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I. Introduction

This paper is sequal to the paper(1), where we performed probabilistic ana-
lysis for the Euclidean %-median problem in the plane. In this paper, our
analysis is concerned with the following graphical #-median problem

Let G,(p) be a random graph with n nodes, where each edge occurs indep-
endently with probability p, and ¢;; is the minimum number of edges on a
path joining i to j for where the minimum is taken over all paths joining i
to j. Thus ¢;; is the shortest distance between i and j, assuming that all edges

have length one.
ZI.P—ZLP

Zip
on the probability distribution of problem instances. We say that an event occurs

We analyze the ratio as »n goes to infinity, under some assumptions
almost surely if it occurs with a probability that goes to 1 as » goes to co,
Given a random variable Y, we write Y~a almost surely if, for any constant
e>0, the event 1—e<l . <1+a occurs almost surely.

In addition to the probabilistic analysis, we also report extensive computational

experiments, based on the solution of thousands of medium-size problems in

section 3. Some of the results predicted for very large problems by our proba-
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bilistic analysis can already be observed on these test problems. 7
In the remainder of this section we state some useful results from the litera-
ture. Qur proofs use the following lemmas.
Lemma 1
If Y, Y, are independent random variables and 0<Y;<] for j=1, -, n,
then .
Pr(Y>(1+e)p) e mwr? for e=o0(1)

Pr(¥<(1—e) ) e for 0<e<],
.. i=1 —
where ¥ = and p is the expected value of Y.

n
Lemma 2

An optimal solution x= (zi; : i, j=1, ---,#) of Z.p(y) is obtained as follows.
For each i, sort the values ¢;;, j=1, -, n, so that ¢;;, s, <cijyn << <eij, i and

let

p be such that ,'im yhglﬁjg). Yhe

b=y () B=j, (D)

Then
in for j=ji (D), "+, jp-1()
Zy= 1 1—2) " for j=j,(0)
0 for j=jps1(d), -+, ju(d)
LEmMA 3 |

ZLPZ}":I Vi—k max p;(V)
i= j: ,--.’n

II. Probabilistic analysis

wlogn
n

We assume (i) p>

where w=w (n) —co0,

(this guarantees that G,(p) is almost surely connected), and




(i) pe>-2logn,

Let ¢ be the base of natural logarithms, and b=-; 1

The main results of this section is the following iheﬁrem.
THEOREM 4
(a) Consider (1+¢)logm<<k<n, where ¢>0 is fixed.
Then Z;p=2Z,p almost surely.

(b) Consider 2<k<"logn, pmin(l,kp)g—“—)l%gi, where w—co,

Then Z”’Z_”’ZLP ‘g lj—e almost surely.

In addition, if we let EP—a, 0<la<lco, and p—f, 0<<p< 1, where a and

b are fixed, then

Zip—Zip | 1—(l—a)*a"
Zip 1+a®

where a=e if =0 and (1—5)7/% if >0,

‘almost surely,

The shape of the function f(e, ﬁ)=% can be seen in figure 1

attained when =1 and =0, When

The maximum of this function is y _|1_ i

a={ or cc the function takes the value 0.

Z!P:_ Zip

Z!l'

!

l+a

g

0 | d=limkP

(Fig. 1> Relative Gap as a function of kp when 2<k<logn,
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Proof of Theorem 4 (a):

This part of the theorem is a rephrasing of a known result and is easy to
prove. As ¢;>>1 for i#j, we must have

(1) Zip=Zip>n—"k,

Theorem 4 (a) follows from (1) if we can show that Z;,=n—% almost surely.
But Z;p=n—*% if and only if there is a subset K of I, |K|=%, such that, for
any § &I—K, there exists ==K such that i and j are joined by an edge of
G.(p), i.e., K is a dominating set.

Let K={l1, -, k). Then
Pr (K is not a dominating set)
<(n—k) Pr (£+1 is not joined by an edge to 1+, k)
— (=8 A=< =B (L) <o,

Thus Theorem 4 (a) is proved.

