한국인 소아의 성장 발육 평가 자료 제작에 관한 연구

김영재, 이신재*, 김정욱, 장기택, 이상훈, 한세현, 김종철
서울대학교 치과대학 소아치과학교실, *치과교정학교실 및 치학연구소

국문초록

성장기 환자를 다루는 소아치과 분야에서 환자의 성장과 발육에 대한 지식이 필수적이다. 하지만, 현재 사용되고 있는 소아 성장 측정 도표는 현 시대성을 반영하지 못하는 오래된 것이거나 혹은 의견에 불리한 등의 문제로 막추어져 있어서 소아치과 분야에 적용하기에는 한계가 크고 제한적이었다. 이에 따라 본 연구는 2004년 산업자원부 기술표준원에서 시행하고 대한간호학회에서 주관한 2004년 제5차 한국인 인체치수조사사업보고서 자료를 토대로 현실성 있고 유용한 성장 표준 및 성장 속도 표준을 제작하는 과정을 소개한 목적으로 시행되었다. 자료를 처리하고 세분화하는 과정을 통하여 자료의 변동을 사분위수로 기준 급적으로 하고 1.5, 95. 99 백분위수를 추출하여 남·여성 치·목두께 성장 표준을 제작하였고 이와 아울러 기하 평균에 기초한 성장 속도 표준도 제작하여 제정 성장 관찰 도표를 완성하였다. 본 연구 결과 생성된 성장 발육 평가 자료는 성장 발육의 지표로 이용될 수 있으며, 성장 발육과 관련, 소아치과 환자·보호자의 의사소통에 도움이 될 수 있을 것으로 생각되었다.

주요 : 소아치과, 제정 성장 관찰 도표, 2004년 한국인 인체치수조사사업

I. 서 론

소아환자의 치과 치료시 환자의 성장과 발육 상태에 대한 상담을 하는 보호자들을 접하는 것은 드문 일이 아니며, 실제로 환자의 성장과 발육 상태에 대한 정보가 소아치과 임상에서 필요할 경우가 많다. 기존에 소아의 성장 발육 상태를 파악하기 위한 자료는 1985년의 자료를 이용한 것인바, 그동안 우리나라의 사회·경제적 발전에 의하여 많은 환자 지표들의 변화가 있 어왔으므로 기존의 자료를 현재 소아에게 적용하는 것은 미흡한 해석을 도출하기 쉽다.

소아의 성장 발육에 관한 연구는 이미 급속히 작동부터 활발히 연구되어 왔으나, 비교적 명확한 이론들에 의하여 정착적 성장 경향, 기관별 성장 경향, 성장 시기와 성장양에 관한 논

교신저자 : 김종철
서울시 동작구 연변동 28
서울대학교 치과대학 소아치과학교실
Tel: 02-2072-3395 Fax: 02-744-3599
E-mail: kimcc@plaza.snu.ac.kr

※ 본 연구는 산업자원부 기술표준원에서 시행한 2004년 제5차 한국인 인체치수조사사업보고서 자료를 이용하였음.
2. 성장 속도 곡선 작도
성장 속도 곡선의 제작에는 각 나이별 차이에 대한 기하평균을 사용하여 적합하였다. 이는 cross sectional mass survey 시에 발생하는 자료 내부의 변이를 줄기 위한 목적이다. 또한 연간 성장량의 여유분을 2배 증가시키며 일정 작용 시 편의성을 제공할 수 있도록 하였으며, 각 연령의 증가용 측정은 이듬해 측정하는 것으로 설정하였다.

3. 도표 구성
곡선은 전 좌표 마다의 자료를 통합하여 4개의 도표를 포함시켰으며, 이때 생년월일, 나이, 연간 증가량 기간 및 수용 부콜 받과사 건 행등차의 기간을 추적하였다. 끝으로 남녀간 scale을 통일시켜 자료 대비 요소의 각각간의 간접적 통합을 방지하도록 구성하였다.

Ⅱ. 연구 성적

남녀별로 0세에서 12세까지 신장과 체중에 대한 성장 곡선 및 성장 속도 곡선, 도표를 구성하여 2배에 걸친 소아 성장 발육 평가 자료를 작성하였다(Fig. 1, 2). 이것은 연령 구간이 0세에서 2세까지는 3개월 단위로, 6개월 단위로 하였고 2세 이후에는 연간 성장에 주안을 두어 그래프를 작성하였다. 성장 곡선은 성장과 체중에 대하여 1, 5, 25, 50, 75, 99 백분위수를 표현하였으며, 성장 속도 곡선은 각 구간의 기하평균을 이용하여 구성하였다.

