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Abstract 

Background To predict, using deep learning, the first recurrence in patients with neovascular age‑related macular 
degeneration (nAMD) after three monthly loading injections of intravitreal anti‑vascular endothelial growth factor 
(anti‑VEGF).

Methods Optical coherence tomography (OCT) images were obtained at baseline and after the loading phase. The 
first recurrence was defined as the initial appearance of a new retinal hemorrhage or intra/subretinal fluid accumu‑
lation after the initial resolution of exudative changes after three loading injections. Standard U‑Net architecture 
was used to identify the three retinal fluid compartments, which include pigment epithelial detachment, subretinal 
fluid, and intraretinal fluid. To predict the first recurrence of nAMD, classification learning was conducted to deter‑
mine whether the first recurrence occurred within three months after the loading phase. The recurrence classification 
architecture was built using ResNet50. The model with retinal regions of interest of the entire region and fluid region 
on OCT at baseline and after the loading phase is presented.

Results A total of 1,444 eyes of 1,302 patients were included. The mean duration until the first recurrence 
after the loading phase was 8.20 ± 15.56 months. The recurrence classification system revealed that the model 
with the fluid region of OCT after the loading phase provided the highest classification performance, with an area 
under the receiver operating characteristic curve (AUC) of 0.725 ± 0.012. Heatmap analysis revealed that three patho‑
logical fluids, subsided choroidal neovascularization lesions, and hyperreflective foci were important areas for the first 
recurrence.
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Conclusions The deep learning algorithm allowed for the prediction of the first recurrence for three months 
after the loading phase with adequate feasibility. An automated prediction system may assist in establishing patient‑
specific treatment plans and the provision of individualized medical care for patients with nAMD.

Keywords Anti‑VEGF, Deep learning, Neovascular age‑related macular degeneration, Optical coherence tomography, 
Recurrence prediction

Background
Neovascular age-related macular degeneration (nAMD) 
is a leading cause of blindness in elderly people [1, 2], 
and the advent of anti-vascular endothelial growth fac-
tor (anti-VEGF) therapy has revolutionized the treatment 
of nAMD [3–5]. Treatment regimens with anti-VEGF 
agents have relied on retinal fluid in optical coherence 
tomography (OCT) imaging of the central retinal region 
to monitor the disease activity and treatment efficacy. 
The as-needed (pro re nata [PRN]) regimen and the treat-
and-extend (TAE) regimen are the two most common 
strategies used to optimize the management of individual 
patients. Prediction of disease progression or recurrence 
using these treatment regimens is especially important in 
patients with nAMD.

Given the very heterogeneous treatment demand and 
treatment need of each individual patient, individualized 
treatment strategies and early detection of recurrence 
based on changes in pathological fluid seen on OCT are 
warranted. Kuroda et al. [6] reported that recurrence of 
retinal exudative change was detected in 65.7% of patients 
within one year and in 74.8% of patients within two years 
after the resolution of retinal exudation with initial treat-
ment. Moreover, in cases of severe disease reactivation, 
if massive subretinal hemorrhage were not treated, irre-
versible vision loss may occur [7]. Previous studies have 
reported that retinal thickness and retinal fluid, which 
include pigment epithelial detachment (PED), subretinal 
fluid (SRF), and intraretinal fluid (IRF), are common ana-
tomical measures of disease activity in nAMD, and most 
patients respond well to anti-VEGF agents [8, 9]. Using 
OCT, clinicians can observe the detailed morphological 
characterization of macular fluid accumulation. Differ-
ent morphological changes and the occurrence of retinal 
fluid are considered important parameters in the prog-
nosis of nAMD [10]. In this study, we will contribute to 
providing individualized treatment strategies to nAMD 
patients by predicting the first recurrence after the load-
ing phase.

Recent advances in artificial intelligence, especially 
deep learning-based convolutional neural networks 
(CNN), could provide novel promising strategies for the 
diagnosis of patients with age-related macular degenera-
tion (AMD) [11, 12], and decision-making regarding their 
treatment [13, 14]. Furthermore, OCT-based response 

prediction of anti-VEGF treatment, as well as treatment 
demand in nAMD [15, 16], and visual acuity prediction 
after initiating treatment [17–19] have shown encourag-
ing results. Nevertheless, to our knowledge, predicting 
the first recurrence of nAMD after the initiation phase 
using OCT-based deep learning in nAMD has not yet 
been investigated, and it is thought that recurrence may 
be related to quantitative evaluation of retinal thickness 
and qualitative observation of retinal fluid.