Our proof of Theorem 4 (b) will use the next two lemmas.
LEmMMA 5

Consider 1<<Zz<logn.

wlogn

Assume pmin (1, kp) > . where w—co,
Then, Zip=(14+0(1)) (n—&) (1+4¢*) almost surely.
Proof:

For subset K of I, let N(K) be the neghbor set of K, i.e.
N(K)={j&X—K : there exists an edge joining j to a node of K}. We have
Z"’g,’}‘.iib (INKK) | +2(n—k—|NK)|])

=2(n—k)—llilf§|N(K)l

We prove the lemma by showing that
2) max, IN(K) |={1+ (o)) (n—£) (1—¢*) almost surely, and

(3) Zip= (1+a(1))min(|l£\[7g<) | +2(n—%—-|N(K)|]) almost surely.

Consider a fixed subset K of I, |K|=#k The quantity | N(K) | is distributed




as B(n—#, 1—¢*). Thus, by Lemma 1, for any small >0
Pr{|[N(K) [<(1—€) (n—%) (1—¢*) J<le " mwa-hamah/2 gnd
Pr{|N(K) | = (1 +¢) (n—k) (1—¢*) Je " arba-ah/a
Thus we have

@ Pr[ll;l(llag(klN(K) | <(1—¢) (n—k) (1—g*) Jele ¢ i a=-pa=ehy2

(5) Prlmax| N(K) |>(1+6) (i=B) (1 —g) )< Jetomnampameiss
To obtain (2) we put 'e=2(klog%/ (n—Fk) (l—q"))uz.

We can use( 2 )g%in (5).
Then the right hand sides in (4) and (5) are both o(1). Thus (2) is proved,
provided that the assumption of Lemma 1 holds, i.e., e—0.
To prove e—0, we consider two cases. Let 0< @<l be a constant.

When kp<a, gi=(1—p)*=(—p) N<(L)ri—tp+ E0.

4

So, 6—23' . Hogn ———0 since log —0.
—-Bkp(1-%) np

When %2p>a, ¢t= (1—p)t=etlos!1=p < g k<o ],

Klog 2~
2
So & #~a0 since lo:gcx

T =B =

—(0 when z—oo0,

This completes the proof of (2).

To prove (3) it suffices to ShéiW that, almost surely, every node in I— (K|J
N(K)) is joined to at least one node of N(K), i.e. N(K) is a dominating set.
We have just shown that |[N(K)|=(1+0(1)) (z—k) (1—¢*) almost surely. In
addition, we have shown in Theorem 4 (a) that, if a set of nodes has cardin-
ality log,# or more, then it is almost surely a dominating set. So (3) holds if

we can show

(6) R= ( IOgb n _)0’ R< log n
7n—

B (1—d") “pn—k)(1—¢""

Let us use the constant a introduced earlier.
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When Ep>a, ¢t<e™=<1.

So RC— 1987 .4 since ppr>_elogn
pn—Bph(1-2) "

This proves (6) and therefore (3) and the lemma.

LEMMA 6 _
Consider 2<<k<log; .
Assume pz—‘?l;ﬁ and kpzz% where w—s00,
Then Z,p=max(n—k, 2n—nkp(1+0(1))) almost surely.
Proof:
Given a node 7, let N,(?)={j : ¢;;=1} and N,(i)={j : ¢;;=2}. First we give
probabilistic estimates of |N;(¢)| and |N,({)]. We will show
) miinlNl(z')[=(l—o(l))np almost surely,

(8) max|N,(3)|=(1+0(1))np almost surely and,

©) min|N;() Izmin(%, (l—o(l))np)) almost surely.
Note that |N,(i)| is distributed as B(n—1, P). So, by Lemma 1,
Pr(min| N, () [ (1—¢) (n—1)p) TS
Pr(max| N, ()) | = (1+¢€) (—1)p) e Dp/3
Putting e=2(—(1—110%"1§);)“2 yields (7) and (8).

Now consider |N,(i)|. We will assume p-—-0 (otherwise N; (i) is a dominating
set by Theorem 4 (a), and (9) follows), Conditional on |N,(i)|, the quantity
|N(3)| is distributed as B(n,, p;), where n,=n—|N,({)|—1 and p,=1—
(1—p) M@, ‘

By Lemma 1,

Pr (m;in]Nz (D) | <L —€) mapy) <me~c'mata’?

Set

e=2( log n )1/2. We have to show ¢<1.

