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HIGHLIGHTS

• An optoelectronic memristor with bioinspired neuromorphic behavior was proposed based on Ag/TiO2 Nanowires: ZnO QDs/FTO.

• The proposed device establishes superior long/short-term synaptic plasticity in response to electrical and light stimuli, and a neuro-
morphic computing task is effectively implemented based on its optoelectronic performance.

• The device emulated complex biological associative learning behaviors, including the four features of acquisition, extinction, restora-
tion, and generalization.

ABSTRACT Neuromorphic hardware equipped with associative learn-
ing capabilities presents fascinating applications in the next generation of 
artificial intelligence. However, research into synaptic devices exhibiting 
complex associative learning behaviors is still nascent. Here, an optoelec-
tronic memristor based on Ag/TiO2 Nanowires: ZnO Quantum dots/FTO 
was proposed and constructed to emulate the biological associative learning 
behaviors. Effective implementation of synaptic behaviors, including long 
and short-term plasticity, and learning-forgetting-relearning behaviors, were 
achieved in the device through the application of light and electrical stimuli. 
Leveraging the optoelectronic co-modulated characteristics, a simulation of neuromorphic computing was conducted, resulting in a handwriting 
digit recognition accuracy of 88.9%. Furthermore, a 3 × 7 memristor array was constructed, confirming its application in artificial visual memory. 
Most importantly, complex biological associative learning behaviors were emulated by mapping the light and electrical stimuli into conditioned 
and unconditioned stimuli, respectively. After training through associative pairs, reflexes could be triggered solely using light stimuli. Comprehen-
sively, under specific optoelectronic signal applications, the four features of classical conditioning, namely acquisition, extinction, recovery, and 
generalization, were elegantly emulated. This work provides an optoelectronic memristor with associative behavior capabilities, offering a pathway 
for advancing brain-machine interfaces, autonomous robots, and machine self-learning in the future.
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1 Introduction

Artificial intelligence (AI) has made significant advance-
ments in recent decades, thus leading to transformative 
changes in the means of gathering and interpreting infor-
mation individually [1–6]. AI relies on computer hardware 
and software to simulate human intelligence and carry out 
various tasks. Furthermore, AI systems rely on software pro-
gramming to construct and train neural networks, which are 
essential for performing tasks. Additionally, hardware com-
puting units play a crucial role in processing and handling 
the data required for AI operations [7–9]. However, execut-
ing complex algorithmic programs is challenging using the 
conventional von Neumann architecture, which physically 
separates the memory and processing, thereby creating an 
inherent bottleneck in terms of computing efficiency and 
power consumption, and making it unsuitable for the cur-
rent AI applications [10, 11]. Recently, extensive research 
has been conducted on neuromorphic hardware based on the 
human brain, which is a potential candidate for next-gener-
ation computer architectures owing to its massive parallel-
ism, high efficiency, robust fault tolerance, and capability 
to integrate storage and computing [12–14]. The most chal-
lenging task in this field is mapping the biological behavior 
in the nervous system to the electrical behavior in devices. 
An artificial synapse is an emerging electronic device that 
can simulate the information transmission behavior between 
biological neurons and their intricate interconnection struc-
ture. It bridges the biological behavior and hardware charac-
teristics, thus enabling hardware neuromorphic computing 
implementation [15, 16]. Currently, extensive research is 
being conducted to build electronic devices that can mimic 
essential synaptic functions. Various behaviors of the bio-
logical synapses, such as spike-timing-dependent plasticity, 
long-term potentiation/depression (LTP/LTD), and paired-
pulse facilitation/depression (PPF/PPD), have been success-
fully implemented in synaptic devices [17, 18]. However, 
merely imitating these features is insufficient to meet the 
intelligent processing requirements of AI [19, 20].

An essential prerequisite for implementing synapse-like 
information-processing technology at the hardware level is 
to analyze the underlying learning and memory mechanisms 
observed in the biological brain [21]. The weight connec-
tion between neurons, induced by the mutual reinforce-
ment of biological ideas and practical experience, known as 