The first three consecutive monthly anti-VEGF injec-
tions are generally accepted in clinical practice. However, 
a consensus has not yet been achieved on when to start 
the fourth injection after initiating treatment. Depending 
on reimbursement policies by health insurance systems 
and physicians’ preferences, some physicians may prefer 
initiating the PRN or TAE regimen after confirming the 
first recurrence. In contrast, others may prefer the early 
TAE regimen, which initiates the TAE regimen immedi-
ately after three initial doses. Since the timing of the first 
recurrence is very heterogeneous for individual nAMD 
patients and the treatment burden caused by overtreat-
ment is high, predicting the first recurrence after initi-
ating treatment is very important. In the current study, 
we aimed to observe the practical feasibility of a predic-
tion tool using OCT-based deep learning algorithms in 
patients with nAMD. Specifically, we investigated the 
feasibility of preliminary analysis of predicting the first 
recurrence within three months after the initiation of 
anti-VEGF treatment in a routine clinical setting.

Methods
Data sources and participants
We retrospectively reviewed the medical records of 2,266 
consecutive patients with treatment-naïve nAMD who 
visited the Seoul National University Hospital (SNUH) 
between February 2008 and July 2021. All patients were 
treated with three consecutive loading intravitreal injec-
tions of either ranibizumab (Lucentis; Novartis, Basel 
Switzerland), aflibercept (Eylea; Bayer Pharma, Ger-
many), or bevacizumab (Avastin; F. Hoffmann-La Roche 
Ltd, Basel, Switzerland). The study was approved by the 
Institutional Review Board of Seoul National Univer-
sity Hospital (IRB approval number: 2107–223-1239) 
and adhered to the tenets of the Declaration of Hel-
sinki. Institutional Review Board of the Seoul National 
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University Hospital waived the need for written informed 
consent from the participants, because of the study’s ret-
rospective design.

The inclusion criteria were (1) symptomatic nAMD; 
(2) age ≥ 50 years; (3) three consecutive anti-VEGF injec-
tions (i.e., received the first three injections with intervals 
between each injection shorter than 60 days) followed by 
PRN dosing; (4) dry macula after the loading phase; (5) 
availability of both baseline and after the loading OCT 
images; and (6) follow-up by the time of the first recur-
rence. The exclusion criteria were (1) other concomitant 
ocular pathologies that could interfere with visual func-
tion; (2) other macular abnormalities (i.e., myopic CNV, 
angioid streaks or other secondary CNV); (3) persistent 
exudation despite three consecutive anti-VEGF injec-
tions; (4) optical media opacity that substantially dis-
turbed OCT image acquisition; and (5) follow-up loss 
before the time of the first recurrence.

After initial exclusion, 1,444 eyes from 1,302 patients 
who met the inclusion criteria were included in this study. 
Both eyes of the same patient were assessed indepen-
dently. Before the loading treatment, all patients under-
went a comprehensive ophthalmologic examination, 
including measurement of BCVA, intraocular pressure, 
slit-lamp biomicroscopy, indirect fundus examination, 
fundus photography, fluorescein and indocyanine green 
angiography, and spectral-domain OCT (SD-OCT). 
Macular 6 × 6 mm OCT scans were obtained using either 
a Cirrus high-definition OCT (HD OCT, Carl Zeiss Med-
itec, Dublin, CA, USA) or Spectralis SD-OCT imaging 
system (Heidelberg Engineering, Heidelberg, Germany). 
We reviewed the medical records of patients, including 
demographics, subtypes of nAMD, BCVA, anti-VEGF 
agents administered, refractive errors, and AL (only in 
patients with available data). BCVA measurements were 
made using a Snellen chart and converted to logarithm 
of the minimum angle of resolution (logMAR) units for 
statistical analyses. In this study, the first recurrence was 
defined as the initial appearance of a new retinal hem-
orrhage or intra/subretinal fluid accumulation after the 
initial resolution of exudative changes after three load-
ing injections. Although the persistence of PED was not 
considered a recurrence, the increase in PED size was 
considered as recurrence. For the first year after the load-
ing phase, monitoring was done every 1 − 2 months, and 
then every 2 − 3 months until recurrence, depending on 
the clinician’s judgement. Recurrence was evaluated by 
two independent observers (S.Y.L. and U.C.P.) and a con-
sensus was reached in each case.

