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Abstract 

Background Oral potentially malignant disorders (OPMDs) are associated with an increased risk of cancer of the oral 
cavity including the tongue. The early detection of oral cavity cancers and OPMDs is critical for reducing cancer‑
specific morbidity and mortality. Recently, there have been studies to apply the rapidly advancing technology of deep 
learning for diagnosing oral cavity cancer and OPMDs. However, several challenging issues such as class imbalance 
must be resolved to effectively train a deep learning model for medical imaging classification tasks. The aim of this 
study is to evaluate a new technique of artificial intelligence to improve the classification performance in an imbal‑
anced tongue lesion dataset.

Methods A total of 1,810 tongue images were used for the classification. The class‑imbalanced dataset consisted 
of 372 instances of cancer, 141 instances of OPMDs, and 1,297 instances of noncancerous lesions. The EfficientNet 
model was used as the feature extraction model for classification. Mosaic data augmentation, soft labeling, and cur‑
riculum learning (CL) were employed to improve the classification performance of the convolutional neural network.

Results Utilizing a mosaic‑augmented dataset in conjunction with CL, the final model achieved an accuracy rate 
of 0.9444, surpassing conventional oversampling and weight balancing methods. The relative precision improvement 
rate for the minority class OPMD was 21.2%, while the relative F1 score improvement rate of OPMD was 4.9%.

Conclusions The present study demonstrates that the integration of mosaic‑based soft labeling and curriculum 
learning improves the classification performance of tongue lesions compared to previous methods, establishing 
a foundation for future research on effectively learning from imbalanced data.
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Introduction
Oral cavity cancer accounted for approximately 377,000 
new cases and 177,000 related deaths worldwide in 
2020 [1], highlighting its significance as a public health 
issue. Tongue cancer is frequently diagnosed in many 
countries, making it an important area of focus. While 
oral cavity cancer is associated with high morbidity and 
mortality rates [2], oral potentially malignant disorders 
(OPMDs) can also increase the risk of developing this 
type of cancer, including tongue cancer [3, 4]. Therefore, 
it is essential to accurately and easily diagnose oral cav-
ity cancers and OPMDs to prevent their progression. 
Accurate and accessible diagnosis techniques can lead to 
timely treatment and reduce cancer-specific morbidity 
and mortality [5–7].

Recently, the development of artificial intelligence has 
led to the use of deep learning to detect oral cavity can-
cers and OPMDs [8–15]. VGG [16], ResNet [17], and 
EfficientNet [18] techniques were commonly utilized 
in these studies. Most studies [11–14] have focused on 
binary classification, classifying oral lesions as either 
malignant or benign. Only a few studies [15] have inves-
tigated multi-class classification. Recent work showed 
that it is recommended to use a moderately complex con-
volutional neural network (CNN) with a data-bypassing 
architecture when working with a limited dataset. Nev-
ertheless, one of the remaining challenges is addressing 
the class imbalance [19, 20]. Class imbalance, a preva-
lent issue in medical imaging applications, especially for 
cancer detection, occurs when certain classes are dis-
proportionately represented in a dataset. This disparity 
can degrade classifier performance by neglecting minor-
ity classes [21–24]. In this study, the dataset was imbal-
anced, with the cancer and OPMD categories having 
fewer samples.

While the representativeness of a dataset is crucial 
for the effectiveness of deep learning algorithms, class 
imbalance is a frequent challenge in medical imaging 
applications, making it difficult to acquire representa-
tive datasets. Consequently, it is imperative to develop 
methods that enable the effective training of deep learn-
ing models on imbalanced and limited datasets. The goal 
is to ensure these models can achieve performance levels 
comparable to those trained on representative datasets. 
Several approaches have been proposed to address this 
issue, including data-level, algorithm-level, and hybrid 
methods [20, 25]. An effective data-level method is data 
augmentation, which can increase the diversity of a train-
ing dataset by applying data transformations. Examples 
of these augmentation techniques include Cutout [26], 
CutMix [27], Random Image Cropping and Patching 
(RICAP) [28], and Mosaic augmentation [29]. Cutout 
and CutMix techniques can enhance the performance 

of machine learning models by manipulating important 
parts of the input data. This helps the model to learn 
more robust features, resulting in better performance. 
These techniques have shown promise when applied to 
various models and datasets, making them a promis-
ing area for future machine learning research. RICAP is 
an augmentation technique that enhances the diversity 
of training datasets. It uses four random crops from the 
input images and patches them together to form a single 
image. This approach enables the model to learn from 
more diverse data and helps prevent overfitting. How-
ever, a significant limitation of RICAP, particularly in 
tongue cancer detection, is its propensity to lose lesions 
in the produced images. This problem occurs mainly 
due to the small size of the lesions and their frequent 
placement on the lateral edges of the tongue, which may 
be accidentally excluded during the random cropping 
process. Mosaic augmentation combines four image 
patches and resizes them into a single synthesized image 
to detect objects that may not be easily recognizable in 
their normal context owing to differences in scale [30]. 
Although Mosaic augmentation has proven to be effec-
tive in detecting objects, it is important to note that it 
was originally designed for object detection and may not 
be directly applicable to classification tasks.

In this study, we introduced an effective technique 
called "mosaic-based soft labeling" augmentation com-
bined with curriculum learning (CL) [31]. CL begins 
with teaching the model using simpler training dataset 
(or task) and then gradually introduces more complex 
training dataset (or task). This method mimics human 
learning, allowing the model to build on previously 
learned concepts from simpler dataset, thereby facilitat-
ing the understanding of more complex concepts more 
accurately. Using this approach, augmented data with 
different levels of complexity are trained step-by-step 
accordingly. The purpose of this study was to evaluate the 
performance of mosaic-based soft labeling and CL com-
pared to other methods, such as oversampling and weight 
balancing, in the class-imbalanced tongue lesion dataset.