associative learning behavior, forms the core of biological 
learning and memory [22, 23]. Classical conditioning, as 
a simple form of associative learning, primarily comprises 
conditional stimuli (CS) as well as unconditioned stimuli 
(US). The US can trigger an unconditioned reflex without 
learning, whereas the CS initially fails to trigger the reflex. 
When the US is repeatedly or violently accompanied by neu-
tral stimuli, the neutral stimuli are converted to CS to pro-
duce a conditioned reflex. Classical conditioning contains 
four features, namely acquisition, extinction, recovery, and 
generalization, which correspond to the biological behav-
iors of information storage, elimination of old information, 
rememorization, and storage of new information, respec-
tively, for an effective biomimetic synaptic device [24]. Syn-
aptic devices with associative learning capabilities exhibit 
numerous captivating attributes in the context of next-gen-
eration artificial intelligence hardware. On the one hand, 
the hardware realization of associative learning holds the 
promise of enhancing the functionality of neural networks, 
potentially boosting the performance of machine learning 
algorithms, including fields such as image recognition, 
speech recognition, and natural language processing [25, 
26]. Moreover, hardware-based associative learning facili-
tates the development of more autonomous machines, which 
can adapt and learn in dynamically changing environments 
without the need for pre-programming [27]. Further, syn-
aptic hardware with associative learning capabilities dem-
onstrates significant application potential in fields such as 
brain-machine interfaces and neural control [28]. However, 
the hardware implementation of neural networks with con-
siderably high complexity and completeness of biological 
neural features is still rare [28, 29]. Among the various neu-
rological synaptic devices, the proposal and development of 
a two-terminal memristor have shown promising prospects 
and led the way in the field of bionic electronics owing to its 
compact synapse-like structure and strong information trans-
mission capability [30–33]. Several studies have demon-
strated the superiority of memristors in emulating neuronal 
dynamics, particularly classical conditioning behavior [34, 
35]. In a typical implementation, high and low-frequency/
amplitude voltage pulses are used to simulate UC and CS, 
respectively, in classical conditioning behavior. These meth-
ods have been used to realize advanced meta-plasticity and 
asynchronous training and learning [36]. However, their 
development is limited by the inherent problems of purely 
electrical signals, such as crosstalk, poor sustainability, and 
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complex circuits [37, 38]. Furthermore, the electrical signal 
cannot adequately realize the aforementioned four charac-
teristics of classical conditional owing to its limited regula-
tion methods. These challenges can be effectively solved by 
introducing an external stimulus orthogonal to the electric 
field [39–41]. Light, as a controllable, non-contact, and non-
destructive stimulus, can significantly improve the tunability 
of biologically realistic hardware by coordinating with elec-
trical devices. Several reports have proposed the advantages 
of light signals in emulating synaptic plasticity. For instance, 
artificial optoelectronic synapses with heterosynaptic plas-
ticity have been effectively implemented in α-In2Se3-based 
devices [41]. Moreover, an application of interest-modulated 
human visual memories has been achieved in the ITO/Nb: 
 SrTiO3 optoelectronic synapse [42]. The introduction of 
light stimuli greatly expands the functionality of synaptic 
behavior. The difference in relaxation times between light 
and electrical stimuli brings an inherent advantage in achiev-
ing the features of classic conditioning such as acquisition, 
extinction, recovery, and generalization [43, 44]. Unfortu-
nately, few reports have employed optoelectronic synapses 
for the implementation of associative learning behaviors. 
This technology is still in its early stages and requires further 
research.

This study presents an optoelectronic memristor based 
on Ag/TiO2 nanowires (NWs): ZnO quantum dots (QDs)/
FTO (ATZ-based device) that exhibits considerable poten-
tial for emulating classical biological conditioning along 
with visual memory. First, basic synaptic behaviors such as 
long-term and short-term synaptic plasticity (LTSP/STSP) 
are analyzed using electrical stimuli. Subsequently, possess-
ing the merit of the photoconductive effect, the light-induced 
synaptic behaviors are investigated in detail. In addition, the 
resistive switching mechanisms of the ATZ-based devices 
are analyzed. Advanced synaptic behaviors, including short/
long-term memory, learning-forgetting-relearning processes, 
and optoelectronic comodulated responses, are achieved by 
applying both electrical and light stimuli along with various 
parameters. An artificial neural network (ANN) is then built 
based on the memristor performance to verify its application 
in neuromorphic computing. Furthermore, a 3 × 7 optoelec-
tronic memristor array comprising 21 ATZ-based devices is 
constructed to determine its potential for implementation in 
visual memory systems. Most importantly, light and elec-
trical stimuli are applied to ATZ-based devices such as CS 
and US, respectively, to determine their ability to mimic 

fundamental biological conditioning, particularly for the 
properties of acquisition, extinction, recovery, and gener-
alization. In summary, this study bridges the gap between 
the biological synaptic and optoelectronic behaviors and 
proposes a new method for implementing classical condi-
tioning in hardware, thus significantly contributing to the 
development of AI technology.

2  Experimental Section

2.1  Materials

Zinc acetate dihydrate  (C4H6O4Zn·2H2O, 99.9%), potassium 
hydroxide (KOH, 98%), and titanium butoxide (99.0%) were 
purchased from Shanghai Macklin Biochemical Technology 
Co. and hydrochloric acid (HCl, 37%) was purchased from 
Shanghai Aladdin Biochemical Technology Co., Ltd. The 
FTO substrates were purchased from Yingkou OPV Tech 
New Energy Co., Ltd.

2.2  Preparation of the ATZ‑Based Device

The ZnO QDs were synthesized using a facile solvothermal 
method [45, 46]. First, zinc acetate ethanol solution was 
prepared by dissolving 0.9790 g of zinc acetate dihydrate 
in 42 mL of ethanol while stirring at 60 °C. A KOH ethanol 
solution was prepared by dissolving 0.4859 g of KOH in 
23 mL of ethanol under ultrasonic action. It was then grad-
ually dropped into the zinc acetate ethanol solution while 
stirring vigorously. Subsequently, the mixed solution was 
maintained at 60 °C for 100 min. A transparent ZnO QD 
solution was obtained when the mixed solution was cooled 
to room temperature.

The FTO substrates were cleaned ultrasonically in ace-
tone, ethanol, and deionized (DI) water. A facile hydrother-
mal method was then implemented to grow  TiO2 NWs [47, 
48]. The  TiO2 precursor solution was obtained by mixing 
10 mL of deionized (DI) water, 10 mL of HCl, and 0.4 mL 
of Titanium butoxide solution under ultrasonic action for 
30 min. The cleaned FTO substrates were placed in a Tef-
lon liner against the wall, and the  TiO2 precursor solution 
was transferred to a Teflon-lined autoclave. Subsequently, 
the Teflon-lined autoclave was placed in the oven at 150 °C 
for 4 h. After cooling, the obtained  TiO2 NWs film was 
washed thrice with DI water and dried in a vacuum oven. To 
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incorporate the ZnO QDs, 80 μL of ZnO QD solution was 
dropped onto the  TiO2 NW film surface and spin-coated at 
3500 rpm for 20 s to obtain the  TiO2 NWs: ZnO QDs film. 
Finally, the top Ag electrodes with a diameter of 200 μm 
were deposited via direct-current magnetron sputtering using 
a shadow mask to complete the Ag/TiO2 NWs: ZnO QDs/
FTO-based device.

