절단파개량과 절단변연형태 및 하중각도가 도재라미네이트 베니어 내의 응력분포에 미치는 영향에 관한 삼차원 유한요소법적 연구

서울대학교 치과대학 치과보철학교실

류경희, 이성형, 양재호, 정현영

1. 서 론

치의학 분야에서 심미성에 대한 요구도는 치료의 효율성과 함께 증가되어 왔다. 과거에 완전 파개 수복물의 적용중이었던 범색, 미심미적인 수복물 및 형태와 배열 이상의 치아들은 이제 일상적으로 도재라미네이트 베니어로 치료되고 있다. 도재라미네이트 베니어 숏이 치아 색상의 양의 도재 전장판을 전치 또는 소구치의 외 면에 접착시켜 수복에 치아의 기능 증진과 더불어 심미성을 회복시켜 주는 방법이다.

도재라미네이트 베니어는 초기에는 치아 색조, 외형 및 배열 수정과 같은 심미적인 목적을 위해서만 사용되었으나, 현재의 기술의 발달과 임상에서의 높은 성공률에 힘입어 절단의 마모나 파절, 적절한 전방유도의 싸짐, 개방극복과 같은 기능적 목적을 위한 치아의 수정에도 사용되게 되었으며(10), 최근에는 full veneer도 가능하게 되었다(4). 현재까지의 종종 연구들(2,23)은 적절한 환자의 선택과 적용, 그리고 주의 깊은 임상 술직이 따르다면 이 술직이 완전 파개 수복의 대안이 될 수 있음을 보여주었다.

도재라미네이트 베니어는 치아와의 결합력과 도 재라미네이트 베니어의 설계에 따라 임상적 성공 여부가 좌우되는데, 도재라미네이트 베니어의 설계에 있어서 절단파개 및 절단변연의 처리는 도재라미네이트 베니어의 장기간 파절저항에 가장 중요한 요소이다.

외력에 대한 구조물 내의 응력을 분석하는 방법에 는 brittle lacquer coating법(9), strain gauge법(16,19), holography법(41,42), 광학적 응력분석법(11,43), 유한요소분석법(60,61) 등이 있다. 이 중 유한요소분석법은 불규칙하고 복잡한 기하학적 형태를 재현할 수 있고, 각 재료의 물성치로 이루어지는 특성을 포함할 수 있는 장점을 가진다. 또한 여러 가지 상황에서 다양 한 하중으로 인해 압기되는 치아 내부의 응력량과 분포를 정량적으로 연구할 수 있게 해 주는 한편, 이는 상황의 예측 가능성에 관해 예측할 수 있게 해 준다(48). 따라서 다양한 치의학 분야에서 응력 분포 연구에 유한요소법이 활용되고 있으며 도재라 미네이트 베니어에서도 설계형태와 하중조건에 따 른 응력분포를 분석한 연구들이 발표된 바 있으며(60, 53), 대부분(22,23) 2차원 유한요소법으로서 그 해석에 제한이 따랐다. 치아는 평면 구조가 아닌 3차원 임체 구조이며 특히 전치는 선정적 모형으로는 분석될 수 없다. 또한 치아학의 연구에는 치추언면 및 치밀골, 해면골의 영향은 고려되지 않았으며, 절단파개량 및 lingual chamfer의 성장연장 길이도 1mm 이내로 제한되었던 단점들이 있었다. 비록 대부분의 임상가 들이 임상에서 서면파개를 적용하고 있고, 잔존 치 절의 임상적 처리와 도재라미네이트 베니어 절 단의 확장된 길이간의 기하학적 비율과 추천하는 절 단변연형태에 관해서 다양한 주장이 있으나 과학적 인 근거는 부족한 설정이다.

이에 저자는 도재라미네이트 베니어에서 절단파 개량과 절단변연형태 및 하중각도가 도재라미네이 트 베니어 내 응력분포에 미치는 영향을 알아보기
위하여, 절단파개량이 0, 1, 2, 3mm이고 절단변연형태가 feathered edge, incisal bevel, reverse bevel 및 실리콘장 정도가 상이한 lingual chamfer인 도제라미네이트 베니어에 대한 3차원 유한요소모형을 설계하고 125° 및 132°의 두각지 각도로 하중을 가한 후, 도제라미네이트 베니어 내에 발생하는 인장 및 압축응력과 레진 시멘트층에서 발생하는 전단응력의 크기와 분포를 상자원 유한요소법으로 분석하였다.

Ⅱ. 연구재료 및 방법

1. 지대치 형성 및 도제라미네이트 베니어의 제작

발거진 상악 증절치 중 Wheeler에 의한 표준형을 기초로 하여 가장 근사한 수치를 갖는 치아를 선택한 후 백악질함경계에서 1mm 하방까지 식고에 매몰하였다. 실리콘 퍼티 인상체(Exaflex GC Co. Japan)로 수복물의 외형을 위한 index를 형성하였 다. 도제라미네이트 베니어를 위한 지대치를 형성하기 위하여 순면은 0.5mm, 절단은 3mm로 균일하게 삭제하고, 실측에는 3mm 깔이의 lingual chamfer를 0.5mm의 두께로 부여하였다. 부가증형체 실리콘 인상체(Exaflex GC Co. Japan)를 사용하여 지대치에 대한 인상을 체득한 후 내화제물체(colorlogic Refractory die material, Ceramco Inc., U.S.A)를 제조회사의 지시(P/L ratio : 10gm/1.9cc)대로 혼합하여 체득한 인상체 내에 묻고 모형을 제작하였다. 그리고 제작에 두었던 실리콘 index를 기준으로 하여 원래의 외형을 가지는 도제라미네이트 베니어(Ceramco Inc., U.S.A)를 동법에 따라 제작하였다.

2. 시편 합착

도제라미네이트 베니어의 접착면은 Bisco porcel lain etching gel로 5분간 식작한 후 수세, 건조시킨 다음 silane porcelain primer(Bisco Inc., U.S.A)를 바르고 2분간 건조시켰다. 법랑질은 37% 인산으로 15초간 식작시간 후 30초간 수세, 건조시간 다음 D/P bonding resin을 도포후 약 20분간 접착시켰다. 접착용 레진(Choice, Bisco Inc., U.S.A)을 도제라미네이트 베니어의 접착면에 도포하고 치아에 합착하였다. 임시 시멘트를 제거한 후 각 방향에서 40조씩 광조사기(Profil Lux, VOCO, Germany)로 조사하였다(Fig. 1).

3. 3차원 유한요소모형 제작

도제라미네이트 베니어가 합착된 상악 증절치 모 형을 투영한 자가 증형체 레진에 매몰하여 적음면체 형태의 네모를 제작하였다. 레진 네모에 근원심방향과 상하 방향으로 각각 한 줄의 홈을 적음면체

Fig. 1. Photography of tooth luted with porcelain laminate veneer. (a: facial view, b: lingual view, c: mesial view)
의 모서리에 평행하게 형성한다고서 후에 각 단면 사진을 동일하게 위치시킬 수 있는 기준을 마련하였다. 레진 블록을 근심에서 원심 방향으로 연마하여 가며 0.5mm의 간격으로 연속 단층 사진을 촬영하여 19장의 절단면 슬라이드 사진을 얻었다(Fig. 2).
이 슬라이드 사진을 환등기로 비추어 앞에서 형성한 기준 혼이 일치하도록 위치시킨 뒤, 절단면 꼭면 형태를 모눈종이 상에 사도(tracing)하여 미리 부여한 좌표원점을 기준으로 좌표값을 부여하였다. 유한 요소모형설계용 software인 I-DEAS (master series version 2.1, Structural Dynamics Research Corporation, Milford, Ohio, U.S.A.)를 이용하여, Iris Indigo(Silicone graphics Inc., U.S.A) work-station상에서 도제라미네이트 베니어의 절단과거형과 절단면연형태에 따라 11가지의 삼차원 유한요소 모형을 설계하였다(Table 1, Fig. 3).
도제라미네이트 베니어와 지대치 사이에는 30㎛ 두께의 시멘트 층을 설계하였고, 치수는 단성계수가 매우 작아 도제나 상아질 내 응력분포에 거의 영향