Methods
Dataset
From January 2006 to December 2020, a total of 1,810 
tongue images were acquired from patients aged over 
20 years who visited the Department of Oral and Maxil-
lofacial Surgery at Seoul National University Dental Hos-
pital in Seoul, Republic of Korea, for diagnostic purposes 
or periodic check-ups. The clinical photographs were 
consistently captured using a single-lens reflex camera 
(D750, Nikon, Japan) by a single researcher under the 
supervision of the author (JH Lee). The captured images 
were saved in JPEG (Joint Photographic Experts Group) 
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format. The Institutional Review Board of the Seoul 
National University Dental Hospital approved the collec-
tion and use of this dataset (ERI22034).

The images were categorized into three distinct groups 
with an average resolution of 723 × 734 pixels: cancer, 
OPMD, and noncancerous lesions (Table 1). The images 
were categorized into three distinct groups with an 
average resolution of 723 × 734 pixels: cancer, OPMD, 
and noncancerous lesions (Table  1). Notably, the data-
set used in this study consists of cases from the cancer 
class (20.6%), OPMD class (7.8%), and noncancerous 
lesion class (71.6%), with a significant imbalance between 
classes. Tongue cancer was defined as squamous cell car-
cinoma confirmed through pathological examination. 
OPMDs were diagnosed in accordance with the World 
Health Organization consensus report classification [3]. 
Lesions including pathologically confirmed oral lichen 
planus, leukoplakia, or erythroplakia were classified as 
OPMDs. Noncancerous lesions encompassed healthy 
tongue tissues and benign conditions such as hemangi-
oma, fibroma, or aphthous ulcer. Two licensed surgeons 
with a minimum of 5 years of clinical experience (IJK and 
JHL) were responsible for the categorization of tongue 
images. For the test set, 10% (180 images) of the entire 
dataset was randomly selected to reflect the data popula-
tion. The remaining dataset was used as training and vali-
dation datasets at 70% and 30%, respectively.

Data augmentation: mosaic‑based soft labeling
To address the class imbalance and limited quantity of 
training data, we proposed a new augmentation tech-
nique named “mosaic-based soft labeling” (Fig.  1). This 
technique was motivated by two existing methods: 
RICAP [28] and mosaic data augmentation [29]. How-
ever, in contrast to these approaches, we used Gradi-
ent-weighted Class Activation Mapping (Grad-CAM) 
[32] to extract the representative regions of each image. 
Grad-CAM calculates the relationship between out-
put and input images by using a gradient. This pro-
duces a heatmap that emphasizes the areas of the input 
image used by the network to determine the target class. 
Otsu’s thresholding converts the Grad-CAM impor-
tance map into a binary map consisting of representative 

and nonrepresentative regions. Next, we determined 
the bounding box that covers the largest representative 
region in the resulting binary map. Finally, we combined 
the representative patches using cropping and resiz-
ing, which helped train the network to recognize repre-
sentative patterns in the imbalanced data. The resulting 
synthesized image forms a mosaic-based soft labeling 
dataset.

In Mosaic augmentation, four images are combined 
to create a single synthesized image. However, because 
our goal was to classify the data into three categories, we 
selected one patch from each class and randomly chose 
the remaining patches using random sampling with 
replacement. The four selected representative patches 
were then combined to form a synthesized image. The 
label was calculated using the area covered by each class, 
with a sum of 1. The portion of the area occupied by each 
class can be interpreted as a probability associated with 
that specific class, intrinsically utilizing the soft labeling 
technique [33]. The model is trained to accurately predict 
the value of each component in the soft label vector. The 
soft labeling technique replaces the one-hot ground truth 
with smoothed labeling, which is known to improve clas-
sification performance by decreasing overconfidence and 
increasing generalization.

Training: CL using the mosaic‑based soft labeling
CL consists of several different training stages, each of 
which becomes progressively more challenging. In our 
study, we used CL consisting of two stages. Stage 1 is a 
conventional training using an original dataset with the 
weight balancing method. 1,630 images from the data-
set are utilized, excluding the 180 images reserved for 
the test set. Mosaic-based soft labeling dataset is cre-
ated using Grad-CAM with the model trained in Stage 
1. In Stage 2, the model is retrained using a newly added 
mosaic-based soft labeling dataset and the original data-
set. 1,200 mosaic-based soft labeling images (synthesized 
images) are utilized. Note that the test set of 180 images 
is not used for training of either stage. An overview of 
our CL is shown in Fig. 2.

The details of our CL stage 1 are as follows. The Effi-
cientNet model was used as a feature extraction model 
for classification. This model outperforms other exist-
ing CNNs with similar computational costs by utilizing 
a scaling method that uniformly scales up the width, 
depth, or resolution [18]. The EfficientNetB0 model was 
used in this study. Deep learning models must be trained 
from scratch when the training data have different fea-
ture spaces and data distributions, which leads to an inef-
ficient situation. When the available training dataset is 
relatively small, transfer learning is an effective method 
for training deep models without overfitting, and it has 

