=AG0(·)

F0 = �Y , Y ⇠ G0(·)

FA,n ⇠ DP↵n(✓)

F0,n ⇠ DPnFn,✓ .

Then, h(⇠ : g⇤, A), h(⇠ : g⇤, 0), h(⇠ : g⇤, A, n), and h(⇠ : g⇤, 0, n),

which are density functions of g⇤(FA), g⇤(F0), g⇤(FA,n), and g⇤(F0,n),

exist.
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B2 (Uniformly convergence condition)

There exists A0 = A0(⇠) > 0 which satisfies

lim
r!0

sup
0<A<A0

���
P(g⇤(FA) 2 B(⇠, r))

�(B(⇠, r))
� h(⇠ : g⇤, A)

��� = 0

lim
r!0

sup
0<A<A0

���
P(g⇤(FA,n) 2 B(⇠, r))

�(B(⇠, r))
� h(⇠ : g⇤, A, n)

��� = 0

for a.a-⇠ where � is a Lebesgue measure.

If h(⇠ : g⇤, A), the density function of g⇤(FA), exists, then the

following equation holds [Folland, 1999].

lim
r!0

���
P(g⇤(FA) 2 B(⇠, r))

�(B(⇠, r))
� h(⇠ : g⇤, A)

��� = 0, 8 � a.a ⇠, 8A > 0.

(2.19)

The condition B2 assumes that equation (2.19) holds uniformly

for A.

Lemma 2.2.1. Assume that B1 and B2 hold. Then, the following

equations are satisfied.

lim
A!0

h(⇠ : g⇤, A) = h(⇠ : g⇤, 0), 8⇠ � a.e.

lim
A!0

h(⇠ : g⇤, A, n) = h(⇠ : g⇤, 0, n), 8⇠ � a.e.

Proof. First, we derive the first equation. Set a sequence (An)

which satisfies An ! 0. Then, the equation (2.20) holds for � �

a.a ⇠ [Folland, 1999]

lim
r!0

���
P(g⇤(FAn) 2 B(⇠, r))

�(B(⇠, r))
� h(⇠ : g⇤, An)

��� = 0, 8 � a.a ⇠, 8n

(2.20)
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Assume that ⇠ satisfies the equation (2.20). Then the following

equations are satisfied.

lim
A!0

h(⇠ : g⇤, A) = lim
A!0

lim
r!0

P(g⇤(FA) 2 B(⇠, r))

�(B(⇠, r))

= lim
r!0

lim
A!0

P(g⇤(FA) 2 B(⇠, r))

�(B(⇠, r))

= lim
r!0

P(g⇤(F0) 2 B(⇠, r))

�(B(⇠, r))

= h(⇠ : g⇤, 0).

The first and last equations in the above equation hold by the

Theorem 3.22 of Folland [Folland, 1999] and the second equation

in the above equation holds by the assumption B2. Therefore, the

first equation is proved.

The second equation can be derived in the same way.

Therefore, when A ! 0, the asymptotic posterior distribution

of ✓ is

⇡0(✓|yn) =
kY

i=1

b(y⇤i : x⇤i , ✓)
h(✓, 0 : g⇤, 0, n)

h(✓, 0 : g⇤, 0)
⇡(✓).

Theorem 2.2.2. Assume that B1 and B2 hold. Then, the fol-

lowing equation is satisfied.

⇡(✓|yn) ! ⇡0(✓|yn), 8 � a.a.✓.
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Proof. The posterior distribution of ✓ is

⇡(✓|yn) =
kY

i=1

b(y⇤i : x⇤i , ✓)
h(✓, 0 : g⇤,↵n(✓))

h(✓, 0 : g⇤,↵)
⇡(✓).

By the Lemma 2.2.1, the following equations are satisfied as A ! 0

h(✓, 0 : g⇤, A, n) ! h(✓, 0 : g⇤, 0, n), 8 � a.e ✓

h(✓, 0 : g⇤, A) ! h(✓, 0 : g⇤, 0), 8 � a.e ✓

Therefore, the following equation is satisfied as A ! 0.

⇡(✓|yn) ! ⇡0(✓|yn), 8 � a.a. ✓.

2.2.3 Bayesian bootstrap posterior

As mentioned above, when F ⇠ DP↵, the posterior distribution

of F converges to the posterior distribution obtained using BB as

↵(X ) converges to zero. Therefore, we use the posterior distribu-

tions obtained in Theorem 2.1.4 and Corollary 2.1.5 to deduce the

posterior distribution obtained using BB. We propose the poste-

rior distributions obtained using BB according to the form of the

data as in Section 2.1. When suggesting the posterior distributions

obtained using BB, we remove the influence of the prior of param-

eter ✓.

First, we calculate the posterior distribution of ✓ when there

are observations and covariates in the data. Suppose that yi 2 Rdy

is an observation, xi 2 Rdx is a covariate for i = 1, · · · , n. Define

the error term as

✏i := t(yi, xi, ✓)
i.i.d.⇠ F, i = 1, · · · , n.
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By the Theorem 2.1.4, the posterior distribution obtained using

DP is

⇡(dF, d✓|yn) / DP↵n(✓),(✓,0)(dF )
kY

i=1

b(y⇤i : x⇤i , ✓)
⇡(✓)

h(✓, 0 : g⇤,↵)
d✓

(2.21)

where ↵n(✓) := ↵ +
Pn

i=1 �✏i . As ↵(X ) ! 0, the base measure of

the posterior distribution converges as follows

↵n(✓) !
nX

i=1

�✏i .

However, the density function h(✓, 0 : g⇤,↵) in equation (2.21)

depends on the base measure ↵. In addition,
Qk

i=1 b(y
⇤
i : x⇤i , ✓) is

influenced by the prior of ✓. Since we would like to remove the

influence of the base measure of DP and the prior of ✓, we modify

equation (2.21) as follows.

