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Abstract

Functional data refers to multivariate data with an ordering on the dimensions.

In dealing with such data, it is more effective to apply methods that consider

the high dimensionality and inter-variable correlations characteristic of func-

tional data, rather than conventional multivariate analysis approaches. FPCA,

as a method of Functional Data Analysis (FDA), is a principal component anal-

ysis technique specifically tailored for functional data. It considers the order of

variables and the continuity of data, making it an effective approach for ana-

lyzing functional datasets. In this thesis, we will compare the performance of

several machine learning models for solving the binary classification problem

on three different functional datasets. This comparison will shed light on the

effectiveness of machine learning models and the application of FPCA when

addressing binary classification problems with functional data.

Keywords: Classification, Functional Data Analysis, Functional Principal Com-

ponent Analysis

Student Number: 2021-22845
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Chapter 1

Introduction

Functional data is defined as “multivariate data with an ordering on the di-

mensions”[10]. It refers to data in the form of curves represented by functions

on a continuum, such as time, frequency, or wavelength. Due to the inherent

high-dimensionality of functional data, which can approach infinity, there are

typically fewer observations than the number of observed time points. Addi-

tionally, considering the measurement process, it is evident that there are high

correlations between variables.

Therefore, applying traditional multivariate analysis methods poses chal-

lenges, and Functional Data Analysis (FDA) becomes necessary for analyzing

functional data. Functional Principal Component Analysis (FPCA) is a method

that applies PCA to functional data and is one of the techniques in FDA. Un-

like conventional PCA, FPCA considers the order between variables and calcu-

lates principal components that account for the variations in functional data.

Moreover, FPCA takes into account the continuity of data collected discretely,

making it a more effective analysis method. FPCA has found extensive appli-
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cations in diverse domains, such as finance and medical research. Moreover, in

recent times, it has also been used as a method for feature extraction in image

and video analysis.

In this thesis, we will address the binary classification problem with func-

tional data using various machine learning algorithms. Next, we will compare

the performance of Logistic Regression, Random Forest, XGBoost, and Fused

Lasso models for functional data classification. Finally, we will apply FPCA to

summarize the data and investigate how the performance of the three models

‘Logistic Regression, Random Forest, and XGBoost’ changes with the reduced

data, excluding Fused Lasso, which inherently considers the order of adjacent

variables and is fitted with the original data. We will conduct this analysis on

three distinct datasets: Sleeping Energy Expenditure (SEE) [9], Earthquake,

and Strawberry data[1], and compare the results to draw meaningful conclu-

sions.

Chapter 2 explains the models used to solve the classification problem.

Moving on to Chapter 3, we provide the analysis results for each of the three

datasets. Chapter 4 provides the conclusions drawn from our study and the

appendix includes the R and Python code utilized in the analysis.
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Chapter 2

Methodology

2.1 Logistic Regression

Logistic regression is a commonly used model for solving binary classification

problems. For a binary response variable y ∈ {0, 1}, we can assume that

yi
ind∼ B(n, pi) for i = 1, 2, · · · , n (2.1)

where pi ∈ [0, 1]

The logit parameter λ is defined as

λ = log
(

p

1− p

)
= logit(p) (2.2)

with λ increasing from −∞ to ∞ as p increases from 0 to 1. For a k-dimensional

explanatory variable x ∈ Rk, logistic regression model can be described by the

following equation:

λ(x) = logit(p(x)) = β0 + βTx, β ∈ Rk (2.3)
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and it equals to

p(x) = eβ0+βTx

1 + eβ0+βTx . (2.4)

In this model, the logit function is called a ‘link function’ which models

the probability of the event as a function of x. There is an advantage of using

logit transformation that λ isn’ t restricted to the range [0, 1], ensuring that the

above model never approaches limited territory.

