Polyhedral Study of the K-Median Problem

Sang-Hyung Ahn

I. Introduction

The past two decades have witnessed a tremendous growth in the literature on location problems. However, among the myriads of formulations the simple plant location problem and the k-median problem have played a central role. This phenomenon is due to the facts that both problems have a wide range of real-world applications and a mathematical formulation of these problems as an integer program has proven very fruitful in the derivation of solution methods.

Consider an index set $I=\{1, 2, ..., n\}$ of n points, and a positive integer $k \le n$, and let c_{ij} be the shortest distance between two points $i,j \in I$. The k-median problem consists of identifying a subset S of I, |S|=k so as to minimize $(\sum_{i=1}^{n} \min_{j \in S} c_{ij})$. (Here |S| denotes the cardinality of the set S). The k-median problem has the following combinatorial formulation.

Combinatorial Formulation:

$$\min_{\substack{S \subseteq I \\ 1 \le 1 = b}} \left\{ \sum_{i \in I} \min_{j \in S} c_{ij} \right\}$$

We introduce integer variables. Let $y_j=1$ if a point j is selected as a median, otherwise 0 and $x_{ij}=1$ if a point j is the closest median to point i, otherwise 0. With x, y variables the k-median problem is formulated as an integer program as follows.

Integer Program Formulation:

$$Z_{IP} = \operatorname{Min} \sum_{i=1}^{n} \sum_{j=1}^{n} c_{ij} x_{ij}$$

$$subject \ to$$
(1)

$$\sum_{i=1}^{n} x_{ij} = 1 \qquad i \in I \tag{2}$$

$$\sum_{j=1}^{n} y_j = k \tag{3}$$

$$0 \le x_{ij} \le y_j \le 1 \qquad i,j \in I \tag{4}$$

$$x_{ij}, y_j integral i,j \in I$$
 (5)

A vast number of algorithms were proposed for the k-median problem. We refer readers to ReVelle [19], Francis and White [14], Christofides [7], Jacobsen and Pruzan [16], Handler and Mirchandani [15], Krarup and Pruzan [17], Cornuejols [9] [11] [12], Fisher and Hochbaum [13], Papadimitriou [18], Rosing [20], Beasley and Christofides [8], Boffey [5], Beasley [4].

Most of the successful algorithms for the k-median problem are based on the strong linear programming relaxation. In [1] [2] [3] we presented and explained why the strong linear programming relaxation provides a tight lower bound in the probablistic sense. In this paper we investigate the phenomenon with a polyhedral approach.

II. Polyhedral Analysis

In this section we investigate the polytope of the extreme solutions to the strong linear program relaxation of k-median problem constraints.

$$\sum_{j=1}^{n} x_{ij} = 1 \qquad i \in I \tag{6}$$

$$\sum_{j=1}^{n} y_j = k \tag{7}$$

$$x_{ij} \leq y_j$$
 $i,j \in I$ (8)

$$y_i \le 1$$
 $j \in I$ (9)

$$x_{ij}, y_j \ge 0$$
 i, $j \in I$ (10)

Let P_n be the polytope defined by $(6)\sim(10)$. We present properties of the fractional extreme points (x,y) to P_n below.

Lemma 1:

If (x,y) is a fractional extreme point of the polytope P_n ,

then for each $i \in I$, there is at most one $j \in I$ with $0 < x_{ij} < y_j$.

Proof:

Let (x,y) be a fractional solution such that above condition does not hold.

Then there exist p, j_1, j_2 such that $x_{pj_1} < y_{j_1}, x_{pj_2} < y_{j_2}$.

Let
$$x_{pj_1}^1 = x_{pj_1} + \epsilon$$
, $x_{pj_2}^1 = x_{pj_2} - \epsilon$, $x_{pj_1}^2 = x_{pj_1} - \epsilon$, $x_{pj_2}^2 = x_{pj_2} + \epsilon$,

 $x_{ij}^1 = x_{ij}^2 = x_{ij}$ for all other i, j and $y_j^1 = y_j^2 = y_j$ for all j.

where $\epsilon = \text{Min } [x_{pj_1}, x_{pj_2}, y_{j_1} - x_{pj_1}, y_{j_2} - x_{pj_2}].$

Then $(x, y) = (1/2)(x^1, y^1) + (1/2)(x^2, y^2)$. (x^1, y^1) and (x^2, y^2) both are feasible solutions to P_n . This contradicts the assumption that (x, y) is an extreme solution.

