Neutrinoless Double Beta Decay

\[(A,Z) \rightarrow (A,Z+2) + e^- + e^-\]

Candidates: 44Ca, 76Ge, 82Se, 94Zr, 100Mo, 114Cd, 120Te, 130Te, 150Nd, and 238U

The observation of neutrinoless double beta decay will confirm the Majorana nature of the neutrino and will give information on the absolute neutrino mass scale.

CaMoO$_4$ Crystal

100Mo (9.63% natural abundance) is one of the most promising double beta decay candidate because of its high transition energy ($Q = 3035$ keV).

CaMoO$_4$ (calcium molybdate) scintillators were radiopurely fabricated from single crystals by the Czochralski method.

- Density (g/cm3): 4.2-4.3
- Melting point (°C): 1445-1480
- Structural type: Schueelite
- Wavelength of emission maximum (nm): 520

Metallic Magnetic Calorimeter (MMC)

Thermometer: Au:Er (800 ppm)
- a dilute alloy of Er in Au
- paramagnetic material

MMC Performance Compared with Si(Li)

- 55Fe

- MMC (18 eV FWHM)

- Si(Li)

Experimental Setup

Energy absorption of a photon or a particle by the absorber leads to temperature increase of the system.

\[\Delta E = 2.35 \xi (k_B T C)^{1.2}\]

Crystal size: ~ 11 mm x 8 mm x 6 mm
Operating condition: 11 mK, 40 G

Radioactive Source

Electro-deposited monolayer 241Am alpha decay source from Ortec
- alpha energy (keV): 5388, 5443, 5486
- intensity (%): 1.4, 12.8, 85.2

Results

- Trigger rate: ~ 1 Hz
- Energy resolution: ~ 6.1% FWHM for the major peak

Discussion

Possible explanations for the poor energy resolution:
1) Cracks inside the crystal formed during photoresist process
 - Adopt stressless process
2) 4He attached on the surface of the crystal at low temperatures
 - Use gamma source for calibration

Future Plans:
1) Use bigger crystal
2) Measure scintillation light from the crystal at the same time using TES

Dedicated to my mother So-cheon Park