<table>
<thead>
<tr>
<th>Table 1. Models with various abutment designs for porcelain laminate veneer</th>
</tr>
</thead>
<tbody>
<tr>
<td>Model</td>
</tr>
<tr>
<td>1</td>
</tr>
<tr>
<td>2</td>
</tr>
<tr>
<td>3</td>
</tr>
<tr>
<td>4</td>
</tr>
<tr>
<td>5</td>
</tr>
<tr>
<td>6</td>
</tr>
<tr>
<td>7</td>
</tr>
<tr>
<td>8</td>
</tr>
<tr>
<td>9</td>
</tr>
<tr>
<td>10</td>
</tr>
<tr>
<td>11</td>
</tr>
</tbody>
</table>

Fig. 2. Photography of the section No. 10.

Fig. 3. Models with various abutment designs for porcelain laminate veneer.
Table 2. The numbers of nodes and elements used in FEA

<table>
<thead>
<tr>
<th>Model</th>
<th>No. of Nodes</th>
<th>Elements</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>3343</td>
<td>11044</td>
</tr>
<tr>
<td>2</td>
<td>3438</td>
<td>11251</td>
</tr>
<tr>
<td>3</td>
<td>3403</td>
<td>11298</td>
</tr>
<tr>
<td>4</td>
<td>3229</td>
<td>10792</td>
</tr>
<tr>
<td>5</td>
<td>3644</td>
<td>11953</td>
</tr>
<tr>
<td>6</td>
<td>3600</td>
<td>11740</td>
</tr>
<tr>
<td>7</td>
<td>3734</td>
<td>12528</td>
</tr>
<tr>
<td>8</td>
<td>3462</td>
<td>11149</td>
</tr>
<tr>
<td>9</td>
<td>3483</td>
<td>11200</td>
</tr>
<tr>
<td>10</td>
<td>3522</td>
<td>11426</td>
</tr>
<tr>
<td>11</td>
<td>3527</td>
<td>11501</td>
</tr>
</tbody>
</table>

또 모든 재료는 균질성(homogeneity), 동방성(isotropy) 및 선형성(linear elasticity)을 가지며, 각 재료의 계면은 완전한 결합 상태인 것으로 가정하였다. 57, 62

5. 하중조건

하중위치는 절단에서 지각총으로 0.5mm 내려온 정중앙으로 하였으며, 하중은 전치부 최대 교합력으로 보고된 300N 59, 64로 하였다.

하중각도에 따른 응력분포의 변화를 알아보기 위하여 한국인 정상 교합자의 하악 전하중 환자의 평균 절차간 각도인 125° 56(load A)와 132° 66(lead B)의 두 가지 힘을 가하였다(Fig. 4).

Fig. 4. Loading conditions.

또 모든 재료는 균질성(homogeneity), 동방성(isotropy) 및 선형성(linear elasticity)을 가지며, 각 재료의 계면은 완전한 결합 상태인 것으로 가정하였으나 57, 62.

5. 하중조건

하중위치는 절단에서 지각총으로 0.5mm 내려온 정중앙으로 하였으며, 하중은 전치부 최대 교합력으로 보고된 300N 59, 64로 하였다.

하중각도에 따른 응력분포의 변화를 알아보기 위하여 한국인 정상 교합자의 하악 전하중 환자의 평균 절차간 각도인 125° 56(lead A)와 132° 66(lead B)의 두 가지 힘을 가하였다(Fig. 4).

Fig. 4. Loading conditions.
해석 결과의 평가는 도재라미네이트 베니어에서
는 최대 주응력과 최소 주응력. 페이지 시 międzynarodow에서
는 간단에 대가 플라스틱 저항에 중량한 위치로 사료되
는 부위의 절반을 조정 경우에는 이 절반에
주목하여 정량적인 분석을 하였다. 이와 같은 조정에
대한 연구를 참고하고, 본 실험의 응력생성
출력(사진부도 참조)의 양상을 간호하여 설정하였을
때 그 위치는 Fig. 5, 6과 같다.
본 실험의 유한요소모형의 해석은 ANSYS (ver-
sion 5.0, Swanson Analysis System Incorporation,
U.S.A.) 유한요소분석 프로그램을 이용하여 Iris
Indigo workstation상에서 solving and post-pro-
cessing 과정을 거쳐 수행되었다.

III. 연구성적

(1) 도재라미네이트 베니어에서의 주응력

최대 주응력은 인장응력, 최소 주응력은 압축응력
에 해당된다.
본 연구는 도재라미네이트 베니어 내의 응력분포
들 보는 것이 목적이므로 치근 부위는 응력생성출력
에서 생략하였다(Fig. 30 ~ 40).

1. 압축응력
모든 경우에 하중점 직하방에서 최대 압축응력을
보였다 (Fig. 30 ~ 40).

2. 인장응력
인장응력은 절단 1/4 부분, 절단, 그리고 설측변연

147
이 있는 곳에서 집중되어 나타났다. 그러나 치경부 에서의 응력집중은 거의 없었다(4).

1) 절단피막형에 따른 차이
절단피막형에 따른 차이는 거의 없었고 응력양상 에는 오히려 절단변형의 형태가 더 영향을 미쳤다(Fig. 7 - 10).

절단 비피막형인 경우 incisal bevel(Model 2)이 feathered edge(Model 1)보다 더 고른 응력분포를 보 였다. feathered edge인 경우 절단 1/4에서의 응력이 모든 model들 중에서 가장 작았지만, incisal bevel의 경 우 절단 1/4에서의 응력이 현저히 감소하면서 전체 적으로 고른 응력분포양상을 나타내었다(Fig. 7, 16, 30, 31).

1mm 절단피막의 경우에는 reverse bevel (Model 3)과 1mm lingual chamfer(Model 4)간에 별 차이 가 없었다(Fig. 8, 32, 33).

2mm 피막의 경우에는 1mm 설측연장한 lingual chamfer(Model 6)가 가장 고른 응력분포를 보였는데 reverse bevel(Model 5)은 설측변면에 압축응력이, 2mm 깊이의 lingual chamfer(Model 7)는 설측변면 에 강한 응력양성이 발생하였다(Fig. 9, 34 - 36).

3mm 피막의 경우에는 reverse bevel(Model 8)이 가장 유리했는데 lingual chamfer(Model 9 - 11)는 설측연장 길이에 비례하여 설측변면에서의 응력집 중이 증가하였다(Fig. 10, 37 - 40).

2) 절단변연형태에 따른 차이
reverse bevel(Model 3, 5, 8)보다 lingual chamfer(Model 4, 6, 7, 9, 10, 11)가, lingual chamfer 에서는 설측연장 길이가 증가 할 수록 절단에서의 인장응력이 감소하는 대신 lingual chamfer부위의 인 장응력이 증가하였다(Fig. 11 - 14).