A similar result is known for the simple plant location problem. In fact, Cornuejols et al [10] completely characterized the fractional extreme solutions to the simple plant location problem.

Suppose we are given the shortest distance matrix between all pairs of points. The optimal solution to the 1-median problem is reduced to find a column of the shortest distance matrix with smallest column sum. In fact, when k=1, all the extreme solutions to the polytope P_n are integral regardless of n. We show this in the next theorem.

Theorem 2:

The linear programming relaxation of the 1-median problem always has an integer optimal solution.

Proof:

Suppose there exists a fractional extreme solution to the linear programming relaxation of 1-median problem.

Let
$$J_1 = \{j \in I : 0 < y_j < 1\}$$

Then for each $i\in I$, $x_{ij}=y_j$ for all $j\in J_1$ and $x_{ij}=0$ for all $j\notin J_1$.

Choose any two points j_1 , $j_2 \in J_1$, any $p \in I$ and let

$$x_{pj_1}^1 = x_{pj_1} + \epsilon$$
, $x_{pj_2}^1 = x_{pj_2} - \epsilon$, $y_{j_1}^1 = y_{j_1} + \epsilon$, $y_{j_2}^1 = y_{j_2} - \epsilon$

$$x_{pj_1}^2 = x_{pj_1} - \epsilon$$
, $x_{pj_2}^2 = x_{pj_2} + \epsilon$, $y_{j_1}^2 = y_{j_1} - \epsilon$, $y_{j_2}^2 = y_{j_2} + \epsilon$

All other x_{ij} , y_j remain unchanged.

Then $(x,y) = \frac{1}{2}(x^1, y^1) + \frac{1}{2}(x^2, y^2)$ and (x^1, y^1) , (x^2, y^2) both are feasible solutions to P_n . This contradicts the assumption that (x,y) is an extreme solution.

In the next theorem, we extend the above result to more general cases.

Theorem 3:

If (x,y) is an extreme solution to the polytope P_n , then $\sum_{i \in I_1} y_i \ge 2$.

Proof:

Suppose (x,y) is an extreme point to P_n with $\sum_{j\in J_1} y_j = 1$.

Let $I_1 = \{i \in I : 0 < x_{ij} < 1 \text{ for some } j \in J_1\}, J_2 = \{j \in J : y_j = 1\}.$

We have two cases to consider here.

Case 1: for all $i \in I_1$, $\sum_{j \in J_1} x_{ij} = 1$. (That is, $x_{ij} = 0$ for all $j \in J_2$).

For this case we can derive contradiction in the same way as for Theorem 2.

Case 2: for some $i \in I_1$, $\sum_{i \in I} x_{ij} \neq 1$.

Here we have two subcases.

Case 2-1: for all $i \in I_1$, $x_{ij} = y_j$ for only one $j \in J_1$. That is, $x_{ip} = 1 - y_p$ for only one $p \in J_2$ due to Lemma 1.

Case 2-2: for some $i \in I_1$, $x_{ij} = y_j$ for several $j \in J_1$.

Proof:

Choose any two j_1 , $j_2 \in J_1$.

Let $I_3 = \{i \in I_1 : x_{ij_1} = y_{j_1}\}$,

 $I_4 = \{i \in I_1 : x_{ij_2} = y_{j_2}\},$

 $J_3 = \{j \in J_2 : x_{ij} = 1 - y_{j_1} \text{ and } i \in I_3\}$

 $J_4 = \{j \in J_2 : x_{ij} = 1 - y_{i2} \text{ and } i \in I_4\}$

For case 2-1:

Then we can construct two feasible solutions (x_1, y_1) and (x_2, y_2) as follows.

$$y_{j_1}^1 = y_{j_1} + \epsilon$$
, $y_{j_2}^1 = y_{j_2} - \epsilon$, $y_{j_1}^2 = y_{j_1} - \epsilon$, $y_{j_2}^2 = y_{j_2} + \epsilon$,

$$y_j^1 = y_j^2 = y_j$$
 for all $j \neq j_1$ or j_2 .