Image preprocessing
Two OCT imaging devices were used to obtain OCT 
scans. Cirrus OCT scans were acquired at a resolution 

of 500 × 750 pixels per B-scan, and Spectralis SD-OCT 
scans were acquired at a resolution of 496 × 768 pixels per 
B-scan. To obtain a more uniform database, all images 
were normalized with respect to their horizontal ori-
entation relative to the nose, meaning that images from 
left eyes were flipped to have the same orientation as the 
right eyes. Baseline OCT scans were obtained when the 
patient was first diagnosed with nAMD, whereas OCT 
scans after the loading phase were taken one month after 
three consecutive loading injections. Regarding different 
retinal regions of interest (ROIs), OCT scans of the entire 
region and fluid region were prepared independently. A 
scan used for the entire region was resized to 512 × 750 
pixels, and a scan cropped by a fluid segmentation model 
to include retinal fluid was used for the fluid region. The 
output from the fluid segmentation model was used 
to determine the center point of the fluid mask, and 
400 × 400 patches were cropped using the center point. 
Then, as an augmentation, these were randomly assigned 
a value between 0 and 50 to x and y, the coordinate val-
ues of the center point, to move the center point and crop 
the patches. This was proceeded in real time during the 
learning process.

Dataset split
All data were randomly divided into training (70%), val-
idation (20%), and test (10%) sets, and both eyes of the 
same patient were assigned to the same dataset. Consid-
ering the potential imbalance of data between the train-
ing and test datasets, the target defined in this study was 
divided into balanced proportions. Five-fold cross-valida-
tion (CV) was performed after merging the training and 
validation sets due to the limited size of the dataset and 
to prevent overfitting [20]. Five-fold CV was performed 
by randomly partitioning the data into five subsets of 
equal size at the patient level. For each CV group, five 
instances of the recurrence classification model with dif-
ferent random initializations were trained on four subsets 
and evaluated on one subset. For the final ensemble, the 
average of the model instances trained in each CV group 
was used, and the test set was used to evaluate the final 
performance of each group.

CNN‑based fluid segmentation
A fluid segmentation model was proposed to automati-
cally predict the regions of different fluid compartments, 
including the PED, SRF, and IRF. A total of 1,105 OCT 
scans with a fluid mask from the annotated retinal OCT 
image (AROI) database were used for fluid segmentation. 
For the AROI database, macular SD-OCT volumes were 
recorded with the Zeiss Cirrus HD OCT 4000 device 
[21]. A total of 684 OCT scans collected from SNUH 
were added as internal data. Fluid segmentation was 
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performed using manual delineation by retinal special-
ists as the gold standard. Public and internal OCT images 
was shuffled together and randomly split into 1,220 scans 
for training, 322 for validation, and 247 for evaluation.

The network architecture was built using U-Net [22]. 
Standard U-Net architecture was used to identify the 
three retinal fluid compartments. All the OCT images 
were resized to 1024 × 512 pixels. The Dice similarity 
coefficient loss was used to compute the loss between 
the true mask and the predicted mask in model training 
[23]. The batch size was set to 8, and an adaptive momen-
tum estimation (Adam) optimizer was applied. The 
deep learning network was implemented in Python and 
PyTorch.

CNN‑based recurrence classification
To predict the first recurrence of nAMD, classification 
learning was conducted to determine whether the first 
recurrence occurred within three months after the load-
ing phase. The target was defined as a recurrence time 
interval, and if the first recurrence occurred within three 
months from one month after three consecutive loading 
injections, it was defined as a positive target. The recur-
rence classification architecture was built using ResNet50 
[24]. To save training time and directly use diverse under-
lying features that are difficult to be trained well by a 
small or specified dataset, transfer learning was used for 
classification using ImageNet pre-trained weights [25]. 
Training was performed with a batch size of 16 and 8 for 
the entire region and fluid region, respectively, and the 
learning rate was set to 0.0001. Optimization was per-
formed using Adam, and the training loss function for 
each task was given by the softmax cross-entropy loss 
between the ground truth label y and the model predic-
tion y given by an input scan x . Model training was per-
formed for 100 epochs.

