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Abstract 

Background  Accurate classification of breast cancer molecular subtypes is crucial in determining treatment strate‑
gies and predicting clinical outcomes. This classification largely depends on the assessment of human epidermal 
growth factor receptor 2 (HER2), estrogen receptor (ER), and progesterone receptor (PR) status. However, variability 
in interpretation among pathologists pose challenges to the accuracy of this classification. This study evaluates 
the role of artificial intelligence (AI) in enhancing the consistency of these evaluations.

Methods  AI-powered HER2 and ER/PR analyzers, consisting of cell and tissue models, were developed using 1,259 
HER2, 744 ER, and 466 PR-stained immunohistochemistry (IHC) whole-slide images of breast cancer. External vali‑
dation cohort comprising HER2, ER, and PR IHCs of 201 breast cancer cases were analyzed with these AI-powered 
analyzers. Three board-certified pathologists independently assessed these cases without AI annotation. Then, cases 
with differing interpretations between pathologists and the AI analyzer were revisited with AI assistance, focusing 
on evaluating the influence of AI assistance on the concordance among pathologists during the revised evaluation 
compared to the initial assessment.

Results  Reevaluation was required in 61 (30.3%), 42 (20.9%), and 80 (39.8%) of HER2, in 15 (7.5%), 17 (8.5%), and 11 
(5.5%) of ER, and in 26 (12.9%), 24 (11.9%), and 28 (13.9%) of PR evaluations by the pathologists, respectively. Com‑
pared to initial interpretations, the assistance of AI led to a notable increase in the agreement among three patholo‑
gists on the status of HER2 (from 49.3 to 74.1%, p < 0.001), ER (from 93.0 to 96.5%, p = 0.096), and PR (from 84.6 
to 91.5%, p = 0.006). This improvement was especially evident in cases of HER2 2+ and 1+, where the concordance 
significantly increased from 46.2 to 68.4% and from 26.5 to 70.7%, respectively. Consequently, a refinement in the clas‑
sification of breast cancer molecular subtypes (from 58.2 to 78.6%, p < 0.001) was achieved with AI assistance.

Conclusions  This study underscores the significant role of AI analyzers in improving pathologists’ concordance 
in the classification of breast cancer molecular subtypes.

Open Access

© The Author(s) 2024. Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which 
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the 
original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or 
other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line 
to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory 
regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this 
licence, visit http://creativecommons.org/licenses/by/4.0/. The Creative Commons Public Domain Dedication waiver (http://creativecom‑
mons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data.

Breast Cancer Research

†Minsun Jung and Seung Geun Song contributed equally to this work.

*Correspondence:
So‑Woon Kim
swkdek@gmail.com
Full list of author information is available at the end of the article

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s13058-024-01784-y&domain=pdf


Page 2 of 14Jung et al. Breast Cancer Research           (2024) 26:31 

Background
Breast cancer has typically been classified into molecular 
intrinsic subtypes based on routine immunohistochem-
istry (IHC), including human epidermal growth factor 
receptor 2 (HER2), estrogen receptor (ER), and proges-
terone receptor (PR) [1]. The classification based on the 
presence of these receptors and expression level plays a 
significant role in both prognostic assessment and deter-
mining the most appropriate treatment approach [1, 2]. 
For example, the level of HER2 expression is crucial for 
predicting the therapeutic response to trastuzumab, the 
canonical HER2-targeted monoclonal antibody and the 
level of ER expression is essential for forecasting the 
treatment response to tamoxifen, a selective ER modu-
lator [3, 4]. Recently, novel therapeutic agents such as 
trastuzumab deruxtecan, an antibody–drug conjugate 
(ADC) of trastuzumab and a ‘tecan,’ have emerged, dem-
onstrating compelling results in particular for the treat-
ment of HER2-low (HER2 1+ or HER2 2+ without in situ 
hybridization [ISH] amplification) breast cancer [5]. Con-
sequently, this underscores the importance of a precise 
evaluation of the expression levels of the protein targets 
via IHC, as these results play a pivotal role in tailoring 
and optimizing therapeutic strategies.

However, significant interobserver and interlabora-
tory variations among pathologists have been noted in 
the evaluation of HER2, ER, and PR status, particularly 
for possible HER2-low cases [6–8]. Such inconsistencies 
might directly influence patient survival outcomes by 
affecting the selection of optimal treatment strategies [8, 
9].

Recently, advancements and increasing deployment of 
digital pathology systems have paved the way for numer-
ous strategies to analyze and quantify digital whole-slide 
images (WSIs) [10, 11]. Specifically, this permits the 
application of AI algorithms designed for various fields 
of oncology, including image analysis [12]. In early stud-
ies, such algorithms have shown significant potential 
to reduce interobserver variability among pathologists 
which has correlated with the improved prediction of 
response to treatment [13–17].

There are several approaches to utilize AI algorithms to 
assess HER2, ER, and PR status in breast cancer. Previ-
ous studies demonstrated the improved consistency and 
accuracy in the evaluation of HER2 status by pathologists 
with AI assistance, including HER2-low cases [18–21]. AI 
algorithms have also demonstrated excellent agreement 
with pathologists’ interpretation of ER and PR status [22, 

23]. Although these studies have reported on the devel-
opment of individual AI models for the assessment of 
HER2 or ER/PR, few studies have evaluated the impact 
of AI-aided analysis on assessing HER2, ER, and PR com-
prehensively for a single patient cohort.