Ⅳ. 총괄 및 고찰
성장 발육 평가를 위한 자료는 대단위 표본 조사로 이루어지며 그 결과로 곡선을 작용해야 되므로 자료의 건전성과 신뢰성에 가장 중요한 부분이다. 주기적으로 발간되고 있는 청소년 백서의 경우에는 조사 및 기록의 주체가 학교 단위에서 이루어지고, 표준화 측면에서 신뢰가 높은 반면, 정부가 주관하는 사업의 경우에는 정성적, 오류 조절, 표준화 면에서 우수한 것으로 보이다. 현재 대부분의 의료 기관에 비치되어 있는 성장 곡선의 경우 자료의 제작 시기가 1985년으로 그 동안 국면의 흐름이 지속되었으나 우리 현실에 비추어 신뢰성이 떨어지는 것으로 보이며, 최근 성장 발육 지표로 사용되기에는 한계가 있다. 거의 20년간의 기와 통계 평균의 변화를 보면, 기는 1985년 168 cm, 58 kg; 여자, 157 cm, 52 kg; 1997년 남자, 172 cm, 63 kg; 여자, 158 cm, 52 kg; 2004년 남자, 174 cm, 68 kg; 여자, 160 cm, 53 kg에서 남녀 모두 큰 변화가 있었다. 남녀 성별에 따른 차이도 큰 폭이었다. 기는 남녀 모두 구준히 증가하는 양상을 보였다. 그러나 통계적의 경우 지난 20여 년간 남녀에서는 10 kg에 이르는 큰 증가가 있었던 반면 여자의 경우에는 평균 증가가 크게 변화되지 않았음은 볼 수 있다. 이러한 재통의 변화와 아울러 본 연구를 통하여
Fig. 1. General growth observation chart which is consisted of stature growth curve for male (A) and female (B) and growth velocity curve for male (C) and female (D).
Fig. 2. General growth observation chart which is consisted of weight growth curve for male (A) and female (B) and growth velocity curve for male (C) and female (D).
수정된 사전지 현대 성장기의 시기도 변화하였음에도 그린가 나타났다. 즉, 현재 남자 사전지 현대 성장기의 14세 데이터는 표시되어 있지 않다. 사전지 첫 최소 성장기는 10세로 나타났고, 여자는 각 각 11세와 9세였다. 이는 휴가에 비해 1~2년 지연된 속도가 불가피하게 작용하기 때문에 성장 궤도를 변화시킨 것으로 생각되며, 여기에는 지난 시간 동안 구조가 변화되어 버린 것은 물론 인도와 아시아 다른 지역 분포 변화에 의해 이전의 내부 변화에 의한 것으로 생각해 볼 수 있었다.


본 연구에서 사용한 2004년 제5와 한국인 인체조직과사업은 과학 의과학따라서 교육 보건 행정 측면에서 점차적인 발전과도 담긴 식행생활, 생활 패턴, 문화 양식의 변화에 부응하는 산업 제품의 표준지를 설정하기 위한 국내 기준에 상응하는 고급물 한국인 인체조직과 새로 확보를 조사 목적으로 연구한 사업이다. 한편 본 연구의 기존 자료는 2001년과 2002년 사이에 미국의 SIZE USA, 영국의 SIZE UK 사업으로 급격히 성장하는 산업 성장에 발맞추어 대규모로 3년간 측정을 시행한 사례를 참고하여 실험에 사용하였다. 이는 성장 중층 및 그 양변화를 측정한 자료를 제공하고 있었다. 본 자료가 차원 보고서에는 본 연구에 이용된 키와 몸무게 자료 이외에 face length, interpupillary breadth와 같은 두부 및 안면 자료가 다수 보고되어 이를 이용할 것인 소아과학 분야의 성장 발육 지표로서 사용할 것으로 보인다.