⇡(dF, d✓|yn) / DP↵n(✓),(✓,0)(dF )d✓ (2.22)

where ↵n(✓) =
Pn

i=1 �✏i .

Second, we calculate the posterior distribution of ✓ when there

are no covariates in the data and only observations exist. Sup-

pose that yi 2 Rdy is an observation for i = 1, · · · , n. Then, the

distribution of observations is as follows.

yi
i.i.d.⇠ F, i = 1, · · · , n.

By the Corollary 2.1.5, the posterior distribution obtained using

DP is

⇡(dF, d✓|yn) / DP↵n,(✓,0)(dF )
⇡(✓)

h(✓, 0 : g⇤,↵)
d✓ (2.23)
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where ↵n := ↵ +
Pn

i=1 �yi . In the same way as when there are

covariates and observations in the data, we would like to remove

the influence of the base measure of DP and the prior of ✓. Hence,

the modified equation is

⇡(dF, d✓|yn) / DP↵n,(✓,0)(dF )d✓ (2.24)

where ↵n =
Pn

i=1 �yi .

Since the form of equation (2.22) and (2.24) are equivalent, the

posterior distribution is proposed as follows regardless of the form

of the data.

⇡(dF, d✓|yn) / DP↵n,(✓,0)(dF )d✓.

where ↵n =
Pn

i=1 �yi .

30



Chapter 3

Algorithm

We suggested estimating the parameter ✓ of the moment condition

models using the Bayesian bootstrap and the constrained Dirich-

let process. The posterior distributions of ✓ obtained using both

models are calculated in Chapter 2. However, since the parameter

space of ✓ is constrained by the moment condition, it is di�cult to

obtain the posterior samples of both models. We solve this prob-

lem by generating the posterior samples of both models using the

constrained Hamiltonian Monte Carlo.

The process of obtaining samples using the Hamiltonian Monte

Carlo consists of two main steps. In the first step, auxiliary pa-

rameters are generated from a normal distribution, and in the

second step, parameters are updated using Hamiltonian dynam-

ics. In the second step of the Hamiltonian Monte Carlo, we use the

Shake algorithm to update the posterior samples of both models.

In this Chapter, we introduce the Hamiltonian Monte Carlo, a
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method used to obtain the posterior samples, and the Shake, an

algorithm that updates the posterior samples in the Hamiltonian

Monte Carlo when the parameter space is constrained.

3.1 Hamiltonian Monte Carlo

Hamiltonian Monte Carlo (HMC), a type of MCMC, is an algo-

rithm for obtaining a sequence of random samples that converges

to the posterior distribution. Hamiltonian Monte Carlo was de-

vised by applying Hamiltonian dynamics to Monte Carlo, which

was first proposed under the name Hybrid Monte Carlo to tackle

calculations in Lattice Quantum Chromodynamics [Duane et al.,

1987]. As time went by, Hybrid Monte Carlo started appearing

in various textbooks under the name Hamiltonian Monte Carlo

[Bishop and Nasrabadi, 2006; MacKay and Mac Kay, 2003]. It be-

gan to be used extensively in statistical computing thanks to Neal’s

influential review [Neal et al., 2011]. In the mid-2010s, NUTS (No-

U-Turn Sampler) [Ho↵man et al., 2014], an algorithm that updates

posterior samples more e�ciently in HMC, was developed, which

could significantly reduce the time to generate posterior samples.

A sequence of random samples obtained using HMC converges

to the posterior distribution much faster than that obtained through

the traditional MCMCmethods like Metropolis-Hastings and Gibbs

sampler. This occurs because of the way the HMC updates sam-

ples. In the process of updating samples using HMC, auxiliary

parameters are randomly generated from a normal distribution
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at each iteration. This makes samples obtained using HMC have

a lower correlation between the successive samples than that ob-

tained using traditional MCMC methods while maintaining a high

probability of acceptance rate. Thanks to this feature, HMC has

recently received considerable attention in Bayesian analysis. We

describe the process of obtaining a sequence of random samples

using HMC in detail in the following paragraphs.

Suppose that q is a parameter of interest. The target density

we want to estimate is ⇡(q), which is the posterior distribution

of q. To apply Hamiltonian dynamics, we introduce an auxiliary

parameter p which has the same dimension as q and is distributed

from the normal distribution with zero mean vector. The param-

eters q and p serve as the state and momentum of the particle in

Hamiltonian dynamics, respectively. Since Hamiltonian dynamics

is used in the process of updating samples in HMC, the target den-

sity ⇡(q) and the conditional density ⇡(p|q) are defined as follows

to apply Hamiltonian dynamics.

⇡(q) = exp (�U(q))

⇡(p|q) = exp (�K(p, q))

where U(q) andK(p, q) are the potential energy and the kinetic en-

ergy, respectively. By classical mechanics, the Hamiltonian H(p, q)

can be expressed as the sum of the potential energy U(q) and the

kinetic energy K(p, q). Therefore, the Hamiltonian H(p, q) can be

expressed in terms of the target density ⇡(q) and the conditional

density ⇡(p|q) as follows.
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H(p, q) = K(p, q) + U(q)

= � log ⇡(p|q)� log ⇡(q)

=
1

2
pTM(q)�1p� log ⇡(q).

where M(q) is a mass matrix that is symmetric and positive defi-

nite.

The algorithm for obtaining a sequence of random samples us-

ing HMC consists of two main steps. In the first step, we move

the contour of ⇡(p, q) by generating p from the normal distribu-

tion N(0,M(q)). In the second step, samples are updated over one

contour of ⇡(p, q) using Hamiltonian dynamics. Hamiltonian dy-

namics is a di↵erential equation that expresses the rate of change

in the state and momentum of the particle over time, expressed as

follows.