3) 특정부위에서 인장응력의 정량적 비교
치경부 변연에서는 인장응력의 크기가 작고(1.36 - 4.28 MPa), 모형간 차이도 적었다(Fig. 15). 절단 1/4부위에서는 feathered edge를 가진 비피막형 (Model 1)이 가장 높은 인장응력을 나타냈으나 절단 변연형태를 incisal bevel로 바꾼 경우(Model 2) 현저 히 감소했다(Fig. 16). 절단에서는 2mm 피막일 때 가 가장 높고 다음으로 3mm 피막일 때였으며, lingual chamfer의 설측연장 길이가 증가 할 수록 길이에 비례하여 감소했다(Fig. 17). 설측변면에서는 피막이 증가하고, lingual chamfer의 설측연장 길이가 길 어짐수록 더 증가하였다(Fig. 18). 도제라미네트 베니아 내의 인장응력은 load B(132°)일 때 비해 load A(125°)일 때가 더 컸으며(Fig. 15 - 18), 치아 지지망변화에 따른 차이가 더욱 크게 나타났다(Fig. 18).

[2] 레진 시멘트층에서의 전단응력
모든 모형에서 레진 시멘트층의 전단응력은 중앙 으로부터 치경부와 절단부 변연쪽으로 감수록 증가

<table>
<thead>
<tr>
<th>Model</th>
<th>Point</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
</tr>
</thead>
<tbody>
<tr>
<td>Model 1</td>
<td>1.65E + 06</td>
<td>2.64E + 07</td>
<td>9.94E + 06</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Model 2</td>
<td>4.17E + 06</td>
<td>1.34E + 07</td>
<td>1.06E + 07</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Model 3</td>
<td>2.48E + 06</td>
<td>8.81E + 06</td>
<td>1.32E + 07</td>
<td>-1.86E + 07</td>
<td></td>
</tr>
<tr>
<td>Model 4</td>
<td>3.94E + 06</td>
<td>8.29E + 06</td>
<td>1.99E + 07</td>
<td>-1.54E + 07</td>
<td></td>
</tr>
<tr>
<td>Model 5</td>
<td>4.28E + 06</td>
<td>1.93E + 07</td>
<td>2.64E + 07</td>
<td>-1.61E + 07</td>
<td></td>
</tr>
<tr>
<td>Model 6</td>
<td>3.41E + 06</td>
<td>2.08E + 07</td>
<td>1.40E + 07</td>
<td>-1.65E + 05</td>
<td></td>
</tr>
<tr>
<td>Model 7</td>
<td>3.55E + 06</td>
<td>1.94E + 07</td>
<td>1.07E + 07</td>
<td>2.86E + 07</td>
<td></td>
</tr>
<tr>
<td>Model 8</td>
<td>3.12E + 06</td>
<td>1.48E + 07</td>
<td>1.59E + 07</td>
<td>1.17E + 07</td>
<td></td>
</tr>
<tr>
<td>Model 9</td>
<td>3.61E + 06</td>
<td>1.53E + 07</td>
<td>2.26E + 07</td>
<td>2.15E + 07</td>
<td></td>
</tr>
<tr>
<td>Model 10</td>
<td>2.59E + 06</td>
<td>1.83E + 07</td>
<td>1.07E + 07</td>
<td>3.52E + 07</td>
<td></td>
</tr>
<tr>
<td>Model 11</td>
<td>2.87E + 06</td>
<td>1.77E + 07</td>
<td>1.16E + 07</td>
<td>4.03E + 07</td>
<td></td>
</tr>
</tbody>
</table>
Table 5. Maximum principal stress of porcelain laminate veneer under B-load (MPa)

<table>
<thead>
<tr>
<th>Model</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
</tr>
</thead>
<tbody>
<tr>
<td>Model 1</td>
<td>1.36E + 06</td>
<td>2.32E + 07</td>
<td>-3.25E + 05</td>
<td>0</td>
</tr>
<tr>
<td>Model 2</td>
<td>3.52E + 06</td>
<td>1.15E + 07</td>
<td>7.32E + 06</td>
<td>0</td>
</tr>
<tr>
<td>Model 3</td>
<td>2.07E + 06</td>
<td>8.14E + 06</td>
<td>8.08E + 06</td>
<td>-1.58E + 07</td>
</tr>
<tr>
<td>Model 4</td>
<td>3.31E + 06</td>
<td>7.48E + 06</td>
<td>1.48E + 07</td>
<td>-8.06E + 06</td>
</tr>
<tr>
<td>Model 5</td>
<td>3.60E + 06</td>
<td>1.77E + 07</td>
<td>3.01E + 07</td>
<td>-4.34E + 06</td>
</tr>
<tr>
<td>Model 6</td>
<td>2.87E + 06</td>
<td>1.88E + 07</td>
<td>2.25E + 07</td>
<td>3.40E + 06</td>
</tr>
<tr>
<td>Model 7</td>
<td>3.01E + 06</td>
<td>1.76E + 07</td>
<td>1.19E + 07</td>
<td>1.38E + 07</td>
</tr>
<tr>
<td>Model 8</td>
<td>2.62E + 06</td>
<td>1.20E + 07</td>
<td>1.33E + 07</td>
<td>3.48E + 06</td>
</tr>
<tr>
<td>Model 9</td>
<td>3.03E + 06</td>
<td>1.31E + 07</td>
<td>2.05E + 07</td>
<td>8.02E + 06</td>
</tr>
<tr>
<td>Model 10</td>
<td>2.20E + 06</td>
<td>1.50E + 07</td>
<td>8.90E + 06</td>
<td>1.88E + 07</td>
</tr>
<tr>
<td>Model 11</td>
<td>2.44E + 06</td>
<td>1.55E + 07</td>
<td>1.19E + 07</td>
<td>2.80E + 07</td>
</tr>
</tbody>
</table>

Fig. 7. Maximum principal stress of porcelain laminate veneer under A-load (Model 1, 2).

Fig. 8. Maximum principal stress of porcelain laminate veneer under A-load (Model 3, 4).

Fig. 9. Maximum principal stress of porcelain laminate veneer under A-load (Model 5, 6, 7).

Fig. 10. Maximum principal stress of porcelain laminate veneer under A-load (Model 8, 9, 10, 11).
Fig. 11. Maximum principal stress of porcelain laminate veneer under A-load (Model 3, 5, 8).

Fig. 12. Maximum principal stress of porcelain laminate veneer under A-load (Model 4, 6, 9).

Fig. 13. Maximum principal stress of porcelain laminate veneer under A-load (Model 7, 10).

Fig. 14. Maximum principal stress of porcelain laminate veneer under A-load (Model 11).

Fig. 15. Maximum principal stress of porcelain laminate veneer at the point 1.

Fig. 16. Maximum principal stress of porcelain laminate veneer at the point 2.
Table 6. Shear stress of resin cement layer under A-load (MPa)

