Metalorganic vapor-phase epitaxial growth and photoluminescent properties of Zn$_{1-x}$Mg$_x$O (0$\leq x < 0.49$) thin films

W. I. Park, Gyu-Chul Yi, and H. M. Jang
Department of Materials Science and Engineering, Pohang University of Science and Technology (POSTECH), Pohang 790-784, Korea

(Received 16 April 2001; accepted for publication 23 July 2001)

High-quality Zn$_{1-x}$Mg$_x$O (0$≤x<0.49$) thin films were epitaxially grown at 500–650 °C on Al$_2$O$_3$(00-1) substrates using metalorganic vapor-phase epitaxy. By increasing the Mg content in the films up to 49 at. %, the c-axis constant of the films decreased from 5.21 to 5.14 Å and no significant phase separation was observed as determined by x-ray diffraction measurements. Furthermore, the near-band-edge emission peak position showed blueshifts of 100, 440, and 685 meV at Mg content levels of 9, 29, and 49 at. %, respectively. Photoluminescent properties of the alloy films are also discussed. © 2001 American Institute of Physics. [DOI: 10.1063/1.1405811]

ZnO, a wide-gap semiconductor oxide, has attracted considerable attention due to its large exciton binding energy (~ 60 meV) and bond strength, which might make reliable high-efficiency photonic devices based on ZnO. Moreover, as reported by Othomo et al., the fundamental bandgap energy of this material increases from 3.3 to 4.0 eV by alloying ZnO with MgO, depending on the Mg content, which might be practically used for fabrications of ZnO/Zn$_{1-x}$Mg$_x$O heterostructure light emitters as well as ultraviolet photodetectors. In the low-dimensional double heterostructure, the modified density of states confines both excitons and photons, making the stimulated emission process more efficient.

Recently, it has been reported that Zn$_{1-x}$Mg$_x$O was grown with maximum Mg incorporation up to 36 at. % without phase separation and that the room-temperature luminescence energy in this film blueshifted from 3.3 to 4.0 eV. Since a Zn$_{1-x}$Mg$_x$O containing MgO over 4 at. % is in a thermodynamically metastable state, this result indicates that the solubility limit of Mg in ZnO depends on growth mechanisms as well as growth conditions. However, current research on the growth of Zn$_{1-x}$Mg$_x$O is restricted to pulsed-laser deposition (PLD) and molecular-beam epitaxy (MBE). Despite the epitaxial growth of high-quality ZnO and related alloys using the methods, they might have disadvantages in mass production, due to high cost and low throughput. In this research, we demonstrate that metalorganic vapor-phase epitaxy (MOVPE), which has great advantages in terms of large-area deposition and atomic composition control feasibility, is an excellent technique for the epitaxial growth of high-quality Zn$_{1-x}$Mg$_x$O films.

Zn$_{1-x}$Mg$_x$O (0$≤x<1.0$) films were grown on Al$_2$O$_3$(001) substrates using a horizontal-type MOVPE system. For film growth, diethylzinc (DEZn), bis-cyclopentadienyl-Mg (cp$_2$Mg), and oxygen were employed as the reactants with argon as the carrier gas. Details of ZnO film growth have previously been reported. Typical cp$_2$Mg flow rates were in the range of 0–50 sccm at the bubbler temperature of 30–40 °C. Before ZnMgO film growth, thin ZnO buffer layers were initially grown, which significantly improved the crystallinity of Zn$_{1-x}$Mg$_x$O films. Film thicknesses were in the range of 0.3–0.7 μm as determined using surface profilometry.

The crystal structure, crystallinity, and lattice parameters of Zn$_{1-x}$Mg$_x$O films were investigated by x-ray diffraction (XRD) measurements using a rotating anode-type x-ray diffractometer. Although film compositions can be estimated from lattice parameters changed by Mg incorporation, they were more accurately determined by both energy-dispersive x-ray analysis and inductively coupled plasma mass spectrometry.