2.3  Characterization and Measurement

The cross-sectional morphology and composition of the 
ATZ-based device were analyzed using a field-emission 
scanning electron microscope (FESEM, Regulus-800) 
equipped with an energy-dispersive X-ray spectroscopy 
(EDS) analyzer. The morphology and structure of the ZnO 
QDs were characterized using high-resolution transmission 
electron microscopy (HRTEM, FEI Tecnai F20). X-ray pho-
toelectron spectroscopy XPS (AXIS SUPRA, Kratos) was 
performed to verify the chemical composition of the  TiO2 
NWs: ZnO QDs film. The photoluminescence (PL) spectra 
were recorded using a spectrofluorometer (PL, EH547DQ). 
The optical transmittance was tested by Olympus BX53M 
(Olympus Corp., Japan). The thickness of the Ag electrode 
was verified by a surface profilometer (DektakXT, Bruker, 
Germany). The electrical performance and synaptic func-
tions of the ATZ-based device were analyzed at room tem-
perature and in atmospheric environments using a Keithley 
2602B source meter connected to a probe station. An ultra-
violet (UV) LED light source (365 ± 10 nm) was used to test 
light-induced plasticity. The UV pulses were generated using 
a function generator (SPF80, Nanjing Shengpu instrument) 
and the UV light density was calibrated using a UV light 
meter (UV-365A, KUHNAST instrument).

3  Results and Discussion

3.1  Conceptual Design and Structural 
Characterizations

The cranial nerves of insects exhibit highly associative learn-
ing behaviors, and a typical example is the proboscis exten-
sion response (PER) of the honeybee [34, 36]. Figure 1a 
presents a schematic of the PER of the honeybee. The flower 
nectar is the US that triggers the proboscis extension, thus 
indicating that the honeybee can naturally reflect the nectar, 

as shown in Fig. 1a-(I). The flower odor as a CS must be 
trained through the coordination of the olfactory and probos-
cis nerves before it can directly trigger the proboscis exten-
sion (Fig. 1a-(II)). PER is caused by a change in the synaptic 
weights between the pre and post-neurons, and time-syn-
chronized stimuli enhance the synaptic weights of the asso-
ciated neurons to adaptively associate the odor with nectar. 
In this process, the synapse is divided into the presynaptic 
membrane (to produce neurotransmitters), synaptic cleft (to 
transmit neurotransmitters), and postsynaptic membrane (to 
receive neurotransmitters), which are key components for 
organisms to learn and adapt to the external environment 
to find food or detect danger (Fig. 1a-(III) and (IV)) [32]. A 
two-port ATZ-based memristive device was proposed and 
developed in this study to emulate the synaptic behavior. 
Its vertical arrangement exhibits a structure similar to that 
of the synapses: the Ag top electrode (presynaptic mem-
brane),  TiO2 NWs: ZnO QDs active layer (synaptic cleft), 
and FTO bottom electrode (postsynaptic membrane), as 
shown in Fig. 1b. The as-prepared device was characterized 
using SEM to observe its morphology. The cross-sectional 
SEM image indicates that the synthesized  TiO2 NWs grew 
uniformly on the FTO with a diameter of approximately 
150 nm, and the thickness of the active layer was approxi-
mately 1.6 μm, as shown in Fig. 1c. Furthermore, uniformly 
grown nanowires were observed in the SEM image of the 
surface morphology (Fig. S1). A compositional analysis 
of the as-prepared device was performed using EDS. Fig-
ure 1d(I–III) depict the EDS mapping and elemental distri-
bution of Ti, Zn, and O in the  TiO2 NWs: ZnO QDs film. 
The transmittance of the Ag electrode was verified to ensure 
that the photon energy could reach the resistive active layer. 
As shown in Fig. S2a, the Ag/FTO structure exhibits a trans-
mittance of 95.4% for UV light. Moreover, the thickness of 
the sputtered Ag electrode is detected to be ~ 29.6 nm by a 
surface profilometer, as shown in Fig. S2b. The photolu-
minescence (PL) spectra of the device were obtained at an 
excitation wavelength of 380 nm, which further verified the 
presence of ZnO QDs in the film. The peaks located at 394, 
401, and 421 nm correspond to  TiO2 NWs, whereas the peak 
at 548 nm can be attributed to the oxygen vacancies in the 
ZnO QDs, thus demonstrating the introduction of ZnO QDs, 
as shown in Fig. S3 [45, 49]. The morphology of the pre-
pared ZnO QDs was characterized by TEM. Figure 1e pre-
sents the TEM image, which shows that the ZnO QDs with 
uniform size distribution are successfully synthesized, and 
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the statistical size of 100 ZnO QDs in the inset demonstrates 
that an average size of 5.5 ± 1.5 nm can be obtained. The 
detailed structural information of the ZnO QDs was obtained 
through HRTEM (Fig. 1f). The lattice fringes confirm that 
the lattice spacing of the ZnO QDs is 0.266 nm, which 

concurs with the spacing of the wurtzite ZnO (002). The 
ring patterns corresponding to the (100), (101), (102), (110), 
and (112) planes of the ZnO QDs can be observed in the 
selected area electron diffraction (SAED) pattern (Fig. 1g), 
further demonstrating the successful synthesis of wurtzite 

