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I. Introduction

Logistics is a very important component of the economy and includes a wide
variety of managerial activities. In the U.S., at the level of individual firms,
distribution costs represent 10 to 30% of the total costs of goods sold (Robeson
and Copacine, 1994). Because of this importance, a vast body of research has
appeared in the area of logistics. However, most of this research has focused
on optimizing the individual functions of the logistics system such as
transportation, inventory allocation, location, etc.. This paper integrates three
logistical functions: system inventory replenishment. delivery routing, and

inventory allocation.
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We examine distribution policies for managing a one-warehouse N-retailer
system facing stochastic demand and operating in a periodic-review mode. In
the specific system examined. the warehouse places a system-replenishment
order with an outside supplier every m periods, and receives it after a fixed
leadtime. At that time. a delivery vehicle starts from the warehouse with the
system-replenishment quantity (the warehouse holds no inventory.), visits each
retailer once (and only once), allocating its inventory to the retailers along its
delivery route. The distribution policy specifies: (1) the system-replenishment
policy, that is, how much the warehouse will order from its outside supplier:
(2) the routing policy: that is, the sequence in which the retailers are visited:
and (3) the inventory-allocation policy: that is, how to allocate the
system-replenishment quantity among the retailers.

We are interested in two kinds of delivery routing: fixed and dynamic. With
fixed routing, the delivery vehicle visits each retailer once along a
predetermined route that does not change over time. With dyvnamic routing, the
delivery vehicle travels along a route that is determined sequentially. In
particular, just before the delivery vehicle leaves the warehouse or any retailer,
a decision rule is used to decide which retailer to visit next, based on the
inventory status of the subsystem of retailers not yet visited. We also examine
two different types of inventory allocation: static and dynamic. Static
allocations are determined at the moment the delivery vehicle leaves the
warehouse, based on the system inventory status at that instant. Dynamic
allocations are determined sequentially upon arrival of the vehicle at each
retailer., based on the inventory status of that retailer and the subsystem of
retailers not yet visited. The distribution policies developed in this paper
incorporate both dynamic delivery route and inventory allocation.

Kumar et al. (1995) examine the benefit of using dynamic allocation instead of
static allocation while traveling a fixed delivery route in a one-warehouse N-retailer
distribution system. Based on a numerical study, they conclude that dynamic

allocations can yield significantly lower holding and backordering costs per
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replenishment cycle than static allocations. Qur research extends Kumar et al.s
study. We are concerned with the following questions: First, assuming that routing
and allocation decisions are made dynamically, what decision rules (routing.
allocation and system-replenishment) should be used to do so? Second. does
dynamic routing combined with dynamic allocation improve system performance?

As might be expected. dynamic routing induces variability in the time
between inventory allocations (i.e., the replenishment cycle) at cach retailer,
which, in turn, makes analysis of dynamic routing correspondingly more
complex. In order to minimize this extra complexity we focus our analysis on a
symmetric system. "Symmetric’ means that all the retailers experience identical
costs and face identical probability distributions of demand, and that it takes
the delivery vehicle the same number of time periods, a. to reach any of the N
retailers from the warehouse and the same number of time periods. b, to travel
between any two retailers.l)

The additional assumptions and objective of the model are as follows: If
retailer inventery is not sufficient to meet demand, shortages are backordered.
We assume that these shortages occur only at the end of each replenishment
cycle. Purchasing, inventory-holding, and backorder costs are linear. We
assume perfect information about retailer net inventories at the beginning of
each period. We seek a distribution policy that minimizes the sum of total
expected discounted system purchasing, inventory-holding, and backorder costs
over the infinite number of cycles.

Our major results are: In the N-retailer symmetric case: (1) LIF (go to the

1) One can find distribution systems which can be viewed as symmetric or at least close to
symmetric. For example, when Wal-Mart designs its distribution system. it locates the
regional distribution centers (RDCs) first. and then. builds retail stores around them.
This system is not exactly symmetric, but transportation times between the RDC and
retail stores or those between retail stores are not very different. Also, if transaction
time (i.e.. time for unloading) dominates total leadtime (= transportation time +

transaction time) between retail stores, the assumption of equal leadtimes between retail

stores may be a good approximation.
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retailer with the Least Inventory First) is the optimal routing policy: and (2)
under the “allocation assumption’, which allows negative allocations to retailers, a
myopic policy is optimal. In the two-retailer case: (1) Equal allocation (replenish
both retailers up to the same inventory position) always satisfies the first-order
condition for optimality, but is not necessarily optimal: (2) LIF plus fixed-route
allocation provides most of the total benefits from dynamic routing and dynamic

allocation: and (3) the better of equal and fixed-route allocation is near-optimal.

. Related Research

There have been many articles on replenishment and allecation policies for
multi-echelon distribution systems. Graves (1996) provides a brief review of
the works on the multi-echelon distribution systems with both deterministic
and stochastic demand. Research directly related to ours is as follows:

Federgruen and Zipkin (1984b), Anily and Fefergruen (1990, 1993), and
Gallego and Simchi-Levi (1990) integrate inventory decisions with routing
considerations. In particular, Federgruen and Zipkin (1984b) analyze a
combined vehicle-routing and inventory-allocation problem with stochastic
demand. In their model, both allocation and routing are static: that is, once
determined, the route for cach vehicle and allocation for each location are fixed.
Their objective is to determine a joint route-allocation strategy that minimizes
the sum of expected inventory cost and transportation cost for the entire
system. In their model the interdependence between routing and inventory
allocation arises from the fact that while the optimal allocation may prescribe a
positive allocation to some particular retailer, the cost of routing the vehicle
through that retailer may exceed the savings achieved by that allocation.
Another source of interdependence is the vehicle capacities. Overall savings
accruing from the joint consideration of the inventory-allocation and routing
decisions, of 5-6% is reported. Anily and Federgruen (1990) study the dynamic

vehicle-routing and inventory problem in one-warehouse multiple-retailer
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systems when demand is deterministic.

Most dynamic-routing research focuses on dynamic vehicle-routing problem
(VRP). wherein, as in our model, delivery routes are determined dynamically
based on real-time information. Its application areas include fleet management
(Powell, 1986}, traffic assignment (Fiesz, et al., 1989), air traffic control
(Vranas, et al., 1993). See Bertsimas and Simchi-Levi (1996) for a complete
review of VRP. What differentiates our work from dynamic VRP is that
dynamic VRP dynamically decides a set of customers served by a specific route,
equivalently, a specific vehicle, while dynamic routing in our problem
dynamically decides a sequence in which a given set of retailers are visited.