We can obtain β0 and β using a maximum likelihood estimation. From

(2.1), a log likelihood function is defined as

logL(y; x,β0,β) =
n∑

i=1

[
pi log yi + (1− yi) log(1− pi)

]
(2.5)

where y = (y1, y2, · · · , yn) and β0, β are calculated by optimization methods

like iteratively reweighted least squares (IRLS) as follows:

(β̂0, β̂) = arg max
β0,β

n∑

i=1

[
pi log yi + (1− yi) log(1− pi)

]
(2.6)

where pi = p(xi) =
exp(β0+βTxi)

1+exp(β0+βTxi)

2.2 Random Forest

Breiman proposed a bootstrap aggregating(bagging)[5] that learns several de-

cision trees with a bootstrap data and returns the result by aggregating the

output of trees. Bagging aims to train different individual decision trees. But

it has a limitation: if there are important features that can divide the data well,

they can be repeatedly used in most of the decision trees.

Afterward, he suggested a more powerful model, random forest[6], which

decreases the correlation of each tree and increases the strength of individual

trees. Random forest uses some random elements to solve the problem. The
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method selects the variables from a part of the whole feature group which is

randomly chosen. If there are p features in a data set, the group of candidates

typically consists of m =
√
p or m = p/3 number of features. This solution

helps the individual trees not to be too correlated and prevents overfitting.

The algorithm[8] for training the random forest model is below.

Algorithm 1 Random Forest for Binary Classification

1. Given training data set d = (X, y). Fix m ≤ p and the number of trees

B.

2. For b = 1, 2, ...,B, do the following.

(a) Create a bootstrap version of the training data d ∗
b , by randomly

sampling n observations with replacement n.

(b) Select m candidate variables of the p features at random.

(c) Grow a maximal-depth tree r̂b(x) using the data in d ∗
b .

3. For binary classification, perform a majority voting. Count the number

of trees and output k which has a larger value between N0 and N1

Nk = (the number of trees predicting class k), k = 0, 1

And the ensemble method has the disadvantage of being difficult to inter-

pret. Random forest clears it up with variable importance using the measures

like the gini index[4], permutation importance[2] etc.
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2.3 Fused Lasso

Tibshirani proposed a regularized regression ‘least absolute shrinkage and se-

lection operator’ called lasso[11].

A standard linear model is

yi =
∑

j

xijβj + εi (2.7)

where εi ∼ (0,σ2), yj ∈ R and xi = (xi1, · · · , xip). The predictors are assumed

to have a mean of 0 and a variance of 1 and the targets yi have a mean 0.

Lasso finds the solution β̂ = (β̂1, β̂2, · · · , β̂p) satisfying the conditions below

β̂ = argmin





∑

i



yi
∑

j

xijβj




2

 subject to
∑

j

|βj | ≤ s (2.8)

where the bound s is a tuning parameter.

Unlike other regularized regression models such as ridge and principal com-

ponent regression, lasso chooses some important values and drops the others

giving 0 to the coefficients. It has the effect of variable selection and helps

to interpret the fitted model. And it works well for high dimensional settings

where p is large.

A weak point of the lasso is that it overlooks the ordering of the features.

Tibshirani presented the fused lasso improving the lasso[12]. It has an addi-

tional penalty term that causes the sparsity in differences between the coeffi-

cients. Specifically, it encourages the piecewise constant solution

β̂ = argmin
β





∑

i



yi
∑

j

xijβj




2



subject to
∑

j

|βj | ≤ s1 and
p∑

j=2

|βj − βj−1| ≤ s2.

(2.9)

Fused lasso particularly assumes the case where p >> n.
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2.4 XGBoost

XGBoost, short for ‘extreme gradient boosting’, was proposed by Tianqi Chen

and Carlos Guestrin[7]. It is a faster and more powerful method that improves

the shortcomings of previous algorithms.

Boosting is an ensemble technique that makes a strong classifier using a

number of weak classifiers. A tree model is usually used as the weak classifier

and the boosting algorithm sequentially learns each weak tree. We use the weak

trees learned up to previous steps to fit the next one.