@p

@t
= � @

@q
H(p, q) (3.1)

@q

@t
=

@

@p
H(p, q). (3.2)

By the law of conservation of energy, the samples before and af-

ter the update using the equation (3.1) and (3.2) have the same

Hamiltonian. Therefore, both samples lie on the same contour of

the density ⇡(p, q). Through this process, we generate a Markov

chain ((p(t), q(t)), t = 1, · · · , N) having equation (3.3) as the in-

variant distribution.

⇡(p, q) = exp(�H(p, q)) (3.3)
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The target density ⇡(q) can be estimated using the Markov chain

((q(t)), t = 1, · · · , N) obtained from the Markov chain ((p(t), q(t)), t =

1, · · · , N).

3.1.1 Constrained Hamiltonian Monte Carlo: Shake

There are several algorithms used in the second step of HMC for

updating samples. As the parameters we want to estimate should

satisfy the moment conditions, samples obtained using HMC need

to be updated within a constrained parameter space. Therefore, in

the process of obtaining the posterior samples of the moment con-

dition models, an algorithm that can update samples on non-linear

manifolds should be used. We suggest using the Shake algorithm,

one of the methods used in the Hamiltonian Monte Carlo when

the parameters of interest are constrained.

The Shake [Ryckaert et al., 1977] is an algorithm of HMC that

can be used to update samples when there exist constraints on

parameters. When updating samples using the Shake algorithm,

the Lagrange multiplier method is used to calculate the rate of

change in the state and momentum of the particle over time. In

this subsection, the moment condition is expressed as c(q) = 0 for

convenience. By the Lagrange multiplier method, the Hamiltonian

H⇤(p, q) to be used in the Shake algorithm can be decomposed as

follows.

H⇤(p, q) = H(p, q) + �T c(q)

= K(p, q) + U(q) + �T c(q).
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where � is a Lagrange multiplier. Using this decomposition of

Hamiltonian H⇤(p, q), we can calculate the rate of change in the

state and momentum of the particle over time as follows.

@p

@t
= � @

@q
H⇤(p, q) = �

� @

@q
H(p, q) + C(q)T�

�
(3.4)

@q

@t
=

@

@p
H⇤(p, q) =

@

@p
H(p, q) (3.5)

where C(q) = @
@q c(q). In the process of updating samples using

the Shake algorithm, the Leapfrog algorithm which is a method

of numerically solving ordinary di↵erential equations is used. The

process of obtaining a sequence of random samples that converge

to the joint distribution ⇡(p, q) using the Shake algorithm based

on the two equations (3.4) and (3.5) is as follows.

1. Set initial value q(0)

2. Repeat n = 0, 1, · · · , N � 1

(a) Generate p(n) ⇠ N(0,M(q(n)))

(b) Define as (p(n)0 , q(n)0 ) := (p(n), q(n))

(c) Repeat j = 0, · · · , L� 1

i. p(n)
j+ 1

2

= p(n)j � ✏
2

⇣
@
@qH(p(n)j , q(n)j ) + C(q(n)j )T�

⌘

ii. q(n)j+1 = q(n)j + ✏ @
@pH(p(n)

j+ 1
2

, q(n)j )

iii. c(q(n)j+1) = 0

iv. p(n)j+1 = p(n)
j+ 1

2

� ✏
2

⇣
@
@qH(p(n)

j+ 1
2

, q(n)j+1) + C(q(n)j+1)
T�

⌘

(d) Calculate acceptance rate

r = min
n
1, exp

�
H(p(n), q(n))�H(p(n)L , q(n)L )

�o
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(e) Generate u ⇠ Unif(0, 1)

(f) update q(n+1) =

8
><

>:

q(n)L if u < r

q(n) if o.w.

where ✏ is a step size of updating, which is a positive small value.

Theoretically, in HMC, there is no need to execute the acceptance-

rejection step performed in (d) to (f) of Step 2. However, due to

numerical errors occurring during the process of updating samples

in (c) of Step 2, (p(n)0 , q(n)0 ) and (p(n)L , q(n)L ) may not be on the same

contour of ⇡(p, q). This problem is solved by using the acceptance-

rejection step which is used in the Metropolis-Hastings.
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Chapter 4

Numerical Studies

In this Chapter, we estimate the parameters of the moment con-

dition models using various methods in several examples. Two

examples are used for the analysis: in the first example, moments

of the nonparametric model are inferred in the just-identified mo-

ment condition model, and in the second example, the coe�cients

of the instrumental variable regression model are estimated in the

over-identified moment condition model. In each example, the pro-

posed methods, BB and DP, and various competing methods are

used to estimate the parameters of the moment condition models.

As competing methods, GMM, EL, and Bootstrap, which are Fre-

quentist methods, and BETEL, which is a nonparametric Bayesian

method are used. The performance of each method is compared

through various figures such as MSE, bias, and so on.
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4.1 Example 1: Moments of nonparametric

model

In this section, we would like to estimate the moments of one-

dimensional data in the nonparametric model. The data to be used

in this example is the garden earthworms data surveyed by Perl &

Fuller [Pearl and Fuller, 1905]. Perl & Fuller investigated various

characteristics of garden earthworms to examine the variations

and correlations of those characteristics. The characteristics used

in the survey were the number of somites and the position of the

clitellum and so on, and 487 garden earthworms were investigated

to confirm this. In this example, the number of somites of garden

earthworms is used as a variable.

Before proceeding with the analysis, exploratory data analysis

(EDA) was conducted to figure out the data. Since there is only

one variable, we draw a histogram to visualize the distribution

of the data. The histogram of the number of garden earthworms

according to the number of somites is presented in Figure 4.1.

Most of the data points are located close to the mean. However,

there are several data points that are far away from the mean,

and the number of such data points is not small. For this reason,

we anticipate that the variance of the data will not be very small.

Additionally, the shape of the histogram is not symmetric; it ap-

pears to be skewed to the left. Thus, the skewness of the number

of somites is expected to be negative.