Evaluation of the predicted model and statistical analysis
The area under the receiver operating characteristic 
curve (AUC) score was used as a primary metric for 
predicting the first recurrence of nAMD [26]. In addi-
tion, accuracy, sensitivity, specificity, positive predic-
tive value (PPV), negative predictive value (NPV), and 
F1 score were used. Five-fold CV yielded five different 
results, so the performance measure was reported using 
the mean and standard deviation (SD) of the values 
computed in each fold. The patient-specific predictors 
of each model were then used as data for a test compar-
ing the two AUCs using the popular area test proposed 
by DeLong et al. [27], which can determine whether two 
classifiers have the same AUC score. Kruskal–Wallis and 
Chi-squared tests were used for comparisons between 
datasets divided into training and test sets, and a p-value 

of < 0.05 was considered statistically significant. The clini-
cal information was analyzed by dividing into subgroups 
for each range or subtype, and the comparison of true 
positive and negative rates between each subgroup was 
conducted using an analysis of variance (ANOVA).

Results
Characteristics of the participants
In total, 1,444 eyes of 1,302 patients were included 
in the current study (Table  1). Of the 1,302 patients, 
716 (54.99%) were male, and 586 (45.01%) were 
female. The mean age of the patients at baseline was 
71.95 ± 8.27  years. The mean logMAR best-corrected 
visual acuity (BCVA) was 0.71 ± 0.49 at baseline and 
0.55 ± 0.48 1  month after the three consecutive loading 
injections. The axial length (AL) measurement was avail-
able for 560 eyes, and the mean AL was 23.54 ± 0.91 mm. 
Of the 1,444 eyes, 723 (50.07%) were oculus dexters. The 
nAMD subtypes were as follows: type 1 or 2 choroidal 
neovascularization (CNV) (1,084 eyes; 75.07%), poly-
poidal choroidal vasculopathy (PCV, 225 eyes; 15.58%), 
and retinal angiomatous proliferation (RAP, type 3 CNV, 
135 eyes; 9.35%). The anti-VEGF agents administered 
for three consecutive loading injections were as follows: 
ranibizumab (659 eyes, 45.64%), aflibercept (638 eyes, 
44.18%), and bevacizumab (147 eyes, 10.18%). The mean 
duration until the first recurrence after the loading phase 
was 8.20 ± 15.56 months. A total of 888 images from Cir-
rus and 556 images from the Spectralis OCT system 
were used. No statistical differences were observed in 
the demographics and baseline clinical characteristics 
between the training and test sets.

CNN‑based fluid segmentation
Two deep learning algorithms were applied to retinal 
OCT scans: fluid segmentation and recurrence classifi-
cation (Fig. 1). In total, 247 OCT scans with fluid masks 
were evaluated for the fluid segmentation model. Using 
the fluid segmentation algorithm, PED, IRF and SRF seg-
mentations were computed on all OCT volumes for fea-
sibility of quantitative score and retinal region of interest 
(ROI) for fluid region was extracted for qualitative obser-
vations. Examples of segmentations are shown in Fig. 2. 
Without considering the different types of fluids, all three 
fluids were considered as one retinal fluid to determine 
the center point to crop out the fluid region.

CNN‑based recurrence classification
Of a total of 1,444 eyes, after the loading phase, 743 
eyes showed the first recurrence within three months 
and 701 eyes showed the first recurrence after three 
months. More specifically, the distribution according 
to the timing of recurrence was 743 (51.45%) within 
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3  months, 1,034 (71.61%) within 6  months, 1,214 
(84.07%) within 1  year, 1,326 (91.83%) within 2  years, 
and 118 eyes (8.17%) had a first recurrence after 
2  years. The distribution of timing of the first recur-
rence was as follows in each set; Training set (median 
2.99 months; interquartile range 1.38 − 6.90; min − max 
0.46 − 134.21), Test set (median 2.89  months; inter-
quartile range 1.35 − 7.26; min − max 0.62 − 160.46), 
Total set (median 2.99  months; interquartile range 
1.38 − 7.05; min − max 0.46 − 160.46). A total of 149 
eyes from 130 patients in the test set were evaluated 
at baseline and after the loading phase. Of these eyes, 
77 (51.68%) showed the first recurrence within three 
months, and 72 (48.32%) showed the first recurrence 
after three months. The results of the recurrence classi-
fication task under the four experimental conditions are 
shown in Table  2 and the results of the receiver oper-
ating characteristic (ROC) curve with the area under 
the receiver operating characteristic curve (AUC) 
score are shown in Fig.  3. The cutoff point was set to 
0.5, which means that any observation with a predicted 