A tree ensemble model uses the summation of K trees to predict the result.

For a data set D = {(xi, yi)} (|D| = n, xi ∈ Rm. yi ∈ R) with n observations

and m features, the model is expressed by

ŷi = φ(xi) =
K∑

k=1

fk(xi), fk ∈ F (2.10)

where F = {f(x) = wq(x)}(q : Rm → T,w ∈ RT ) is the space of basic tree

model.

XGBoost uses the following regularized objective function and it helps to fix

the over-fitting problem in the former methods[7]

L(t)(φ) =
∑

i

l(yi, ŷ
(t−1)
i + ft(xi)) + Ω(ft)

where Ω(ft) = γT +
1

2
λ||w||2.

(2.11)

l is a differentiable convex loss function that measures the difference between

the prediction and the target. And the Ω imposes a penalty on the complexity

of the tree model. It prevents the tree model to have complex structures by

controlling the number of leaf nodes, T . And it also shrinks the weight of each

leaf node to avoid the over-fitting problem. When the penalty term goes to

zero, the objective is the same as the existing gradient tree boosting.
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However, the objective (2.11) cannot be optimized using existing optimiza-

tion methods in Euclidean space. The second-order approximation is a solution

to the optimization problem

L(t) (
n∑

i=1

[
l(yi, ŷ

(t−1)
i ) + gift(xi) +

1

2
hif

2
t (xi)

]
+ Ω(ft) (2.12)

where gi = ∂ŷ(t−1) l(yi, ŷ
(t−1)
i ) and hi = ∂2

ŷ(t−1) l(yi, ŷ
(t−1)
i ) are the first and

second derivative of the loss function.

We can take a simpler objective by deleting the constant term which leads

to

L̃(t) =
n∑

i=1

[
gift(xi) +

1

2
hif

2
t (xi)

]
+ Ω(ft). (2.13)

Set Ij = {i|q(xi) = j} as the observation set of the leaf j. Considering the

structure of the trees, the equation (2.13) can be changed by

L̃(t) =
n∑

i=1

[
gift(xi) +

1

2
hif

2
t (xi)

]
+ γT +

1

2
λ

T∑

j=1

w2
j

=
T∑

j=1



(
∑

i∈Ij

gi)wj +
1

2
(
∑

i∈Ij

hi + λ)w2
j



+ γT.

(2.14)

For the fixed tree structure q(x), we can take the optimal weight w∗
j and

calculate the optimal value of L̃(t) which are

w∗
j = −

∑
i∈Ij gi∑
i∈Ij +λ

, (2.15)

L̃(t)(q) = −1

2

T∑

j=1

(
∑

i∈Ij gi)
2

∑
i∈Ij hi + λ

+ γT. (2.16)

All the possible candidates for the tree structure q cannot be considered.

So we can use a greedy algorithm that iteratively adds branches to the tree

starting from a single leaf node. Then we can use the equation (2.7) as the

scoring function to evaluate the quality of q.

8



Let IL, IR be the instance sets of the left and right leaf nodes after the split.

Assuming I = IL + IR, the loss reduction after the split is

Lsplit =
1

2

[
(
∑

i∈IL gi)2∑
i∈IL hi + λ

+
(
∑

i∈IR gi)2∑
i∈IR hi + λ

−
(
∑

i∈I gi)
2

∑
i∈I hi + λ

]
− γ (2.17)

and we assess the split candidates.

In addition, XGBoost fits the more accurate model in a shorter time using

a few split finding algorithms and system design for parallel computing.

2.5 Functional Principal Component Analysis

Now we think about principal component analysis (PCA) for multivariate sit-

uations. In this case, we select the weights emphasizing the variation which

are represented in the data. Then we define the principal components analy-

sis through a stepwise procedure and it chooses the sets of normalized weights

maximizing the variation in the fi’s below.

