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1. Introduction

The k-median problem has been widely studied both from the theoretical
point of view and for its applications. An interesting theoretical development
was the successful probabilistic analysis of several heuristics for this problem
(e.g. Fisher and Hochbaum [8] and Papadimitriou(22]). On the other hand,
the literature on the 2-median problem abounds in exact algorithms. Most are
based on the solution of a certain relaxation to be defined later, The compu-
tational experience reported in the literature seems to indicate that this particular
relaxation yields impressively tight bounds compared to what can usually be
expected in integer programming. In this paper we analyze to what extent
this relaxation is tight. We perform our analysis for a classical Euclidean model
in the plane and show that the relaxation can be expected to provide a bound
within one third of one percent of the optimum value of the 2-median problem,

In addition to the probabilistic analysis, we also report extenmsive computational
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experiments, based on the solution of thousands of medium-size problems. Some
of the results predicted for very large problems by our probabilistic analysis can

already he observed on these test problems.
2. Problem Formulation

Consider a set X={X,, ..., X,}] of n points, a positive integer 2#<n and let
d;;>>0 be the distance between X; and X, for each 1<(i<{a and 1<j<(m,
(Unless otherwise specified, it is assumed that dy=0, d;=d;; and d;;<du+
dy, for all 4,7, k). The k-median problem consists of finding a set SCX, |S|

='k, that minimizes ﬁ min d;;. (Here |S| denotes the cardinality of the
i=1 jES

“set §). The k-median problem has the following integer programming formu-

lation.
Z;p:min ii il a’,-,y,-,- (l)
= i=
i',l y;;=1 for i=1, ....n (2)
J:
i .’L‘j=k (3)
i=1
0<y:;;<z;<1 for i, j=1,...,n @
z;=(0,1) for j=1,...,n (5)

In this formulation z;=1 if X;&S, 0 otherwise and, for 1<<i<n, we can

set y;;=1 for an index j that achieves min dj;
=S

The formulation (1)~ (4) is called the linear programming (LP) relaxation
of the 2-median problem. In other words, the LP relaxation is obtained by
ignoring the integrality conditions on z;, 1<{j<\n. The optimum value Z;, of

this relaxation clearly stisfies Z,,<CZ;p. The bound Z.» has been used extensively

in exact algorithms for the k-median problem. (E.g. Marsten(15], Garfinkel
Neebe and Rao[10), ReVelle and Swain{23), Diehr{5), Schrage(24), Guignard
and Spielberg(11], Narula, Ogbu and Samuelsson(20], Cornuejols, Fisher and




Nemhauser[3], Erlenkotter(6], Galvao[9], Magnanti and Wong[14]], Nem-
hauser and Wolsey[21], Mulvey and Crowder(19], Mavrides(16), Mirchandani,
Oudjit and Wong[17], Christofides and Beasley[2], Beasley[1].)

Most of the computational experience has been reported on test problems
with 7<100. For many of these test problems, Z;,=Z,r. Recently, Beasley[1]
solved forty larger problems(with 100<Xn<(900) and found a small but positive
gap Zip—Z,p for many of them, The average of —Z'PZ—#
was . 0024,

over these problems

Zie—Zip
Zip
view as n goes to infinity, under some assumptions on the probability distri-

In this paper we analyze the ratio from a probabilistic point of

bution of problem instances. We do not address the worst-case analysis of this
ratio except to note that this question was solved by Cornuejols, Fisher and
Nembauser [3) when d;;<C0. The analysis of [3] does not carry over when
the d;/s are nonnegative and satisfy the distance axioms. In fact, this worst-
case analysis is an interesting open question. It would also be interesting to

know the worst-case value of Zie=Zip

‘IP
represent Euclidean distances. Once again, these questions are not addressed here

when the d;/'s are further restricted to

- as we focus on a probabilistic approach.

