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1. Introduction

The %k-median problem has been widely studied both from the theoretical
point of view and for its application. An interesting theoretical development
‘was the successful probabilistic analysis of several heuristics (e.g. Fisher and
Hochbaum [6) and Papadimitriou (11]) and relaxation (e.g. Ahn et at [2])
and polyhedral study (Ahn (1] and Guignard(8)) for this problem. On the
other hand, the literature on the k-median problem abounds in exact algori-
thms. Most (e.g. Cornuejols et al [3)) are based on the solution of relaxtion.

The computational experience reported in the literature seems to indicate
that this relaxation yields impressively tight bounds compared to what can
usually be expected in integer programming. In this paper we perform com-
putational analysis of two Lagrangian relaxation for the k-median problem.

Consider a set Y={Y,, Y, -, Y.} of n points, a positive integer 2<n and
let ¢;;i>>0 be the distance between Y; and Y; for each 1<i<s and 1<[j<a.
The k-median problem consists of finding a set SC Y, |S| =%, that minimiz

'_}E‘,l Mlsn ¢ii (Here |S| denotes the cardinality of the set S.)
= J&

The k-median problem has the following integer programming formulation
ZipmMin 3 32 Ciilfij eveseerssemssrssnnensas s ssssessns o)

i=l j=1
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s.t. X, xii=1 for Fm=1, 2, seey Fhrrevenrernnenenenenns (2)
il yi B T R R T T T LT T T (3)
i=

x,'jgyj fOl' i,j=l’ 2’ ey M reeneeens (4)
x;j__>__0 for i’j=1, 2, R EUITEIEEIREE (5)
¥i& {0, 1} for j=1,2, ..., 71e0cceneneennnn (6)

In this formulation Y;=1 if j&S, 0 othewise and, for 1<é<{n, we can set

z:;=1 for an index that achieves Min c;;. Most successful exact algorithms
ies

reported in the literature are based on Lagrangian relaxation obtained by -

ualizing either constraint (3) or constraint set (4). In this paper we perform
nd compare computational experience of two Lagrangian relaxation on 3, 900

andomly generated test problems.

2. Lagrangian Relaxation

By dualizing assignment constraint set (2) with Lagrangian multipliers u=

uy, ..., 4ny, we obtain Lagrangian relaxation.

s.t g}l Yimmh  eereereete et e s e aenaas (3)
i<y for 7,7=1,2, ...,n ceeeencenee )
zii=0 for 7, j=1,2, ..., ;8 ceeeeeererns (5)
¥,=1{0, 1} for j=1,2, ..., 7100 oerereeren. (6)

For fixed u/s, above problem has the (-1 VUB(variable upper bound)
ucture. In order to solve (LR1), observe first that the objective function

the (LR1) and the VUB constraints (4). These two imply that, for each i,




1, if cij+u<0
Tij=
! 0, otherwise.

Hence with defining E,-=i} Min(0, ciitu)
i=1
(LR1) is equivalent to
Min 3 &Y;

st 3 Y=k
i=1

Yie{o,1} for j=1,2,....,n

which is a trivial problem. That is, optimal ¥ 's are
v 1, for the first % smallest ¢&;
" {0, otherwise.

Since the objective is to minimize, clearly the best choice for # would be
an optimal solution to the dual problem:

(D1)
Zp = N[IIax Zp(u)

By dualizing k-median constraint (3) with a lagrangian multiplier v, w
have second lagrangian relaxation.

(LR2)

Zp(t))#MiI‘l Z:',l 2_:1 C;jx.'j'f'v(,il yi—k)
i=1 j= J=

ilma

=Min 1 Zc.-fxu+):1 vy;— vk
i =1 =

s.t. -21 yi=1 for i=1,2, ..., rereeeesrrecnicns(2)
’:

Zii<Yi for 4, 7=1,2, v, B eerereernane (4)
x:;=>0 fOr 4, 7e=1, 2, co., 7t ersreeenaes (5)
¥ {0,1] for f=1,2, 1., merereereseeaees (6)

For fixed v, above problem is so-called SPLP(simple plant location problem
As is known, SPLP is not an easy problem to solve but admit highly efficie
dual based algorithm (Krarup and Pruzan [10] and Erlenkotter{4]). So




adopt Erlenkotter’s DUALOC to solve SPLP for given v.