$$x_{ij}^1 = x_{ij}^1 + \epsilon$$
, $x_{ij}^1 = x_{ij}^1 - \epsilon$ for all $i \in I_3$ & $j \in J_3$

$$x_{ij}^1 = x_{ij}^1 - \epsilon$$
, $x_{ij}^1 = x_{ij}^1 + \epsilon$ for all $i \in I_4$ & $j \in J_4$

$$x_{ij_1}^2 = x_{ij_1} - \epsilon$$
, $x_{ij}^2 = x_{ij} + \epsilon$ for all $i \in I_3$ & $j \in J_3$

$$x_{ij_1}^2 = x_{ij_2} + \epsilon$$
, $x_{ij}^2 = x_{ij} - \epsilon$ for all $i \in I_4$ & $j \in J_4$

$$x_{ij}^1 = x_{ij}^2 = x_{ij}$$
 for all $i \neq I_3$ or I_4 , for all $j \neq J_3$ or J_4

Where $\epsilon = \text{Min } [y_{j_1}, y_{j_2}, \text{ min } \{x_{ij}, (1-x_{ij} \text{ for all } i \in I_3 \& j \in J_3\}, \text{ min } \{x_{ij}, (1-x_{ij}) \text{ for all } i \in I_4 \& j \in J_4\}]$

 $(x,y) = (1/2)(x^1, y^1) + (1/2)(x^2, y^2)$ contradicts the assumption of an extreme soltuion.

For case 2-2:

Let i^* be a index set such that $\sum_{i \in I_1} x_{i^*} = 1$.

Then we can construct (x^1, y^1) and (x^2, y^2) as for (case 1) except for i^* .

for
$$i^*$$
, let $x_{i*j_1}^1 = x_{i*j_1} + \epsilon$, $x_{i*j_2}^1 = x_{i*j_2} - \epsilon$.

$$x_{i*j_1}^2 = x_{i*j_1} - \epsilon$$
, $x_{i*j_2}^2 = x_{i*j_2} + \epsilon$.

We can express (x,y) as a convex combination of above two feasible solution the same way as we did for case 1. This completes proof.

Let $Q_{m,n}$ be the polytope of the feasible solutions to (6) and (8) \sim (10): that is, the polytope of the feasible solutions to the strong linear programming relaxation of the simple plant location problem. When $\min(n,m) \leq 2$, it has

Case 1:

Table 1: Case 1 of Theorem 3

(y_i Matrix & x_{ij} Matrix)

	1/3	1/3	1/3	0	1	0	1	← y _j
	1	2	3	4	5	6	7	
1	1/3	1/3	1/3			_		·-
2	1/3	1/3	1/3	_	_			
3	1/3	1/3	1/3	_		_		
4	1/3	1/3	1/3	_		-	_	$\leftarrow x_{ik}$
5		_		_	1	_		
6	_	_			_	_	1	
7	_	-	_	_	_		1	

Case 2-1:

Table 2: Case 2-1 of Theorem 3 $(y_j \text{ Matrix } \& x_{ij} \text{ Matrix})$

	1 /0	1 /0	1 (0	1/0					
·	1/3	1/3	1/3	0	1	0	1	$\leftarrow y_i$	
	1	2	3	4	5	6	7		
1	1/3	_		_	2/3		_		
2	-	1/3	_	_	2/3	_	_	$\longleftarrow x_{ij}$	
3		_	1/3	-	_	_	2/3	$J_1 = \{1, 2, 3\}$	
4	1/3		_		-	-	2/3	$J_2 = \{5, 7\}$	
5		_	_		1	_	_	$I_3 = \{1, 4\}$	
6			1/3	-	2/3	_	_	$I_4 = \{2\}$	
7	_	_		_			1	$\epsilon = 1/3$	

Case 2-2:

Table 3: Case 2-2 of Theorem 3

	(y, Matrix & x,, Matrix)											
	1/3	1/3	1/3	0	1	0	1	0	— y _j			
	1	2	3	4	5	6	7	8				
1	1/3	1/3	_	_	1/3		_	_	$\leftarrow x_{ij}$			
2	_	1/3	_	_	2/3	_		_	$J_1 = \{1, 2, 3\}$			
3	_	_	1/3		<u>·</u>		2/3	_	$J_2 = \{5, 7\}$			
4	1/3	_	1/3	_	_	-	1/3	_	$I_3 = \{1, 4\}$			
5	_	_	_	_	1	-			$I_4 = \{2, 8\}$			
6	1/3	1/3	1/3	_	_		_	_	$i^* = \{6\}$			
7	_		—		_	_	1	_	$\epsilon = 1/3$			
8	_	1/3	1/3	-		_	1/3	_				