We will often write statements like X,<<u, almost surely (a.s.) for a sequence
of random variables (X,) and real sequence (u,). This is a well-defined term-
inclogy of probability theory and details can be found in Stout [25] for exam-
ple. We will invariably prove that

3 Pr(X,>u,)<oo

which implies the above statement. Non-probabilists will be satisfied that we
show Pr(X,>u,)—0 as n—oo, If X,<u,(1+0(1)) a.s. and X,>u,(1—0())
a.s. then we write X,~u, a.s.

We study the k2-median problem in the plane. When points X, ..., X, are

uniformly distributed in a unit square and d;; is the Euclidean distance between

X; and X; 1<i, j<n, we show that

Z!I - ZLP

~, 00284 almost surely, for any
ZIP




k such that o<<k< Tf?o? where w=w(n)—o0. (In this paper we abbreviate
f(n)—a as n—co by f(n)—a.)

In section 4 we put our probabilistic results in perspective by presenting
extensive computational experimenis.

In section 5, we show how our results for the the 2-median problem relate to
the simple plant location problem (SPLP), In the SPLP, the data comprise =
points X, ..., X,, distances d;; for 1<i, j<(, and fixed costs f; associated with

each point X;, 1<j<\». The SPLP consists of finding a nonempty set SCX
that minimizes ": min d;+2. f; (Note that, in this problem, |S| is not rest-
=1 jE§ JES )
ricted as in the k-median problem.) An integer programming formulation of
Z[p=min Z}_ gl dijyij+§1 f,‘l‘j
=l j= i=
SPLP is subject to (2), (4) and (5). The LP relaxation is obtained by relaxing
the integrality conditions (5).
In the remainder of this section we state some useful results from the lite-
rature. Our proofs use the following lemma (see Hoeffding[12]).
Lemma 1. If Y,,..., Y, are independent random variables and 0<Y;<1 for
i=1, ...,n, then, for 0<e<],

Pr(Y > (1+¢) p<<e*"m/3 and
Pr(¥ <(1—e) p) emsm/2,

where I_’=(£} Y,) /n and g is the expected value of ¥,
i=1

Given a vector z=(z; : j=1, ..., n) such that 2. z;j=Fk and 0<z;<1 for all
J

J, define
Z1p(x) =min il ix dijyij
=1 j=

E y,-,-=l fOI‘ I=]_, ey
=1

0=<yy;<z; for 4,4, =1, ..., n.
Note that Zmemin ZLP(.T,')




Z .’L'j-':k
t

0<z;<1 for j=1, ..., n.

The following lemma is well-known in the k-median literature and is easy

to prove.
Lemma 2. An optimal solution y=(y; i 4,7=1, .., n) of Zip(x) is obtained
as follows. For each 4, sort the values di;, j=1,...,7, s0 that
dl'il(f)édijz(i)g'"Sdl'j,(t')!
Fp)

and let » be such that jpfjm n<ll< 2z

R=j, (D h=j (D

Then
Z for =i, o it @)
Ip—1 (i) e s g
Y= 1— h—z;‘(')xh for j=7,(0)
=G
0 for j:jﬁ+l(i)’ "'9jn(i)'

Proof. The program Z.p(z) separates for each j into a linear program with

upper bounded variables and a single constraint.

Let d;=i'. di; y;; where the values of y;; are those defined in Lemma 2, Note
i=1

that Z,p<< i‘i d; since this bound is derived from a primal feasible solution.

This bound will be used repeatedly in our proofs where it is computed for the
vector z defined by z;=k/a for j=1, ..., n.
The dual of the LP relaxation is
Zip=max ‘Z‘ u,-~)i v;—kw
i=1 =1
u;—t,-,-éd,-,- for all t,] (6)
i‘i tij—v;—w<0 for all j

L, v; 220 for all i, J.

For any given vector = (4; : i=1, ..., n), define

pi(u) =§; (u;—dip)* for j=1, ..., n,




n
1=1

where a* denotes max (0,4). Let Zp(«)=> u;—k max oi(u).
i=1 o7

Lemma 3. Zip>Zp(u) for any vector w.
Proof: It can be checked that, for any given », a feasible solution of (6) is
obtained by setting ;= (#;—d;;))*, v;=0 and w= _max p;(u).