Kumar, Schwarz, and Ward (1995) examine static and dynamic policies for
replenishing and allocating inventories amongst N retailers located along a
static-delivery route. Their major analytical results, under the appropriate
dynamic {static) allocation assumption. are: (1) optimal allocations under each
policy involve bringing each retailer's “normalized-inventory” to a corresponding
“normalized” system inventory: (2) optimal system replenishments employ
base-stock policies: (3) the minimum expected cost per cycle of the dynamic
(static) policy can be derived from an equivalent dynamic (static) "composite
retailer’. Given this, they prove that the ‘risk-pooling incentive”, a simple
measure of the benefit from adopting dynamic allocation policies, is always
positive. Simulation tests confirm that dynamic-allocation policies yield lower
costs than static policies, regardless of whether or not their respective
allocation assumptions are valid. The magnitude of the cost savings, however,
is ser;sitive to some system parameters.

This paper is organized as follows; In Section 3 and 4, we describe the
two-retailer symmetric system and prove the optimality of LIF routing. In
Sections 5 and 6, we formulate the dynamic routing and allocation problem as
a dynamic program and prove the optimality of a myopic policy. Section 7
derives some important properties of the optimal myopic allocation policy in the

two-retailer case, and Section 8 develops heuristic allocation policies. Section 9
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compares the computer-simulated performance of the optimal myopic allocation
policy with the heuristic allocation policies, both to measure the cost-reduction
effect of dynamic routing and to test the effectiveness of the heuristic policies.

Finally, Section 10 summarizes the paper and suggests possible extensions.

M. A One-Warehouse N-Retailer Symmetric System

The one-warehouse N-retailer symmetric system studied here has one
warehouse and N identical retailers: i.e., all the retailers have the same
demand distribution, and the same per-unit inventory-holding and backorder
costs. Each retailer faces i.i.d. periodic demand. Furthermore, it takes the
delivery vehicle the same number of time periods, «, to reach any of the N
retailers to/from the warehouse and the same number of time periods, b, to

travel between any two retailers. Let R; represent retailerz, 1=1...., N.

Figure 1 shows the system when N=2.

Figure 1 The Symmetric System When N=2

Supplier

The warehouse places a system-replenishment order every m periods, which

arrives after a fixed leadtime L. The first system-replenishment order is placed
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at time 0. Correspondingly, the £ system-replenishment order will be placed at
time(z-1)m. After L periods, each system-replenishment order is delivered to the
warehouse, a routing decision is made (i.e., which retailer to go to first), and
the vehicle begins the route. Given a specific route, define the /* retailer as the
one visited j* on that route. The vehicle arrives at the first retailer @ periods
after the first routing decision, allocates part or all its inventory, and, under a
dynamic-routing policy, decides which retailer to go to next. After b periods, the
vehicle arrives at the second retailer, makes the second allocation decision, and
the third routing decision. The vehicle repeats these allocation and routing
decisions every & periods until it visits the next-to-the-last retailer on the
route, and makes the (N-1)* allocation and N** routing decision. In effect, all
remaining inventory is allocated to the N™ retailer at this time, although it is
delivered b periods later. The same sequence of decisions are repeated every m
periods. We assume m >(N-1)b, which guarantees that retailer-replenishments
do not cross, that is, the ¢ replenishment to R is delivered before (or at the
same time as) the (¢t+1)* replenishment.

For the #"

system replenishment, define Gy, 1=1,..., N as the set of
continuous time periods between the " and (t+1) visits to R. and define
{Cu..... Cvt as the t™" allocation cycle.?) Under a fixed-route policy (Kumar,
Schwarz, Ward, 1995). each Cu contains exactly m periods for all ¢ values.
However, under dynamic routing, the number of time periods in each Ci and
which particular periods are first and last depend on the t™ and (t+1)* routing
decisions. More generally, the number of periods in any given Ci can take on

{2N-1) possible values (i.e., (m-(N-1)b), (m—(N-2)b),..., (m-b), m, {m+b}. .., or

(m+(N-1)b)), depending on the t™ and (¢+1)* routes.

2) For completeness, define {Cio...., Cnol  as  the zero™ allocation cyele, where
Cio=1{1,.... a+(-1)b} if R is the /® retajler on the first route. That is, the zero™

allocation cycle for the i retailer ends (a+(i-1)b) periods after the first routing

decision.
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IV. The Optimality of Least-Inventory-First (LIF) Routing

We first derive the optimal routing policy. Routing affects total expected
discounted costs of the 7 allocation cycle for any retailer by determining which
time period will be the last time period in that retailer’s current allocation
eyele. In the following lemma. we show that for any given allocation decision,
there exists a routing decision which minimizes total expected costs of the
current cycle without changing the costs of the subsequent cycles. Define the
least-inventory-first routing pelicy (LIF} as the policy under which the delivery

vehicle goes first to the retailer with the smallest current inventory pesition,

LEMMA 1: LIF is the optimal routing policy for the infinite-horizon problem.
Proof: [(See Appendix 1].

Intuitively, Lemma 1 makes sense since at the time of any routing decision,
the retailers differ only in their inventories. Since LIF is optimal in the
infinite-horizon problem, we will henceforth limit all routing decisions to be
LIF. The optimality of LIF routing can be generalized for any N>2 retailer

symmetric systems. See Park (1997) for the proof.

V. DP Farmulation

Our goal is to select a distribution policy that minimizes the sum of expected
discounted total costs {= purchasing+inventory-holding+backorder costs) over
the infinite number of allocation cycles. Note that inventory-helding and
backorder costs at each retailer for any allocation cycle depend: (1) on the
amount of inventory at that retailer in the first period of its allocation cycle
immediately after allocation, and (2) on the demand during each time pericd in
the allocation cycle.

In this section, we formulate the infinite-horizon problem given LIF as a
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dynamic program (DP). For simplicity of the presentation., we will formulate

the case when L =0 and m=a+(N-2)5.3) All of the results derived below, in

particular, the optimality of a LIF routing policy and myopic allocation still

hold in a general case.