been shown by Cho, Padberg, and Rao [6], Krarup and Pruzan [17] that all the extreme points of $Q_{m,n}$ are integral. The constraint matrix, in fact, is totally unimodular in this case. However, for values as small as m=n=3, $Q_{m,n}$ has fractional extreme points. For example, when $c_{13}=c_{21}=c_{32}=1$, all other $c_{ij}=0$ and $f_{j}=1$ for j=1, 2, 3, the unique optimal solution of minimizing $\sum_{i=1}^{m}\sum_{j=1}^{m}c_{ij}x_{ij}+\sum_{j=1}^{m}f_{j}y_{j} \text{ is } y_{j}=1/2 \text{ for } j=1, 2, 3 \text{ and } x_{11}=x_{12}=x_{22}=x_{23}=x_{31}=x_{32}=1/2$, all other $x_{ij}=0$. The value of this fractional solution is 1.5.

Here we first provide a similar result about P_n and extend it by one more dimension.

Proposition 4:

If (x,y) is an extreme point of P_n , then $|J_1| \ge 3$.

Proof:

Immediate consequence of Theorem 3.

That is, $|J_1|=2$ means $\sum_{j\in J_1} y_j=1$ and this directly contradicts Theorem 3. $/\!\!/$

A direct consequence of the above proposition is that when $n \le 2$, the k-median problem always has an integer optimal solution. In fact the constraint matrix of the k-median problem is totally unimodular when $n \le 2$.

Now we extend above results to the case when $n \le 3$.

Theorem 5:

If (x,y) is an extreme point of P_n , then $|J_1| \ge 4$.

Proof:

Assume (x,y) is a fractional extreme solution to P_n with $|J_1|=3$. Then we must have $\sum_{j\in J_1} y_j \neq 2$. For the case that $\sum_{j\in J_1} y_j = 1$ is eliminated due to theorem 3. Let j_1 , j_2 , j_3 be the index such that $0 < y_{j_1} < y_{j_2} < y_{j_3} < 1$. We should examine 2 cases.

Case 1: For all $i \in I_1$, $\sum_{j \in J_1} x_{ij} = 1$. That is, $x_{ij} = 0$ for all $j \in J_2$. Note that for each $i \in I_1$, exactly two $x_{ij} \neq 0$ because the sum of any three y_j , $j \in J_1$ is larger than 1.

Case 2: For some $i \in I_1$, $\sum_{i \in I_1} x_{ij} \neq 1$.

Here we have two subcases.

Note that for each $i \in I_1$, exactly two $x_{ij} \neq 0$ due to Lemma 1.

(Case 2-1) For all $i \in I_1$, $x_{ij} = y_j$ for only one $j \in J_1$.

(Case 2-2) For some $i \in I_1$, $x_{ij} = y_j$ for two $j \in J_1$.

For case 1:

Let $J_1 = \{j_1, j_2, j_3\}$ and $\epsilon = \text{Min } [x_{ij}, i \in I_1, \& j \in J_1].$

Let $I_5 = \{i \in I_1 : 0 < x_{ij_1}, x_{ij_2} < 1\}$

 $I_6 = \{i \in I_1 : 0 < x_{ij}, x_{ij} < 1\}$

 $I_7 = \{i \in I_1 : 0 < x_{ij_2}, x_{ij_3} < 1\}$

 $I_8 = \{i \in I_1 : x_{ij} = \epsilon\}$

We construct two feasible solutions (x^1, y^1) and (x^2, y^2) as follows. $y_{j_1}^1 = y_{j_1} + \epsilon, \ y_{j_2}^1 = y_{j_2} - \epsilon, \ y_{j_1}^2 = y_{j_1} - \epsilon, \ y_{j_2}^2 = y_{j_2} + \epsilon,$

 $y_i^1 = y_i^2 = y_i$ for other j.