We would like to estimate the moments of the numbers of
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Figure 4.1: Histogram of the number of somites of garden earth-

worms

somites of garden earthworms using this data. The moments we

want to estimate are the mean (µ), standard deviation (�), skew-

ness (�), and kurtosis () of the number of somites of the garden

earthworm. By definition, the moments should satisfy the restric-

tions (4.1) to (4.4).

EF [X � µ] = 0 (4.1)

EF [(
X � µ

�
)2 � 1] = 0 (4.2)

EF [(
X � µ

�
)3 � �] = 0 (4.3)

EF [(
X � µ

�
)4 � � 3] = 0. (4.4)

The first method that can be thought of for estimating each

moment is the Method of Moments. However, the Method of Mo-
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ments often provides biased estimators as well as fails to esti-

mate moments in over-identified models. Therefore, we estimate

moments using various methods for estimating the parameters of

the moment condition model instead of the Method of Moments.

Through the moment restrictions (4.1) to (4.4), we can derive mo-

ment functions g1 and g2 to be used in the analysis as follows.

g1(X, ✓) =

0

BBBBBB@

X � ✓1

e�2✓2(X � ✓1)2 � 1

e�3✓2(X � ✓1)3 � ✓3

e�4✓2(X � ✓1)4 � e✓4

1

CCCCCCA
, where ✓ = (µ, log(�), �, log(+ 3))

g2(X, ✓) =

0

BBBBBB@

X � ✓1
�
(X � ✓1)/✓2

�2 � 1
�
(X � ✓1)/✓2

�3 � ✓3
�
(X � ✓1)/✓2

�4 � (✓4 + 3)

1

CCCCCCA
, where ✓ = (µ,�, �,)

In each moment function, ✓i means the ith element of parameter

✓. The moment function g2 is obtained by the restrictions (4.1)

to (4.4), and the moment function g1 is obtained by transforming

the � and  of g2. We estimate µ, �, �, and  using these moment

functions.

For estimating the parameters of the moment condition mod-

els, various methods such as BB and DP, which are proposed meth-

ods, and GMM, EL, and Bootstrap, which are Frequentist methods

are used. When estimating the parameter of the moment condi-

tion models using DP, we set the concentration parameter and the

base distribution of DP as A = 0.5 and G0 = t(5), respectively,

41



Parameter

Function Method µ � � 

- MM 142.715 11.853 -2.179 5.857

g1 GMM 142.715 11.853 -2.179 5.857

g1 EL 142.715 11.853 -2.179 5.857

g1 Bootstrap 142.756 11.825 -2.149 5.527

g1 BB 142.726 11.802 -2.105 5.432

g1 DP 142.661 12.109 -2.228 6.481

g2 GMM 142.715 11.853 -2.179 5.857

g2 EL 142.715 11.853 -2.179 5.857

g2 Bootstrap 142.756 11.825 -2.149 5.527

g2 BB 142.716 11.766 -2.151 5.528

g2 DP 142.674 12.234 -2.288 6.442

Table 4.1: Estimators of µ,�, �, for garden earthworm data

and set the prior of ✓ to a non-informative prior. In the process of

estimating the parameters using BB, DP, and Bootstrap, 90,000

samples are used. When obtaining posterior samples of BB and

DP, 100,000 samples are generated using CHMC, then the first

10,000 samples are removed through burn-in.

The estimators obtained using each method are given in Table

4.1. Additionally, the estimators obtained through the Method of

Moments are also included in Table 4.1. We compare the di↵er-

ences in estimators according to the variable transformation of the

moment function and the methods used for parameter estimation.
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By comparing the estimators when g1 and g2 are used as the

moment functions, the di↵erence in estimators according to vari-

able transformation is confirmed. There is little di↵erence in the

estimators according to the moment functions. Therefore, it can

be concluded that the variable transformation of the moment func-

tion does not significantly a↵ect the parameter estimation. Next,

we compare the estimators of each method. Upon comparing the

estimators of moments, it appears that there is little di↵erence

among the methods. In particular, GMM and EL provide estima-

tors that are exactly equivalent to the Method of Moment estima-

tors (MME). The estimators obtained using BB, DP, and Boot-

strap have di↵erences from the MME, which seems to be occurred

due to the randomness of the samples. Among them, the estima-

tors obtained using BB and Bootstrap are similar to estimators

obtained by other methods, whereas estimators obtained using

DP exhibits noticeable di↵erences, particularly prominent in the

parameter .

In order to better figure out the characteristics of each method,

the distributions of the estimators obtained using each method are

compared. In Figure 4.2 and 4.3, the distributions of µ, �, �, and

 are given. Figure 4.2 and 4.3 list the distributions of estimators

when g1 and g2 are used as the moment functions, respectively.

In each figure, the posterior distributions of parameters were

drawn for BB and DP, the empirical distribution for Bootstrap,

and the asymptotic distributions for GMM and EL. Each distri-

bution is compared with MME which was indicated by the red
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vertical line.

At first, we compare the shape of the distributions according

to the moment function. As in the previous comparison of esti-

mators, there is little di↵erence in the distributions according to

the moment functions. Therefore, it can be concluded that the

variable transformation of the moment function does not signifi-

cantly a↵ect the distributions of the estimators. Next, we compare

the distributions of estimators according to the methods. It can

be seen that the distributions of estimators obtained using BB,

Bootstrap, GMM, and EL are symmetric, while that of DP are

not. The degree of asymmetry of the posterior distributions of es-

timators obtained using DP increase as the order of the moment

increases. Specifically, the distribution of µ shows little di↵erence

between DP and the other methods, and its shape remains close

to symmetry. On the other hand, the distributions of � and  ex-

hibit substantial di↵erences between DP and the other methods,

with the posterior distributions of estimators obtained using DP

being highly skewed and having long tails. Among the symmetric

distributions, the distributions obtained using BB, Bootstrap, and

EL have similar shapes. Whereas, the estimators obtained using

GMM have larger variances than the estimators obtained using

other methods. For this reason, the distributions of the estimators

using GMM have di↵erent shapes from that of the other methods.