In this study, we conducted a comprehensive AI-
assisted reader study to evaluate HER2, ER, and PR status 
on the same patients. Our aim was to examine whether 
AI assistance could ameliorate the interobserver vari-
ability associated with the evaluation of HER2, ER, and 
PR status in breast cancer, and subsequent impact on the 
determination of molecular subtypes of breast cancer.

Methods
Dataset for HER2 and ER/PR analyzer development
An AI-powered HER2 analyzer of breast, Lunit SCOPE 
HER2 (Lunit, Seoul, Republic of Korea) was developed 
with 1259 HER2 IHC-stained WSIs of breast cancer, 
consisting of 880, 253, and 126 for training, tuning, and 
internal test, in each set. An AI-powered ER/PR analyzer 
of breast, Lunit SCOPE ER/PR was developed with 1210 
ER/PR IHC-stained WSIs of breast cancer, consisting of 
782, 287, and 141 WSIs for training, tuning, and internal 
test, in each set. Further information on the dataset is 
described in Additional file 1: Supplementary Methods.

Data preprocessing for model development
Patches of a predefined area (0.04 mm2 for cell and 2.54 
mm2 for tissue) were extracted from WSIs. Those images 
had a normalized micron per pixel resolution of 0.19 μm 
(1024 * 1024 pixels for cell and 8192 * 8192 pixels for tis-
sue) and were used as input for the AI model develop-
ment. In the patch level, we prevented dataset leakage by 
following the classification of training, tuning, and inter-
nal tests classified by WSIs. Additional file  1: Table  S1 
shows the numbers of WSIs and patches assigned to 
training, tuning, and internal test sets. All patches were 
annotated by board-certified pathologists, and further 
information about annotation results is mentioned in 
Additional file  1: Supplementary Methods, Additional 
file 1: Tables S2 and S3.

Development of AI model—Cell Detection Model
The cell detection models of both HER2 and ER/PR iden-
tify all tumor cells. For HER2, the model also identifies 
other cells (OTs or non-tumor cells). Beyond detecting 
the location of cells, the model is also proficient in iden-
tifying varying intensity levels associated with each cell. 

Keywords  Artificial intelligence (AI), Breast cancer, Concordance, Digital pathology, Estrogen receptor (ER), Human 
epidermal growth factor receptor 2 (HER2), Progesterone receptor (PR), Whole-slide image (WSI)
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Therefore, the HER2 model can detect a total of five cell 
classes, including four tumor cells (3+, 2+, 1+, and 0), 
and OTs, while ER/PR model can detect four cell classes 
of tumor cells (3+, 2+, 1+, and 0). This cell detection 
task was approached as a dense segmentation challenge, 
utilizing the DeepLabv3+ segmentation model with a 
ResNet-34 for feature extraction [24, 25]. Additional 
details of the AI model are described in Additional file 1: 
Supplementary Methods.

Development of AI model—Tissue segmentation model
The tissue segmentation model evaluates each pixel of 
the input to determine if it belongs to specific classes. 
The HER2 model can segment CA (cancer area; invasive 
breast cancer), CIS (carcinoma in  situ), or BG (back-
ground; any tissue area that does not belong to CA or 
CIS), while the ER/PR model can segment CA or BG 
(including CIS). The model employs a DeepLabv3, com-
plemented with a ResNet-101 for feature extraction. 
Additional details of the AI model are described in Addi-
tional file 1: Supplementary Methods.

Scoring algorithms of HER2 and ER/PR analyzer
The HER2 analyzer and ER/PR analyzer evaluated the 
expression of HER2 and ER/PR at the slide level by merg-
ing the results from the cell detection model and the tis-
sue segmentation model from a WSI. The HER2 analyzer 
counted the HER2-positive tumor cells in the CA area 
and calculated the proportion of each tumor cell class 
(3+, 2+, 1+, and 0). The ER/PR analyzer also counted the 
ER/PR-positive tumor cells in the CA area, but calculated 
the proportion of any positive tumor cells (regardless of 
intensity level). The slide-level expression level of HER2, 
ER, and PR was categorized by the American Society of 
Clinical Oncology (ASCO)/College of American Patholo-
gists (CAP) guidelines [26, 27].

External test dataset and reader study
An external test set was selected from Kyung Hee Uni-
versity Hospital (Seoul, Republic of Korea). The inclusion 
criteria for this study were cases diagnosed as breast can-
cer by pathologists between January 2018 and December 
2021 and had all of the matched HER2, ER, and PR slides. 
All slides were stained with Ventana anti-HER2/neu 
(4B5) (Ventana Medical Systems, Tucson, AZ, USA) for 
HER2, Novocastra Liquid Mouse Monoclonal Antibody 
Estrogen Receptor (NCL-L-ER-6F11) (Novocastra Labo-
ratories, Newcastle, UK) for ER, and Novocastra Liquid 
Mouse Monoclonal Antibody Progesterone Receptor 
(PGR-312-L-CE, PGR-312-L-CE-S) for PR. All slides 
were scanned with a P1000 scanner with 40× magnifica-
tion and were inferred by the AI algorithms mentioned 
above.