probability of 0.5 or greater was classified as positive, 
and any observation with a predicted probability less 
than 0.5 was classified as negative. The model with the 
fluid region of OCT scans after the loading phase pro-
vided the highest classification performance, with an 
AUC of 72.5%, followed by the model with the entire 
region of OCT scans after the loading phase, with an 
AUC of 71.6%.

To observe the differences between these four classi-
fiers, the AUC performance between the four classifiers 
was compared using DeLong’s test. The resulting p-val-
ues were 0.135 and 0.718, indicating that the estimates do 
not differ between the entire and fluid regions based on 
OCT at baseline and after the loading phase, respectively. 
However, the model comparison results with p-values 
of < 0.001 and 0.009 indicate that the model estimates 
differ significantly between the baseline and after the 
loading phase based on the same entire and fluid regions 
(Table  3). The OCT scan model after the loading phase 
outperformed the other models in predicting the first 
recurrence of nAMD.

Table 1 Demographics and baseline clinical characteristics of the study participants

Continuous variables are reported as mean value ± standard deviation. All other data are numbers (percentages)

nAMD neovascular age-related macular degeneration, yrs years, BCVA best-corrected visual acuity, logMAR logarithm of the minimum angle of resolution, anti-VEGF 
anti-vascular endothelial growth factor, CNV choroidal neovascularization, PCV polypoidal choroidal vasculopathy, RAP retinal angiomatous proliferation, OCT optical 
coherence tomography
† Chi-Square p-value
‡ Kruskal–Wallis p-value
a Only available in 498 eyes in the training set and 62 eyes in the test set

Variables Training Test Total p‑value

Unique eyes after exclusion applied 1,295 149 1,444

Gender

 Female 527 (44.97) 59 (45.38) 586 (45.01) 1.00†

Age at first nAMD diagnosed (yrs) 71.95 ± 8.27 71.93 ± 8.31 71.95 ± 8.27 0.94‡

BCVA at baseline (logMAR) 0.70 ± 0.49 0.76 ± 0.51 0.71 ± 0.49 0.31‡

BCVA after loading phase (logMAR) 0.54 ± 0.48 0.58 ± 0.47 0.55 ± 0.48 0.09‡

Axial length (mm)a 23.54 ± 0.90 23.62 ± 1.03 23.54 ± 0.91

Oculus

 Oculus dexter 647 (49.96) 76 (51.01) 723 (50.07) 0.88†

nAMD subtype 0.26†

 Type 1 or 2 CNV 969 (74.83) 115 (77.18) 1,084(75.07)

 PCV 208 (16.06) 17 (11.41) 225 (15.58)

 RAP (Type 3 CNV) 118 (9.11) 17 (11.41) 135 (9.35)

Anti‑VEGF used for loading phase 0.55†

 Ranibizumab 585 (45.17) 74 (49.66) 659 (45.64)

 Aflibercept 576 (44.48) 62 (41.61) 638 (44.18)

 Bevacizumab 134 (10.35) 13 (8.72) 147 (10.18)

Duration until the first recurrence (months) 7.87 ± 14.38 11.04 ± 23.28 8.20 ± 15.56 0.93‡

OCT system 0.84†

 Cirrus 798 (61.62) 90 (60.40) 888 (61.50)

 Spectralis 497 (38.38) 59 (39.60) 556 (38.50)
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Fig. 1 A schematic of deep learning model training, validation, and performance assessment for predicting the first recurrence of neovascular 
age‑related macular degeneration patients using optical coherence tomography (OCT) image sets. A OCT scans were obtained at baseline 
and after the loading phase, which was taken one month after three consecutive anti‑vascular endothelial growth factor (anti‑VEGF) loading 
injections. B Retinal regions of interest (ROIs) were found using a fluid segmentation network. Recurrence classification network (ResNet50) (C) 
and gradient‑weighted class activation mapping visualization (D) is presented