We thought that the di↵erence between the posterior distribu-

tions obtained using DP and the distribution obtained using the

other methods was caused by the wrong choice of the base measure
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Figure 4.2: Distributions of µ, �, �,  for garden earthworm data

using g1 as a moment function.
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Figure 4.3: Distributions of µ, �, �,  for garden earthworm data

using g2 as a moment function.
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of DP. In order to confirm this thought, we compare the posterior

distributions of the estimators obtained using DP by setting the

base distributions to various distributions. As the base distribution

of DP, the Location-scale t-distribution with degrees of freedom

as 5 is used. In this setup, we use the scale parameter as 1 and the

location parameter as i
10 times (i = 0, 1, · · · , 20) the sample mean

of the data.

The posterior distributions of µ, �, �, and  obtained using DP

are given in Figure 4.4 and 4.5. For convenience, only the poste-

rior distributions where the location parameters of DP are i
2 times

(i = 0, 1, 2, 3, 4) the sample mean of the data is compared. From

these figures, it can be seen that the posterior distributions of pa-

rameters obtained using DP are heavily influenced by the center

of the base distribution. As the center of the base distribution ap-

proaches the sample mean of the data, the posterior distributions

obtained using DP become more symmetric, with shorter tails.

Further, the MAP estimators obtained using DP get closer to the

MME. Based on these results, it can be inferred that setting the

center of the base distribution of DP as the sample mean of the

data would lead to better results. Therefore, when estimating the

parameters of the moment condition models using DP, we suggest

choosing the base distribution of DP as t(r)(µ̂, ⌃̂) where µ̂ and

⌃̂ are the sample mean and the sample covariance of the data,

respectively.

We compare the estimators and the posterior distributions of

the estimators obtained using each method. In this case, the base
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Figure 4.4: Posterior distributions of µ,�, �, obtained through

DP for garden earthworm data using g1 as a moment function.
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Figure 4.5: Posterior distributions of µ,�, �, obtained through

DP for garden earthworm data using g2 as a moment function.
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distribution of DP is t(5)(µ̂, ⌃̂) where µ̂ and ⌃̂ are the sample

mean and the sample covariance of the data, respectively. At first,

we compare the estimators obtained using each method. The es-

timators are given in Table 4.2. It can be seen that the di↵er-

ence between the estimators obtained using DP and those of other

methods is greatly reduced. Second, we compare the distributions

of the estimators obtained using each method. The posterior dis-

tributions obtained using DP are similar to the distributions ob-

tained using BB, Bootstrap, and EL which are unskewed and have

short tails.
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Figure 4.6: Distributions of µ, �, �,  for garden earthworm data

using g1 as a moment function with base distribution of DP as

t(5)(µ̂, ⌃̂).
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Figure 4.7: Distributions of µ, �, �,  for garden earthworm data

using g2 as a moment function with base distribution of DP as

t(5)(µ̂, ⌃̂).
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Parameter

Function Method µ � � 

Sample 142.715 11.853 -2.179 5.857

g1 GMM 142.715 11.853 -2.179 5.857

g1 EL 142.715 11.853 -2.179 5.857

g1 Bootstrap 142.756 11.825 -2.149 5.527

g1 BB 142.726 11.802 -2.105 5.432

g1 DP 142.739 11.808 -2.126 5.486

g2 GMM 142.715 11.853 -2.179 5.857

g2 EL 142.715 11.853 -2.179 5.857

g2 Bootstrap 142.756 11.825 -2.149 5.527

g2 BB 142.716 11.766 -2.151 5.528

g2 DP 142.752 11.768 -2.138 5.564

Table 4.2: Estimators of µ,�, �, for garden earthworm data with

the base distribution of DP as t(5)(µ̂, ⌃̂).

We estimated the parameters of the moment condition models

using various methods and compared their values and distribu-

tions. The estimators obtained using each method had similar val-

ues and distributions, but it was not possible to determine which

method estimated the parameters better because the true values

of the parameters were not known. Therefore, we conduct a sim-

ulation study to compare the performance of each method.

The shape of the distribution of the data used in this simula-

tion study is set to be as similar as possible to the histogram of
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the garden earthworm data given in Figure 4.1. The true model of

the simulation data is as follows.

Xi
i.i.d.⇠

4X

j=1

�jN(µj ,�
2
j ), i = 1, · · · , 487

where � = ( 3
118 ,

7
118 ,

15
118 ,

93
118), µ = (105, 115, 136, 146),� = (20, 15, 10, 5).

We generate 100 simulation data sets from the true model. Each

simulation data set is one-dimensional data with 487 observations.

As in the analysis of garden earthworm data, we use BB, DP,

GMM, EL, and Bootstrap to estimate the parameters of the mo-

ment condition models and compare their performance using Mean

Squared Error (MSE). MSE of each method is given in Table 4.3.

Depending on the moments, there is a di↵erence in the perfor-

mance of the estimator. For µ, �, and �, GMM and EL showed

the lowest MSE, while for , BB and DP have the lowest MSE.