<table>
<thead>
<tr>
<th>Point</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
<th>11</th>
</tr>
</thead>
<tbody>
<tr>
<td>Model</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>-1.64E+05</td>
<td>1.04E+06</td>
<td>6.75E+05</td>
<td>6.28E+05</td>
<td>4.10E+05</td>
<td>-1.56E+05</td>
<td>-1.81E+05</td>
<td>9.76E+05</td>
<td>-4.60E+05</td>
<td>-3.68E+06</td>
<td>1.95E+05</td>
</tr>
<tr>
<td>2</td>
<td>2.20E+06</td>
<td>8.66E+05</td>
<td>3.49E+05</td>
<td>3.01E+05</td>
<td>1.66E+05</td>
<td>-3.96E+05</td>
<td>2.18E+05</td>
<td>3.97E+05</td>
<td>-2.76E+06</td>
<td>-2.06E+06</td>
<td>2.38E+06</td>
</tr>
<tr>
<td>3</td>
<td>1.68E+06</td>
<td>1.90E+06</td>
<td>6.07E+05</td>
<td>4.24E+05</td>
<td>1.93E+05</td>
<td>5.69E+04</td>
<td>1.38E+05</td>
<td>-7.07E+05</td>
<td>-5.45E+05</td>
<td>-1.41E+06</td>
<td>-4.45E+06</td>
</tr>
<tr>
<td>4</td>
<td>4.04E+05</td>
<td>1.34E+06</td>
<td>-3.63E+03</td>
<td>1.90E+05</td>
<td>-1.25E+05</td>
<td>2.66E+05</td>
<td>-1.20E+05</td>
<td>-2.48E+05</td>
<td>-7.50E+05</td>
<td>-2.83E+06</td>
<td>-2.56E+06</td>
</tr>
<tr>
<td>5</td>
<td>8.54E+05</td>
<td>1.98E+06</td>
<td>7.11E+05</td>
<td>3.28E+05</td>
<td>1.43E+05</td>
<td>1.75E+05</td>
<td>4.85E+03</td>
<td>1.98E+05</td>
<td>8.54E+05</td>
<td>0</td>
<td>2.43E+05</td>
</tr>
<tr>
<td>6</td>
<td>5.58E+05</td>
<td>1.89E+06</td>
<td>6.30E+05</td>
<td>1.68E+05</td>
<td>2.12E+05</td>
<td>3.35E+04</td>
<td>-2.36E+05</td>
<td>-2.24E+05</td>
<td>-1.64E+04</td>
<td>0</td>
<td>-8.38E+05</td>
</tr>
<tr>
<td>7</td>
<td>8.10E+05</td>
<td>1.95E+06</td>
<td>5.56E+05</td>
<td>1.81E+05</td>
<td>2.10E+05</td>
<td>1.14E+05</td>
<td>-2.60E+05</td>
<td>-5.37E+05</td>
<td>6.88E+05</td>
<td>0</td>
<td>-4.01E+05</td>
</tr>
<tr>
<td>8</td>
<td>8.55E+05</td>
<td>9.87E+05</td>
<td>4.61E+05</td>
<td>2.62E+05</td>
<td>9.13E+04</td>
<td>-2.83E+04</td>
<td>2.22E+05</td>
<td>-1.02E+05</td>
<td>0</td>
<td>0</td>
<td>-1.71E+06</td>
</tr>
<tr>
<td>9</td>
<td>7.72E+05</td>
<td>1.02E+06</td>
<td>4.87E+05</td>
<td>2.10E+05</td>
<td>1.41E+05</td>
<td>4.86E+04</td>
<td>6.62E+05</td>
<td>3.87E+05</td>
<td>0</td>
<td>0</td>
<td>-2.15E+06</td>
</tr>
<tr>
<td>10</td>
<td>1.11E+06</td>
<td>8.78E+05</td>
<td>4.09E+05</td>
<td>2.53E+05</td>
<td>1.76E+05</td>
<td>1.02E+05</td>
<td>2.21E+05</td>
<td>3.95E+05</td>
<td>0</td>
<td>0</td>
<td>-1.61E+06</td>
</tr>
<tr>
<td>11</td>
<td>6.78E+05</td>
<td>8.88E+05</td>
<td>4.32E+05</td>
<td>.36E+05</td>
<td>1.09E+05</td>
<td>4.80E+04</td>
<td>2.77E+05</td>
<td>8.05E+04</td>
<td>0</td>
<td>0</td>
<td>-8.41E+05</td>
</tr>
</tbody>
</table>

Table 7. Shear stress of resin cement layer under B-load (MPa)

<table>
<thead>
<tr>
<th>Point</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
<th>11</th>
</tr>
</thead>
<tbody>
<tr>
<td>Model</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>1.17E+06</td>
<td>8.96E+05</td>
<td>5.66E+05</td>
<td>4.94E+05</td>
<td>3.04E+05</td>
<td>-1.16E+06</td>
<td>4.54E+04</td>
<td>9.16E+05</td>
<td>3.79E+05</td>
<td>-3.18E+06</td>
<td>2.73E+06</td>
</tr>
<tr>
<td>2</td>
<td>1.90E+06</td>
<td>7.52E+05</td>
<td>2.95E+05</td>
<td>2.25E+05</td>
<td>1.06E+05</td>
<td>-2.97E+05</td>
<td>2.08E+05</td>
<td>5.07E+05</td>
<td>-2.44E+06</td>
<td>-6.61E+05</td>
<td>2.45E+06</td>
</tr>
<tr>
<td>3</td>
<td>1.45E+06</td>
<td>1.63E+06</td>
<td>5.06E+05</td>
<td>1.78E+05</td>
<td>-3.13E+04</td>
<td>-1.56E+04</td>
<td>3.09E+04</td>
<td>-3.92E+05</td>
<td>-1.03E+05</td>
<td>-7.71E+05</td>
<td>4.74E+06</td>
</tr>
<tr>
<td>4</td>
<td>3.41E+05</td>
<td>1.16E+06</td>
<td>-2.15E+03</td>
<td>1.11E+05</td>
<td>-1.16E+05</td>
<td>1.53E+05</td>
<td>-8.02E+04</td>
<td>-1.43E+05</td>
<td>-7.39E+05</td>
<td>-2.54E+06</td>
<td>-3.20E+05</td>
</tr>
<tr>
<td>5</td>
<td>7.38E+05</td>
<td>1.70E+06</td>
<td>5.78E+05</td>
<td>2.47E+05</td>
<td>8.52E+04</td>
<td>9.27E+04</td>
<td>-9.66E+04</td>
<td>2.28E+05</td>
<td>-1.18E+05</td>
<td>0</td>
<td>2.21E+06</td>
</tr>
<tr>
<td>6</td>
<td>4.81E+05</td>
<td>1.62E+06</td>
<td>5.09E+05</td>
<td>1.21E+05</td>
<td>1.12E+05</td>
<td>-3.15E+04</td>
<td>-2.60E+05</td>
<td>-2.60E+05</td>
<td>2.77E+04</td>
<td>0</td>
<td>2.54E+05</td>
</tr>
<tr>
<td>7</td>
<td>7.00E+05</td>
<td>1.66E+06</td>
<td>4.53E+05</td>
<td>1.26E+05</td>
<td>1.21E+05</td>
<td>5.14E+04</td>
<td>-2.42E+05</td>
<td>-5.42E+05</td>
<td>6.82E+05</td>
<td>0</td>
<td>-3.80E+05</td>
</tr>
<tr>
<td>8</td>
<td>7.33E+05</td>
<td>8.54E+05</td>
<td>3.83E+05</td>
<td>1.85E+05</td>
<td>3.28E+04</td>
<td>-5.22E+04</td>
<td>1.18E+05</td>
<td>-1.00E+05</td>
<td>0</td>
<td>0</td>
<td>-1.85E+06</td>
</tr>
<tr>
<td>9</td>
<td>6.45E+05</td>
<td>8.70E+05</td>
<td>4.09E+05</td>
<td>1.50E+05</td>
<td>8.23E+04</td>
<td>8.47E+03</td>
<td>4.23E+05</td>
<td>3.16E+05</td>
<td>0</td>
<td>0</td>
<td>-1.69E+06</td>
</tr>
<tr>
<td>10</td>
<td>9.63E+05</td>
<td>7.57E+05</td>
<td>3.49E+05</td>
<td>1.83E+05</td>
<td>9.59E+04</td>
<td>2.44E+04</td>
<td>1.01E+05</td>
<td>2.23E+05</td>
<td>0</td>
<td>0</td>
<td>-1.50E+06</td>
</tr>
<tr>
<td>11</td>
<td>5.64E+05</td>
<td>7.70E+05</td>
<td>3.66E+05</td>
<td>1.67E+05</td>
<td>4.93E+04</td>
<td>-9.22E+03</td>
<td>1.52E+05</td>
<td>9.80E+04</td>
<td>0</td>
<td>0</td>
<td>-7.58E+05</td>
</tr>
</tbody>
</table>
Fig. 19. Shear stress of resin cement layer under A-load (Model 1, 2).