이번 연구 자료의 현시점 이외에 기존에 보고된 차별되는 설계는 도표의 표본과 보고 방법은 다른 것이다. 연령은 0세~12세까지로 연령 구간을 설정하였다. 기존에 알려진 도표[8]와 가장 큰 차이 중 하나는, 기준에 있어 2세~20 세까지의 도표로 표시되어서 0세에서 3세까지 단위로 36개월까지 표시되는 것과 보편적이다. 그러나 체중의 경우는 소아의 체중에 대한 정보가 상대적으로 많은 점이 있다는 점을 가장 심하다. 사망 시기까지 표시된 도표는 어린 아이에게 적용할 수 없는 중층이 심한 정리에서 성장 발육 등에 대한 정보가 선행하지 않은 전문가의 경험이 가능하며, 정부에 대한 정보가 상의하기 힘들다. 반대로 소아과학 교육에서 채용하는 0세~2세 구간의 경우 소아과학 교육자의 아동과 일반 소아과학 교육자에게 0세에서 3세까지의 표본도 소아 체중 대상 이상이 아닌 경우 유동적인 정보로 보고자 성장 장벽을 확장할 수 있는 방안이 없었다. 이를 사망한 12세 이상 체중(censored)하였다는 점은 나름에 두 가지 해석이 과하다. 첫째, 대부분의 소아과학 교육자들은 혈액의 경우 소아과학 이외의 이유가 대부분이다. 그러므로 중등학생 체중의 대표 통계인 12세 이상의 연령을 설정하였다. 둘째, 12세는 나이 모 두 사춘기 전 최소 성장기(prepubertal minimum), 나이 10세, 여자 9세, Fig. 1, C, D)를 나타나서 정상이 성장에 등장하는 나이로 있으므로, 성장 양상의 반응의 원형을 측정하여 충분한 노출된 점에서 12세가 제한되었다. 이렇게 해서 이러한 유의한 경우에는 비교적 상대적으로 간단한 현상으로, 추후 2차부터는 연간 단위로 측정할 수 있는 연구 결과를 얻게 된다.

기존의 성장 곡선의 해석 단위로는 3, 10, 90 및 97백분위수로 표시하는 방법을 사용한 성장한 설크도가 주로 쓰였다[9-13,19,21] 이에 이
비록 표기법의 근본 원리는 3~97 백분위수 내부에 자료가 위치하게 되면 이것이 대략적으로 보아 표준편차의 내부에 있다고 가정 하여 이를 "정상"으로 인식하는 방식이었으므로 생각된다. 그러나 실제로 백분위수 작도 원리에 더 가까운 Tucker의 box and whiskers plot 방식으로 본다면 기준 방법과 같이 표준편차에 근거한 거리를 보는 것 보다 1시간에 수에서 3시분위수까지의 interquartile range의 2배가 되면 outlier로, 3배 이상 outlier로 판단하는 방식이 되며 이는 원래의 백분위수 표식 방법의 특이한 분포와 상관없이 더욱 함수할 것으로 보인다. 또한, 본 성장곡선은 1. 5, 95, 99 백분위수를 참조함으로써 단계 검정시 95% 및 99% 신뢰 구간을 쉽게 알 수 있도록 시각화한 장점이 있다(Fig. 1. A, B: Fig. 2, A, B).

몸무게 성장 곡선은 기에 비하여 변폭이 크며 곡선의 주행이 예측치 못한 특성이 있었다(Fig. 2. A, B). 이는 특히 여성의 경우 사회적으로 면밀한 식이 조절에 의한 효과 등과 같이 청소년기 고유의 특수한 환경에 그 반대의 원인을 찾을 수 있을 것으로 보인다12). 일정 입력에서 몸무게 성장의 지표로 이용되기에 가장 곡선보다 정확성이 낮다고 알려져 있는 바 성장 기간의 몸무게 성장은 몸무게 변화에 영향을 주는 다양한 학령기 증가 및 체중은 다양한 성장 환경에 적응하여 발달한다. 반면 키는 유전적 소인에 더욱 강하게 영향을 받으며 쉽게 늘어나거나 줄 수 있다 는 점에서 자료로서의 가치가 높다고 생각된다.

연간 성장량, 즉 성장 속도 곡선의 경우 흔히 연구 자료의 변 이를 조절하기 위하여 기하 평균을 사용하였는데, 이는 곡선의 형태를 좀 더 매끄럽게 만들기 위해서는 지점의 변화이 있으면, 실제체의 비하여 낮은 값을 지니는 단점이 있다. 실제 작전 시에 측정 상황의 scale에 여유를 많이 든 것도 이를 보완하기 위함이며, 성장 속도 곡선에서 얻는 정보 자체가 정확한 성장 전반적 예측(성장 곡선)보다는 속도 곡선의 형태와 추세를 통하여 현재 시점의 성장 속도를 측정하기 위한 것이므로 실제치를 표현하는 것보다는 형태 변화 동향을 짐작할 수 있었다.

이울리 이 속도 곡선에서는 난녀 간의 경도적 차단성장 양상을 바탕으로 차이를 보여주고, 난녀의 경우 성장 속도의 변폭이 크고 철평도가 높고, 청소년 시기에 작은 변이지만 여자의 경우 성장 속도의 변폭이 적고 변화도 낮으며, 사춘기 최대 성장 기간의 고유한 양상을 보임과 함께 난녀별 성장 차별성에 관한 기존의 성장 이론15)이 그대로 잘 표현되어 있었다(Fig. 1. C, D: Fig. 2. C, D).