Among these, for µ and �, the MSE of each method did not di↵er

significantly. On the other hand, for � and , there were substan-

tial di↵erences in MSE between the competing methods, GMM

and EL, and the proposed methods, BB and DP. This seems to

have occurred due to the randomness that arose in the process of

generating the posterior samples of BB and DP, which are non-

parametric Bayesian methods. Therefore, when estimating the pa-

rameters of the moment condition models in just-identified cases,

it is di�cult to say which of the proposed methods, BB and DP,

and the competing methods, GMM, EL, and Bootstrap, show bet-

ter performance.
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Parameter

Function Method µ � � 

Sample 0.298 0.891 0.062 3.761

g1 GMM 0.298 0.891 0.062 3.761

g1 EL 0.298 0.891 0.062 3.761

g1 Bootstrap 0.304 0.911 0.063 3.857

g1 BB 0.310 0.957 0.067 3.530

g1 DP 0.306 0.961 0.067 3.541

g2 GMM 0.298 0.891 0.062 3.761

g2 EL 0.298 0.891 0.062 3.761

g2 Bootstrap 0.304 0.911 0.063 3.857

g2 BB 0.303 0.929 0.063 3.435

g2 DP 0.317 0.929 0.069 3.379

Table 4.3: MSE of µ,�, �, for simulation data set
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4.2 Example 2: IV regression

Instrumental Variables (IV) regression used in various fields such

as statistics, econometrics, and epidemiology is a statistical tech-

nique to estimate causal relationships between variables when there

is a possibility of endogeneity or omitted variable bias. Endogene-

ity occurs when one or more independent variables are correlated

with the error term in a regression model, which causes coe�cient

estimators such as Ordinary Least Squares (OLS) estimators to be

inconsistent and biased. IV regression solves this problem by in-

troducing instrumental variables which are uncorrelated with the

error term and correlated with the endogenous variable which is

correlated with the error term.

In this section, we would like to estimate the coe�cient of IV

regression using the moment condition model. Consider the linear

model

y = ↵+ �x+ �s+ ✏, E[✏] = 0. (4.5)

Our goal is to estimate the regression coe�cient ✓ = (↵,�, �).

However, in this model, the independent variable x is correlated

with the error term ✏, unlike the independent variable s. For this

reason, we need to use a method other than OLS to estimate

the parameter ✓. To solve this problem, we introduce instrument

variables z1 and z2 which are correlated with the independent

variable x and uncorrelated with the error term ✏. Therefore, the

regression coe�cient ✓ should satisfy the moment restrictions (4.6)

to (4.9)
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E[y � ↵� �x� �s] = 0 (4.6)

E[(y � ↵� �x� �s)z1] = 0 (4.7)

E[(y � ↵� �x� �s)z2] = 0 (4.8)

E[(y � ↵� �x� �s)s] = 0. (4.9)

Through the moment restrictions (4.6) to (4.9), we can derive

moment function g to be used in this example as follows.

g(X, ✓) =

0

BBBBBB@

y � ↵� �x� �s

(y � ↵� �x� �s)z1

(y � ↵� �x� �s)z2

(y � ↵� �x� �s)s

1

CCCCCCA

The simulation data set X = (x, y, s, z1, z2) is randomly gen-

erated from the true model. The true model of the model (4.5) is

as follows.

y = 1 + 0.5x+ 0.7s+ ✏

x = z1 + z2 + s+ u

zj
iid⇠ N(0.5, 12), j = 1, 2

s ⇠ Unif(0, 1)

The error terms (✏, u) are generated from a Gaussian copula whose

diagonal and o↵-diagonal entries of the covariance matrix are 1 and

0.7, respectively. The marginal distribution of ✏ is 1
2N(0.5, 0.52)+

1
2N(�0.5, 1.1182) and the marginal distribution of u is N(0, 12).

We set the number of observations to various values to estimate
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parameter ✓ under various conditions. The number of observations

of simulation data sets is n = 10, 25, 50, 100, 250, 500, 1000, 2000,

and 100 simulation data sets are generated from the true model for

each n. In addition, 100 prediction data sets are generated which

have 500 observations. We estimate ✓ for each simulation data set.

Using these estimators, we calculate MSE for each simulation data

set and predict the response variable y of the prediction data sets

using the estimated IV regression model.

For estimating the regression coe�cient ✓, various methods are

used, including the proposed methods BB and DP, Frequentist

methods GMM and EL, and the nonparametric Bayesian method

BETEL. MM and Bootstrap, the methods used in the previous

section, cannot be used in the over-identified moment condition

models, so they could not be used in this example. We use the

Location-scale t-distribution and a non-informative prior as the

prior of ✓. When estimating ✓ using BETEL, t(2.5)(0, 5
2) is used

as the prior of ✓, and when estimating ✓ using DP, t(2.5)(0, 5
2) and

a non-informative prior are used as the prior of ✓. Furthermore,

we set the concentration parameter and the base distribution of

DP as A = 0.5 and G0 = t(5)(µ̂, ⌃̂) where µ̂ and ⌃̂ are the sam-

ple mean and the sample covariance of the data, respectively. In

the process of estimating ✓ using nonparametric Bayesian meth-

ods BB, DP, and BETEL, we use MCMC to generate posterior

samples. The number of posterior samples to be generated was set

di↵erently according to the number of observations n in the data.

Specifically, when n = 10, we generate 1 million samples; when
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n = 25, we generate 100,000 samples, and when n is 50 or more,

we generate 10,000 samples. In each case, we remove the first 10%

of the posterior samples through burn-in.

We compare the performance of the methods used to estimate ✓

using MSE and bias. First, the performance of each method is com-

pared through MSE. The MSEs calculated using the estimators ob-

tained by each method are given in Table 4.4 and 4.5. The MSEs

for data with a small number of observations (n = 10, 25, 50, 100)

are given in Table 4.4, and the MSEs for data with a large number

of observations (n = 250, 500, 1000, 2000) are given in Table 4.5. In

each table, the prior of ✓ used in each method is written in paren-

theses right after BETEL and DP. That is when t(2.5)(0, 5
2) is used

as the prior, it is expressed as (t), and when the non-informative

prior is used, it is expressed as (non).

The comparison of the MSEs with small n is given in Table

4.4. Before comparing the MSEs of each method, it is important to

note that BETEL failed to estimate parameters in some data sets.

Specifically, for n = 10, it could not estimate the parameters of 25

data sets, and for n = 25, it failed to estimate the parameters of 1

data set. Therefore, we only used estimators of parameters using

the data set which can estimate the parameters to calculate the

MSEs of BETEL.