Azh2




Note that n,=(1—0(1))n and p,=1— (1—p) Atetnmp>] g tetnp®
If #p>>6>0 where & is fixed, then

€? log n

TS Ao =)
If np?=0(1), then

e logn 1 log n \2
= nip? logn( np )—)0'

So we have just shown that, almost surely,
min | Nz ()| = (1—0(1)) nspe.

—0.

Next

n

we will use the fact that kpzz% to show n,p,> 5

If np?>>8, 0<6<1 fixed, then
Rypa=> (1+0(1))n(1——e“)2—z— for 222 and & close enough to 1.

If #np?<5<1, then

l_e“(l-hu(l))np’znpz(l _ 71?; )

So

nops> (1+o(1))n2p2(1——‘;—)2 (1+o(1))£;(1~%)2—}—:—.

This complete the proof of (9).
Now we are ready to get a probabilistic estimate of Z.p, First we obtain an

upper bound by considering the solution

(10) y,-=% for j=1, -, n and 7;; defined in Lemma 2.
Let 6=n'%in|N1 (#)| be the minimum degree of G(.p).
Note thé.t,

if 62%—1, then Z,p=n—=% because, using the solution (10),

2 k .
we have Cl-=}$: C'-}-_rl-i--.zl-— - for 1:1, e, 1,
=1 n




On the other hand,

2 —1-5).

(z:; only takes positive values for points j at distance one or two of i since,

if 6<—Z——1, then c;S%ﬁ+2—§-—(

by (9), the number of points at distance 2 is at least min(—;:—, (1+o(1)))

which is more than the %—1~6 points needed,)

Therefore
Z,,pgn)i ¢;<2n—Fké, althost surely.
i=1

To obtain a probabilistic lower bound for Z,» we consider the dual bound
1

given by Lemma 3. We put V.—=2—; for i=1, -, n and let 4 denote the

maximum degree of G.(p). Then

ZLPZn(Z——TII—)—kA(l— 1)

o) =en— (1+0(1))nkp almost surely.

This completes the proof of Lemma 6.
Proof of Theorem 4 (b)
It follows from Lemmas 5 and 6 that

Zir—Zp _, (1+¢*) —max(], 2—kp)
Zp (1+4

— ¢—U-#p)*
1+4¢* '

Setting a=(1—p)"'/? and kp—a, we get

Zip—Zip , 1—(1—a)*a"
Zip I4+a

almost surely

almost surely.

It is easy to check that the maximum of this function is achieved when p—0

and a=].

. 1
Then its value is l+e'//

An interesting range of parameters which is not considered in Theorem 4 is

the case 2<k<llogyn and p2%2 kp? where w—oo, In this range, the

expressions for Z;p and Z;p are more complicated than those found in Lemmas




ZIP_ZLP

iP .

In the range covered by Theorem 4, it is easy to identify conditions under

ZIP—ZLP
ZIP
For example, consider

(11) e<kp<l/e, k>2 and
(12) wViogn/n <p<{l—e, where w—oco and 0<e<1 is fixed.
Then

5 and 6. However we conjecture that —0 almost surely.

which the ratio is almost surely bounded away from 0.

2 — _
Hogy=—tp(L+ -+ Tt )=

So k<login for = large enough and, by Theorem 4 (b}, there is a fixed value
f(€)>0 such that

(13) Z”'—Z_Zﬁ—z f(&) almost surely.
1P

In addition, we can show that, under these conditions, a branch and bound
algorithm based on the LP bound Z;» almost surely requires a search tree which
is exponential in k. Actually, almost complete enumeration is required.
THEOREM 7

Assume (11) and (12). A branch and bound procedure that branches by
fixing a variable y; to 0 or 1 at each node of the search tree which is not
pruned, and uses the LP bound to prune the search tree, will almost surely

- expand at least 217°1* nodes.
Proof:
We first note that, under the above assumption, —e>klogh>>—1/¢* and

therefore

(14) /< g<e™
In addition, the assumptions of Lemma 4-4 hold and 2=o(+ 7) so that

(15) Zpz(1—o())n(1+4¢") almost surely.