Notatien

¢ = Purchasing cost per unit

h = Inventory-holding cost per unit per period for units held either at any
retailer or on the delivery vehicle.

¢ = Backorder cost per unit per period.

a = Discounting factor

i = Index for the retailers, i=1, N,

I; = BSet of the retailers not yet visited at the instant of the 7" routing
decision on a route (Note that 1={1,... N} and I, =1, —{[/-11}).

(] = Index for the j retailer on a route.

t = Index for the allocation cycles (or the system replenishments).

*» = Net inventory at Ri at the instant before the ¢ system-replenishment
decision.

X = (%1, %)

9, = " system-replenishment quantity.

Z = t™ allocation to R

Z"—' (Zu . %m)

d = Single-period random demand with mean g and standard deviation o.

‘= k-period random demand at R; with probability density function @*(.)

and cumulative distribution function @%(.).

3) When m<a+{N-2}b. since at the time of t system-replenishment decision. the (t-1)*

route i1s not completed. we have to define additional state variables for the dvnamic

program that represent the subsystem of the retailers to be visited on the (t-1)* route

and the amount of inventory left on the wvehicle, which makes the presentation more

difficult to understand.
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5% = Vector of &''s, that is, (8",....6%)

N
k

A= &7 system demand over k periods.
Define f,(X,)o be total expected discounted costs at the time of the gt
system-replenishment decision given the state variables f! given LIF routing

policy. Also define L¥2) to be total k-period expected discounted
inventory-holding and backorder costs at a retailer given net inventory v at the
beginning of the first period and assuming no additional delivery. Let wv(g.
Jj=1,..., N-1 be net inventory of the jth retailer on the £ route at the instant
after its " allocation, and let v, be the inventory position at the NP retailer

N
at the instant after the (N-1)* allocation decision. Also let y, (= zx,., +¢,) be the
i=1
system inventory position at the instant after the t" system-replenishment
decision. After some rearrangement of cost terms (see Appendix 2 for details),

one obtains
f(X)= %l{c(y, )+ E[min{H, (z;,) + 0" LY (v, ) + Elmin{H, (255, ) + ™ LY (v,),)
2 Iy 2

+ E[E[min{H ,_ (z,y_y,) + Hy(z,) + GUP OB 1+ @ ELf, (X, + Z, -8 ")]} )

IN-ip

N
Subject to: 2.z, =g, (2). z,20,i=1..N (3), and [jlel,, j=1...N (4)
i=t

In the above formulation, ¢(y,)} is the purchasing cost allocated to the ¢
allocatien cycle, H,(v;,,) the on-vehicle holding cost allocated to the ;™ retailer
on the £ route. and G(.) is the tota! expected discounted costs of the N
retailers during the remaining periods of the £ aliocation cycle at the instant
after the (N-1)"' routing decision. See Appendix 2 for details. Feasible
allocations must satisfy the following constraints: (2) requires that the sum of
the allocations to the N retailers on the f® route must equal the t™
system-replenishment quantity g, (3) represent non-negativity constraints:
i.e.. all allocations must be non-negative, and (4) means that the delivery

vehicle visits each retailer once and only once per allocation cycle.
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DP is not easily solved. Note that in the fixed-route case. since each
retailer’s allocation cycle has a fixed number of time periods, it is known at
the time of each retailer's current allocation when that retailer will receive its
next allocation. In contrast, under dynamic routing, each retailer's allocation
cycle has a yet-to-be-determined number of periods. Therefore, at the time of
its current allocation it is not known when each retailer will receive its next
allocation. Instead, this depends on the next route, which will be determined
by the allocations and the demand realizations at all the retailers between the
current allocation decision and the next routing decision. Hence, to compute
the expected costs of the " allocation cycle expectations are taken with respect
to not only demand realizations but also the next route.

Another complication is that the probability distribution of each retailer's
total demand during its allocation cycle is generally not a standard
distribution. To illustrate: in the fixed-route case analysis by Kumar et al.
(1995), where retailer demand each period is a normally distributed. the
distribution of each retailer's total demand during its allocation cycle is also
normal. However, under dynamic routing, even though retailer demand each
period follows a normal distribution, the distribution of each retailer's total
demand during its allocation cycle is not normal because, as noted above, each
retailer's total demand during its allocation cycle will depend upen the demand
realizations at all the retailers between the current allocation decision and the
next routing decision. Because of this dependency., the convolution of all the
period demands in the allocation cycle is not normal. We will discuss how this

dependency affects the analysis of the allocation problem in Section 7.

VI. The Myopic Problem

In this section, we prove that if the non-negativity constraints (3) are
relaxed, then a myopic policy is optimal in the infinite-horizon problem. The

myopic problem (MP) is the problem in which the system-replenishment and
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allocation decisions during the t™ allocation cycle are chosen to minimize the
sum of total expected purchasing, inventory-holding, and backorder costs
during each separate allocation cycle without regard to their impact on
expected costs in subsequent allocation cycles. MP is identical to (1) except

that f,4+1=0. Define M, as minimum total expected discounted costs of the ¢t

allocation cycle. For V¢,
MP: M, (X,)=minfe(y)+Q(X,.q,)} (5)
Subject to: (2), (3), and (4).
where y, is the order-up-to level at the time of the t™ system replenishment
decision and
0X,.q)= E[rgli]n{H, (Za )+ @ LY (v, )+ E[rf[lziln{Hz (zp) + @™ LY (v,

+ E[...E[}lr:ig{HN_l (Zpwo) + Hy (2 ) + GAPOYBT+]

By introducing an approximation £ to the function f, in (1), by relaxing the
non-negativity constraints (3). it is straightforward to prove that for f
myopic allocation is optimal. See Kumar, et al. (1995), Federgruen and Zipkin
(1984a), etc. for similar proofs. Relaxing (3), in effect. permits costless and
instantaneous transshipments between retailers whenever the optimization calls

for it, thereby decoupling adjacent allocation cycles.

LEMMA 2: When the non-negativity constraints, (3), are relaxed, MP solves
DP.