Apparently, the best choice for » would be an optimal solution to the La-
grangian dual problem:
(D2)

ZDZ=N£ax Z(v)

Since (D1) and (D2) are subdifferentiable, we used subgradient method to

solve these Lagrangian duals as proposed by Fisher [5). Note that Z1p>Zp,,
Z,;_>_Z,.;2 and we say there exists duality gap when Z;»3-dual value. Because
Zp (u) is not increased by removing the integrality restriction on ¥; from
the constraints of (LR1). Zp;=Z.» (where Z.p is the objective value of linear
program relaxation of k-median problem), Geoffrion [7] calls this the inte-
grality property. o
(LR2) does not have the integrality property, so. Zp,>Z.,. Thus Zp,<<Zp,.
That is, the lower bound obtained by (LR2) is tighter than that of by (LRI1),
Two properties are crucial in evaluating a relxation.
(1) the tightness of the bound generated »
(2) the amount of computational efforts required to get these bounds.
Usually there is a tradeoff between these two properties in choosing a rel-
xation. Tighter bound usually requires more computational efforts to get it
han loose bound. However it is generally difficult to determine whether a
elaxation with tighter bounds but great computational effort will end with
etter overall computational performance. That is, whenever there exists du-
lity gap we have to resort to branch and bound technique to get an optimal
olution. A branch and bound scheme incerporated with tighter bound requires
maller search tree than one with loose bound, i.e., if we spend more com-
utational efforts to get an tighter bound, we could cut off the search tree
ast. This is why extensive computational experience is needed to determine

hich relaxation is better in terms of overall computational performance.




3. Computational Experience

In this section, we report our computational experience with medium-size
E-median problem. This computationa! experience is based on the solutions
of 3,400 random problems with #=50 points and additional 500 random pro-
blems with #=100 points. As mentioned earlier, Zp, and Zp, were obtained
by solving Lagrangian dual by subgradient optimization. If it happens that
the value of the best known feasible solution equals the value of Lagrangian
dual or all the subgradients equal 0, subgradient iteration terminates because
we found optimum. For most of test problems with no duality gap, the
algorithm terminated in less than 100 subgradient iterations because of the
stopping criterion. If after 100 subgradient iterations, there was still a gap
between the best feasible solution (an upper bound on Z;;) and the best
Lagrangian relaxation (a lower bound on Z;), we resorted to branch and

bound to find Zp.

The first set of experiment involves unit edge length case with #=>50 points.
'We generated 1, 700 random graphs on whiéh the 2-median problem is defined.
cij is rthe minimum number of edges on a path joining Y; to Y; for 1<, §
<n, where the minium is taken over all paths joining Y: to ¥j. Thus ¢;; i
the shortest distance between Y; and Y, assuming that all eciges have lengt
one. In this case, when there exists a dominating set, Ahn et al [2] prove
Zyp=2Zp;. Therefore we expected first type of relaiation will do better com
putational performance. The results are summarized at Tablo.; 1. At (LR1)
about 26% problems have duality gép and at (LR2) about 20% problems hav

duality gap as indicated by Z;p3-Zp, at Table 1. ’

As was expected, the number of instances with duality gap are fewer in (LR2
than in (LR1). In (LR2), the number of instances with no duality gap i
1, 359, whereas in (LR1) the number of instances with no duality gap is 1, 265,

However, (LR1) is better in terms of overall computational performance. Thi




Table 1. Unit Edge Length Graph
(total 1,700 problems)

IR 1 . LR 2
Zip=2Zp, ZipxZp Zip=Zp, ZppxZp '
value of 2 no, of - no, of : no. of : no, of | .
problems CPU time proElems CPU time proi)lems CPU time prof)lems |CPU time
2 97 1.322 73 2.401 125 2.118 32 4,010
3 97 1.002 73 2.203 129 2.565 29 3. 999
4 109 1.004 61 2.129 121 2.330 37 3.810
5 127 1.231 43 2,308 123 2.056 35 2,978
6 125 1.361 45 3.007 129 2.305 29 3.917
7 135 1.589 35 2.566 123 1.946 35 3.645
8 139 1. 809 31 2.897 115 2.920 43 4,712
9 139 2,062 31 2.910 109 2.643 49 5.244
10 151 2.198 19 2.998 120 2.906 38 4.982
11 146 1.7156 24 4.100 145 2.296 13 4.111
toal | L2es | — ) as | — | 13 | = s | -

(CPU time on VAX 11-780)

could be explained by the fact that even though duality gap exists usually
it is very smaH. And that search Vthrough on the search tree does not require
much efforts when compared to the efforts of getting Lagrangian dual.