Three board-certified pathologists (M.J., S.-W.K., 
and S.G.S.), each from different hospitals, indepen-
dently evaluated the scanned HER2, ER, and PR IHC 
slides in accordance with the guidelines using a digi-
tal visualizer [26, 27]. They could zoom in or out of 
each scanned WSI through the digital visualizer to 
determine the expression level of HER2/ER/PR at the 
slide level (Additional file  1: Figure S1). They anno-
tated WSI-level HER2 expression level as 3+ (positive), 
2+ (equivocal), 1+ (negative but low), and 0 (negative), 
and ER/PR expression level as positive (> 10% of cell 
staining), low positive (1–10% of cell staining), and 
negative (< 1% of cell staining) without AI inference 
results. Per ASCO/CAP guidelines updated in 2020, 
PR cases were categorized as negative and positive, but 
in this study, low positives were additionally catego-
rized separately to make comparable results with ER 
cases.

If a pathologist’s evaluation (any of HER2, ER, and PR 
IHC) did not match the result from AI analyzers, each 
pathologist revisited the case using AI’s inferred results 
and reevaluated it independently. In this phase, the 
pathologists used the same digital visualizer as before, 
with the AI inference results added. The visualizer 
showed the total numbers of IHC-positive tumor cells 
(including their intensity) and negative tumor cells, the 
expression level of HER2/ER/PR, and the coordinate 
of each cell on the WSIs and segmentation of tissue 
(Additional file 1: Figure S1). Figure 1 displays the flow 
of the reader study.

Consensus was determined by combining the results 
of independent evaluations from three pathologists. If 
all three pathologists agreed to the results, the case was 
categorized as concordant; if only two agreed, it was 
categorized as partially concordant, and otherwise as 
discordant. A consensus result is defined as an evalua-
tion result that at least two out of three people agree on. 
Therefore, a concordant or partially concordant case 
can have a consensus result. If a case was altogether 
discordant, those cases were labeled as no consensus. 
The degree of agreement between pathologists is meas-
ured in both initial (without AI assistance) and revised 
(revisiting and reevaluating with AI assistance in case 
of disagreement with AI results) results.

This study was approved by the Institutional Review 
Board (IRB) of Kyung Hee University Hospital (IRB no. 
KHUH 2022-01-035). Informed consent was waived by 
the IRB because of the retrospective design of the study 
and the anonymized clinical data used in the analysis. 
The study was performed in accordance with the Decla-
ration of Helsinki.
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Statistical analysis
F1 score and intersection over union (IoU) were applied 
to evaluate the performance of the cell model and the 
tissue model, respectively. Agreement rate or quadratic 
weighted kappa value between raters or AI analyzers was 
evaluated as overall agreement. Categorical variables 
were compared using the Chi-square test/Fisher’s exact 
test or McNemar test. All statistical analyses were per-
formed using Python 3.7 and R version 4.0.3 software (R 
Foundation for Statistical Computing, Vienna, Austria).

Results
Performance of cell detection and tissue segmentation 
models—HER2 and ER/PR
In the HER2 model, the cell detection showed the best 
performance for OT, but had the lowest performance 
for 2+ tumor cells. For the ER/PR model, the highest cell 
detection performance was observed in 3+ tumor cells, 
while the performance was lowest in 1+ tumor cells. The 
tissue segmentation model in the HER2 model achieved 
better performance on CA than on CIS, while those in 
the ER/PR model achieved performances of CA compa-
rable to the HER2 model. Further detail of cell detection 
and tissue segmentation model performance is described 
in Additional file  1: Supplementary Results and Addi-
tional file 1: Tables S4–S7.

Clinical information of the reader study set
We retrospectively collected data and found a total of 201 
breast cancer patients with all three IHC types of HER2, 
ER, and PR slides. Of these, 199 (99.0%) were female and 
2 (1.0%) were male. The median age at the time of speci-
men collection was 57  years, with ages ranging from a 

minimum of 28 to a maximum of 84  years. The major-
ity of cases were surgical excision specimens (N = 189, 
94.0%), and American Joint Committee on Cancer 
(AJCC) stage 1A cases were the most common (N = 87, 
43.3%). Table  1 summarizes the clinical information of 
the cases.

WSI‑level assessment of HER2/ER/PR by pathologists 
in the reader study set
For the HER2 WSI, there were 99 (49.3%) concord-
ant cases, 99 (49.3%) partially concordant cases, and 
three (1.5%) discordant cases (Fig. 2A). In the consensus 

Fig. 1  A schematic flow of the reader study (AI: artificial intelligence, ER: estrogen receptor, HER2: human epidermal growth factor receptor 2, PR: 
progesterone receptor)

Table 1  Clinical information of external test dataset (N = 201)

Type Category Number of cases (%)

Sex Female 199 (99.0%)

Male 2 (1.0%)

Age group  ≤ 40 14 (7.0%)

41–50 55 (27.4%)

51–60 50 (24.9%)

61–70 49 (24.4%)

 ≥ 71 33 (16.4%)

Specimen Biopsy 12 (6.0%)