Table 1 Categories and number of tongue lesion samples

Categories Number of samples

cancer 372

OPMD 141

noncancerous lesion 1,297

Total 1,810
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been used in many studies [34–37]. Transfer learning 
involves reusing learned knowledge from a base dataset; 
typically, a large-scale dataset such as ImageNet is used 
[38]. In this study, transfer learning was performed using 
pretrained weights from ImageNet [38]. Conventional 
data augmentation was applied to the training dataset to 
increase its diversity. The Inputs were zoomed in by 80%-
100% at random and flipped horizontally and vertically. 
They were rotated at random angles ranging from –30° 
to 30°. In addition, they were shifted to the left or right 
at random between -10% and 10% of the total width, and 
vertically in the same manner. Outside the input bounda-
ries, the points were filled with the nearest pixels. Finally, 
fine-tuning was performed to train the network on the 
tongue cancer dataset. After fine-tuning, the network 
was retrained entirely on the tongue cancer dataset with 
a low learning rate owing to the significant differences 
between the ImageNet and tongue cancer datasets. This 
approach is commonly used when applying deep neural 
networks to medical applications and helps overcome 
the scarcity of medical datasets [35, 39]. Furthermore, 

because of the highly imbalanced class distribution of the 
datasets, a weight balancing method [40] was utilized. 
This method heavily penalizes misclassified predictions 
from the minority class and is adopted to address the 
class imbalance issue. At the end of Stage 1, the mosaic-
based soft labeling dataset is created in the manner of the 
Mosaic-based soft labeling section.

In Stage 2 of our CL, the model resulting from Stage 1 
was retrained using an augmented dataset that included 
both the original tongue cancer dataset and the mosaic-
based soft labeling dataset. The weights are initialized and 
trained from the beginning. For the mosaic-based soft 
labeling dataset, the rotation and flipping were applied to 
eliminate the effect of cross-shaped lines between images 
in a synthesized image. The rotation range was set at ran-
dom angles between -5° and 5°.

Test: prediction of the trained model
In the field of machine learning, including deep learn-
ing, prediction refers to the process of using a trained 
model to make a classification or regression on new 

Fig. 1 A detailed description of mosaic formation and soft labeling process. a A set of four images consisting of a mosaic image. One image 
is selected for each class and the last one is additionally and randomly selected from all classes (in this case, the noncancerous lesion). 
b A Grad‑CAM‑based ROI extraction proposes a representative region of each image. A class activation map of each image is extracted 
from the trained model without mosaic dataset. c The mosaic generator randomly chooses a point within a square to form a 2 × 2 grid so that one 
segment should be, at least, larger than half of the synthesized image. A mosaic image is synthesized with four cropped and rescaled images 
from each Grad‑CAM‑based ROI. The position of each image is randomly assigned each time a synthesized image is created. Also, the oversampling 
rate is adjustable, allowing for larger areas to be allocated to user‑defined classes. (in this case, A: OPMD, B: noncancerous lesion, C: cancer, D: 
noncancerous lesion) d The soft label is calculated with the areas of each class within the grid. The model is trained to accurately predict the value 
of each component in the soft label vector
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data that was not included in the training set [41]. 
Prediction is also called inference. In this study, we 
have trained three deep learning models, each sharing 
the same underlying architecture but differing in the 
applied training technique. The first model employs a 
weight balancing technique, the second utilizes over-
sampling technique, and the third is trained using our 
proposed method, which integrates mosaic-based soft 
labeling and CL.

To assess performance, all three models are tested 
using a uniform test set, with comparative metrics 
derived from the outcomes of this test, which funda-
mentally involves an inference process. As described in 
the Dataset section, the test set comprises images that 
are not utilized during the training. It is noted that the 

mosaic images generated through mosaic-based soft 
labeling are not included in the test set.

Figure  3 shows how the prediction works in our pro-
posed method. During the prediction stage, where the 
models are fed only real images, each model produces 
a result vector for each input image. Subsequently, each 
image is classified into the class corresponding to the 
highest value component in its result vector. In contrast, 
the training stage uses both real and synthetic images. 
The result vector itself is considered the final output of 
each model. This vector is then compared with the cor-
responding label — a soft label for synthetic images and a 
one-hot encoding label for real images — to calculate the 
loss function, which are then minimized through contin-
ued training.

Fig. 2 An overview of mosaic‑based soft labeling with curriculum learning. Our curriculum learning is consisted of two stages. a In stage 
1, a conventional training is performed using an original dataset with the weight balancing method. Transfer learning, data augmentation, 
and fine‑tuning was also used during training. b Using the trained model in Stage 1, a mosaic dataset and the corresponding soft labels can be 
obtained as described in Fig. 1. c In stage 2, the final model is trained with the original dataset and a newly added mosaic‑based soft labeling 
dataset

Fig. 3 Prediction process of the proposed method. During the prediction stage, where the models are fed only real images, the model produces 
a result vector for each input image. The image is classified into the class corresponding to the highest value component in its result vector
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Metrics and statistical analysis
We computed the accuracy, precision, recall, and F1 
score using a test set to assess model performance. Accu-
racy is the ratio that indicates how accurate the classifi-
cation was among all classification attempts. Accuracy 
ranges from 0 to 1. A score of 0 suggests no accuracy, 
meaning all classifications are incorrect, while a score 
of 1 indicates perfect accuracy with all classifications 
being correct. Accuracy is a commonly used metric for 
evaluating classification models because of its simplicity. 
However, it may not be suitable for imbalanced datasets 
[42]. Therefore, additional metrics to complement basic 
accuracy need to be considered. Precision is a meas-
ure that indicates the accuracy of positive predictions, 
specifically for a particular class. It shows how many of 
the predicted instances for that class are actually true 
instances of that class. On the other hand, recall, also 
known as sensitivity, is a measure that indicates the abil-
ity to detect all instances of a specific class through pre-
dictions. It shows how many of the total instances of that 

specific class are correctly identified. F1 score is a single 
metric that combines both precision and recall into a 
single value, providing a balanced measure of a model’s 
performance in classification tasks, especially when 
there is an imbalance between the classes. It is particu-
larly useful when you want to find a balance between 
precision and recall, as they are often in tension with 
each other. Precision, recall, and F1 score range from 0 to 
1, with 0 indicating the worst possible performance and 
1 indicating the best possible performance.