J=1, 0,0

3. The Euclidean model in the plane

This section is concerned with the following Euclidean model: n points X,
., X, are chosen independently and uniformly at random in the unit square
So =[0, 1% The distance matrix is given by dij=||X;—X;|| for 1<i, j<n
where ||-|| denotes the Euclidean norm. We assume that

k—co and n/{klogn) oo, )
The following theorem was proved by Papadimitriou [22].
Theorem 1 Under the above conditions,

Zip~ (. 3771967..)n/ + & a.s.

This result was obtained by comparing Z;p to the value Z; of finding % points
in X={X,, ..., X,} that minimize the sum of the distance to a continuum of
points in the unit square. Papadimitriou showed that, when (7) holds, Z,~Z.
almost surely. Actually, he used a weaker notion of probabilistic convergence,
but Zemel [26) showed that almost sure convergence holds as well. It should
be pointed out, however, that the continuous problem vielding Z; is very diffe-
rent from the LP relaxation. In fact, for the LP relaxaton, we prove

Theorem 2. Under the above conditions,

) _
Z”’NS—«/T n/  k a.s.
where 2/(3 /7 )=. 3761264...
Our method of proof consists of conjecturing a near-optimal solution to the

LP relaxation and a near-optimal solution to its dual. Then we show that,

almost surely, these lower and upper bounds on Z, are the same, up to small

order terms. The probabilistic arguments are based on the estimates of the tails




of the binomial distribution given in Lemma 1.

The proof of Theorem 2 will actually provide a constructive way of obtai-
ning an upper bound Z;»(z) and a lower bound Zp(«) on the optimum value of
the LP relaxation of the 2-median problem.

Corollary 1. Let z;=%/n for j=1,...,n and u;= JE/x fori=1,...,n. Then
Zp(u) <Z1p<Zip(x) and, under condition (7),

Zp(u)y~Zip almost surely,
Zip(x)~Z1p almost surely.

In addition, in [22), Papadimitriou gives a heuristic which almost surely
provides a solution with value Zy~Z;,. The complexity of the heuristic is
Of(nlogn). Combining this result with the fact that Zp(«) can be computed in
linear time, we have a very fast procedure which will almost surely

(i) find a solution with a value close to the optimum,

(ii) prove that the value of this solution is within 0.3% of the optimum.

Finding the exact optimum is much more expensive as will be shown in
Theorem 3. But first we give the proof of Theorem 2.

Proof of Theorem 2. To obtain a probabilistic upper bound on Z;p, we

are first going to consider the LP solution

z; =k/n for j=1,..,n
and the values of y;; as defined in Lemma 2. Let d; =_}n:1} dij yi; for i=1, ..., n.
J=

1/3
We must get a probabilistic estimate of d; for i=1,...,n. Let e= (kl%) ,

l 172
r=(_) and let S, be the square [r, 1—r)2 We show first

kr(l—e)

2 —n
Pr(dz5 T (L+O)) I XiES,)<2e ®
Pr(d;?_# (1+0(1) 1 XES, <2 % ©)

If X;=S,, then a circle C; of radius r centered at X; is entirely contained in

S,. The number N of points lying in this circle stochastically dominates the




binomial B (n, nr?) (since X;=C;). We define independent random variables
W; ji=1,2,...,n as follows:
Let
d; if X;eC;
Wj= [

0 otherwise.

We note that E(W))=2zr*/3 (j#i). If N>r _then d<~—Z W, Now,

by Lemma 1,

Pr(N< r%-]) =Pr (N<(1—¢)nar?) gehszz-
Furthermore, if W,: W;/r<(0, 10, then by Lemma 1,

2xr?

Pr(i =+ (a—1)-27 2’” )ge"‘%*"“” 3

and (8) follows. . .

To prove (9), we note that if X;&=S;—S,, we can at worst find a quadrant
of a circle centered at X; with radius 2 and contained entirely within S,. The
area of this quadrant is z(2r)2/4 and we apply the same method as above with
E(W) =4rnr*/3.

We are now ready to bound Zp.

ZLP<Z} di= 2 di+ > d.