Although the allocation assumption appears to be a strong one - and
impossible to implement - in our computational tests it is seldom invoked. For

example, in the simulation study to be presented in Section 9, negative

allocations were called for on average less than 1.25% of time (5% at most).
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VI. The Myopic Allocation Problem (MAP) for N=2 Retailers

In this section, we derive some important properties of the optimal myopic
allocation policy in the two-retailer case. Note that in the two-retailer case,
only one allecation decision is made in each allocation cycle: i.e., the amount
allocated to the first retailer in effect determines the amount allocated to the
second retailer,

In this and following sections, for simplicity of the presentation, we assume
that there is no cost discounting, i.e., e =1. Let v be the system net inventory
at the time of the allocation decision. Let »; be inventory position at R; at the
instant after the allocation decision and %=(v,v,). where v,=v-v . In the
two-retailer case, MAP is defined as

MAP: A?[(v):m:in{C(V)} . (6)

where C(v) =H,(v))+H,(v, -bu)+ G(V) .

Under LIF, which retailer will be visited first on the (¢+1)* allocation cycle
depends on the retailer inventory positions at the instant after the t™ allocation
decision less each retailers’ demands in the subsequent {m-a) periods when the
(¢+1)* routing decision will be made. Define p,(¥,4,) as the probability that R
will be the first retailer on the (¢+1)® route given ¥ and %, the demand at
Ri between the t™ allocation decision and the (t+1)}* routing decision. Under
LIF, Ri (R2) will be visited first on the (¢+1)* route if and only if B; (Rz) has
the smaller inventory position at the time of the (£+1)* routing decision: that

is, if and only if Yi—W <V;—H (V,— U, <V, —H) which is equivalent to

u, <uy+v=2v, (4, <u, +v=2v,}  Therefore, PV:u) =P (W, +v-2v))  Without

loss of generality, assume that R; is the first retailer on the " route. Then,
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C(¥) = H,(v) + Hy (v; —bu) + L""(v) + E[L"*7 (v, = 6")]

3] PT.EXL (3, = 8) = (s, = mptah) (815
S+ (1 p, 7, 0L (v, = 8) = (v, — (m+ b)pu)(a + bYh)

The first and second terms in (7) are the on-vehicle inventory-holding costs
charged to R and Re, respectively. The third term is the total expected
inventory-holding and backorder costs at Ri during the first (m-a) periods of
the t™ allocation cycle. The fourth term is that at Rz during the first (m-a-b)
periods (the t® allocation cycle of Rp starts b periods after the allocation
decision). The last term represents the sum of total expected costs during the
remaining periods of the t* allocation cycle and the credit (when there are
leftovers) or charge {(when there are backorders) at the end of the allocation
cycle according to the cost reallocation scheme explained in Appendix 2.

In order to simplify the problem, we assume that for each retailer, backorders
occur only in the last period of its allocation cycle. Jnsson and Silver (1987)
demonstrate that the last-period-backorder assumption is appropriate for

systems with high service levels. Under the last-period-backorders assumption,

k=4

L (xy= Y (x=ip) H'(x)
i=)

=£@#&+(x—ku)(k—l)h+l"(x) (8)

Correspondingly, C(.} function in (7) becomes as follows:

(Y Ifm<a

If m < a. then at the time of the allocation decision, the (t+1)* route is
already known or decided simultaneously. Correspondingly. the P/s in (7) will
be known at the time of allocation. In particular, if H; is the first retailer on
the (#+1)* route, then =1 and p;=0. for VS and if Rl is the second

retailer on the (t+1)st route, =0 and =1, for . Therefore, MAP becomes the

fixed-route allocation problem in Kumar et al. (1995). In other words, if,

m < a. C(v) is known to be a convex function of z; (Kumar et al., 1995).
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2)If m > a

If m > a. under the last-period-backorder assumption,

C(¥) = (2a +b)mph + m(m ~ Dk + (v — (2m + b)) (m - 1)k

+3, [(0.5.80°(v, — 8) + (1= p,(7.6)1* (v, - 6)$(5)d5

i=] _w

(9)

(see Appendix 3 for details).
Expression (9) is quite different from that in the corresponding static-route
case because at the time of the " allocation decision, the (t+1)* route is

probabilistic. One consequence of this is that C(.) in (9) is not necessarily

convex on the interval [—o0,o] . In particular. despite the fact that for any

given 8, both /%) and [°"%() are convex. the products p,(.) - 1 %(.) and

.Y - £1°%) are not necessarily convex. Indeed. it is possible to construct

parameterizations where C(.) isnt convex.

This possible non-convexity complicates the determination of the optimal
allocation, thereby requiring a numerical search to find it. However, this
search is simplified somewhat because C(.) is symmetric with respect to
vl=—22: that is, onec gets the exactly same function by plugging (v, v~ ;) or

(v—-.vl,vl) into (9). Hence: (1) cne only needs to search the first half-interval

[—00, %} for an optimal allocation: and, more importantly: (2) equal
allocation (i.e., v1=vg=%) will be always either a local minimum or a local

maximum. In other words, if equal allocation is the only local minimum on the
first half-interval, then equal allocatien is the global minimum. 4

Although we were not able to establish C(.)'s convexity on [— o0, o] nor its

4) Note further that if C() is unimodal on the first half-interval, then only one local
minimum will exist en the first half-interval. This local minimum would, of course, be
the global minimum. However, if C(.) isn’t unimodal on the first half-interval. then C(.)
may have multiple local minima and maxima there. Although we could not prove its
unimodality, C(.) was observed to be unimodal on the first half-interval in all 128

parameter sets used in our computational study: that is, C(.) had a unique global

minimum.
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unimodality on the half-interval [—00, %] we have been able to derive the

following intuitively-appealing first-order (i.e., necessary) condition for an
optimal allocation policy: Let Pf{w) be the probability that there will be no

leftovers at R: at the end of the ™ allocation cycle. Let v,'. i=1,2, be the uv;s

which solve MAP and 7" =(v,,v;)-

LEMMA 3: Under the last-period-backorder assumption, if c(v) is

continuous and differentiable, then

PF) = B (10}

Proof: [(See Appendix 4].

Condition (10} says that in an optimal allocation. both retailers have the
same probability of no leftovers. or. equivalently, the same stock-out
probability. Since equal allocation satisfies condition (10}, then egual allocation
will be the optimal allocation provided C(.) is unimodal. However, since is not
necessarily unimodal, equal allocation may not yield the global minimum. It
could, in fact yield a local maximum of C(.). In order to identify all allocaticns
satisfying (10), we employ a linear search procedure.