Surgical excision 189 (94.0%)

Stage 1A 90 (44.8%)

1B 1 (0.5%)

2A 56 (27.9%)

2B 23 (11.4%)

3A 16 (8.0%)

3B 1 (0.5%)

3C 8 (4.0%)

4 6 (3.0%)
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results of the pathologists, there were 49 (24.4%) cases of 
HER2 3+, 91 (45.3%) cases of HER2 2+, 34 (16.9%) cases 
of HER2 1+, 24 (11.9%) cases of HER2 0, and 3 (1.5%) 
cases with no consensus. Consensus-classified HER2 
3+ had the highest concordance rate (73.5%) and HER2 
1+ had the lowest (26.5%). Agreement rates and quad-
ratic weighted kappa values between the two pathologists 
were 66.2%/0.803 (pathologist 1 [P1] and pathologist 
2 [P2]), 77.6%/0.843 (P1 and pathologist 3 [P3]), and 
53.2%/0.709 (P2 and P3), respectively (Additional file  1: 
Figure S2A–C).

For the ER WSI, there were 187 (93.0%) concordant 
cases and 14 (7.0%) partially concordant cases (Fig. 2B). 
In the pathologists’ consensus results, there were 153 
(76.1%) cases of ER-positive, 10 (5.0%) cases of ER-low 
positive, and 38 (18.9%) cases of ER-negative. Consen-
sus-classified ER-positive had the highest concordance 
rate (98.0%) and ER-low positive had the lowest (30.0%). 
Agreement rates and quadratic weighted kappa values 
between the two pathologists were 95.5%/0.940 (P1 and 
P2), 95.5%/0.952 (P1 and P3), and 95.0%/0.949 (P2 and 
P3), respectively (Additional file 1: Figure S3A–C).

On the PR slides, there were 170 (84.6%) concordant 
cases, 29 (14.4%) partially concordant cases, and two 
(1.0%) discordant cases (Fig.  2C). In the pathologists’ 
consensus results, PR-positive, PR-low positive, PR-
negative, and no consensus were 132 (65.7%) cases, 17 
(8.5%) cases, 50 (24.9%) cases, and 2 (1.0%) cases, in each. 
Consensus-classified PR-positive had the highest con-
cordance rate (93.2%) and PR-low positive had the lowest 

(35.3%). Agreement rates and quadratic weighted kappa 
values between the two pathologists were 90.0%/0.922 
(P1 and P2), 90.5%/0.937 (P1 and P3), and 87.6%/0.906 
(P2 and P3), respectively (Additional file  1: Figure 
S4A–C).

Overall, the pathologists’ concordances for HER2/ER/
PR IHC results are generally lower for the cases within 
IHC low positive category (i.e., HER2 2+ or 1+, ER-low 
positive, PR-low positive).

Standalone performance of the AI analyzer
The AI analyzer had an agreement rate of 72.2% (143 
out of 198, excluding three cases of no consensus) and 
quadratic weighted kappa value of 0.844 compared to the 
pathologists’ HER2 consensus result (Fig. 2D). Compared 
to pathologists, the AI analyzer tended to classify lower 
HER2 grades than the pathologists’ consensus (Addi-
tional file 1: Figure S5A). In the 99 cases where the three 
pathologists agreed, the AI results had an 89.9% (N = 89) 
agreement rate and quadratic weighted kappa value of 
0.948 with the consensus result.

In the ER dataset, the AI analyzer had an agreement 
rate of 93.0% (N = 187) and quadratic weighted kappa 
value of 0.916 compared to the pathologists’ ER consen-
sus result (Fig. 2E). In contrast to the HER2 AI analyzer, 
compared to pathologists, the AI analyzer tended to clas-
sify higher ER grades than the pathologists’ consensus 
(Additional file  1: Figure S5B). In the 187 cases where 
the three pathologists agreed, the AI results had a 96.3% 

Fig. 2  Concordance among pathologists in HER2 (human epidermal growth factor receptor 2) dataset (A), ER (estrogen receptor) dataset (B), 
and PR (progesterone receptor) dataset (C). Concordance between the consensus of pathologists and the AI (artificial intelligence) analyzer in HER2 
dataset (D), ER dataset (E), and PR dataset (F)
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(N = 180) agreement rate and quadratic weighted kappa 
value of 0.938 with the consensus result.

In the PR dataset, the AI analyzer had an agreement 
rate of 89.4% (178 out of 199, excluding two cases of 
no consensus) and quadratic weighted kappa value of 
0.902 compared to the pathologists’ PR consensus result 
(Fig.  2F). Similar to the ER AI analyzer, compared to 
pathologists, the AI analyzer tended to classify higher PR 
grades than the pathologists’ consensus (Additional file 1: 
Figure S5C). In the 170 cases where the three patholo-
gists agreed, the AI results had a 93.5% (N = 159) agree-
ment rate and quadratic weighted kappa value of 0.941 
with the consensus result.