Fig. 1  Conceptual design and structural characterizations. a Schematic of the proboscis extension response of a honeybee. b Schematic of the 
proposed ATZ-based device. c Cross-sectional SEM image of the  TiO2 NWs: ZnO QDs/FTO/glass structure. d EDS elemental mapping images 
of (I) Ti, (II) Zn, and (III) O. e Low magnification TEM image of the synthesized ZnO QDs. Inset: size distribution of 100 ZnO QDs. f High-res-
olution TEM of the ZnO QDs. Inset: crystalline structure of the ZnO QDs. g Selected area electron diffraction (SAED) image of the ZnO QDs. 
XPS spectrum of the  TiO2 NWs: ZnO QDs film: deconvoluted h Zn 2p and i Ti 2p spectra
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ZnO QDs [50]. The chemical composition of the  TiO2 NWs: 
ZnO QDs was analyzed using XPS (Fig. S4a). Figure 1h 
depicts the spectra of Zn 2p, where two peaks correspond-
ing to 1022.2 and 1045.1 eV can be observed, correspond-
ing to the  Zn2+ of wurtzite ZnO [51]. Figure 1i depicts the 
XPS spectra of the deconvoluted Ti 2p, in which the peaks 
located at binding energies of 458.7 and 464.3 eV can be 
attributed to Ti 2p3/2 and 2p1/2, respectively, corresponding 
to the  Ti4+ in  TiO2 [52, 53]. The XPS results imply intimate 
contact between the  TiO2 NWs and ZnO QDs. The O 1s of 
the  TiO2 NWs: ZnO QDs film was exhibited in Fig. S4b, 
where the majority of the peak is attributed to lattice oxy-
gen, accompanied by a small number of oxygen vacancies. 
To ascertain the role of ZnO in the defect centers within the 
device, further XPS characterization was performed on pure 
 TiO2 NWs film. Figure S4c displays the Ti 2p spectrum of 
 TiO2 NWs, showing that the  Ti4+ peak dominates, while the 
area corresponding to  Ti3+ is minimal. The O 1s spectrum 
reveals the presence of a limited quantity of oxygen defects 
within the  TiO2 NWs (Fig. S4d), consequently impeding 
the migration of Ag ions within the bulk material [54, 55].

3.2  Electrical Performance Evaluation

In artificial synapses, changes in the synaptic weight 
correspond to the device conductance. In this case, the 
potential of the ATZ-based device to emulate the synaptic 
behavior was verified by applying electrical signals. First, 
15 cycles were consecutively applied to the top electrode. 
The conductance gradually increased and then decreased 
with the increase in the sweeping voltage, demonstrating 
its analogous resistive switching behavior, as shown in 
Fig. 2a, b. After fitting analysis of the curves, the carrier 
transport mechanism has been attributed to the space-
charge limited current (SCLC) model resulting from the 
charge trapping/de-trapping behavior, which is explained 
in the mechanism section of the Supplementary Informa-
tion. A more detailed variation in the conductance can 
be observed in the plot of current and voltage data vs. 
time. The current increases from 179.2 to 432.1 μA within 
15 positive cycles, and drops from 0.65 to 0.30 μA in 15 
negative cycles, as shown in Fig. 2c, d. A difference in 
the current values is observed between the positive and 

negative regions because of the contact barrier in the Ag/
TiO2 NWs. This property is known as self-rectification and 
helps in high-density neural computing [56]. Notably, the 
synaptic behavior does not require an electrical forming 
process. When a forming voltage of 0 V → + 5 V → 0 V 
is applied to the device, the conductance of the device 
reaches saturation without significant conductance gra-
dient behavior (Fig. S9). In addition, the electrical per-
formance of pure  TiO2 NWs-based devices is studied, as 
shown in Fig. S10. It can be observed that the  TiO2 NWs-
based device manifests a subtle analog resistive switching 
behavior, attributed to the relatively low defect concentra-
tion serving as trap centers. Subsequently, the LTSP/STSP 
of the ATZ-based device was analyzed in the pulse mode. 
A pair of voltage pulses (+ 3 V, 1 ms) was applied to the 
device to mimic PPF behavior. The amplitude of the cur-
rent response excited by the second pulse was larger than 
that of the first pulse, which is consistent with biological 
behavior, as shown in the inset of Fig. 2e. Furthermore, the 
time interval between the paired pulses was regulated, and 
the PPF index was calculated using the following equation 
[57]:

where  A1 and  A2 denote the currents excited by the first and 
second pulses, respectively. The PPF index dropped rapidly 
at the beginning with an increase in the interval time and 
decreased to approximately 8% when the interval exceeded 
80 ms, and then remained stable, demonstrating a weak 
interaction between the first and second pulses, as shown in 
Fig. 2e. Two relaxation features, τ1, and τ2, corresponding 
to the fast and slow decaying terms, are fitted from the PPF 
decay curve (10 cycles) [58]. In this case, τ1 and τ2 are fitted 
to 14.35 and 54.35 ms, respectively. The results obtained 
by fitting are relatively larger than the values observed in 
biological synapses [59]. Figure 2f depicts the PPD index 
as a function of the interval time, in which two consecutive 
negative pulses are applied. The PPD exhibits a decreasing 
trend as the interval increases, and its τ1 and τ2 are fitted to 
3.39 and 41.43 ms, respectively. Figures S11 and S12 exhibit 
the cycle-to-cycle and device-to-device performance of the 
PPF/PPD properties, respectively. Furthermore, a series of 
voltage pulses were applied to analyze the LTSP. The cur-
rent increased under the excitation of 400 consecutive volt-
age pulses of + 2 V (width: 50 ms, interval: 50 ms), thus 
indicating that the synaptic weight could be enhanced by 