In this paper, we performed multi-class classification 
with three categories. Therefore, we calculated weighted 
average and macro average (Eq.  3) for precision, recall, 
and F1 score, based on the averages of each class.

where

macro average =
1

3
× (scorecancer + scoreOPMD + scorenoncancerous lesion)

weighted average = Wcancer × scorecancer+WOPMD×scoreOPMD+Wnoncancerous lesion × scorenoncancerous lesion

Wcancer = number of cancer samples divided by number of total samples
WOPMD = number of OPMD samples divided by number of total samples
Wnoncancerous lesion = number of noncancerous lesion samples divided by number of total sample

 Weighted average is a metric calculation that considers 
the contribution of each class or category in proportion 
to its prevalence in the dataset. It assigns more weight to 
classes with larger sample sizes, which is beneficial when 
dealing with imbalanced datasets. Weighted averages are 
commonly used in classification tasks. However, in cases 
of class-imbalanced data, it may not be appropriate. In 
contrast, the macro average is a metric calculation that 
independently computes the metric for each class and 
then calculates the unweighted average (simple arith-
metic mean) of those class-specific metrics. It treats all 
classes equally, regardless of their prevalence in the data-
set, providing a balanced assessment of model perfor-
mance across all classes. Macro average is often used to 
evaluate the overall model performance when all classes 
are considered equally important.

We also used the relative performance improvement 
rate as an indicator of how much the model’s per-
formance improved compared to other conventional 
methods (Eq. 4).

Results
Table  2 shows the accuracy comparison across three 
different models, while Table  3 presents their other 
performance metrics.

The first model (WB), which was only trained up to 
Stage 1, used the conventional weight balancing tech-
nique to address the class imbalance. The overall accu-
racy of Stage 1 was 0.9278. The precision and F1 score 
of OPMD (minority class) were 0.6875 and 0.7333, 
respectively.

Oversampling (OB) is another well-known tech-
nique to address class imbalance. The second model 
was trained using the oversampling method instead of 
the weight balancing method, while following the same 

relative performance improvement rate(%) = 100×
(Performancenew − Performanceprevious)

Performanceprevious
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procedure as the first model. Cancer and OPMD images 
were sampled using replacement to match the number 
of the majority class. The overall accuracy of oversam-
pling was 0.9111. The oversampling method showed 
poorer performance on each metric when compared to 
the weight balancing method.

The final model (MBO), which was trained using the 
newly added mosaic-based soft labeling dataset (Stage 2), 
achieved an accuracy rate of 0.9444. This outperformed 
conventional oversampling (0.9111) and weight balancing 
methods (0.9278). Our approach demonstrated compa-
rable or slightly lower performance in various categories 
compared to conventional methods. However, it signifi-
cantly improved performance in the OPMD category, 
which is characterized by a notably small sample size. We 
saw a 21.2% increase in relative precision improvement 
and a 4.9% increase in relative F1 score improvement 
rate when compared to conventional weight balancing 
method (precision: 0.6875 → 0.8333; F1 : 0.7333 → 0.7692). 
This suggests that our method trains the classifier model 
more effectively when handling class-imbalanced train-
ing data, compared to traditional approaches.

Discussion
Medical data are frequently imbalanced, which can 
negatively affect classification performance because the 
model may not properly capture the minority class [43]. 
To address this issue, various methods have been intro-
duced, including oversampling and weight balancing. 
Our proposed method, when tested on an imbalanced 
tongue lesion dataset, yielded an accuracy rate of 0.9444. 

This represents a modest improvement over the accuracy 
rates of conventional oversampling (0.9111) and weight 
balancing methods (0.9278). Although our proposed 
method occasionally exhibits lower performance com-
pared to the Weight Balancing (WB) technique, it typi-
cally shows improvements across most metrics. This is 
particularly evident in the F1 score, which accounts for 
both precision and recall, where our method consistently 
demonstrates a noticeable improvement. For instance, 
in the context of the OPMD category’s F1 score, the WB 
technique achieved 0.7333, and the Oversampling tech-
nique reached 0.5600. Our proposed method, on the 
other hand, attained a score of 0.7692.

Our proposed mosaic-based soft labeling may dem-
onstrate the ability to achieve similar performance to 
using a class-balanced dataset even when dealing with 
a class-imbalanced dataset. Jubair et  al. [11] and Heo 
et  al. [12] performed binary classification on imbal-
anced datasets with the existing methods, such as over-
sampling and weight-balancing. Jubair et  al. used 716 
images, which consisted of 236 cancerous images and 480 
benign images. Heo et  al. used 5,576 images, including 
3,635 non-cancer images and 1,941 cancer images. Their 
models achieved an accuracy of 85.0% and 84.7%, respec-
tively. Although the data is different and so not directly 
comparable, we tackled a more challenging three-class 
classification using an imbalanced dataset and achieved 
an accuracy of 94.44%. Notably, our method was able 
to achieve comparable performance on the imbalanced 
dataset as the previous study obtained on the balanced 
dataset with OPMD [15]. Sharma et al. [15] achieved an 
accuracy of 76% in three-class classification using a con-
ventional CNN with a class-balanced dataset. Their study 
utilized 329 images, comprising 106 normal, 102 OPMD, 
and 121 cancer images. Although their dataset was bal-
anced, the F1 score of OPMD was 0.74. In contrast, in 
our study, we achieved an F1 score of 0.7692 for OPMD, 
despite using a class-imbalanced dataset.