Change in HER2/ER/PR interpretation after AI assistance
The cases that were discordant between the patholo-
gists and AI were reevaluated by the pathologists. In the 
HER2 dataset, the numbers of cases revisited were as 
follows: 61 cases (30.3%) for P1, 42 cases (20.9%) for P2, 
and 80 cases (39.8%) for P3 (Fig. 3A). Among these, the 
HER2 classification was revised by the pathologists in 
46 cases (75.4%) for P1, 19 cases (45.2%) for P2, and 54 
cases (67.5%) for P3. After revisiting, pathologists’ con-
sensus results were changed; HER2 3+, HER2 2+, HER2 
1+, HER2 0, and no consensus were 38 (18.9%) cases, 
76 (37.8%) cases, 58 (28.9%) cases, 28 (13.9%) cases, and 
1 (0.5%) cases, in each (Fig.  3B). In cases (N = 112) of 
revisit, HER2 results tended to change to a lower grade 
(e.g., HER2 1+ to 0, 2+ to 1 +) (Fig. 3C, Additional file 1: 
Figures  S6A-C). After revisiting, the number of cases 
in which all three pathologists agreed increased signifi-
cantly from 99 (49.3%) to 149 (74.1%) cases (p < 0.001) 
(Fig. 2A). Compared to the initial evaluation, the revised 
evaluation improved concordance at all HER2 expres-
sion levels, but especially at HER2 2+ and 1+, with a sig-
nificant increase in concordance from 46.2 to 68.4% and 
26.5 to 70.7%, respectively (Fig. 2A). Agreement rates and 
quadratic weighted kappa values between the two pathol-
ogists after revision were changed to 84.6%/0.914 (P1 and 
P2), 84.6%/0.911 (P1 and P3), and 78.6%/0.875 (P2 and 
P3), respectively (Additional file 1: Figure S2D–F).

In ER dataset, there were 15 (7.5%) cases for P1, 17 
(8.5%) cases for P2, and 11 (5.5%) cases for P3 that went 
to revisit (Fig.  3A). Among them, pathologists revised 
ER classification in 6 (40.0%), 8 (47.1%), and 7 (63.6%) 
cases, in each. After revisiting, pathologists’ consensus 
results were changed; ER-positive, ER-low positive, ER-
negative, and no consensus were 156 (77.6%) cases, 6 
(3.0%) cases, 37 (18.4%) cases, and 2 (1.0%) cases, in each 
(Fig.  3D). In cases (N = 21) of revisit, ER results tended 
to change to a higher grade (e.g., ER-negative to weak 
positive, weak positive to positive) (Fig.  3E, Additional 
file  1: Figures  S6D–F). After revisiting, the number of 

cases in which all three pathologists agreed increased 
from 187 (93.0%) to 194 (96.5%) cases, but this increase 
was not statistically significant (p = 0.096) (Fig. 2B). Com-
pared to the initial pathologist interpretation, the revised 
evaluation improved concordance among the patholo-
gists at all ER expression levels, but especially at ER-low 
positive, with a significant increase in concordance from 
30.0 to 83.3% (Fig. 2B), which concurred with the accept-
ance of the AI’s inference of ER-low positivity (Fig.  2E). 
Agreement rates and quadratic weighted kappa values 
between the two pathologists after revision were changed 
to 97.5%/0.967 (P1 and P2), 97.5%/0.967 (P1 and P3), and 
97.1%/0.975 (P2 and P3), respectively (Additional file  1: 
Figure S3D–F).

In PR dataset, there were 26 (12.9%) cases for P1, 
24 (11.9%) cases for P2, and 28 (13.9%) cases for P3 
that went to revisit (Fig.  3A). Among them, patholo-
gists revised PR classification in 7 (26.9%), 9 (37.5%), 
and 16 (57.1%) cases, in each. After revisiting, patholo-
gists’ consensus results were changed; PR-positive, PR-
low positive, PR-negative, and no consensus were 131 
(65.2%) cases, 19 (9.5%) cases, 50 (24.9%) cases, and 1 
(0.5%) cases, in each (Fig. 3F). In cases (N = 42) of revisit, 
changes in PR results did not skew toward higher or 
lower (Fig.  3G, Additional file  1: Figures  S6G–I). After 
revisiting, the number of cases in which all three patholo-
gists agreed increased significantly from 170 (84.6%) to 
184 (91.5%) cases (p = 0.006) (Fig. 2C). Compared to the 
initial evaluation, the revised evaluation improved con-
cordance among the pathologists especially at PR-low 
positive, with a significant increase in concordance from 
35.3 to 73.7% (Fig.  2C). The pathologist–AI concord-
ance also increased in PR-low positive cases, from 70.6 to 
89.5% (Fig. 2F). Agreement rates and quadratic weighted 
kappa values between the two pathologists after revision 
were changed to 94.5%/0.962 (P1 and P2), 94.5%/0.953 
(P1 and P3), and 93.5%/0.955 (P2 and P3), respectively 
(Additional file 1: Figure S4D–F).