1. Find the weights ξ1 = (ξ11, ξ21, · · · , ξp1)′ for the linear combinations

fi1 =
∑

j

ξj1xij = ξ′1xi

which have the largest mean square N−1∑
i f

2
i1 subject to

∑

j

ξ2j1 = ||ξ1||2 = 1.

2. Implement the second and next steps up to the number of p. On the

m step, calculate a new weight vector ξm = (ξ1m, ξ2m, · · · , ξpm) and a

new value fim = ξ′mxi. And the fim has maximum mean square which is

subject to the ||ξm||2 and the additional m− 1 constraints
∑

j

ξjkξjm = ξ′kξm = 0, k < m.
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Let’s see the first step of the procedure. We find the most important vari-

ation in the variables by maximizing the mean square. And the constraint on

the weights helps the problem be well defined. The values of the mean squares

could be larger and larger without the unit sum of squares constraint.

In the following steps, we also look for the most important modes of varia-

tion. And we take the weights which are orthogonal to those found previously.

The linear combinations fim are called principal component scores. And

they describe what the components mean in terms of representing the variation

in the data.

For a general case, let the matrix X ∈ RN×p and ξ ∈ Rp. We find the ξ

that satisfies,

max
ξ′ξ=1

N−1ξ′X′Xξ.

And it can be rewritten by using the sample variance-covariance matrix V =

N−1X′X,

max
ξ′ξ=1

ξ′Vξ.

Finally, the problem of finding ξ is equivalent to the problem of finding ξ

with largest eigen value ρ for

Vξ = ρξ.

Now, let’s see how PCA works for the functional data. For the functions

ξ(s) and x(s), we can combine them by integrating over s to define the inner

product, ∫
ξx =

∫
ξ(s)x(s)ds.

And then, we can express the principal component scores matching the

weight ξ are

fi =

∫
ξxi =

∫
ξ(s)xi(s)ds.

10



At first, we choose the weight function ξ1(s) maximizing N−1∑
i f

2
i1. And

it is equivalent to maximizing N−1∑
i(
∫
ξ1xi)2. Additionally, it has the unit

sum of squares constraint
∫
ξ1(s)2ds. ξi would be selected similarly for i <= p.

As for the multivariate case, ξm have to satisfy the orthogonality condition,
∫

ξkξm = 0, k < m.

The weight function ξ(s) can be found in the way for multivariate cases.

Let the covariance function v(s, t),

v(s, t) = N−1
N∑

i=1

xi(s)xi(t).

Now we can say ξ(s) are the functions that satisfy
∫

v(s, t)ξ(t)dt = ρξ(s). (2.18)

The left side of the above equation is integral transform V of the weight

function ξ defined by

V ξ =

∫
v(·, t)ξ(t)dt

and the equation (2.12) can be represented below

V ξ = ρξ

which looks the same as the multivariate case.

Finally, we are going to use the principal component scores fi as the new

variables from the original data.
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Chapter 3

Application

In this chapter, we use three real datasets to compare the accuracy of our

proposed methods. We are going to analyze Sleeping Energy Expenditure(SEE)

dataset, strawberry, and earthquake datasets. For each dataset, we compare

the method in various conditions.

3.1 SEE dataset

SEE of participants, 109 children, and adolescents whose ages range from 5 to

18, were measured by every minute. Energy expenditure was guessed from a

measured respiratory exchange of carbon dioxide for oxygen. And the topic

of sufficient sleep is very important during childhood for metabolic health and

physical and cognitive development. There are 63 boys and 46 girls and the 3

observations are deleted due to insufficient SEE data.

We want to classify the two groups, obese and non-obese, based on Body

Mass Index(BMI). A person having a BMI larger than the 95th percentile is

12



classified as obese. In SEE the dataset, there are 44 obese and 62 non-obese

participants in total 106. SEE was measured every minute from the starting

points of sleep for participants. We have the data for T = 405 time points for

each participant. The starting point was defined by monitoring activity and

heart rate.