Fig. 2 Convolutional neural network‑based fluid segmentation results and segmentation color key. A Representative original images of optical 
coherence tomography (OCT) scans. B OCT scans with retinal fluid regions. All retinal fluid was coded in yellow. C OCT scans with three different 
retinal fluids. Pigment epithelial detachment (PED) was coded in pink, subretinal fluid (SRF) in green, and intraretinal fluid (IRF) in blue
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Interpretation of the model decisions
The gradient-weighted class activation mapping (Grad-
CAM) uses gradients of target to represent a localiza-
tion map highlighting the main regions in the image for 
predicting the target [28]. Grad-CAM uses the gradients 

of any target concept flowing into the final convolutional 
layer (Conv5_3) of the model trained using OCT scans to 
extract the feature maps and compute the weights of the 
feature maps to identify the areas displaying the greatest 
effect of the first recurrence of nAMD.

As shown in Fig.  4, the heatmap represents the most 
important region in each image of the trained CNN when 
classified as a recurrence within three months after the 
loading phase. In true positive cases (Fig.  4A), heatmap 
analysis with Grad-CAM highlighted areas of IRF and 
SRF as important areas on the OCT scans. In addition, 
areas of hyperreflective foci are often highlighted in the 
OCT images. In false positive cases (Fig. 4B), recurrence 
occurred after three months, and it was incorrectly pre-
dicted that recurrence would occur within three months 
after the loading phase. Areas of persistent PED are often 
highlighted on the OCT scans, even though the persis-
tence of PED was not considered to indicate recurrence 
in the current study. In false negative cases (Fig.  4C), 
recurrence occurred within three months, and it was 
incorrectly predicted that recurrence would occur after 
three months after the loading phase; heatmap analysis 

Table 2 Classification performance of the convolutional neural 
network models

OCT optical coherence tomography, AUC  area under the curve, PPV positive 
predictive value, NPV negative predictive value

OCT at baseline OCT at after the loading 
phase

Entire region Fluid region Entire region Fluid region

AUC 0.572 ± 0.043 0.600 ± 0.030 0.716 ± 0.027 0.725 ± 0.012

Accuracy 0.528 ± 0.020 0.572 ± 0.021 0.667 ± 0.016 0.679 ± 0.016

Sensitivity 0.579 ± 0.179 0.566 ± 0.113 0.608 ± 0.083 0.621 ± 0.068

Specificity 0.472 ± 0.172 0.578 ± 0.146 0.731 ± 0.094 0.742 ± 0.075

PPV 0.544 ± 0.02 0.599 ± 0.049 0.717 ± 0.052 0.725 ± 0.036

NPV 0.521 ± 0.035 0.557 ± 0.019 0.638 ± 0.022 0.649 ± 0.022

F1 score 0.545 ± 0.088 0.573 ± 0.039 0.651 ± 0.036 0.665 ± 0.029

Fig. 3 Receiver operating characteristic (ROC) curves for convolutional neural network‑based recurrence classification. ROC curves for the entire 
region (A) and the fluid region (B) of optical coherence tomography (OCT) scans at baseline. ROC curves for the entire region (C) and the fluid 
region (D) of OCT scans after the loading phase
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concentrated on areas other than the main lesion when 
there was hemorrhage or large lesion and obtained an 
incorrect prediction result. There were cases of mispre-
diction when the recurrence occurred very close to the 
three months’ time point. In true negative cases (Fig. 4D), 
Grad-CAM mainly highlighted the main lesions of sub-
sided CNV, with one coarse and large-scale attention. 
Figure 5 shows representative cases of correct predictions 
of the first recurrence within three months and later.

When classifying the recurrence based on three 
months, the prediction values were closer to 1 or 0 if the 

recurrence periods were less than two months or more 
than four months, respectively, whereas the prediction 
values were closer to 0.5 if the recurrence periods were 
close to the three months’ time point (Supplementary 
Fig. 1).