Molecular Subtypes of breast cancer after AI assistance
In this study, breast cancer molecular subtypes can be 
divided into the following: (1) HER2-positive: HER2 3+; 
(2) HER2-equivocal and HR-positive: HER2 2+ with at 
least one ER/PR-positive (including low positive); (3) 
HER2-equivocal and HR-negative: HER2 2+ with both 
ER/PR-negative; (4) HR-positive: HER2 1+ or 0 with at 
least one ER/PR-positive (including low positive); (5) 
triple-negative breast cancer (TNBC): HER2 1+ or 0 with 
both ER/PR-negative. HER2-equivocal and HR-positive 
subtype had the highest number of cases at initial evalu-
ation (N = 82, 40.8%), followed by HER2-positive subtype 
and HR-positive subtype (N = 49, 24.4% in each), TNBC 
subtype (N = 9, 4.5%), HER2-equivocal and HR-negative 



Page 7 of 14Jung et al. Breast Cancer Research           (2024) 26:31 	

Fig. 3  A Proportion of revisited and revised cases by artificial intelligence (AI) analyzer in Pathologist 1 (P1), Pathologist 2 (P2), and Pathologist 3 
(P3). Initial and revised pathologists’ consensus of HER2 (human epidermal growth factor receptor 2) in All cases (B) or revisited cases only (C). Initial 
and revised pathologists’ consensus of ER (estrogen receptor) in All cases (D) or revisited cases only (E). Initial and revised pathologists’ consensus 
of PR (progesterone receptor) in All cases (F) or revisited cases only (G)
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Fig. 4  A Initial and revised pathologists’ consensus of subtype. B Initial and revised concordance rates of subtype among pathologists (ER: estrogen 
receptor, HER2: human epidermal growth factor receptor 2, PR: progesterone receptor)
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subtype (N = 8, 4.0%), and no consensus (N = 4, 2.0%), 
respectively (Fig.  4A). The number of cases where sub-
types were agreed between all pathologists was 117 
(58.2%) cases. Of these, the initial concordance rates of 
pathologist interpretation were lowest for HER2-equiv-
ocal and HR-positive subtype at 45.1% and highest for 
HER2-positive at 73.5% (Fig. 4B).

After revisiting by AI analyzers, HR-positive subtype 
was the most common with 74 (36.8%) cases, followed 
by HER2-equivocal and HR-positive subtype with 72 
(35.8%) cases, HER2-positive subtype with 38 (18.9%) 
cases, TNBC subtype with 10 (5.0%) cases, HER2-
equivocal and HR-negative subtype with 4 (2.0%) cases, 
and no consensus with 3 (1.5%) cases (Fig. 4A). Of note, 
18.4% (9/49) of HER2-positive cases were reclassified as a 
HER2-equivocal and HR-positive type, and 28.0% (23/82) 
of the HER2-equivocal and HR-positive cases were 
reclassified as an HR-positive type. The number of cases 
where subtypes were agreed between all pathologists 

significantly increased from 117 to 158 cases (58.2 to 
78.6%, p < 0.001). The concordance rate increased for all 
subtypes except for the HER2-equivocal and HR-negative 
subtype (Fig. 4B).

Analyze factors that can affect pathologists’ concordance 
or AI analyzer performance
We further analyzed the interaction between the pathol-
ogist and the AI analyzer. First, a total of 304 revisiting 
requests were made to the three pathologists, of which 
166 (54.6%) revised their interpretation according to the 
AI analyzer’s results. HER2 was most likely to be changed 
on revisit (62.8%) and PR was least likely (39.7%) (Fig. 5). 
Depending on the number of pathologists who requested 
to revisit, 67.5% (54/80) of cases where only one patholo-
gist was asked to revisit the case were revised based on 
the AI analyzer results, but only 29.4% (30/102) of cases 
where all three pathologists were asked to revisit the case 
were revised.

Fig. 5  Rate of revising by pathologists according to the artificial intelligence (AI) analyzer’s results, when one, two, or all three pathologists revisited 
(ER: estrogen receptor, HER2: human epidermal growth factor receptor 2, PR: progesterone receptor)
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Next, we defined a complete failure of the AI analyzer 
as a case where all three pathologists were requested to 
revisit and none of them changed their initial interpreta-
tions. This occurred in a total of 10 cases. Within these, 
two cases exhibited specific failures in HER2, without 
affecting ER/PR evaluations. Four cases demonstrated 
failures solely in PR, with no impact on HER2 and ER 
evaluations. The remaining four cases presented concur-
rent failures in both ER and PR, but not in HER2.

In the case of HER2, the AI analyzer classified cases 
that were pathologists’ consensus 1+ in both cases as 
2+. In those cases, normal ductal or CIS areas contain-
ing HER2-stained cells were classified as CA (Fig.  6A). 
For the 4 cases with ER/PR overlapped, the pathologists’ 
consensus was negative, but the AI analyzer classified 
them as positive or low positive. These were due to the 
AI analyzer recognizing the inked area at the margin of 
the tissue as a CA with positive tumor cells (Fig.  6B). 
Of the four cases with no ER issues and only PR issues, 
two were caused by ink, as above. In one case where 
the tumor cells showed mild atypia and a low density of 
tumor cell clusters, the AI analyzer made a poor interpre-
tation, barely catching the CA throughout the entire area 

of a slide (Fig. 6C). In the last case, the three pathologists 
concordantly classified it as low positive even after revi-
sion because there were clearly visible clusters of positive 
tumor cells at low magnification on the slide. However, 
the AI analyzer counted all the tumor cells and read them 
as negative (Fig. 6D).