Figure 3.1: Plot of all observations and their pointwise means for obese and

non-obese classes.

In Figure 3.1, there is the visualization of SEE data for all the participants

and the point-wise mean for two groups. We can find the non-obese group has

higher fluctuations than obese group. But the higher fluctuation means that

there is larger noise, and it makes our classification tasks difficult.

We used functional principal component analysis(FPCA) for dimension re-
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duction of functional data. And we adopt Logistic Regression, Random Forest,

and XGBoost for both the original dataset and the reduced one. Considering

the characteristics of the fused lasso, we use original SEE data for it. Accuracy

was computed by 10-fold cross validation with an average of 200 iterations.

Table 3.1 is the result of the analysis.

Model Full FPCA∗ FPCA†

Logistic Reg 0.5945 0.6327 0.6236

Random Forest 0.6101 0.5965 0.5982

XGBoost 0.6120 0.6102 0.6078

Fused Lasso 0.5714 - -

Table 3.1: Classification accuracy for SEE based on each model.
∗ monomial basis, † bspline basis

In the SEE dataset, logistic regression achieves a higher accuracy when using

the data with FPCA applied. With the monomial basis in FPCA, the highest

score recorded is 63.27%. In contrast, for Random Forest and XGBoost, using

the original data without applying FPCA results in better performance. We can

see the logistic regression model with FPCA is better than the other machine

learning models in this case. And fused lasso shows the lowest accuracy in this

case.
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3.2 Earthquake dataset

Earthquake data consists of measurement data for major earthquakes from 1967

to 2003, taken from Northern California Earthquake Data Center. Each data

is an averaged reading for one hour. It defines a major event as any reading of

over 5 on the Rictor scale

Figure 3.2: Plot of all observations and their pointwise means for positive and

negative classes.

The objective is to predict ‘whether a major event is about to occur based

on the most recent readings in the surrounding area’[1]. Major events are often

followed by aftershocks. Positive case means ‘one where a major event is not

preceded by another major event for at least 512 hours’ and the negative case

15



is considered as ‘instances where there is a reading below 4 that is preceded by

at least 20 readings in the previous 512 hours that are non-zero’[1].

Training and testing data set consist of each 322 and 139 observations.

Training data has 58 positive cases and 264 negative and testing has 35, 104

each. All the samples are measured at T = 512 time points. And as in Figure

3.2, we can see a larger fluctuation in positive cases than in negetive.

Model Full FPCA∗ FPCA†

Logistic Reg 0.7645 0.8229 0.8229

Random Forest 0.8312 0.7593 0.7343

XGBoost 0.8468 0.6812 0.7406

Fused Lasso 0.7396 - -

Table 3.2: Classification accuracy for Earthquake based on each model.
∗ monomial basis, † bspline basis

In the earthquake dataset, logistic regression also shows performance im-

provment when applying FPCA. Additionally, Random Forest and XGBoost

recorded better accuracy when using the original data, with XGBoost achieving

the highest accuracy of 84.68%. On the other hand, Fused lasso exhibited the

lowest performance compared to other methods.

3.3 Strawberry dataset

A food spectrograph is a method used for classifying food types to ensure food

safety and quality assurance. The Strawberry dataset contains measurements
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obtained from performing spectroscopy on strawberry purees. Using the spec-

troscopy results, we can classify whether the composition of the puree is straw-

berry or non-strawberry. The objective is to classify the authenticity of the

purees based on this data.

Figure 3.3: Plot of all observations and their pointwise means for strawberry

and non-strawberry classes.