Let Z.p(J,, Ji) be the LP value of the sub problem where Jy,={j : y; is fixed
to 0} and J;={j:y; is fixed to 1}, Let <1 and >0 be fixed. >0 We
prove the theorem by showing that,




(16) for any subsets Jy, J; of {1, -, n} such that
JoNJi=9, |Ji|<Tak] and |J,|<[pr]
A7) Zup (o, J1) <A+ 0(1))n(1+¢
Comparing (15) and (17), we see that for any @, by choosing § small enough,
-and using (14) that '
(18) Zpp(Jy, J) < Z;p for all Jy, J; satisfying (16).
We shall see that this implies that the algorithm must explore at least

(19) (Fﬁnﬂ_ﬁgaﬂ)z(%)"’;nu—amm nodes.

Since @ was arbitrary we have an almost surely lower bound of n%7*“? on
the number of nodes explored. On the other hand no branch and bound tree
has more than (Z)=n“""“’ nodes.

To verify (19), imagine that setting y;=0 means branching to the left and

setting y,=1 means branching to the right. (16)~(18) imply that any tree
contains all possible paths which make [ak] right branches and [gn] left
branches. The number of such paths is precisely the left-hand side of (19).
We now turn to the proof of (17). As increasing J, or J, only serves to
increase Z.p we can restrict our attention to |J,|=[fn] and |J;|=[ak]. Using
Lemma 1 we can easily prove that the following holds almost surely for G, (p).
(20) J being a subset of {1, -, 2} and |J|=[ak] imply
[N [ =A—o(D))n(1—g*) see (4).
Furthermore it is easy to see that
(21) diam(G,(p)) =2 almost surely.
where diam refers to the diameter of G,(p).

Indeed

Pr(ai, 7<= (1, +++, #n} such that i, j ane not joined be a path of length 2]
<(3)a-pr

RPN
Snze (n—2}p

gnze‘mlogn (n—=2) /"‘+0.




Thus (21) is proved. That is, Pr{diam(G.(p))=1}=p*—0 where h=(g)- To
obtain an upper bound on Z;p(Jy, Ji) let

0 if j&eJ,
yi==11 it j=J,
14 it j&EL U
— k—[ak]
W ] ak]

The values for z;; are then chosen as follows:
for i=J, tx;=1 and z;=0 for j#£i
for =N (J) : zi=1 and z;;=0 for j7t where ¢ is a node of J,(1N, @).
for i=J,\UN({J,)) : the values are defined in Lemma 2.

With this solution we find, using (21) that

<2 if iE€JUN)

Hence Zip(Jo, J)<|NWD | +2(n— N | and (17) follows on using (20).
In [3), a different graphical mode! is associated with the variation of the
k-median problem known as the k-plant location problem. The z-plant location
problem is defined using two sets I={1, -, n} and J={1, -, m]. The quantity
¢;; is defined for each 1<<i<lm and 1<(j<l=. The problem consists of finding

a subset S of J, |S|=%, that minimizes ‘_V_‘,l cij.

A E-plant location problem arises from a graph G by defining J as its node
set, I as its edge set and ¢;=0 if j is incident with 4, 1 otherwise. (The
problem is to find % nodes that cover the maximum number of G.) Itis shown

that in [3] that

Zip=Z.p almost surely
when G=G,(p) is a random graph with 0<le<{p=_l—¢, ¢ fixed, and k<n",
a<1/6 fixed.
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IIl. Computational expriment

In this section, we report our computational experience with medium-size
k-median prqblem for a graphical model.

For each problem we computed Z;» and Z,p. The value of Z,p» was obtained
by solving a Lagrangian dual by subgradient optimization as explained in [2].
In the process of computing Z.p, this algorithm generates a feasible solution at
each subgradient iteration. Of course, if it happens that the value of the best
feasible solution generated equals Z,», the algorithm terminates since, then,
Zip=Zip. For most of the test problems with no gap Zip—Zyp, the algorithm
terminated in less than 100 subgradient iterations, due to the above stopping
criterion. If, after 100 subgradient iterations, there was still a gap between the
best feasible solution (an upper bound on Zip) and the best Lagrangian relax-
ation (a lower bound on Z.,), we resorted to branch and bound to find Zip.
When the subgradient algorithm clearly converged to a value different from AT
we accepted it as showing that Z,7Z,p. In the cases where the subgradient
algorithm converged to a value close to Z;, we used the simplex algorithm to
compute Zyp, This allowed us to settle cases where was a very small but positive
gap Zip—Zyp,

Our expreiménts involves two cases of random graphs. One is graphical model
with unit edge cost and the other is that with random edge cost.