The second set of experiment involves tree case with 2=100 points. ¢;; is ‘
the number of edges on the unique path from ¥;to Y;. As Kolen [9] proved,
dual ascent procedure for SPLP defined on a tree always finds optimum without
entering into branch and bound phase. With this property and Zp,< Zp,. We
expected second type relaxation would have computational edge over first type
relaxation. The results are *summarized at table 2. At (LR1) about 15.6%
problems have duality gap and at (LR2) about 7.4% problems have duality
gap as indicated by Z;;2:-7Z, at table 2.

As table 2 indicates, (LR2) has fewer instances with duality .gap and has

better over all computational perfermance. This is explained as follows. Whehn

the underlying structure on which the E-median problem is defined is tree

(LR2) is SPLP on tree. Therefore, DUALOC always finds optimum for SPLP

without entering into branch and bound phase. Moreover Lagrangian multi-




.

Table 2. Tree

(total 500 problems)

| LR 1 LR 2
‘ ZIP:ZDll . ZipxZp Zip=Zpy ZipxcZp,
value of k no, of ‘ . no, of . no. of . no, of .
problems ICPU time | Sroblems CPU time problems CPU time problems CPU time
2 47 0.819 3 2.001 47 0.925 3 1.578
3 49 1.085 1 1.479 49 0.883 1 1.210
4 44 1.586 6 | 2.010 46 1.098 4 1.785
5 44 1.890 7 2,121 49 0.954 1 1.326
6 42 2.113 9 | 2731 48 1.063 2 1.548
7 40 2.0567 10 2.809 44 1.078 6 1.979
8 42 2.110 9 2.467 45 1.398 5 1.876
9 42 2. 646 3.118 49 1.149 1 1.689
10 41 2.668 12 3.893 44 1. 360 6 2,764
11 41 2.597 12 3.994 42 1.650 8 3.009
total 422 -] m] - | 463 -] = -
(CPU time on VAX 11-780) '
Table 3. Random Graph
(total 1,700 problems)
LR 1 LR 2
Zip=Zp Zpxin Zip=Zp; ZipxZpy
value of & no, of ) no. of no. of . no. of ;
prof:lems CPU time problems CPU time problems CPU time problems CPU time

2 164 1.002 6 1.103 170. 1,996 - —
3 154 1.345 16 1.832 165 2.567 5 2.742
4 152 1.724 18 2.168 165 1.844 5 1.913
5 149 1.777 21 3.125 157 3.382 13 3.883
6 138 1.983 32 4.167 157 2.299 13 2.732
7 131 2.167 39 5.132 161 1. 865 9 2,157
8 128 2.203 42 7.851 150 2.239 20 4,251
9 125 2.421 45 4.334 - 143 2.574 27 4.330
10 125 2.407 45 5.49 141 2.475 29 5.219
11 133 2,442 37 7.096 137 2.43 33 5.911
Ctoal | L3 | — | s | — | Lo — 154 -

(CPU time on VAX 11-780)

. plier is only one in (LR2) but the number of multipliers in (LR1) is =.

The third set of experiment involves random edge length case with n=100



points. The edge lengths were computed as follows. The points were assigned
random integer coordinates in a square of size 10x 10 and the length of an
edge was the Euclidian distance between its two end points, rounded to the
closed integer. c;; was taken to be the length of the shortest path joining Y;
to Y;. :
The resul'ts"are summarized at table 3. At (LR1) ai:out 17.7% problems
have duality gap and at (LR2) about 9.1% problems have duality gap.

As Table 3 indicates (LR1) is better in overall computational performance
with £2<5 but (LR2) is better with k26, In this case we can not conclude

which relaxation is better in terms of overall computational performance.
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