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Polyhedral Study of the K-Median Problem

Sang-Hyung Ahn

1. Intlroduction

The past two decades have witnessed a tremendous growth in the literature
on location problems. However, among the myriads of formulations the simple
plant location problem and the k-median problem have played a central role.
This phenomenon is due to the facts that both problems have a wide range
of real-world applications and a mathematical formulation of these problems
as an integer program has proven very fruitful in the derivation of solution
methods.

Consider an index set I={1, 2,..., n} of n points, and a positive integer
#<n, and let ¢;; be the shortest distance between two points i,j&I. The k-
median problem consists of identifying a subset S of I, |S|=k so as to
minimize(i};,““1 ].\1/251 ¢;j). (Here |S| denotes the cardinality of the set S). The
E-median problem has the following combinatorial formulation.

Combinatorial Formulation:

Min {¥& Min ¢;}
scr i€l jss
| 51 =k

We introduce integer variables. Let y;=1 if a point j is selected as a median,
otherwise 0 and z;;=1 if a point j is the closest median to point 7, otherwise
0. With z, y variables the k-median problem is formulated as an integer
program as follows.

Integer Program Formulation:
le=Min Z[ .ZIC,'J'.I,','J* ‘ (1)
==
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Zn:lx,‘j=l =TI (2)
J=
f:lyj=k (3)
]:
ngijgngl ,jel (4)
Zij, y; integral i,j=1 (5)

A vast number of algorithms were proposed for the k-median problem. We
refer readers to ReVelle [19], Ffancis and White [14], Christofides [7],
Jacobsen and Pruzan [16], Handler and Mirchandani [15], Krarup and
Pruzan [17], Cornuejols [9] [11] [12], Fisher and Hochbaum [13],
Papadimitriou [18], Rosing [20], Beasley and Christofides [8], Boffey [5],
Beasley [4].

Most of the successful algorithms for the %-median problem are based on
the strong linear programming relaxation. In [1] [2] [3] we presented and
explained why the strong linear programxﬁing relaxation provides a tight
lower bound in the probablistic sense. In this paper we investigate the

phenomenon with a polyhedral approach.

II. Polyhedral Analysis

In this section we investigate the polytope of the extreme solutions to the

strong linear program relaxation of k-median problem constraints.

;:313:,-,:1 | il (6)
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¥;<1 iEI (9)
Ti;, ¥;220 i, j&I (10)

Let P, be the polytope defined by (6)~(10). We present properties of the

fractional extreme points (z,y) to P, below.

o
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Lemma 1:

If (x,y) is a fractional extreme point of the polytope P,,

then for each i{&I, there is at most one j&I with 0<x:;<y;.

Proof: 7

Let (x,y) be a fractional solution such that above condition does not hold.

Then there exist p, j,, j» such that z,;, <y, %, <07,

Let x};, =y, +€, Th, =Tps,—€ Tpj, =Zpj,—6, Ty =Xy, e,

zh=x4=x;; for all other i, j and yj=yi=y; for all ;.

where e=Min [,),, Zpin ¥ii™Tpins Vi ™ Tpil:

Then (z, y)=(1/2) (=, )+ (1/2)(2? »*). (&', »') and (% 5%) both are
feasible solutions to P, This contradicts the assumption that (z, ») is an
extreme solution. /

A similar result is known for the simple plant location problem. In fact,
Cornuejols et al [10] completely characterized the fractional extreme solutions
to the simple plant location problem.

Suppose we are given the shortest distance matrix between all pairs of
points. The optimal solution to fheil—median problem is reduced to find a
column of the shortest distance matrix with smallest column sum. In fact,
when k=1, all the extreme solutions to the polytope P, are integral regardless
of #n. We show this in the next theorem.

Theorem 2: ‘ .

The linear programming relaxation of the 1-median problem always has an,
integer optimal solution.

Proof:

Suppose there exists a fractional extreme solution to the linear programming
relaxation of 1-median problem. ‘

Let Ji={j=l: 0<y;<1}

Then for each i<I, xz;;=y; for all j&J; and z;;=0 for all je&EJ.

Choose any two points j;, j,=J;, any p&I and let

1 — 1, . — | —— ) Qe _
:t,,-‘—x,,-,+e, Lpj, =Tpin € Vi, Yinte, ¥;,=y;,—€




— 181 —

T, =T =€ Ty, =Ty t€ ¥ =3, € ¥ =y; Fe

All other x;;, v; remain unchanged.

Then (x,y)=-§—(x‘, yl)-l—-%(:cz, 3%) and (2!, »'), (a?% »*) both are feasible
solutions to P,, This contradicts the assumption that (z,y) is an extreme
solution. /7

In the next theorem, we extend the above result to more general cases.

Theorem 3: _

If (z,y) is an extreme solution to the polytope P,, then 3o, ¥i>>2.

Proof:

Suppose (x,y) is an extreme point to P, with ¥,,o;, ;=1

Let I={i=I: 0<x;;<{1 for some j&J,}, J,={i&J: y;=1}.

We have two cases to consider here.

Case 1: for all i=l, %505, x:;=1. (That is, z:;=0 for all j&J,).