As measured in T = 235 time points, training data consists of 219 straw-

berry class and 394 non-strawberry class. For testing data, we have 370 obser-

vations which are 132 strawberries and 238 non-strawberries. There is a plot

in Figure 3.3, we can see the mean functions for each class of purees. Both

classes show a similar trend in their mean values, but it can be observed that

non-strawberry exhibits larger fluctuations.
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Model Full FPCA∗ FPCA†

Logistic Reg 0.9167 0.9392 0.9252

Random Forest 0.9307 0.8087 0.8153

XGBoost 0.9516 0.8431 0.8478

Fused Lasso 0.9032 - -

Table 3.3: Classification accuracy for Strawberry based on each model.
∗ monomial basis, † bspline basis

Similarly, when using data with FPCA applied, Logistic Regression showed

an improvement in performance. Random Forest and XGBoost performed bet-

ter when using the original data, with XGBoost achieving the highest accuracy

of 95.16%. Fused lasso exhibited better performance than FPCA-applied Ran-

dom Forest and XGBoost, but it still showed the lowest performance among all

four models.
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Chapter 4

Conclusion

The binary classification problem with functional data was solved using sev-

eral machine learning methods, along with the application of Functional Prin-

cipal Component Analysis(FPCA). Functional data is characterized by high

dimensionality and strong correlations between variables, making it challeng-

ing to handle using simple multivariate approaches. FPCA was employed to

effectively reduce the dimensionality of the functional data, allowing it to be

processed more efficiently. After applying FPCA to summarize the functional

data into lower dimensions, Logistic Regression, Random Forest, and XGBoost

were fitted for classification. On the other hand, the fused lasso method, which

takes into account the sequential order of adjacent variables, was fitted with

the original data.

In particular, applying FPCA to Logistic Regression proved to be effective.

When utilizing data with FPCA applied, the accuracy consistently increased

compared to the non-FPCA preprocessed data. Furthermore, the performance

either surpassed or remained on par with other machine learning models. We
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can think that FPCA successfully summarized the functional data into a lower-

dimensional representation. However, for XGBoost and Random Forest, using

the original data resulted in better performance. This can be attributed to

the characteristic of these models as ensemble techniques, where they combine

results from multiple independent individual trees. As a result, they have a

relative robustness to correlations between variables.

In reality, a multitude of high-dimensional functional datasets exists. There

are some examples such as time series data and image data and these types of

data are often subject to functional data analysis. Moreover, for data accu-

mulating based on continuous parameters, such as time, we can also apply

functional data analysis to it. In subsequent research, besides FPCA, alter-

native approaches like the Generalized Functional Linear Model and Dynamic

Time Warping will be explored and applied to enhance the performance of func-

tional data analysis models. This pursuit aims to advance the understanding

of methods for elevating the efficacy of modeling when dealing with functional

datasets.
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Appendix A

Codes

A.1 Python Code for Random Forest

1 from sklearn.ensemble import RandomForestClassifier

2

3 import skfda

4 from skfda.preprocessing.dim_reduction import FPCA

5 from skfda.representation.grid import FDataGrid

6 from skfda.representation.basis import BSpline, Monomial

7

8 ## Full model

9 n_estimators = [200, 300, 400]

10 max_depth = [6, 8, 10, 12]

11 min_samples_leaf = [8,12,18]

12 min_samples_split = list(range(30, 50, 2))

13

14 # repeat M

15 acc_mean_rf_full_SEE = []

16 for i in tqdm(range(M)):

21



17 rf_clf = RandomForestClassifier(

18 random_state = seed * i,

19 n_jobs = -1,

20 n_estimators=random.choice(n_estimators),

21 max_depth=random.choice(max_depth),

22 min_samples_leaf=random.choice(min_samples_leaf),

23 min_samples_split=random.choice(min_samples_split)

24 )

25 scores = cross_val_score(rf_clf, X, y, cv = 10)

26 acc_mean_rf_full_SEE.append(scores.mean())

27

28

29 ## FPCA (Monomial basis)

30 n_components = 5

31 n_basis = 5

32

33 # X to grid-data

34 X_mat = X.to_numpy()

35 grid_points = np.arange(1, X_mat.shape[1]+1)