Fig. 20. Shear stress of resin cement layer under A-load (Model 3, 4).

Fig. 21. Shear stress of resin cement layer under A-load (Model 5 - 7).

Fig. 22. Shear stress of resin cement layer under A-load (Model 8 - 11).

Fig. 23. Shear stress of resin cement layer under A-load (Model 3, 5, 8).

Fig. 24. Shear stress of resin cement layer under A-load (Model 4, 6, 9).
2mm Lingual Chamfer

Fig. 25. Shear stress of resin cement layer under A-load (Model 7, 10).

3mm Lingual Chamfer

Fig. 26. Shear stress of resin cement layer under A-load (Model 11).

Fig. 27. Shear stress of resin cement layer at the point 1.

Fig. 28. Shear stress of resin cement layer at the point 11.

하였다(Fig. 19 - 22).

1) 치단피개량에 따른 차이

치단피개량보다 치단변면에서 하중점까지의 거리 가 더 큰 영향을 미쳤다(Fig. 19 - 22). 치단변면이 하중점에서 1mm 이내에 있는 Model 2와 3에서 전단응력이 높게 나타났다(Fig. 19, 20).

2) 치단변면형태에 따른 차이

Reverse bevelf에 비해 lingual chamfer가, lingual chamfer의 경우에는 설측연장 길이에 비례하여 감소 했다(Fig. 23 - 26).

3) 특정부위에서의 정량적 비교

치경부 변면에서는 하중점이 치단변면에 가까울수록 (Model 2, 3) 전단응력이 높게 나타났으며, reverse bevelf보다 lingual chamfer가, lingual chamfer의 경우에서는 설측연장 길이에 비례하여 낮게 나타났다 (Fig. 28). 그러나 하중각도의 차이는 제전 시멘트층 의 전단응력에 크게 영향을 미치지 않았다 (Fig. 27, 28).

Ⅴ. 총괄 및 고안

도제라미네이트 베타니아 시스템에서 가장 약한 부 분은 도제 부분으로서 이는 이론적으론 레진 시멘트와 도제라미네이트 베타니아가 constant strain system 으로 작용하므로 하중은 탄성계수가 더 큰 도제라미 네이트 베타니아로 전달되기 때문인다(20). 도제의 이론 적 강도는 silicone-oxygen 결합을 파괴하는데 필요한
히로 18GPa\(^{69}\)이나 실제 강도는 이보다 1/10~1/1,000 정도로 약하다\(^{27}\).

따라서 도제라미네이트 베니어의 강도를 항상시키기 위해 다양한 시도가 있었다\(^{24,25,27,87}\).

그러나 캐지거 쉴레 제료를 포함하는 모든 시스템에서처럼 도제 수복물의 강도를 고려할 때 치아 형성의 효과를 무시하는 것은 불가능한다.

도제라미네이트 베니어가 개발된 초기에는 치아 형성이 없이 합성되었지만 그 후 치은 변명에서 의학적성 조절하기 위해 0.5~0.7mm의 순면 샛세가 제안되었다. 그러나 절단 샛세는 급기지 되었는데 이는 절단면에서 가능한 한 범위절을 보존하여 더 좋은 접착력을 얻기 위해서였다.

그러나 1987년 Highton\(^{80}\)은 상악 전치의 도제라미네이트 베니어를 위한 치아형성 설계에 관한 광선성 연구에서 순면 뿐 아니라 절단을 0.5mm 채득(실현에서 적합한 유일한 절단의 크기)을 유리에서 사용하였다. 이는 절단의 폐기와 치목계획이 저항을 방해하기 때문에 장려하고 절단의 피가 수동적에 저항하는 불안해하기 때문에이라고 주장하였다.

Calmia\(^{80}\)도 이를 받아들여 0.5mm의 절단면적에 주의하였다.

반면 Rufenacht\(^{39}\), Crispin\(^{39}\), Lang과 Starr\(^{29}\), Fradeani와 Barducci\(^{51}\), 마루야마 등\(^{39}\), Garber\(^{39}\), Quinn 등\(^{39}\)은 환자 고유의 전방유도를 확보하고 도제라미네이트 베니어 자체에 힘을 가해지는 것을 피할 수 있다는 면에서 가능한 한 절단을 삭제하지 않는 것이 유리하다. 만약 순면 샛세 후 절단면의 형성벽이 1mm 이하이거나 치아를 원래 깊이 이상으로 연장시킬 필요가 있거나 심미적인 목적으로 절단을 삭제해야 할 경우에는 균열 전파에 의한 기능적 파절에 저항할 수 있을 만큼 충분한 두께인 0.75~1.5mm(평균 1mm)가 추천된다고 하였다. 이는 금속도제판에서는 도제의 응집강도를 위해 2mm 두께의 도제를 측정해야 하나 도제라미네이트 베니어의 경우에는 도제의 치아에 대한 결합이 금속에 대한 결합보다 강도가 낮아 더 많은 치과의 지지가 필요하기 때문이라고 하였다.

그러나 파절이나 모모와 같이 더 연결된 절단의 경계를 필요로하는 임상적 경우에도 높은 성공률을 보이지\(^{31,33}\) 치아 형성에 대한 초기의 개념들이 바뀌어 가고 있다. Harster와 Martinez\(^{30}\)는 더 확장된 절단의 경과와 방향으로 치주경부 변제가 있는 경우에는, 도제가 절단에서의 절단 통합시 발생하는 전단력에 더 잘 저항할 수 있는 압축상태에서 높다고 하였다.

비피께 1mm, 2mm, 3mm 피가능을 부여한 본 연구에서 음력분포에 대한 절단피가능의 영향은 미미하였다.

Hopkins\(^{69}\)는 치아에 부착시키지 않은 여러 가지 두께의 도제 시판의 파절강도를 비교한 결과 도제의 두께가 증가할 수록 파절강도가 증가한다고 하였으나, 도제가 일단 지침에 부착되면 도제의 두께는 파절강도에 대한 중요한 의미를 더 겪게 가지는 것으로 보인다\(^{68,79}\).

또 Pettrow\(^{72}\)는 치석부에서 도제판을 위한 지대치 형성의 이상적인 치아는 치관 길이의 3/4에서, 이보다 더 긴면 도제판의 전단면이 없어서 악화지로 도제가 산간조각으로 부착되기 쉬워 더 짧으면 형성된 지대치 절단의 지점에 작용이 강화되어 교합력에 대해 대각선 방향에 있는 치경부에서 방향 또는 초등도 모양의 파절이 일어난다고 하였다. 그러나 이러한 고려들은 인산 아미, 카복실레이트, 글래스아이오미 시멘트 등 치경이나 도제판에 결합되지 않는 재료로 합착할 때의, 전통적인 유지형태를 사용하는 수복 치합을 위한 기술적 요구조건에 기초를 두고 있다.

본 연구는 Wall\(^{60}\)의 연구결과와 일치하게, 그 는 0, 0, 5, 1, 0, 2mm로 절단 샛세된 하악 전치에 합착된 도제라미네이트 베니어의 파절강도를 비교했을 때 통계적으로 유의한 차가 없다고 하였다. Burke\(^{29}\)의 연구에서 dentin-bonded crown이 소득치에 사용되었을 때도 교합면 샛세 2mm과 3mm간에 파절강도에 유의한 차이가 없는 것으로 보고되었다.