Discussion
In this study, we found that when pathologists assessed 
the expression of HER2, ER, and PR in breast cancer with 
the assistance of an AI algorithm, the concordance of 
their individual readings increased.

The ASCO/CAP guidelines strongly recommend 
HER2, ER, and PR testing of invasive breast cancers [26, 
27]. The objective of these guidelines is to enhance the 
accuracy of these diagnostic assays, which enable clini-
cians to identify breast cancer patients who will ben-
efit most from endocrine therapy or HER2-targeted 
therapy. Recent advancements, notably the emergence 
of HER2-targeted ADC, have demonstrated improved 
survival outcomes in breast cancer patients with HER2 
IHC scores of 1+ or 2+ (HER2-low when combined with 
knowledge of negative ERBB2 amplification status). This 

Fig. 6  A Carcinoma in situ areas containing HER2 (human epidermal growth factor receptor 2)-stained cells were classified as cancer area (CA) 
by HER2 analyzer (bar: 200 μm). B ER (estrogen receptor)/PR (progesterone receptor) analyzer recognized the inked area at the margin of the tissue 
as a CA with ER-positive tumor cells (bar left: 5 mm, right: 200 μm). C ER/PR analyzer barely caught the CA through the entire area of PR-stained 
slide (bar left: 5 mm, right: 100 μm). D In a PR-stained slide, pathologists focused the visible clusters of positive tumor cells at low magnification 
and classified them as low positive all together even after revision. In contrast, ER/PR analyzer counted all the tumor cells and interpreted them 
as negative (bar left: 5 mm, right: 100 μm)
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underscores the increasing necessity for a precise inter-
pretation of HER2 testing [5].

In the evaluation of HER2 status via IHC, pronounced 
interobserver discrepancies among pathologists have 
been identified. While there is a high consensus among 
pathologists for 0 and +3 staining, agreement levels drop 
significantly for 1+ and 2+ staining [6]. Consistent with 
this observation, another study found a 26% agreement 
between HER2 IHC scores of 0 and 1+ [7]. As for ER 
and PR evaluations using IHC, although classifications 
related to the ER and PR status of tumors generally dem-
onstrate good to excellent agreement, considerable vari-
ations both within and between laboratories have been 
reported [8, 28]. Preceding these laboratory and observer 
variations, preanalytic factors can also affect the determi-
nation of IHC interpretations such as anatomic origin of 
the tissue, storage conditions, and fixation methods. Such 
discrepancies can lead to variations in the determination 
of IHC status, and thus subtyping, treatment and clinical 
outcomes [9, 29].

Digital pathology has been rapidly spreading, overcom-
ing issues related to image capacity and lack of standardi-
zation. [30, 31]. With the spreading of digital pathology, 
there have been several attempts to introduce AI algo-
rithms in the field of pathology to enhance standardi-
zation and compensate for analytic variability [10, 11]. 
Some studies have evidenced that these algorithms not 
only diminish interobserver variability but can also prog-
nosticate the treatment response to immunotherapy by 
assessing programmed death ligand 1 (PD-L1) expression 
or tumor infiltrating lymphocytes [13, 14, 16, 17].

Previous computational assessments, whether rule-
based or utilizing machine learning models, have shown 
promise in evaluating the IHC status of HER2, ER, and 
PR, typically reporting a high level of concordance 
between pathologists’ manual scoring and computa-
tional assessment [32–36]. However, most of those algo-
rithms do not address tasks with parameters beyond 
their specific training set due to a lack of robustness and 
importantly may require human intervention to extract 
features, making these less suitable for the scale of clini-
cal workflow. Furthermore, many such early models are 
circumscribed to analyzing tissue microarray images or 
require the selection of specific regions of interest (ROI) 
for analysis instead of WSIs [33–35].

The advent of large-scale datasets, coupled with the 
evolution of AI algorithms and drastically increasing 
computing power, have paved the way for deep learn-
ing (DL)-based AI models which mimic algorithmic 
structures of the human brain that exhibit impressive 
alignment with pathologists’ assessments [18–23]. An 
AI model has shown a potential to be included in clini-
cal digital workflow and another model has shown 

robustness across variable environmental factors such as 
staining systems or types of scanners [22, 23]. However, 
a common thread of limitation in most studies is their 
focus on individual AI analyzers assessing HER2, ER, or 
PR. Even in studies where AI was used for multiple bio-
markers, concurrent evaluations on the same patient 
remained rare [23, 37].

The Al analyzer developed in this study was based on 
the DL algorithm and encompasses models for HER2 
and ER/PR which each also contains both a cell detection 
model and a tissue segmentation model. In a previous 
report, an AI-powered PD-L1 analyzer based on a cell 
model alone occasionally misidentified normal epithelial 
cells as PD-L1 negative tumor cells [13]. In this study, by 
combining the results from cell and tissue models, some 
falsely detected tumor cells in areas outside ROI could be 
excluded.

In the context of the cell detection model, many dis-
crepancies were observed, mainly in cell classes where 
the AI analyzer’s assessment differed by a single inten-
sity grade, such as changing from a 2+ tumor cell to a 
1+ tumor cell. In contrast, cases where the AI analyzer 
misjudged the intensity by more than two grades, like 
from a 3+ tumor cell to a negative (0) tumor cell, were 
less common. Another study also suggested that AI mod-
els might have reduced accuracy for mid-range grades 
compared to extreme grades [38].