36 fd = FDataGrid(X_mat, grid_points)

37 fd_M = fd.to_basis(Monomial(n_basis = n_basis))

38

39 F = FPCA(n_components)

40 pc_M_SEE = F.fit(fd_M) # compute principal components

41 pc_score_M_SEE = pc_M_SEE.transform(fd_M) # and their scores

42 X_fpca_M = pd.DataFrame(pc_score_M_SEE)

43

44 n_estimators = [100, 200, 300]

45 max_depth = [3,5,7]

46 min_samples_leaf = [6,8,10,12,14]

47 min_samples_split = [4, 6, 8,16]

48

49 # repeat M
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50 acc_mean_rf_monomial_SEE = []

51 for i in tqdm(range(M)):

52 rf_clf = RandomForestClassifier(

53 random_state = seed * i,

54 n_jobs = -1,

55 n_estimators=random.choice(n_estimators),

56 max_depth=random.choice(max_depth),

57 min_samples_leaf=random.choice(min_samples_leaf),

58 min_samples_split=random.choice(min_samples_split)

59 )

60 scores = cross_val_score(rf_clf, X_fpca_M, y, cv = 10)

61 acc_mean_rf_monomial_SEE.append(scores.mean())

62

63 ## FPCA (Bspline basis)

64 n_components = 5

65 n_basis = 5

66

67 # X to grid-data

68 X_mat = X.to_numpy()

69 grid_points = np.arange(1, X_mat.shape[1]+1)

70

71 fd = FDataGrid(X_mat, grid_points)

72 fd_B = fd.to_basis(BSpline(n_basis = n_basis))

73

74 F = FPCA(n_components)

75 pc_B_SEE = F.fit(fd_B) # compute principal components

76 pc_score_B_SEE = pc_B_SEE.transform(fd_B) # and their scores

77 X_fpca_B = pd.DataFrame(pc_score_B_SEE)

78

79 # repeat M

80 acc_mean_rf_bspline_SEE = []

81 for i in tqdm(range(M)):

82 rf_clf = RandomForestClassifier(
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83 random_state = seed * i,

84 n_jobs = -1,

85 n_estimators=random.choice(n_estimators),

86 max_depth=random.choice(max_depth),

87 min_samples_leaf=random.choice(min_samples_leaf),

88 min_samples_split=random.choice(min_samples_split)

89 )

90 scores = cross_val_score(rf_clf, X_fpca_M, y, cv = 10)

91 acc_mean_rf_bspline_SEE.append(scores.mean())

A.2 Python Code for XGBoost

1 from xgboost import XGBClassifier

2

3 import skfda

4 from skfda.preprocessing.dim_reduction import FPCA

5 from skfda.representation.grid import FDataGrid

6 from skfda.representation.basis import BSpline, Monomial

7

8 ## Full Model

9 n_estimators = [200, 250, 300]

10 max_depth = [3,5,7]

11

12 # repeat M

13 acc_mean_xgb_full_SEE = []

14 for i in tqdm(range(M)):

15 xgb_clf = XGBClassifier(random_state = seed * i,

16 n_jobs = -1,

17 learning_rate = 0.1,

18 n_estimators = random.choice(n_estimators),

19 max_depth = random.choice(max_depth))

20 scores = cross_val_score(xgb_clf, X, y, cv = 10)

21 acc_mean_xgb_full_SEE.append(scores.mean())
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22

23

24 ## FPCA (Monomial basis)

25 X_fpca_M = pd.DataFrame(pc_score_M_SEE)

26

27 n_estimators = [100, 200, 300]

28 max_depth = [3,5,7]

29

30 # repeat M

31 acc_mean_xgb_monomial_SEE = []

32 for i in tqdm(range(M)):

33 xgb_clf = XGBClassifier(random_state = seed * i,

34 n_jobs = -1,

35 learning_rate = 0.1,

36 n_estimators = random.choice(n_estimators),

37 max_depth = random.choice(max_depth))