We have proposed a new technique that utilizes 
mosaic-based soft labeling which provides the combined 
benefits of soft labeling, oversampling, and traditional 

Table 2 Accuracy comparison among weight balancing 
technique (WB), oversampling technique (OS), and mosaic‑based 
soft labeling (MBS)

Accuracy

WB OS MBSO

0.9278 0.9111 0.9444

Table 3 Classification performance with weight balancing technique (WB), oversampling technique (OS), and mosaic‑based soft 
labeling (MBS)

precision recall F1 score

WB OS MBS WB OS MBS WB OS MBS

cancer 0.8293 0.8250 0.8500 0.9189 0.8919 0.9189 0.8718 0.8571 0.8831
OPMD 0.6875 0.6364 0.8333 0.7857 0.5000 0.7143 0.7333 0.5600 0.7692
noncancerous lesion 0.9919 0.9612 0.9844 0.9457 0.9612 0.9767 0.9683 0.9612 0.9805
weighted average 0.9348 0.9080 0.9450 0.9278 0.9111 0.9444 0.9302 0.9086 0.9441
macro average 0.8362 0.8075 0.8892 0.8835 0.7844 0.8700 0.8578 0.7928 0.8776
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image manipulation-based augmentation. Two-stage CL 
was used to apply mosaic-based soft labeling into deep 
learning-based tongue cancer classification.

The soft labeling technique replaces the one-hot 
ground truth with smoothed labeling, known to enhance 
generalization performance. Szegedy et al. demonstrated 
a 0.2% reduction in error for the ImageNet Large Scale 
Visual Recognition Challenge (ILSVRC) 2012 by incor-
porating soft labeling into training [44]. In our proposed 
method, each component of the label represents the area 
occupied by each class’s corresponding regions, intrinsi-
cally having the effect of soft labeling.

Oversampling and undersampling are the resam-
pling techniques [45–47] that are commonly used to 
address imbalanced classifications [48, 49]. Oversampling 
increases the minority class instances, whereas under-
sampling reduces the majority class instances. Our pro-
posed method has an intrinsic oversampling effect owing 
to random sampling with replacement and allocation of 
larger areas to the minority class during dataset genera-
tion. This allows users to adjust the oversampling ratio by 
setting the number of synthesized images and the area of 
each patch in the synthesized image.

In our experiments, the models trained only with 
mosaic-based soft labeling images performed worse, 
apparently because the cancer- or OPMD-independent 
patterns present in the synthesized images had a nega-
tive impact during training. Therefore, conventional 
image transformations, such as rotation and translation, 
are necessary to ensure that the network does not focus 
on useless patterns that are independent of the region of 
interest, such as a grid pattern, which is a cross-shaped 
line between images in a synthesized image.

The dataset employed in this study comprised only 
1,810 images of tongues and was highly imbalanced. 
Specifically, the OPMD class accounts for only 7.8% of 
the data. Generally, OPMD patients are more prevalent 
than cancer patients, so cancer images are expected to be 
less abundant. However, in this study, we collected imag-
ing data from patients who visited the outpatient clinic 
of a professor specializing in cancer surgery (JHL). Due 
to the higher frequency of requests for patients requir-
ing cancer surgery, it seemed that there are fewer imag-
ing instances for OPMD compared to cancer. This can 
result in a poor performance in practical clinical situa-
tions. Using the proposed method, along with additional 
OPMD data collection, we expect that there will be a 
performance improvement compared to existing data 
augmentation techniques. We also anticipate that further 
performance gains can be achieved using the proposed 
data augmentation method to generate additional images 
when combined with other techniques to address class 
imbalance. Based on our experimental results, in the case 

of training with class-imbalanced datasets, the oversam-
pling technique tends to be more effective compared to 
the undersampling technique. Additionally, incorporat-
ing the weight-balancing technique may lead to some 
improvements in performance. For those seeking a more 
balanced and stable outcome, our mosaic-based soft labe-
ling method could prove beneficial, though the degree of 
improvement might vary. Moreover, if additional data 
collection is undertaken for classes with fewer samples, 
better performance can be expected. As highlighted by 
Halevy et al. [50], collaborative efforts in collecting more 
clinical tongue images could offer a fundamental solution 
to the challenges of data scarcity and class imbalance. 
However, the exact impact of such efforts on perfor-
mance would require further exploration.