As noted above, v, e[a-oo,g]. Lemma 4 further narrows the interval of search to
[V/%], where v, is an optimal inventory position at Ri at the instant after the
allocation decision when the next route is fixed as B1 — Rz (which means that

the delivery vehicle visits R first).

Proof: [(See Appendix 5].
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Vll. Heuristic Allocation Policies for N=2 Retailers

This section and the next develop heuristic allocation policies under the
assumption that retailer demand each period follows a normal distribution with
mean g and standard deviation o¢. All of the heuristics, of course, employ the
least-inventory-first (LIF) routing.

As noted above, one of the difficulties in finding an optimal allocation is that
total demand during the allocation cycle (i.e., cycle demand) at each retailer
isn’t normal, even though retailer demand each period is normal. Let
i=1.2, be demand at R; between the #" allocation decision and the end of the

th

" cycle for the retailer. Although d; doesn't follow a normal distribution,

Heuristic 1 assumes that the d/s are normally distributed with mean ;=

(m+ p,b)p, po=(m+ pob)p and standard distribution ,, ¢s;, where 2, is the
probability that R, is the second retailer on the (¢t+1)® route. Note that

p;=1—0"v—20,), where @°(.) is the cumulative distribution function of

N(0,042(m-a))

Correspondingly, the following allocation satisfies (10):

Wi v, "v_(lul i)

o, a, o, +0, (11)

Calculating the o] ‘s, unfortunately, requires a numerical evaluation. Instead,
we estimate Gf using _gf =(m+‘5,.-b)0'24 To summarize: under Heuristic 1. the

allocation satisfies

vl_#l_vz_:“Ll_v_(#l+.Ll2) =
5585 s+ . where s, =0ym+p,-b . (12)

Fixed-Route Allocation (Heuristic 2) allocates as if the next route were fixed

as B1 — R (but LIF is used for actual routing). In the fixed-route allocation,

v is allocated in the following way (Kumar et al., 1995):
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my—Qm+d)p)
N +m+b

vm+b(v—-(2m+b)p)
Nm+Jm+b '

vi=m-pu+ and v, =(m+b)-u+

Equal Allocation {Heuristic 3) allocates exactly iv to each retailer.

Heuristic 4 uses the better of the fixed-route allocation and the equal
allocation. More specifically, for a given set of model parameters, the expected
costs of both the fixed-route and the equal allocation are estimated by
computer simulation (each allocation policy is used throughout the entire
simulation run), and the one with smaller total expected costs is chosen.

These four heuristics are compared through computer simulation in Section 9.

IX. Numerical Study of the Two-Retailer Symmetric Case

In this section, we compare the computer-simulated performance of the
optimal myopic allocation policy and the four heuristic allocation policies both
to measure the risk-pooling benefits of dynamic routing and to test the
effectiveness of the heuristics. In testing these policies, Kumar et al.’s method
is used to compute system-replenishment quantities. In other words, the
warehouse makes system-replenishment decisions as if the next route were
fixed and the same as the current route. In this case, under the allocation
assumption, the optimal system-replenishment policy is a base-stock policy.
The same base-stock policy is used for the other five distribution policies.
Correspondingly, a total of seven distribution policies (i.e., combined routing
and allocation policies), as defined in Table 1, were evaluated. D1 is Kumar et
al.’s: The delivery route is fixed, and allocation is the optimal dynamic
allocation given this fixed route (Kumar et al.. 1995). D2 is MAP: LIF
(least-inventory-first) is used for routing, while allocation is the optimal
dynamic allocation given LIF. The amount allocated is determined by computer
search of all points satisfying the first-order condition. For D3-D6, the routing

policy is LIF but the allocation policy is one of the heuristics.
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Table 1 Six Distribution Policies

Distribution Routing Allocation
D1 Fixed Optimal for the fixed-route case
D2 LIF Optimal for the dynamic-routing case
D3 LIF Normal approximation
D4 LIF Fixed-route allocation
D5 LIF Equal allocation
D6 LIF Better of fixed-route or equal

A total of 128 different system parameter sets were simulated with m. g,
and h fixed at 4, 100, and 1, respectively. The remaining four system parameter
values were varied as follows: a=0,1.2,3, b=1.2,3.4, ¢ =2050.70,100. and p
=10,15. The simulation estimated total expected costs per cycle. total expected
inventory-holding costs per cycle, total expected backorder costs per cycle. and
the probability that negative allocation is prescribed by MAP for each case.
Given each parameter set, every distribution policy was simulated for 300,200
allocation cycles. Since the purpose of the simulation is to compare the
performances of different distribution polices. every distribution policy was
simulated with the same initial random-number seed: that is, every
distribution policy was simulated using the same demand realizations. The first
200 cycles werc used to eliminate the effect of any initial conditions and next
300,000 allocation cycles were used to obtain the point estimates of the four
statistics reported below. Note that although negative allocations are allowed in
MAP, negative allocations were not allowed in the simulation: that is,
whenever MAP prescribed a negative allocation to K, no units were allocated
to . and all the units on the vehicle were allecated to the other retailer.
Moreover, despite the end-of-cycle-backorders assumption, backorder costs were
charged each period whenever there were outstanding backorders (not just at
the end of allocation cycle). Under D2, v is determined by computer search of

Vi’s satisfying the first-order condition (10) over the interval. The simulation

results are summarized in Table 2 through 4.
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Table 2 % Reduction in Estimated Total Costs per Cycle(D1 vs. D2}

average maximum
all 128 sets 1.9% 12.0%
when ¢ =20 0.04 0.5
when o =50 1.2 7.0
when ¢ =70 2.2 9.2
when ¢ =100 4.2 12.0

Table 3 % Reduction in Estimated Inventory-Holding Costs per Cycle(D1 vs. D2)

average maximum
all 128 sets 1.2% 1.7%
when ¢ =20 0.0 0.05
when ¢ =50 0.1 0.8
when ¢ =70 0.2 1.2
when ¢ =100 0.5 1.7

Table 3 % Reduction in Estimated Backorder Costs per Cycle(D1 vs. D2)

average maximum
all 128 sets 6.2% 35.6%
when ¢ =20 0.4 5.3
when o =50 5.1 34.5
when ¢ =70 7.7 34.5
when ¢ =100 11.4 356

Fized vs. D ic Routing (D1 D2)