$$x_{ij_1}^1 = x_{ij_1} + \epsilon, \quad x_{ij_2}^1 = x_{ij_2} - \epsilon, \quad x_{ij_1}^2 = x_{ij_1} - \epsilon, \quad x_{ij_2}^2 = x_{ij_1} + \epsilon, \quad \text{for all } i \in I_5/I_8.$$

$$x_{ij_1}^1 = x_{ij_1} + \epsilon, \quad x_{ij_3}^1 = x_{ij_3} - \epsilon, \quad x_{ij_1}^2 = x_{ij_1} - \epsilon, \quad x_{ij_3}^2 = x_{ij_3} + \epsilon, \quad \text{for all } i \in I_6/I_8.$$

$$x_{ij_2}^1 = x_{ij_2} - \epsilon, \quad x_{ij_3}^1 = x_{ij_3} + \epsilon, \quad x_{ij_2}^2 = x_{ij_2} + \epsilon, \quad x_{ij_3}^2 = x_{ij_3} - \epsilon, \quad \text{for all } i \in I_7/I_8.$$

$$x_{ij}^1 = x_{ij}^2 = x_{ij} \quad \text{for all other } i, \quad j.$$

The fact that $(x,y) = (1/2)(x^1, y^1) + (1/2)(x^2, y^2)$ contradicts the assumption of extreme solution.

For case 2-1:

Choose any two $j \in J_1$, for example j_1 , j_2 and

let $\epsilon = 1 - y_{j_2}$. Note that $y_{j_1} < y_{j_2}$.

We construct two feasible solutions (x^1, y^1) and (x^2, y^2) as follows.

$$y_{j_1}^1 = y_{j_1} + \epsilon$$
, $y_{j_2}^1 = y_{j_2} - \epsilon$, $y_{j_1}^2 = y_{j_1} - \epsilon$, $y_{j_2}^2 = y_{j_2} + \epsilon$,

$$y_j^1 = y_j^2 = y_j$$
 for all $j \neq j_1$ or j_2 .

$$x_{ij}^1 = x_{ij_1} + \epsilon$$
, $x_{ij}^1 = x_{ij} - \epsilon$ for all $i \in I_3$ & $j \in J_3$.

$$x_{ij_2}^1 = x_{ij_1} - \epsilon$$
, $x_{ij}^1 = x_{ij} + \epsilon$ for all $i \in I_4$ & $j \in J_4$.

Case 1: Case 1 of Theorem 5

(y, Matrix & x_{ij} Matrix)

	7/12	8/12	9/12	. 0	0	0	1	1	←y,
	1	2	3	4	5	6	7	8	
1	7/12	_	5/12	_				_	$\leftarrow -x_{ij}$
2	4/12	8/12		_	_	-	_	_	$I_5 = \{2, 4\}$
3	_	3/12	9/12	_			_		$I_6 = \{1\}$
4	7/12	5/12	_		_	_		_	$I_7 = \{6\}$
5	3/12	9/12		-	-	_	_	_	$I_8 = \{3, 5\}$
6		8/12	4/12		-	_	_	_	$\epsilon = 3/12$
7	_		-	_			1	<u></u>	
8	_	_			_	_		1	

Case 2-1:

Table 5: Case 2-1 of Theorem 5

		Matrix)	

	7/12	8/12	9/12	0	1	0	1	y _j
_	1	2	3	4	5	6	7	···
1	7/12	_	_		5/12		_	$\leftarrow x_{ij}$
2	– ,	8/12	_		4/12		_	$j_1=1, j_2=2$
3	_	_	9/12		-		3/12	$I_3 = \{1, 4\}$
4	7/12	_	_		_	_	7/12	$I_3 = \{2, 6\}$
5	-	_			1	_	_	$J_3 = \{5, 7\}$
6	-	8/12		-	-	· —	4/12	$J_4 = \{5, 7\}$
7	_	_				_	1	$\epsilon = 4/12$

Case 2-2:

Table 6: Case 2-2 of Theorem 5 (y_i) Matrix & x_{ij} Matrix)

	7/12	8/12	9/12	0	1	0	1	0	$\leftarrow y_j$
	1	2	3	4	5	6	7	8	
1	7/12	_		_	5/12		_		$\leftarrow x_{ij}$
2	-	8/12		_	4/12	_	_		
3	_	_	9/12	_	-	_	3/12		$I_3 = \{1\}$
4	4/12	8/12	_	_	_	_	-	_	$I_4 = \{2\}$
5		 .	_	_	1	_	_		$I_5 = \{4\}$
6	4/12		8/12	_		_	-	_	$I_6 = \{6\}$
7	-	_	-	_		_	1	_	$I_7 = \{8\}$
8	3/12	9/12	_		_	_	_	_	$I_8 = \{3\}$

$$j_1=1, j_2=2.$$

$$J_3 = J_4 = \{5\}$$

$$x_{ij_1}^2 = x_{ij_1} - \epsilon$$
, $x_{ij}^2 = x_{ij} + \epsilon$ for all $i \in I_3$ & $j \in J_{3*}$

$$x_{ij_1}^2 = x_{ij_1} + \epsilon$$
, $x_{ij}^2 = x_{ij} - \epsilon$ for all $i \in I_4$ & $j \in J_{4\bullet}$

$$x_{ij}^1 = x_{ij}^2 = x_{ij}$$
 for all $i \neq I_3$ or I_4 , $j \neq J_3$ or J_4 .