In our study, the ER/PR analyzer exhibited relatively 
high agreement with the pathologist’s interpretation 
because it focused solely on the proportion of positive 
or negative tumor cells, without considering intensity. 
This meant that even if the cell model misidentified a 
2+ tumor cell as a 1+ tumor cell, it did not significantly 
affect the final result. However, the HER2 analyzer had 
lower agreement with the pathologist’s interpretation 
because it needed to consider both intensity and propor-
tion. Still, as shown in Additional file  1: Tables S4 and 
S6, there were cases where 2+ tumor cells were misclas-
sified as 1+ tumor cells and vice versa. However, since 
there are typically thousands or more tumor cells in a 
WSI, unless misclassifications are skewed toward a par-
ticular class, the overall impact of misdetection is some-
what mitigated. As a result, the AI analyzers developed 
in our study demonstrated reliable performance, even 
when tested on external datasets, as indicated by the high 
agreement between the AI analyzers and pathologists for 
HER2/ER/PR grades.

After revising with AI analyzer, concordance in 
the individual interpretation of each IHC type and 
for molecular subtypes derived from the combined 
results of IHC was enhanced. Importantly, these results 
showed a significant increase in concordance for the 
classes corresponding to the low-HER2 classification 
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(HER2 IHC 1+ or 2+) and remarkable decrease in 
HER2-positive class by the AI assistance. Following 
AI-assisted revisit, pathologists reached a consensus 
to downgrade the 26 out of 91 (28.6%) initial 2+ cases 
to 1+ (Fig. 3B). This downgrading avoids (unnecessary) 
ISH testing for ERBB2 amplification as indicated for 
HER2 2+ cases as this would identify HER2-low cases, 
either 2+ and ISH−, or 1+. This carries immediate 
implications given the eligibility of HER2-low patients 
for Enhertu, the HER2 ADC [5].

When utilizing the AI analyzer as a tool for second 
opinions, as done in this study, pathologists can maintain 
their original workflow, requiring reinterpretation in only 
a select subset of cases (approximately 30% for HER2 
and 10% for ER and PR). As a result, with AI assistance, 
pathologists can achieve a more precise interpretation. 
When prompted by the AI analyzer to reevaluate in this 
study, if one or two pathologists revised their initial judg-
ments, corrections were made in two-thirds or more of 
the original interpretations. This implies the AI analyzer’s 
capacity to aid pathologists as a ‘second-reader’ in har-
monizing judgments that may diverge due to over- or 
underestimations [39]. However, when all three patholo-
gists were requested to reevaluate by the AI analyzer in 
102 cases, the correction rate of their initial assessments 
decreased to less than one-third (29.4%), compared to the 
correction rate of 67.5% (54 out of 80 cases) when only 
one pathologist was revisited. This may indicate situa-
tions with inaccurate tissue segmentation (e.g., misclas-
sifying CIS as CA or mistaking a normal duct for CA). 
Given that this AI analyzer was developed from a train-
ing set with specimens consisting predominantly of CA, 
this issue can be addressed by expanding its training to 
include samples from other tissue types, especially CIS, 
which is in progress.

This study has several limitations. First, even with the 
collection of consecutive cases over years from a uni-
versity hospital, the potential for selection bias must be 
acknowledged. Second, the scope of validation of the 
AI analyzer was primarily confined to enhancing the 
concordance of pathologist interpretation. A clinical 
validation, such as gauging the AI analyzer’s impact on 
patients’ survival outcomes, has yet to be performed. 
Third, in actual clinical practice, HER2-equivocal (2+) 
has a final evaluation of HER2 expression by the fluo-
rescence in  situ hybridization (FISH) test, which was 
not available in this study due to the limited number of 
cases with test results. Lastly, the external validation of 
the analyzer relied on a dataset from a single institu-
tion and was reviewed by a limited number of patholo-
gists. To ensure effective integration of an AI analyzer 

in clinical practice, comprehensive validation is essen-
tial. This should include testing with diverse exter-
nal cohorts and conducting ring studies that involve a 
larger number of cases and pathologists [40].

Despite the aforementioned limitations, our study 
has several strengths. First and foremost, the statuses 
of HER2, ER, and PR were concurrently evaluated 
within a consecutive cohort of cases. Moreover, con-
cordance arose from the interpretations of multiple 
pathologists from several institutions, which emulates 
real-world practice. Notably, the AI analyzer for ER and 
PR was effective even when the antibodies used differed 
between model training and validation phases which 
supports the robustness of the analyzer as it can gener-
alize across different antibodies.

Conclusions
In conclusion, we reported that pathologists’ use of 
AI analyzers to assess HER2, ER, and PR status as an 
important characterization of breast cancer molecu-
lar subtypes improved the agreement of pathologists 
across IHC stains and thus molecular subtypes of 
breast cancer. Notably, this AI-assisted increase in con-
cordance was more pronounced for low positive IHC 
cases with initial relatively low interpathologist agree-
ment. The promise of AI-driven image analysis on pre-
cision oncology seen in this study will require further 
prospective investigation to validate possible real-world 
clinical impact.
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