(1)PPF = 100% ×
A2 − A1

A1

,
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repeated stimuli, which corresponds to the LTP, as shown 
in Fig. 2g. Subsequently, 300 consecutive negative pulses 
of − 2 V caused the current to return to its initial state, thus 
indicating LTD. Figure S13 depicts the LTP/LTD behavior 
at different pulse widths (500 μs and 500 ms). The invertal 
of the pulses was fixed at 50 ms. There is almost no change 
in the conductance of the device at 500 μs, while the con-
ductance at 500 ms shows higher linearity but brings greater 
power consumption. Figure 2h, i demonstrate that the prop-
erties of synaptic weights can be controlled by electrical 
stimuli, that is, frequency/strength/duration-dependent syn-
aptic plasticity [15, 60]. Larger conductance variations can 
be observed in the case of higher amplitude, shorter interval 

time, and longer duration. To verify the spontaneous decay 
behavior of the device, after applying 400 cycles of positive 
voltage pulses with different amplitudes, the conductance 
state is read out using 0.1 V pulses. As shown in Fig. S14, it 
can be observed that after the excitation process, the device 
exhibits varying degrees of spontaneous decay behavior, and 
the decay trend accelerates as the amplitude of the voltage 
decreases. These behaviors form the foundation for multi-
dimensional synaptic weight updates and neural computing 
capabilities.

Fig. 2  Electric-induced synaptic behavior. Consecutive I–V curves of the ATZ-based device for 15 cycles under a positive sweeping voltage 
(0 V → + 3 V → 0 V) and b negative sweeping voltage (0 V → − 3 V → 0 V). Current and voltage data vs. time of the ATZ-based device in the 
c positive and d negative regions. e PPF and f PPD index values (10 cycles) with respect to the interval of pulse pairs. g LTP/LTD properties 
of the ATZ-based device (+ 3 V for potentiation, − 3 V for depression). h Conductance variation of the ATZ-based device for different voltage 
pulse amplitudes. i Conductance variation of the ATZ-based device for different voltage durations and intervals
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3.3  Optoelectronic Performance Evaluation

Photoelectrical properties demonstrate exceptional potential 
in advanced neural computing and artificial visual systems. 
In this case, predesigned optoelectronic hybrid waveforms 
were applied to the ATZ-based device to analyze the light-
induced synaptic plasticity (Fig. 3a). First, a light pulse with 
a duration of 15 s and light power density of 11.97 mW  cm−2 
was irradiated on the device, and a series of voltage pulses 
(0.1 V, 50 ms) were applied to simultaneously readout the 
conductance. When the light was turned on, the conductance 
of the device increased rapidly from 0.10 to 0.23 μA within 
15 s. Subsequently, the conductance decayed to its initial 
state in approximately 60 s after turning off the light. Fig-
ure 3b depicts the conductance variations under various light 
densities (dark, 1.30, 2.76, 3.91, 6.40, 7.50, 9.64, 10.96, and 
11.97 mW  cm−2), where it can be observed that the response 
increases with density. The decay trend of the conductance 
between different densities after turning off the light must 
be analyzed carefully. The time taken for the decay from 
the response peak to the initial value decreases with the 
decrease in density, thus indicating that this type of modu-
lation enables the ATZ-based devices to achieve a transition 
from STSP to LTSP. In the case of low density, the induced 
response decays rapidly, corresponding to short-term syn-
aptic weight changes in response to low-density stimuli in 
biological synapses (STSP). Under high density, the decay 
trend slows down, thus indicating that the enhanced synap-
tic weights can be maintained for a relatively long period 
(LTSP). Moreover, the light response of pure  TiO2 NWs-
based devices under different light densities was investi-
gated. As shown in Fig. S15, it can be observed that even 
under high light density, the decay trend of response is quite 
rapid. This behavior is attributed to the absence of the pho-
togenerated electron separation effect from ZnO QDs. In the 
pure  TiO2 NWs-based device, the recombination efficiency 
of photogenerated electron–hole pairs is relatively high, 
which is not conducive to the implementation of synaptic 
behavior. Figure 3c depicts the duration-dependent light-
induced response of the ATZ-based device, in which four 
durations (5, 10, 15, and 20 s) were applied to the device. 
The ATZ-based device was transformed to a more conduc-
tive condition by using a long-duration light pulse, thus 
resulting in a long decay time, along with STSP-to-LTSP 