X, €5, X, E8,-8,

By Lemma 1,

2z
—8—2n(1—2r)”

Pr{|XNS | <n(1—-2r2(1—e)} <e
and thus

j [ 2 2 z 4 ]
PI'\ZLPZ(].'{"O(I)) ‘ (1—2r)n 3‘/]@ + (A= U=2r)%)n Jkrr J}

<(@n+1) e—-—z—;—n/k

giving

Zp<{1+01)) —3% almost surely. (10)



To obtain a probabilistic lower bound on Z.p, we consider the dual problem

(6). Let u;=r for i=1...n. Then by Leinma 3

ZLPZi u;—Fk max
i=1 ;

é (ui'_dn',i) *} (11)

For fixed j, consider random variables U;= (u;—d;;)*.

Setting u;=r we find E(U;) = ”:;3 for i7j and X;=S,, whereas these values

decrease for points X;=S,—S,. Rescaling U to [0,1) and applying Lemma 1
to X;=S, we find

Pr(:Zl Ui (1+¢) ”g’3 )ge“’s—"”

and thus for k=O(Tog—n) we have

1 nxré »
M?x(ig‘ U..)g(1+e) A s,

giving

2n_
3k
Combining this with (10) yields the theorem.

Zipnr— (lfl-e)kmtra/3= (1-0(1)) a.s. (12)

One might expect then that an LP-based branch and bound procedure per-
forms well, since Z,, provides a good bound. However, we can prove

Theorem 3. Assume k/logn—co and n/k*logn—oo,

Then there exists a constant a>>0 such that a branch and bound procedure
that branches by fixing a variable z; to ( or 1 at each node node of the search
tree which is not pruned and uses the LP bound to prune the search tree will
almost surely explore at least »n** nodes.

Proof: Each node of the branch and bound tree is associated with two sets
J, and J, where J;={j : z; is fixed at ¢ in the associated subproblem} for z=
0,1. Let Zip(J,, J.) denote the LP bound computed at this nade, i.e. the value
of Z,» when we make the restriction z;=t for j&J, t=0,1. We prove the

theorem by showing that for some constants 8, 7>>0 (to be determined) the

following holds almost surely:




For any J,, J,C {1, ..., n} such that (13)
JoNJi=¢, |Jdo| <pn/Hogn, |J;|<rk, we have

Zip(Jo, TN < . 37697%~

For then we almost surely have to branch at every at every node in which
|Jo| <pn/klogn and |J,| <7k even if we have an optimal solution of the integer
program as our current best solution-by Theorem 1.

This implies that the algorithm must explore at least

(]_,Bn/klognj-l- L'rk_l)=n7’“"”“” nodes. (14)
L7k]
Since B can be chosen arbitrarily close to 1 the theorem will follow. To verify

(14) imagine that setting x;=0 means branching to the left and setting z;=1
means branching to the right. (13) implies that our tree contains a copy of all
possible paths which make |7%] right branches and |An/klogn] left branches.
The number of such paths is precisely the left hand side of (14).

Let F denote the family of such pairs J;, Ji.

Thus let J,, JJC {1, ++-,n} be disjoint, J= (j&J,Ud),7=1]], and k=k—

|J;|. Consider the following solution to the associated linear program.

JO if j=J,
;=31 if j&dJ,
lk/n if je=J.

The values of »; are then defined as in Lemma 2, but only using j&J to
form the sequencej, (3), j»(?), ..., jo(3). This choice of y;; is feasible although
usually not optimum. However this is sufficient since we only need to compute
an upper bound on Zp(J,, J;). We can assume w.l.o.g. that |J,| =[pn/k log n|
and |J,|=[ak]. Let ¢>0 be small and r=~/ —(1—_”——15)7};— and proceed as in the
proof of Theorem 2, defining variables W,, W, ..., W; for each i, We find
that for e<% and »n large

Pr | Z1p (Jo, J1) > an _ (l+36)J S(Zn—i—l)e_i;?’l_
3k

Since | F|<nfr/Hoenttk we find




Pr [ @0 )R Zun (G I > T (1430 | <

Ze’ﬁ

(271-{- ].) nﬂn/lzlogn+7ie
(143¢)
3 J (1—¢)

almost surely.