38 scores = cross_val_score(xgb_clf, X_fpca_M, y, cv = 10)

39 acc_mean_xgb_monomial_SEE.append(scores.mean())

40

41

42 ## FPCA (B-spline basis)

43 X_fpca_B = pd.DataFrame(pc_score_B_SEE)

44

45 n_estimators = [100, 200, 300]

46 max_depth = [3,5,7]

47

48 # repeat M

49 acc_mean_xgb_bspline_SEE = []

50 for i in tqdm(range(M)):

51 xgb_clf = XGBClassifier(random_state = seed * i,

52 n_jobs = -1,

53 learning_rate = 0.1,

54 n_estimators = random.choice(n_estimators),

25



55 max_depth = random.choice(max_depth))

56 scores = cross_val_score(xgb_clf, X_fpca_B, y, cv = 10)

57 acc_mean_xgb_bspline_SEE.append(scores.mean())

A.3 R Code for Classification based on Fused Lasso

1 # Packages

2 library(genlasso)

3 library(caret)

4

5 ### Fused lasso on a custom graph

6 n = nrow(data); p = ncol(data)-2

7 D = matrix(0, p-1, p)

8 for (i in 1:p-1) {

9 D[i,i] = 1

10 D[i,i+1] = -1

11 }

12

13 ### fused lasso with 10-fold cross validation

14 gamma = seq(0, .5, 0.1)

15 cutoff = seq(0.3, 0.7, 0.05)

16

17 best_F1 = 0

18 best_lambda = 0

19 best_gamma = 0

20 best_cutoff = 0

21 best_metrics = 0

22

23 k = 10 # k-fold

24 idx = createFolds(y, k=k, list=TRUE, returnTrain = FALSE)

25 updated = 0

26 for (i in 1:k) {

27 i = unlist(idx[i])

26



28 X_train <- as.matrix(X[-i,]); X_val <- as.matrix(X[i,])

29 y_train <- y[-i]; y_val <- y[i]

30

31 for (g in 1:length(gamma)) {

32 f = fusedlasso(y_train, X_train, D, gamma = gamma[g],

33 approx = FALSE, maxsteps = 1000, minlam = 0)

34 coef0 = coef(f, nlam=15)

35

36 for (l in 1:length(coef0$lambda)) {

37 pred = predict(f, lambda = coef0$lambda[l], Xnew = X_val)$fit

38 for (c in 1:length(cutoff)) {

39 pred_bin = ( (exp(pred) / (1 + exp(pred))) >= cutoff[c] )

40 metrics = confusionMatrix(

41 factor(pred_bin, levels = c("TRUE", "FALSE")),

42 factor(y_val == 1, levels = c("TRUE", "FALSE"))

43 )

44

45 F1 = metrics$byClass['F1']

46

47 if (F1 > best_F1) {

48 updated = updated + 1

49 best_F1 = F1

50 best_lambda = coef0$lambda[l]

51 best_gamma = gamma[g]

52 best_cutoff = cutoff[c]

53 best_metrics = metrics

54 }

55 }

56 }

57 }

58 }
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초록

함수형데이터는각차원의순서가있는다변량데이터를말한다. 함수형데이터

를다룰때는기존의다변량분석접근방식보다함수형데이터의고차원성과변

수간상관관계를고려하는방법을적용하면효과적이다. 함수형주성분분석은

함수형데이터분석의한방법으로서,변수의순서와데이터의연속성을고려하

여함수형데이터에적용할수있게고안된주성분분석방법이다. 이논문에서는

여러가지머신러닝모델을이용하여세가지의함수형데이터셋에대한이진

분류문제를해결하고각모형의성능을비교한다. 이를통해함수형데이터에

대한머신러닝모델의성능과함수형주성분분석의효과를확인한다.

주요어: 분류,함수형데이터분석,함수형주성분분석

학번: 2021-22845
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