transitions. Additionally, the light-induced response of 
the ATZ-based device exhibits the frequency-dependent 
property, as shown in Fig. S16. The reliability of the light-
induced responses was verified by applying 50 cycles of on/
off light pulses to each device. The light-induced response 
increased slightly after each light pulse (inset of Fig. 3d) 
and reached saturation after 50 cycles, as shown in Fig. 3d. 
Overall, the light-induced response remained stable with-
out noticeable fluctuations over 50 cycles. Furthermore, the 
learning and forgetting behavior of the human brain, which 
follows the Ebbinghaus forgetting model (Fig. S17), was 
mimicked by applying four cycles of on/off light pulses [61]. 
Light-on (5 s) represents the learning process, light-off (10 s) 
represents the forgetting process, and conductance repre-
sents memory strength. The first learning process increased 
the current from 0.18 to 0.26 μA, and after the first forget-
ting process, the decayed current slightly increased from the 
initial state, i.e., the memory strength was enhanced. The 
relearning process further enhanced the memory strength 
(decayed current after 10 s). Finally, a gap exists in the ∆I 
between the first and fourth decayed currents, which indi-
cates that memory is significantly enhanced by repeated 
learning processes. This behavior is very similar to the 
human case and it demonstrates the potential of the ATZ-
based device in emulating the “learning-forgetting-relearn-
ing” function. The light-induced PPF behavior was achieved 
by applying two consecutive light pulses at various intervals. 
The PPF index decays as the intervals, τ1 and τ2, are fitted 
to 1.62 and 36.56 s, respectively, as shown in Fig. 3f. Figure 
S18 depicts the cycle-to-cycle and device-to-device perfor-
mance of the light-induced PPF behavior. Purely electrical 
pulses (1.2 V, 50 ms), purely light stimuli (6.40 mW  cm−2), 
and mixed light (6.40 mW  cm−2) and electrical stimuli 
(1.2 V, 50 ms) were applied to the device to increase the 
variation range of the response, and the current response 
was read out by a series of 0.1 V pluses. In these three types 
of modulations, the purely electrical-induced potentiation 
achieved a high response of 0.92 μA, whereas the purely 
light-induced response (reaching 0.49 μA) was significantly 
smaller than that of the electrical case, as shown in Fig. 3g. 
Furthermore, the response can be enhanced to 1.15 μA when 
both light and voltage are applied. In the depression process, 
the addition of light reduces the decay rate of the conduct-
ance. Figure 3h depicts the potentiation/depression process 
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Fig. 3  Light-induced synaptic plasticity of the ATZ-based device. a Schematic of the light-induced performance measurement. b Current 
responses under different light densities (dark, 1.30, 2.76, 3.91, 6.40, 7.50, 9.64, 10.96, and 11.97 mW  cm−2). c Current responses under dif-
ferent light durations (5, 10, 15, and 20 s). d Current response under consecutive light pulses. Inset: local zoomed view of d. e Light-induced 
learning-forgetting-relearning process of four cycles. f Light-induced PPF behavior (10 cycles). g LTP/LTD performance under the excitation of 
light, voltage, and light plus voltage. h LTP/LTD performance under the synergy of light and electrical modulation. i Schematic of the ANN-
based neural network for MNIST dataset classification using LTP/LTD (light + voltage) properties of the device. j Normalized conductance of 
the LTP/LTD vs. the normalized number of pulses. k Variation in accuracy during 100 training epochs. l Confusion matrix for recognition of the 
numbers from 0 to 9
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in four stages, where the electrical stimuli are applied from 
the beginning to the end, and the light stimuli are only 
applied at the second and third stages. Turning on the light 
leads to a transition from stage 1 to stage 2, wherein the 
response of the device increases rapidly, demonstrating the 
synergy between light and electrical modulation. When the 
light is removed from stage 3 to stage 4, the response gradu-
ally drops to the initial state, which can be attributed to the 
persistent photoconductivity (PPC) effect of the photosensi-
tive active layer [37]. The synergistic effects of the light and 
voltage enabled the ATZ-based devices to emulate various 
neuroplastic dynamics.

An ANN was built and used to classify handwritten digit 
recognition datasets obtained from the Modified National 
Institute of Standards and Technology (MNIST) to ana-
lyze the potential of neuromorphic computing. During the 
training process, the LTP/LTD characteristics of the ATZ-
based device were modeled and employed exclusively for 
the matrix multiplication in the neural network to update 
weight updates [62, 63]. It is worth noting that for the syn-
aptic weights in hardware neural networks, the device relies 
on long-term plasticity over consecutive stimulations or 
peripheral non-volatile memory devices to maintain weights. 
Detailed information on the mathematical model is pre-
sented in the weight update model section of the Supplemen-
tary Information. Three types of LTP/LTD properties (pure 
voltage, pure light, and light plus voltage) were analyzed 
to obtain the nonlinearity and asymmetric nonlinearity fac-
tors (ANF). Figure S19 presents the measurement and fitting 
curves of LTP/LTD. The LTP/LTD properties regulated by 
light plus voltage stimuli exhibited the optimal nonlinearity 
and ANF values, as shown in Table S1. Consequently, the 
rule of synaptic weight update was performed in this case. A 
fully connected multilayer perceptron neural network, which 
included 784 input neurons, 100 hidden neurons, and 10 
output neurons, was simulated based on the normalized LTP/
LTD properties (Fig. 3j) of the ATZ-based devices, as shown 
in Fig. 3i. Before training, a 28 × 28 handwritten digit image 
was converted into grayscale values and initialized to 784 
neurons in the input layer. Each neuron updated its weights 
under the rules of the memristor model and then passed 
them to the output layer after weighted summation and acti-
vation. Subsequently, a gradient descent algorithm was used 
to determine the minimum loss function to optimize the out-
put results. A total of 6,000 training images and 4,000 test 
images were extracted from the MNIST dataset to construct 

the neural network. The recognition accuracy increased 
from 58.24 to 88.9% after 100 epochs, as shown in Fig. 3k. 
Moreover, the recognition accuracy within 100 epochs under 
three conditions is exhibited in Fig. S20. Simultaneously, 
a probability confusion matrix analysis of the recognition 
of ten numbers from 0 to 9 was performed, as shown in 
Fig. 3l. The probability that the number would be correctly 
identified was greater than 79.2%. Notably, the above results 
are based on the simulation of ideal memristor behavior. To 
reflect the impact of variability on the neural network, the 
effects of both cycle-to-cycle and device-to-device variations 
(Fig. S21) were considered in the simulation. As shown in 
Fig. S22, incorporating the dynamic behavior of the devices 
led to a decrease in recognition accuracy to 82.3%. Table S2 
summarizes and compares the recognition accuracy and per-
formance of the proposed device with previous reports.