For this case we can derive contradiction in the same way as for Theorem 2.

Case 2: for some i=I;, E, T 7L
i€J,

Here we have two subcases.

Case 2-1: for all i€l,, z;;=—y; for only one j&J,, That is, z:;,=1—y, for
only one p&J, due to Lemma ],

Case 2-2: for some i<, z;;=y; for several j=J,.

Proof:

Choose any two j;, j.&]i.

Let L= {i<I, : x:;,=y;},

L={<l : zij,=y,,},

SLi={j&d, : z;;=1—y;, and i}

Ji={i&Jy + zi;=1—y;, and i&]})

For case 2-1:

Then we can construct two feasible solutions (z;, y,) and (x,, ¥,) as follows.

W =yite, ¥, =¥n—¢€ ¥ =¥i—¢ ¥, =y,te

y}:yf:j}l for all jijl or jl-
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zi; =z, te, zlhi=zy—¢ for all icl; & j&J,

1 = —
.1:,-';2—.2?,','1 €

, xy=z+e for all i€, & j&J,

2

zi; =xij,—€, xh=x+e for all i€l; & j&J;

2

zi =z, t€, zh=xi—c for all i€l, & j&J,

zl,=z%=uxz;; for all i£L or I, for all j£J; or J,

Where e=Min [y;, v;,, min [z, (1—x;; for all i€l; & j&J5}, min{zy;,
(1-=z;)) for all icl, & j=J,)]

(2,9)=(1/2) (=}, ") + (1/2) (=%, »*) contradicts the assumption of an extreme
soltuion.

For case 2-2:

Let 7* be a index set such that 33;.;, zi+=1.

Then we can construct (z!, ) and (z?, 3?) as for (case 1) except for #*.

for i*, let Tix;, =Zixj, T€ Tix; =Tivj,—¢,

2 — ' 2 —_
Tiwj, =Tixj, —€ Tix;, =Tixj, T,

We can express (z,y) as a convex combination of above two feasible solution
the same way as we did for case 1. This completes proof./

Let Qn.,. be the polytope of the feasible solutions to (6) and (8)~(10):
that is, the polytope of the feasible solutions to the strong linear programming

relaxation of the simple plant location problem. When Min(n,m)<C2, it has

Table 1: Case 1 of Theorem 3

Case 1:

— (y; Matrix & z,; Matrix)
1/3 1/3 1/3 0 1 0 1 Y,
1 2 3 4 5 6 7

- o O o W DN
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Table 2 : Case 2-1 of Theorem 3

Case 2-1:
(»; Matrix & z;; Matrix)
1/3 1/3 1/3 0 1 0 1 —y;
1 2 3 4 5 6 7
1 1/3 —_ - — 2/3 _ -
2 — 1/3 — - 2/3 — - —i;
3 - — 1/3 - — — 2/3 Ji=01,2,3)
4 1/3 - — - — - 2/3 Ji=15,7)
6 — — 1/3 — 2/3 — — Ii=1{2}
7 — — - — - — 1 e=1/3
Table 3 : Case 2-2 of Theorem 3
Case 2-2:
(v; Matrix & z;; Matrix)

1/3 1/3 1/3 0 1 0 1 0 —y;

1 2 3 4 5 6 7 8
1 «1/3 1/3 — — 1/3 — — — —ux;;
2 — 1/3 — — 2/3 — — — Ji={1,2,3}
3 — — 1/3 - — - 2/3 — Jr=1{5,7}
4 1/3 — 1/3 — — — 1/3 - IL={1,4}
5 — — — — 1 — - - 1L,=12,8}
6 1/3 1/3 1/3 — — — — - i*= {6}
7 - - — - — — 1 — e=1/3
8 - 1/3 1/3 —_ — — 1/3 —

beengshown by Cho, Padberg, and Rao [6], Krarup and Pruzan [17] that all
the extreme points of Q, . are integral. The constraint matrix, in fact, is
totally unimodular in this case. However, for values as small as m=n=3,
Q.. has fractional extreme points. For example, when c¢;;=c;=cjz,=1], all

other ¢;;=0 and f;=1 for j=1, 2, 3, the unique optimal solution of minimizing

Mu

] Zl:‘if-rii+_zl Fiyi is 3;=1/2 for j=1,2,3 and x;1=2,=2,=Ty=25=3=
= =

1/2, all other z;;=0. The value of this fractional solution is 1.5,

Here we first provide a similar result about P, and extend it by one more

dimension.



— 184 —

Proposition 4:
If (z,y) is an extreme point of P,, then |J;|>3.
Proof:
Immediate consequence of Theorem 3.
That is, |J;|=2 means ,-EZ_.: y;==1 and this directly contradicts Theorem 3. /
A direct consequence of th:a above proposition is that when n<(2, the k-
median problem always has an integer optima}‘l solution. In fact the constraint
matrix of the k-median problem is totally unimodular when 2<2,
Now we extend above results to the case when n<3.
Theorem 5:
If (z,y) is an extreme point of P,, then |J,|>4.
Proof: '
Assume (z,y) is a fractional extreme solution to P, with |J;|=3.. Then

we must have 3 y,72. For the case that 3, y;=1 is eliminated due to
i€l i€y

theorem 3. Let f,, j» 2 be the index such that 0<ly;<y;,<y;,<l. We
should examine 2 cases.