Taking f=¢2/5, y=c and e sufficiently small that <. 3769 vields

max (Zur (Jo, J2) + (To, J) EF) <. 3769~

Any a<{y can be used to give the theorem.
4. Computational Experience

The previous section provide asymptotic results as n—oco for a classical Eucli-
dean model in the plane. In this section, we report our computational experience
with medium-size k-median problems for a Euclidean model This computational
experience is based on the solution of about 3,300 random problems with n=
50 points and an additional 950 random problems with 2=100 points. The
description of these problems is given later.

For each problem we computed Z;p and Z;p. The value of Z,p was obtained
by solving a Lagrangian dual by subgradient optimization as explained in [3].
In the process of corﬁputing Z.p, this algorithm generates a feasible solution at
each subgradient iteration. Of course, if it happens that the value of the best
feasible solution generated equals Z.p, the algorithm terminates since, then, Z,p
=2Z,p. For most of the test problems with no gap Z,—Z;p, the algorithm
terminated in less than 100 subgradient iterations, due to the above stopping
criterion. If, after 100 subgradient iterations, there was still a gap between the
best feasible solution (an upper bound on Z;p) and the best Lagrangian rela-
xation (a lower bound on Z;p), we resorted to branch and bound te find Z;.
When the subgradient algorithm clearly converged to a value different f.rom
Zip, we accepted it as showing that Z;p,7£Z;5. In the cases where the subgradient
algorithm converged to a value close to Z;» we used the simplex algorithm to

compute Z;p, This allowed us to settle cases where was a very small but posi-




tive gap Z”»—ZLP.
Among the 4250 test problems that we generated we found about 3700 such
that Zjp=2Z,, and about 550 with a gap Z;,—Z.p. Now we give a detailed

description of these results.

The first set of experiments involves Euclidean problems. We decided to test
whether approximating the Euclidean distances had an influence on the gap Zp
—Z.p, since we suspected that data accuracy might be partly responsible for the
discrepancy between the computational experience previously reported in the.
literature, namely few test problems were found to have gaps ([2), (3], (6],
(103, 111, 119], [20), (23], (24)), and the results of Section 3 stating the
asymptotically most instances should have small but positive gaps. To our sur-
prise, data accuracy had little influence except maybe for the possibility that a
very coarse approximation produces harder £2-median problems. (These problems
are more combinatorial, often have alternate optimal solutions and, in our
experience, optimality was harder to prove). We generated 10 problems, each
with 50 points occurring at random in the unit square. Then, for i=1,2, 3,4
and 5, we multiplied each point coordinate by 10° and rounded it to the closest
integer value. The Euclidean distances were then computed and rounded to the
closest integer. The k-median problem and its LP relaxation were solved for

each 2<Ck<C10 and 1<Ci<(5. For each such pair 7, 2, Table 1 reports the num-
ber of problems (out of 10) with a gap Zp—Z,5.

The same two problems were responsible for all the gaps. The average value

of Zie—Z1p guer the instances that had a gap was approximately 1.5% for
P

Table 1 Euclidean model with #=50). Number of instances with a gap.

k 2 3 4 5 6 7 8 9 10 (outTgtfalgo)

1 0 2 0 2 2 1 0 0 0o i 7

2 0 1 0 0 0 2 0 0 1 4

3 0 1 0 1 0 0 2 0 0 4

4 0 1 0 0 1 0 2 0 0 4

5 0 1 0 0 1 0 2 0 0 4

Total 23
ol o 6 0 3 4 3 6 0 1 i out of 450)




i=1, .4% for i=2 and .1% for i=3,4 and 5. Overall, the fraction of in-
stances with a gap was about 5%. This is consistentwith the computational
experience reported in the literature. Clearly, the asymptotic behavior described
in Section 3 is not felt for problems with n=50 points. It would be interesting
to repeat the computational experiment for Euclidean %-median problems with
about #=1000 points. Unfortunately our computer budget did not allow to do
this.