3.4  Visual Memory Application

Human vision can generate a linear response correspond-
ing to the density or duration of external light information 
received by the retina and it can perform short-term or long-
term memory operations [43]. A 3 × 7 memristive array is 
constructed to mimic the human visual memory function. 
The optical images of the developed array can be observed 
in Fig. S23. Figure 4a presents the schematic of the meas-
urement, in which the light stimuli with a light density of 
3.91 mW  cm−2 are radiated on the top electrodes of the 
ATZ-based device cells through a “W” shaped mask. The 
current is collected by testing the devices one by one by 
applying a probe to the exposed electrode, while the devices 
covered by the mask are measured in dark conditions. After 
2, 5, and 10 s of excitation by the light stimuli, the variations 
in the conductance of each device cell with decay time are 
read out by voltage pulses of 0.1 V, as shown in Fig. 4b–d. A 
light stimulus of 2 s induces a weak conductance response; 
thus, the mapped letter “W” has low contrast, indicating 
that the intensity of visual reception of light information 
is insufficient for clear perception of the visual nerve, as 
shown in Fig. 4b. As the time decays to 5 s, the mapped 
letter “W” gradually blurs, until it is entirely indistinguish-
able after 20 s, thus indicating the forgetting of the light 
information. When the time of light perception increases, 
that is, the duration of the light stimulus increases, the light-
induced response increases, and the mapped letter “W” can 
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be perceived, as shown in Fig. 4c. After a decay of 20 s, 
the mapped letter is barely distinguishable instead of being 
completely blurred, demonstrating an extension of memory 
time. A high contrast mapped letter “W” can be achieved 
in the case of light stimuli of 10 s, and it can be resolved 
even after 20 s of decay, as shown in Fig. 4d. Subsequently, 
conductance mapping tests under pure electricity and light 
plus electric stimuli are implemented in the 3 × 7 memris-
tive array. 100 electrical pulses with a pulse width of 50 ms 
are applied to the selected device cell, while the duration 
time of the light pulse is fixed at 2 s. As shown in Fig. S24, 
similar “W” letter mapping and decay behavior in the array 
can be observed. These results indicate that light information 
can be perceived and memorized within a short period, thus 
demonstrating its application potential in emulating human 
visual memory functions.

3.5  Associative Learning Behavior Evaluation

Classical conditional reflex behavior, which dominates the 
associative learning behavior in the biological brain, has 
been extensively analyzed in bionic electronics research. In 
this study, the PER behavior of honeybees is employed as 

a paradigm to exhibit the associative learning behavior in 
the device. During the implementation, the light pulses are 
denoted as CS (odor), and the voltage pulses are denoted as 
US (nectar), as shown in Fig. 5a. The US naturally triggers 
proboscis extension (unconditioned response, UR), whereas 
the CS can induce proboscis extension only after repeated 
training using associative pairs of US (conditioned response, 
CR). During the measurement, a series of reading voltage 
pulses (0.1 V, 2 ms) is provided to read out the conduct-
ance response, and the threshold current is set at 0.6 μA 
to distinguish the occurrence of PER. The CR increases to 
≈ 0.58 μA and cannot exceed the threshold even though the 
device is excited by consecutive CS inputs (45 cycles of 
purely light pulses, 0.5 Hz), thus indicating that the reflex 
is not triggered, as shown in Fig. 5b-(I). Subsequently, the 
light was turned off, and the decaying current over time 
was observed by applying reading voltage pulses, as shown 
in Fig. 5b-(II). The decaying current remained constant 
below the threshold (initial: 0.45 μA). Conversely, under 
the excitation of consecutive US (45 cycles of purely volt-
age pulses, 0.5 Hz), the UR gradually exceeds the threshold 
(reaches ≈ 1.55 μA), thus indicating that the PER is trig-
gered (Fig. 5b-(III)). Figure 5b-(IV) depicts the decaying 