Although this study presents a new method for 
enhancing tongue cancer classification and provides 
some practical to remedy class imbalanced problem, it 
has certain limitations. The first limitation of our study 
is that it relies solely on tongue images. Oral cancer may 
also appear in other regions. Additionally, our study 
did not account for lesion location in the training and 
analysis of the model. Second, the lower performance 
in OPMD may be influenced by the limited sample size, 
but it could also be attributed to the diverse subcatego-
ries within OPMD. Because it is not merely a matter of 
an imbalanced dataset, additional research is required 
to understand the effect of diverse subcategories within 
OPMD both on deep learning model training and perfor-
mance. Thirdly, in this study, only images acquired by one 
professor’s camera were utilized. However, for the detec-
tion of images in more universal scenarios, it may be 
necessary to have images from various environments. As 
OPMD patients receive care not only from professors in 
oral and maxillofacial surgery but also from professors in 
oral medicine, we plan to collaborate with these profes-
sors in the future to gather imaging data collaboratively. 
Fourthly, if a sufficiently large and representative dataset 
is available, there may not be a significant performance 
difference between the conventional approach and our 
proposed method in the ideal situation. Previous stud-
ies have reported that the choice of training technique 
or algorithm has minimal impact on performance when 
the dataset is representative [50, 51]. In contrast, when 
the dataset significantly lacks representativeness, train-
ing deep learning models effectively becomes a challenge, 
even when employing our mosaic-based soft labeling 
technique. This requires further study to identify the 
range of dataset representativeness where mosaic-based 
soft labeling exceeds the performance of traditional 
methods. An initial step in such research could involve 
quantifying the relationship between the size of the data-
set and the effectiveness of mosaic-based soft labeling.
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Conclusion
In this study, we propose a novel data augmenta-
tion technique called ‘mosaic-based soft labeling’ to 
approach optimal performance on an imbalanced 
tongue cancer dataset. We introduced a CL strategy 
to generate synthetic mosaic images and improve the 
classification performance of tongue cancer. In the 
first stage, we trained a tongue cancer classification 
model using an imbalanced dataset. Utilizing infor-
mation from the trained network, we synthesized and 
labeled mosaic images. The model in the second stage 
was then trained by incorporating synthetic mosaic 
images. The proposed approach improved the clas-
sification performance of tongue lesions compared to 
previous methods, such as oversampling and weight 
balancing. However, it fell somewhat short of our initial 
expectations. Nevertheless, it establishes a foundation 
for future research on effectively learning from imbal-
anced data, a common challenge in many diagnostic 
applications.

Abbreviations
OPMD  Oral potentially malignant disorders
RICAP  Random Image Cropping and Patching
CNN  Convolutional neural network
CL  Curriculum learning
TP  True Positive
TN  True Negative
FP  False Positive
FN  False Negative
NCL  Noncancerous lesions
ROI  Region Of Interest

Acknowledgements
This research was supported by grants from the Technology Innovation Pro‑
gram (20006105) funded by the Ministry of Trade, Industry & Energy, Republic 
of Korea, and the Korea Health Technology R&D Project through the Korea 
Health Industry Development Institute (KHIDI), funded by the Ministry of 
Health and Welfare, Republic of Korea (Grant number: HI20C2114).

Authors’ contributions
SJ LEE and HJ Oh contributed equally as primary authors, and JH Lee and HK 
Kim contributed equally as corresponding authors. Conceptualization, HK Kim 
and JH Lee; methodology, SJ LEE and HJ Oh; validation, YD Son, JH Kim, and 
IJ Kwon; data curation, B Kim; figure preparation, SJ LEE, HJ Oh, and HK Kim; 
review and editing, SJ LEE, HJ Oh, JH Lee, HK Kim, YD Son, JH Kim, IJ Kwon, and 
B Kim; funding acquisition, HK Kim. All the authors have read and agreed to 
the published version of this manuscript.

Funding
This research was supported by grants from the Technology Innovation 
Program (20006105), funded by the Ministry of Trade, Industry & Energy, 
Republic of Korea, and the Korea Health Technology R&D Project through the 
Korea Health Industry Development Institute (KHIDI), funded by the Ministry 
of Health and Welfare, Republic of Korea (Grant number: HI20C2114).

Availability of data and materials
Owing to privacy concerns, the datasets generated and/or analyzed during 
the current study are available from the corresponding author upon reason‑
able request.

Declarations

Ethics approval and consent to participate
The datasets and all procedures were reviewed and approved by the Insti‑
tutional Review Board of Seoul National University Dental Hospital (approval 
number: ERI22034). All data were anonymized prior to collection. Because 
this was a retrospective study, it was practically impossible to obtain consent 
from the study participants, and the risk to them was extremely low. Therefore, 
a waiver of documentation of informed consent was used. The Institutional 
Review Board of Seoul National University Dental Hospital approved the 
waiver for informed consent.

Consent for publication
No information that could lead to the identification of the study participants is 
included in the manuscript. Consent for publication is not applicable.

Competing interests
The authors declare no competing interests.

Author details
1 Department of Biomedical Engineering, College of IT Convergence, Gachon 
University, Seongnam, Republic of Korea. 2 Oral Oncology Clinic, National 
Cancer Center, Goyang, Republic of Korea. 3 Neuroscience Research Institute, 
Gachon Advanced Institute for Health Science and Technology, Gachon 
University, Incheon, Republic of Korea. 4 Department of Psychiatry, Gachon 
University College of Medicine, Gil Medical Center, Incheon, Republic of Korea. 
5 Department of Oral and Maxillofacial Surgery, Seoul National University Den‑
tal Hospital, Seoul, Republic of Korea. 6 Dental Life Science Research Institute, 
Seoul National University Dental Hospital, Seoul, Republic of Korea. 7 Dental 
Research Institute, Seoul National University, Seoul, Republic of Korea. 

Received: 24 August 2023   Accepted: 15 January 2024

References
 1. Sung H, Ferlay J, Siegel RL, Laversanne M, Soerjomataram I, Jemal A, Bray 

F. Global cancer statistics 2020: GLOBOCAN estimates of incidence and 
mortality worldwide for 36 cancers in 185 countries. CA A Cancer J Clin. 
2021;71(3):209–49.

 2. Moore SR, Johnson NW, Pierce AM, Wilson DF. The epidemiology of 
tongue cancer: a review of global incidence. Oral Dis. 2000;6(2):75–84.

 3. Warnakulasuriya S, Kujan O, Aguirre‑Urizar JM, Bagan JV, González‑Moles 
M, Kerr AR, Lodi G, Mello FW, Monteiro L, Ogden GR, et al. Oral potentially 
malignant disorders: a consensus report from an international seminar 
on nomenclature and classification, convened by the WHO Collaborating 
Centre for Oral Cancer. Oral Dis. 2021;27(8):1862–80.