본 연구 자료의 한계는 다양한 개인의 성장 양상을 합동적 연구 자료를 통한 비교해보기에는, 실제로 종단적 자료 구축에 많은 제약이 따르며 현재 우리나라의 사회·경제 분야의 특성상 신체지표의 경제적 변화가 뚜렷한 추세에 있는 이유로 종단적 자료인 경우에도 현상성을 제공하기에 역시 다른 한계가 있다고 생각한다. 오늘날 소아 성장 곡선을 이용한 평가는 지난 세기에 시행된 목적, 즉 영양 결핍과 성장 장애에 대한 우려 보다 최근 사회적 관심이 증강하고 있는 소아 비만과 같은 영양 과다 공급의 문제에 더욱 중요해 높은 것으로 예상되기도 한다. 아울러 자료 처리에 효율을 높일 수 있으므로 성장 발육 예측에 관한 좀 더 간편한 전산 알고리즘(algorithm)을 도입하고 주기적으로 자료를 갱신하는 노력이 필요할 것으로 생각되었다.

V. 결 론

본 연구에서는 소아치과과학 분야에서 현시성과 적합성이 개선 된 성장 관찰의 지표를 얻고자 0세~12세 남녀의 키와 몸무게에 대한 성장 관찰 곡선 및 속도 곡선을 제작하는 과정을 기술하고 그 결과의 의미를 보도하였다. 이를 위하여 최신 한국인 인체체중조사 자료가 사용되었다. 이번 연구에서 도출된 성장 발육 평가 도표를 이용한 방법은 사전 사전 검사 및 혈중 호르몬 검사와 같은 의학적 방법으로 몸무게 및 신장 발육의 발생을 최소화 하여 전에 성장 축정의 해석적 예측이 가능하며 간단한 방법으로서 성장 발육과 관련, 소아치과의사와 소아치과 의사 및 보호자의 의사소통에도 도움이 될 수 있을 것으로 생각되었다. 본 연구는 한국인 소아의 성장 발육 평가 자료를 제작하는 과정을 다루었으며, 앞으로 좀 더 전형적인 성장 예측 지표와 관련된 연구가 필요할 것이다.

참고문헌

9. 시바토 : 성장기 이동의 수수방울 성장속도와 두개 안면관 성장에 관한 두부방사선측정학적 연구, 대한소아치과학회지,
10. 정병조, 양규호 : 정상교합자와 III급 부정교합자의 수술후
고정성 단계와 치아착착화도에 대한 연구. 대한소아치과학
11. 이상호, 이창섭 : 수술부 고정성에 따른 경추의 회골형태에
대한 두부방사선촬영학적 연구. 대한소아치과학회지.
12. 양세원 : 최근 성장장애에서 성장호르몬 치료. 대한내분비
13. 산업자원부 기술표준원 : 제5차 한국인 안데치수조사사업
19. 대한소아과학회 학 : 한국 소아의 정상치. 의학문화사, 서
20. 홍창의 : 소아과학. 대한교과서, 서울. Appendix 한국소아
성장표준치, 1997.
22. Norman GR, Streiner DL : Biostatistics: the bare
essentials, Mosby Co, St Louis, 48-49, 1996.
Abstract

EVALUATION MODEL OF GROWTH AND DEVELOPMENT
IN PEDIATRIC DENTISTRY

Young-Jae Kim, Shin-Jae Lee*, Jung-Wook Kim, Ki-Taeg Jang,
Sang-Hoon Lee, Se-Hyun Hahn, Chong-Chul Kim

Department of Pediatric Dentistry, *Department of Orthodontics,
School of Dentistry and Dental Research Institute, Seoul National University

Knowledge of growth and development is essential for pediatric dentistry treating growing patients. The data from the pediatric growth curve being used today does not reflect the growth transition of modern times, nor does it match the age range required for dental purposes. The present study, therefore, aims to introduce the process of producing a growth curve and growth rate curve based on data which represents a more accurate description of the present situation. The original data used in this study were from the 5th nationwide survey. SIZE KOREA 2004 study carried out by the Technology and Standards Policy Division, Department of Technology and Standards Planning, Ministry of Commerce, Industry, and Energy. Processing and rearranging the produced data with variations divided into the three quartiles and the 1st, 5th, 95th and 99th percentiles were included to produce a growth observation chart according to sex, height and weight differences. In the same way, a growth rate curve based on the geometric mean value was produced. The resulting growth charts can be used as an index for growth and development, and used for better communication between the pediatric dentist, patients or their parents.

Key words: Pediatric dentistry, Growth observation chart, SIZE KOREA 2004 study