Expression of $(x, y) = (1/2)(x^1, y^1) + (1/2)(x^2, y^2)$ means contradiction.

For case 2-2:

We can think of case 2-2 as a composite of case 1 and case 2-1, and we derive a contradiction as we did for case 1 and case 2-1.

Corollary 6:

The k-median problem of $n \le 3$ always has an integer optimal solution.

 $[\]epsilon = 3/12$.

Proof: Immediate consequence of Theorem 5. //

References

- [1] 安相炯, Probabilistic Analysis of a Relaxtion for the k-median Problem-The Euclidean Model in the Plane, 경영논집 XX 제 3호, 1986년 9월 46-62.
- [2] 安相炯, Probabilistic Analysis of a Relaxation for the k-Median Problem-A Graphical Model, 경영논집 XXI 제 3호, 1987년 9월 1-15.
- (3) Ahn, Sang H., Cooper, C., Cornuejols, G. and Frieze, A., "Probabilistic Analysis of a Relaxation for the k-Median Problem," Math. of O.R. (1988) vol. 13, No. 1, 1-31.
- [4] Beasley, J.E., A note on solving large p-median problems. technical report SW7 2BX, Imperial College, September, 1984.
- [5] Boffey, T.B. and Karkazis, J., "P-median and multi-medians", J. Oper. Res. Society 35 (1984), 57-64.
- [6] Cho, D.C., Padberg, M.W. and Rao, M.R., "On the Uncapacitated Plant Location Problem I: Valid inequality abd Facets", *Math. Oper.Res.* 1(1983), 90-100.
- [7] Christofides, N., "Graph Theory: An Algorithmic Approach", Academic Press, New York, 1975.
- [8] Christofides, N. and Beasley, J.E., "A tree search algorithm for the p-median problem", European J. of Oper. Res. 10 (1982), 196-204.
- [9] Cornuejols, G., Fisher, M.L. and Nemhauser, G.L., "Location of bank accounts to optimize float: an analytic study of exact and approximate algorithms", *Management Sci.* 23 (1977), 789-810.
- [10] Cornuejols, G., Fisher, M.L. and Nemhauser, G.L., "On the uncapacitated location problem", Ann. Discete Math. 1 (1977), 163-177.
- [11] Cornuejols, G., Nemhauser, G.L. and Wolesey, L.A., "Worst-case and probabilistic analysis of algorithms for a location problem", *Operations Res.* 28 (1980), 847-858.
- (12) Cornuejols, G. and J.M. Thizy, "Some Facets of the Simple Plant Location Problem". SIAM J. Algebraic and Discrete Mathematics 3 (1982), 504-510.
- [13] Fisher, M.L. and Hochbaum, D.S., "Probabilistic analysis of the planar k-median problem", Math. of Operations Research 5, 1 (Feb. 1980), 27-34.

- [14] Francis, R.L. and White, J.A., "Facility Layout and Location: An Analytic Approach", Prentice-Hall, Englewood Cliffs, NJ, 1974.
- (15) Handler, G.Y. Mirchandani, P.B., "Location on Networks: Theory and Algorithms", MIT-press, Cambridge, MA., 1979.
- [16] Jacobsen, S.K. and Pruzan, P.M., "Lokalisering-modeller & Losningsmetoder", Studentilitteratur, Lund, Sweden, 1978.
- [17] Krarup, J. and Pruzan, P.M., "The simple plant location problem: Survey and synthesis", European Jour. of O.R. 12 (1983), 36-81.
- [18] Papadimitriou, C., "Worst-case and probabilistic analysis of a geometric location problem", SIAM Jour. Computing 10 3 (1981), 542-557.
- [19] ReVelle, C.S., Swain, R.S., "Central facilities location", Geographical Anal. 2 (1970), 30-42.
- [20] Rosing, K.E., ReVelle, C.S. and Rosing-Vogelaar, "The p-median and its linear programming relaxation: an approach to large problems", J. Operational Res. Soc. 30 (1979), 815-823.