When n = 10, the di↵erence in MSEs according to the estimat-

ing methods is clearly visible. The competing methods, GMM, EL,

and BETEL, have large MSEs, while the proposed methods, BB

and DP, have relatively small MSEs. Among the competing meth-
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Method

n Parameter GMM EL BETEL(t) BB DP(non) DP(t)

10

↵ 1.776 7⇥ 1014 1.894 0.939 0.759 0.369

� 0.407 2⇥ 1014 1.169 0.176 0.111 0.076

� 6.410 6⇥ 1015 3.182 2.633 2.127 0.644

predict 2.999 1⇥ 1015 6.433 2.210 1.694 1.362

10(2)

↵ 1.598 1.251 1.894 0.829 0.767 0.372

� 0.365 0.235 1.169 0.128 0.110 0.076

� 4.254 3.096 3.182 2.456 2.137 0.651

predict 2.729 2.237 6.433 1.822 1.692 1.363

25

↵ 0.283 0.297 0.368 0.284 0.280 0.202

� 0.023 0.023 0.065 0.019 0.020 0.018

� 0.850 0.779 0.959 0.741 0.723 0.473

predict 1.158 1.189 1.470 1.148 1.149 1.102

50

↵ 0.107 0.103 0.108 0.106 0.102 0.089

� 0.013 0.014 0.016 0.013 0.013 0.012

� 0.341 0.317 0.337 0.309 0.308 0.244

predict 1.069 1.079 1.108 1.065 1.067 1.052

100

↵ 0.044 0.045 0.049 0.044 0.044 0.040

� 0.007 0.007 0.007 0.006 0.007 0.006

� 0.121 0.125 0.122 0.123 0.121 0.105

predict 1.028 1.033 1.048 1.027 1.031 1.022

Table 4.4: MSE of each method for n = 10, 25, 50, 100
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Method

n Parameter GMM EL BETEL(t) BB DP(non) DP(t)

250

↵ 0.027 0.026 0.029 0.026 0.027 0.025

� 0.003 0.003 0.003 0.002 0.003 0.003

� 0.058 0.058 0.061 0.058 0.058 0.056

predict 0.988 0.991 0.995 0.988 0.988 0.987

500

↵ 0.009 0.009 0.009 0.009 0.009 0.009

� 0.001 0.001 0.001 0.001 0.001 0.001

� 0.027 0.027 0.027 0.027 0.027 0.025

predict 0.983 0.984 0.983 0.982 0.983 0.981

1000

↵ 0.005 0.005 0.005 0.005 0.005 0.005

� 0.001 0.001 0.001 0.001 0.001 0.001

� 0.013 0.013 0.013 0.013 0.013 0.012

predict 0.977 0.977 0.975 0.977 0.977 0.976

2000

↵ 0.002 0.002 0.002 0.002 0.002 0.002

� 0.000 0.000 0.000 0.000 0.000 0.000

� 0.006 0.006 0.006 0.006 0.006 0.006

predict 0.977 0.977 0.976 0.977 0.977 0.976

Table 4.5: MSE of each method for n = 250, 500, 1000, 2000
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ods, the MSEs of EL are extremely large because the estimators

of the two data sets di↵er too much from the true values of the

parameters. Therefore, we excluded these two data sets and com-

pared the MSEs using the estimators obtained from the remaining

98 data sets, denoted in row n = 10(2). In this case, BETEL had no

di↵erences in MSE, as it was unable to estimate parameters from

those two data sets from the beginning. Even with the remaining

98 data sets, the MSEs of BB and DP are still lower than the MSEs

of GMM, EL, and BETEL. An interesting observation is that the

MSEs of EL are greatly reduced and that of GMM and BB are

slightly decreased. In contrast, the MSEs of DP hardly changed

and are still smaller than that of the other methods. Therefore,

it can be said that DP estimates parameters relatively well com-

pared to other methods even for data with fewer observations and

large error terms.

When n = 25, the MSEs of all methods decreased. In this case,

the proposed methods, BB and DP, still outperform the compet-

ing methods, GMM, EL, and BETEL, in estimating ✓. However,

compared to n = 10, the MSEs between the methods are substan-

tially reduced. When n = 50 and n = 100, the di↵erences dimin-

ish further, and no significant di↵erences are observed among the

methods. Additionally, comparing the MSEs of DP with di↵erent

prior, since the true values of ↵, �, and � are close to zero, es-

timators obtained using t(2.5)(0, 5
2) as the prior outperforms the

estimators obtained using a non-informative prior.

The comparison of the MSEs with large n is given in Table
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4.5. In these cases, all methods have similar and low MSEs. Con-

sequently, if n is su�ciently large, there is no significant di↵erence

in the estimators according to the methods, and all methods esti-

mate parameters well.

Based on the comparison of MSE for each method, it can be

concluded that the proposed methods, BB and DP, outperformed

the competing methods, GMM, EL, and BETEL, in parameter es-

timation. When estimating parameters for data with a small num-

ber of observations, there were notable performance di↵erences

among the methods, but as the number of observations increased,

these di↵erences diminished rapidly. After reaching a certain level

of sample size, there were no significant di↵erences in performance

among the estimation methods. Among the proposed methods, the

MSEs of DP are lower than that of BB since the base distribution

of DP reflected the information of the data. Additionally, estima-

tors obtained using t(2.5)(0, 5
2) as the prior resulted in lower MSE

compared to using a non-informative prior, since the true values

of the parameters are close to zero in each case.

Next, we compare the performance of each method in more de-

tail using the biases for each data set. Biases are compared using

the estimators of the data sets with n = 10 because the di↵erence

in MSEs between the methods was the largest when n = 10. Since

comparing the biases of all methods simultaneously may not be

visually clear, we proceed by iteratively comparing the biases of

the two methods. Specifically, DP with a non-informative prior,

one of the proposed methods, and the other methods, GMM, EL,
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BETEL, and BB, are sequentially compared. The results of com-

paring the biases of each method are given in Figures 4.8 to 4.12.