The simulation results indicate a significant benefit from combining LIF with
the optimal dynamic allocation for some parameter sets. Let HC; and BC; be
the estimated inventory-holding and backorder costs per cycle of distribution
policy j, respectively, and TC;= HC;+ BC;. Table 2 displays [lc—l#]xloo.
the % reduction in estimated total costs per cycle by using D2 instead of DI.
Table 3 and 4 show the % reduction in estimated inventory-holding and
estimated backorder costs per cycle. respectively. The % reduction in estimated
total costs per cycle was 1.9% on average and had the largest value {12.0 %)

in the case when a=0, b=2, 6=100, and p=10. The % reduction in estimated

inventory-holding costs per cycle was 0.2% on average and had a maximum
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value of 1.7%. Estimated backorder costs per cycle were reduced 6.2% on
average and a maximum value of 35.6%. Note that the reduction in expected
inventory-holding costs per cycle was very small, probably because
inventory-holding cost is mainly determined by system-replenishment decisions,
which are identical in all six distribution policies simulated. The % reduction
in estimated total costs per cycle was much smaller than that in estimated
backorder costs per cycle because the portion of estimated inventory-holding
costs in estimated total costs per cycle was larger than that of expected
backorder costs (more than 70% on average).

These reductions (in all three categories) were greater for cases with small a
{and maximized when a=0). This can be interpreted as follows: Under dynamic
routing, the (t+1)* route will be determined (m-a) periods after the ¢
allocation decision. Since the risk pooling is over these (m-a) periods, the
smaller a is (i.e.. the later the next route is determined), the more risk
pooling there will be from dynamic routing.

The effect of b on the benefits from dynamic routing was not monctonic like
that of @. Instead, the benefits from dynamic routing were observed to be
largest for intermediate values of b: e.g., at b=1 in some cases and at =2 in
the other cases. We interpret this as follows: as & increases, it affects the
benefits from dynamic routing in two different ways. First, when an imbalance
in retailers’ inventories is observed at the time of routing (i.e., LIF prescribes
a route change), then, without dynamic routing. we wait longer to fix this
imbalance in the case with large b. Therefore, the benefits from dynamic
routing will be greater for large b than for small b. In other words, the benefits
will be small when b is small. In particular, when b=0, there will be no
benefits from using dynamic routing because the ¢ allocation cycle ends at the
same time for both retailers, regardless of which is visited first on the (t+1)*
route. Second, as b increases, a route change will be less likely (i.e., the
benefits from dynamic routing will be smaller): As b increases, with the other

parameters fixed, at optimum, the difference between allocations to Rz and R




158

will increase, and result in fewer route changes. When we consider only the
second effect., the benefits of dynamic routing are small for large b. Indeed,

when b is large enough, the optimal allecation to the first retailer is close to
its fixed-route allocation v, since the probability of changing the route will be

very close to zero. We believe that what we observe is due to a combination of

these two effects.

Heuristic Al ion Polici
The simulation results indicate that four heuristic allocation policies
(Heuristic 1, 2. and 4 (with 7,=0.1)) performed very close to optimal. The %

[ TC,-TC, TCZ]

difference in estimated total costs per cycle ( x100) were .02%,

48%, and .00% on average, and at most .25%. 4.18%., and .35% for Heuristic

1. 2, and 4, respectively. The % difference in estimated backorder costs per

cycle (= [M x100) were .06%, 1.93%, and .00% on average. and at

most .69%. 18.83%, and 2.07% for Heuristic 1, 2, and 4. respectively. These
small differences suggest that a simple heuristic allocaticon policy can be used
to achieve a near-optimal performance when combined with LIF routing.
Heuristic 1 performed very well for all the cases simulated.

We did t-tests to check the validity of our claim that the heuristic allocations
performed near optimally. We used the four different hypotheses on the %
difference in estimated total costs per cycle between the optimal and heuristic
allocation policies, The 4 different null hypotheses used were that the %
difference is greater than 0, 1, 2, and 5%. respectively.? When Heuristic 1, or

4 was used, we rejected the null hypothesis that the difference is greater than

5) The same simulation runs which were used tc obtain point estimates were used to
compute t-statistics for the hypotheses: 300,000 allocation cycles (excluding the first
200 allocation cycles to eliminate the effect of initial condition) were equally divided into
ten 30,000 allocation cycles to obtain 10 estimates of total expected costs per cycle. We

checked the autocorrelations among the 10 estimates using Durbin-Watson test with 99

% confidence interval and found no significant autocorrelations in any parameter set.
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1% for all the parameter sets. When Heuristic 2 was used, we rejected the null
hypothesis that the difference is greater than 2% in about 87% of parameter
sets and rejected the null hypothesis that the difference is greater than 5% in
all parameter sets.

The simulation results suggest that LIF alone explains more than two-thirds
of total benefits from dynamic routing: that is, using LIF with fixed-route
allocation (D4) explains on average about 70% of the difference in estimated
total costs per cycle between D1 and D2. D4 also explains on average about
70% of the difference in estimated backorder costs per cycle between D1 and
D2.

Fixed-route allocation worked best in the cases when ¢ =20, and equal
allocation worked well in the cases when ¢ =100, but did badly in the cases
with smaller ¢'s. We can interpret this as follows: As ¢ increases with
everything eclse fixed, the probability of changing the routes will increase, that
is, optimal allocations will move away from fixed-route allocation to cqual
allocation. Therefore, in the cases with small ¢, optimal allocations are close
to the fixed-route allocation, whereas they are close to the equal allocation in
the cases with large ¢ . Heuristic 4 (the better of fixed-route allocation and

equal allocation) performed very well for all the values of o.

X. Concluding Remarks

In the above, we have analytically shown that LIF is the optimal routing
policy, and that under the allocation assumption, a myopic policy is optimal.
We have also derived the first-order optimality condition of myopic allocation
and the interval that always includes the optimal allocation to the first ctailer.
We have empirically demonstrated that dynamic routing yields lower expected
costs than static routing, regardless of whether or not their respective

allocation assumptions are valid. However, our numerical study also indicates

that the magnitude of the cost savings depends on some system parameters:
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i.e., in the medium-to-large demand-variance cases, it is significant, but in the
small demand-variance cases, it is very small. Also, static-route heuristics for
allocation has been shown to be very effective.