Case 1: For all i€l,, Tjej, xi;=1. Thatis, z;;=0 for all j&J,, Note that
for each i<I,, exactly two x:;;70 because the sum of any three y;, j&J, is '
larger than ],

Case 2: For some i€, Xjes, i 71

Here we have two subcases.

Note that for each &I, exactly two z;;70 due to Lemma ].

(Case 2-1) For all i&I,, z;;=y; for only one j&J,.

(Case 2-2) For some i<I, zij=y; for two j&J,.

For case 1:
Let J,={ji, j» Jjs; and e=Min [z, i<], & j=J,].
Let I,={i=], : 0<zxi;,, xi;; <1}

L=<l 0<lay 24, <)

L=l 0<xi;,, z:;,<1}
L= (i€, 1 zi;=¢)
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We construct two feasible solutions (z', »') and (z2, »?) as follows.
¥ =y t6 ¥, =Yn—6 ¥, =yi—€ ¥,=ViT6
yi=yi=y; for other j.

—_ 1 —_ — ;
x}jl—x;j,—i—e, .Z‘,-J-:—I,'ja—ﬁ, I?j =IXi;, —6 a:?,-z—.r;_,-,—i—e, fOI' all 1615/13,
1

— 1, - ;
x! =z te, Tl =i, € x% =Tij,—¢, zi =i, +e for all i=i,/1,.

i

2 - J— H
x}iz=.r,-,-,—6, ‘r}f,=xij3+e’ xijz=xffz+€’ x,-.,-s—x,-,-sv—e, for all 1617/.[8.

z};=x%=ux;; for all other ¢, j.

The fact that (x,5)=(1/2) (2%, ¥) + (1/2) (%, »*) contradicts the assumption
of extreme solution.

For case 2-1:

Choose any two j&J,, for example j,, j, and

let e=]1—y;,. Note that y;,<y,,.

We construct two feasible solutions (2!, »') and (x?% »?) as follows.

yi =y te ¥} =y,—€ ¥ =y,—¢ ¥ =yt

1

yj_ylr.yJ for a].]. ji]l or j2-
zl; =z, te, xlj=xzi;—e for all i€l & jEV.

z}; =xi,—¢, xy=x+e for all i€l & j&J,.

ij,
Table 4 : Case 1 of Theorem 5
Case 1:
(y; Matrix & x;; Matrix)
7/12 8/12 9/12 0 0 0 1 1 —y;
1 2 3 4 5 6 7 8

1 7/12 — 5/12 — - - - — —Ti;
2 4/12 8/12 - - — — - — I={2,4}
3 — 3/12 9/12 —_ — - — — Iy={1}

4 7/12 5/12 - — — — — - L=1{6}

5 3/12 9/12 — — — —_ — — I=1{3,5)
6 - 8/12 4/12 — — — - — e=3/12
7 —_ - — — -— — 1 -

8 - - -~ - - - — 1
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Table 5: Case 2-1 of Theorem 5

Case 2-1: ;
T (y; Matrix & z;; Matrix)
7/12 8/12 9/12 0 1 0 1 — Y
1 2 3 4 5 6 7
1 7/12 - — - 5/12 - - —zi
2 — 8/12 — —_ 4/12 — — Hn=1, j.=2
3 - — 9/12 — — - 312 L=(,4
4 7/12 — — — — — 7/12 L=1{2,6}
5 J— _— —— —_— 1 - - J8= {5’ 7]
6 —_ 8/12 - — — — 4/12 Ji=1{57}
7 — — — — — —_ 1 e=4/12
Table 6 : Case 2-2 of Theorem 5
Case 2-2: ] ;
- (y; Matrix & x;; Matrix)
7/12 8/12 9/12 0 1 0 1 —Yi
1 2 3 4 5 6 7
1 7/12 — — - 5/12 — - —xi;
2 —_ 8/12 — — 4/12 - —_
3 — — 9/12 — — — 3/12 Iy={1}
4 4/12 8/12 — —_ — - — IL=1{2}
5 — — — — 1 - — Is={4}
6 4/12 — 8/12 - - - - Ig—={6}
7 — — — — - — 1 I={8}
8 3/12 9/12 — — - - - L={3}
h=1, =2, Js=Jy= (5} e=3/12.

zh =z, —¢, xh=xy+e for all i€l & j&J.

l]l

x} =zij, e, zh=z—¢ for all i€l & j&J,

zh=a¥=ux;; for all i1 or I, j#J; or J,.

Expression of (z, y)=(1/2)(z!, y)+(1/2)(z? »?)

For case 2-2:

means contradiction,

We can think of case 2-2 as a composite of case 1 and case 2-], and we

derive a contradiction as we did for case 1 and case 2-]1. /

Corollary 6:

The k-mediian problem of n<3 always has an integer optimal solution.




Proof: Immediate consequence of Theorem 5, /
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