Photoluminescence (PL) measurements were performed for optical characterization of the films. As an excitation source for the PL measurements of Zn$_{1-x}$Mg$_x$O films, a He–Cd laser (325 nm) was employed for $x<0.18$ and the fourth harmonics (266 nm) of a Nd:YAG laser for $x>0.20$. Details of the PL measurements have been previously reported.

The crystal structure and orientation of the as-grown films were investigated, measuring θ–2θ scans of XRD. As shown in Fig. 1(a), up to $x=0.49$ in Zn$_{1-x}$Mg$_x$O films, θ–2θ scan data exhibited only Zn$_{1-x}$Mg$_x$O(00-2) peaks at 34.36°–35.01°, depending on the Mg content. The observation of only ZnMgO(00-1) peaks indicates that single-phase Zn$_{1-x}$Mg$_x$O (0$≤x<0.49$) films were grown without any significant formation of a separated MgO phase. However, for the higher-Mg content of 75 at. %, a MgO(111) peak was also observed, clearly indicating phase separation between ZnO and MgO. In addition, the MgO peak intensity gradually increased but the ZnMgO(00-2) peak decreased by increasing the cp$_2$Mg flow rate.

In general, Zn$_{1-x}$Mg$_x$O with a high concentration of Mg over 4 at. % is not thermodynamically stable. However, MOVPE demonstrates growth of high-quality, single-phase Zn$_{1-x}$Mg$_x$O with Mg containing up to 49 at. %. Similar behavior has previously been observed: other growth techniques, MBE and PLD have also shown the incorporation of the high-Mg concentration, 33–36 at. %.

Nevertheless, the enhancement in the solubility limit of MOVPE-grown ZnMgO might be explained in terms of the low-growth tem-
perature or chemical reactions employed in this MOVPE growth. When the films are grown at a low temperature employing chemical reactions between precursors, the chemical reaction allows epitaxial growth of single-phase ZnMgO alloys as long as the thermal energy is too low to form the second phase of MgO.

There is further unequivocal evidence for Mg incorporation into ZnO: the c-axis lattice constant of the Zn$_{1-x}$Mg$_x$O films decreased by increasing the Mg content. As shown in Fig. 1, the Zn$_{1-x}$Mg$_x$O film with a low-Mg content (x) of 0.11 shows the narrow full width at half maximum (FWHM) value of 0.046°, which is comparable to that of pure ZnO, 0.046°. However, for the Zn$_{0.70}$Mg$_{0.21}$O film, the rocking curve shows the composition of two components showing FWHM values of 0.07° and 0.2°–0.3°. Similar to the case of ZnO films, the broad component results presumably from three-dimensional islands nucleated on two-dimensional layers. With the further increase of Mg content, the broad component gradually became dominant. The deterioration in crystallinity of highly Mg-incorporated films might be due to strain induced from the occupation of Mg$^{2+}$ ions at Zn$^{2+}$ sites or increases in the film growth rates. Meanwhile, for ZnMgO films grown at low-growth rates, the broad component in the rocking curves was not observed and the FWHM values of Zn$_{1-x}$Mg$_x$O films were as narrow as 0.07°.

Figure 3(a) shows typical photoluminescence spectra of the Zn$_{1-x}$Mg$_x$O (0.0≤x≤0.49) films. From the PL spectra of the ZnO films, the dominant emission peak was observed at 3.364 eV with a FWHM of 7 meV, which is attributed to the excitons (F$_2$) bound to neutral donors. However, for the Zn$_{1-x}$Mg$_x$O films, the low-temperature NBE emission peak at x=0.49 decreased by 1.34%, comparable to the 0.9% decrease for MBE-grown Zn$_{1-x}$Mg$_x$O (x=0.33). Compared with similar ternary Al$_x$Ga$_{1-x}$N (x=0.4), which shows a decrease in the lattice constant by −2%, Zn$_{1-x}$Mg$_x$O alloys show a relatively smaller change in the lattice constant. This originates presumably from the similarity of the ionic radius between Zn$^{2+}$ (0.83 Å) and Mg$^{2+}$ (0.78 Å), which can facilitate heteroepitaxial growth of ZnO/Zn$_{1-x}$Mg$_x$O superlattices.