반면 Hui\(^{40}\)의 연구결과와는 상반되는데 그는 절단면으로 window, overlapped incisal edge, feathered edge의 3가지 다른 설계를 가진 도제라미네이트 베니어의 파절강도를 비교한 결과 window가 가장 고향(1191.95N), 다음이 feathered edge(788.06N), overlapped edge(689.27N)의 순으로 광선성 음력분석에서도 같은 순의 음력분포를 보였다고 하였다. 따라서 강도가 중요한 선결

154
요건인 경우 가장 보존적인 유형이 추천되다고 하였습니다. 그러나 그의 연구에서는 하중을 절단의 중앙에서 치수에 형평하게 가하였는데 이때는 인장응력의 대부분이 절단에 집중하므로 절단이 치수에 의해 잘 보호된 순으로 유리한 파절강도 및 응력분포양상을 나타내었으리라고 사료된다. 또 상악 전치에서는 기능운동 시 치수에 형평하게 교합력을 가해지는 경우는 매우 드물다.

본 연구에서 도제라미네트 베니아의 인장응력 분포에 대한 절단변형태의 영향은 매우 컸다. 절단 비피개형의 경우 절단면의 형태로는 window, feathered edge, incisal bevelf등이 있다. window형은 초기에 선호되었으나 절단부의 변형량이 낮아 있으므로 정상적인 기능동안에 발생하는 응력도 도제라미네트 베니아에 직접 전달하지 않고 치은 치면을 통해 전달되므로 유리하다는 주장이 있는 반면에, 베니아 보호를 위해 남겨진 범람질 변면의 약화를 가져온다는 상반된 주장도 있다. feathered edge는 순면 삭제 후에도 범람질 두께의 1/2~1/3이 남아있는 경우에만 가능하며 기존의 절단형태를 유지하기 위한 기준을 제공하고 존재의 심미적인 변화로 인해 수복물의 필요성을 감소시키거나 도제라미네트 베니아의 변면을 약화하여 거칠게 한다.

Rufenacht는 점단변형은 marginal peel에 대해 보호될 수 있는 방법으로 마치는 것이 필요하다고 하하였는데, marginal peel이란 접착제간의 cohesive failure가 일어날 때까지 점차적으로 피로해지는 현상으로 결합된 베니아의 절단부 파절을 초래하게 된다. 따라서 절단 형평성 저항형태를 부여하는 것이 필요하다. 절단을 피개하지 않는 경우는 치아의 절단면으로부터 지지치를 제공하기 위해 incisal bevel로 마치아 한다고 하였다. 이는 순면 삭제 후 절단면의 폭이 1mm 이상일 때 순면절단 농각에서 30 도의 bevel을 주어 절단면 상에서 절단변형을 마치는 것이다.

본 연구에서 feathered edge(Model 1)는 절단 1/4에서 높은 응력 집중을 보였으나, incisal bevel(Model 2)은 절단 1/4에서의 응력 집중이 현저하게 감소하면서 전 영역에 걸쳐 고른 응력분포를 보였다(Fig. 7, 16).

절단 피개형의 경우에 치아에 발생하는 순면 방향으로의 수평력에 대한 저항형태가 필요하게 절단 삭제시 30~40° 접촉으로 경사지게하는 reverse bevel과 절단 삭제후 접촉으로 연장하여 lingual chamfer를 형성하는 방법이 있다.

Garber는 lingual chamfer를 추천하였는데 이런 설면으로의 연장이 하약의 전방운동 초기에 일어나는 도제라미네트 베니아의 이동 방향에 대해 직각으로 레진 접합을 형성함으로써, 연장된 도제 절단면에 화전력이 발생하여 지대치의 순면절단경계에 상당하는 부위에서 도제라미네트 베니아가 파절되는 것을 방지할 수 있다고 하였다.

Chpindel과 Cristou도 lingual chamfer를 추천했는데 전방운동을 하는 동안 하약전치가 설측연장 부위에 대해 압축을 하면서 접촉할 것이기 때문에 접합이 전단변형되지 않음이라고 하였다.

반면 Rufenacht는 reverse bevel을 추천하였는데, lingual chamfer에 대해서는 아무런 장점이 없으며 오히려 보다 수직적 삽입으로 되게 하고 설측변을 뚫게 하며, 장착시 얇은 인접면 wing과 파절될 가능성이 높고, 장착시나 기능시 설측연장 부위가 파절되기 쉽다고 하였다.

하반 Belser등은 치간피계가 없는 경우에는 lingual chamfer가 좋으나 치간피계가 있는 경우에는 치질의 자연적 탄성 때문에 도제라미네트 베니아의 절단과 설측연장간에 응력집중 부위가 형성되므로 reverse bevel이 더 좋다고 하였다.

본 연구에서 절단피계량이 1mm일 때는 reverse bevel(Model 3)와 1mm 설측연장한 lingual chamfer(Model 4)간에 큰 차이가 없었고, 2mm일 때는 1mm 설측연장한 lingual chamfer(Model 6)가, 3mm일 때는 reverse bevel(Model 8)가 가장 분산된 응력분포양상을 보였다(Fig. 8-10). 절단피계량이 1mm일 때(Model 3, 4)와 절단피계량이 2mm이면서 절단변형태가 reverse bevel인 경우(Model 5)에서는 절단변형이 하중점(절단시 접촉점으로 0.5mm)에서 가장되었으므로 설측변면에서 압축응력이 크게 나타났다(Fig. 8, 9). 그러나 18.6 Mpa 내에서 도제의 압축강도(340 Mpa)로는 인장강도(34~69 Mpa)와 비해 약 5~10배 정도 더 강하므로 큰 문제가 되지는 않으리라 사료된다.

Belser등은 섬한 치관 파절의 경우 결합표면을 증가시키기 위해 lingual chamfer의 설측연장 길이를
증가시키는 것이 필요할 지 모른다고 하였으나 본 연구의 결과에 의하면 바람직하지 않은 것으로 나타났다. reverse bevel로横向 chamfer에서, 또 lingual chamfer의 경우에는 설측연장을 길이에 비례하여 설단부의 인장응력은 감소하였으나 상대적으로 설측면연부의 인장응력은 증가하였기 때문이다. 특히, 3mm 설단공계2mm와 3mm 설측연장한 경우 (Model 10, 11)에는 설측면연에서의 인장응력이 각각 35.2, 40.4 MPa로 도재의 인장각도(34~69MPa)보다 고려할 때 피절 가능성이 매우 높은 것으로 나타났다(Fig. 13, 14).

따라서 설단 비게기형 경우에는 incisal bevel이, 피게기형 경우에는 reverse bevel이나 1mm 이내로 짧게 설측연장한 lingual chamfer가 유리하다고 사료된다.

도제라미네이트 베니어에서 압축응력은 하중전 싸하반에 집중되었는데 이는 다른 연구들의 결과와 일치한다.34,52,72

한편 인장응력은 설단 1/4부위, 설단, 그리고 설측연부에 집중되었다.