1) Unit-edge cost case

First we report the results when the edge lengths are equal to 1. Starting
from a random tree on 50 nodes, we generated a sequence - of graphs, adding
50 random edges at a time to the previous graph. Table ] contains the value of
Zip and Z;p for each 2<Ck<C10. Only one figure means that Z;,—Z,p. Note that
when Z;p=Z;p=n—%k for same graph, it contains a dominating set and therefore

every subsequent graph in the sequence also does.

The problems in region A of Table 1 are relatively easy problems in the




(Table 1> A Graphical Model with unit edge lengths: n:_50

.‘i_ # of open facilities
eé)ges 2 3 4 5 6 7 8 9 10

49 139 114 o8 88 80 72 65 59 54
99 89 77  68.5/69 62 57 . 62 48 44.5/46 42
149 77 69 62  55.5/57 50 46 43 41 40
199 72 63 44 48 15 43 42 ’

249 72 61 ) 46 44/45

299 69 56 48 16 44

349 65 52.5/54 48  45/46

399 62 50 47/48 45

449 61 49 46/47

499 58 47.5/52 46/47

549 56 48 46

599 B4 47/48

649 52 47 ) Region A

699 51

749 50

799 | 48.5/49

849!  48/49

899 |  48/49

1199 48

* figures are the values orfWZLp and Zip
* only one figure means Zip=Z1p
sense that Z,p=Z;» due to the existence of a dominating set in the graphs.
Among the instances where a dominating set did not exist, about 28% had a
gap.

2) Random edge cost case

Next we turn to the graphical model with non-unit edge lengths. We started
from 10 random trees on 50 nodes. We then added random edges, 50 at a time,
until the graphs contained 849 edges. The edge lengths were computed using
the same scheme as earlier. Namely, the nodes were assigned random integer
coordinates in a square of size 10X 10 and the length of an edge was the Euc-
lidean distance between its two endpoints, rounded to the closest integer. The

distance between two nodes of the graph was taken to be the length of the

shortest path joining them in the graph. Table 2 reports the number of instances




Table 2. A Graphical Model with Random edge lengths, N=50

% of # of open facilities total out
edges 2 3 4 5 6 7 8 9 0 | e
49 0 1 1 0 0 0 0 0 ! ’
o N ! ) 5 3 1 0 1 1 11
149 2 1 2 2 1 0 0 0 0 s
199 1 9 1 0 1 0 2 1 2 10
240 1 2 9 1 1 0 1 3 1 12
299 2 1 2 2 1 2 1 1 1 13
349 2 2 4 1 5 1 0 3 2 20
399 1 3 2 0 2 ! 0 ! ! -
449 3 2 2 1 1 2 2 1 0 14
499 0 1 1 2 1 1 L ! 0 °
549 1 1 4 0 0 1 2 1 1 11
599 1 1 0 2 2 2 2 0 2 12
649 2 0 1 2 0 0 3 1 1 10
699 0 2 2 1 0 2 2 0 1 10
749 0 1 1 0 1 2 ! 1 L ;
799 1 1 0 1 1 1 0 2 3 10
849 0 0 2 0 2 1 0 2 3 10
out of 18 22 28 17 22 17 17 19 21 | 18 out

" each figure represent # of problems with duality gaps out of 10 problems.
* # of cases with duality gap: 181/1530=11.9%,

with a gap (out of 10), as a function of the number of edges in the graph

anf 2, For this model, the fraction of instances with a gap was about 12%.
ZIP—ZLP
Z

P

The average taken over the instances with a gap was less than 1%.

IV. Conclusion

We provided a probabilistic analysis of the strong linear programming relax-

ation of the k-median problem. We perform our analysis under various proba-

bilistic assumptions. The model we considered was a graphical model. For this
model, we showed
(1) Consider (1+4¢)logn<{k<(n, where ¢>( is fixed.

Then Zjp=2Z;, almost surely.

(2) Consider 2<<k<logyn, pmin(l, kp)gw—l::g—&, where w—o0,




Zip—Zp 1
Zip = 1-+e

Then we reported our computational experience with medium-size k-median

Then almost surely.

problem. For a graphical model with random edge lengths the fraction of inst-
ances with a gap was about 12% and a graphical model with unit edge lengths
the fraction was 28% among the instances where a dominating set did not exist.

In either case the fraction is higher than reported one in the literature.
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