5. The Simple Plant Location Problem

Although we proved our probabilistic results for the -median problem, they
can also be useful for the SPLP. To define an instance of SPLP, we need fixed
costs f;, j=1,...,n, in addition to the distances di; 1<i, <<n. For simplicity,
we assume in this section that the fixed costs f; are all identical, say f;=f.

Theorem 4 Consider the Euclidean model in the plane and assume that

12 f<<n'~* for some fixed ¢>>0. Then, for the SPLP,

Zip—Zip
Zip

Proof. In this proof, Z;» and Z,» denote the optimum values of SPLP and

~. 00189255... almost surely.

its linear programming relaxation respectively. The solutions of the corresponding
k-median problem (with same d;s) and its relaxation are denoted by Zr(k)
and Z;p (k) respectively.

By definition ZLp=n1in (Zp (k) +Ef)=min (Z,, Z,, Z;), where

Z]_":'I:ii;”n (ZLP (k) +kf)5

Z,= min (Z;p{k)+Ef), and

aks—=0

wlogn

Zy= min (Zp (k) +kf).

“wlogn

First we compute Z,. From the proof of Theorem 2,




Pr{ et [ 2 1-0w), 5 F=— a+oay ] 120 (neset ey

and so
Z,< min [ an__ (14+0(1)) +kf} almost surely.
. 3 vk
wsisw—log;— .
Let a= 2—. The minimum of the function +&f is attained when 2=
3V =m J k

(3—2)2’3, Note that, given our assumptions on f, this value is in the range

[w, i ] for a suitable w, say w==logn, The minimum value of the fun-
wlogn

ction is [—a n’f ] 173 Therefore

Z,— [?gaznzf] 173 (14+0(1)) almost surely.

Now consider Z,. With our choice of w=Ilog», we have k>—(lgg—n)7, The-
refore, almost surely,

L (g myr

1/3f2/23 Z, 1+0(1)) =2,
(log n) (y az)l/a
4

Finally consider Z,, For all 2< log n, we have Z.p (k) >Z;r(log n). Therefore
Z,>Zip(log n). This implies that, almost surely,

. — (1+o<1)>—c—"—”3fﬁ Z,1+0(1)>Z,,

where ¢ is a constant.
We have just proved that
Zip~ [%aznzf] 143 almost surely.
Similariy, Z1p=n;1in (Zp (k) +kf). Following the proof of Papadimitriou
[22], we can show that

Zip=min _g'ik__ (14+0(1)) + fk almost surely, (15)

where =, 3771967.... The minimum in (I5) is achieved when k=(%)2/3



and its value is(%?ﬁznzf)l” a+o@).

— 2/3__ 273
Zip—Zp ~ B a

Zip ‘32/ 3

Similarly, the next result can be shown using the proof of Theorem 8,

So

almost surely.

Theorem 5 Consider the uniform cost model and assume that n*—!<{f<lnl—
for some fixed ¢>0. Then

Zip—Zip ~]— V2
Zip 2

almost surely.

6. Conclusion

The LP relaxation (1) — (4) has been widely used in branch and bound
algorithms for the 2-median problem and has bee reported to provide a tight
bound in practice. Our analysis shows that such good results can indeed be
expected in a probabilistic sense for some problem instances, but we also iden-
tify other instances where the LP relaxation is almost surely not tight. The
probabilistic analysis is performed for a classical Euclidean model in location
theory. That is, let w=@(n)—>oo. When o<z<< w—IZgT in the Euclidean
model, Z.p/Z;p= .99716...4+-0(1) almost surely.

Our computational experience confirms that only small gaps were observed
with a classical Euclidean model.

Another aspect of the probabilistic analysis performed in Section 3 is that,
under various assumptions, branch and bound algorithms must almost surely
expand a non-polynomial number of nodes to solve k-median problems to
optimality.

Finally, we mention as open problems the questions of describing the asy-
"

logn

mptotic behavior of Z;p/Z;» as n—oo when 2> in the Euclidean model.
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