The effect of Mg incorporation on the crystallinity of Zn$_{1-x}$Mg$_x$O films was also investigated measuring the XRD rocking curves of Zn$_{1-x}$Mg$_x$O films. For this investigation, the films were grown at the same growth condition except the cp_2Mg flow rate. As shown in Fig. 2, the Zn$_{1-x}$Mg$_x$O film with a low-Mg content (x) of 0.11 shows the narrow full width at half maximum (FWHM) value of 0.065°, which is comparable to that of pure ZnO, 0.046°. However, for the Zn$_{0.70}$Mg$_{0.21}$O film, the rocking curve shows the composition of two components showing FWHM values of 0.07° and 0.2°–0.3°. Similar to the case of ZnO films, the broad component results presumably from three-dimensional islands nucleated on two-dimensional layers. With the further increase of Mg content, the broad component gradually became dominant. The deterioration in crystallinity of highly Mg-incorporated films might be due to strain induced from the occupation of Mg$^{2+}$ ions at Zn$^{2+}$ sites or increases in the film growth rates. Meanwhile, for ZnMgO films grown at low-growth rates, the broad component in the rocking curves was not observed and the FWHM values of Zn$_{1-x}$Mg$_x$O films were as narrow as 0.07°.
gap semiconductors, the band gap of Zn$_{1-x}$Mg$_x$O is estimated to be 4.3 eV with the simple assumption that excitons in Zn$_{1-x}$Mg$_x$O have a small value of its Bohr radius and are, therefore, largely affected by local (atomic-scale) fluctuations of Mg content.4

It is noted that the weak emission peaks at 3.36 eV were also observed as indicated by arrows in Fig. 3(a), which results presumably from the bound excitons in the ZnO buffer layer. This is supported by the fact that the PL peak at 3.36 eV was not observed for Zn$_{1-x}$Mg$_x$O thin films grown directly on sapphire substrates.

In conclusion, MOVPE was employed to grow high-quality Zn$_{1-x}$Mg$_x$O epitaxial films up to x = 0.49. The c-axis lattice constants of the Zn$_{1-x}$Mg$_x$O films decreased with increasing the Mg content. Due to the Mg incorporation, furthermore, the NBE emission peak of the films was blue-shifted from 3.364 eV for x = 0.0 to 4.05 eV for x = 0.49.

This research was sponsored by the KISTEP through the National Research Laboratory program, the Brain Korea 21 project, and the POSTECH BSRI Special Fund-2001.

Alloy broadening resulting in the Stokes' shift is commonly observed in alloy semiconductors.15–17 The increase in the FWHM values of emission peaks by increasing Mg content (x) results presumably from the fluctuations in alloy composition, where localized excitons experience a different Coulomb potential. However, compared with other III–V alloy semiconductors, Zn$_{1-x}$Mg$_x$O exhibits somewhat larger broadening parameters, which can be explained by the fact that excitons in Zn$_{1-x}$Mg$_x$O have a small value of its Bohr radius and are, therefore, largely affected by local (atomic-scale) fluctuations of Mg content.4

It is noted that the weak emission peaks at 3.36 eV were also observed as indicated by arrows in Fig. 3(a), which results presumably from the bound excitons in the ZnO buffer layer. This is supported by the fact that the PL peak at 3.36 eV was not observed for Zn$_{1-x}$Mg$_x$O thin films grown directly on sapphire substrates.

In conclusion, MOVPE was employed to grow high-quality Zn$_{1-x}$Mg$_x$O epitaxial films up to x = 0.49. The c-axis lattice constants of the Zn$_{1-x}$Mg$_x$O films decreased with increasing the Mg content. Due to the Mg incorporation, furthermore, the NBE emission peak of the films was blue-shifted from 3.364 eV for x = 0.0 to 4.05 eV for x = 0.49.

This research was sponsored by the KISTEP through the National Research Laboratory program, the Brain Korea 21 project, and the POSTECH BSRI Special Fund-2001.