Discussion
In the present study, we evaluated the practical feasibility 
of a prediction tool using OCT-based deep learning algo-
rithms in patients with nAMD. The time to first recur-
rence of exudation after acquiring a dry macula following 
three consecutive anti-VEGF loading phase in a routine 
clinical setting was analyzed to evaluate whether the 
algorithms could reliably predict the recurrence within 
three months. Our results demonstrate that model with 
the fluid region of OCT scans after the loading phase 
provided the highest classification performance, with an 
AUC of 72.5%. By proposing a deep learning algorithm to 
predict the first recurrence using OCT image, we believe 
that this study has important clinical significance for 
attempting to individualize decision-making for nAMD 
patients, which is a heterogeneous disease.

There has been an advance in recent research in AMD 
utilizing machine learning algorithms, regarding not only 
diagnosing or classifying diseases but also predicting 

Table 3 Comparison of the AUC performance between four 
different experimental conditions

vs. versus, AUC  area under the curve
* DeLong’s test p-value. Significant values with p < 0.05 are in bold

Comparison p‑value*

Baseline‑based entire vs. fluid regions 0.135

After the loading phase‑based entire vs. fluid regions 0.718

Entire region‑based baseline vs. after the loading phase < 0.001
Fluid region‑based baseline vs. after the loading phase 0.009
Entire region at baseline vs. fluid region at after the loading 
phase

< 0.001

Fig. 4 Representative cases of gradient‑weighted class activation mapping (Grad‑CAM) visualization. Grad‑CAM extracts the feature map of the last 
convolutional layer and shows a heatmap within the image describing the calculated weight of the feature map. A True positive; B False positive; C 
False negative; D True negative cases
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future events. Schmidt-Erfurth et  al. investigated indi-
vidual disease conversion in early AMD using artificial 
intelligence [29]. They demonstrated that the model dif-
ferentiated converting versus non-converting eyes with 
a performance of 68% and 80% for CNV and geographic 
atrophy and the most critical features for progression 
were outer retinal thickness, hyperreflective foci, and 
drusen area. Ajana et al. evaluated a prediction model for 
advanced AMD allowing selection of the most predic-
tive risk factors automatically [30]. They revealed that the 
prediction model achieved an 92% AUC in differentiat-
ing the high-risk groups. While it is challenging to make 
a direct comparison between predicting the progression 
of early AMD to advanced AMD and predicting the reac-
tivation of nAMD after loading treatment in the current 

study, the fact that the performance of Schmidt-Erfurth 
et al.’s model [29] did not exceed 0.8 and the best perfor-
mance in this study was an AUC of 72.5% shows that it is 
still challenging to develop a CNN model to predict the 
future using only OCT images.

Previous studies predicting anti-VEGF treatment 
demand or frequency in nAMD suggest that machine 
learning may assist in establishing patient-specific 
treatment plans in the near future. Gallardo et al. dem-
onstrated mean AUCs of 0.79 and 0.79 for low and 
high demand in the nAMD-trained models [16], and 
Pfau et  al. revealed mean AUCs from 0.61 to 0.7 for 
low and high treatment requirement in nAMD patients 
[31]. Chandra et  al. also showed AUCs of 0.79 − 0.82 
and 0.79 − 0.81 for predicting few and many injections 

Fig. 5 Representative cases of neovascular age‑related macular degeneration. Optical coherence tomography (OCT) scans at baseline, 
after the loading phase, and at the time of the first recurrence are presented. Convolutional neural network‑based fluid segmentation results 
and gradient‑weighted class activation mapping (Grad‑CAM) are also noted. The red bounding box indicates the area shown by the Grad‑CAM. 
A OCT demonstrates the first recurrence at 1.1499 months (within three months) after the loading phase, predicting a value higher than 0.5 
with a prediction of 0.6391, which is true positive. B OCT demonstrates the first recurrence at 7.3595 months (after three months) after the loading 
phase, predicting a value lower than 0.5 with a prediction of 0.1362, which is true negative
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[32], and Romo-Bucheli et  al. revealed AUC of 0.85 
in detecting the patients with low and high treatment 
requirement in nAMD [33]. Meanwhile, machine learn-
ing algorithms that predict visual acuity after anti-
VEGF therapy may also encourage patients to adhere 
to intravitreal therapy and contribute to personal-
ized medicine. Rohm et  al. evaluated visual acuity at 
3 and 12  months in patients with nAMD after initial 
three anti-VEGF injections and revealed that machine 
learning allowed visual acuity to be predicted for three 
months with a comparable result to real visual acuity 
measurements [17]. Fu et  al. investigated the predic-
tive usefulness of quantitative imaging biomarkers from 
OCT scans in future visual outcomes of nAMD patients 
starting anti-VEGF therapy [18]. They revealed that 
visual outcomes under antiangiogenic therapy can be 
predicted using retinal tissue volumes that have been 
quantified automatically from OCT images.