도제라미네이트 베니어에서 인장응력의 분포검사
은 하중의 위치와 각도에 따라 상당히 다르게 나타난다. Hieda 등59의 3가지의 설단형성 유형을 가지는 모형(type I : 절단 비게기, type II : 절단 0.5mm 피게기, 0.5mm 설측연장의 lingual chamfer, type III : 절단 0.5mm 피게기, 1.0mm 설측연장의 lingual chamfer)에서 5가지의 위치 (A : 절단, B : 절단에서 침착으로 1mm 하방, C : 평균적 피게기 위치, D : 설단 중앙, E : 가까운 설단부)로 하중을 가했을 때 인장응력 분포를 2차원 유한요소법으로 분석하였는데 이때 하중각도는 A 하중만 침착에 평행하며 나머지는 침착에 대해 45°의 경사를 가지고 있었다. 분석 결과 A 하중에서는 도제라미네이트 베니어의 설단에 응력의 대부분이 집중되었고, B 하중에서는 침착부와 지대치 설단 높이에 상당하는 위치, 도제라미네이트 베니어의 설단에 비교적 균등한 크기로 응력이 분포하였다. C 하중에서는 도제라미네이트 베니어의 설단에서 지대치의 설단높이 사이는, D 하중에서는 지대치의 설단 1/3이, E 하중에서는 도제라미네이트 베니어 설단 1/3을 제외한 모든 부위에 응력이 발생하였는데 침착부에서 가장 큰 값을 나타내었다. 그러나 지대치 형성 유형에 따른 차이는 하중 A, B 에서만 현저하게 나타났고, C, D, E에서는 최대응력 발생위치, 크기 모두 유형에 따른 차이가 발견되지 않았다. 상악 전치부에서 하중 A와 같이 침착에 평행하게 하중이 가해지는 경우는 매우 드물므로 지대치 형성 유형에 따른 차이를 관찰하는데 적당한 하중조건은 B라고 여겨진다. 본 연구에서는 도제와 침착 경계를 피하기 위하여 약간 더 상방 조정하여 설단에서 침착으로 0.5mm 하방인 지점을 설정하였고 125°와 132°의 경사각을 부여하였다. 본 연구에서도 Hieda등59의 연구와 비슷한 응력분포를 나타내었고, 3가지의 하중각도에서 응력 값을 분석하였는데, 125° (load A)와 132° (load B)의 경우에 비해 도제라미네이트 베니어에서의 인장응력이 컸으며 침착 지지부 변화에 따른 차이도 더 크게 나타났다. 이는 허의 수평적 요소가 증가 할 수록 도제에 발생하는 인장응력이 커지는 것으로 나타난 선확장의

그러나 중심교환시 하약 전치의 절측 위치가 또한 중요한 고려사항이 되어야 한다. Dykema등76는 수직피게가 아주 작은 경우에는 도제에 인장응력이 발생하게 되므로 볼리고, 과도한 경우에는 전단응력이 발생하여 볼리다고 하였다. 따라서 도제라미네이트 베니어의 절단교환, 과교환, 길교환이 있어야 한다. 이는 상관관계가 있는 경우에는 피해야 하며 시술 직 후에는 전방운동과 축방운동을 특정한 부위에 응력이 집중되지 않도록 조정해야 한다.

본 연구에서 레진 시멘트층의 전단응력에 대한 절단피게의 영향은 미미했으나 전단변연형태의 영향은 컸다. 레진 시멘트층의 전단응력은 reverse
bevel에 비해 lingual chamfer에서 감소했으며, lingual chamfer의 경우 전단응력의 변화는 설계변면 길이에 비례하여 나타났다. 그러나 레진 시멘트층의 전단응력은 최대가 4.74 MPa로 레진의 전단강도 (48~79 MPa)\(^{(50)}\), 범람질-레진간의 결합강도(8~10 MPa)\(^{(9)}\), 레진-레진 시멘트간의 결합강도(11.5~17 MPa)\(^{(9)}\)보다 모두 작았으므로, 도제라미네이트 베니어 설계변면에서의 인장응력을 증가시키면서 깊 설계변면 길이를 증가시킬 필요는 없다고 사료된다.

본 연구에서는 치경부와 절단부 변형 모두에서, 절단변면이 하중장에서 1mm 이내에 있는 Model 2와 3의 전단응력이 크게 나타났다(Fig. 19, 20, 27, 28).

Harster와 Martinez\(^{(58)}\)는 도제라미네이트 베니어로 절단을 피하게 할 때 설계변면은 교합시 하약 전치의 접촉점과 일치해서는 안되며 반드시 더 짧거나 길어야 한다고 하였고, El-Sherif와 Jacobи\(^{(57)}\) 중심교합시 접촉점이 자연치에 있어야 수복물을 대한 응력지Castle과 대합자의 마모가 감소하므로 절단를 피하기 도제라미네이트 베니어의 설계변면은 중심접촉 부위보다 최소한 1mm 상방에 있는 것이 좋으며, 대합치가 절단 가까이에서 접촉하는 교합을 가지고 있는 환자의 경우에는 중심접촉 부위보다 1mm 하방에서 위치시켜야 한다고 하였다.

도제와 치아 사이에 완전한 결합이 이루어진 것으로 가정한 본 연구의 결과에 의하면 어려한 치아 형성 유형이라도 도제의 탈착 가능성에서는 뛰어나었지만 레진 시멘트층의 전단응력은 중앙부에서 치경부와 절단부 변형으로 감수록 증가했다. 완전결합 이 이루어지지 않은 경우의 연구로 Troedson과 Derand\(^{(59)}\)는 이차원적 광합성 실험을 통해 치아와 도제라미네이트 베니어간의 결합자와 응력분포에 주는 영향을 조사하였는데 중간 1/3만 결합된 경우가 얇고 1/3만 결합된 경우보다 더 큰 응력의 집중을 나타내었다. 또 Hieda등\(^{(50)}\)는 레진 시멘트층의 갈라지는 기포의 존재가 수복물에 미치는 영향을 연구하였는데 분산기보다는 집중기보다 레진 시멘트층의 전단응력에 대한 영향이 더 컸으며, 집중기포의 경우 기포용보다는 기포의 위치에 의해 더 크게 좌우되었는데 특히 치경부에서의 기포가 중요했다.

그러나 Wat등\(^{(50)}\)은 도제라미네이트 베니어를 위한 지대치 형성시 상아질이 노출되는 95~100%가 치아의 치경부 1/3에서었다고 보고하였고, Ferrari등\(^{(75)}\)은 전치부 변연의 범람질 두께를 측정해 본 결과 치경부 1/3에서의 범람질 두께는 중첩치와 측절치에서 각각 평균 0.4mm와 0.3mm로서 치경부 변연에서 상아질의 노출 없이 0.5mm를 형성할 수 있는 가능성이 매우 큰 경우를 제기하였다. 따라서 도제라미네이트 베니어의 함착시 상아질 결합체의 사용은 필수적이며, 범람질과의 결합에 도달할 수 있는 결합강도를 가진 상아질 결합체의 개발이 요구되는 바이다.

도제라미네이트 베니어의 설계에 관한 연구로는 파절강도 측정\(^{(66,76,77)}\), 광합성 연구\(^{(25,31,70)}\), 유한요소분석\(^{(50,53,54)}\) 등이 있었다.

생체의 파절강도 연구는 완전한 모형을 준비할 수 없는 난점이 있다. 자연치는 이방성(anisotropy)이고 크기, 모양, 범람질의 질과 두께, 나아가 같은 많은 변수를 가지므로 모형을 표준화하기 어렵다\(^{(60)}\). 대신 사용되는 금속이나 레진의 경우에는 탄성계수에서 자연치와 많은 차이가 있으며 적절하게 모형화 가 설계와 다르다. 결과의 해석에도 상당한 취약점 을 갖고 있는데, 실제의 상황에 존재하는 조건을 인지했으나 그것을 실험조건에 포함시키지 않는 것이 실험 결과에 어떤 영향을 미치는지에 대한 의문이 남고, 실험자가 미처 고려하지 못한 변수 요인의 존재도 배제할 수 없다.

광합성법은 한 가지 제료로 구성된 경우에는 손쉽고 확실하게 응력의 분포를 가시화할 수 있지만, 여러 가지 제료로 구성된 경우에는 각각 다른 재료의 물성치를 묶어낼 수 있는 광합성 제료가 풍부하지 못하여 해석상의 정확도 및 신뢰도가 떨어진다.

유한요소법은 복잡하고 복잡한 기하학적 형태를 계산할 수 있고, 각 재료의 물성치를 이용하려는 특성을 포함할 수 있는 장점을 가진다. 또한 여러가지 상황에서 다양한 하중으로 인해 압착되는 치아 내부의 응력장과 분포를 정량적으로 연구할 수 있게 해 줄으므로 제어진 상황에서의 과절 가능성이 관해 예측할 수 있게 해준다\(^{(69)}\).