 4. Rivera C. Essentials of oral cancer. Int J Clin Exp Pathol. 
2015;8(9):11884–94.

 5. Ojeda D, Huber MA, Kerr AR. Oral potentially malignant disorders and oral 
cavity cancer. Dermatol Clin. 2020;38(4):507–21.

 6. Rajaraman P, Anderson BO, Basu P, Belinson JL, Cruz AD, Dhillon PK, Gupta 
P, Jawahar TS, Joshi N, Kailash U, et al. Recommendations for screen‑
ing and early detection of common cancers in India. Lancet Oncol. 
2015;16(7):e352‑361.

 7. van der Waal I, de Bree R, Brakenhoff R, Coebergh JW. Early diagnosis 
in primary oral cancer: is it possible? Med Oral Patol Oral Cir Bucal. 
2011;16(3):e300‑305.

 8. Shamim MZM, Syed S, Shiblee M, Usman M, Ali SJ, Hussein HS, Farrag 
M. Automated detection of oral pre‑cancerous tongue lesions using 
deep learning for early diagnosis of oral cavity cancer. Comput J. 
2020;65(1):91–104.

 9. Ilhan B, Lin K, Guneri P, Wilder‑Smith P. Improving oral cancer outcomes 
with imaging and artificial intelligence. J Dent Res. 2020;99(3):241–8.

 10. Lin H, Chen H, Weng L, Shao J, Lin J. Automatic detection of oral cancer 
in smartphone‑based images using deep learning for early diagnosis. J 
Biomed Opt. 2021;26(8):086007.



Page 10 of 10Lee et al. BMC Oral Health          (2024) 24:161 

 11. Jubair F, Al‑karadsheh O, Malamos D, Al Mahdi S, Saad Y, Hassona Y. A 
novel lightweight deep convolutional neural network for early detection 
of oral cancer. Oral Dis. 2022;28(4):1123–30.

 12. Heo J, Lim JH, Lee HR, Jang JY, Shin YS, Kim D, Lim JY, Park YM, Koh YW, 
Ahn S‑H. Deep learning model for tongue cancer diagnosis using endo‑
scopic images. Sci Rep. 2022;12(1):6281.

 13. Fu Q, Chen Y, Li Z, Jing Q, Hu C, Liu H, Bao J, Hong Y, Shi T, Li K. A deep 
learning algorithm for detection of oral cavity squamous cell carcinoma 
from photographic images: a retrospective study. EClinicalMedicine. 
2020;27:100558.

 14. Lavanya J, Kavya G, Prasamya N. Oral cancer diagnosis using deep learn‑
ing for early detection. In: 2022 International Conference on Electronics 
and Renewable Systems (ICEARS): 2022. New York, USA: IEEE; 2022. p. 
1260–1268.

 15. Sharma D, Kudva V, Patil V, Kudva A, Bhat RS. A convolutional neural 
network based deep learning algorithm for identification of oral precan‑
cerous and cancerous lesion and differentiation from normal mucosa: a 
retrospective study. Engineered Science. 2022;18:278–87.

 16. Simonyan K, Zisserman A. Very deep convolutional networks for large‑
scale image recognition. arXiv preprint arXiv:14091556. 2014.

 17. He K, Zhang X, Ren S, Sun J. Identity mappings in deep residual networks. 
In: Computer Vision–ECCV 2016: 14th European Conference, Amsterdam, 
The Netherlands, October 11–14, 2016, Proceedings, Part IV 14: 2016. 
Berlin, Germany: Springer; 2016. p. 630–645.

 18. Tan M, Le Q. Efficientnet: rethinking model scaling for convolutional 
neural networks. In: International conference on machine learning: 2019. 
PMLR; 2019. p. 6105–6114. https:// proce edings. mlr. press.

 19. Japkowicz N, Stephen S. The class imbalance problem: a systematic study. 
Intelligent Data Analysis. 2002;6:429–49.

 20. Johnson JM, Khoshgoftaar TM. Survey on deep learning with class imbal‑
ance. Journal of Big Data. 2019;6(1):27.

 21. Buda M, Maki A, Mazurowski MA. A systematic study of the class 
imbalance problem in convolutional neural networks. Neural Netw. 
2018;106:249–59.

 22 Wang S, Yao X. Multiclass imbalance problems: analysis and potential 
solutions. IEEE Trans Syst Man Cybern Part B Cybern. 2012;42(4):1119–30.

 23. Krawczyk B, Galar M, Jeleń Ł, Herrera F. Evolutionary undersampling 
boosting for imbalanced classification of breast cancer malignancy. Appl 
Soft Comput. 2016;38:714–26.

 24. Song B, Li S, Sunny S, Gurushanth K, Mendonca P, Mukhia N, Patrick 
S, Gurudath S, Raghavan S, Tsusennaro I, et al. Classification of imbal‑
anced oral cancer image data from high‑risk population. J Biomed Opt. 
2021;26(10):105001.

 25. Krawczyk B. Learning from imbalanced data: open challenges and future 
directions. Prog Artif Intell. 2016;5(4):221–32.

 26. DeVries T, Taylor GW. Improved regularization of convolutional neural 
networks with cutout. arXiv preprint arXiv:170804552. 2017.

 27. Yun S, Han D, Oh SJ, Chun S, Choe J, Yoo Y. Cutmix: regularization strategy 
to train strong classifiers with localizable features. In: Proceedings of the 
IEEE/CVF international conference on computer vision: 2019. 2019. p. 
6023–32.