In this study, the prediction of recurrence after initial 
anti-VEGF injections could be used in 3 main ways on an 
individual patient basis in the form of personalized medi-
cine: (1) It may give caution to high-risk patients who will 
exhibit early recurrence within three months and encour-
age them to adhere to regular monitoring. (2) For low-
risk patients who are expected to have a late recurrence, 
it could alleviate the anxieties and follow-up can be more 
flexible. (3) It could help clinicians in determining the fol-
low-up duration of patients and decision-making around 
anti-VEGF injections, including recommending or with-
holding injections.

Although this study did not allow us to determine 
which biomarkers on OCT were more important fea-
tures, we did find that the retinal morphological char-
acteristics after the initial three anti-VEGF injections 
were more important in predicting the recurrence than 
the retinal appearance with the various pathological flu-
ids at initial presentation. We also found that the clinical 
significance of pathological fluids on nAMD recurrence 
still remains crucial, as the model performance was bet-
ter with fluid ROIs than with entire ROIs of OCT scans. 
As shown in Figs. 4 and 5, the heatmap results of recur-
rence classification and retinal fluid segmentation mainly 
highlighted areas of pathologic fluid, such as PED, SRF, 
and IRF, as important areas on OCT scans. Grad-CAM 
highlighted the main CNV lesions or hyperreflective foci 
to predict early recurrence. The areas of PED were often 
emphasized in false positive cases, and although persis-
tent PED was not defined as a recurrence in this study, 
it is well known that PED is also related to CNV activity 
[34, 35]. Since other pathological fluids, such as SRF and 
IRF, frequently recur after PED growth, our study may 
identify that PED is still a meaningful biomarker associ-
ated with nAMD recurrence.

Our study has several limitations. First, the number 
of patients was small, and the recurrence interval was 
arbitrarily set to three months and classified. Among the 
patients who experienced recurrence after three months, 
there was a group of patients who experienced recur-
rence after 120  months; therefore, further studies are 
needed to further refine the timing of recurrence. Sec-
ond, the study population included heterogenous group 
with different treatment of anti-VEGF agents and treat-
ment interval between each injection. These variations 
could be confounding factors for prediction of disease 
recurrence. Nevertheless, we believe that this study is sig-
nificant in that it evaluates the feasibility of a model to 
predict recurrence in a real clinical setting where treat-
ment demand and need are highly heterogeneous. Third, 
it was possible to determine that the retinal fluid had a 
significant impact; however, it was difficult to determine 
the relationship between fluid volume and recurrence 
prediction. Although the performance of the fluid seg-
mentation model was sufficient to detect the fluid region, 
it may not be accurate to compute the fluid volume on 
OCT images. Lastly, a series of sequential inputs were 
not used, but a single OCT image input was utilized in 
the current study. In the CNN model for time series fore-
cast utilization, OCT images at baseline and after the 
loading phase could be sequentially utilized. A better 
model that specifically predicts whether recurrence will 
occur in an individual patient by combining serial OCT 
images and clinical information together and the actual 
time to recurrence is planned in future research.

Conclusion
In conclusion, we examined the feasibility of predicting 
the first recurrence within three months after the load-
ing phase of anti-VEGF treatment using OCT-based deep 
learning algorithms in patients with nAMD in a routine 
clinical setting. The model with the fluid region of the 
OCT scans and that after the loading phase provided the 
highest classification performance. Heatmaps revealed 
that pathological fluids, such as PED, SRF, and IRF, sub-
sided CNV lesions, and hyperreflective foci were impor-
tant areas for the first recurrence on OCT scans. This 
automated prediction system will aid in the provision of 
individualized medical care for patients with nAMD.
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