Fig. 4  Visual memory application of the ATZ-based device. a Schematic diagram of light testing mapped on a 3 × 7 memristive array (I) 
through a “W” shaped mask, and (II) a top view of the mask. The variation in conductance-mapped pattern (letter “W”) with decay time (0, 5, 
and 20 s) after b 2 s, c 5 s, and d 10 s of light radiation
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Fig. 5  a Schematic of the classical PER of a honeybee. Light pulses emulate the CS (odor, no trigger response), and voltage pulses mimic the 
US (nectar, trigger response). b (I) Conductance response after excitement by CS (45 cycles of purely light pulses, 0.5 Hz) and (II) the decayed 
response within 200  ms after being excited by CS. (III) Conductance response after excitement by US (45 cycles of purely voltage pulses, 
0.5 Hz) and (IV) the decayed response within 200 ms after being excited by US. Implement the four features in classical PER: c acquisition, d 
extinction, e recovery, and f generalization
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current over time after excitation by the US. The decay-
ing current was initially above the threshold current corre-
sponding to the response status; it then gradually decreased 
below the threshold within 100 ms, thus indicating synaptic 
action potential firing until the end of the reflex. Classical 
conditioning is a temporary neural connection established 
based on unconditioned reflexes and manifests four features: 
acquisition, extinction, recovery, and generalization. These 
features correspond to the storage of information, elimina-
tion of old information, rememorization, and storage of new 
information in the biological brain. Therefore, the acquisi-
tion feature is the basic condition required to establish a 
neural connection between CS and US. In this case, asso-
ciative pairs comprising light stimuli (CS, 0.5 Hz) and volt-
age stimuli (US, 0.5 Hz) were concurrently applied to the 
device for acquisition. The conductance response rapidly 
increases above the threshold, triggering the PER, then rises 
to ≈ 2.19 μA after 45 training cycles, as shown in Fig. 5c-
(I). The sum of the individual response (≈ 2.13  μA) is 
slightly lower than the case induced by the associative pairs 
(≈ 2.19 μA), which can be attributed to the saturated excited 
states in the active layer. Figure 5c-(II) depicts the decaying 
current after removing the associative pairs; evidently, the 
PER can be maintained until 200 ms without relaxing below 
the threshold. Immediately after training with the associative 
pairs, the triggering behavior of the PER was investigated 
using only the CS. The CR reaches ≈ 0.92 μA after 45 cycles 
of light stimuli, which is sufficiently large to trigger PER, 
thus indicating the establishment of a connection between 
the US and CS (acquisition), as shown in Fig. 5c-(III). Fig-
ure 5c-(IV) shows that the decaying current is initially above 
the threshold (≈ 0.89 μA) and then gradually decreases 
below the threshold at ≈ 45 ms, representing the relaxation 
of the PER. The training results of the associative pairs dem-
onstrate that only the CS could trigger the response; how-
ever, this neural connection is not permanent. Extinction can 
dominate the disappearance of the conditioning response. 
After 10 min, 45 cycles of the light stimulus (CS, 0.5 Hz) 
were applied to each device. The CR below the threshold in 
Fig. 5d-(I) indicates that the CS alone failed to trigger the 
PER after 10 s of decay time, and the initial decaying current 
(≈ 0.48 μA) after excitation also remained constant below 
the threshold (extinction). However, the initial decaying cur-
rent after training is slightly larger than that of the untrained 
case (Fig. 5b-(II), ≈ 0.45 μA) and below the threshold, thus 
demonstrating the weak neural connection between the US 

and CS. Additionally, synaptic plasticity enables previously 
extinguished responses to be activated rapidly and with large 
magnitudes when the same associative pairs arrive, which is 
the feature of recovery. Figure 5e-(I) depicts the conductance 
response after training using the same associative pairs. The 
CR is enhanced to approximately 0.97 μA, and the initial 
decaying current is excited to 0.95 μA (Fig. 5e-(II)), both 
of which are larger than the previous acquisition (conduct-
ance response: 0.92 μA, initial decaying current: 0.89 μA), 
thus indicating the re-strengthening of the neural connection 
between the US and CS (recovery). Under generalization, 
similar stimuli can also trigger the same CR after forming 
a neural connection under specific associative pairs. Low-
frequency associative pairs comprising light stimuli (CS, 
0.35 Hz) and voltage stimuli (US, 0.35 Hz) were consid-
ered as similar stimuli and applied simultaneously to the 
device after a recovery period. The conductance response 
gradually increased above the threshold, and the PER was 
effectively triggered even if the triggering process was slow, 
as shown in Fig. 5f-(I). In Fig. 5f-(II), the decaying cur-
rent initially decreases from approximately 1.41 μA and 
continues to decay below the threshold at 88 ms. Similar 
stimuli elicit a weaker response and demonstrate a faster 
decay tendency compared with the high-frequency training. 
The CR was tested after training with similar stimuli, and 
it gradually increased to approximately 0.81 μA, as shown 
in Fig. 5f-(III); this proves that the CS can trigger PER. 
Subsequent measurements of decaying currents (Fig. 5f-(II)) 
also verified that similar stimuli can trigger the PER and 
establish neural connections. However, for generalization, 
the differentiated stimulus produced a lower response than 
the previous stimulus, as can be observed from the low CR 
and fast decay trend. In summary, the PER of the honeybee 
was emulated in the ATZ-based device, and its four key fea-
tures, i.e., acquisition, extinction, recovery, and generaliza-
tion, were successfully implemented.

4  Conclusions

This study presented an optoelectronic memristor based on Ag/
TiO2 NWs: ZnO QDs/FTO, which was designed to accomplish 
the classical hardware conditioning reflex. Under electrical 
stimuli, the device exhibited a hysteresis I–V curve with a grad-
ual change in conductance, which could be attributed to charge 
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trapping/de-trapping. Moreover, basic synaptic behaviors, such 
as LTP/LTD and PPF/PPD, were effectively achieved. Fur-
thermore, several advanced synaptic plasticities, including the 
transition from STSP to LTSP, light-induced LTP/LTD, and 
learning-forgetting-relearning functions were achieved under 
the synergy of light and electrical modulation. An ANN exhib-
iting a high recognition accuracy of 88.9% for the MNIST 
dataset after training for 100 epochs was also established using 
coordinated modulated performance. The potential for emu-
lating artificial visual memory was validated by employing 
a 3 × 7 memristive array consisting of the proposed device. 
Most importantly, the PER of a honeybee was demonstrated 
using associative pairs of light and voltage stimuli, which func-
tioned as conditional and unconditional stimuli, respectively. 
In summary, an effective biomimetic synaptic optoelectronic 
memristor was developed in this study, which presents con-
siderable potential for the development of hardware, artificial 
intelligence, neuroprosthetics, and neurorobotics.
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