From a management perspective our results suggest that using LIF alone
(without optimizing allocation decisions) explains most of benefit from dynamic
routing. Finally, the increased costs of operating dynamic-routing policy must
be considered, since such a policy involves building more rigid information
system. This is because under dynamic routing. retailer net inventories (or
demand) must be assessed and transferred up to N-1 times per cycle. This
transfer must be made to the warehouse, which must then communicate it to
the vehicles along the route. which must then compute the allocations and
make the routing decisions. Consequently, dynamic policies require a more
sophisticated information and decision infrastructure.

We close with brief comments about possible extension and future research.
First, our analysis can be easily extended to the case with fixed-ordering cost
at the warehouse. The difference is in the form of the system-replenishment
policy. Second, from the previous discussion, we can see that optimizing the
distribution policy in the N> 2 retailer case is impractical. Hence, we had
better focus on developing a heuristic that results in the good lower bound on
the true benefit of dynamic routing under the optimal policy. Finally, we can

develop effective heuristics for the non-symmetric case.

Appendix 1

We prove (Lemma 1) in this appendix.

roof:

Note that given any fixed sequence of system-replenishment quantities and
retailer allocations over time. each retailer's net inventory (a+5b) periods after
the #" routing decision is invariant to that routing decision. Hence, the

expected discounted costs in the interval between (a+b) periods after the £h
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routing decision and the (¢+1)" routing decision are fixed. Define the
single-cycle routing problem (SCRP) as the problem in which the £ route is
chosen to minimize the sum of total expected discounted inventory-holding and
backorder costs between the f* routing decision and (a+b) periods after that

routing decision given retailer inventory positions at the time of the ¢h routing

decision. Let s; and s; be the inventory position at R, and K; at the moment
of the " routing decision, respectively. If R is visited first, then R;’s current
allocation cycle will end a periods later and that of R;(a+b) periods later., We
can do the opposite by going to Ry first, and to R, later. Let TC; be total
expected discounted costs during the (a+b) periods following the routing
decision when R; is visited first. Let /(») be expected inventory-holding and
backorder costs at the end of the &™ period given net inventory v at the
beginning of the first period and assuming no additional delivery. Also let =z,

i=1.2 be the " allocation to R; Assume that on-vehicle inventory-holding

cost is allocated to the retailer to whom a unit is allocated. Then,
a a a+b a+b ard
TC, =Y o' (s)+ Y @'z h+ 3 atl* (s, +2)+ 3,0 1 (s,)+ Y 0" 2,h)

k=1 k=1 k=a+l k=1 k=1 }
a+b a+b a a atb

and TC, =(Q.a'l*(s)+ 3 o'z h+ 3 ' 1*(s,)+ Y z,h+ Y a*lH (s, +2,)) .
k=1 k=] k=1 k=1 k=a+l

After some rearrangement, 7TC,— TC, is

a+b

k;"la"((l‘(s,)+zlh—1*(sl +z N~ (s,)+ 2,k = 1" (s, +z2)))‘ (AL-1)

Assume §;<s;. that is, at the moment of the " routing decision R; has more

inventory than R;. Then, (A1-1))0, since by the convexity of [*(.). it is easily

shown that,
(Fs)+zh=1"(s, +2)) 2 (s) + 25— 1" (5, +2,)) for k=a+1,.... a+b

Hence, LIF minimizes total expected discounted costs of the SCRP.

Now, we prove the optimality of LIF routing in the infinite-horizon problem.
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Let (0Q,A,R) be an arbitrarily chesen distribution policy (= a joint
system-replenishment (0), allocation (4), and routing (R) policy) over the
infinite horizon. Suppose that for some demand realization, (O,A4,R) does not
follow LIF. Specifically, suppose that the " route does not follow LIF, given
the set of demand realizations D to that point in time. Let (O,A,R")} be the
distribution policy which makes the same system-replenishment. allocation. and
routing decisions as (O,.4,R) except that (0.4R") follows LIF in the £ routing
decision. As noted above, given D, total expected discounted costs of the SCRP
will be reduced by using (0,4,R’). while total expected discounted costs in the
other periods remain the same. Therefore, the total expected discounted costs

of (O,AR) are greater than those of (OAR’).

Appendix 2

Derivati F (1)

Define J?(-X_’,) to be total expected discounted costs at the time of the ¢r
system-replenishment decision given the state variables X,and LIF. Let wj. J
=1,.... N be inventory position of the " retailer on the £ route at the instant

after the £" allocation decision. Then,

f(X)= min{cq, + E[min{H,(zy, )+ o LY (v, ) + Elmin{H, (z5,) + 0 LY (vy,)
] I EHT
+ EL E[min{H _, (zy_) + Hy (zp) + @ C P gUPOI- B+ @ EL £, (X, + Z, - 87)]}
ZN-1)

(A2-1)
Subject to: (2), {3), and (4)

At the instant after the fh allocation decision, the on-vehicle

a(l _ am(jvl)b)

1_.
total costs at the / retailer between the /™ and (N-1)" allocation decisions,

inventory-holding cost H (z,)(=h z,) and the expected discounted

are charged to the j" retailer. At the instant after the (N-1)" allocation

decision, when all the allocations zi's, i=1,...N. are known, we can write the
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expression for g(TI;,), the total expected discounted costs over all the retailers
during the remaining periods of the t™ allocation cycle. where 1P, is the vector
of retailer inventory positions at the instant after the next-to-last (=(N-1)*Y)
allocation decision.

By reallocating some cost terms, we redefine the dynamic programming
problem. Let W, be net inventory of the ;™ retailer on the (¢+1)st route at

the end of the t® allocation cycle. We will redefine 7{.) by rearranging terms
in DP. Since H{.) is a linear function, it is easily shown that:

H (2 0)=H, (v, )—H, (v, — 2 ) for j=1,...,N~1
=Hj(v[j]t _blu)—Hj(v[j]l_blu‘_z[j]t)9f0rj=N, for t=1,...T. (A2-2)

Note that by definition, Wiiu-i =(V[j]: "Z[j]:) , for j=1,. ... N-1. and . wp-n=

(v[,]t—é\b—z[,];). for j=N. Let K/(X,)be the expected sum of the second terms
on the right-hand side of (A2-2) for j=1,....N. Then,

K; ()?,) = E[—Hl (W[l](/fl))_i' E["Hz (w[l](f—l))+"'+E[_HN (W[N](l—l))]"']] ,

Since K,(X,) is not a function of the allocation decisions during the "
allocation cycle, we then reallocate K,(X,)in DP without changing its solution:

" allocation cycle and add it

we subtract X,(X,) from the expected costs of the
to the expected costs of the (¢-1)* allocation cycle We can reallocate the
purchasing costs in the same way. By reallocating Z W,y from the £

the (£-1)% allocation cycle for V¢, the expected (;scounted purchasing cost
charged to the ¢" allocation cycle is g, —E[ZN:—cw[j](,_,)]+a"'E[zN:—cwm,] Since ,
iwmr =iwm<r—1)+q =7 where 7 is the sysjtztlem demand duri;;é the * allocation
cycle E[ZW«. o= Zx,,—,u(N A Chilut 7. (N l)b) and . the expected purchasing cost in

the " allocatlon cycle after the reallocatlon is equal to (l—a™cyy+ " cNmyu
N

=(1-a™p(Na+ NLA%)—b), where % =4,+2,% . Denote this purchasing cost as
i=i

o).

Under the reallocation scheme we can redefine f{.) as follows: Define
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GP)=a" " g(IP)+a"K,. (X,.,) (A2-3)
Then, (A2-1) is equivalent to:
Si(X,)=mine(y, )+ Elmin{H, (25, )+ 0" L (4, ) + Blmin{H, (z) 40 L7 (v )
+ ELBUmin {H . (2yn. )+ Hoy (g )+ GUPOIR ] Ty + 0" ELS, (X, + Z, 870}

Subject to: (2), (3). and (4).

Appendix 3

When m> a,

m{m— DAy
2

1 p LD 5 (o B b= D 5 ~8) =5~ 3 —(a+ e+ DI (0

CE) =vah+ (v, ~ba+bh+ [ (GO +( ~ 8- ap)om— D+ 'y, ~ 8)~ (v ~ 6~ ay)a]

(m=b)m—b—hu

+J:{pz(;s5)[ 2 +(v =8 —a)m—b-Dh+I°(v, ~6}—(v, - 5 —ait)ak]

- pz(;,@)["‘_"';%ﬁqu ~G (@ pn= DA+ 170, ~0)= (=S —(a+Eya + DTS o

Let p, =E[p,(¥,8)]. Then.

C®) = vah+ (v, - )(a+ bk + B, T ;Dh“ +a-pyt b)('”;b DAyt

+ —mp)m—a-Dh-(1-p)b(m—a-Dph+ J:{P, (7,8 (v —8)+ (- p (v, N (v, = 8) " * (8)dd

5, LD DI 1 P o~ om ===~ (1 B, =~ ~ D

+ [ {p.8)° (1, = 8) + (- p, (7, 8N (v, - )" (5)dS (A3-2)
After some simplifications and using P1=1-P |

C(7) = (2a + bymph + m(m — Dpth + (v — (2m + b)) (m ~ Dh

+ |7 1B (7,007 (v, = 8) + (1= py (TN (v, - 6)}0"" (8)d6

+ | D 7.8 (v, = 8) + (1= py (7,80 (v, - 8)}9"™* (8)d 6

= 2a +bymuth+m(m - Duh +(v— 2m+ b)) (m~1h

+Y [(p.,8¥° (v, = 8)+ (- p, .8 (v, - 5)W(8)d

=l e
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Appendix 4

We prove (Lemma 3) in this appendix.

Proof:

(i) If m<a - see Kumar et al. (1995).

(ii) If md>a

Under the last-period-backorders assumption, by taking the first derivative of
C(.) with respect to v, we get

IC ()

Mo 1{—¢'"-u(6—v1 1)1 % (v, = 6)

-20" (8-, +v) [ (-0, - 8Np° (mdn

v, -8

— (= @™ (S —v, +v,))(1— D" (v, - 8))

+29"° (6 -V, +v;) f(n—(vl - 8)¢" (mdn (A4-1)

v -6
+®7 (+v, ~v,))(1-D (v, - 8))

+2¢7(f+v, ~-v;) I(n = (v, =8)¢” (mdn

v, -8

+(1=@"(§+v, v, N1-D* (v, - &)

—2077 (84, —v;) [ (=, — 6N (M} (8)dS

-8

After applying the change of variables {(6=6"-v,+v, ) for the sixth and eighth
lines in (A4-1), they will be canceled out with the second and fourth lines.

Since p,(¥,8) = @"“(6~v,+v,) and p,(¥,8) = " (5+v,—v,), We get

j {(1-0° (0! =8)p, (7", 8) +(1- 0 (v] = 8)(1- p, (7", 8)}¢" ™ (8)d6
= (A4-2)

= [{1-0° 0] -8)p, (7" ,8)+ 1= (v - 81— p, (7", 8)}9"* (8)dS

In (A4-2), (1-®°(v/=8)) is the probability that the demand at R; between

the (¢+1)™ routing decision and the end of the " allocation cycle for R (a

periods after the routing decision) is greater than (v{ —8), the net inventory at
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R) at the instant of the (¢+1)* routing decision. (1-@** (v =8)), (1-®°(v. -6))
, 1-9°*(v)=8))  can be interpreted similarly. The left-hand side and the
right-hand side of (A5-2) are P(¥')and P, (¥"). respectively. This proves the

Lemma.
Appendix b

We prove (Lemma 4) in this appendix.
Proof:
Y
(i) v, €=
72
Because of the symmetry of optimal allocations. there always exists v, which
is less than or equal to %
(i) vz,
We prove this by contradiction. Suppose that \3.<Vf and % is an optimal
allocation to R,. Let ¥=(¥,,v=-¥,). In the fixed-route case, the total expected

costs function is convex and its value goes to infinity as vl goes to infinity or
minus infinity. Since its first derivative is - P(#) + F(¥)} like in the
dynamic-route case, -P,(¥) + £ (¥) <0 when the fixed route is used: that is, P(¥)>
P,(¥) in the fixed-route casc. Compared to the fixed-route case, under dynamic
routing, A (¥) will increase and P, (¥)will decrease’ When LIF prescribes no route
change, the probability of stockout at the end of the allocation cycle will
remain the same at both retailers, but when LIF prescribes a route change,

that probability at R (R;) will increase (decrease). Therefore, under dynamic

routing, P> B) . ¥ can not be optimal since it does not satisfy the first-

order condition.
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