 28. Takahashi R, Matsubara T, Uehara K. Data augmentation using random 
image cropping and patching for deep CNNs. IEEE Trans Circuits Syst 
Video Technol. 2019;30(9):2917–31.

 29. Bochkovskiy A, Wang C‑Y, Liao H‑YM. Yolov4: Optimal speed and accuracy 
of object detection. arXiv preprint arXiv:200410934. 2020.

 30. Kaur P, Khehra BS, Mavi EBS. Data augmentation for object detection: a 
review. In: 2021 IEEE International Midwest Symposium on Circuits and 
Systems (MWSCAS): 9–11 Aug. 2021 2021. 2021. p. 537–43.

 31. Bengio Y, Louradour J, Collobert R, Weston J. Curriculum learning. In: 
Proceedings of the 26th annual international conference on machine 
learning: 2009. 2009. p. 41–8.

 32. Selvaraju RR, Cogswell M, Das A, Vedantam R, Parikh D, Batra D. Grad‑cam: 
Visual explanations from deep networks via gradient‑based localization. 
In: Proceedings of the IEEE international conference on computer vision: 
2017. 2017. p. 618–26.

 33. Müller R, Kornblith S, Hinton GE. When does label smoothing help? Adv 
Neural Inf Process Syst. 2019;32:4694–703.

 34. Yosinski J, Clune J, Bengio Y, Lipson H. How transferable are features in 
deep neural networks? Adv Neural Inf Process Syst. 2014;27:3320–8.

 35. Kandel I, Castelli M. How deeply to fine‑tune a convolutional neu‑
ral network: a case study using a histopathology dataset. Appl Sci. 
2020;10(10):3359.

 36. Karimi D, Warfield SK, Gholipour A. Transfer learning in medical 
image segmentation: New insights from analysis of the dynamics 
of model parameters and learned representations. Artif Intell Med. 
2021;116:102078.

 37. Ravishankar H, Sudhakar P, Venkataramani R, Thiruvenkadam S, Annangi P, 
Babu N, Vaidya V. Understanding the mechanisms of deep transfer learn‑
ing for medical images. arXiv preprint arXiv:170406040. 2017.

 38. Deng J, Dong W, Socher R, Li LJ, Kai L, Li F‑F. ImageNet: a large‑scale hier‑
archical image database. In: 2009 IEEE Conference on Computer Vision 
and Pattern Recognition: 20–25 June 2009 2009. 2009. p. 248–55.

 39. Ali K, Shaikh ZA, Khan AA, Laghari AA. Multiclass skin cancer classification 
using EfficientNets – a first step towards preventing skin cancer. Neuro‑
science Informatics. 2022;2(4):100034.

 40. King G, Zeng L. Logistic regression in rare events data. Polit Anal. 
2001;9(2):137–63.

 41. Géron A. Hands‑on machine learning with scikit‑learn, keras and ten‑
sorflow: concepts, tools and techniques to build intelligent systems. 3rd 
Edition. Sebastopol, CA: O’Reilly; 2022.

 42. Branco P, Torgo L, Ribeiro RP. A survey of predictive modeling on imbal‑
anced domains. ACM Comput Surv (CSUR). 2016;49(2):1–50.

 43. Anand R, Mehrotra K, Mohan C, Ranka S. An improved algorithm for 
neural network classification of imbalanced training sets. Neural Netw 
IEEE Trans. 1993;4:962–9.

 44. Szegedy C, Vanhoucke V, Ioffe S, Shlens J, Wojna Z. Rethinking the 
inception architecture for computer vision. In: Proceedings of the IEEE 
conference on computer vision and pattern recognition: 2016. 2016. p. 
2818–26.

 45. Ling CX, Li C. Data mining for direct marketing: Problems and solutions. 
In: Kdd: 1998. 1998. p. 73–9.

 46. Fernández A, Garcia S, Herrera F, Chawla NV. SMOTE for learning from 
imbalanced data: progress and challenges, marking the 15‑year anniver‑
sary. J Artif Intell Res. 2018;61:863–905.

 47. He H, Bai Y, Garcia E, Li SA. Adaptive synthetic sampling approach for 
imbalanced learning. IEEE international joint conference on neural 
networks. In: IEEE World Congress On Computational Intelligence: 2008. 
2008.

 48. Haixiang G, Yijing L, Shang J, Mingyun G, Yuanyue H, Bing G. Learning 
from class‑imbalanced data: review of methods and applications. Expert 
Syst Appl. 2017;73:220–39.

 49. Sun Y, Wong AK, Kamel MS. Classification of imbalanced data: a review. Int 
J Pattern Recognit Artif Intell. 2009;23(04):687–719.

 50. Halevy A, Norvig P, Pereira F. The unreasonable effectiveness of data. IEEE 
Intell Syst. 2009;24(2):8–12.

 51. Banko M, Brill E. Scaling to very very large corpora for natural language 
disambiguation. In: Proceedings of the 39th Annual Meeting on Associa‑
tion for Computational Linguistics. Toulouse: Association for Computa‑
tional Linguistics; 2001. p. 26–33.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in pub‑
lished maps and institutional affiliations.

https://proceedings.mlr.press

	Enhancing deep learning classification performance of tongue lesions in imbalanced data: mosaic-based soft labeling with curriculum learning
	Abstract 
	Background 
	Methods 
	Results 
	Conclusions 

	Introduction
	Methods
	Dataset
	Data augmentation: mosaic-based soft labeling
	Training: CL using the mosaic-based soft labeling
	Test: prediction of the trained model
	Metrics and statistical analysis

	Results
	Discussion
	Conclusion
	Acknowledgements
	References