In each figure, the x-axis represents the index of the simulation

data set, and the y-axis represents the absolute values of the bi-

ases. The red dots indicate the biases of DP, and the blue dots

represent the biases of the other methods.

A comparison of the biases of DP and GMM is given in Figure

4.8. It can be seen that the biases of GMM are greater than those

of DP in most data sets. The biases of GMM are large in some

data sets, while the biases of DP are close to zero in most data

sets. The frequency of the large biases of GMM is much higher

than that of DP.

A comparison of the biases of DP and EL is given in Figure 4.9

and 4.10. At first, we tried to compare the biases of DP and EL

using all data sets. However, as shown in Figure 4.9, the biases of

EL are extremely large in some data sets, making it impossible to

compare the biases. Therefore, we compare the biases of DP and

EL using only 98 data sets, except for the two data sets where

the biases of EL are extremely large. From Figure 4.10, we can

conclude that the result of comparing the biases of DP and EL

is similar to the comparison of the biases of DP and GMM. The

biases of EL are greater than that of DP in most data sets, and

the biases of EL are large in some data sets, while the biases of

DP are close to zero in most data sets. The frequency of the large

biases of EL is much higher than that of DP.

A comparison of the biases of DP and BETEL is given in Figure
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4.11. We compare the biases of 75 data sets in which BETEL can

estimate the parameter ✓. The biases of BETEL are larger than

those of DP in most data sets. The biases of BETEL are large in

many data sets, while the biases of DP are close to zero in most

data sets. The frequency of the large biases of BETEL is much

higher than that of GMM and EL as well as DP.

In addition, we compare the two proposed methods, BB and

DP. A comparison of the biases of DP and BB is given in Figure

4.12. The biases of the two proposed methods are similar in most

data sets except for some data sets. In these data sets, the biases

of BB are greater than the biases of DP, but this frequency is low.

Based on the comparison of biases, it can be seen that the

proposed methods, DP and BB, perform better in estimating the

parameters compared to the competing methods, GMM, EL, and

BETEL. The biases of DP are lower than GMM, EL, and BETEL

in most data sets. Furthermore, the frequency of large biases of DP

is much lower than that of GMM, EL, and BETEL. As a result of

comparing the biases of DP and BB, the two methods have similar

biases in most of the data.

In this section, we estimated the coe�cients of the IV regres-

sion models using various moment condition model estimation

methods. The proposed methods, BB and DP, performed better

than the competing methods, GMM, EL, and BETEL. While there

were no significant di↵erences in performance among the methods

when n was large, substantial di↵erences emerged when n was

small. Therefore, we can conclude that when estimating the pa-
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rameters of the moment condition models in over-identified cases,

the proposed methods show better performance than the compet-

ing methods. Among the proposed methods, DP showed slightly

better performance than BB. This is considered to be because the

base distribution of DP reflected the information of the data.

Figure 4.8: Bias of DP (red) and GMM (blue) n = 10: the bias of

↵ (left), the bias of � (center), the bias of � (right).

Figure 4.9: Bias of DP (red) and EL (blue) with n = 10 (using

100 data sets): the bias of ↵ (left), the bias of � (center), the bias

of � (right).
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Figure 4.10: Bias of DP (red) and EL (blue) with n = 10 (using

98 data sets): the bias of ↵ (left), the bias of � (center), the bias

of � (right).

Figure 4.11: Bias of DP (red) and BETEL (blue) with n = 10: the

bias of ↵ (left), the bias of � (center), the bias of � (right).

Figure 4.12: Bias of DP (red) and BB (blue) with n = 10: the bias

of ↵ (left), the bias of � (center), the bias of � (right).
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Chapter 5

Conclusion

In this thesis, we propose two nonparametric Bayesian methods,

the Bayesian bootstrap and the constrained Dirichlet process, to

estimate the parameters of the moment condition models. Several

Frequentist methods such as GMM, EL, ET, and ETEL have been

proposed as methods for estimating the moment condition models.

However, little research has been conducted on the moment con-

dition models using the nonparametric Bayesian methods because

the moment condition constrains the parameter space, making it

di�cult to calculate the posterior distribution. We solve this prob-

lem by obtaining the posterior samples using constrained Hamil-

tonian Monte Carlo. When updating the posterior samples in the

second step of the constrained Hamiltonian Monte Carlo, we used

the Shake algorithm.

Through various numerical studies, we estimated the moment

condition models using the proposed methods and compared them
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with the competing methods such as GMM, EL, and Bootstrap

which are the Frequentist methods, and BETEL which is a non-

parametric Bayesian method. In just-identified models, there was

no significant di↵erence in performance between the proposed meth-

ods and the competing methods. It is judged that the small amount

of di↵erence that exists in estimators is caused by the randomness

of the posterior samples of the proposed methods obtained us-

ing the constrained Hamiltonian Monte Carlo. In over-identified

models, the performance of the proposed methods is much better

than that of the competing methods. While there were no signifi-

cant di↵erences when n was large, substantial di↵erences emerged

when n was small.

However, the estimators and the posterior distributions ob-

tained using DP were a↵ected by the form of the base distribution.

As the center of the base distribution approaches the sample mean

of the data, the posterior distributions obtained using DP become

more symmetric, with shorter tails. Further, the MAP estimators

obtained using DP get closer to the true values of the parame-

ters. Therefore, we suggest using the base distribution of DP as a

Location-scale t-distribution whose location parameter and scale

parameter are the sample mean and the sample covariance of the

data, respectively. In this case, DP estimates parameters slightly

better than BB because the base distribution of DP reflects the

information of the data.

We suggest estimating the parameters of the moment condi-

tion models in two ways depending on the situation. If we have
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prior information about the parameters, we suggest using DP for

estimating the parameters of the moment condition models be-

cause the posterior distribution obtained using BB cannot reflect

the prior of parameters. If we do not have prior information about

the parameters, we suggest estimating parameters using either BB

or DP, depending on the subjectivity of the analyst.
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