그러나 유한요소법에서 어떤 구조물의 수학적 모형을 제작하기 위해서는 몇 가지 가정에 의해 물리적 체계를 단순화하는 것이 필요하다. 이러한 가정들은 결과를 분석할 때 다시 고려되어야 한다. 본 연구에서는 도제와 치아 사이에 완전한 결합이 이루어
단 것으로 가정하였고, 임계적인 크기의 구조적 흡도 없는 것으로 하였으므로 가장 이상적인 경우에 해당된다. 본 연구에서 lingual chamfer가 2mm 이상 연장된 경우를 제외하고는 도체라미네이트 베니어 내의 인장응력은 25 Mpa 이내로서 도체의 인장강도 (34~69 Mpa) 이내에 있었으나, 도체의 경우 가공상의 변수를 고려해야 하고, 도체와 치아간의 결합이 완전결합이 아니며, 도체의 강도는 정적 피로에 의해 점차 약화되어 피로강도의 초기강도의 60%에 불과하다는 점에 더욱 고려해야 한다. 따라서 앞으로도 상아질과의 결합, 도체의 강도 면에서의 더 많은 연구와 개발이 요구된다.

본 연구 결과에 의하면 절단피개량의 영향은 미미한 반면 절단변연형태는 차이가 도체라미네이트 베니어의 성공에 영향을 미칠 수 있음을 시사하고 있다. 도체라미네이트 베니어의 예후에 대한 더 정확한 예측을 위해서는 표면의 흉, 현실화된 계면 조건, 동적 하중조건이 반영되는 연구가 필요하며 하약각치와 같이 완전히 다른 하중을 받는 다른 위치의 치아에 대한 연구도 병행되어야 할 것으로 사료된다.

V. 결론

저자는 도체라미네이트 베니어에서 절단피개량과 절단변연형태에 따른 응력분포의 변화를 알아보기 위하여, 절단피개량이 0, 1, 2, 3mm이고, 절단변연 형태가 feathered edge, incisal bevel, reverse bevel 및 설측연장 정도가 상이한 lingual chamfer인 도체라미네이트 베니어에 대한 삼차원 유한요소모형을 설계한 후, 절단에서 치경축으로 0.5mm 위치에 300N의 하중을 125°와 132°의 두 각도 각도로 가했을 때 도체라미네이트 베니어 내에 발생하는 인장 및 압축응력과 레진 시멘트층에서 발생하는 전단응력의 크기와 분포를 삼차원 유한요소법으로 분석한 결과 다음과 같은 결론을 얻었다.

1. 도체라미네이트 베니어의 인장응력 분포에서는 절단피개량보다 절단변연형태가 더 큰 영향을 미쳤다.
2. 절단 비개행인 경우 incisal bevel이 feathered edge보다 균일한 인장응력 분포를 보였고, 절단 피개행인 경우 reverse bevel이나 1mm의 설측연 장을 가지는 lingual chamfer가 2mm와 3mm의 설측연장기를 가지는 lingual chamfer보다 균일한 인장응력 분포를 보였다.

3. Lingual chamfer 설측연장 길이의 증가는 길이에 비례하여 도체라미네이트 베니어 절단부의 인장응력은 감소시켰으나, 설측변연부의 인장응력은 크게 증가시켰다.

4. 도체라미네이트 베니어 내의 인장응력은 132°에 비해 125°의 하중에서 더 증가했으며, 차이지역 변화에 따라 차이도 더욱 크게 나타났다.

5. 레진 시멘트층의 전단응력은 절단피개량보다 절단변연형태와 절단변연에서 하중점까지의 거리가 긴 영향을 미쳤다. 그러나 하중점도의 차이는 레진 시멘트층의 전단응력에 크게 영향을 미치지 않았다.

참고 문헌

Dent., 61:4-6, 1989.
49. 임상진, 곽병만, 이주성: 유한요소법 입문. 서

Explanation of figures

Fig. 29. Three dimensional finite element model (Model 5).
Fig. 30. Maximum principal stress of Model 1 under A-load.
Fig. 31. Maximum principal stress of Model 2 under A-load.
Fig. 32. Minimum principal stress of Model 3 under A-load.
Fig. 33. Minimum principal stress of Model 4 under A-load.
Fig. 34. Minimum principal stress of Model 5 under B-load.
Fig. 35. Minimum principal stress of Model 6 under B-load.
Fig. 36. Minimum principal stress of Model 7 under B-load.
Fig. 37. Minimum principal stress of Model 8 under A-load.
Fig. 38. Minimum principal stress of Model 9 under A-load.
Fig. 39. Minimum principal stress of Model 10 under A-load.
Fig. 40. Minimum principal stress of Model 11 under A-load.
사진부도 ①

Fig. 29

Fig. 30

Fig. 31

Fig. 32

Fig. 33

Fig. 34
ABSTRACT

THREE-DIMENSIONAL FINITE ELEMENT ANALYSIS OF STRESS DISTRIBUTION IN PORCELAIN LAMINATE VENEERS WITH VARIOUS AMOUNTS OF INCISAL COVERAGE AND TYPES OF INCISAL FINISH LINE UNDER TWO LOADING CONDITIONS

Kyung-Hee Ryoo, Sun-Hyung Lee, Jae-Ho Yang, Hun-Young Chung

Department of Prosthodontics, College of Dentistry, Seoul National University

The success of porcelain laminate veneer depends on the bond strength between tooth structure and ceramic restoration and the design of tooth preparation. In particular, incisal coverage and incisal finish line are the two most important factors in long-term fracture resistance. Although the majority of clinicians are practicing incisal coverage and there are various opinions on the geometrical ratio between the clinical crown length of the remaining tooth structure and the length of incisal extension in porcelain laminate veneer and the optimal incisal finish lines, scientific evidence still leaves much to be desired.

The purpose of this study was to determine the effects of the amounts of incisal coverage and the types of incisal finish line on the stress distribution in maxillary anterior porcelain laminate veneers under two different loading conditions.

Three-dimensional finite element models of a maxillary anterior porcelain veneer with different amounts of incisal coverage : 0, 1, 2, and 3mm and different incisal finish lines : feathered edge, incisal bevel, reverse bevel and lingual chamfer with various amounts of lingual extension were developed. 300N force was applied at the point 0.5mm cervical of the linguincisal edge in two loading conditions : A) 125 degrees, B) 132 degrees. Tensile and compressive stress in ceramic and shear stress in the resin cement layer were analyzed using three-dimensional finite element method.

The results were as follows:
1. The types of incisal finish line had more influence on the stress distribution in porcelain laminate veneer than the amounts of incisal coverage.
2. In case of no incisal coverage, incisal beveled laminate exhibited more evenly distributed tensile stress than feathered edged laminate. And in case of incisal coverage, reverse beveled laminate and lingual chamfered laminate with 1mm lingual extension exhibited more evenly distributed tensile stress than lingual chamfered laminates with 2mm and 3mm lingual extension.
3. As long as the lingual chamfer goes, less tensile stress was found at the incisal edge, while much more tensile stress was found at the lingual margin area in proportion to the length of lingual extension.

4. Under 125 degree load, tensile stress in porcelain laminate veneer had increased compared with that under 132 degree load and the difference exhibited by the change of the amount of tooth support was larger.

5. The types of incisal finish line and the distance from the incisal finish line to the loading point had more influence on the shear stress distribution in the resin cement layer than the amounts of incisal coverage. In contrast loading condition had little influence.

Key words: Porcelain laminate veneer, Amount of incisal coverage, Type of incisal finish line, Loading condition, Three-dimensional finite element method